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Let X be a smooth projective curve over a field of characteris-
tic zero. We calculate the motivic class of the moduli stack of
semistable Higgs bundles on X. We also calculate the motivic class
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ing Higgs bundles over finite fields. The main new ingredient is
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1. Introduction and main results

Let X be a smooth projective curve over a field k. The following additive
categories associated with X will be of primary interest to us in this paper:
the category of Higgs bundles and the category of vector bundles with con-
nections. The moduli stacks of objects of these categories are Artin stacks
locally of finite type. Furthermore, these categories have homological dimen-
sions two. Hence one can apply to them (a version of) the theory of motivic
Donaldson–Thomas invariants (DT-invariants for short) developed in [KS1]
and ask about explicit formulas for the motivic DT-series (see loc. cit. for
the terminology and the details).

Let us denote by Mr,d the moduli stack of rank r degree d Higgs bun-
dles and byMss

r,d its open substack of finite type classifying semistable Higgs
bundles. Calculating the DT-series of the category of Higgs bundles is equiv-
alent to calculating the motivic classes ofMss

r,d. In the case when k is finite,
these motivic classes are closely related to volumes of the stacks, see [Sch2].

In this paper we consider the case of the field of characteristic zero
and calculate the motivic classes of the stacks Mss

r,d. We also show that the
motivic class of the moduli stack of rank r bundles with connections is equal
to the motivic class ofMss

r,0. We will give precise formulations of our results
in the following subsections of the introduction. Our techniques are motivic
generalizations of those of [Sch2] and [MS]. The main new ingredient is a
motivic version of a theorem of Harder about Eisenstein series. Furthermore,
motivic versions of many results of the loc. cit. require more substantial use
of algebraic geometry; in particular, we make a systematic use of generic
points of schemes. Moreover, several proofs from [MS] require substantial
revision or replacement in the motivic case.

The reader will notice that besides the results of Schiffmann and
Mozgovoy–Schiffmann our paper is largely motivated by the general philoso-
phy of motivic DT-invariants developed in [KS1], which is a right framework
for many questions about motivic invariants of 3-dimensional Calabi–Yau
categories or categories of homological dimension less than 3.

1.1. Motivic classes of stacks

All the stacks considered in this paper will be Artin stacks locally of finite
type over a field. For an arbitrary field k one defines the abelian group
Mot(k) as the group generated by isomorphism classes of k-stacks of finite
type modulo the following relations:

(i) [Y1] = [Y2] + [Y1 − Y2] whenever Y2 is a closed substack of Y1;
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Motivic classes of moduli of Higgs bundles 689

(ii) [Y2] = [Y1 × Ark] whenever Y2 → Y1 is a vector bundle of rank r.
Note that Mot(k) is a commutative ring under the product [X ][Y] =

[X × Y]. This material is well-known (see e.g. [Eke, Sect. 1], [Joy2], [KS1]).
We define the dimensional completion of Mot(k) as follows. Let

FmMot(k) be the subgroup generated by the classes of stacks of dimension
≤ −m. This is a ring filtration and we define the completed ring Mot(k) as
the completion of Mot(k) with respect to this filtration. In the completed
ring one can take infinite sums of motivic classes of stacks of finite type pro-
vided these sums are convergent. The completion is necessary, for example,
to define the residue of a series whose coefficients are motivic classes. The
class [Y] in Mot(k) or Mot(k) is called the motivic class of the stack Y.

Later, we will also need a relative version of Mot(k) and Mot(k). We
refer the reader to Section 2 for details and references.

1.2. Moduli stacks of Higgs bundles and connections

Fix a smooth geometrically connected projective curve X over k. By a Higgs
bundle on X, we mean a pair (E,Φ), where E is a vector bundle on X, and
Φ : E → E ⊗ ΩX is an OX -linear morphism from E to E “twisted” by the
sheaf of differential 1-forms ΩX . By definition the rank of a pair (E,Φ) is the
rank of E, the degree is the degree of E. Denote by Mr,d the moduli stack
of rank r degree d Higgs bundles on X. We define Higgs sheaves similarly,
by replacing vector bundles with coherent sheaves in the definition.

We also note for further use that every coherent sheaf F on X can be
written as T ⊕ E, where T is a torsion sheaf, E is a torsion free sheaf (that
is, a vector bundle). In this decomposition T is unique, while E is unique
up to isomorphism.

The Higgs bundle (E,Φ) is called semistable if for any subbundle F ⊂ E
preserved by Φ we have

degF

rkF
≤ degE

rkE
.

Semistability is an open condition compatible with field extensions; we de-
note the open substack of semistable Higgs bundles by Mss

r,d ⊂Mr,d. The
stack Mss

r,d is of finite type. We refer the reader to Section 3.3 for more de-
tails. Similarly one can deal with Higgs sheaves. The latter form an abelian
category.

Denote by Connr the moduli stack of rank r vector bundles with con-
nections on X. That is, the stack classifying pairs (E,∇), where E is a rank
r vector bundle on X, ∇ : E → E ⊗ ΩX is a k-linear morphism of sheaves
satisfying the Leibnitz rule: for any open subset U of X, any f ∈ H0(U,OX)
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and any s ∈ H0(U,E) we have

∇(fs) = f∇(s) + s⊗ df.

Assume that k is a field of characteristic zero. Then the stack Connr is
a stack of finite type. We will reprove this well-known fact in Section 3.4.
Recall that every vector bundle admitting a connection has degree zero
(Weil’s theorem). Note also that in the case of bundles on curves every
connection is automatically flat as ∧2ΩX = 0. Our first main result is the
following theorem.

Theorem 1.2.1. If k is a field of characteristic zero, then we have the
equality of motivic classes in Mot(k):

[Connr] = [Mss
r,0].

This theorem will be proved in Section 3.7. The proof is inspired by [MS].
To give the reader the flavor of the statement, we sketch a direct proof in
the case of r = 2 in Section 3.9.

Remark 1.2.2. Note that every bundle with connection (E,∇) is semi-
stable in the following sense: if F is a subbundle preserved by ∇, then
degF = 0 = degE. Thus the theorem tells that the motivic classes of the
stacks of semistable Higgs bundles and the stack of semistable bundles
with connections are equal. In fact, if k is the field of complex numbers,
then the corresponding categories are equivalent by Simpson’s non-abelian
Hodge theory. Furthermore the moduli stack of λ-connections constructed
by Deligne and Simpson “interpolates” between the stacks of objects of these
categories. If instead of stacks we had smooth varieties, we would be able
to compare their motivic classes by a simple argument using the natural
action of the multiplicative group on the stack of λ-connections and the
Bialyanicki–Birula decomposition. There are few reasons why it is not easy
to implement this natural idea in our case:

1. We are not aware of the Bialyanicki–Birula decomposition for Artin
stacks (we know such a result for Deligne–Mumford stacks only).

2. If instead one works with coarse moduli spaces, the problem is that
it is difficult to compare their motivic classes with motivic classes of the
stacks because of the S-equivalence. We would like to emphasize, that every
bundle with connection has degree zero, so we have to work with the case,
when the degree and the rank are not coprime.
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Motivic classes of moduli of Higgs bundles 691

3. A related problem is that the stack of semistable Higgs bundles is not
smooth in the case of degree zero.

The above arguments do not rule out the idea completely. More gener-
ally, one can hope that there might be a theorem that, very roughly speaking,
says that “the motivic class of a stack does not change in the twistor family”.
But we do not see how to make the idea precise.

1.3. Explicit formulas for motivic classes

Our second main result is the explicit calculation of the motivic class of the
stack of semistable Higgs bundles. This problem has some history including
the paper by Mozgovoy [Moz] where the conjecture about the motivic class
was made in the case when the rank and the degree are coprime, and the
papers by Schiffmann [Sch2], Mozgovoy–Schiffmann [MS], Mellit [Mel], de-
voted to the calculation of the volume of the stack over a finite field. We
assume that k is a field of characteristic zero.

In order to formulate our result let us recall some standard notions.

1.3.1. Motivic zeta-functions. Here we follow [Kap]. For a variety Y
set

ζY (z) :=

∞∑
n=0

[Y (n)]zn ∈ Mot(k)[[z]],

where Y (n) = Y n/Sn is the n-th symmetric power of Y (Sn denotes the
group of permutations).

Assume now that Y = X is our smooth curve. For the rest of the intro-
duction, we assume that X has a divisor of degree one defined over k. (Note
that this condition is satisfied, if X has a k-rational point.) Let g be the
genus of X. Set L := [A1

k].

Proposition 1.3.1. (i)

ζX(z) = PX(z)/(1− z)(1− Lz)

for a polynomial PX(z) with coefficients in Mot(k);
(ii) PX(0) = 1 and the highest term of PX is Lgz2g.
(iii) We have

ζX(1/Lz) = L1−gz2−2gζX(z).

(iv) If i 6= 0,−1, then ζX(Li) 6= 0 is invertible in Mot(k).
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Before giving the proof, we note that part (i) is used to view ζX(z) as a
function on Mot(k) defined for all z such that 1− z and 1− Lz are invertible
in Mot(k). In particular, ζX(Li) is defined for i 6= 0,−1.

Proof. Statements (i) and (iii) is [Kap, Thm. 1.1.9]. It is obvious that
PX(0) = 1, the statement about the highest term of PX now follows from
(iii). Statement (iv) in the case i ≤ −2 follows from the fact that ζX(Li) ∈
1 + F 1Mot(k), where FmMot(k) is the dimensional filtration. In the case
i ≥ 1 the statement follows from (iii). �

It is convenient to introduce the “normalized” zeta-function ζ̃X(z) :=
z1−gζX(z) and the “regularized” zeta-function by setting

ζ∗X(L−uzv) =


ζX(L−uzv) if v > 0 or u > 1,

resz=L−1 ζX(z)dzz :=
PX(L−1)

1− L−1
if (u, v) = (1, 0),

resz=1 ζX(z)dzz :=
PX(1)

1− L
if (u, v) = (0, 0).

(Cf. the definition of the residue in Section 4.3.)
Let (1 + zMot(k)[[z]])× denote the multiplicative group of power series

with constant term 1. One can uniquely extend the assignment Y 7→ ζY to
a continuous homomorphism of topological groups

(1) ζ : Mot(k)→ (1 + zMot(k)[[z]])×

such that for any A ∈ Mot(k) and any n ∈ Z we have ζLnA(z) = ζA(Lnz).
More precisely, any class A ∈ Mot(k) can be written as the limit of a se-
quence ([Yi]− [Zi])/Lni , where Yi and Zi are varieties. We define

ζA(z) = lim
i→∞

ζYi(L−niz)
ζZi(L−niz)

.

For more details, see Section 2.5. Note that the operation A 7→ ζA gives a
pre-lambda structure on the ring Mot(k) (see [GZLMH]).

Consider the ring of formal power series in two variables Mot(k)[[z, w]]
(this is, actually, an example of a quantum torus, cf. Section 1.6). Let
Mot(k)[[z, w]]+ denote the ideal of power series with vanishing constant
term, let (1 + Mot(k)[[z, w]]+)× be the multiplicative group of series with
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Motivic classes of moduli of Higgs bundles 693

constant term equal 1. We define the plethystic exponent

Exp : Mot(k)[[z, w]]+ → (1 + Mot(k)[[z, w]]+)×

by

Exp

∑
r,d

Ar,dw
rzd

 =
∏
r,d

Exp(Ar,dw
rzd) =

∏
r,d

ζAr,d(w
rzd).

One shows easily that this is an isomorphism of abelian groups. Denote the
inverse isomorphism by Log (the plethystic logarithm).

1.3.2. Explicit formulas for motivic classes of the stacks of semi-
stable Higgs bundles. The following is the motivic version of [Sch2,
Sect. 1.4].

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) be a partition. We can also write it as
λ = 1r12r2 · · · trt , where ri is the number of occurrences of i among λj , 1 ≤
j ≤ l. The Young diagram of λ is the set of the points (i, j) ∈ Z2 such that
1 ≤ i ≤ λj . For a box s ∈ λ its arm a(s) (resp. leg l(s)) is the number of
boxes lying strictly to the right of (resp. strictly above) s.

For a partition λ, set

Jmotλ (z) =
∏
s∈λ

ζ∗X(L−1−l(s)za(s)) ∈ Mot(k)[[z]],

where the product is over all boxes of the Young diagram corresponding
to the partition. In particular, for the empty Young diagram λ we get
Jmotλ (z) = 1.

Set1

Lmot(zn, . . . , z1) =
1∏

i<j ζ̃X

(
zi
zj

)
×
∑
σ∈Sn

σ

∏
i<j

ζ̃X

(
zi
zj

)
1∏

i<n

(
1− L zi+1

zi

) · 1

1− z1

 .

1Following [Sch2] we use inverse numeration of variables.
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For a partition λ = 1r12r2 · · · trt such that
∑

i ri = n, set r<i =
∑

k<i rk and
denote by resλ the iterated residue along

zn
zn−1

= L−1,
zn−1

zn−2
= L−1, . . . ,

z2+r<t

z1+r<t

= L−1,

...
...

...
zr1
zr1−1

= L−1,
zr1−1

zr1−2
= L−1, . . . ,

z2

z1
= L−1.

Set

H̃mot
λ (z1+r<t , . . . , z1+r<i , . . . , z1) := resλ

Lmot(zn, . . . , z1)

n∏
j=1

j /∈{r<i}

dzj
zj


and

(2) Hmot
λ (z) := H̃mot

λ (ztL−r<t , . . . , ziL−r<i , . . . , z).

Remark 1.3.2. Neither the notion of residue, nor the substitution (2) is
obvious for rational functions whose coefficients belong to Mot(k) because it
is not known whether this ring is integral. Let us give the precise definition.
For a polynomial P (zn, . . . , z1) ∈ Mot(k)[zn, . . . , z1], let Pλ(z) denote the
one-variable polynomial, obtained from P by substituting (for each i) L1−izji

instead of zi, where ji is the unique number such that r<ji < i ≤ r<ji+1.
Consider the product

n∏
j=1

j /∈{r<i}

(
1− Lzj+1

zj

)
Lmot(zn, . . . , z1).

Inspecting the formula for Lmot and using Lemma 1.3.1, we can show that
the product can be written in the form P (zn, . . . , z1)/Q(zn, . . . , z1), where
Qλ(0) is invertible in Mot(k). Then

Hmot
λ (z) :=

Pλ(z)

Qλ(z)
.

We expand this rational function in powers of z, so that

Hmot
λ (z) ∈ Mot(k)[[z]].
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We refer the reader to Section 4.3 and especially to Remark 4.3.1 for the
compatibility with the definition of the residue of a power series.

Let us introduce the elements Br,d ∈ Mot(k) via the formula

∑
r,d∈Z≥0

(r,d) 6=(0,0)

Br,dw
rzd = LLog

(∑
λ

L(g−1)〈λ,λ〉Jmotλ (z)Hmot
λ (z)w|λ|

)
.

Here the sum is over all partitions, 〈λ, λ〉 :=
∑

i(λ
′
i)

2, where λ′ = (λ′1 ≥ · · · ≥
λ′i ≥ · · · ) is the conjugate partition, |λ| =

∑
i λi. Next, let τ≥0 be a rational

number. Define the elements Hr,d ∈ Mot(k) by

∑
d/r=τ

L(1−g)r2Hr,dw
rzd = Exp

 ∑
d/r=τ

Br,dw
rzd

 .

Now we can formulate our second main result.

Theorem 1.3.3. Let k be a field of characteristic zero.
(i) The elements Hr,d are periodic in d with period r in the following

sense: for d > r(r − 1)(g − 1) we have Hr,d = Hr,d+r.
(ii) For any r > 0 and any d we have

[Mss
r,d] = Hr,d+er,

whenever e is large enough (it suffices to take e > (r − 1)(g − 1)− d/r.)

The proof of Theorem 1.3.3 will be given in Section 6.4. Note that Hr,d

can be computed explicitly in terms of the operations in the pre-lambda ring
Mot(k). Thus, the above theorem gives an explicit answer for the motivic
class of the stack Mss

r,d.
A similar statement is not known, and probably not literally true, in the

case when k is a field of finite characteristic. However, for finite fields one
can calculate the volume of the groupoid Mss

r,d(k). This volume has been
calculated in [Sch2, MS]. Our answer is very similar to theirs. The proof
in our case is also very similar to loc. cit. except for a few subtle points.
One is a motivic version of a theorem of Harder, which we will discuss in
Sections 1.5 and 4.

Combining part (ii) of the above theorem with Theorem 1.2.1, we arrive
at the following result.
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Corollary 1.3.4. We have

[Connr] = [Hr,er]

for any e > (r − 1)(g − 1).

1.4. Vector bundles with nilpotent endomorphisms

The proof of Theorem 1.3.3 is based on the following statement of inde-
pendent interest. Let the stack E≥0,nilp classify pairs (E,Φ), where E is a
vector bundle on X such that there are no non-zero morphisms E → F , with
degF < 0, Φ is a nilpotent endomorphism of E. Then E≥0,nilp decomposes
according to the rank and degree of the bundles: E≥0,nilp = tr,dE≥0,nilp

r,d . It

follows easily from Lemma 3.2.1 below that E≥0,nilp
r,d is an Artin stack of finite

type.

Theorem 1.4.1. Let k be a field of characteristic zero. We have the fol-
lowing identity in Mot(k)[[z, w]].∑

r,d≥0

[E≥0,nilp
r,d ]wrzd =

∑
λ

L(g−1)〈λ,λ〉Jmotλ (z)Hmot
λ (z)w|λ|.

This theorem will be proved in Section 6.3.

1.5. Harder’s theorem on motivic classes of Borel reductions

As we mentioned in Section 1.1, for any stack X one can define the relative
group of motivic functions Mot(X ) and its completion Mot(X ) (so that
Mot(k) = Mot(Spec k) and Mot(k) = Mot(Spec k)). If Y is a stack of finite
type over X , we have a motivic function [Y → X ] (and Mot(X ) is generated
by these functions if X is of finite type). In particular, we have the “constant
function” 1X := [X → X ]. We review this standard material in Section 2.
Note that in a slightly different settings these groups were defined in [KS1].
The group Mot(X ) is a topological group.

1.5.1. The stack of Borel reductions. In this section k is a field of
arbitrary characteristic. Denote by Bunr,d the moduli stack of rank r degree
d vector bundles on X. By a Borel reduction of a rank r vector bundle E
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we understand a full flag of subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = E.

In particular, Ei is a vector bundle of rank i and E/Ei is a vector bundle of
rank r − i. The degree of the Borel reduction is given by

(d1, . . . , dr), where di := degEi − degEi−1.

(In particular, degE1 = d1.)
Let Bunr,d1,...,dr stand for the stack of rank r vector bundles with a

Borel reduction of degree (d1, . . . , dr). We view Bunr,d1,...,dr as a stack over
Bunr,d1+···+dr via the projection (E1 ⊂ · · · ⊂ Er) 7→ Er. In Section 4.1 we
explain that this projection is of finite type and prove the following theorem:

Theorem 1.5.1. For any r > 0 and d ∈ Z we have in Mot(Bunr,d)

lim
d1→−∞

· · · lim
dr−1→−∞

[Bunr,d1,...,dr−1,d−d1−···−dr−1
→ Bunr,d]

L−(2r−2)d1−(2r−4)d2−···−2dr−1

=
L(r−1)(d+(1−g) r+2

2 )[Jac]r−1

(L− 1)r−1
∏r
i=2ζX(L−i)

1Bunr,d .

Here Jac = JacX is the Jacobian variety of X. We note that ζX(L−i)
converges for i ≥ 2.

Remark 1.5.2. It is very important that the right hand side is a product of
an element of Mot(Spec k) with 1Bunr,d . This may be loosely reformulated as
a statement that all vector bundles have approximately equal motivic classes
of Borel reductions. Moreover, this is true uniformly over any substack of
finite type.

The generating functions for the motivic classes

[Bunr,d1,...,dr → Bunr,d1+···+dr ]

are known as (motivic) Eisenstein series. The above theorem can be in-
terpreted as a statement about the residue of this Eisenstein series; see
Theorem 4.2.3 and Proposition 5.5.3(vi) below.
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1.6. Relation with results of Kontsevich and Soibelman

In [KS1] and [KS2] the authors developed a general theory of motivic
Donaldson–Thomas invariants (DT-invariants for short) of three-dimensional
Calabi–Yau categories (3CY categories for short). The categories considered
in [KS1] are ind-constructible. Roughly speaking, this means that the ob-
jects of such categories are parameterized by unions of Artin stacks of finite
type (see loc. cit. for the precise definition).

