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In this paper, we study the zero loci of locally constant sheaves of
the form δΠ, where Π is the period sheaf of the universal family of
CY hypersurfaces in a suitable ambient space X, and δ is a given
differential operator on the space of sections V ∨ = Γ(X,K−1X ). Us-
ing earlier results of three of the authors and their collaborators,
we give several different descriptions of the zero locus of δΠ. As
applications, we prove that the locus is algebraic and in some cases,
non-empty. We also give an explicit way to compute the polyno-
mial defining equations of the locus in some cases. This description
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1. Introduction

Zeros of special functions have been of interests to many authors since the
times of Riemann. He of course famously conjectured that the zeros of the
Riemann zeta functions occur only on a certain critical line. Inspired by
works of Stieltjes, Hilbert and Klein, Hurwitz [Hu1][Hu2] and Van Vleck
[V] determined the number of zeros of the Gauss hypergeometric function

2F1(a, b, c; z) for real a, b, c. Subsequently, many authors generalized their
results to confluent hypergeometric functions. Runckel [R] gave a simpler
proof of the results of Hurwitz and Van Vleck using the argument prin-
ciple. Eichler and Zagier [EZ] gave a complete description of the zeros of
the Weierstrass ℘ function in terms of a classical Eisenstein series. Duke
and Imamoḡlu [DI] later used it to prove transcendence of values of certain
classical generalized hypergeometric functions at algebraic arguments. More
recently following Hille [H], Ki and Kim [KiK] studied the zeros of general-
ized hypergeometric functions of the form pFp. For real parameters for such
a function, they showed that it can only have finitely many zeros, and that
they are all real.

Since all (except the Riemann zeta function) of those special functions
are solutions to ordinary differential equations, it is natural to consider
the higher dimensional analogues of these functions and their zeros. It is
well known that the theory of Gel’fand-Kapranov-Zelevinsky (GKZ) hyper-
geometric functions [GKZ] generalize classical special functions, including
the Euler-Gauss, Appell, Clausen-Thomae, Lauricella hypergeometric func-
tions, and their multivariable generalizations. Therefore, GKZ hypergeo-
metric functions can be viewed as generalized special functions. Since the
theory of tautological systems generalizes the GKZ theory [LY], solutions
to tautological systems and their derivatives can be thought of as further
generalizations of special functions. The zero loci of their derivatives amount
to zeros of these vast generalizations of those for classical special functions.

In this paper, we shall study the zeros of derivatives of GKZ hyper-
geometric functions and their generalizations in the context of Calabi-Yau
geometry. It is well-known that period integrals of CY hypersurfaces in a
toric variety are GKZ hypergeometric functions. Moreover, since these func-
tions are local sections of locally constant sheaves, each admits a multi-
valued analytic continuation. Thus it is natural to consider zero loci that
are monodromy invariant. Recall that the period sheaf Π of the universal
family of smooth CY hypersurfaces in a suitable ambient space X form a lo-
cally constant sheaf, which is generated by pairings between a nonvanishing
holomorphic top form and middle dimensional cycles on a CY hypersurface.
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Differential zeros of period integrals 611

Since every such hypersurface has at least one nonzero period, the zero lo-
cus of the period sheaf is always empty. However, as it turns out, it is more
natural to consider the zero locus of a locally constant sheaf of the form δΠ,
where δ is a differential operator on the affine space V ∨ = Γ(X,K−1

X ). This
zero locus will be the main object of study in this paper.

We will follow closely the notations introduced in [HLZ][BHLSY]. Given
a Lie algebra ĝ, a ĝ-module V ∨, and a ĝ-invariant ideal I of the commutative
algebra C[V ], then a tautological system τ is a DV ∨-module of the form

τ = DV ∨/(DV ∨ Ĩ +DV ∨ ĝ)

where Ĩ ⊂ DV ∨ is the Fourier transform of I. In this paper, we consider the
following special case of τ .

Let G be a connected complex algebraic group. Let X be a complex
projective G-variety and let L be a very ample G-equivariant line bundle
over X. This gives rise to a G-equivariant embedding

X → P(V ),

where V = Γ(X,L)∨. We assume that the action of G on X is locally effec-
tive, i.e. ker (G→ Aut(X)) is finite. Let Ĝ := G× C×, whose Lie algebra is
ĝ = g⊕ Ce, where e acts on V by identity. We denote by Z : Ĝ→ GL(V ) the
group action induced on V , and by Z : ĝ→ End(V ) the corresponding Lie
algebra representation. Note that under our assumption, Z : ĝ→ End(V ) is
injective.

Let ι̂ : X̂ ⊂ V be the cone of X, and I(X̂) its defining ideal. Let β : ĝ→
C be a Lie algebra homomorphism. Then a tautological system as defined
in [LSY][LY] is the cyclic D-module on V ∨

τ(X,L,G, β) = DV ∨/
(
DV ∨ Ĩ +DV ∨(Z(x) + β(x), x ∈ ĝ)

)
,

where

Ĩ = {P̃ | P ∈ I(X̂)}

is the ideal of the commutative subalgebra C[∂] ⊂ DV ∨ obtained by the
Fourier transform of I(X̂). Here P̃ denotes the Fourier transform of P .

Given a basis {a1, . . . , an} of V , we have Z(x) =
∑

ij xijai
∂
∂aj

, where

(xij) is the matrix representing x in the basis. Since the ai are also linear
coordinates on V ∨, we can view Z(x) ∈ DerC[V ∨] ⊂ DV ∨ . In particular, the
identity operator Z(e) ∈ EndV becomes the Euler vector field on V ∨.
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LetX be anm-dimensional compact complex manifold such that its anti-
canonical line bundle K−1

X is very ample. Let L := K−1
X . We shall regard

the basis elements ai of V = Γ(X,L)∨ as linear coordinates on V ∨. Let
B := Γ(X,L)sm ⊂ V ∨ be the space of smooth sections. Let π : Y → B be the
family of smooth CY hyperplane sections Yb ⊂ X, and let Htop be the Hodge
bundle over B whose fiber at b ∈ B is the line Γ(Yb, ωYb) ⊂ Hm−1(Yb). In
[LY] the period integrals of this family are constructed by giving a canonical
trivialization of Htop. Let Π be the period sheaf of this family, i.e. the locally
constant sheaf generated by the period integrals. Let G be a connected
algebraic group acting on X.

Theorem 1.1 (See [LY]). The period integrals of the family π : Y → B
are solutions to

τ ≡ τ(X,K−1
X , G, β0)

where β0 is the Lie algebra homomorphism with β0(g) = 0 and β0(e) = 1.

In [LSY] and [LY], it is shown that if G acts on X by finitely many
orbits, then τ is regular holonomic. We shall assume this holds throughout
the paper.

Let R = C[V ]/I(X̂). Let f =
∑
aia
∨
i be the universal section. Then the

Lie algebra ĝ = g⊕ Ce acts on R[V ∨]ef by the homomorphism Z∨ : ĝ→
EndV ∨ which is dual to Lie algebra action Z on V . Thus it takes the form

Z∨(x) = −
∑

xija
∨
j

∂

∂a∨i
− β(x), x ∈ ĝ.

Here {ai},{a∨i } are the bases of V, V ∨ dual to each other. Note that since
I(X̂) is a ĝ-invariant ideal of C[V ], there is an induced ĝ-action on R hence
on R[V ∨]ef = R[a]ef . Recall that the DV ∨-module structure on R[V ∨]ef is
that ai ∈ DV ∨ acts by left multiplication, while ∂i ∈ DV ∨ acts by the usual
derivative ∂

∂ai
. In particular, this action commutes with the ĝ-action given

by Z∨, and with left multiplication by R.

Theorem 1.2. [BHLSY],[HLZ] There is a canonical isomorphism of DV ∨-
modules

τ(X,L,G, β0)
Φ←→ R[V ∨]ef/ĝ(R[V ∨]ef )

1 ←→ ef .

Denote by sol(τ) the sheaf of classical solutions to τ . We will prove in
Section 2.
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Theorem 1.3. Let δ ∈ DV ∨, and b ∈ V ∨. The following statements are
equivalent:

1) δs(b) = 0 for all s ∈ sol(τ)b.

2) δef(b) = 0 in Ref(b)/ĝRef(b), i.e. δef(b) ∈ ĝRef(b).

This theorem generalizes [CHL, Corollary 4.2].
For any δ ∈ DV ∨ , we introduce

(1.1) N (δ) = {b ∈ B | δs(b) = 0, ∀s ∈ sol(τ)b}.

This will be a main object of study in this paper. By Theorem 1.3, we have

N (δ) =
{
b ∈ B | δef(b) ∈ ĝ(Ref(b))

}
.

In the special case δ = p(∂) ∈ C[∂] has constant coefficients, we have

p(∂)ef(b) = p(a∨)ef(b)

Thus making the identification R ≡ R̃ by Fourier transform ˜: R→ R̃,
p(a∨) 7→ p(∂), we get

N (p) ≡ N (p̃) =
{
b ∈ B | p(a∨)ef(b) ∈ ĝ(Ref(b))

}
.

This recovers the definition of N (p) introduced in [CHL].
We will prove in Section 5.

Theorem 1.4. If δ ∈ DV ∨ is homogeneous under scaling by C×, N (δ) is
algebraic.

In Sections 6 and 8, we discuss the non-emptiness of N (δ) in a number
of cases. In Section 7, we give an explicit way to compute the polynomial
equations defining N (δ) in PV ∨ in the case X = Pm. We also show that
N (δ) has a natural stratification in this case.

Acknowledgements. We would like to thank Masaki Kashiwara for help-
ful discussions. We also thank Mei-Heng Yueh for helping us with computer
calculations. We are grateful to the referees for helpful suggestions and cor-
rections, all of which have now been incorporated into the paper. Research
of J.C. is partially supported by a Special Financial Grant from the China
Postdoctoral Science Foundation 2016T90080. Part of the work was done
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2. A coinvariant description of differential zeros

Let J = DV ∨ Ĩ +DV ∨(Z(x) + β0(x), x ∈ ĝ) be the defining left ideal of a
regular holonomic tautological system τ . Then τ = DV ∨/J . Since τ is cyclic,
sol(τ) can be identified as a subsheaf of local analytic functions in OV ∨ ≡
OanV ∨ annihilated by the left ideal J . Then we have the canonical isomorphism
of sheaves

HomDV∨ (τ,OV ∨)→ sol(τ), ϕ 7→ ϕ(1).

Theorem 2.1. Let δ ∈ DV ∨ ≡ C[ai, ∂ai ], and b ≡
∑
bia
∨
i ∈ V ∨. The fol-

lowing statements are equivalent:

1) δs(b) = 0 for all s ∈ sol(τ)b,

2) δef(b) = 0 in Ref(b)/ĝRef(b), i.e. δef(b) ∈ ĝRef(b).

3) δ ∈ mbDV ∨ + J , where mb := 〈ai − bi〉 is the ideal sheaf of the point b.

Proof. First we prove (1)⇔(2). Consider the evaluation map

eb : DV ∨,b → ⊕αC∂α ≡ C[∂],
∑

gα∂
α 7→

∑
gα(b)∂α.

Let ib : b→ V ∨ be the inclusion and Ob ≡ C be the constant sheaf over b.