Most of the categories that appear “in nature” are ind-constructible. Im-
portant examples are given by representations of algebras (or dg-algebras),
(derived) categories of coherent sheaves, categories of Higgs sheaves etc. In
the case of coherent sheaves or Higgs sheaves on projective curves, the ho-
mological dimension of either of these categories is less than 3. However, one
can upgrade them to 3CY categories. For that reason many questions about
cohomological and motivic invariants of these categories can be reduced to
the general theory developed in [KS1, KS2]. This remark could explain an
appearance of motivic DT-invariants in some questions about the Hodge
theory of character varieties (see [HLetRV]).

A recent spectacular example is the main conjecture from [HLetRV].
The categories of Higgs sheaves and of connections on a curve studied in
this paper have cohomological dimension 2, and moreover are 2-dimensional
Calabi–Yau categories (2CY categories for short).

1.6.1. Hall algebras and quantum tori. Let C be an ind-constructible
abelian (or more generally A∞-triangulated) category endowed with a ho-
momorphism of abelian groups cl : K0(C)→ Γ ' Zn (“Chern character”).
We also assume that Γ is endowed with an integer skew-symmetric form
〈•, •〉 and cl intertwines this form and the skew-symmetrization of the Euler
form on K0(C).

One associates to this data two associative algebras. The first algebra is
the motivic Hall algebra H(C). As a Mot(k)-module, it is equal to a group of
stack motivic functions on the stack of objects Ob(C). The other algebra is
the quantum torus RC = RΓ,C :=

⊕
γ∈Γ Mot(k)eγ associated with (Γ, 〈•, •〉)

(see [KS1] for the definitions of the multiplications on both algebras). Note
that RΓ,C is much more explicit but carries less information.

Suppose that the ind-constructible category C carries a constructible
stability structure with the central charge Z : Γ→ C (see [KS1] for the de-
tails). Identify C with R2. Then for any strict sector V ⊂ R2 with the vertex
in the origin, one can define a full subcategory C(V ) ⊂ C generated by the
semistables with the central charge in V . Furthermore, the corresponding
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motivic Hall algebra H(C(V )) and the quantum torus RC(V ) admit natural

completions Ĥ(C(V )) and R̂C(V ). The former contains an element

AHallC(V ) :=
∑
γ∈Γ

Z(γ)∈V

1Obγ(C).

Here 1Obγ(C) is the identity motivic function on Obγ(C), where Obγ(C) ⊂
Ob(C) is the substack parameterizing objects of class γ. In the case when C is
a 3CY category there is a homomorphism of algebras Φ := ΦV : Ĥ(C(V ))→
R̂C(V ). The element AmotC(V ) := Φ(AHallC(V )) is called the motivic DT-series of

C(V ). The homomorphism Φ is defined in terms of the motivic Milnor fiber
of the potential of C, hence it exists literally for 3CY categories only.

In the case when C has homological dimension less or equal than two,
one can “upgrade” it to a 3CY category by introducing a kind of “La-
grangian multipliers”. Then the homomorphism Φ gives rise to a linear map
Ĥ(C(V ))→ R̂C(V ) that partially respects the products.

In particular, if C is a 2CY category then for each strict sector V
there is a linear map Φ := ΦV : Ĥ(C(V ))→ R̂C(V ) that satisfies the prop-
erty Φ([F1][F2]) = Φ([F1])Φ([F2]) as long as Arg(Z(F1)) > Arg(Z(F2)) (see
e.g. [RS] for details).

Applying Φ to the element AHallC(V ), we arrive at the element

AmotC(V ) :=
∑
γ∈Γ

Z(γ)∈V

wγ [Obγ(C)]eγ ,

where the “weight” wγ is derived from the general theory of [KS1] (there is
an alternative approach in [KS2]). In the Higgs sheaves case, the weight is
given by wγ = w(r,d) = L(1−g)r2 .

The above series converge both in the motivic Hall algebra and in the
quantum torus, since a choice of the strict sector V forces us to make a
summation over elements γ that belong to a strict convex cone in Γ⊗ R.

In the current paper we work with two different categories C: the cat-
egory of coherent sheaves on X and the category of coherent sheaves with
Higgs fields. The latter category is 2CY, which forces the quantum torus to
be commutative (because the Euler form is symmetric). In this case Γ = Z2 is
generated by rank and degree gradation. Thus RC = Mot(k)[z, z−1, w, w−1],
where z = e(0,1), w = e(1,0). So the motivic DT-series AmotC(V ) becomes a gen-
erating function in commuting variables.
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The stability structure comes from the central charge Z(F ) = −degF +√
−1 rkF . The strict sector V is the second quadrant {x ≤ 0, y ≥ 0} in the

plane R2
(x,y). Therefore, our generating functions are series in two variables.

It seems plausible that the whole theory of this paper can be developed for
an arbitrary strict sector.

Following [Sch2], we also use a slightly different framework, when a sta-
bility structure is imposed on the coherent sheaf itself rather than on the
pair consisting of a sheaf with a Higgs field. Although in this case we do
not have a stability structure on the category of Higgs sheaves, the natural
forgetful functor from Higgs sheaves to coherent sheaves allows us to utilize
the methods of [KS1].

1.7. Further direction of work

There are several questions that arise naturally in relation to our work.
(1) Generalization to the moduli stacks of G-connections (and Higgs G-

bundles), where G is an arbitrary reductive group. This would require a
substantial change in the techniques, since the underlying categories are not
additive.

(2) Generalization to the moduli stacks of connections and Higgs bun-
dles with singularities. In the case of regular singularities, one can fix the
types of parabolic structures at singular points and look for the motivic
class of the moduli stack of parabolic connections and Higgs bundles. The
paper [CDDP], although conjectural, contains an alternative approach to
the problem via upgrading the computation of the motivic class of Higgs
bundles to the problem about refined Pandharipande–Thomas invariants
on the non-compact Calabi–Yau 3-fold associated with the spectral curve.
The main target of this paper is the HLRV conjecture from [HLetRV] and
its generalizations. A different approach to parabolic Higgs bundles on the
projective line was suggested (in the case of finite fields) in [Let].

It looks plausible that the techniques of motivic Hall algebras employed
in this paper can be used in the parabolic case as well (see e.g. [Lin] for the
case of Hall algebras over finite field).2

The case of irregular singularities is less developed. Although one un-
derstands somehow the structure of the moduli stacks of Higgs bundles and

2Using the ideas of recent paper [Mel2] one can reduce the computations in
the case of parabolic Higgs bundles to those in the case of Higgs bundles without
parabolic structure.
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connections (see e.g. [KS3], [Sza]) the actual computations are not easy
(see [HML] as well as [D], [DDP]).

(3) The relation to the HLRV conjecture in the parabolic and (espe-
cially) the irregular case is another natural question. So far, the formulas
obtained by Mozgovoy and Schiffmann give an a priori different answer than
was expected in [HLetRV]. Since our approach is a motivic version of the
one of Mozgovoy and Schiffmann, the same discrepancy is expected for the
generalizations as well.

(4) Since the category of Higgs bundles on a curve is an example of a
2-dimensional Calabi–Yau category, one can try to speculate which of our
results hold for more general 2CY categories. An interesting class of such
categories was proposed in [RS] in relation to semicanonical bases. It seems
plausible that Cohomological Hall algebras introduced in [KS2] provide the
right framework for many questions arising from the HLRV conjecture. We
should note that in [KS2] the authors used motivic groups different from
those considered in this paper. However, the motivic Donaldson–Thomas
series obtained for two different versions of motivic groups in [KS1] and [KS2]
agree in the end. On the other hand, motivic DT-invariants appear naturally
in relation to the HLRV conjecture. This remark explains our optimism
concerning the relation of Cohomological Hall algebras and motivic classes
of Higgs bundles (and connections) in all above-mentioned cases.

1.8. Plan of the paper

In Section 2 we discuss motivic classes of stacks. This material is standard
and is presented here for the reader’s convenience.

In Section 3 we introduce various stacks and provide relations between
their motivic classes. In particular, we prove Theorem 1.2.1 and give a re-
lation between the moduli stacks of Higgs bundles, moduli stacks of vec-
tor bundles with endomorphisms, and moduli stacks of vector bundles with
nilpotent endomorphisms.

In Section 4 we prove Theorem 1.5.1. This statement was not known
in the motivic setup, and, in a sense, was the main stumbling block for
re-writing the results of [Sch2] and [MS] in the motivic situation.

In Section 5 we discuss the motivic Hall algebra of the category of coher-
ent sheaves on a curve. We do some explicit calculations in this Hall algebra.
These calculations are used in Section 6 to prove Theorems 1.4.1 and 1.3.3.
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2. Stack motivic functions and constructible subsets
of stacks

In this section k is a field of any characteristic. Recall that in this paper we
only work with Artin stacks locally of finite type over a field whose groups of
stabilizers are affine. According to [Kre, Prop. 3.5.6, Prop. 3.5.9] every such
stack has a stratification by global quotients of the form X/GLn, where X
is a scheme. We will often use this result below. In this section, we define the
group of motivic functions on such a stack X (Notation: Mot(X )). Motivic
functions on Artin or, more generally, constructible stacks were studied by
different authors: see, for example, [Joy2], [KS1] (or [Eke, Sect. 1] in the
case when X is the spectrum of a field), so no results of this section are
really new. We have included this section for convenience of the reader and
in order to fix the notation.

Recall from [LMB, Ch. 5] the notion of points of a k-stack S. Let K ⊃ k
be a field extension. By a K-point of S we mean an object of the groupoid
S(K). A K ′-point ξ′ of S is equivalent to a K ′′-point ξ′′ of S if there is
an extension K ⊃ k and k-embeddings K ′ ↪→ K, K ′′ ↪→ K such that ξ′K is
isomorphic to ξ′′K (as an object of S(K)). The set of equivalence classes of
points of S is denoted by |S|; this set carries Zariski topology.3 If Y is a
scheme, then |Y | is identified with the underlying set of Y . A 1-morphism
F : S → S ′ induces a continuous map |F | : |S| → |S ′|.

3If Y → S is a surjective 1-morphism, where Y is a scheme, then every point of S
is equivalent to a K-point, where K is a residue field of a point of Y . This explains
why |S| is a set rather than a class.
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2.1. Stack motivic functions

Let X be an Artin stack of finite type. The abelian group Mot(X ) is the
group generated by the isomorphism classes of finite type 1-morphisms Y →
X modulo relations

(i) [Y1 → X ] = [Y2 → X ] + [(Y1 − Y2)→ X ] whenever Y2 is a closed sub-
stack of Y1.

(ii) If π : Y1 → X is a 1-morphism of finite type and ψ : Y2 → Y1 is a
vector bundle of rank r, then

[Y2
π◦ψ−−→ X ] = [Y1 × Ark

π◦p1−−−→ X ].

We call Mot(X ) the group of stack motivic functions on X (usually we will
drop the word “stack”). We write [Y] instead of [Y → Spec k]. We write
Mot(k) instead of Mot(Spec k). We denote by L ∈ Mot(k) the element [A1

k]
(called the Lefschetz motive). Note that motivic functions ‘don’t feel nilpo-
tents’ in the sense that [X → Y] = [Xred → Y].

For a 1-morphism f : X → Y of stacks of finite type, we have the pullback
homomorphism f∗ : Mot(Y)→ Mot(X ), such that

f∗([S → Y]) = [S ×Y X → X ]

(note that f is not necessarily of finite type because X and Y may be stacks
over different fields). For A ∈ Mot(Y) we sometimes write A|X instead of
f∗A.

Next, if f : X → Y is of finite type, then we have the pushforward homo-
morphism f! : Mot(X )→ Mot(Y), such that f!([π : S → X ]) = [f ◦ π : S →
Y]. For k-stacks of finite type X and Y we also have an external product
� : Mot(X )⊗Z Mot(Y)→ Mot(X × Y).

We have the usual properties of pullbacks and pushforwards: (fg)∗ =
g∗f∗, (fg)! = f!g!, the base change; easy proofs are left to the reader.

If X is a stack locally of finite type, denote by Opf(X ) the set of finite
type open substacks U ⊂ X ordered by inclusion. Set

Mot(X ) := lim
←−

Mot(U)

where the limit is taken over the partially ordered set Opf(X ). In other
words, a motivic function on X amounts to a motivic function AU on each
U ∈ Opf(X ) such that (AU )|W = AW , whenever W ⊂ U .
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If X → Y is a 1-morphism of finite type (but Y is not necessarily of
finite type), we write [X → Y] ∈ Mot(Y) for the inverse system given by
U 7→ X ×Y U . Put 1X := [X → X ] ∈ Mot(X ).

It is straightforward to check that the pullback extends to any 1-
morphism of stacks, while the pushforward extends to any 1-morphism of
finite type.

Set

Motfin(X ) := ∪U∈Opf(X )(jU )!Mot(U) ⊂ Mot(X ),

where jU : U → X is the open immersion. This is the group of “motivic
functions with finite support”. Note that the pushforward and the pull-
back preserve Motfin, provided the 1-morphism is of finite type. In fact,
the pushforward f! : Motfin(X )→ Motfin(Y) may be defined for all mor-
phisms locally of finite type. The importance of Motfin(X ) will be clear in
Section 2.3.

Next, the direct product makes Mot(k) into a commutative associative
unital ring. For any k-stack X the group Mot(X ) is a module over Mot(k).
Moreover, pullbacks and pushforwards are homomorphisms of modules. (In
fact, the fiber product makes any Mot(X ) into a ring, but we will not use
this structure when X is not the spectrum of a field.)

Let X be an Artin stack of finite type. Let FmMot(X ) ⊂ Mot(X ) be the
subgroup generated by X -stacks of relative dimension ≤ −m. We denote
the completion with respect to this filtration by Mot(X ) and call it the
completed group of stack motivic functions. Note that the operations f∗

and f! are continuous with respect to the topology given by the filtrations,
so both the pullback and the pushforward extend to completed groups by
continuity. We write Mot(k) instead of Mot(Spec k).

If X is an Artin stack locally of finite type, we define

Mot(X ) := lim
←−

Mot(U),

where the inverse limit is taken over the partially ordered set Opf(X ). Note
that Mot(X ) has the inverse limit topology: a subset of Mot(X ) is open if and
only if it is a preimage of an open subset in Mot(U) for some U ∈ Opf(X ).
It follows that a sequence An ∈ Mot(X ) converges to A if and only if for all
U ∈ Opf(X ) we have limn→∞(An|U ) = A|U .

Everything we said about the groups of stack motivic functions extends
to completed groups by continuity. In particular, we can extend the pullbacks
to all 1-morphisms of stacks, and the pushforwards to all 1-morphisms of
finite type. The product on Mot(k) extends by continuity to Mot(k). The
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Mot(k)-module structure on Mot(X ) extends to a Mot(k)-module structure
on Mot(X ). We also define

Mot
fin

(X ) := ∪U∈Opf(X )(jU )!Mot(U) ⊂ Mot(X )

and note that the pushforward f! : Mot
fin

(X )→ Mot
fin

(Y) may be defined
for all morphisms locally of finite type.

We do not know whether the natural morphism i : Mot(X )→ Mot(X )
is injective. However, we abuse notation by writing A instead of i(A), that
is, by viewing an element of Mot(X ) as an element of Mot(X ) if convenient.

2.2. Algebraic groups

Lemma 2.2.1. Let GLn act on an Artin stack X . Then we have in
Mot(X/GLn)

[GLn]1X/GLn = [X → X/GLn].

(We are using the Mot(k)-module structure on Mot(X/GLn)).

Proof. Since X is locally of finite type, X/GLn is locally of finite type as
well. Thus we may assume that X is of finite type. Recall that we have

(3) [GLn] =

n−1∏
i=0

(Ln − Li).

Set Y := X/GLn. We use induction on n. The case n = 0 is obvious.
Let V := An ×GLn X be the rank n vector bundle on Y associated with the
principal GLn-bundle X → Y. More precisely, we have V = (An ×X )/GLn,
where GLn acts on An via the standard representation. Set V ′ := (An −
{0})×GLn X so that V ′ is the complement of the zero section in V. Thus we
have

(4) Ln1Y = [V → Y] = [V ′ → Y] + 1Y .

Let GLn−1 ⊂ GLn be the subgroup of block matrices of the form[
1 0
0 ∗

]
.

We claim that X/GLn−1 is a rank n− 1 vector bundle on V ′. Indeed, con-
sider the 1-morphism X → (An − {0})×X , sending x to ((1, 0, . . . , 0), x).
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Its composition with the projection to V ′ is GLn−1-invariant because GLn−1

stabilizes (1, 0, . . . , 0). Thus we get a 1-morphism X/GLn−1 → V ′. We need
to show that it is a rank n− 1 vector bundle. This is enough to check after a
smooth base change, so we may assume that X = GLn×Y, where GLn acts
on the first factor. In this case the statement is standard.

By induction hypothesis, we get in Mot(X/GLn−1): [X → X/GLn−1] =
[GLn−1]1X/GLn−1

. Applying f! to both sides, where f : X/GLn−1 → Y is the
projection, we get [X → Y] = Ln−1[GLn−1][V ′ → Y]. Combining with (4)
and (3) we get the statement of the lemma. �

Corollary 2.2.2. Assume that X is a stack of finite type over a stack S
and that the action of GLn on X commutes with the projection to S. Then
we have in Mot(S)

[X → S] = [GLn][X/GLn → S].

Proof. Apply f! to the equality given by the above lemma, where f : X/GLn
→ S is the structure 1-morphism. �

Recall that an algebraic k-group G is called special, if every principal
G-bundle on a scheme is Zariski locally trivial4. Note that if V is a k-
vector space, then V (with its additive group structure) can be viewed as
an algebraic k-group; it is easily seen to be special (cf. [Joy2, Sect. 2]).

Lemma 2.2.3. Let G be a special k-group, BG be the classifying stack of
G. Then we have [G][BG] = 1 in Mot(k).

Proof. First of all, in the case G = GLn the statement follows easily from
Corollary 2.2.2. In particular, the class of GLn is invertible in Mot(k).

Consider a closed embedding G→ GLn and note that the quotient
GLn /G is a scheme. Since G is special, we have [GLn] = [G][GLn /G]. On
the other hand, by Corollary 2.2.2, we get

[GLn /G] = [GLn][(GLn /G)/GLn] = [GLn][BG].

The lemma follows easily from the two equations and the fact that [GLn] is
invertible in Mot(k). �

4We always assume k-groups to be smooth, which is automatic if k has charac-
teristic zero.
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2.3. Bilinear form

Let Z be a k-stack of finite type. If X and Y are of finite type over Z, we
set

([X → Z]|[Y → Z]) = [X ×Z Y].

Extending this by bilinearity, we get a symmetric bilinear form Mot(Z)⊗
Mot(Z)→ Mot(k). We extend this by continuity to a symmetric form
Mot(Z)⊗Mot(Z)→ Mot(k).

Now, let Z be a k-stack locally of finite type. Let A ∈ Mot
fin

(Z), B ∈
Mot(Z). Write A = j!AV , where V ∈ Opf(Z), j : V → X is the open immer-
sion. Let B be given by an inverse system U 7→ BU , where U ranges over
Opf(Z). Set (A|B) := (AV |BV). One checks that this does not depend on
the choice of V (to prove this, one first proves Lemma 2.3.1 below in the case,
when Z and Z ′ are of finite type over k). In this way, we get a continuous
bilinear form

(•|•) : Mot
fin

(Z)⊗Mot(Z)→ Mot(k).

Note that the restriction of this form to Mot
fin

(Z)⊗Mot
fin

(Z) is symmet-
ric.

We abuse notation by writing sometimes (A|B) instead of (B|A) when

B ∈ Mot
fin

(Z) but A /∈ Mot
fin

(Z).
The following lemma is immediate.

Lemma 2.3.1. If f : Z → Z ′ is a 1-morphism of finite type, then

(i) for all A ∈ Mot
fin

(Z), B ∈ Mot(Z ′) we have

(A|f∗B) = (f!A|B).

(ii) for all A ∈ Mot
fin

(Z ′), B ∈ Mot(Z) we have

(f∗A|B) = (A|f!B).