Claim 2.2. The morphism

e′b : i∗bDV ∨ = Ob ⊗i−1
b OV∨ DV ∨,b

'−→ eb(DV ∨,b) = C[∂], 1⊗ δ 7→ eb(δ)

is well-defined and it is an isomorphism.

Proof. It is clear that the map

e′b : Ob ⊗C DV ∨,b → eb(DV ∨,b), 1⊗ δ 7→ eb(δ)

is well-defined. Let f ∈ i−1
b OV ∨ = OV ∨,b, then

1⊗ fδ − f(b)⊗ δ 7→ eb(fδ)− f(b)eb(δ) = 0.

Thus e′b descends and it is well-defined on i∗bDV ∨ .
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Surjectivity: For any δc :=
∑

α cα∂
α ∈ C[∂] where cα ∈ C, we have δc ∈

DV ∨ and eb(δc) = δc. Thus e′b(1⊗ δc) = eb(δc) = δc.
Injectivity: Let mb := 〈ai − bi〉 be the ideal sheaf of the point b. Then

e′b(1⊗
∑

α gα∂
α) =

∑
gα(b)∂α = 0 implies that gα ∈ mb for all α. Thus 1⊗∑

α gα∂
α =

∑
α gα(b)⊗ ∂α = 0, which means that ker e′b = 0. �

Since Ob ⊗i−1
b OV∨ Jb = {1⊗ δ | δ ∈ Jb}, similarly we can show that

Ob ⊗i−1
b OV∨ Jb ' eb(Jb).

Next we claim that eb induces a map eb : τb → i∗bτ. Since i−1
b τ = τb, we

have

i∗bτ := Ob ⊗i−1
b OV∨ i

−1
b τ = Ob ⊗i−1

b OV∨ τb.

Consider the exact sequence

0→ Jb
ι−→ DV ∨,b

p−→ τb = DV ∨,b/Jb → 0.

Since tensoring over any ring is right exact, we have

Ob ⊗i−1
b OV∨ Jb

Ob⊗ι−−−→ Ob ⊗i−1
b OV∨ DV ∨,b

Ob⊗p−−−→ Ob ⊗i−1
b OV∨ (DV ∨,b/Jb)→ 0.

Thus

ker Ob ⊗ p = ImOb ⊗ ι = Ob ⊗i−1
b OV∨ Jb,

hence

i∗bτ = Ob ⊗i−1
b OV∨ (DV ∨,b/Jb) ' (Ob ⊗i−1

b OV∨ DV ∨,b)/(Ob ⊗i−1
b OV∨ Jb).

Therefore by Claim 2.2 we have

i∗bτ ' (Ob ⊗i−1
b OV∨ DV ∨,b)/(Ob ⊗i−1

b OV∨ Jb) ' eb(DV ∨,b)/eb(Jb).

Now we have a surjective map

eb : τb → eb(DV ∨,b)/eb(Jb) ' i∗bτ.

Consider the pairing

(2.1) τ ⊗C HomDV∨ (τ,OV ∨)→ OV ∨ , δ ⊗ ϕ 7→ δ(ϕ).

And note that evaluation is OV ∨-bilinear. Taking a b-germ of (2.1) yields

τb ⊗C HomDV∨ (τ,OV ∨)b → OV ∨,b.
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Applying Ob ⊗i−1
b OV∨ − to both sides, we get

(2.2) α : Ob ⊗i−1
b OV∨ τb ⊗C HomDV∨ (τ,OV ∨)b → Ob ⊗i−1

b OV∨ OV ∨,b.

The morphism is given by α(1⊗ δ ⊗ ϕ) = 1⊗ ϕ(δ) = eb(ϕ(δ)). Here

Ob ⊗i−1
b OV∨ OV ∨,b = i∗b(OV ∨) = Ob.

Since τ is regular holonomic, it follows that

HomDV∨ (τ,OV ∨)b
'−→ HomC(i∗bτ,Ob),

where ϕ 7→ ϕ̄ and ϕ̄(eb(δ)) := eb(ϕ(δ)).
Next, consider the canonical non-degenerate pairing

(2.3) β : i∗bτ ⊗HomC(i∗bτ,Ob)→ Ob ≡ C,

together with pairing (2.2) we have a diagram

Ob ⊗i−1
b OV∨ τb ⊗C HomDV∨ (τ,OV ∨)b

' γ

��

α // Ob ⊗i−1
b OV∨ OV ∨,b

i∗bτ ⊗HomC(i∗bτ,Ob)
β

// Ob.

Since

β ◦ γ((1⊗ δ)⊗ ϕ) = β(eb(δ)⊗ ϕ̄) = ϕ̄(eb(δ)) = eb(ϕ(δ)) = α(1⊗ δ ⊗ ϕ),

the above diagram commutes.
Since

HomDV∨ (τ,OV ∨)
'−→ sol(τ), ϕ 7→ ϕ(1),

then condition (1): δs(b) = 0 for all s ∈ sol(τ)b is equivalent to

(δϕ(1))(b) = (ϕ(δ · 1))(b) = eb(ϕ(δ)) = β(eb(δ)⊗ ϕ̄) = 0

for all ϕ ∈ HomDV∨ (τ,OV ∨). By the non-degeneracy of pairing (2.3), this is
equivalent to eb(δ) = 0 in i∗bτ.
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On the other hand, by the isomorphism

τ
'−→ (R[V ∨]ef/ĝR[V ∨]ef ), δ 7→ δef ,

we have

i∗bτ
'−→ i∗b(R[V ∨]ef/ĝR[V ∨]ef ) ' i∗bR[V ∨]ef/ĝi∗bR[V ∨]ef

' Ref(b)/ĝRef(b).

Thus eb(δ) = 0 in i∗bτ is equivalent to (δef )(b) = 0 in Ref(b)/ĝRef(b), which
is the condition (2). This completes the proof of (1)⇔(2).

Next, we prove (2)⇔(3).

Claim 2.3. The following diagram commutes:

τ

Φ
��

eb // i∗bτ

Ob⊗Φ
��

R[V ∨]ef/ĝR[V ∨]ef
eb // Ref(b)/ĝRef(b)

where the eb are evaluation maps, and

Φ
(∑

gα∂
α
)

=
(∑

gα∂
α
)
· ef =

∑
gα(a∨)αef ,

(Ob ⊗ Φ)
(∑

g(b)α∂
α
)

=
((∑

g(b)α∂
α
)
· ef
)

(b)

=
(∑

g(b)α(a∨)αef
)

(b)

=
∑

g(b)α(a∨)αef(b).

Define the map

Θb : DV ∨ → Ref(b)/ĝRef(b), δ 7→ δef(b).

Let

Θ̄b : τ = DV ∨/J → Ref(b)/ĝRef(b), δ 7→ δef(b).

Let

Θ′b : τ → τ/mbτ
'−→ i∗bτ, δ 7→ δ + mbτ 7→ δ(b),
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which is an OV ∨-module morphism. Then we have a diagram:

τ
Θ̄b // Ref(b)/ĝRef(b)

τ
Θ′b // τ/mbτ ' i∗bτ.

' Ob⊗Φ≡Φ′

OO

Claim 2.4. Θ̄b = Φ′ ◦Θ′b, i.e. the above diagram commutes.

Proof. Let δ =
∑
gα∂

α, Θ̄b(δ) = (δef )(b) =
∑
g(b)α(∂αef )(b). On the other

hand, Φ′(δ(b)) = (δ(b)ef )(b) =
∑

(g(b)α∂
αef )(b) = Θ̄b(δ). Thus Θ̄b = Φ′ ◦Θ′b.

�

Let pr : DV ∨ → τ = DV ∨/J be the projection.

Proposition 2.5. For all b ∈ V ∨,

ker Θb = mbDV ∨ + J.

(Note that mbDV ∨ is a right ideal and J is a left ideal.)

Proof. By the previous claim Θb = Θ̄b ◦ pr = Φ′ ◦Θ′b ◦ pr . Since Φ′ is an
isomorphism,

ker Θb = ker Θ′b ◦ pr .

ker Θ′b ◦ pr = ker (DV ∨ → τ = DV ∨/J → τ/mbτ) = mbDV ∨ + J. �

Therefore given δ ∈ DV ∨ , then δef(b) = 0 in Ref(b)/ĝRef(b) iff Θb(δ) = 0 iff
δ ∈ ker Θb = mbDV ∨ + J , i.e. (2)⇔(3). This completes the proof of Theo-
rem 2.1. �

The theorem shows that for each b ∈ V ∨, the membership condition
δef(b) ∈ ĝRef(b) determines exactly if b is a zero of the sheaf δsol(τ) of an-
alytic functions. Thus describing the vector subspace ĝRef(b) ⊂ Ref(b) is
crucial in understanding differential zeros of the solutions to τ in general,
and of generalized hypergeometric functions in particular. In Appendix A,
we give an explicit basis for ĝRef(b) for a number of interesting examples.
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3. Analyticity along singularity

In this section, we shall consider the zero locus of certain sheaf of analytic
functions on a complex manifold B.1

Definition 3.1. Let B be a complex manifold. A locally constant sheaf
S of finite dimensional vector spaces on B is called analytic (ALCS) if it
is equipped with an embedding S ↪→ OB of sheaves. We shall identify an
ALCS S with its image in OB via the given embedding, and treat S as a
subsheaf of OB.

The classical solution sheaf sol(τ) of a holonomic D-module τ on B is
an ALCS. For a given ALCS S and for any δ ∈ DV ∨ , let δS be the sheaf
such that (δS)b = {δs | s ∈ Sb}, then it is also an ALCS. An ALCS of the
form δsol(τ) for a tautological system τ will be our primary focus here.

Definition 3.2. Let B be a smooth partial compactification of B such
that D = B\B is a normal crossing divisor in B. We say that an ALCS S
on B has regular singularity along D, if for each b0 ∈ D, there exists local
coordinates z = (z1, . . . , zn) on B in some polydisk U centered at b0 such
that U ∩D = U ∩ (

⋃r
i=1{zi = 0}) for some 1 ≤ r ≤ n and every s ∈ S(U\D)

has the form

(3.1) s =
∑
α∈Λ

∑
I∈Θ

gα,I(z)[z]
α
r [log z]Ir

on U\D, where Λ is a finite subset of Cr, [z]αr = zα
1

1 · · · zα
r

r ; Θ is a finite
subset of Zr≥0, [log z]Ir = (log z1)I

1 · · · (log zr)
Ir , and gα,I are meromorphic

functions with poles along D.

Note that if S is the solution sheaf of a regular holonomic D-module
with singular hypersurface being a normal crossing divisor D, then S is an
ALCS with regular singularity along D (cf. [KK, p.862], [SST, p.83]).

The typical situation we shall consider is when S = δsol(τ), where τ
is a regular holonomic tautological system defined on V ∨ as before and
δ ∈ DV ∨ . Since B is a Zariski open subset of V ∨, V ∨ can be viewed as a
smooth partial compactification of B. However, it may be the case that the
divisor D = V ∨\B fails to be normal crossing. In that case we can remedy

1We thank Professor M. Kashiwara for his helpful insights which provide the
basis for the analytic argument in this section.
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this by blowing up V ∨ along D to achieve normal crossing, which we will
talk about in the next section.