2.4. Constructible subsets of stacks

Let S be an Artin stack of finite type over k. A subset X ⊂ |S| is called
constructible if it belongs to the Boolean algebra generated by the sets of
points of open substacks of S. A stratification of a constructible subset
X ⊂ |S| is a finite collection Ti of constructible subsets of S such that X =
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tiTi. Let X be a constructible subset of a finite type stack S. Consider a
stratification X = ti|Yi|, where Yi are locally closed substacks. Set

1X ,S :=
∑
i

[Yi → S] ∈ Mot(S).

It is easy to see that 1X ,S does not depend on the stratification of X .
If S is a stack locally of finite type, we call X ⊂ |S| constructible, if

for every U ∈ Opf(S) the set X ∩ |U| is a constructible subset of U . In this
case, we define 1X ,S via the inverse system U 7→ 1X∩|U|,U . We sometimes
write 1X instead of 1X ,S , when S is clear. If g : S → T is a 1-morphism
of finite type and X ⊂ |S| is a constructible subset, we use the notation
[X → T ] := g!1X ,S . When T = Spec k, we write [X ] for [X → Spec k].

A constructible subset X ⊂ |S| is of finite type, if there is U ∈ Opf(S)
such that X ⊂ |U|. In this case, 1X ,S ∈ Motfin(S), so if g : S → T is a 1-
morphism locally of finite type, then we can define [X → T ] := g!1X ,S .

Let S and S ′ be stacks of finite type and X ⊂ |S|, X ′ ⊂ |S ′| be their
constructible subsets. Let X = ti|Ti|, X ′ = ti|T ′i | be their stratifications by
locally closed substacks. We define the product of S and S ′ via S × S ′ =
ti,j |Ti × T ′j |.5 It is easy to check that this product does not depend on
stratifications and that we have [S × S ′] = [S]× [S ′] in Mot(k). It is also
easy to extend the definition to any finite number of multiples.

Remark 2.4.1. Our definition of motivic functions is essentially equiva-
lent to that of [KS1, Sect. 4.2]. In [KS1] a category of constructible stacks
is defined. Intuitively, constructible stacks are Artin stacks “up to stratifi-
cation”. Precisely, the objects of the category are pairs (X,G) where X is a
k-scheme of finite type, G is a linear group acting on X. We will not spell
out the precise definition of morphisms here but note that one can define an
equivalent category as a category whose objects are pairs (X ,S), where X is
a constructible subset of the stack S. The equivalence of categories is given
by (X,G) 7→ (|X/G|, X/G). In loc. cit. the group of stack motivic functions
is defined over a constructible stack.

5Note that this is not the usual product of sets. The reason is that for stacks
(even schemes) T and T ′ we have in general |T × T ′| 6= |T | × |T ′|.
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2.5. Relation with motivic classes of varieties

Define Motvar(k) as the abelian group generated by the isomorphism classes
of k-varieties (=reduced schemes of finite type over k) subject to the rela-
tion [Z1] = [Z2] + [(Z1 − Z2)] whenever Z2 is a closed subvariety of Z1. The
direct product equips Motvar(k) with a ring structure. There is an obvious
homomorphism Motvar(k)→ Mot(k). This homomorphism clearly extends
to the localization

Motvar(k)[L−1, (Li − 1)−1|i > 0]→ Mot(k).

It is easy to see that the above homomorphism is an isomorphism (see
e.g. [Eke, Thm. 1.2]).

Following [BD, Sect. 2.1], we define the dimensional completion of
Motvar(k) as follows. Denote by FmMotvar(k)[L−1] the subgroup of the
localization Motvar(k)[L−1] generated by [X]/Ln with dimX − n ≤ −m.
This is a ring filtration and we define the completed ring Motvar(k) as
the completion of Motvar(k)[L−1] with respect to this filtration. Obviously,
L and Li − 1 are invertible in Motvar(k) so we have a homomorphism
Mot(k)→ Motvar(k). It is not difficult to show that this extends by conti-

nuity to an isomorphism Mot(k)
'−→ Motvar(k).

Recall that in Section 1.3.1 we defined motivic zeta-functions of varieties.
Now we can define the zeta-function of a motivic class (see eq. (1)), when k
is a field of characteristic zero. Note the following well-known statement.

Lemma 2.5.1. (i) If Z ⊂ Y is a closed subvariety, then ζY = ζZζY−Z .
(ii) ζAn×Y (z) = ζY (Lnz).

Now we can use (i) to extend zeta-functions to Motvar(k) and use (ii)
to extend to Motvar(k)[L−1]. It remains to extend ζ to Motvar(k) = Mot(k)
by continuity.

2.6. Checking equality of motivic functions fiberwise

The following statement will be our primary way to check that motivic
functions are equal.

Proposition 2.6.1. Let A,B ∈ Mot(X ) be motivic functions. Assume that
for any field K and any point ξ : SpecK → X we have ξ∗A = ξ∗B. Then
A = B.
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Viewing ξ∗A as the “value” of A at ξ, we can reformulate the proposition
as the statement that equality of motivic functions can be checked pointwise.

Proof. We may assume that B = 0 and that X is of finite type. If X = tiTi
is a stratification of X by locally closed substacks, and for all i we have
A|Ti = 0, then A = 0. Thus, using [Kre, Prop. 3.5.6, Prop. 3.5.9], we may
assume that X = X/GLn is a global quotient, where X is a scheme of finite
type over a field. By Lemma 2.2.1 it is enough to show that the pullback of
A to X is zero, so we may assume that X = X is a scheme. We may also
assume that X is integral. Let ξ : SpecK → X be the generic point. It is
enough to show that ξ∗A = 0 implies that there is an open subset U ⊂ X
such that A|U = 0.

Next, multiplying A by an invertible element of Mot(k), we may assume
that A =

∑
i ni[Vi → X], where Vi are X-schemes. Indeed, we may assume

that A is a combination of classes of stacks of the form V/GLn but we have
[GLn][V/GLn → X] = [V → X] by Corollary 2.2.2.

Now by [Eke, Thm. 1.2], multiplying once more by an invertible ele-
ment of Mot(k) if necessary, we may assume that in the free abelian group
generated by isomorphism classes of K-varieties we have∑

i

ni[(Vi)ξ] =
∑
i

mi([Yi]− [Zi]− [Yi − Zi]),

where Yi are affine K-varieties and Zi are their closed subvarieties. Clearing
denominators, we see that there is an open subset W ⊂ X, varieties Y ′i over
W , and their closed subvarieties Z ′i such that (Y ′i )ξ ≈ Yi, and under this
isomorphism (Z ′i)ξ goes to Zi.

Thus
∑

i ni[(Vi)ξ] =
∑

imi([(Y
′
i )ξ]− [(Z ′i)ξ]− [(Y ′i )ξ − (Z ′i)ξ]. It follows

that there is an open subset U ⊂W such that(∑
i

ni[Vi → X]

)∣∣∣∣∣
U

=

(∑
i

mi([Y
′
i →W ]− [Z ′i →W ]− [(Y ′i − Z ′i)→W ]

)∣∣∣∣∣
U

.

We see that A|U = 0. �

Corollary 2.6.2. Let f : X → Y be a finite type 1-morphism of stacks in-
ducing for every K ⊃ k an equivalence of groupoids X (K)→ Y(K). Then
[X → Y] = 1Y .
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Proof. We would like to apply the previous proposition. Let ξ : SpecK → Y
be a point and let Xξ be the ξ-fiber of f . We need to show that [Xξ] =
[SpecK] in Mot(K). This is easy if X and Y are schemes: then the fiber is
a 1-point scheme, so we have [Xξ] = [(Xξ)red] = [SpecK].

In general, Xξ is a K-stack such that for all extensions K ′ ⊃ K the
groupoid Xξ(K ′) is equivalent to the trivial one. In particular, |Xξ| consists
of a single point. Thus, according to the Kresch’s result, we have (Xξ)red =
X/GLn, where X is a K-scheme. The unique K-point of Xξ gives rise to a
GLn-equivariant morphism GLn → X. Also, for any extension K ′ ⊃ K this
morphism induces an isomorphism GLn(K ′)→ X(K ′). But we already know
the statement for schemes, so we have [GLn] = [X]. It follows that [Xξ] =
[(Xξ)red] = [X]/[GLn] = [SpecK]. Now we can apply the proposition. �

3. Moduli stacks of connections, Higgs bundles, and vector
bundles with nilpotent endomorphisms

In this section we introduce various stacks and provide relations between
their motivic classes. In particular, we prove Theorem 1.2.1 in Section 3.7.
We also give a relation between the moduli stacks of Higgs bundles, moduli
stacks of vector bundles with endomorphisms (Lemma 3.5.2), and moduli
stacks of vector bundles with nilpotent endomorphisms (Proposition 3.8.1).
In this section k is a fixed field of characteristic zero and K denotes an
arbitrary field extension of k.

3.1. Krull–Schmidt theory for coherent sheaves

The results of this section are well-known but we include them here for the
reader’s convenience. In this section X is a smooth connected projective
variety over k. For a vector bundle E on X we denote by Endnil(E) the
nilradical of the finite dimensional k-algebra End(E).

Proposition 3.1.1. (i) Let F be an indecomposable vector bundle on X
and Ψ ∈ End(F ). Then either Ψ is nilpotent, or Ψ is an automorphism.

(ii) Write a vector bundle F as F =
⊕t

i=1 Fi, where Fi ≈ E⊕nii , and Ei
are pairwise non-isomorphic indecomposable bundles, ni > 0. Then we have⊕

i 6=j
Hom(Fi, Fj) ⊂ Endnil(F ).

Proof. (i) The increasing sequence of subsheaves Ker(Ψn) ⊂ F must stabilize
at some n. Replacing Ψ by Ψn we may thus assume that Ker(Ψ2) = Ker Ψ,
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that is, Ker Ψ ∩ Im Ψ = 0. Thus the inclusion morphism Ker Ψ⊕ Im Ψ→
F is injective. Since both sheaves have the same Hilbert polynomial, the
morphism must be an isomorphism. The statement follows.

(ii) Let F ′ be an indecomposable component of Fi, F
′′ be an indecompos-

able component of Fj . It is enough to show that Hom(F ′, F ′′) ⊂ Endnil(F ).
Let Ψ ∈ Hom(F ′, F ′′). We need to show that for any Ψ′ ∈ End(F ), ΨΨ′ is
nilpotent. Replacing Ψ′ by its component with respect to a direct sum de-
composition, we may assume that Ψ′ ∈ Hom(F ′′, F ′). By part (i) ΨΨ′ is
either nilpotent or an isomorphism. But the second possibility is ruled out
by an assumption. �

The following proposition is [Ati, Thm. 3] when k is algebraically closed.
The proof, in fact, goes through for any field. Alternatively, it is easy to
derive this proposition from the previous one.

Proposition 3.1.2. Let F be a vector bundle on X. Write F =
⊕t

i=1 Fi,
where Fi ≈ E⊕nii , and Ei are pairwise non-isomorphic indecomposable bun-
dles, ni > 0. This decomposition of F into the direct sum of indecomposables
is unique up to permutation. That is, if F =

⊕t
i=1 F

′
i , F

′
i ≈ (E′i)

⊕mi, where
E′i are pairwise non-isomorphic indecomposable bundles, mi > 0, then after
renumeration of summands we get ni = mi, Ei ≈ E′i.

3.2. Stacks of vector bundles and HN-filtrations

Let Bunr be the stack of vector bundles of rank r (over the fixed curve
X). Let Bunr,d be its connected component classifying bundles of degree d.
Recall that a vector bundle E on XK (where, as usual, K is an extension of
k) is semistable if for every subbundle F ⊂ E we have

degF

rkF
≤ degE

rkE
.

According to [Lan, Prop. 3], if K ′ ⊃ K is a field extension, then EK′ is
semistable if and only if E is semistable. The number degE/ rkE is called
the slope of E. It is well known that each vector bundle E on XK possesses
a unique filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Et = E

such that for i = 1, . . . , t the sheaf Ei/Ei−1 is a semistable vector bundle
and for i = 1, . . . , t− 1 the slope of Ei/Ei−1 is strictly greater than the
slope of Ei+1/Ei (see [HN, Sect. 1.3]). This filtration is called the Harder–
Narasimhan filtration (or HN-filtration for brevity) on E and the sequence of
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slopes (τ1 > · · · > τt), where τi = deg(Ei/Ei−1)/ rk(Ei/Ei−1), is called the
HN-type of E. It follows from [Lan, Prop. 3] that HN-type is compatible
with field extensions.

Lemma 3.2.1. (i) There is an open substack Bun≥τr,d ⊂ Bunr,d classifying
vector bundles whose HN-type (τ1 > · · · > τt) satisfies τt ≥ τ .

(ii) A vector bundle E ∈ Bunr,d(K) is in Bun≥τr,d (K) if and only if there
is no surjective morphism of vector bundles E → F such that the slope of F
is less than τ .

(iii) The stack Bun≥τr,d is of finite type.
(iv) A constructible subset X ⊂ |Bunr| is of finite type if and only if

there are τ and d1,. . . ,dn such that

X ⊂ ∪ni=1|Bun
≥τ
r,di
|.

Proof. (i) Since the HN-type is compatible with field extensions, we may
assume that k is algebraically closed. In this case this follows from [Sha,
Thm. 3 and Prop. 10] (or [Mar, Thm. 1.7]).

(ii) The ‘if’ direction is obvious. For the ‘only if’, let 0 = E0 ⊂ E1 ⊂
· · · ⊂ Et = E be the HN filtration of E and assume that we have a surjective
morphism E → F , where the slope of F is less than τ . Let 0 = F0 ⊂ F1 ⊂
· · · ⊂ Fs = F be the HN filtration on F . Clearly, the slope of Fs/Fs−1 is less
than τ . Thus, replacing F with Fs/Fs−1 and the morphism E → F with
its composition with the projection to Fs/Fs−1, we may assume that F is
semistable.

Now, if the slope of Et/Et−1 is greater or equal to τ , then for all i the are
no non-zero morphisms Ei/Ei−1 → F (because these bundles are semistable
and the slope of Ei/Ei−1 is greater, then the slope of F .) But then there are
no non-zero morphisms from E to F and we come to a contradiction.

(iii) According to [HL, Lemma 1.7.6], it is enough to show that all vector
bundles E in Bun≥τr,d are m-regular for m > 3− 2g − τ .

Since X is a curve, m-regularity just means that H1(X,E ⊗OX(m−
1)) = 0. By Serre duality, this cohomology group is dual to Hom(E,Ω−1

X ⊗
OX(1−m)). The latter space is zero by part (ii), since the slope of Ω−1

X ⊗
OX(1−m) is equal to 3− 2g −m.

(iv) The ‘if’ part follows from (i). For the converse note that

{Bun≥τr,d |d ∈ Z, τ ∈ Z}

is an open cover of Bunr. Thus X , being quasi-compact, is covered by finitely
many Bun≥τr,d . �
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We will be mostly interested in the stack Bun≥0
r,d . We will call such vec-

tor bundles ‘HN-nonnegative’. Note that the tensorisation with a line bun-
dle of degree e gives an isomorphism Bun≥0

r,d ' Bun
≥e
r,d+er. It follows from

Lemma 3.2.1(ii) that E is HN-nonnegative if and only if there are no sur-
jective morphisms E → F , where F is a vector bundle such that degF < 0.

3.2.1. Isoslopy vector bundles. We will call a vector bundle E on XK

isoslopy if it cannot be written as the direct sum of two vector bundles of
different slope.

Lemma 3.2.2. A vector bundle E on X is isoslopy if and only if its pullback
to XK is isoslopy.

Proof. The ‘if’ direction is obvious. For the ‘only if’ direction we note first
that the sum of isoslopy bundles of the same slope is isoslopy because of
uniqueness of decomposition (Proposition 3.1.2). Thus it is enough to prove
that if E is an indecomposable vector bundle on X, then EK is isoslopy. We
follow the strategy of the proof of [Lan, Prop. 3]. We may assume that K ⊃ k
is a finitely generated extension. In view of the ‘if’ direction, it is enough
to consider two cases: (i) K is an algebraic closure of k, (ii) K = k(t) is
purely transcendental of degree 1. In case (i) the statement follows from the
fact that the Galois group of K over k acts transitively on indecomposable
summands of EK .

Finally, if Ek(t) is the direct sum of two vector bundles of different slopes,
then there is an open subset U ⊂ A1

k such that the pullback of E to X × U is
the direct sum of two vector bundles of different slopes (just clear denomina-
tors). Restricting this pullback to X × u, where u ∈ U is a k-rational point,
we come to contradiction. �

By the above lemma, the equivalence relation from Section 2 on the
points of Bunr,d preserves isoslopy bundles. Thus we have a well-defined set

Bunisor,d ⊂ |Bunr,d|. Set also Bun≥0,iso
r,d = |Bun≥0

r,d | ∩ Bun
iso
r,d .

Lemma 3.2.3. (i) If ` is a line bundle on X of degree N > (r − 1)(g − 1)−
d/r, then tensorisation with ` (which is a 1-morphism Bunr,d → Bunr,d+Nr)
induces a bijection

Bunisor,d
'−→ Bun≥0,iso

r,d+Nr.

(ii) Bunisor,d ⊂ |Bunr,d| is a constructible subset of finite type.
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Proof. (i) Clearly, tensorisation with ` induces a bijection

Bunisor,d
'−→ Bunisor,d+Nr.

It remains to show that Bun≥0,iso
r,d+Nr = Bunisor,d+Nr. By contradiction, assume

that E ∈ Bunisor,d+Nr but E /∈ Bun≥0,iso
r,d+Nr. Then E is decomposable by [MS,

Cor. 4.2] (Formally speaking, the statement is only formulated for curves
over finite fields, but the proof works over any field). Let E0 be an indecom-
posable summand of E such that its HN-type (τ1 > · · · > τt) satisfies τt < 0
(it exists by Lemma 3.2.1(ii)). By the definition of isoslopy bundles, the
slope of E0 is equal to d/r +N , and clearly d/r +N > (rkE0 − 1)(g − 1),
so E0 cannot be indecomposable (again by [MS, Cor. 4.2]). This contradic-
tion completes the proof of (i).

Let us prove part (ii). By part (i), it is enough to prove the statement
for Bun≥0,iso

r,d (just replace d by d+Nr with large N). Let Π be the set of

all quadruples (r′, d′, r′′, d′′) ∈ Z4
≥0 such that r′ + r′′ = r, d′ + d′′ = d, and

r′/d′ 6= r/d. Note that this set is finite.
For π = (r′, d′, r′′, d′′) ∈ Π, let Bπ be the image of Bun≥0

r′,d′ × Bun
≥0
r′′,d′′

under the morphism, sending two vector bundles to their direct sum. Com-
bining Lemma 3.2.1(iii) with the stacky Chevalley theorem, we see that Bπ
is a constructible subset of Bun≥0

r,d . One easily checks that

Bun≥0,iso
r,d = |Bun≥0

r,d | − ∪π∈ΠBπ.

Thus Bun≥0,iso
r,d is constructible. Obviously, it is of finite type. �

3.3. Higgs bundles whose underlying vector bundle is
HN-nonnegative

Recall from Section 1.2 the Artin stack Mr,d classifying Higgs bundles of
rank r and degree d. A simple argument similar to the proof of [Fed, Prop. 1]
shows that it is an Artin stack locally of finite type and that the forgetful
1-morphism (E,Φ) 7→ E is a schematic 1-morphism of finite type Mr,d →
Bunr,d. Set

M≥0
r,d :=Mr,d ×Bunr,d Bun

≥0
r,d ;

by Lemma 3.2.1(i), it is an open substack of finite type of Mr,d.
On the other hand, recall from Section 1.2 that a Higgs bundle (E,Φ) ∈

Mr,d(K) is called semistable if the slope of any subbundle F ⊂ E is less or
equal than the slope of E, provided that F is preserved by Φ. An argument
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similar to [Lan, Prop. 3] shows that this notion is stable with respect to
field extensions. We emphasize that semistability of (E,Φ) does not imply
in general semistability of E. According to [Sim, Lemma 3.7]6, there is an
open substack Mss

r,d classifying semistable Higgs bundles.
We call a Higgs bundle (E,Φ) on XK nonnegative-semistable if E is HN-

nonnegative and whenever F ⊂ E is an HN-nonnegative vector subbundle
preserved by Φ, the slope of F is less or equal than the slope of E; an
argument similar to [Lan, Prop. 3] shows that this notion is stable with
respect to field extensions. Denote the stack of nonnegative-semistable Higgs
bundles of rank r and degree d by M≥0,ss

r,d ; an argument similar to [Sim,
Lemma 3.7] shows that this is an open substack of Mr,d.