Our main goal here is to show that the differential zero locus N (δ) of
δsol(τ) has an analytic closure in V ∨ if D is a normal crossing divisor. Then
we can use the proper mapping theorem to conclude for the general case.

For the rest of this section, S is assumed to be an ALCS on B with
regular singularity along D = B\B.

3.1. Regular singularities

For fixed I ∈ Θ, we can combine terms in (3.1) with log component being
[log z]Ir . Then we have a finite sum of the form (

∑
α∈Λ gα,I(z)[z]

α
r )[log z]Ir . Let

αI1, . . . , αIΛI denote all the α’s that appear in this sum, and let gIk(z) :=
gαIk,I(z). Then we can rewrite (3.1) as

(3.2) s =
∑
I∈Θ

(
ΛI∑
k=1

gIk(z)[z]
αIk
r

)
[log z]Ir .

For fixed I, if there exist k, k′ such that αIk − αIk′ = nI ∈ Zr, then

gIk(z)[z]
αIk
r + gIk′(z)[z]

αIk′
r = (gIk(z) + gIk′(z)[z]

nI
r )[z]αIkr

and gIk(z) + gIk′(z)[z]
nI
r is a meromorphic function with poles along⋃r

i=1{zi = 0}. So without loss of generality we can assume further in the
expression (3.2) that for each I,

(3.3) ∀1 ≤ k ≤ ΛI , ReαIk ∈ [0, 1)r and ∀ 1 ≤ k 6= k′ ≤ ΛI , αIk 6= αIk′ .

We say that s is of reduced form if (3.3) holds.

Proposition 3.3. Assume S on B has regular singularity along D. For
b0 ∈ D, let U be a polydisk centered at b0 ∈ U ∩D = U ∩ (

⋃r
i=1{zi = 0})

such that for every s ∈ S(U\D),

s =
∑
I∈Θ(s)

Λ
(s)
I∑

k=1

g
(s)
Ik (z)[z]

α
(s)
Ik
r

 [log z]Ir

on U\D and is of reduced form. Then s(b) = 0 for all s ∈ Sb if and only if

g
(s)
Ik (z(b)) = 0 for all g

(s)
Ik on U\D.
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We are going to prove this proposition for r = 1 and r = 2. Then by a
straightforward induction the proposition holds for general cases.

3.2. Case r = 1

Consider s ∈ S(U\D),

(3.4) s =

d∑
j=0

 Λj∑
k=1

gjk(z)z
αjk
1

 (log z1)j

where gjk(z) are meromorphic functions with poles along {z1 = 0}. Then s
is of reduced form if it satisfies further that

(3.5) Reαjk ∈ [0, 1) and when k 6= k′, αjk 6= αjk′ .

Suppose for some b ∈ U\D, s(b) = 0 for all s ∈ Sb. Then the zero locus
is monodromy invariant. Let z(b) denote the coordinate of b in U , then
z1(b) 6= 0. Fix zi = zi(b) for 2 ≤ i ≤ n in s, the analytic continuation of s
around z1 = 0 also vanishes at b. Let log z1(b) = w + 2πim, m ∈ Z for some
w ∈ C, then

0 = s(m) =

d∑
j=0

 Λj∑
k=1

cjke
2πimαjk

 (w + 2πim)j , ∀m ∈ Z

where cjk = gjk(z(b))e
αjkw ∈ C.

Claim 3.4. cjk = 0 for all 0 ≤ j ≤ d, 1 ≤ k ≤ Λj.

Proof. Let {α1, . . . , αs} := {αjk}j,k where α1, . . . , αs are pairwise distinct.
Then we can write

s(m) =

s∑
l=1

e2πimαl

 ∑
{j,k|αjk=αl}

cjk(w + 2πim)j

 .

Let P ′l (m) :=
∑
{j,k|αjk=αl} cjk(w + 2πim)j . Since (3.5) holds, the j’s appear-

ing in the summands are pairwise distinct. We have

(3.6) 0 = s(m) =

s∑
l=1

e2πimαlP ′l (m), ∀m ∈ Z.
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Let β := min1≤l≤s{Imαl} and let p be the number of αl’s that reaches
this minimum. Without loss of generality we can assume Imα1 = · · · =
Imαp = β. Consider

0 =

(
s∑
l=1

e2πimαlP ′l (m)

)
/e2πim(iβ)

= e2πimReα1P ′1(m) + · · ·+ e2πimReαpP ′p(m)

+

s∑
l=p+1

e2πm(β−Imαl)e2πimReαlP ′l (m).

Since β − Imαl < 0 for l > p, let m→∞,

lim
m→∞

|e2πm(β−Imαl)e2πimReαlP ′l (m)|

= lim
m→∞

|e2πm(β−Imαl)P ′l (m)| = 0 for l > p.

Thus

(3.7) lim
m→∞

e2πimReα1P ′1(m) + · · ·+ e2πimReαpP ′p(m) = 0.

We have

p∑
l=1

e2πimReαlP ′l (m)

=

p∑
l=1

e2πimReαl

 ∑
{j,k|αjk=αl}

cjk(w + 2πim)j


=

d∑
j=0

(w + 2πim)j

 p∑
l=1

∑
{1≤k≤Λj |αjk=αl}

cjke
2πimReαjk

 .

Since for every 0 ≤ j ≤ d,
∑p

l=1

∑
{k|αjk=αl} cjke

2πimReαjk is bounded for
all m, then (3.7) implies

(3.8) lim
m→∞

p∑
l=1

∑
{1≤k≤Λj |αjk=αl}

cjke
2πimReαjk = 0 for 0 ≤ j ≤ d.

Note that (3.5) implies that for fixed j and l, there is at most one k such
that αjk = αl. Thus for fixed j, αjk appearing in (3.8) are pairwise distinct.
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By our assumption their imaginary parts all equal β, then Reαjk ∈ [0, 1)
and are pairwise distinct in the summands of (3.8).

Lemma 3.5. Given αl ∈ R, al ∈ C, 1 ≤ l ≤ p. If αi − αj /∈ Z when i 6= j,
then

lim
m→∞

e2πimα1a1 + · · ·+ e2πimαpap = 0

implies that al = 0 for all 1 ≤ l ≤ p.

Proof. When p = 1, we have

lim
m→∞

e2πimα1a1 = 0.

Then

lim
m→∞

|a1| = 0

and thus a1 = 0. Assume that lemma holds for p = n. Now we consider

(3.9) lim
m→∞

e2πimα1a1 + · · ·+ e2πimαn+1an+1 = 0.

The difference of replacing m by m+ 1 in (3.9) and multiplying (3.9) by
e2πiαn+1 becomes

lim
m→∞

e2πimα1(e2πiα1 − e2πiαn+1)a1 + · · ·+ e2πimαn(e2πiαn − e2πiαn+1)an = 0.

Then by our inductive hypothesis we can conclude that

(e2πiαl − e2πiαn+1)al = 0

for 1 ≤ l ≤ n. Since by our assumption e2πiαl − e2πiαn+1 6= 0 for 1 ≤ l ≤ n,
then a1 = · · · = an = 0. Thus

lim
m→∞

e2πimαn+1an+1 = 0

and therefore an+1 = 0. By induction the lemma holds for all p. �

Hence by Lemma 3.5 we can conclude that cjk = 0 for all {j, k | αjk =
αl, l = 1, . . . , p}.
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Now our original summation (3.6) reduces to

s∑
l=p+1

e2πimαlP ′l (m) = 0.

We can repeat our strategy of considering terms that reach minimum imag-
inary part in this sum, then eventually we have cjk = 0 for all j, k. �

Since cjk = gjk(z(b))e
αjkw, it implies gjk(z(b)) = 0 for all j, k.

We just showed that if s(b) = 0 for all s ∈ Sb, then g
(s)
jk (z(b)) = 0 for

all g
(s)
jk . On the other hand, it is clear that if g

(s)
jk (z(b)) = 0, then s(b) = 0.

Therefore Proposition 3.3 holds if r = 1.

3.3. Case r = 2

Consider s ∈ S(U\D),

s =
∑
i,j

(∑
k

gijk(z)z
αijk
1 z

βijk
2

)
(log z1)i(log z2)j

where gijk(z) are meromorphic functions with poles along {z1 = 0} ∪ {z2 =
0}. Then s is of reduced form if

Reαijk ∈ [0, 1), Reβijk ∈ [0, 1);(3.10)

when k 6= k′, either αijk 6= αijk′ or βijk 6= βijk′ .

For each i, let {αijk}j,k = {αi1, . . . , αisi} where αi1, . . . , αisi are pairwise
distinct. We can rewrite s as

s =
∑
i

(log z1)i

 si∑
li=1

z
αili
1

 ∑
{j,k|αijk=αili}

gijk(z)z
βijk
2 (log z2)j

 .

Suppose for some b ∈ U\D, s(b) = 0 for all s ∈ Sb. Then z1(b)z2(b) 6= 0.
First we fix zi = zi(b) for 2 ≤ i ≤ n and consider the analytic continuation
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around z1 = 0. Then

s =
∑
i

(log z1)i

(
si∑
li=1

z
αili
1

( ∑
{j,k|αijk=αili}

gijk(z1, z2(b), . . . , zn(b))

× z2(b)βijk(log z2(b))j

))
.

Let si,li(z) :=
∑
{j,k|αijk=αili}

gijk(z)z
βijk
2 (log z2)j , then

(3.11) s =
∑
i

(log z1)i

(
si∑
li=1

z
αili
1 si,li(z1, z2(b), . . . , zn(b))

)

and si,li(z1, z2(b), . . . , zn(b)) is a meromorphic function in z1 with poles along
{z1 = 0}. Then (3.11) satisfies (3.5) and by case r = 1 of Proposition 3.3 we
have

si,li(z(b)) =
∑

{j,k|αijk=αili}

gijk(z(b))z2(b)βijk(log z2(b))j = 0.

for all i, li.
Fix i, li. Note that if k 6= k′ and αijk = αijk′ = αili , (3.10) implies βijk 6=

βijk′ . Now in si,li we fix zi = zi(b) for i 6= 2, 1 ≤ i ≤ n and do analytic contin-
uation around z2 = 0, then by case r = 1 of Proposition 3.3 again si,li(z(b)) =
0 implies gijk(z(b)) = 0 for all j, k such that αijk = αili .

Hence if s(b) = 0 for all s ∈ Sb, then g
(s)
ijk(z(b)) = 0 for all g

(s)
ijk. Therefore

Proposition 3.3 holds for r = 2.

3.4. Analyticity of the zero locus

Let N := {b∈B | s(b)=0, ∀s∈Sb}. Let N denote its analytic closure in B.

Proposition 3.6. If an ALCS S on B has regular singularity along D,
then N is analytic.

Proof. s is locally holomorphic away from D, thus N is an analytic subva-
riety of B. In particular, N is a closed subset of B.



i
i

“1-Chen” — 2019/1/7 — 11:32 — page 626 — #18 i
i

i
i

i
i

626 J. Chen, et al.

Let b0 ∈ D ∩N . Then by Proposition 3.3 there exists a polydisk U cen-
tered at b0 such that

N ∩ (U\D) =
{
b ∈ B | g(s)

Ik (z(b)) = 0, ∀s ∈ Sb, ∀I, k
}
∩ (U\D)

where gIk are meromorphic functions with poles along
⋃r
i=1{zi = 0}. Let

χiIk ∈ Zr be the order of poles of gIk(z) corresponding to zi respectively.
Then [z]χIkr gIk(z) is holomorphic on the neighborhood U . Then

N ∩ U =
{
b ∈ B | [z(b)]χ

(s)
Ik
r g

(s)
Ik (z(b)) = 0, ∀s ∈ Sb, ∀I, k

}
∩ U,

i.e. N is analytic. �

4. Algebraicity of N (δ)

As before, let τ be a regular holonomic tautological system on V ∨, B be a
Zariski dense open subset of V ∨, and D = V ∨\B.

By Hironaka’s Theorem [Hi] there exists a proper analytic morphism
(blow-up) f :

Ṽ ∨
f

// V ∨

B̃ = Ṽ ∨\D̃

∪

OO

' // B = V ∨\D

∪

OO

such that D̃ := f−1(D) is a normal crossing divisor in Ṽ ∨. We can then
consider the D-module τ̃ = f∗τ on Ṽ ∨ and its solution sheaf. Since τ is
regular holonomic, τ̃ is also regular holonomic. Note that f |B̃ induces an

isomorphism from δsol(τ̃) on B̃ to δsol(τ) on B. Let Ñ (δ) := {b ∈ B̃ | s̃(b) =
0, ∀s̃ ∈ δsol(τ̃)b}.

Claim 4.1. The closure in analytic topology Ñ (δ) is analytic in Ṽ ∨.

Proof. Since D̃ is a normal crossing divisor and τ̃ is regular holonomic, sol(τ̃)
has regular singularity along D̃. Then it is clear that δsol(τ̃) also has regular

singularity along D̃. Then by Proposition 3.6, Ñ (δ) is analytic in Ṽ ∨. �

Proposition 4.2. The closure in analytic topology N (δ) is analytic in V ∨.

Proof. First we claim two properties.
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f |Ñ (δ)
is proper: Given a compact subset C ⊂ V ∨,

(f |Ñ (δ)
)−1(C) = Ñ (δ) ∩ f−1(C).

Since f is proper, f−1(C) is compact. Since Ñ (δ) is closed, Ñ (δ) ∩ f−1(C)

is compact in Ñ (δ).

f |Ñ (δ)
is holomorphic: The restriction of a holomorphic map to an analytic

space is holomorphic.

Then by Proper Mapping Theorem (cf. [GR, p.162]) f(Ñ (δ)) is analytic.

Since f is continuous, f(Ñ (δ)) ⊂ f(Ñ (δ)). On the other hand, given
any sequence x̃k ∈ Ñ (δ) such that limk→∞ f(x̃k) = y ∈ D. We can take
a compact neighborhood C ⊂ V ∨ of y. Then for k >> 0, f(x̃k) ∈ C, i.e.
x̃k ∈ f−1(C) ⊂ Ṽ ∨. Since f is proper, f−1(C) is compact. Thus there ex-
ists a convergent subsequence xk′ such that limk′→∞ xk′ exists. Therefore by
continuity of f we have

f

(
lim
k′→∞

xk′

)
= lim

k′→∞
f(xk′) = y

which means y ∈ f(Ñ (δ)). Thus

f(Ñ (δ)) = f(Ñ (δ)) = N (δ)

and therefore N (δ) is analytic. �

Proposition 4.3. If δ ∈ DV ∨ is homogeneous under scaling by C×, N (δ)
is algebraic.

Proof. By Proposition 4.2, N (δ) ⊂ V ∨ = Cn is closed analytic. Suppose δ is
homogeneous of degree d under scaling by C×. Given λ ∈ C×, for s ∈ sol(τ)b,

(δs)(λb) = λd−β(e)(δs)(b).

Thus λb ∈ N (δ) if b ∈ N (δ), i.e. the C×-action by scaling on V ∨ leaves N (δ)
invariant. Hence C× also leaves N (δ) invariant.

Let p : Cn\{0} → Pn−1 be the projection. Then p(N (δ)\{0}) is a closed
analytic subspace of Pn−1, by Chow’s theorem it is an algebraic subvariety.
Thus its cone N (δ) is an algebraic variety. �

Since N (δ) is a closed subset of B, N (δ) = N (δ) ∩B.
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Theorem 4.4. If δ ∈ DV ∨ is homogeneous under scaling by C×, N (δ) is
algebraic.

5. Non-emptiness of N (δ): P1 case

We now consider the problem of non-emptiness of N (δ), starting with the
simplest nontrivial case when X = P1, G = SL2. In this case R ≡
C[x2

1, x
2
2, x1x2], f = a0x1x2 + a1x

2
1 + a2x

2
2. Recall that

Z(h) = −2a1∂1 + 2a2∂2

Z(x) = −2a2∂0 − a0∂1

Z(y) = −2a1∂0 − a0∂2.

for

h =

(
1 0
0 −1

)
, x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
.

Proposition 5.1. If X = P1, G = SL2, given a positive integer d, then
N (δ) 6= ∅ for every δ ∈ C[∂]d.

Proof. Step 1: sl2 acts on C[∂]d by commutator [Z(ξ), δ] for ξ ∈ sl2, δ ∈
C[∂]d. Since sl2 is a semisimple Lie algebra and C[∂]d is a finite dimensional
sl2-module, C[∂]d is a semisimple sl2-module.

Step 2: Let ∆ := a2
0 − 4a1a2. When X = P1, up to scalar the solution of

τ is ∆−
1

2 . Define

Annd := AnnC[∂]d(∆
− 1

2 ) :=
{
α ∈ C[∂]d | α(∆−

1

2 ) = 0
}
.

Given α ∈ Annd, then α(∆−
1

2 ) = 0, thus [Z(ξ), α](∆−
1

2 ) = 0 and [Z(ξ), α] ∈
Annd. Therefore Annd is an sl2-submodule of C[∂]d.

Step 3: By Step 1, C[∂]d is a semisimple sl2-module, then there exists
an sl2-submodule Sd such that C[∂]d = Annd ⊕ Sd as sl2-modules.

Step 4: It is well known that sl2-invariant ring is

{α ∈ C[∂]d | [Z(ξ), α] = 0 ∀ξ ∈ sl2} = C[∂]sl2d = C[∂2
0 − ∂1∂2]d

where C[∂2
0 − ∂1∂2] denotes the polynomial ring generated by a single ele-

ment ∂2
0 − ∂1∂2. It is clear that C[∂]sl2d ⊂ Annd for d > 0.

Step 5: Let δ ∈ C[∂]d, we claim that N (δ) = ∅ if and only if δ(∆−
1

2 ) ∈
C×∆−

d+1

2 . If δ(∆−
1

2 ) ∈ C×∆−
d+1

2 , then δ(∆−
1

2 ) is nowhere vanishing. Thus
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N (δ) = ∅. For the other direction, we first observe that

δ(∆−
1

2 ) = ∆−
1

2
−dPd(a0, a1, a2)

where Pd is a homogeneous polynomial of degree d. Suppose Pd factors into
Pd = ∆kqd−2k where gcd(∆, qd−2k) = 1. Then δ(∆−

1

2 ) = ∆−
1

2
−d+kqd−2k.

N (δ) = ∅ implies that{
∆−

1

2
−d+kqd−2k = 0

}
∩ {∆ 6= 0} = ∅

and thus {qd−2k = 0} ⊂ {∆ = 0}. But qd−2k and ∆ are coprime, it implies

that qd−2k ⊂ C×. Thus d = 2k and δ(∆−
1

2 ) ∈ C×∆−
d+1

2 .

Step 6: Suppose N (δ) = ∅, then by Step 5 we have δ(∆−
1

2 ) ∈ C×∆−
d+1

2 .

Since Z(sl2)(∆−
d+1

2 ) = 0, it implies that [Z(sl2), δ] ⊂ Annd. Step 3 tells us
that δ = δ′ + δ′′ where δ′ ∈ Annd, δ′′ ∈ Sd and

[Z(ξ), δ] = [Z(ξ), δ′] + [Z(ξ), δ′′].

Since [Z(ξ), δ] ⊂ Annd and [Z(ξ), δ′] ⊂ Annd, the direct sum forces
[Z(ξ), δ′′] = 0 for all ξ ∈ sl2. This implies δ′′ ∈ C[∂]sl2d ⊂ Annd when d > 0.
Then the direct sum further forces that δ′′ = 0. Thus δ = δ′ ∈ Annd. There-
fore δ(∆−

1

2 ) = 0, contradicts δ(∆−
1

2 ) ∈ C×∆−
d+1

2 .
Therefore given a positive integer d, N (δ) 6= ∅ for every δ ∈ C[∂]d. �

6. A degree bound

In this section we consider X = Pm, G = SLm+1. In this case, we will view
R = C[a∨] as the subring of C[x0, . . . , xm] generated by the degree m+ 1
monomials in the xi. This degree however will not be used below. The degree
deg below shall refer to the degree in the variables a∨i which can be identified
with a monomial basis of V ∨. We now prove an important degree bound and
use a rank approach to give another proof of N (δ) being algebraic.

Lemma 6.1 (Degree bound lemma). Take X = Pm, ĝ = slm+1 ⊕ C. Let
Zi := Z∨(xi) where xi is a basis of ĝ. Suppose f(b) is nonsingular. For h ∈
R, hef(b) ≡ 0 in H0(ĝ, Ref(b)) iff

hef(b) =
∑

Zi(rie
f(b))

for some ri ∈ R, and deg ri ≤ deg h− 1, ∀i.
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Proof. The ‘if’ direction is obvious. For the ‘only if’ direction, consider the
homogeneous ideal I := 〈xu∂vf(b)|0 ≤ u, v ≤ m〉 of R. Let Bk denote a C-
basis for the degree k part of R/I. First, since f(b) is homogeneous of degree
1, the degree 0 part of R/I is nonzero, and is spanned by 1. For any h ∈ R,
consider expanding the highest degree component of h, which we denote by
h0, in degree = deg h part of R/I in terms of the chosen basis: i.e. by defini-
tion, there exist elements si ∈ R, such that h0 −

∑
siZi(f(b)) can be written

as a linear combination of the chosen basis elements in degree = deg h. Obvi-
ously, we can require that deg si ≤ deg h− 1 for each i by dropping all higher
degree components of each of these ri, if there are any. Working degree by
degree, it is clear that we can choose ri ∈ R with deg ri ≤ deg h− 1,∀i, such
that hef(b) =

∑
Zi(rie

f(b)) +
∑
ckBk, where

∑
ckBk denote a linear combi-

nation of elements of the Bk with all k ≤ deg h. Therefore, H0(ĝ, Ref(b)) is
spanned by Bk.