Remark 3.3.1. In general, M≥0,ss
r,d 6=M≥0

r,d ∩M
ss
r,d. The reason is that

a nonnegative semistable Higgs bundle (E,Φ) might have a destabilizing
subbundle F such that F is not HN-nonnegative, so it is not necessarily
semistable in the usual sense.

Lemma 3.3.2. (i) If ` is a line bundle on X of degree N > (r − 1)(g −
1)− d/r, then tensorisation with ` induces an isomorphism

Mss
r,d
'−→M≥0,ss

r,d+Nr.

(ii) Mss
r,d is a stack of finite type.

Proof. (i) Clearly, tensorisation with ` induces an isomorphism Mss
r,d
'−→

Mss
r,d+Nr. It remains to notice that, according to [MS, Cor. 3.3], we have

Mss
r,d+Nr =M≥0,ss

r,d+Nr. (Formally speaking, the statement is only formulated
for curves over finite fields, but the proof works over any field.)

Part (ii) is an obvious corollary of part (i). �

3.4. Connections and isoslopy Higgs bundles

Recall that Connr is the moduli stack of rank r vector bundles with con-
nections. An argument similar to the proof of [Fed, Prop. 1] shows that it
is an Artin stack locally of finite type and that the forgetful 1-morphism
(E,∇) 7→ E is a schematic 1-morphism of finite type Connr → Bunr,0. We
are using the well-known fact that a vector bundle admitting a connection
must be of degree zero.

6This Lemma is formulated in the case, when the field is the field of complex
numbers. However, the proof goes through for any field.
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LetM≥0,iso
r,d ⊂ |M≥0

r,d | be the set of points corresponding to Higgs bundles

(E,Φ) such that E ∈ Bun≥0,iso
r,d . It follows from Lemma 3.2.3(ii) thatM≥0,iso

r,d
is a constructible subset of finite type.

Proposition 3.4.1. The stack Connr is of finite type and we have in
Mot(k)

[Connr] = [Miso
r,0 ].

Proof. By Weil’s theorem the image of Connr in Bunr,0 is exactly Bunisor,0
(Note that we only need to use the Weil’s theorem for an algebraic closure of
k because we know a priori that this image is constructible. By elementary
logic, it is enough to know that the theorem is true for the field of complex
numbers).

It is enough to show that we have in Mot(Bunr,0):

(5) [Miso
r,0 → Bunr,0] = [Connr → Bunr,0].

We want to apply Proposition 2.6.1. Let ξ : SpecK → Bunr,0 be a point.
It corresponds to a vector bundle E on XK . If E is not isoslopy, then the
pullbacks of both sides of (5) are zero. If E is isoslopy, then the pullback of
the LHS of (5) is the class of the vector space V = H0(XK , End(E)⊗ ΩXK ),
while the pullback of the RHS is the class of an affine space over this vector
space, that is, a principal V -bundle. (Note that a priori this affine space
only has a section after extending the field, but, as we noted above, a vector
space with its additive group structure is a special group, so there are no
non-trivial V -bundles on SpecK.) Thus the fibers are isomorphic as schemes,
so we can apply Proposition 2.6.1, which proves (5). (Here End(E) denotes
the sheaf of endomorphisms of E.) �

3.5. Comparing Higgs fields and Higgs fields with isoslopy
underlying vector bundle

Consider the following generating series

H≥0(z, w) := 1 +
∑
r>0
d≥0

L(1−g)r2 [M≥0
r,d ]wrzd ∈ 1 + wMot(k)[[w, z]]
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and for a rational number τ ≥ 0

H≥0,iso
τ (z, w) := 1 +

∑
r>0
d/r=τ

L(1−g)r2 [M≥0,iso
r,d ]wrzd ∈ 1 + wMot(k)[[w, z]].

Proposition 3.5.1. We have

H≥0(z, w) =
∏
τ≥0

H≥0,iso
τ (z, w).

Proof. First of all we would like to reformulate the proposition. Let Er,d be
the stack classifying the pairs (E,Ψ), where E is a vector bundle of rank r
and degree d, Ψ is an endomorphism of E. Set E≥0

r,d := Er,d ×Bunr,d Bun
≥0
r,d .

Let E≥0,iso
r,d ⊂ |E≥0

r,d | be the preimage of Bun≥0,iso
r,d .

Lemma 3.5.2. We have in Mot(k)

[M≥0
r,d ] = L(g−1)r2 [E≥0

r,d ], [M≥0,iso
r,d ] = L(g−1)r2 [E≥0,iso

r,d ].

Proof. Let us prove the first equation (the second is analogous). It is enough
to show that

[M≥0
r,d → Bun

≥0
r,d ] = L(g−1)r2 [E≥0

r,d → Bun
≥0
r,d ].

We want to apply Proposition 2.6.1. Consider a point ξ : SpecK → Bun≥0
r,d

given by a vector bundle E on XK . The ξ-pullback of the LHS is the class of
the vector space H0(XK , End(E)⊗ ΩXK ), while the ξ-pullback of the RHS
is the class of the vector space A(g−1)r2 ⊕H0(XK , End(E)). Thus we only
need to check that

h0(XK , End(E)⊗ ΩXK ) = (g − 1)r2 + h0(XK , End(E)).

This follows from Riemann–Roch Theorem and Serre duality. �

In view of this lemma we can re-write the proposition as

1 +
∑
r>0
d≥0

[E≥0
r,d ]wrzd =

∏
τ≥0

1 +
∑
r>0
d/r=τ

[E≥0,iso
r,d ]wrzd

 .
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Let Πr,d be the set of all sequences

((r1, d1), (r2, d2), . . . , (rt, dt)) ∈ (Z>0 × Z≥0)t,

where
∑

i ri = r,
∑

i di = d and the sequence di/ri is strictly decreasing.
We note that Πr,d as a finite set. Now our proposition is equivalent to the
following lemma.

Lemma 3.5.3. We have in Mot(k)

[E≥0
r,d ] =

∑
((ri,di))∈Πr,d

∏
i

[E≥0,iso
ri,di

].

Proof. For any sequence π = ((ri, di)) ∈ Πr,d consider the 1-morphism

iπ :
∏
i

Bun≥0
ri,di
→ Bunr,d,

sending a sequence of vector bundles to their direct sum. It follows from
Lemma 3.2.1(ii) that the image of this 1-morphism is contained in Bun≥0

r,d .
Consider the constructible subset (recall the definition of product of con-
structible subsets from Section 2.4)

∏
i

Bun≥0,iso
ri,di

⊂

∣∣∣∣∣∏
i

Bun≥0
ri,di

∣∣∣∣∣ .
By the stacky Chevalley theorem its image under iπ is constructible, denote
it by Bunπ. It follows easily from the fact that isotypic components of a
vector bundle are unique up to isomorphism (see Proposition 3.1.2), that
{Bunπ|π ∈ Πr,d} is a stratification of Bun≥0

r,d . Let Eπ be the preimage of
Bunπ in Er,d. We see that it is enough to show that for all π ∈ Πr,d we have

(6) [Eπ → Bun≥0
r,d ] =

[∏
i

E≥0,iso
ri,di

→ Bun≥0
r,d

]
.

We want to apply Proposition 2.6.1. Let ξ : SpecK → Bunr,d be a point. If
it is not in Bunπ, then the pullbacks of both sides of the equation are zero.
Otherwise, let E be the vector bundle on XK corresponding to ξ.

Claim. The vector bundle E can be written as
⊕

iEi, where Ei is an HN-
nonnegative isoslopy vector bundle of rank ri and degree di.
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Proof. Let K be an algebraic closure of K. By definition of Bunπ, there is a
K-point on the fiber of iπ over ξ. This means that the base-changed vector
bundle EK can be decomposed as E1 ⊕ · · · ⊕ Et, where Ei ∈ Bun≥0

ri,di
(K)

is isoslopy. We need to show that E can be decomposed similarly. Let us
write E = E′1 ⊕ · · · ⊕ E′s, where E′1,. . . ,E′s are indecomposable bundles. By
Lemma 3.2.2, (E′i)K is isoslopy. Note that the bundles E1, . . . , Et can-
not have isomorphic indecomposable summands (being isoslopy of differ-
ent slopes). Now the uniqueness of indecomposable summands (Proposi-
tion 3.1.2) shows that there is a partition {1, . . . , s} = I1 t · · · t It such that
Ei ≈ ⊕j∈Ii(E′j)K . It remains to set Ei = ⊕j∈IiE′j . �

Fix a decomposition provided by the claim. Note that the ξ-pullback of
the LHS of (6) is the class of the vector space End(E). One checks that the
ξ-pullback of the RHS of (6) is the class of the algebraic space representing
the following functor:

S 7→ {(G1, . . . , Gt,Ψ1, . . . ,Ψt) : ES = G1 ⊕ · · · ⊕Gt,Ψi ∈ End(Gi)},

where the vector bundle Gi on X × S has rank ri and degree di. (Note
that if S is a spectrum of a field, then each Gi is isoslopy according to
Proposition 3.1.2 and Lemma 3.2.2.) Denote this space by YE . We need
to show that [End(E)] = [YE ] ∈ Mot(K). To this end we first construct a
map of sets I : End(E)→ YE(K) as follows. For Ψ ∈ End(E) let us write
Ψ = (Ψij), where Ψij ∈ Hom(Ei, Ej). Set Ψ′ := 1 +

∑
i 6=j Ψij . We will use

this notation through the end of the subsection.

Claim.
∑

i 6=j Ψij belongs to the nilpotent radical of End(E).

Proof. Note that Ei and Ej are isoslopy and their slopes are different, so
these bundles cannot have isomorphic indecomposable summands. Now the
statement follows from Proposition 3.1.1(ii). �

By the above claim Ψ′ is an automorphism of E. Define a map I by

I(Ψ) = (Ψ′(E1), . . . ,Ψ′(Et),Ψ
′Ψ11(Ψ′)−1, . . . ,Ψ′Ψtt(Ψ

′)−1).

Claim. I is an isomorphism.
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Proof. Assume that I(Ψ1) = I(Ψ2). Then Ψ′2 = Ψ′1Θ, where Θ preserves the
decomposition E = E1 ⊕ · · · ⊕ Et. Then

IdEi = (Ψ′2)ii = (Ψ′1)iiΘii = Θii.

We see that Θ = 1, so that Ψ′2 = Ψ′1. Now we also see that (Ψ2)ii = (Ψ1)ii,
so that Ψ2 = Ψ1, which proves injectivity.

Assume that E = G1 ⊕ · · · ⊕Gt, where Gi is of rank ri and degree di; let
Ψi ∈ End(Gi) for i = 1, . . . , t. By Proposition 3.1.2, we have an isomorphism
Θi : Ei → Gi. Then Θ :=

⊕
i Θi is an automorphism of E. Let us write Θ =

Θ1 + Θ2, where Θ1 ∈
⊕

i End(Ei), Θ2 ∈
⊕

i 6=j Hom(Ei, Ej). We have

Θ1 = Θ(1− (Θ)−1Θ2),

so Θ1 is an automorphism (because Θ2 ∈ Endnil(E)). Set Θ̃ := ΘΘ−1
1 and

finally

Ψ = Θ̃− 1 +
∑
i

(Θ̃)−1Ψi(Θ̃).

Note that Θ̃(Ei) = Gi and Θ̃ii = 1 ∈ End(Ei). It follows that Ψ′ = Θ̃, so that
Ψ′(Ei) = Gi. We see that I(Ψ) = (Gi,Ψi), which shows surjectivity of I. �

Now we complete the proof of Lemma 3.5.3. It is easy to see that the
construction of I works in families, so, in fact, I gives a morphism from
End(E) to YE . If K ′ is an extension of K, then, applying the previous claim
to EK′ , we see that I(K ′) is a bijection. Thus, by Corollary 2.6.2, we see
that [End(E)] = [YE ]. This proves (6). �

Lemma 3.5.3 completes the proof of Proposition 3.5.1. �

3.6. Kontsevich–Soibelman product

The main result of this section is a simple corollary of the general formalism
of [KS1] (see also [RS] for the formulas in the case of 2CY categories that is
most interesting for us). The general theory relies on the notion of motivic
Hall algebra introduced in [KS1]. For the reader not interested in the general
framework, we present below a direct proof of the necessary wall-crossing
formula. The general approach is outlined in Remark 3.6.3 below.
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Recall that in Section 3.5 we defined the generating series H≥0(z, w).
For τ ≥ 0 consider one more generating series

H≥0,ss
τ (z, w) := 1 +

∑
r>0
d/r=τ

L(1−g)r2 [M≥0,ss
r,d ]wrzd ∈ 1 + wMot(k)[[w, z]].

Proposition 3.6.1.

H≥0(z, w) =
∏
τ≥0

H≥0,ss
τ (z, w).

Proof. Let Πr,d be as in the proof of Proposition 3.5.1. For

π = ((r1, d1), . . . , (rt, dt)) ∈ Πr,d

consider the stack classifying collections

(0 ⊂ E1 ⊂ · · · ⊂ Et = E,Φ),

where Ei/Ei−1 is a vector bundle of degree di and rank ri, Φ is a Higgs field
on E preserving each Ei. Denote by Mπ its open substack classifying col-
lections such that for all i the Higgs pair (Ei/Ei−1,Φi), where Φi is induced
by Φ, is nonnegative-semistable.

Lemma 3.6.2. The stack Mπ is of finite type and we have in Mot(k)

[Mπ] = L(g−1)(r2−r21−···−r2t )
∏
i

[M≥0,ss
ri,di

].

Proof. Set

π′ = ((r1, d1), . . . , (rt−1, dt−1)) ∈ Π(r1+···+rt−1,d1+···+dt−1).

We will show that

(7) [Mπ] = L(2g−2)rt(r1+···+rt−1)[Mπ′ ][M≥0,ss
rt,dt

].

Since r = r1 + · · ·+ rt, the lemma will follow by induction on t.
There is a 1-morphism Λ :Mπ →Mπ′ ×M≥0,ss

rt,dt
, sending (E,Φ) to

((E1 ⊂ · · · ⊂ Et−1,Φ|Et−1
), (Et/Et−1,Φ

′)),

where Φ′ is the Higgs field induced by Φ on Et/Et−1. Let ξ1 = (E1 ⊂ · · · ⊂
Et−1,Φ1) be a K-point of Mπ′ , ξ2 = (E,Φ2) be a K-point of M≥0,ss

rt,dt
. The
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fiber of Λ over (ξ1, ξ2) is the quotient

Ext1((E,Φ2), (Et−1,Φ1))/Hom((E,Φ2), (Et−1,Φ1)),

where the Hom space acts on the Ext space trivially. (Here Ext and Hom
are calculated in the category of Higgs sheaves.) Since the additive group is
special, by Lemma 2.2.3 the motivic class of this stack in Mot(K) is equal
to Ld, where d is the dimension of this stack. Using the results of [MS,
Sect. 2.1], we see that

d = deg ΩX rkE rkEt−1 = (2g − 2)rt(r1 + · · ·+ rt−1).

In particular, this dimension is constant, so by Proposition 2.6.1 we have

[Mπ →Mπ′ ×M≥0,ss
rt,dt

] = L(2g−2)rt(r1+···+rt−1)1Mπ′×M≥0,ss
rt,dt

.

Applying pushforward, we get (7). �

Let us return to the proof of the proposition. We have an obvious forget-
ful 1-morphism tπ∈Πr,dMπ

r,d →Mr,d. It follows from Harder–Narasimhan
theory (applied to the category of Higgs bundles whose underlying vector
bundle is HN-nonnegative) and Corollary 2.6.2 that[

tπ∈Πr,dMπ
r,d

]
= [M≥0

r,d ].

Combining this with the previous lemma, we get

[M≥0
r,d ] =

∑
((r1,d1),...,(rt,dt))∈Πr,d

L(g−1)(r2−r21−···−r2t )
∏
i

[M≥0,ss
ri,di

].

This is equivalent to the proposition. �

Remark 3.6.3. Let us recall the general approach to the wall-crossing for-
mulas from [KS1]. Let C be an ind-constructible category endowed with a
class map cl : K0(C)→ Γ ' Zn. Let Γ be endowed with an integer skew-
symmetric form 〈•, •〉 such that cl intertwines this form and the skew-
symmetrization of the Euler form on K0(C). Assume also that we are given
a constructible stability structure on C and that V ⊂ R2 is a strict sector.
In Section 1.6.1 we explained that in this situation one obtains an element
AHallC(V ) of the motivic Hall algebra H(C). Then the following factorization
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formula holds:

AHallC(V ) =

→∏
l⊂V

AHallC(l) .

Here AHallC(l) are defined similarly to AHallC(V ) but for the categories C(l) asso-

ciated with each ray l ⊂ V with the vertex at (0, 0). The product is taken
in the clockwise order. In general there are countably many factors in the
product. In the case of 3CY categories we apply the homomorphism Φ = ΦV

and obtain a similar factorization formula for quantum DT-series, which are
elements of the corresponding quantum tori. In the case of 2CY categories
we apply the linear map Φ from Section 1.6.1, since it respects the product
in the clockwise order. Then we obtain a similar factorization formula for
quantum DT-series (they are elements of a commutative quantum torus).

In our case, the category C is the category of Higgs bundles on X such
that the underlying vector bundle is HN-nonnegative. As in Section 1.6.1,
the stability structure is standard with the central charge Z(F ) = −degF +√
−1 rkF and we take strict sector V to be the second quadrant {x ≤ 0, y ≥

0} in the plane R2
(x,y). In this case, C(V ) = C. Applying the above consider-

ations we obtain Proposition 3.6.1.

3.7. Comparing Higgs bundles and bundles with connections

We need a simple lemma.

Lemma 3.7.1. Let R be a commutative ring. For a rational number τ ≥ 0
define

Rτ [[z, w]] =
∑
r>0
d/r=τ

Rwrzd ⊂ wR[[z, w]].

For τ ≥ 0 and i = 1, 2, assume that we are given series H i
τ (z, w) ∈ 1 +

Rτ [[z, w]]. Then

(8)
∏
τ≥0

H1
τ (z, w) =

∏
τ≥0

H2
τ (z, w)

implies that for all τ we have H1
τ (z, w) = H2

τ (z, w).

Proof. For r > 0, d ≥ 0, let air,d be the coefficient of H i
d/r at wrzd. We need to

show that a1
r,d = a2

r,d. We may assume that we have a1
r′,d′ = a2

r′,d′ whenever

r′ + d′ < r + d. Equating coefficients of (8) at wrzd proves the claim. �
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Theorem 3.7.2. We have in Mot(k)

[Mss
r,d] = [Miso

r,d ].

Proof. Combining Proposition 3.5.1 and Proposition 3.6.1 we get∏
τ≥0

H≥0,iso
τ (z, w) = H≥0(z, w) =

∏
τ≥0

H≥0,ss
τ (z, w).

By Lemma 3.7.1 we get

H≥0,iso
τ (z, w) = H≥0,ss

τ (z, w),

that is,

[M≥0,iso
r,d ] = [M≥0,ss

r,d ].

Next, for N > (r − 1)(g − 1)− d/r, we get using Lemmas 3.3.2 and 3.2.3

[Mss
r,d] = [M≥0,ss

r,d+Nr] = [M≥0,iso
r,d+Nr] = [Miso

r,d ].
�

Now we are ready to prove Theorem 1.2.1.

Proof of Theorem 1.2.1. Combine Proposition 3.4.1 and Theorem 3.7.2. �

3.8. Vector bundles with nilpotent endomorphisms

Recall from Section 1.4 the stack E≥0,nilp
r,d ⊂ E≥0

r,d parameterizing HN-non-
negative vector bundles with nilpotent endomorphisms. Define a power struc-
ture on the ring Mot(k):

Pow : (1 + Mot(k)[[w, z]]+)× ×Mot(k)

→ Mot(k)[[z, w]] : (f,A) 7→ Exp(ALog(f)),

where Exp and Log were defined in Section 1.3.1. This power structure has
been studied in [GZLMH] in the case when k is algebraically closed (it also
appeared earlier in the proof of [KS2, Prop. 7]). Our main result in this
section is the following proposition.

Proposition 3.8.1. We have in Mot(k)

1 +
∑
r,d

[E≥0
r,d ]wrzd = Pow

1 +
∑
r,d

[E≥0,nilp
r,d ]wrzd,L

 .
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Proof. Given a collection of k-stacks Xr,d, where r, d ∈ Z, we view the stack
tr,dXr,d as a Z2-graded stack. IfK ⊃ k is a finite extension and ϕ : SpecK →
Xr,d is a point, we define cl(ϕ) := [K : k](r, d) ∈ Z2. If T is a reduced scheme
finite over Spec k, and ϕ : T → tr,dXr,d is a 1-morphism, we set cl(ϕ) :=∑

x∈T cl(ϕ|x). The proof of the proposition is based on the following lemma.

Lemma 3.8.2. Let V be a variety over k, let Xr,d be stacks of finite type
over k, where r and d run over the set of nonnegative integers not equal to
zero simultaneously. Let Yr,d be the stack parameterizing pairs (T, ϕ), where
T is a finite subset of closed points of V , ϕ : T → ts,eXs,e is a 1-morphism
such that cl(ϕ) = (r, d). Then we have

1 +
∑
r,d

[Xr,d]wrzd
[V ]

= 1 +
∑
r,d

[Yr,d]wrzd.

Proof. See [BM, Sect. 2] in the case k = C, and note that it generalizes
immediately to any field of characteristic zero (cf. also [KS2, Prop. 7] for
the case of arbitrary field of characteristic zero). �

Let Yr,d be the stack parameterizing pairs (T, ϕ), where T is a finite

subset of A1
k, ϕ : A1

k → tr,dE
≥0,nilp
r,d is a 1-morphism with cl(ϕ) = (r, d). Ac-

cording to Lemma 3.8.2 we just need to show that [Yr,d] = [E≥0
r,d ]. Define

the 1-morphism Yr,d → E≥0
r,d as follows. Consider a pair (T, ϕ) ∈ Yr,d. Write

T = {x1, . . . , xt}, ϕ(xi) = (Ei,Ψi) ∈ E≥0,nilp
ri,di

k(xi)). The 1-morphism sends
(T, ϕ) to

t⊕
i=1

Rk(xi)/k(Ei, xi Id +Ψi).

Here xi ∈ A1
k is viewed as an element of k(xi), the functor of restriction

of scalars Rk(xi)/k is the pushforward with respect to the finite morphism
Xk(xi) → X. One checks that this construction works in families, so we get
a required 1-morphism.

According to Corollary 2.6.2 it remains to prove the following version of
Jordan decomposition.

Lemma 3.8.3. (i) Let (E,Ψ) ∈ Er,d(K) be a bundle with an automorphism.
There is a finite set {x1, . . . , xt} of closed points of A1

K , a sequence of pairs
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(Ei,Ψi) ∈ Enilpri,di
(k(xi)), and an isomorphism

(E,Ψ)
'−→

t⊕
i=1

Rk(xi)/K(Ei, xi Id +Ψi).

(ii) Such a set {x1, . . . , xt} is unique and (Ei,Ψi) are unique in the follow-

ing sense: if (E′i,Ψ
′
i) is another sequence with an isomorphism (E,Ψ)

'−→⊕t
i=1Rk(xi)/K(E′i, xi Id +Ψ′i), then there are unique isomorphisms (Ei,Ψi)

→ (E′i,Ψ
′
i) making the obvious diagram commutative.

Proof. Consider the characteristic polynomial of Ψ: f(x) = det(x Id−Ψ).
The coefficients of this polynomial are global sections of OXK so f(x) ∈
K[x]. Let T = {x1, . . . , xt} ⊂ A1

K be the set of roots of f(x). Then f(x) =∏t
i=1 fi(x)ri , where fi(x) is an irreducible polynomial of xi over K. The

Cayley–Hamilton Theorem (applied at the generic point of X) shows that
f(Ψ) = 0, so we have a homomorphism π : K[x]/(f(x))→ End(E), send-
ing the image x̄ of x in K[x]/(f(x)) to Ψ. Let εi ∈ K[x]/(f(x)) be the
components of the unity with respect to the decomposition K[x]/(f(x))
= ⊕ti=1K[x]/(fi(x)ri). Then we have (E,Φ) =

⊕
(E′i,Ψ

′
i), where E′i :=

(π(εi))(E), Ψ′i := Ψ|E′i .
Since we have Ψ′i = π(x̄εi), we see that fi(Ψ

′
i)
ri = 0. By Hensel’s Lemma

there is gi ∈ x+ fiK[x] such that fi(gi) is divisible by f rii . Set Λi = gi(Ψ
′
i).

Then fi(Λi) = 0 so Λi gives a k(xi)-structure on E′i. Thus

(E′i,Ψ
′
i) = Rk(xi)/K(Ei,Ψi)

for a pair (Ei,Ψi). It is easy to see that Ψi − xi Id is nilpotent. We have
proved the existence part of the lemma. We leave the uniqueness to the
reader. �

Lemma 3.8.3 completes the proof of the proposition. �

3.9. Example: rank two case of Theorem 1.2.1

In this section we give a direct proof of Theorem 1.2.1 for bundles of rank
two.

Let us write Bun2,0 =B′tB′′, where B′ is the open substack of semistable
vector bundles, B′′ is the complement. Set M′ :=Mss

2,0 ×Bun2,0
B′, C′ :=

Conn2 ×Bun2,0
B′. DefineM′′ and C′′ similarly. Clearly, it is enough to show

that [M′] = [C′] and [M′′] = [C′′].
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To show the first equation, note that every Higgs bundle whose un-
derlying vector bundle is semistable, is also semistable. Thus, the fibers
of the projection M′ → B′ are vector spaces. The fibers of the projection
C′ → B′ are affine spaces modeled over these vector spaces: the crucial point
is that every semistable vector bundle admits a connection, which follows
from Weil’s Theorem.

Showing that [M′′] = [C′′] is more involved. Let B′′′ be the moduli stack
of pairs L ⊂ E where E is a vector bundle in Bun2,0, L is a line subbundle
of positive degree. Note that L is the unique destabilizing subbundle, so the
image of the forgetful 1-morphism B′′′ → Bun2,0 is exactly B′′ and the fibers
of the 1-morphism are points. It follows that the motivic classes of M′′′ :=
M′′ ×B′′ B′′′ and ofM′′ are equal. Similarly, we define C′′′ := C′′ ×B′′ B′′′ and
show that [C′′′] = [C′′]. It remains to show that [M′′′] = [C′′′].

Let Pic denote the stack of line bundles on X. We have a 1-morphism
B′′′ → Pic× Pic, given by L ⊂ E 7→ (L,E/L). This gives 1-morphisms
M′′′ → Pic× Pic and B′′′ → Pic× Pic.

Take a K-point of Pic× Pic, which is represented by a pair of line
bundles (L1, L2) on XK . Denote the corresponding fibers of M′′′ and C′′′
by M(L1, L2) and C(L1, L2). By Proposition 2.6.1, it suffices to show that
[M(L1, L2)] = [C(L1, L2)].

Now, let N (L1, L2) be the stack classifying collections (L1 ↪→E�L2,Φ),
where L1 ↪→ E � L2 is a short exact sequence, Φ ∈ Hom(E,E ⊗ ΩX) is
a Higgs field. Set V := Ext1(L2, L1), let V ∨ := Hom(L1, L2 ⊗ ΩX) be the
dual vector space. The stack classifying extensions 0→ L1 → E → L2 → 0
is the quotient V/Hom(L2, L1). Thus, we get a forgetful morphism π :
N (L1, L2)→ V/Hom(L2, L1).

Similarly, we have a 1-morphism π∨ : N (L1, L2)→ V ∨, sending (L1 ↪→
E � L2,Φ) to

L1 ↪→ E
Φ−→ E ⊗ ΩX � L2 ⊗ ΩX .

Next, M(L1, L2) is the open substack of N (L1, L2) corresponding to semi-
stable Higgs bundles. Since L1 is the only possible destabilizing subbundle,
we see that M(L1, L2) = N (L1, L2)− (π∨)−1(0). On the other hand, for
(L1 ↪→ E � L2,Φ) ∈ N (L1, L2), E admits a connection if and only if

π(L1 ↪→ E � L2,Φ) 6= 0

as follows easily from Weyl’s Theorem. Arguing as in the proof of [M′] = [B′],
we see that [C(L1, L2)] = [N (L1, L2)]− [π−1(0)].
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Thus we are left with showing that [π−1(0)] = [(π∨)−1(0)]. Now, [π−1(0)]
is

Hom(L1 ⊕ L2, (L1 ⊕ L2)⊗ ΩX)/Hom(L2, L1);

On the other hand, (π∨)−1(0) classifies Higgs fields preserving L1. Thus we
have a 1-morphism ψ : (π∨)−1(0)→ Hom(L2, L2 ⊗ ΩX). The 1-morphism
ψ × π makes (π∨)−1(0) into an affine bundle on

Hom(L2, L2 ⊗ ΩX)× V/Hom(L2, L1)

with the fiber isomorphic to Hom(E,L1 ⊗ ΩX). Thus the class of (π∨)−1(0)
is the class of a quotient of a vector space by an action of a vector space.
Using the Riemann–Roch theorem, Serre duality, an exact sequence for Hom,
and the fact that Hom(L1, L2) = 0, one calculates the dimensions of these
stacks and sees that they are the same. This completes the proof.

4. Motivic classes of Borel reductions

The goal of this section is to prove Theorems 4.1.2 and 4.2.3 (we will see
that in fact these theorems are equivalent). Theorem 4.2.3 is the motivic
analogue of Harder’s residue formula [Har, Thm. 2.2.3] for GLn. A slightly
different form of Theorem 4.1.2 appeared in Section 1.5 as Theorem 1.5.1.

In the current section k is a field of any characteristic and X is a smooth
geometrically connected projective curve over k. Recall that when k is a
field of characteristic zero, we set X(i) = Xi/Si. In this section, we let X(i)

denote the Hilbert scheme of degree i finite subschemes of X. When k has
characteristic zero, this definition agrees with the previous one. We assume
that there is a divisor D on X defined over k such that degD = 1. We
denote by Jac the Jacobian variety of X. As before, K denotes an arbitrary
extension of k.

4.1. Limits of motivic classes of Borel reductions

Lemma 4.1.1. For all d ∈ Z the moduli stack Picd of degree d line bundles
on X is the neutral Gm-gerbe over Jac. That is, Picd ' Jac×BGm, where
BGm is the classifying stack of Gm.

Proof. First of all, tensorisation with OX(dD) gives an isomorphism Pic0 →
Picd.
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Let us write D = D1 −D2, where Di are effective divisors on X, we view
Di as a closed subscheme of X (not necessarily reduced). Let S be a test
scheme. By abuse of notation we denote two projections Di × S → S by p.

For a scheme S we denote by Pic(S) the abelian group of isomorphism
classes of line bundles on S. The Picard variety Pic(X) represents the functor
S 7→ Pic(X × S)/P ic(S); note that Jac is just its neutral component.

For a line bundle ` on S ×X, let det(`|D) denote the line bundle on S
given by

∧degD1(p∗(`|S×D1
))⊗

(
∧degD2(p∗(`|S×D2

))
)−1

.

It is easy to see that det(•|D) : Pic(X × S)→ Pic(S) is left inverse to the
pullback functor. Using this fact, it is easy to see that Pic(X) represents
the functor, sending S to the set of pairs (`, s), where ` is a line bundle
on S ×X, s is a trivialization of det(`|D) (cf. [Kle, Lemma 2.9]). Thus we
have a universal line bundle L on Pic(X)×X, whose restriction to Jac×X
trivializes the Gm-gerbe. �

Recall that in Section 1.5.1 we defined the stack Bunr,d1,...,dr classifying
vector bundles on X with Borel reductions of degree (d1, . . . , dr). We view
Bunr,d1,...,dr as a stack over Bunr,d1+···+dr via the projection (E1 ⊂ · · · ⊂
Er) 7→ Er. This projection is schematic and of finite type (for the proof,
embed the fiber of this projection into a product of Quot schemes). Set

Bun≥τr,d1,...,dr := Bunr,d1,...,dr ×Bunr,d1+···+dr
Bun≥τr,d1+···+dr .

Theorem 4.1.2. For any τ , any r∈Z>0, and d ∈ Z we have in Mot(Bun≥τr,d )

lim
d1→−∞

· · · lim
dr−1→−∞

[Bun≥τr,d1,...,dr−1,d−d1−···−dr−1
→ Bun≥τr,d ]

L−(2r−2)d1−(2r−4)d2−···−2dr−1

=
L(r−1)(d+(1−g) r+2

2 )[Jac]r−1

(L− 1)r−1
∏r
i=2ζX(L−i)

1Bun≥τr,d
.

This theorem will be proved in Section 4.7.

Derivation of Theorem 1.5.1 from Theorem 4.1.2. It is enough to show that
the statement holds after restriction to any finite type open substack of
Bunr,d (see the discussion of topology on Mot in Section 2.1). It remains to
use the previous theorem and Lemma 3.2.1(iv). �
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4.2. Eisenstein series

We would like to reformulate the above theorem using residues. Define the
Eisenstein series

E≥τr,d (z1, . . . , zr)

:=
∑

d1,...,dr∈Z
d1+···+dr=d

L(r−1)d1+(r−2)d2+···+dr−1 [Bun≥τr,d1,...,dr → Bun
≥τ
r,d ]zd11 · · · z

dr
r .

Remark 4.2.1. The reason we restrict to a single degree d and to HN-
nonnegative vector bundles is that we want to work with the group of motivic
functions on a finite type stack Bun≥τr,d , cf. Lemma 3.2.1(iv). In Section 5 we
will have to work over non-finite type stacks.

For an abelian group M , consider the following group of formal Laurent
series

M

((
z1,

z2

z1
, . . . ,

zr
zr−1

))
(9)

:= M [z±1
1 , . . . , z±1

r ]⊗Z[z1,
z2
z1
,..., zr

zr−1
] Z
[[
z1,

z2

z1
, . . . ,

zr
zr−1

]]
.

Lemma 4.2.2. We have

E≥τr,d (z1, . . . , zr) ∈ Mot(Bun≥τr,d )

((
z1,

z2

z1
, . . . ,

zr
zr−1

))
.

Proof. We note that by Lemma 3.2.1(ii) we have for each point (E0 ⊂ · · · ⊂
Er) of Bun≥τr,d1,...,dr and i = 0, . . . , r − 1

deg(Er/Ei)

rk(Er/Ei)
=
di+1 + · · ·+ dr

r − i
≥ τ.

We can re-write

E≥τr,d (z1, . . . , zr) =
∑

d1,...,dr∈Z
d1+···+dr=d

L(r−1)d1+(r−2)d2+···+dr−1 [Bun≥τr,d1,...,dr → Bun
≥τ
r,d ]

× zd1+···+dr
1

(
z2

z1

)d2+···+dr
· · ·
(

zr
zr−1

)dr
.

The statement follows. �
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In the next section we will give precise definitions of residues of power
series and prove the following theorem. (In fact, we will see that this theorem
is just a reformulation of Theorem 4.1.2.)

Theorem 4.2.3. We have

res z2
z1

=
z3
z2

=···= zr
zr−1

=L−1 E≥τr,d (z1, . . . , zr)

r∏
i=2

dzi
zi

= zd1
L

(1−g)(r−1)(r+2)

2 [Jac]r−1

(L− 1)r−1
∏r
i=2ζX(L−i)

1Bun≥τr,d
.

4.3. Residues of formal series

Let M be a topological abelian group (in our applications we will take M =
Mot(Bun≥τr,d ), M = Mot(Bunr,d) etc). Let A(z) dz ∈M((z)) dz. Plugging in
z = x into the product (x− z)A(z) we get an infinite series. If it converges
in M , we define the residue of as the sum of this series:7

resz=xA(z) dz := ((x− z)A(z))|z=x.

Remark 4.3.1. Assume that R(z) is a rational function with coefficients
in Mot(k), that is, an element of the total ring of fractions of Mot(k)[z]. We
say that it has at most first order pole at x ∈ Mot(k) if it can be written as

P (z)

(x− z)Q(z)
,

where Q(x) is not a zero divisor in Mot(k). In this case we can define

resz=xR(z) dz =
P (x)

Q(x)
.

On the other hand, if Q(x) is invertible, we can expand R(z) in powers of z.
The residue of the corresponding series may or may not exist, but if it exists,
it is equal to the residue of the rational function. Similar considerations apply
to the case of many variables considered below.

7Usually residue is defined with opposite sign. We follow conventions of [Har]
and [Sch2]. This simplifies our formulas.
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Lemma 4.3.2. If A(z) =
∑∞
−∞Adz

d with Ad = 0 for d� 0, then

resz=xA(z) dz = lim
d→∞

Adx
d+1.

Moreover, the residue exists if and only if the limit exists.

Proof. The d-th partial sums of the series ((x− z)A(z))|z=x is

d∑
−∞

(Aix
i+1 −Ai−1x

i) = Adx
d+1

(note that the infinite sum has only finitely many non-zero terms because
Ad = 0 for d� 0). The statement follows. �

Let X be a stack of finite type. Note that an infinite series with coeffi-
cients in Mot(X ) converges if and only if its terms tend to zero. Using this
fact, it is not difficult to prove the following statement.

Lemma 4.3.3. Assume that A(z) ∈ Mot(k)((z)) converges at a certain x ∈
Mot(k) and that for B(z) ∈ Mot(X )((z)) the residue resz=xB(z) dz exists.
Then

resz=xA(z)B(z) dz = A(x) resz=xB(z) dz.

Now consider the case of many variables. For a series A(z1, . . . , zr) in (9)
and x ∈M define

res zr
zr−1

=xA(z1, . . . , zr)
dzr
zr

=

(
1− zr

xzr−1

)
A(z1, . . . , zr)

∣∣∣∣
zr=xzr−1

.

Note that, by definition, this residue (if it exists) is a series in variables
z1, . . . , zr−1, and, moreover, we have

res zr
zr−1

=xA(z1, . . . , zr) ∈M
((

z1,
z2

z1
, . . . ,

zr−1

zr−2

))
.

Thus we can define the iterated residue

(10) res z2
z1

=x1,...,
zr
zr−1

=xr−1
A(z1, . . . , zr)

r∏
i=2

dzi
zi

:=

res z2
z1

=x1

(
· · ·
(

res zr−1

zr−2
=xr−2

(
res zr

zr−1
=xr−1

A(z1, . . . , zr)
dzr
zr

)
dzr−1

zr−1

)
· · · dz2

z2

)
.

We see that this iterated residue is a Laurent series in one variable z1.
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Lemma 4.3.4. Let A(z1, . . . , zr) =
∑

d1,...,dr
Ad1···drz

d1
1 · · · zdrr be a series

in (9) and let

res z2
z1

=x1,...,
zr
zr−1

=xr−1
A(z1, . . . , zr)

r∏
i=2

dzi
zi

=
∑
i

Bdz
d
1 .

Then

Bd= lim
d1→−∞

· · · lim
dr−1→−∞

Ad1,...,dr−1,d−d1−...−dr−1
xd−d11 xd−d1−d22 · · ·xd−d1−···−dr−1

r−1 .

Moreover, the iterated residue exists if and only if the limits exist.

Proof. We proceed by induction on r. If r = 1 the statement holds trivially.
Assuming that the statement holds for r − 1, we calculate as in the proof of
Lemma 4.3.2

res zr
zr−1

=xr−1
A(z1, . . . , zr)

dzr
zr

=
∑

d1,...,dr

(Ad1,...,drx
dr
r−1 −Ad1,...,dr−2,dr−1+1,dr−1x

dr−1
r−1 )zd11 · · · z

dr−2

r−2 z
dr−1+dr
r−1 .