On the other hand, observed that R/I = (C[x0, . . . , xm]/J)µm+1 , where
J := 〈∂if(b)|0 ≤ i ≤ m〉 is the Jacobian ideal of the nonsingular hypersur-
face f(b), and µm+1 is the group of (m+ 1)-th root of unity. By [AS][G],
dimC(C[x0, . . . , xm]/J)µm+1 = hm(X − V (f(b))). Combining the algebraic
and geometric rank formula for τ , we have in this case, hm(X − V (f(b))) =
dimH0(ĝ, Ref(b)). Therefore, the collection of Bk consists of linearly inde-
pendent elements, and hef(b) = 0 in H0(ĝ, Ref(b)) iff all coefficients ck =
0. �

We now apply the lemma to derive explicit polynomial equations for the
variety N (δ). Fix δ ∈ C[∂] be of degree d. Then hef = δef where h ∈ R such
that h̃ = δ. By the lemma, each b ∈ N (δ) lies in the locus of an equation of
the form

(6.1) hef =
∑

Zi(rie
f ) =

∑
i

(Zi(ri)e
f + Zi(f)rie

f )

for some ri =
∑

j∈J λ
i
jej , λ

i
j ∈ C, where {ej}j∈Jd−1

being a basis of the
subspace of R of degree ≤ d− 1. Thus degZi(ri) ≤ d− 1 and Zi(f)ri is
linear in the variables ai, but is of degree ≤ d in the variables a∨i .

In the basis {ej}j∈Jd , h can be viewed as a vector Θ ∈ CJd . Let Λ be
the column vector with entries λij , ∀i, j. Then comparing coefficients of the
expansion of (6.1) gives us a matrix Md(a) (depending only on d but not on δ
itself) whose entries lie in C +

∑
iCai such that the following inhomogeneous

linear system holds:

(6.2) Md(b)Λ = Θ.
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But in turn this is equivalent to the rank condition

(6.3) rkMd(b) = rk[Md(b)|Θ].

To summarize, let’s fix δ ∈ C[∂] (hence fix h and Θ) of degree d. For a given
b ∈ B, Lemma 6.1 says that b ∈ N (δ) iff there exists ri ∈ R with deg ri ≤
d− 1 such that

(6.4) hef(b) =
∑

Zi(rie
f(b)).

This is equivalent to saying that (6.3) holds. Thus we can conclude:

Theorem 6.2. For a given δ ∈ C[∂] of degree d

N (δ) = {b ∈ B | rkMd(b) = rk[Md(b)|Θ]}.

Therefore N (δ) is an algebraic variety defined by the rank condition (6.3).
In particular, N (δ) has a natural stratification given by rkMd(b).

7. Periods of elliptic curves

7.1. Some preparation

In this section we consider the case X = P2. G = SL3. Then π : Y → B is
the family of smooth elliptic curves in X. We write the basis of V as {aI | I =
(ijk), i+ j + k = 3, i, j, k ≥ 0}, which is dual to the monomial basis xi1x

j
2x
k
3

of sections in V ∨. Let S, T be Aronhold invariants of a ternary cubic, then
C[V ∨]SL3 = C[S, T ]. Let ∆ = 64S3 − T 2 be the discriminant.

Lemma 7.1. There is a natural action of G on B. B/G = SpecC[S, T,∆−1].
In particular, S, T give a global coordinate system on the two dimensional
nonsingular variety B/G.

Proof. We have B = SpecC[aI ,∆
−1], the stable locus of the G-action on B

(see [N, Theorem 1.6]). Thus every G-orbit in B is closed, and we have

B/G = SpecC[aI ,∆
−1]G = SpecC[S, T,∆−1],

where it is well known that S, T are algebraically independent. �

Lemma 7.2. Let δ be a first order differential operator with constant coeffi-
cient (i.e. δ =

∑
I λI

∂
∂aI

, for constants λI). Let h := δf where f :=
∑

I aIa
∨
I
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is the universal section. Then given any point b ∈ B, the following are equiv-
alent:

1) b ∈ N (δ),

2) h = Zxf(b) for some x ∈ sl3,

3) (δS)(b) = 0 and (δT )(b) = 0.

Proof. Since δ is of degree 1, by Lemma 6.1, b ∈ N (δ) iff

(7.1) hef(b) =

8∑
i=1

Zi(cie
f(b)) + (E + 1)(cEe

f(b))

for some complex numbers ci and cE , where Zi is a basis of sl3, E is the
Euler operator. h = δf implies that h is a homogeneous polynomial in a∨I of
degree 1 with constant coefficients, i.e. an element in the section space V ∨.
So (7.1) holds iff

(7.2) hef(b) =

8∑
i=1

Zi(cie
f(b))

for some complex numbers ci. This is equivalent to

(7.3) h = Zxf(b)

for some x ∈ sl3.
Next, we identify V ∨ with its tangent space at b, where a∨I is identified

with ∂
∂aI

.
Note that the identification is compatible with the action of sl3. Under

this identification, it is clear that h is identified with δ. (δ =
∑

I λI
∂
∂aI

is
identified with

∑
I λIa

∨
I = h.) We consider the projection map p : B 7→ B/G.

We denote the tangent map at b by dpb. At b, dpb(δ) = 0 iff δ = h lies in the
tangent space of the G-orbit G · b, i.e. iff (7.3) holds.

S and T are global coordinates of B/G ⊂ Spec(V ∨)G = SpecC[S, T ].
Thus, we have

(7.4) dpb(δ) =
∂

∂S
(δS)

∣∣∣∣
b

+
∂

∂T
(δT )

∣∣∣∣
b

.

So dpb(δ) = 0 iff (δS)(b) = 0 and (δT )(b) = 0. �
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This shows that

N (δ) =M∩B, M := {b ∈ B | δS(b) = δT (b) = 0} ⊂ V ∨.

In particular, this implies that N (δ) = ∅ iffM⊂ {∆ = 64S3 − T 2 = 0}. By
Nullstellensatz, this is equivalent to

∆ ∈
√
〈δS, δT 〉

the radical of the ideal 〈δS, δT 〉. In other words

(7.5) ∆m ∈ 〈δS, δT 〉

for some integer m > 0.

Remark 7.3. If we do not require δ to be constant coefficients, then N (δ)
can be empty. E.g. Take δ to be Euler and β 6= 1. Then N (δ) is the set b
where δs(b) = s(b) = 0 for all periods s, hence empty because there is no
point b ∈ B where all periods vanish.

7.2. Main theorem

Theorem 7.4. Let δ =
∑

I λI∂I , where (λI) ∈ Z[i]10 and

(7.6) gcd(λI)I = 1, (1 + i)|λ111 in Z[i] and {λ300, λ030, λ003} 6= {1, 0, 0} mod (1 + i).

Then N (δ) 6= ∅.

We prove this by a series of lemmas.
Recall that

C[V ∨]SL3 = C[S, T ]

where S, T are the Aronhold invariants, which are respectively polynomials
of degree 4 and 6 with integer coefficients in 10 variables. In order to use their
explicit expressions given in [S] which we include in Appendix B, we must
multiply each variable aI = aijk appearing in our universal cubic section

f =
∑

I aIx
I by the factor i!j!k!

3! . All use of the aI in this proof will be the aI
defined in [S].

Recall that the discriminant polynomial for the cubic plane curves is
∆ = 64S3 − T 2 ∈ Z[a]12. Evaluating ∆ at the point a111 = 1 and aI = 0 for
I 6= (111) yields ∆ = 0, since this point defines the singular curve x1x2x3 =
0. Thus the monomial a12

111 does not appear in the polynomial ∆.
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Suppose N (δ) = ∅. Then by Nullstellensatz there exists a positive integer
m and

(hS , hT ) ∈W := C[a]12m−3 ⊕ C[a]12m−5

such that (7.5) becomes

(7.7) ∆m = (64S3 − T 2)m = hSδS + hT δT.

Fix an ordering of the monomial basis in the aI for each Q(i)[a]k, and so
that we can now represent the polynomial ∆m by the column Z-vector θ
given by the polynomial’s coefficients, and (hS , hT ) by a column C-vector h.
Then (7.7) is equivalent to a matrix equation of the form

(7.8) Mh = θ

where M is a matrix over Z[i] defined by the expressions of δS and δT . This
equation has a solution h iff

(7.9) rk C(M) = rk C[M |θ].

But since M and [M |θ] are defined over Q(i) this equation is equivalent to
(because rank of a matrix remains the same under field extensions)

(7.10) rk Q(i)(M) = rk Q(i)[M |θ].

Therefore, we can assume that

(hS , hT ) ∈WQ(i) := Q(i)[a]12m−3 ⊕Q(i)[a]12m−5.

Write hS = 1
pdrS , hT = 1

qdrT , where the coefficients of each of the poly-
nomials rS , rT ∈ Z[i][a] have gcd 1, and p, q, d ∈ Z[i], with gcd(p, q) = 1 in
Z[i]. Then we get

Lemma 7.5. There exist rS , rT ∈ Z[i][a] each having coefficients with gcd
1, and p, q, d ∈ Z[i], with gcd(p, q) = 1 in Z[i], and m ∈ Z>0 such that

(7.11) pqd(64S3 − T 2)m = qrSδS + prT δT.

Notations. eI denotes the standard unit vector in Z10 corresponding to
I. For µ = (µI) ∈ (Z≥0)10, write aµ =

∏
I a

µI
I and |µ| =

∑
I µI . Note that aµ

is invariant under the diagonal maximal torus of SL3(C) iff the index sum∑
I µII of µ is equal to |µ|(1, 1, 1).
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Lemma 7.6. Let µ, µ′ ∈ (Z≥0)10 such that |µ| = |µ′| = ` and aµ, aµ
′

are
torus invariant. Then for any I 6= I ′, if ∂Ia

µ and ∂I′a
µ′ are nonzero, then

they are not proportional (over any field).

Proof. This is because the index sums of the monomials in ∂Ia
µ and ∂I′a

µ′

are different:

(`− i, `− j, `− k) 6= (`− i′, `− j′, `− k′)

for I 6= I ′. �

We will apply this to the cases ` = 4, 6. For homogeneous polynomial P ∈
C[a], denote by cµ(P ) the coefficient of the monomial aµ in P , so that

P =
∑
µ

cµ(P )aµ.

Lemma 7.7. Consider the degree 4 invariant polynomial S. For each index
I, there exists µ such that cµ(S) = ±1 and µI = 1. For each such pair (I, µ)

cµ−eI (δS) = ±λI .

Therefore the gcd(cν(δS))ν =1. More generally, without assuming gcd(λI)I =
1, we also have

gcd(cν(δS))ν | gcd(λI)I .

Proof. The explicit expression of S shows the first statement holds. For the
second statement, consider

δS =
∑
I′,µ′

cµ′(S)λI′∂I′a
µ′ =

∑
I′,µ′

cµ′(S)λI′µ
′
I′a

µ′−eI′ .

For the given pair (I, µ), the summands on the right that are proportional
to the monomial term cµ(S)λI∂Ia

µ = ±λIaµ−eI must be those with µ′ −
eI′ = µ− eI . But Lemma 7.6 forces I = I ′, hence µ = µ′. This proves the
second statement. Finally, the last statement follows from the second and
the assumption (7.6). �
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Now consider the explicit expression T ∈ Z[a]. There are exactly 6 mono-
mial terms with odd coefficients, namely

T0 := a2
300a

2
030a

2
003 − 3a2

300a
2
021a

2
012 − 3a2

030a
2
201a

2
102(7.12)

− 3a2
003a

2
210a

2
120 − 27a2

201a
2
120a

2
012 − 27a2

210a
2
102a

2
021

so that T has the form T = T0 + 2T1 with T1 ∈ Z[a].
(1) Note that cν(δT0) 6= 0 implies that ν satisfies the index sum condition

that∑
I

νII = (6, 6, 6)− (i, j, k), for some i, j, k ≥ 0 with i+ j + k = 3.