Let us perform a change of variables: j1 = d1, . . . , jr−2 = dr−2, jr−1 =
dr−1 + dr, j = dr−1. Then we get

∑
d1,...,dr

(Ad1,...,drx
dr
r−1 −Ad1,...,dr−2,dr−1+1,dr−1x

dr−1
r−1 )zd11 · · · z

dr−2

r−2 z
dr−1+ir
r−1

=
∑

j1,...,jr−1

∑
j

(
Aj1,...,jr−2,j,jr−1−jx

jr−1−j
r−1 −Aj1,...,jr−2,j+1,jr−1−j−1x

jr−1−j−1
r−1

)
× zj11 · · · z

jr−1

r−1

=
∑

j1,...,jr−1

(
lim

j→−∞
Aj1,...,jr−2,j,jr−1−jx

jr−1−j
r−1

)
zj11 · · · z

jr−1

r−1 .
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Now by induction hypothesis we have

res z2
z1

=x1,...,
zr
zr−1

=xr−1
A(z1, . . . , zr)

r∏
i=2

dzi
zi

= res z2
z1

=x1,...,
zr−1

zr−2
=xr−2

( ∑
j1,...,jr−1

(
lim

j→−∞
Aj1,...,jr−2,j,jr−1−jx

jr−1−j
r−1

)
× zj11 · · · z

jr−1

r−1

)
r−1∏
i=2

dzi
zi

=
∑
d

zd1

(
lim

j1,...,jr−2,j→−∞
Aj1,...,jr−2,j,d−j1−···−jr−2−j

× xd−j11 · · ·xd−j1−···−jr−2

r−2 x
d−j1−···−jr−2−j
r−1

)
.

�

4.4. Derivation of Theorem 4.2.3 from Theorem 4.1.2

Let us write

res z2
z1

=
z3
z2

=···= zr
zr−1

=L−1 E≥τr,d (z1, . . . , zr)

r∏
i=2

dzi
zi

=
∑
n

Bnz
n
1 .

It follows easily from Lemma 4.3.4 that Bn = 0 if n 6= d. On the other hand,
by the same lemma, we have

Bd = lim
d1→−∞

· · · lim
dr−1→−∞

L(r−1)d1+···+dr−1 [Bun≥τr,d1,...,dr−1,d−d1−...−dr−1
→Bun≥τr,d ]

Ld−d1Ld−d1−d2 · · ·Ld−d1−···−dr−1

(11)

= L(1−r)d lim
d1→−∞

· · · lim
dr−1→−∞

[Bun≥τr,d1,...,dr−1,d−d1−···−dr−1
→ Bun≥τr,d ]

L−(2r−2)d1−(2r−4)d2−···−2dr−1

= L(1−r)d · L
(r−1)(d+(1−g) r+2

2 )[Jac]r−1

(L− 1)r−1
∏r
i=2ζX(L−i)

1Bun≥τr,d

=
L(r−1)((1−g) r+2

2 )[Jac]r−1

(L− 1)r−1
∏r
i=2ζX(L−i)

1Bun≥τr,d
.
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4.5. Stacks of partial flags

Before we prove Theorem 4.1.2, we need some preliminaries. We introduce
the stack Bun≥τr,d1,...,dl classifying collections 0 = E0 ⊂ E1 ⊂ · · · ⊂ El, where

El is vector bundle in Bun≥τr,d1+···+dl , Ei is a vector subbundle of rank i for
i = 1, . . . , l − 1, and we have deg(Ei/Ei−1) = di for i = 1, . . . , l. We study
this stack for l = 2 first.

Proposition 4.5.1. We have in Mot(Bun≥τr,d ):

lim
d1→−∞

[Bun≥τr,d1,d−d1 → Bun
≥τ
r,d ]

L−rd1
=

Ld+r(1−g)[Jac]

(L− 1)ζX(L−r)
1Bun≥τr,d

.

We will prove this proposition in Section 4.6. We first need to introduce
more stacks. Let Lau≥τr,d1,d2 classify collections 0 = E0 ⊂ E1 ⊂ E2, where E2

is a vector bundle in Bun≥τr,d1+d2
, E1 is a subsheaf of rank one and degree

d1. Note that E1 is a line bundle but E2/E1 might have torsion. We view
Lau≥τr,d1,d2 as a stack over Bun≥τr,d1+d2

via the obvious projection.

Remark 4.5.2. The stacks Lau≥τr,d1,d2 are Laumon’s relative compactifica-

tions of Bun≥τr,d1,d2 → Bun
≥τ
r,d1+d2

. Thus the notation. The reason we need

these stacks is that they are simpler than Bun≥τr,d1,d2 , when d1 is small, see

Lemma 4.5.4 below. On the other hand, their relation with Bun≥τr,d1,d2 is also
quite simple as we see momentarily.

Lemma 4.5.3. We have in Mot(Bun≥τr,d1+d2
)

[Lau≥τr,d1,d2 → Bun
≥τ
r,d1+d2

] =
∑
i≥0

[X(i) × Bun≥τr,d1+i,d2−i → Bun
≥τ
r,d1+d2

].

Proof. Note first, that the sum in the RHS is finite. Indeed, Bun≥τr,d1+i,d2−i
is empty, when i is large enough. Recall that X(i) parameterizes length i
subschemes of X. We have a 1-morphism

ϕ : ti≥0(X(i) × Bun≥τr,d1+i,d2−i)→ Lau
≥τ
r,d1,d2

sending (D,E1 ⊂ E2) to (E1(−D), E2). We claim that this 1-morphism in-
duces an isomorphism on K-points for any field K. Indeed, take (E1 ⊂
E2) ∈ Lau≥τr,d1,d2(K). The coherent sheaf E2/E1 can be written as T ⊕ E,
where T is a uniquely defined torsion sheaf and E is a vector bundle. Let
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E′1 be the inverse image of T under the projection E2 → E2/E1. Then
E1 = E′1(−D) for an effective divisor D ⊂ X (because E′1/E1 ≈ T is tor-
sion). Now (E1 ⊂ E2) = ϕ(D,E′1 ⊂ E2) and it is easy to see that this is the
only K-point mapping to (E1 ⊂ E2). It remains to use Corollary 2.6.2. �

Lemma 4.5.4. If d1 < 2− 2g + τ , then we have in Mot(Bun≥τr,d1+d2
)

[Lau≥τr,d1,d2 → Bun
≥τ
r,d1+d2

] =
Ld1+d2+r(−d1−g+1) − 1

L− 1
[Jac]1Bun≥τr,d1+d2

.

Proof. Recall that the stack Picd1 classifies degree d1 line bundles on X.
Let L be the universal line bundle on Picd1 ×X. Denote by E the universal
vector bundle on Bun≥τr,d1+d2

×X. Denote by pij the projections from

Picd1 × Bun
≥τ
r,d1+d2

×X

to the products of the i-th and the j-th factors. Set

F := Hom(p∗13L, p∗23E) and V := (p12)∗F ,

where Hom stands for the sheaf of homomorphisms. Note that V is a coher-
ent sheaf because p12 is a proper 1-morphism.

Claim. If d1 < 2− 2g + τ , then the coherent sheaf V is locally free of rank
d1 + d2 + r(−d1 − g + 1).

Proof of the claim. Let ξ = (`, E) be aK-point of Picd1 × Bun
≥τ
r,d1+d2

so that
` is a line bundle on XK , E is a vector bundle on XK . The fiber of F
over ξ ×X = XK is Fξ = Hom(`, E). According to [Mum, Sect. 5, Cor. 2]
we only need to show that h0(XK ,Fξ) = d1 + d2 + r(−d1 − g + 1) (and, in
particular, this dimension does not depend on ξ).

First of all, we claim that H1(XK ,Fξ) = 0. Indeed, by Serre duality the
vector space H1(XK ,Fξ) is dual to Hom(E,ΩXK ⊗ `). The latter space is
zero by Lemma 3.2.1(ii). Now by Riemann–Roch we have

h0(XK ,Fξ) = h0(XK , E ⊗ `−1) = d1 + d2 + r(−d1 − g + 1).

The claim is proved. �

Consider the complement of the zero section in the total space of the
vector bundle V. It is clear from the construction that this complement
classifies triples (`, E, s), where ` is a degree d1 line bundle on X, E is
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a vector bundle on X of rank r and degree d1 + d2, s : `→ E is a non-
zero (=injective) morphism. Now it is easy to see that this complement is
isomorphic to Lau≥τr,d1,d2 . Thus, by the previous claim and Lemma 4.1.1 we

have in Mot(Bun≥τr,d1+d2
):

[Lau≥τr,d1,d2 → Bun
≥τ
r,d1+d2

] = (Ld1+d2+r(−d1−g+1) − 1)[Picd1 ]1Bun≥τr,d1+d2

=
Ld1+d2+r(−d1−g+1) − 1

L− 1
[Jac]1Bun≥τr,d1+d2

.

�

4.6. Proof of Proposition 4.5.1

Consider the generating series

E(z) :=
∑
d1

[Bun≥τr,−d1,d+d1
→ Bun≥τr,d ]zd1 ∈ Mot(Bun≥τr,d )((z))

and

Ẽ(z) :=
∑
d1

[Lau≥τr,−d1,d+d1
→ Bun≥τr,d ]zd1 ∈ Mot(Bun≥τr,d )((z)).

It follows from Lemma 4.5.3 that

Ẽ(z) = ζX(z)E(z).

Now we calculate, using Lemma 4.3.2 twice and Lemma 4.3.3.

lim
d1→−∞

[Bun≥τr,d1,d−d1 → Bun
≥τ
r,d ]

L−rd1
= Lr resz=L−r E(z) dz

=
Lr

ζX(L−r)
resz=L−r Ẽ(z) dz

=
1

ζX(L−r)
lim

d1→−∞

[Lau≥τr,d1,d−d1 → Bun
≥τ
r,d ]

L−rd1
.
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We also used that ζX(L−r) converges and is invertible in Mot(k) for any
r ≥ 2 (see Lemma 1.3.1). Now by Lemma 4.5.4 we have

1

ζX(L−r)
lim

d1→−∞

[Lau≥τr,d1,d−d1 → Bun
≥τ
r,d ]

L−rd1

=
[Jac]

(L− 1)ζX(L−r)
lim

d1→−∞

Ld+r(−d1−g+1) − 1

L−rd1
1Bun≥τr,d

=
Ld+r(1−g)[Jac]

(L− 1)ζX(L−r)
1Bun≥τr,d

.

�

Remark 4.6.1. It is an easy consequence of the above calculations that
Ẽ(z), E(z), and E≥τ2,d (z1, z2) are expansions of rational functions. We do not

know if E≥τr,d is an expansion of a rational function for r ≥ 3.

4.7. Proof of Theorem 4.1.2

We will prove for 2 ≤ l ≤ r that

lim
d1→−∞

· · · lim
dl−1→−∞

[Bun≥τr,d1,...,dl−1,d−d1−···−dl−1
→ Bun≥τr,d ]

L−(r+l−2)d1−(r+l−4)d2−···−(r−l+2)dl−1

=
L(l−1)(d+(1−g) 2r−l+2

2
)[Jac]l−1

(L− 1)l−1
∏r
i=r−l+2ζX(L−i)

1Bun≥τr,d
.

Our theorem is equivalent to this statement with l = r. We use induction
on l. For l = 2 this is Proposition 4.5.1 above. Assume that the formula is
proved for l − 1.

Lemma 4.7.1. We have

Bun≥τr,d1,...,dl ' Bun
≥τ
r,d1,...,dl−2,dl−1+dl

×Bun≥τr−l+2,dl−1+dl

Bun≥τr−l+2,dl−1,dl
.

Proof. The isomorphism sends E1 ⊂ · · · ⊂ El to the pair

(E1 ⊂ · · · ⊂ El−2 ⊂ El, El−1/El−2 ⊂ El/El−2).

�

Let us return to the proof of the theorem. First, we fix d, d1, . . . , dl−2.
Set d′ := d− d1 − · · · − dl−2. Let f : Bun≥τr,d1,...,dl−2,d′

→ Bun≥τr−l+2,d′ and g :
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Bun≥τr,d1,...,dl−2,d′
→ Bun≥τr,d be the projections. These projections together with

the 1-morphisms of the previous lemma fit into the diagram:

Bun≥τr,d1,...,dl−1,d′−dl−1
−−−−→ Bun≥τr,d1,...,dl−2,d′

g−−−−→ Bun≥τr,dy yf
Bun≥τr−l+2,dl−1,d′−dl−1

−−−−→ Bun≥τr−l+2,d′ .

Using the above lemma and Proposition 4.5.1, we calculate

lim
dl−1→−∞

[Bun≥τr,d1,...,dl−1,d−d1−···−dl−1
→ Bun≥τr,d ]

L−(r−l+2)dl−1
(12)

= lim
dl−1→−∞

g!f
∗[Bun≥τr−l+2,dl−1,d′−dl−1

→ Bun≥τr−l+2,d′ ]

L−(r−l+2)dl−1

= g!f
∗

(
lim

dl−1→−∞

[Bun≥τr−l+2,dl−1,d′−dl−1
→ Bun≥τr−l+2,d′ ]

L−(r−l+2)dl−1

)

= g!f
∗
(

Ld′+(r−l+2)(1−g)[Jac]

(L− 1)ζX(L−(r−l+2))
1Bun≥τ

r−l+2,d′

)
=

Ld′+(r−l+2)(1−g)[Jac]

(L− 1)ζX(L−(r−l+2))
[Bun≥τr,d1,...,dl−2,d′

→ Bun≥τr,d ].

It remains to use the induction hypothesis:

lim
d1→−∞

· · · lim
dl−1→−∞

[Bun≥τr,d1,...,dl−1,d−d1−···−dl−1
→ Bun≥τr,d ]

L−(r+l−2)d1−(r+l−4)d2−···−(r−l+2)dl−1

(13)

= lim
d1→−∞

· · · lim
dl−2→−∞

Ld′+(r−l+2)(1−g)[Jac][Bun≥τr,d1,...,dl−2,d′
→ Bun≥τr,d ]

L−(r+l−2)d1−(r+l−4)d2−···−(r−l+4)dl−2(L−1)ζX(L−(r−l+2))

=
Ld+(r−l+2)(1−g)[Jac]

(L− 1)ζX(L−(r−l+2))

× lim
d1→−∞

· · · lim
dl−2→−∞

[Bun≥τr,d1,...,dl−2,d′
→ Bun≥τr,d ]

L−(r+l−3)d1−(r+l−5)d2−···−(r−l+3)dl−2
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=
Ld+(r−l+2)(1−g)[Jac]

(L− 1)ζX(L−(r−l+2))
· L

(l−2)(d+(1−g) 2r−l+3

2
)[Jac]l−2

(L− 1)l−2
∏r
i=r−l+3ζX(L−i)

1Bun≥τr,d

=
L(l−1)(d+(1−g) 2r−l+2

2
)[Jac]l−1

(L− 1)l−1
∏r
i=r−l+2ζX(L−i)

1Bun≥τr,d
.

The theorem is proved. �

5. Some identities in motivic Hall algebras

For an ind-constructible abelian (or more generally triangulated A∞) cat-
egory Kontsevich and Soibelman define its motivic Hall algebra in [KS1]
(see also [Joy1]). We will need this construction for the category of coherent
sheaves on the curve X. In this case, the formulas of [KS1] simplify drasti-
cally, so we prefer to give a direct definition, referring the interested reader
to [KS1] for the general case.8

We also define a version of comultiplication. Note that there is some
peculiarity in the motivic case (in particular, coassociativity does not make
literal sense). We notice that (in the particular case of the category of sheaves
on curves) there is a compatibility between multiplication and comultiplica-
tion resembling Green’s Theorem. Finally, we do some concrete calculations
to be used in Section 6.

In this section k is a field of arbitrary characteristic except for Sec-
tion 5.7, where we need the field to be of characteristic zero. We keep the
assumptions from the previous section, in particular: X is a smooth geo-
metrically connected projective curve over the field k and we assume that
there is a divisor D on X defined over k such that degD = 1. As before, K
denotes an extension of k.

5.1. Motivic Hall algebra of the category of coherent sheaves

For any stack X we consider the ring

Mot(X )[
√
L] := Mot(X )[t]/(t2 − L).

We can easily extend pullbacks, pushforwards, and products to these rings.
We note that Mot(X ) ⊂ Mot(X )[

√
L], since t2 − L is a monic polynomial.

Thus, when proving an identity in Mot(X ), we may work in Mot(X )[
√
L].

8For a nice introduction to motivic Hall algebras of categories of coherent sheaves,
see [Bri].
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Set

Γ := Z2, Γ+ := {(r, d) ∈ Z≥0 × Z | d ≥ 0 if r = 0}

so that Γ+ is a subsemigroup of Γ. If F is a coherent sheaf on XK of generic
rank r and degree d, we say that F is of class (r, d) ∈ Γ+, we also write
cl(F ) = (r, d). Let Cohγ be the moduli stack of coherent sheaves on X of class
γ ∈ Γ+. In particular, we have Coh(0,0) = Spec k. We also consider Cohr :=
tdCoh(r,d); this is the moduli stack of rank r sheaves. Finally, set Coh :=
tr≥0Cohr.

For (ri, di) ∈ Γ, i = 1, 2, we set

〈(r1, d1), (r2, d2)〉 = (1− g)r1r2 + (r1d2 − r2d1)

and

((r1, d1), (r2, d2)) = 〈(r1, d1), (r2, d2)〉+ 〈(r2, d2), (r1, d1)〉 = (2− 2g)r1r2.

Note that the symmetrized form only involves r1 and r2.
Next, we note that for coherent sheaves F1 and F2 on X we have

dim Hom(F1, F2)− dim Ext1(F1, F2) = 〈cl(F1), cl(F2)〉.

Set

Hγ := Mot(Cohγ)[
√
L] and Hfinγ := Mot

fin
(Cohγ)[

√
L] for γ ∈ Γ+.

Finally, set

H′ :=
⊕
γ∈Γ+

Hγ , H′fin :=
⊕
γ∈Γ+

Hfinγ , and Ĥ′ :=
∏
γ∈Γ+

Hγ .

For γ1, γ2 ∈ Γ+ let Cohγ2,γ1 be the stack classifying pairs of sheaves (F1 ⊂ F )
such that cl(F1) = γ1, cl(F/F1) = γ2. We have a diagram

Cohγ2 × Cohγ1
p←− Cohγ2,γ1

s−→ Cohγ1+γ2 .

Here p(F1 ⊂ F ) = (F/F1, F1), s(F1 ⊂ F ) = F . Note that both p and s are
1-morphisms of finite type.
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The multiplication on H′ is defined as follows: if fi ∈ Hγi (i = 1, 2), then

f2f1 := L
1

2
〈γ2,γ1〉s!p

∗(f2 � f1).

We extend this H′ by bilinearity. The above product makes H′ into a unital
associative algebra over Mot(k)[

√
L].

Directly, one can define the n-fold multiplication on H′ as follows. Let
Cohγn,...,γ1 denote the stack of filtrations of coherent sheaves 0 = F0 ⊂ F1 ⊂
· · · ⊂ Fn = F such that for all i we have cl(Fi/Fi−1) = γi. We have a diagram

Cohγn × · · · × Cohγ1
p(n)←−− Cohγn,...,γ1

s(n)−−→ Cohγ1+···+γn .

The 1-morphisms p(n) and s(n) are defined similarly to p and s; they are also
of finite type. Now, for fi ∈ Hγi we have

fn · · · f1 = L
∑
i>j

1

2
〈γi,γj〉s(n)!p

∗
(n)(fn � · · ·� f1).

Note that H′fin ⊂ H′ is a subalgebra. On the other hand, Ĥ′ is not an
algebra because multiplication would involve infinite summation. However,
Ĥ′tor :=

∏
d≥0H(0,d) is. Moreover, the restriction of the multiplication on

H′ to H′ ⊗ (
⊕

dH0,d) extends to the action Ĥ′ ⊗ Ĥ′tor → Ĥ′; this action
preserves H′ and the rank gradation on H′.

Precisely, the action is defined as follows: Let Cohtor := td≥0Coh0,d be
the stack of torsion sheaves and let Coh•,tor denote the stack classifying pairs
F1 ⊂ F , where F is a coherent sheaf on X, F1 is subsheaf such that F1 is
torsion. We have projections

Coh× Cohtor
p←− Coh•,tor

s−→ Coh

defined by p(F1 ⊂ F ) = (F/F1, F1) and s(F1 ⊂ F ) = F . Both projections
are of finite type, so for f1 ∈ H′tor and f2 ∈ Ĥ′ we define

f2f1 := s!p
∗(T (f2 � f1)),

where T acts on Coh(0,d) × Coh(r,e) via the multiplication by L−
1

2
dr.

Remark 5.1.1. We can define Hall algebras using Mot(Cohγ)[
√
L] instead

of Mot(Cohγ)[
√
L]. Everything except for Proposition 5.5.3(vi) would work.

Thus Proposition 6.2.2 is also true as a statement about series with coeffi-
cients in Mot(k)[

√
L].
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5.2. Extended Hall algebras

Set Γ′ := Z and let Z[Γ′] be the group algebra. We denote the element cor-
responding to r ∈ Γ′ by kr. Thus Z[Γ′] ≈ Z[k1, k

−1
1 ] is the ring of Laurent

polynomials. We let Γ′ act on H′ via

r · f = L(1−g)rr′f whenever f ∈ Hr′,d.

This gives a semidirect product

H := H′ ⊗Z Z[Γ′].

Thus, H is an associative algebra. Note that H is graded by Γ+. We view
H′ and Z[Γ′] as subalgebras of H. We have in H: krf = L(1−g)rr′fkr if f ∈
Hr′,d. We define the subalgebra Hfin := H′fin ⊗ Z[Γ′] ⊂ H, the Mot(k)[

√
L]-

module Ĥ := Ĥ′ ⊗ Z[Γ′] ⊃ H and the algebra Ĥtor := Ĥ′tor ⊗ Z[Γ′] acting on
Ĥ on the right.

Remark 5.2.1. One may define a larger algebra H′ ⊗ Z[Γ] as in [Sch2,
Sect. 4.1] by making γ ∈ Γ act on f ∈ Hγ′ via γ · f = L

1

2
(γ,γ′)f . However,

the symmetrized bilinear form depends on the ranks only, so the element
of Z[Γ] corresponding to (0, 1) ∈ Γ is central. The quotient by the ideal
generated by (0, 1) is isomorphic to H (we identify Γ′ with Γ/(0, 1)Z).

5.3. “Comultiplication” in the Hall algebra

One would like to define a comultiplication Ĥ → Ĥ⊗̂Ĥ, where ⊗̂ is the prod-
uct completed with respect to the Γ+-grading. However, in the motivic case
this is not possible because Mot(Cohγ2 × Cohγ1) 6= Mot(Cohγ2)⊗̂Mot(Cohγ1).
We will circumvent this problem as follows. Set

Hγ2,γ1 := Mot(Cohγ2 × Cohγ1)[
√
L]

and Ĥ(2) :=
∏

γ2,γ1∈Γ+

Hγ2,γ1 ⊗ Z[(Γ′)2].

Later, we will also need the space H(2),fin := ⊕γ2,γ1∈Γ+
Hfinγ2,γ1 ⊗ Z[(Γ′)2],

where Hfinγ2,γ1 := Mot(Cohγ2 × Cohγ1)[
√
L].
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We are going to construct a map

∆ : Ĥ → Ĥ(2).

To give such a map, one needs to give for each pair (γ2, γ1) ∈ Γ2
+ a map

∆γ2,γ1 : Ĥ → Hγ2,γ1 ⊗ Z[(Γ′)2]. This map is given by

∆γ2,γ1(f ⊗ kr) := L
1

2
〈γ2,γ1〉p!s

∗fγ1+γ2 ⊗ kr1+r ⊗ kr,

where f ∈ H′, fγ1+γ2 is the projection of f to Hγ1+γ2 , and γ1 = (r1, d1).

Note that we have a homomorphism of Mot(k)-modules � : Ĥ⊗̂Ĥ →
Ĥ(2) given by external product of motivic functions.

Remark 5.3.1. The coassociativity does not make sense for ∆. However,
one has the following replacement. First, one defines the n-point completed
Hall algebra Ĥ(n) and the n-th comultiplication ∆(n) : Ĥ → Ĥ(n). Assume

that we have ∆(f) = �(g), where f ∈ Ĥ, g ∈ Ĥ⊗̂Ĥ. Then for any n and m
we have

∆(m+n)(f) = (∆(m) � ∆(n))(g).

We will not use this coassociativity.

Proposition 5.3.2. Assume that either f1, f2 ∈ Hfin, or f1 ∈ Ĥ, f2 ∈ Ĥtor.
Then

∆(f1f2) = ∆(f1)∆(f2).

In particular the product in the RHS converges.

Note that Ĥ(2) is not an algebra because the product involves infinite
summation. The convergence part of the proposition means that, under as-
sumptions of the proposition, for any degree δ ∈ (Γ+)2 all but finitely many
terms in the corresponding sum are zero. This is easy to check if f2 ∈ Ĥtor; in
the case f1, f2 ∈ Hfin this follows from the fact that for any finite type sub-
stack X ⊂ Coh there is d ∈ Z such that for any F ∈ X (K) and any quotient
F ′ of F we have degF ′ ≥ d.

We leave a lengthy proof of the equation to the reader but we observe
that the argument of [Sch1, Sect. 1.5] is actually motivic.

5.4. The bilinear form

According to Section 2.3, we have a bilinear formHfinγ ⊗Hγ → Mot(k)[
√
L];

we extend it to H′fin ⊗ Ĥ′ by letting Hγ to be pairwise orthogonal. We
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extend it to Hfin ⊗ Ĥ by setting (f ⊗ kr|g ⊗ kr′) = L(1−g)rr′(f |g). Similarly,

we define a bilinear form H(2),fin ⊗ Ĥ(2) → Mot(k)[
√
L].

Lemma 5.4.1. Let f ∈ Ĥ, g1, g2 ∈ Hfin. Then

(g1g2|f) = (g1 � g2|∆(f)).

Proof. A simple calculation using Lemma 2.3.1. �

5.5. “Standard” objects

For γ ∈ Γ+ set 1γ := 1Cohγ ∈ Hγ , 1vecγ := 1Bunγ ∈ Hγ . Define the generating
series

Er(z) :=
∑
d∈Z

1r,dz
d ∈

∏
d∈Z
H(r,d)z

d ⊂ H[[z−1, z]].

Define also Evecr (z) :=
∑

d∈Z 1vecr,d z
d. Note that E0(z) ∈ Htor[[z]]. Note also

that Evec0 (z) = 1.

Remark 5.5.1. The series Er(z) is homogeneous in the sense that the coef-
ficient at zd belongs to Hr,d. Thus, for any x ∈ Mot(k)[

√
L] we can calculate

Er(x) as an element of the completion Ĥ. Moreover, we can recover Er(z)
from Er(1) as Er(z) =

∑
d∈Z(Er(1))(r,d)z

d, where the subscript (r, d) stands
for the (r, d)-component.

We can use this correspondence between homogeneous series and ele-
ments of Ĥ to multiply any homogeneous series by a homogeneous series
of rank 0 on the right because Ĥtor acts on Ĥ. Proposition 5.5.3(i,v) below
should be understood in this sense.

For r > 0 set

volr :=
L(g−1)(r2−1)

L− 1
[Jac]ζX(L−2) · · · ζX(L−r) ∈ Mot(k).

Remark 5.5.2. The stack Bunr,d is of infinite type for r > 1. However, one
can define its motivic class as

[Bunr,d] := lim
τ→−∞

[Bun≥τr,d ] ∈ Mot(k).

(See [BD, Lemma 3.1].) It is an easy consequence of [BD, Sect. 6] that
[Bunr,d] = volr. We will never use this in the current paper but the notation
volr will be convenient when comparing our paper with [Sch2].
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Proposition 5.5.3. We have the following identities.

Er(z) = Evecr (z)E0(L−
1

2
rz).(i)

E0(z)E0(w) = E0(w)E0(z).(ii)

E0(z)Evecr (w) =

(
r−1∏
i=0

ζX

(
L−

r

2
+i z

w

))
Evecr (w)E0(z).(iii)

∆(Er(z)) =
∑
s+t=r

L
1

2
st(g−1)Es(L

t

2 z)kt � Et(L−
s

2 z).(iv)

∆(Evecr (z)) =
∑
s+t=r

L
1

2
st(g−1)Evecs (L

t

2 z)E0(L
t−s
2 z)E−1

0 (L−
t+s

2 z)kt � Evect (L−
s

2 z).(v)

Evecr (L
1

2
(1−r)z1) = C · res z2

z1
=···= zr

zr−1
=L−1(Evec1 (zr) · · ·Evec1 (z1))

r∏
i=2

dzi
zi
,(vi)

where

C = L
1

4
(1−g)r(r−1)vol−r1 volr.

Proof. We start the proof with (i). In view of Remark 5.5.1 and the definition
of the action of Htor on H, we only need to show that we have in Mot(Coh):

1Coh = s!1X ,

where X is the constructible subset of Coh•,tor corresponding to the pairs
(F1 ⊂ F ) such that F/F1 is a vector bundle. This follows from the uniqueness
of the torsion subsheaf and Corollary 2.6.2.

(ii) is equivalent to the equation

[Coh(0,l1),(0,l2) → Coh(0,l1+l2)] = [Coh(0,l2),(0,l1) → Coh(0,l1+l2)].

We will show a stronger equation in Mot(Coh(0,l1+l2) × Coh(0,l1)):

[Coh(0,l1),(0,l2)
ϕ−→ Coh(0,l1+l2) × Coh(0,l1)]

= [Coh(0,l2),(0,l1)
ψ−→ Coh(0,l1+l2) × Coh(0,l1)].

Here ϕ and ψ are defined by ϕ(F ′ ⊂ F ) = (F, F/F ′), ψ(F ′ ⊂ F ) = (F, F ′).
Let F and F ′ be torsion sheaves on XK representing a point ξ : SpecK →
Coh(0,l1+l2) × Coh(0,l1). According to Proposition 2.6.1 we just need to check
that the motivic classes of the ξ-fibers of ϕ and ψ are equal. These fibers are
equal to the space of surjective (resp. injective) morphisms Homsur(F, F

′)
(resp. Hominj(F

′, F )).
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Let Z ⊂ X be the union of scheme-theoretic supports of F and F ′. We
may assume that Zred = z is a single point of XK because the space of injec-
tive (or surjective) morphisms decomposes into the product over the points
of Zred. Note that the restriction of F to z corresponds to a vector space over
k(z); the same is true for F ′. Upon choosing bases in these vector spaces, we
identify Homsur(F |z, F ′|z) and Hominj(F

′|z, F |z) with spaces of matrices of
maximum rank (of sizes dimF ′|z × dimF |z and dimF |z × dimF ′|z resp.);
we see that the motivic classes of these spaces coincide.

Next, a morphism from F → F ′ is surjective if and only if its restriction
to z is surjective. Now it is easy to see that the fibers of the restriction
morphism Homsur(F, F

′)→ Homsur(F |z, F ′|z) are vector spaces. Similarly,
the fibers of the morphism Hominj(F

′, F )→ Hominj(F
′|z, F |z) are vectors

spaces easily seen to be of the same dimension. One more application of
Proposition 2.6.1 completes the proof of (ii).

To prove (iii), note first that by Lemma 2.5.1 we have

r−1∏
i=0

ζX

(
L−

r

2
+i z

w

)
= ζX×Pr−1

(
L−

r

2
z

w

)
.

Thus (iii) is equivalent to the equation for all d ≥ 0 and e ∈ Z:

1(0,d)1
vec
(r,e) =

d∑
i=0

L−
ir

2 [(X × Pr−1)(i)]1vec(r,e+i)1(0,d−i).

Unwinding the definition of multiplication in the Hall algebra, we see that
this is equivalent to the following equation. Let Ĉoh(0,d),(r,e) be the open
substack of Coh(0,d),(r,e) classifying pairs of sheaves (F1 ⊂ F ) such that F1 is

torsion free. Similarly, let Ĉoh(r,e),(0,d) be the open substack of Coh(r,e),(0,d)

classifying pairs of sheaves (F1 ⊂ F ) such that F/F1 is torsion free. It is
enough to show that in Mot(Cohr,d+e) we have

[Ĉoh(0,d),(r,e) → Cohr,d+e](14)

=

d∑
i=0

Lr(d−i)[(X × Pr−1)(i)][Ĉoh(r,e+i),(0,d−i) → Cohr,d+e].

To this end, let F be a coherent sheaf on XK of class (r, d+ e). Write
F = T ⊕ E, where T is torsion and E is torsion free. Set i = degE − e. The
fiber XF of Ĉoh(0,d),(r,e) → Cohr,d+e over F is the scheme of subsheaves F ′ ⊂
T ⊕ E such that F ′ is locally free of class (r, e) (in particular, it is empty
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if i < 0). Let π : F → E be the projection, the assignment F ′ 7→ π(F ′) is a
morphism XF →Modi(E), whereModi(E) classifies degree i modifications
of E, that is, subsheaves E′ ⊂ E such that E/E′ is torsion of degree i.
The fibers of this 1-morphism are isomorphic to vector spaces of dimension
dim Hom(F ′, T ) = r deg T = r(d− i). Thus

[XF ] = Lr(d−i)[Modi(E)] = Lr(d−i)[(X × Pr−1)(i)],

where the second equation follows from the proof of [GPHS, Prop. 3.6].

Now we calculate the fiber of Ĉoh(r,e+i),(0,d−i) → Cohr,d+e over F . This is
the scheme of subsheaves T ′ ⊂ F = T ⊕ E such that T ′ is torsion of degree
d− i and such that F/T ′ is torsion free. But then we necessarily have T = T ′.
Thus, the fiber consists of a unique point if d− i = d+ e− degE and empty
otherwise. Now we easily derive (14) from Proposition 2.6.1.

Next, (iv) is equivalent to the following statement: for any γ1, γ2 ∈ Γ+

we have ∆γ2,γ1(1γ1+γ2) = L−
1

2
〈γ2,γ1〉1γ2 � 1γ1 . Unwinding the definition of

∆γ2,γ1 , we see that this is equivalent to

[Cohγ2,γ1 → Cohγ2 × Cohγ1 ] = L−〈γ2,γ1〉1Cohγ2×Cohγ1 .

Let Fi be coherent sheaves on XK of class γi (i = 1, 2). According to Propo-
sition 2.6.1, we just need to show that the motivic class of the moduli
stack X of exact sequences 0→ F1 → F → F2 → 0 is equal to L−〈γ2,γ1〉 in
Mot(K). This follows easily from the fact that we have an affine bundle
Ext1(F2, F1)→ X modeled over the additive group Hom(F2, F1). (Recall
that dim Ext1(F2, F1)− dim Hom(F2, F1) = −〈γ2, γ1〉.)

For (v), note first that E0(z) is invertible in H[[z]]. By part (i) we have

Evecr (z) = Er(z)E
−1
0 (L−

1

2
rz),

where this equation should be understood as explained in Remark 5.5.1.
It remains to apply the comultiplication ∆, and use Proposition 5.3.2 and
part (iv) of the current proposition.

For part (vi), we have

Evec1 (zr) · · ·Evec1 (z1) =
∑

d1,...,dr

L
r(r−1)

4
(1−g)+ (r−1)d1+(r−3)d2+···+(1−r)dr

2(15)

× [Bunr,d1,...,dr → Cohr]z
d1
1 · · · z

dr
r ,

where Bunr,d1,...,dr is defined in Section 1.5.1. Since both sides of our equation
are supported on Bunr, it is enough to prove the statement upon restrict-
ing to Bunr. Note that convergence on Mot(Bunr) is convergence on open
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substacks of finite type (see Section 2.1), so it is enough to show (vi) upon
restricting to Bun≥τr,d (see Lemma 3.2.1(iv) and the definition of the residue
in Section 4.3). We get

Evec1 (zr) · · ·Evec1 (z1)|Bun≥τr,d = L
r(r−1)

4
(1−g)+ (1−r)d

2 E≥τr,d (z1, . . . , zr),

where E≥τr,d (z1, . . . , zr) is defined in Section 4.2. It remains to use Theo-
rem 4.2.3. �

5.6. Truncated generating series

Note that the slope of a non-zero torsion sheaf is equal to +∞. Thus, if
0 = E0 ⊂ E1 ⊂ · · · ⊂ Et = E is the HN-filtration on a vector bundle E and
T is a torsion sheaf, then the HN-filtration on T ⊕ E is given by

0 ⊂ T ⊂ T ⊕ E1 ⊂ · · · ⊂ T ⊕ Et = T ⊕ E.

We define Coh≥0
r,d as the constructible (in fact, open) subset of Cohr,d clas-

sifying HN-nonnegative sheaves, that is, sheaves T ⊕ E as above such that
E is HN-nonnegative. We define Bun<0

r,d to be the constructible subset of
Cohr,d classifying sheaves with strictly negative HN-type. The reason for the
notation is that every such sheaf is a vector bundle. It follows easily from
Lemma 3.2.1(iii) that these subsets are of finite type. Set

1≥0
r,d = 1Coh≥0

r,d
, 1vec,≥0

r,d = 1Bun≥0
r,d
, 1<0

r,d = 1Bun<0
r,d
.

We also define the generating series

E≥0
r (z) :=

∑
d∈Z

1≥0
r,dz

d ∈ Hfin[[z]].

Define similarly Evec,≥0
r (z) ∈ Hfin[[z]] and E<0

r (z) ∈ z−1Hfin[[z−1]].

Lemma 5.6.1. We have

Er(z) =
∑
s+t=r
s,t≥0

L
1

2
(g−1)stE<0

s (L
t

2 z)E≥0
t (L−

s

2 z),(i)

Evecr (z) =
∑
s+t=r
s,t≥0

L
1

2
(g−1)stE<0

s (L
t

2 z)Evec,≥0
t (L−

s

2 z),(ii)

E≥0
r (z) = Evec,≥0

r (z)E0(L−
1

2
rz).(iii)
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Remark 5.6.2. Note that the RHS of (i) and (ii) involve infinite summa-
tion. As we will see from the proof, the restrictions of the series to every
finite type substack of each Cohγ have only finitely many non-zero terms.
(cf. the discussion of the topology on Mot in Section 2.1).

Proof. Let Coh±γ2,γ1 be the constructible subset of Cohγ2,γ1 classifying pairs
F1 ⊂ F such that F1 is HN-nonnegative, F/F1 has strictly negative HN-type.

Let sγ2,γ1 : Cohγ2,γ1 → Cohγ1+γ2 be the forgetful 1-morphism (denoted
simply by s above), let Coh±,′γ2,γ1 be the constructible image of Coh±γ2,γ1 under
this 1-morphism. Since for every sheaf F there is a unique exact sequence
0→ F≥0 → F → F<0 → 0 with HN-nonnegative F≥0, F<0 having strictly
negative HN-type, we get∑

γ1+γ2=γ

(sγ2,γ1)!1Coh±γ2,γ1 =
∑

γ1+γ2=γ

1Coh±,′γ2,γ1
= Cohγ1+γ2 .

We note that the sums are finite on each substack of finite type according to
Lemma 3.2.1(iv). Writing γ1 + γ2 = (r, d), we get the following Hall algebra
identity

1(r,d) =
∑
s+t=r
s,t≥0

∑
e+f=d

L
1

2
((g−1)st+te−sf)1<0

s,e1
≥0
t,f .

This is equivalent to the first formula of the lemma. The second formula is
proved similarly. The proof of the third formula is completely similar to the
proof of Proposition 5.5.3(i). �

5.7. Torsion sheaves

Note that 10,l ∈ Hfin(0,l).

Proposition 5.7.1. We have∑
l≥0

(10,l|10,l)z
l = Exp

(
[X]

L− 1
z

)
=
∏
i≥1

ζX(L−iz).

Proof. We need some preliminaries. Let Nd be the stack of dimension d vec-
tor spaces with nilpotent endomorphisms (later, we will identify Nd with the
stack of coherent sheaves supported at a point on a curve set-theoretically).

Lemma 5.7.2. We have

[Nd] =
Ld(d−1)

(Ld − 1) · · · (Ld − Ld−1)
.
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Proof. Clearly, [Nd] = [Nild]/[GLd], where Nild is the nilpotent cone for gld.
Thus we only need to show that [Nild] = Ld(d−1).

To compute [Nild], note that for every f ∈ gld the Fitting Decomposition
Theorem lets us write kd = Ker(fd)⊕ Im(fd). We can write gld =

⊔d
m=0Em

as a disjoint union of subvarieties, where Em consists of f ∈ gld such that
Ker(fd) in the Fitting decomposition has dimension equal to m.

For each m, denote by Vm the scheme parameterizing decompositions
kd = L1 ⊕ L2, where L1 is of dimension m. Let Ṽm ⊂ Em × Vm be the inci-
dence variety consisting of triples (f, L1, L2) such that Ker fd = L1, Im fd =
L2. For every extension K ⊃ k the K-fibers of the projection Ṽm → Em are
points, while the K-fibers of the projections Ṽm → Vm are easily seen to be
isomorphic to (Nilm)K × (GLd−m)K . Now, using Proposition 2.6.1, we get:

[Em] = [Ṽm] = [Nilm][GLd−m][Vm]

= [Nilm][GLd−m] [GLd /(GLm×GLd−m)] =
[GLd][Nilm]

[GLm]
.