If ν=µ−eI then this condition uniquely determines µ and I, with
∑

I µII=
(6, 6, 6).

(2) Each aI 6= a111 appears in some monomial aµ in T0 and with exponent
2.

(3) Since T = T0 + 2T1, by Lemma 7.6, for aI 6= a111

(7.13) cµ−eI (δT0) = cµ(T0)λIµI

where µ, I are uniquely determined by a given ν = µ− eI .
(4) By the same lemma

cµ−eI (δT ) =

{
cµ(T0)λIµI or 2cµ(T1)λIµI I 6= (1, 1, 1)

2cµ(T1)λIµI I = (1, 1, 1)

where µ, I are uniquely determined by a given ν = µ− eI . Note that if
cµ−eI (δT ) = cµ(T0)λIµI 6= 0 then µI = 2.

Lemma 7.8. The prime 1+i appears in prime factorization of gcd(cν(δT ))ν
in Z[i] with exponent exactly 2.

Proof. By assumption (7.6), in Z[i]

(1 + i) - gcd(λI)I 6=(1,1,1).

Trivially in Z[i]

2 = (1 + i)2(−i), (1 + i) - n, n ∈ 2Z + 1.

Note that by (4), for ν = µ− eI , (1 + i)2|cν(δT ) for all ν. So, it remains to
show that (1 + i)3 - cν(δT ) for some ν. Pick I 6= (1, 1, 1) such that (1 + i) -
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λI . By (2) and (4), we can find µ such that

cµ−eI (δT ) = 2cµ(T0)λI 6= 0.

Since cµ(T0) is odd, this number is not divisible by (1 + i)3. �

Lemma 7.9. p is a unit in Z[i]. Therefore there exists rS , rT ∈ Z[i][a] each
rS , rT having coefficients with gcd 1, such that

qd(64S3 − T 2)m = qrSδS + rT δT.

Proof. Consider (7.11) in Lemma 7.5. Since gcd(p, q) = 1, if p0 is a prime
factor of p in Z[i], then the right side mod p0 is rSδS mod p0, which is
nonzero since the coefficients of rS have gcd 1 by assumption, and likewise for
δS by Lemma 7.7. But the left side of (7.11) is zero mod p0, a contradiction.
This shows that p is a unit in Z[i] which we can assume it is 1, by absorbing
p−1 into rS , rT . �

Lemma 7.10. (1 + i)3 - q.

Proof. For otherwise Lemma 7.9 implies that (1 + i)3|rT δT . Since (1 + i)2|δT
but (1 + i)3 - δT by Lemma 7.8, it follows that (1 + i)|rT , contradicting that
rS ∈ Z[i][a] has coefficients with gcd 1. �

Lemma 7.11. (1 + i)2 - q.

Proof. Suppose 2i = (1 + i)2 divides q. Then we can write q = 2q1 with q1 ∈
Z[i] with gcd(q1, 1 + i) = 1.

Since 1
2δT ∈ Z[i][a], we can divide equation in Lemma 7.9 by 2 and get

(7.14) q1d∆m = q1rSδS + rT
δT

2
∈ Z[i][a].

First we consider this equation in the residue field mod (1 + i), which
is Z/2Z[a] = F2[a]. Since q1 ≡ 1, 64 ≡ 0, T ≡ H2, we get

(7.15) dH4m ≡ rSδS + rT
δT

2

where

H = a300a030a003 + a300a021a012 + a030a201a102

+ a003a210a120 + a201a120a012 + a210a102a021.
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This follows from direct observation that

∆ = T 2 = (∂111S)2 = H4 mod 2.

Claim 7.12. H is irreducible in F2[a].

Proof. For otherwise, we can factorize

H = (P1a300 + P2)P3

with the Pi ∈ F2[a] independent of a300 but P3 is nonconstant, and P1P3 =
a030a003 + a021a012. Check easily that this implies that P1 is constant, so
that we can set P1 = 1. Therefore P2 has degree 1 and

P2(a030a003 + a021a012) = a030a201a102 + a003a210a120 + a201a120a012

+ a210a102a021

which is clearly impossible. �

Now mod 2 (hence also mod (1 + i)), the explicit expression of S gives

S ≡ Ha111 + a4
111 + P

for some P ∈ F2[a] independent of a111 and has degP = 4. Setting Q =
λ111H + δP , we get

Claim 7.13. There exists Q ∈ F2[a] independent of a111 such that

δS ≡ (δH)a111 +Q mod (1 + i).

Next, recall from (7.12) that T = T0 + 2T1. The explicit expression of T1

has the form T1 = T2 + T3 where T2 ∈ Z[a] depends on a111 and 2|T2, and
T3 ∈ Z[a] is independent of a111. Then

1

2
δT =

1

2
δT0 + δT2 + δT3.

Note that 1
2δT0 ∈ Z[a] is also independent of a111. Taking mod (1 + i), δT2

drops out since 2|T2. This shows

Claim 7.14. 1
2δT mod (1 + i) ∈ F2[a]5 is independent of a111, and it is

nonzero by Lemma 7.8.
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Suppose (1 + i)|d. Let u := gcd(δS, δT2 ) ∈ F[i][a]. By Lemma 7.7

gcd(cν(δS))ν = 1,

thus u 6= 0 mod (1 + i). Then we have PS , PT ∈ Z[i][a] such that δS = uPS ,
δT
2 = uPT . Then in F2[a] equation (7.14) becomes

0 ≡ q1rSδS + rT
δT

2
≡ u(q1rSPS + rTPT ).

Thus

0 ≡ q1rSPS + rTPT ≡ rSPS + rTPT .

Since (PS , PT ) = 1 ∈ Z[i][a], there exists α, β ∈ Z[i][a] such that αPS +
βPT = 1. Thus αPS + βPT ≡ 1 mod (1 + i), i.e. (PS , PT ) = 1 ∈ F2[a].
Therefore there exists some h ∈ F2[a] such that rS ≡ hPT and rT ≡ −hPS ≡
−q1hPS .

Now we take h0 ∈ Z[i][a] to be any lift of h in Z[i][a]. Then

rS = h0PT + r′S and rT = −q1h0PS + r′T

for some r′S , r
′
T ∈ Z[i][a] and (i+ 1)|r′S , (i+ 1)|r′T . Then equation (7.14)

becomes

q1d∆m = q1(h0PT + r′S)δS + (−q1h0PS + r′T )
δT

2

= q1r
′
SδS + r′T

δT

2
∈ Z[i][a].

Now we can see that (i+ 1) is a common factor on both sides, so we have

q1
d

1 + i
∆m = q1

r′S
1 + i

δS +
r′T

1 + i

δT

2
∈ Z[i][a].

Since d 6= 0, there exists a largest positive integer k such that

d1 =
d

(1 + i)k
∈ Z[i], (1 + i) - d1.

Then we can repeat the process and get

(7.16) q1d1∆m = q1r
′′
SδS + r′′T

δT

2
∈ Z[i][a].

for some r′′S , r
′′
T ∈ Z[i][a]. Note that r′′S , r

′′
T not necessarily have the property

that their coefficients have gcd 1.
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Claim 7.13 shows that

δS ≡ (δH)a111 +Q mod (1 + i)

with Q = λ111H + δP . By (7.6), λ111 ≡ 0 mod (1 + i), then

δS ≡ (δH)a111 + δP mod (1 + i).

By looking at the explicit expression of T , we observe that T ≡ H2 mod 4.
It implies that δT

2 ≡ HδH mod 2 and hence

δT

2
≡ HδH mod (1 + i).

Then (7.16) becomes

H4m ≡ r′′S((δH)a111 + δP ) + r′′T (HδH) mod (1 + i).

Now we evaluate both sides at a111 = a120 = a102 = a210 = a012 = a021 =
a201 = 0. Let Q| denotes the evaluation of Q under this condition. We ob-
serve that every term in P contains at least two of these aI ’s, so (δP )| = 0.
Then we get

(7.17) (a300a030a003)4m−1 ≡ r′′T |(δH)|.

We observe that

(δH)| = λ300a030a003 + λ030a300a003 + λ003a300a030.

Under condition (7.6), there are three types remaining:

1) {λ300, λ030, λ003} ≡ {0, 0, 0} mod (1 + i). Then (δH)| ≡ 0 mod (1 +
i) and it contradicts (7.17).

2) {λ300, λ030, λ003} ≡ {1, 1, 1} mod (1 + i). Then

(δH)| = a030a003 + a300a003 + a300a030.

It is irreducible in F2[a300, a030, a003] and it does not divide

(a300a030a003)4m−1,

it contradicts the fact that F2[a300, a030, a003] is an UFD.
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3) {λ300, λ030, λ003} ≡ {1, 1, 0} mod (1 + i). If λ300 = 1, λ030 = 1, λ003 =
0,

(δH)| = a030a003 + a300a003 = (a030 + a300)a003.

But a030 + a300 doesn’t divide (a300a030a003)4m−1, it contradicts the
fact that the fact that F2[a300, a030, a003] is an UFD.

This shows that our initial supposition that (1 + i)2|q is false, hence
proving Lemma 7.11. �

Lemma 7.15. (1 + i)|q.

Proof. Suppose not.

Claim 7.16. δS = H mod (1 + i).

Proof. We have

(7.18) qdH4m = qrSδS + rT δT.

Therefore in F2[a], we have

dH4m = rSδS

since 2|δT . Since the coefficients of rS have gcd 1 by assumption, and same
for δS by Lemma 7.7, the right side is nonzero, hence d is coprime to (1 + i),
and hence H = δS in F2[a] (because the only unit in F2 is 1). �

Claim 7.17. Without assuming gcd(δ) := δ(λI)I = 1, if δS = 0 mod (1 +
i) then δ = 0 mod (1 + i).

Proof. We have δS=0 mod (1+i) iff (1+i)| gcd(δS). Thus (1+i)| gcd(λI),
by Lemma 7.7, hence δ = 0 mod (1 + i). �

Claim 7.18. δ = ∂111 mod (1 + i).

Proof. The explicit expression of S yields ∂111S = H mod (1 + i). So by
Claim 7.16

(δ − ∂111)S = H −H = 0 mod (1 + i).

Now letting δ − ∂111 play the role of δ in Claim 7.17, implies the claim. �
To finish the proof of Lemma 7.15, observe that Claim 7.18 contra-

dicts (7.6). This shows that the supposition that (1 + i) - q is false. �
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Lemma 7.19. q does not exists, hence Theorem 7.4 is proved.

Proof. Lemmas 7.15 and 7.11 imply (1 + i)|q and (1 + i)2 - q. Lemma 7.5
gives

q

1 + i
d∆4m =

q

1 + i
rSδS + rT

δT

1 + i
.

Since (1 + i)| δT1+i , taking mod (1 + i) yields

dH4m = rSδS mod (1 + i).

Again, since gcd(rS) = 1 and δS 6= 0 mod (1 + i), d 6= 0 hence

H = δS mod (1 + i)

as in Claim 7.16, hence

δ = ∂111 mod (1 + i)

as in Claim 7.18, which contradicts (7.6) again. �

Proposition 7.20. The set of δ where N(δ) is nonempty, is dense in V ∨,
in analytic topology. Hence it is dense in Zariski topology.