Thus

[gld] = Ld2 =

d∑
m=0

[GLd][Nilm]

[GLm]
.

Now, it is easy to see by induction that [Nild] = Ld(d−1). �

Lemma 5.7.3. ∑
l≥0

[Nl]zl = Exp

(
z

L− 1

)
.

Proof.

∑
l≥0

[Nl]zl = 1 +
∑
i≥1

Li(i−1)

(Li − 1) · · · (Li − Li−1)
zi

= 1 +
∑
i≥1

(L−1z)i

(1− L−i) · · · (1− L−1)

=
∏
k>0

1

1− L−kz
= Exp

(
L−1z

1− L−1

)
= Exp

(
z

L− 1

)
.

�

Let us view tl≥0Nl as a Z-graded stack. Similarly to Lemma 3.8.2
consider pairs (T, ϕ), where T ⊂ X is a finite subset of closed points, ϕ :
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T → tl≥0Nl is a 1-morphism of degree d. We define deg(ϕ) :=
∑

x∈T [k(x) :
k] degϕ(x), where degϕ(x) = l if ϕ(x) ∈ Nl(k(x)). We let Yl be the stack
classifying such pairs (T, ϕ) with degϕ = l.

Lemma 5.7.4.

[Yd] = [Coh0,d].

Proof. Let Zd be the stack classifying pairs (T, E), where T ⊂ X is as above,
E is a torsion sheaf on X of degree d set theoretically supported on T . We
have a forgetful map Zd → Coh0,d and an application of Corollary 2.6.2
gives [Zd → Coh0,d] = 1Coh0,d

(indeed, the set-theoretical reduced support is
uniquely defined) so that [Zd] = [Coh0,d].

On the other hand, denote by Z(i)
d the locally closed substack of Zd cor-

responding to T such that deg T =
∑

x∈T [k(x) : k] = i. Define Y(i)
d similarly.

We claim that

(16) [Y(i)
d → X(i)] = [Z(i)

d → X(i)].

Indeed, if K ⊃ k is a field extension, then a K-point of X(i) is given by
a finite subset T ⊂ XK . Choose local coordinates at the points of T . The

fiber of Z(i)
d → X(i) over T ⊂ XK , parameterizes all degree d torsion sheaves

supported on T . Every such sheaf E can be written uniquely as
⊕

x∈T Ex,
and each Ex can be identified with a pair consisting of a vector space over
k(x) and a nilpotent endomorphism. This gives an isomorphism between this

fiber and the corresponding fiber of Y(i)
d → X(i). It remains to use Proposi-

tion 2.6.1.
Now we derive from (16) that

[Yd] =
∑
i

[Y(i)
d ] =

∑
i

[Z(i)
d ] = [Zd].

�

Now we prove the proposition using Lemma 3.8.2 and Lemma 5.7.3:

∑
d≥0

[Coh0,d]z
d =

∑
d≥0

[Yd]zd = Pow

∑
d≥0

[Nd]zd, [X]

 = Exp

(
[X]

L− 1
z

)
.

�
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6. Motivic classes of the stacks of vector bundles with
filtrations and proofs of Theorems 1.4.1 and 1.3.3

In this section k is a field of characteristic zero. We keep assumptions from
the previous sections: X is a smooth geometrically connected projective
curve over the field k and there is a divisor D on X defined over k such that
degD = 1.

Fix s ∈ Z>0 and put z = (zs, . . . , z1). Let r = (rs, . . . , r1) be an s-tuple
of positive integers; set n =

∑
i ri. Set

G≥0
r (z, w) :=

(
Ers(zs) · · ·Er1(z1)

∣∣E≥0
n (w)

)
and

Y ≥0
r (z, w) :=

(
Evecrs (zs) · · ·Evecr1 (z1)

∣∣E≥0
n (w)

)
.

The product is taken in H. Note that, up to some powers of L, G≥0
r (z, w)

(resp. Y ≥0
r (z, w)) is the generating series for the motivic classes of the moduli

stacks of rank r HN-nonnegative coherent sheaves (resp. vector bundles) with
partial flags of type (r1, . . . , rs).

6.1. Relating G≥0 with Y ≥0

Proposition 6.1.1. We have an equation for series with coefficients in
Mot(k)[

√
L]:

G≥0
r (z, w) = X≥0

r (z, w)Y ≥0
r (z, w),

where

X≥0
r (z, w) = Exp

 [X]

L− 1

∑
i

L−
1

2
(n+ri)ziw +

∑
i>j

zi
zj

(
L
rj

2 − L−
rj

2

)
L−

ri
2

.
Note that, for this to make sense, we need to extend Exp to the ideal of

the ring

Mot(k)[
√
L]

[[
z1,

z2

z1
, . . . ,

zn
zn−1

, w

]]
consisting of series without constant term; but this is straightforward.

Proof. The proof repeats that of [Sch2, Prop. 5.1]. It uses Proposition 5.3.2,
Lemma 5.4.1, Proposition 5.5.3, Lemma 5.6.1(iii), and Proposition 5.7.1.
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The only slight difference is that we do not use coassociativity to prove the
equation(

s∏
i=1

E0(L−
ri
2 zi)

∣∣E0(L−
n

2w)

)
=

s∏
i=1

(
E0(L−

ri
2 zi)

∣∣E0(L−
n

2w)
)

but we apply Proposition 5.5.3(ii) and Lemma 5.4.1 s− 1 times instead. �

6.2. Calculation of Y ≥0

Our first goal is to calculate Y ≥0
1 (z, w), where 1 = (1, . . . , 1) = 1s. Set also

Y <0
1 (z, w) =

(
Evec1 (zs) · · ·Evec1 (z1)

∣∣E<0
s (w)

)
,

Y1(z, w) = (Evec1 (zs) · · ·Evec1 (z1) |Es(w)) .

We note that Evec1 (zi) ∈ Hfin[[z−1
i , zi]], so Y1(z, w) makes sense. We need a

simple lemma.

Lemma 6.2.1.

Y1(z, w) = L(g−1) s(s−1)

4 [Jac]s
∑

d1,...,ds∈Z
zd11 · · · z

ds
s L

1

2

∑
i di(2i−s−1)w

∑
i di .

Proof. According to (15), we have

Y1(z, w) = L(1−g) s(s−1)

4

∑
d1,...,ds∈Z

L
(s−1)d1+(s−3)d2+···+(1−s)ds

2

× [Buns,d1,...,ds ]z
d1
1 · · · z

ds
s w

∑
i di .

Thus it is enough to show that

[Buns,d1,...,ds ] = L(g−1) s(s−1)

2
+(s−1)ds+···+(1−s)d1 [Jac]s.

This is proved by induction on s. Consider the morphism

Buns,d1,...,ds → Buns−1,d1,...,ds−1
× Picds

sending (E1 ⊂· · ·⊂ Es−1 ⊂ Es) to ((E1 ⊂· · ·⊂ Es−1), Es/Es−1). It is enough
to show that the motivic classes of its fibers are equal to

L(g−1)(s−1)+(s−1)ds−d1−···−ds−1 .
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The fibers are the stacks Ext1(Es/Es−1, Es−1)/Hom(Es/Es−1, Es−1) of di-
mension

dim Ext1(Es/Es−1, Es−1)− dim Hom(Es/Es−1, Es−1)

= −〈(1, ds), (s− 1, d1 + · · ·+ ds−1)〉
= (g − 1)(s− 1) + (s− 1)ds − d1 − · · · − ds−1.

This completes the proof. (Cf. the proof of Lemma 3.6.2.) �

Our nearest goal is to prove the motivic analogue of [Sch2, Prop. 5.3].
The proof is very similar to the one given in [Sch2] except for two points.
The first is that we do not have an honest comultiplication on H but this
problem is minor. The more important thing is that we do not know a priori
that our series are expansions of rational functions. We will see, however,
that this follows from the proof.

Recall that we defined normalized motivic zeta-function ζ̃X and regu-
larized motivic zeta-function ζ∗X in Section 1.3.1. We will drop the index X
from now on.

Proposition 6.2.2. For any s ≥ 1 we have

Y ≥0
1 (z, w) =

L
1

4
(g−1)s(s−1)[Jac]s∏

i<j ζ̃
(
zi
zj

)(17)

×
∑
σ∈Ss

σ

∏
i<j

ζ̃

(
zi
zj

)
· 1∏

i<s

(
1− L zi+1

zi

) · 1

1− L
1−s
2 z1w


and

Y <0
1 (z, w) = (−1)s

L
1

4
(g−1)s(s−1)[Jac]s∏

i<j ζ̃
(
zi
zj

)(18)

×
∑
σ∈Ss

σ

∏
i<j

ζ̃

(
zi
zj

)
· 1∏

i<s

(
1− L−1 zi

zi+1

) · 1

1− L
s−1

2 zsw

 ,
where the rational functions are expanded in the regions z1 � · · · � zs, w �
1 and z1 � · · · � zs, w � 1 respectively.

Remark 6.2.3. The coefficients of the rational functions in the RHS of (17)
and (18) belong to the ring Mot(k)[

√
L], and it is not known whether this
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ring is integral. Thus some care should be taken. Note, however, that the
RHS of (17) can be written in the form

P (z, w)

M(z, w)(1 +Q(z, w))
,

where P (z, w) is a polynomial, M(z, w) is a monomial in z and w, Q(z, w) is
a polynomial in zi+1/zi and ziw without constant term (see Lemma 1.3.1).
Thus we define the expansion as

P (z, w)

M(z, w)(1 +Q(z, w))
=

P (z, w)

M(z, w)

∑
i≥0

(−Q(z, w))i

 .

Similar considerations apply to (18) and to the coefficients of w-expansions
of the RHS of (17) and (18).

Proof of Proposition 6.2.2. The proof is analogous to that of [Sch2], we in-
dicate the places, where some changes are needed. We use induction on s.
The case s = 1 is easy (the proof repeats that of [Sch2]). Next, set Evec1 (z) =
Evec1 (zs) · · ·Evec1 (z1). Using Lemma 5.6.1(ii) and the fact that Hfin is a sub-
algebra of H, we get (cf. also Remark 5.6.2)

Y1(z, w) = Y ≥0
1 (z, w) + Y <0

1 (z, w)(19)

+
∑
u+t=s
u,t>0

L
1

2
(g−1)ut

(
Evec1 (z)|E<0

u (L
t

2w)E≥0
t (L−

u

2w)
)
.

By Proposition 5.5.3(v) we get

∆(Evec1 (z)) = Evec1 (z) � 1 + E0(L
1

2 z)E0(L−
1

2 z)−1k1 � Evec1 (z).

Let σ : {1, . . . , s} → {1, 2} be a map, set

Xσ =

→∏
i

Cσ(i)(zi),

where C1(z) = Evec1 (z) � 1, C2(z) = E0(L
1

2 z)E0(L−
1

2 z)−1k1 � Evec1 (z). We
get by Proposition 5.3.2

∆(Evec1 (z)) =
∑
σ

Xσ.
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Thus, denoting by ∆u,t the component of ∆ of rank (u, t), we get

∆u,t(E
vec
1 (z)) =

∑
σ∈Shu,t

Xσ.

where Shu,t denotes the set of (u, t)-shuffles, that is, maps σ : {1, . . . , u+
t} → {1, 2} such that 1 has exactly u preimages. Now combining (19) and
Lemma 5.4.1 we get

Y1(z, w) = Y ≥0
1 (z, w) + Y <0

1 (z, w)(20)

+
∑
u+t=s
u,t>0

∑
σ∈Shu,t

L
1

2
(g−1)ut

(
Xσ|E<0

u (L
t

2w) � E≥0
t (L−

u

2w)
)
.

Fix σ ∈ Shu,t and set

Hσ(z) =
∏

(i,j),j>i
σ(i)=1,σ(j)=2

ζ̃
(
zj
zi

)
ζ̃
(
zi
zj

)
(We expand Hσ in z1 � · · · � zs.) Now, repeating literally the argument
from [Sch2] and using Proposition 5.5.3(ii, iii) and Lemma 1.3.1(iii), we get

Xσ = Hσ(z) ·

 →∏
i,σ(i)=1

Evec1 (zi)

→∏
j,σ(j)=2

E0(L
1

2 zj)E0(L−
1

2 zj)
−1kt1


�

→∏
j:σ(j)=2

Evec1 (zj).

Plugging this into (20), we get as in [Sch2]

Y1(z, w) = Y ≥0
1 (z, w) + Y <0

1 (z, w) +
∑
u+t=s
u,t>0

∑
σ∈Shu,t

Yσ(z, w),

with

Yσ(z, w) = L
1

2
(g−1)utHσ(z)Y <0

1 (ziu , . . . , zi1 ,L
t

2w)(21)

× Y ≥0
1 (zjt , . . . , zj1 ,L−

u

2w),

where (iu, . . . , i1) (resp. (jt, . . . , j1)) are the reordering in the decreasing
order of the set σ−1(1) (resp. σ−1(2)).
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Now let us write

Y ≥0
1 (z, w) =

∑
n≥0

y≥0
n (z)wn, Y <0

1 (z, w) =
∑
n<0

y<0
n (z)wn,

Yσ(z, w) =
∑
n

yσ,n(z)wn.

As in [Sch2, (5.11)], using Lemma 6.2.1, we can re-write (21) as

(22) L(g−1) s(s−1)

4 [Jac]s
∑

l1,...,ls∈Z∑
i li=n

zl11 · · · z
ls
sL

1

2

∑
i li(2i−s−1) = y≥0

n (z) +
∑
u,σ

yσ,n(z)

for n ≥ 0. (And the similar statement is true for n < 0 if we replace y≥0
n by

y<0
n .)

We know from the induction hypothesis that each yσ,n is an expan-
sion of a rational function in a certain asymptotic region in the sense of
Remark 6.2.3. However, we do not know a priori that y≥0

n and y<0
n are ex-

pansions of rational functions. Let us prove this. Note two things.
(*) There is a polynomial R(z) in zi+1/zi with constant term one such

that R(z)y≥0
n (z) is a Laurent polynomial. This follows from Remark 6.2.3

and the fact that the LHS of (22) is annihilated by
∏
i(1− Lzi+1/zi).

(**) y≥0
n (z) belongs to

(23) Mot(k)[
√
L]

((
z1,

z2

z1
, . . . ,

zs
zs−1

))
.

This is proved similarly to Lemma 4.2.2.

Lemma 6.2.4. Any formal power series satisfying (*) and (**) is an ex-
pansion of a rational function in the region z1 � · · · � zs.

Proof. Let Q(z) be a formal power series satisfying (*) and (**). let R(z) be
a polynomial in zi+1/zi with constant term one such that P (z) = R(z)Q(z)
is a Laurent polynomial. Subtracting from Q(z) the expansion of P (z)/R(z)
in the region z1 � · · · � zs, we may assume that P = 0. However, R is a
non-zero divisor in (23). �

We see that y≥0
n (z) is an expansion of a rational function in the asymp-

totic region z1 � · · · � zs. Similar considerations show that y<0
n (z) is an

expansion of a rational function in the same region. The rest of the proof is
completely similar to that of [Sch2, Prop. 5.3]. �
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Recall that in Section 1.3.2 for a partition λ = 1r12r2 · · · trt such that∑
i ri = n, we defined the iterated residue resλ.

Corollary 6.2.5. We have the following equations of series with coeffi-
cients in Mot(k)[

√
L].

Y ≥0
r (L−

1

2
rtz1+r<t , . . . ,L−

1

2
riz1+r<i , . . . ,L−

1

2
r1z1, w)

= Lb(r)
∏
i

volri resλ

[
1∏

i<j ζ̃
(
zi
zj

)
×
∑
σ∈Sn

{∏
i<j

ζ̃

(
zi
zj

)
· 1∏

i<n

(
1− L zi+1

zi

) · 1

1− L
−n
2 z1w

}]
n∏
j=1

j /∈{r<i}

dzj
zj
,

where

b(λ) =
1

2
(g − 1)

∑
i<j

rirj .

Proof. Combine the previous proposition with s = n and Proposition 5.5.3
(vi) (cf. [Sch2, (5.15)]). �

6.3. Proof of Theorem 1.4.1

Combining Proposition 6.1.1 with Proposition 6.2.5, we get a formula for
G≥0
r . Let Ecoh,nilpr,d be the moduli stack of coherent sheaves on X of class

(r, d) with nilpotent endomorphisms. Let E≥0,coh,nilp
r,d denote the constructible

subset corresponding to HN-nonnegative sheaves. Repeating almost literally
the arguments from [Sch2, Sect. 3, Sect. 5.1, Sect. 5.6–5.7], we get∑

r,d≥0

[E≥0,coh,nilp
r,d ]wrzd =

∑
λ

L(g−1)〈λ,λ〉Jmotλ (z)Hmot
λ (z)w|λ|(24)

× Exp

(
[X]

L− 1
· z

1− z

)
,

where
z

1− z
is expanded in powers of z.

Lemma 6.3.1. We have in Mot(k)[[z, w]]∑
r,d≥0

[E≥0,coh,nilp
r,d ]wrzd =

∑
r,d≥0

[E≥0,nilp
r,d ]wrzd ·

∑
d≥0

[Ecoh,nilp0,d ]zd.
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Proof. Fix r and d. Consider the stratification E≥0,coh,nilp
r,d = tiEi, where Ei

consists of pairs (F,Φ) such that the torsion part of F has degree i. It is
enough to show that

[(E≥0,nilp
r,d−i × Cohnilp0,i )

ϕ−→ Cohr,d] = [Ei
ψ−→ Cohr,d],

where the 1-morphism ϕ is defined as ((E,Ψ), (T,Φ)) 7→ E ⊕ T . Let ξ :
SpecK → Cohr,d be a point represented by a coherent sheaf F over XK .
Write F = T ⊕ E, where T is torsion, E is torsion free. According to Propo-
sition 2.6.1, we need to check that the ξ-fibers of ϕ and ψ have the same
motivic classes. We may assume that T has degree i and that E is HN-
nonnegative (otherwise both fibers are empty).

The ξ-fiber of ψ is the motivic class of Nil(T ⊕ E), where the notation
stands for the nilpotent cone of the algebra End(T ⊕ E). The ξ-fiber of
the direct sum morphism Cohr,d−i × Coh0,i → Cohr,d is the additive group
Hom(T,E). Thus the ξ-fiber of ϕ is equal to

Nil(T )×Nil(E)×Hom(T,E).

Using the fact that every endomorphism of T ⊕ E preserves T , it is easy to
see that the above scheme is isomorphic to Nil(T ⊕ E). Proposition 2.6.1
completes the proof, (cf. the proof of [MS, Thm. 1.4]). �

Lemma 6.3.2.

∑
d≥0

[Ecoh,nilp0,d ]zd = Exp

(
[X]

L− 1
· z

1− z

)
.

Proof. Put w = 0 in (24). �

Combining (24) and the last two lemmas, we get Theorem 1.4.1.

6.4. Proof of Theorem 1.3.3

We claim that

(25) [M≥0,ss
r,d ] = Hr,d.



i
i

“3-Soibelman” — 2019/1/4 — 15:32 — page 762 — #76 i
i

i
i

i
i

762 R. Fedorov, A. Soibelman, and Y. Soibelman

(We use notation from Sections 1.3.2 and 3.3.) According to Lemma 3.7.1,
we just need to show that

∏
τ≥0

1 +
∑
d/r=τ

L(1−g)r2 [M≥0,ss
r,d ]wrzd

 =
∏
τ≥0

Exp

 ∑
d/r=τ

Br,dw
rzd.

 .

By Proposition 3.6.1 the LHS is equal to

1 +
∑

r>0,d≥0

L(1−g)r2 [M≥0
r,d ]wrzd.

The RHS is equal to

Exp

∑
d,r≥0

Br,dw
rzd

 = Exp

(
LLog

(∑
λ

L(g−1)〈λ,λ〉Jmotλ (z)Hmot
λ (z)w|λ|

))

= Pow

(∑
λ

L(g−1)〈λ,λ〉Jmotλ (z)Hmot
λ (z)w|λ|,L

)
.

(We used a property of Exp and the definition of Pow.) According to Theo-
rem 1.4.1 and Proposition 3.8.1, the last expression is equal to

∑
r,d[E

≥0
r,d ]wrzd.

Now Lemma 3.5.2 completes the proof of (25).
Finally, Lemma 3.3.2(i) completes the proof of Theorem 1.3.3.
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