Proof. Let

S := {(λI) ∈ Z[i]10 | gcd(λI)I = 1, (1 + i)|λ111 in Z[i]

and {λ300, λ030, λ003} 6= {1, 0, 0} mod (1 + i)}.

Then we have shown in Theorem 7.4 that N (δ) 6= ∅ for all λ ∈ S. We are
going to show that given any point δλ̄ :=

∑
I λ̄I∂I ∈ V ∨, we can find a se-

quence λk ∈ Q(i)10 such that limk→∞ λ
k = λ̄ and N (δλk) 6= ∅ for all k.

We consider a subset of S0 ⊂ S:

S0 :=
{

(λI) ∈ Z[i]10 | gcd(λI)I = 1, λ300 ≡ λ030 ≡ λ003 ≡ 1 mod (1 + i)

and λI ≡ 0 mod (1 + i) for I 6= 300, 030, 003
}
.

Since Q(i)10 is dense in C, we can find a sequence xk ∈ Q(i)10 such that
limk→∞ x

k = λ̄. For each k, we choose some qk ∈ Z such that qkxk ∈ Z[i]10

and limk→∞ q
k =∞.

Then we look at each entry, say I = 111. If qkxk111 ≡ 0 mod (1 + i), let

λk111 = xk; if qkxk111 ≡ 1 mod (1 + i), let λk111 =
qkxk111 + 1

qk
. We repeat this
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process to make each entry of qkλk satisfy the mod (1 + i) condition in S0.
Then it is clear that limk→∞ |xk − λk| = 0 and thus

lim
k→∞

λk = lim
k→∞

xk = λ̄.

Note that qkλk is not necessarily in S0 since it may not satisfy the gcd condi-
tion. Let dk = gcd(qkλkI )I ∈ Z[i]. Then by our construction dk ≡ 1 mod (1 +

i). Then we consider
qkλk

dk
∈ Z[i]10. It is clear that

qkλk

dk
∈ S0 and Theo-

rem 7.4 implies that N (δ qkλk
dk

) 6= ∅. Since δ qkλk
dk

is homogeneous, N (δλk) =

N (δ qkλk
dk

) 6= ∅, as desired. �

Corollary 7.21. There exists a nonempty Zariski open subset U0 ⊂ V ∨,
such that for each δ ∈ U0, N(δ) 6= ∅.

Proof. Consider the projection morphism of schemes of finite type over C:

f : SpecC[λI , aI ,∆
−1]/

〈∑
I

λI∂IS,
∑
I

λI∂IT

〉
→ SpecC[λI ].

Im(f) contains a dense subset of V ∨ in analytic topology and therefore also
in Zariski topology, so f is dominant, which implies that Im(f) contains a
non-empty Zariski open subset U0, and consequently the corollary holds. �

7.3. Another proof

For the case X = P2, there is another simple proof for N(δ) 6= ∅ where δ is a
first order homogeneous constant coefficient differential operator. However,
the proof cannot be generalized to higher dimension.

Proposition 7.22. For h = δ (homogeneous, 1st order, constant coeffi-
cient) GIT-stable (i.e. in this case, smooth), and for each smooth section
f(b), we have N(δ) ∩G · f(b) 6= ∅ where G · f(b) denotes the G-orbit of f(b).
So in particular, N(δ) 6= ∅.

Proof. Since h is GIT-stable, h has finite stabilizer in PV ∨, under the action
of G = SL3. Therefore, the G-orbit of h in PV ∨ is a closed subvariety of
dimension 8. For the same reason, the G-orbit of f(b) in PV ∨ has dimension
8, so f(b) is not killed by any nonzero Lie algebra element in sl3, (otherwise
the exponential map would give rise to a one-parameter subgroup infinite
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stabilizer of f(b), under the action of G) and therefore the C-vector space
Wb := {Zxf(b)|x ∈ sl3} has dimension 8. Therefore the projectivization PWb

is a closed subvariety of dimension 7 in PV ∨, which then must intersect with
the G-orbit of f(b) in PV ∨ by dimension reason. Therefore, there exists
g ∈ SL3, λ ∈ C, λ 6= 0, and x ∈ sl3 such that

(7.19) gh = λZxf(b).

Therefore, since g−1f(b) = fg−1b, we have

(7.20) h = g−1Z 1

λ
xgfg−1b.

Since g−1Z 1

λ
xg = Zx′ for some x′ ∈ sl3, Lemma 7.2 implies that g−1b ∈ N (δ).

Since fg−1b ∈ G · f(b), we have N (δ) ∩G · f(b) 6= ∅. Hence the lemma fol-
lows. �

8. An application to classical invariant theory

Let X = Pn−1 with n ≥ 3, V ∨ = Γ(X,K−1
X ), and G = SLn as before. In this

section, we prove the following

Theorem 8.1. Let 〈S1, . . . , Sw〉 be a system of homogeneous polynomials
that generate C[V ∨]G, then there exists an Sk among these generators, such
that deg(Sk) ≡ 1( mod n).

We first prove the following lemma for any X = G/P :

Lemma 8.2. Let δ be a first order constant coefficient homogeneous differ-
ential operator, and h = δf as before. Let b ∈ B. Then the following condi-
tions are equivalent:

1) b ∈ N (δ).

2) h = Zxf(b) for some x ∈ g.

3) (δP )(b) = 0 for any P ∈ C[V ∨]G.

Proof. We already proved that (1) and (2) are equivalent in Lemma 7.2.
We now prove that (2) and (3) are equivalent. Again consider the projec-
tion morphism p : B → B/G. By GIT theory, the function ring of B/G is
identified with C[V ∨,∆−1]G: i.e. elements in C[V ∨]G divided by powers of ∆.

Assuming (3), take any regular function φ : B/G→ C, then φ · p ∈
C[V ∨,∆−1]G, and therefore (δ(φ · p))(b) = 0. (Note that (δ(∆))(b) = 0 as
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∆ ∈ C[V ∨]G.) So (dpb(δ)φ)(p(b)) = (δ(φ · p))(b) = 0, where again dpb de-
notes the tangent map induced by p at b. Therefore dpb(δ) = 0, which is
equivalent to (2) as we already know.

Assuming (2), for any P ∈ C[V ∨]G, by abuse of notation we still denote
P restricting to B by P . Then P is a regular function on B invariant under
G, therefore P = φ0 · p for a regular function φ0 on B/G. So (2) implies
dpb(δ) = 0, which in turn implies (dpb(δ)φ0)(p(b)) = 0. i.e. (δP )(b) = 0. �

Now we prove Theorem 8.1:

Proof. Let X = Pn−1 and let δ = ∂a1...1
, so h = x1 . . . xn. Let b = xn1 + · · ·+

xnn be the Fermat point, which lies in B. As n ≥ 3, it is clear that h does
not satisfy condition (2) in lemma 8.2. Therefore Lemma 8.2 implies that
there exists a homogeneous element S ∈ C[V ∨]G, such that (δS)(b) 6= 0. i.e.
(∂a1...1

S)(b) 6= 0. This implies that S contains a monomial term that is lin-
ear in a1...1, which is a product of a1...1 with powers of an0...0, . . . , a0...0n.
Since any monomial in S is invariant under the maximal torus action,
for any monomial that appears in S, the sum of indexes at each posi-
tion has to be equal. Therefore, this monomial is a nonzero multiple of
a1...1(an0...0 . . . a0...0n)k for some nonzero k ∈ N (as it is clear that there is no
invariant polynomial in degree 1).

Now, take S′ to be an element in C[V ∨]G such that it contains a mono-
mial term that is a nonzero multiple of a1...1(an0...0 . . . a0...0n)k with minimal
k. Then it is clear that S′ can not be written as a polynomial of invariant
polynomials which do not contain monomial terms of this form. The theorem
is therefore proved. �

Remark 8.3. It is possible to elaborate on this argument to extract fur-
ther information about the invariant ring C[V ∨]G, and to establish further
relations between N (δ) and the invariant ring. Indeed, theorem 8.1 does not
hold for n = 2, precisely because in that case, the Fermat point does lie in
N (δ) for the δ in the above proof.

Remark 8.4. There are indications that our study of N (δ) for 1st order
derivatives is also related with the local Torelli theorem, as the vanishing loci
of such derivatives of periods correspond to degenerations of the period map.
It would also be interesting to investigate the invariant theoretic or geometric
meaning of N (δ) for higher order δ. We plan to study these questions in a
future paper.
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Appendix A. Some examples for Pm

Making use of methods in [BHLSY], we can compute a basis of ĝReb explic-
itly at the large complex structure limit (LCSL) b∞ and the Fermat point
bF for P1 and P2. By Theorem 2.1, this allows us to find explicit differential
relations, i.e. linear relations for constant coefficient differential operators
that kill periods at these points.

If X = Pm, G = SLm+1, then we can identify R with the subring of
C[x0, . . . , xm] generated by degree m+ 1 monomials.

Lemma A.1. [BHLSY, Lemma 2.12] We have

ĝ · (Ref(b)) = Ref(b) ∩
∑
i

∂

∂xi
(C[x]ef(b))

for all b ∈ B.

Computation for P1 at LCSL. ForX = P1, G = SL2, R ≡ C[x2
1, x

2
2, x1x2],

f = a0x1x2 + a1x
2
1 + a2x

2
2 and b∞ = x1x2.

Claim A.2. For integers α, β ≥ 0, α 6= β, α+ β > 0 and 2|(α+ β),

xα1x
β
2e
x1x2 ∈ ĝ · (Rex1x2).

Proof. Without loss of generality we assume α > β ≥ 0. For m,n ≥ 0, we
observe

(A.1)
∂

∂x2
(xm1 x

n+1
2 ex1x2) = xm+1

1 xn+1
2 ex1x2 + (n+ 1)xm1 x

n
2e
x1x2 .

Since xα−β1 ex1x2 = ∂
∂x2

xα−β−1
1 ex1x2 , then by (A.1),

xα1x
β
2e
x1x2 ∈

∑
i

∂

∂xi
(C[x]ex1x2).

Thus by Lemma A.1, xα1x
β
2e
x1x2 ∈ ĝ · (Rex1x2) if we further require 2|(α+

β). �
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Consider the Euler operator, for k ≥ 0,

(E + 1)(x1x2)kex1x2 =

(
1

2

∑
i

xi
∂

∂xi
+ 1

)
(x1x2)kex1x2

=
(

(x1x2)k+1 + (k + 1)(x1x2)k
)
ex1x2 ∈ ĝ · (Rex1x2).

By induction we have(
(x1x2)k + (−1)k+1k!

)
ex1x2 ∈ ĝ · (Rex1x2).

Claim A.3. For X = P1, at the LCSL we have a basis description

ĝ · (Rex1x2) =(⊕∞k=1C
(
(x1x2)k + (−1)k+1k!

)
ex1x2)

⊕ (⊕α+β>0,α 6=β,2|(α+β)Cxα1x
β
2e
x1x2) =: A.

Proof. We already showed ĝ · (Rex1x2) ⊃ A. It is clear that ex1x2 /∈ A and
A⊕ Cex1x2 = Rex1x2 , thus dimCRe

x1x2/A = 1. Since

(Ref(b)/ĝ · (Ref(b)))∗ ' HomD∨(τ,O)b ' sol(τ)b

and we know in this case dimC sol(τ)b∞ = 1, then dimCRe
x1x2/ĝ · (Rex1x2) =

1. Therefore ĝ · (Rex1x2) = A. �

Now consider

δef (b∞) =

(∑
cα

(
∂

∂a0

)α0
(

∂

∂a1

)α1
(

∂

∂a2

)α2
)
ef (b∞)

=
(∑

cαx
α0+2α1

1 xα0+2α2

2

)
ex1x2 .

Let δef (b∞) ∈ ĝ · (Rex1x2). By Claim A.3, when α1 6= α2, there is no restric-
tion on cα; when α1 = α2, let d := α0 + α1 + α2, it forces

(∑
cα(x1x2)d

)
ex1x2 =

∑
d≥1

cα
(
(x1x2)d + (−1)d+1(d)!

) ex1x2 .

Thus

c0,0,0 =
∑
d≥1

cα0,α1,α1
(−1)d+1(d)!.
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We can rewrite this as ∑
α1=α2,|α|=d

cα(−1)dd! = 0.

Thus as a direct consequence of Theorem 2.1, we have:

Claim A.4. When X = P1, if the coefficients of

δ =
∑

cα

(
∂

∂a0

)α0
(

∂

∂a1

)α1
(

∂

∂a2

)α2

satisfy the linear relation ∑
α1=α2, |α|=d

cα(−1)dd! = 0,

then δs(b∞) = 0 for all s ∈ sol(τ)b.

Computation for P2 at LCSL. ForX = P2, G = SL3, R ≡ C[xα, |α| = 3],
f=a0x1x2x3 + a1x

3
1 + a2x

2
1x2 + a3x1x

2
2 + a4x

3
2 + a5x

2
2x3 + a6x2x

2
3 + a7x

3
3 +

a8x1x
2
3 + a9x

2
1x3, b∞ = x1x2x3.

Similar to the P1 case, we can show

Claim A.5. For X = P2, at the LCSL we have a basis description

ĝ · (Rex1x2x3) = (⊕∞k=1 C
(
(x1x2x3)k + (−1)k+1k!

)
ex1x2x3)

⊕ (⊕ι1+ι2+ι3>0,ι1,ι2,ι3 not all equal, 3|(ι1+ι2+ι3)Cxι11 x
ι2
2 x

ι3
3 e

x1x2x3).

In this case we know dimC sol(τ)b∞ = 1, so ĝ · (Rex1x2x3) is of codimen-
sion 1.

Now consider

δef (b∞) =

(∑
cα

(
∂

∂a0

)α0

· · ·
(

∂

∂a9

)α9
)
ef (b∞)

=

(∑
cαx

α0+3α1+2α2+α3+α8+2α9

1 xα0+α2+2α3+3α4+2α5+α6

2

× xα0+α5+2α6+3α7+2α8+α9

3

)
ex1x2x3 .
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Let

(A.2)


β1 := α0 + 3α1 + 2α2 + α3 + α8 + 2α9,

β2 := α0 + α2 + 2α3 + 3α4 + 2α5 + α6,

β3 := α0 + α5 + 2α6 + 3α7 + 2α8 + α9.

By Claim A.5 we can see that there is no restriction on the coefficient cα
unless

β1 = β2 = β3 = |α|.
Let δef (b∞) ∈ ĝ · (Rex1x2x3), it forces∑

β1=β2=β3=d

cα(−1)d(d!) = 0.

Thus by Theorem 2.1, we have:

Claim A.6. When X = P2, if the coefficients of

δ =
∑

cα

(
∂

∂a0

)α0

· · ·
(

∂

∂a9

)α9

satisfy the linear relation ∑
β1=β2=β3=d

cα(−1)d(d!) = 0,

then δs(b∞) = 0 for all s ∈ sol(τ)b.

Computation for P1 at the Fermat point. X = P1, G = SL2, bF =
x2

1 + x2
2.

Let (−1)!! = 1. By straightforward induction which we omit here, we can
show

Claim A.7. For X = P1, at the Fermat point we have a basis description

ĝ · (Rex2
1+x2

2) =
(
⊕k≡l≡1(mod 2)Cxk1xl2ex

2
1+x2

2

)
⊕
(
⊕k≡l≡0(mod 2),k+l≥2C

(
xk1x

l
2 − (−1)

k+l

2
(k − 1)!!(l − 1)!!

2(k+l)/2

)
ex

2
1+x2

2

)
.

In this case we know dimC sol(τ)bF = 1 and ĝ · (Rex2
1+x2

2) is of codimen-
sion 1.

And by Theorem 2.1, we have:
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Claim A.8. When X = P1, if the coefficients of

δ =
∑

cα

(
∂

∂a0

)α0
(

∂

∂a1

)α1
(

∂

∂a2

)α2

satisfy the linear relation

∑
α0≡0 mod 2

cα0,α1,α2
(−1)α0+α1+α2

(α0 + 2α1 − 1)!!(α0 + 2α2 − 1)!!

2(α0+α1+α2)
= 0,

then δs(bF ) = 0 for all s ∈ sol(τ)b.

Computation for P2 at the Fermat point. X = P2, G = SL3, bF =
x3

1 + x3
2 + x3

3.
Let (−1)!!! = (−2)!!! = 1. By straightforward induction, we can show

Claim A.9. Let ι0 + ι1 + ι2 := c. For X = P2, at the Fermat point we have
a basis description

ĝ · (Rex3
0+x3

1+x3
2) =

(
⊕one of ιi≡2(mod 3)Cxι00 x

ι1
1 x

ι2
2 e

x3
0+x3

1+x3
2

)
⊕
(
⊕ι0≡ι1≡ι2≡0(mod 3),c≥3

C
(
xι00 x

ι1
1 x

ι2
2 − (−1)

c

3
(ι0 − 2)!!!(ι1 − 2)!!!(ι2 − 2)!!!

3
c

3

)
ex

3
0+x3

1+x3
2

)
⊕
(
⊕ι0≡ι1≡ι2≡1(mod 3),c≥6

C
(
xι00 x

ι1
1 x

ι2
2 + (−1)

c

3
(ι0 − 2)!!!(ι1 − 2)!!!(ι2 − 2)!!!

3
c

3
−1

x0x1x2

)
ex

3
0+x3

1+x3
2

)
.

In this case we know dimC sol(τ)bF = 2 and ĝ · (Rex3
1+x3

2+x3
3) is of codi-

mension 2.
Then by Theorem 2.1, we have:

Claim A.10. When X = P2, if the coefficients of

δ =
∑

cα

(
∂

∂a0

)α0

· · ·
(

∂

∂a9

)α9
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satisfy the linear relation
∑

β1≡β2≡β3≡0 mod 3 cα(−1)
β1+β2+β3

3
(β1 − 2)!!!(β2 − 2)!!!(β3 − 2)!!!

3
β1+β2+β3

3

= 0,∑
β1≡β2≡β3≡1 mod 3 cα(−1)

β1+β2+β3
3

−1 (β1 − 2)!!!(β2 − 2)!!!(β3 − 2)!!!

3
β1+β2+β3

3
−1

= 0

where βi are defined in (A.2), then δs(bF ) = 0 for all s ∈ sol(τ)b.

Appendix B. Expressions of S and T

The degree 4 invariant S of a ternary cubic equals (see [S, p.167])

S = −a300a
2
012a120 + a2

012a
2
210 + a300a012a021a111 − a012a021a201a210

− a012a102a120a210 + a030a300a012a102 − 2a012a
2
111a210

+ 3a012a111a120a201 − a030a012a
2
201 − a300a

2
021a102 + a2

021a
2
201

+ 3a021a102a111a210 − a021a102a120a201 − 2a021a
2
111a201

+ a003a300a021a120 − a003a021a
2
210 + a2

102a
2
120 − a030a

2
102a210

− 2a102a
2
111a120 + a030a102a111a201 + a4

111 + a003a111a120a210

− a003a030a300a111 − a003a
2
120a201 + a003a030a201a210.

The degree 6 invariant T of the ternary cubic equals (see [S, p.171])

T = a2
003a

2
030a

2
300 − 6a2

003a030a120a210a300 + 4a2
003a030a

3
210 + 4a2

003a
3
120a300

− 6a003a012a021a030a
2
300 + 18a003a012a021a120a210a300

− 12a003a012a021a
3
210 + 12a003a012a030a111a210a300

+ 6a003a012a030a120a201a300 − 12a003a012a030a201a
2
210

− 24a003a012a111a
2
120a300 + 12a003a012a111a120a

2
210

+ 6a003a012a
2
120a201a210 − 24a003a

2
021a111a210a300

− 12a003a
2
021a120a201a300 + 24a003a

2
021a201a

2
210

+ 6a003a021a030a102a210a300 + 12a003a021a030a111a201a300

− 12a003a021a030a
2
201a210 − 12a003a021a102a

2
120a300

+ 6a003a021a102a120a
2
210 + 36a003a021a

2
111a120a300

+ 12a003a021a
2
111a

2
210 − 60a003a021a111a120a201a210

+ 24a003a021a
2
120a

2
201 − 6a003a

2
030a102a201a300 + 4a003a

2
030a

3
201
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+ 12a003a030a102a111a120a300 − 24a003a030a102a111a
2
210

+ 18a003a030a102a120a201a210 − 20a003a030a
3
111a300

+ 36a003a030a
2
111a201a210 − 24a003a030a111a120a

2
201

+ 12a003a102a111a
2
120a210 − 12a003a102a

3
120a201 − 12a003a

3
111a120a210

+ 12a003a
2
111a

2
120a201 + 4a3

012a030a
2
300 − 12a3

012a120a210a300

+ 8a3
012a

3
210 − 3a2

012a
2
021a

2
300 + 12a2

012a021a111a210a300

+ 6a2
012a021a120a201a300 − 12a2

012a021a201a
2
210 − 12a2

012a030a102a210a300

− 24a2
012a030a111a201a300 + 24a2

012a030a
2
201a210 + 24a2

012a102a
2
120a300

+ 12a2
012a

2
111a120a300 − 24a2

012a
2
111a

2
210 + 36a2

012a111a120a201a210

− 27a2
012a

2
120a

2
201 + 6a012a

2
021a102a210a300 + 12a012a

2
021a111a201a300

− 12a012a
2
021a

2
201a210 + 18a012a021a030a102a201a300 − 12a012a021a030a

3
201

− 60a012a021a102a111a120a300 + 36a012a021a102a111a
2
210

− 6a012a021a102a120a201a210 − 12a012a021a
3
111a300

− 12a012a021a
2
111a201a210 + 36a012a021a111a120a

2
201

− 12a012a030a
2
102a120a300 + 24a012a030a

2
102a

2
210

+ 36a012a030a102a
2
111a300 − 60a012a030a102a111a201a210

+ 6a012a030a102a120a
2
201 + 12a012a030a

2
111a

2
201 − 12a012a

2
102a

2
120a210

+ 36a012a102a111a
2
120a201 + 24a012a

4
111a210 − 36a012a

3
111a120a201

+ 8a3
021a

3
201 + 24a2

021a
2
102a120a300 − 27a2

021a
2
102a

2
210 + 12a2

021a102a
2
111a300

+ 36a2
021a102a111a201a210 − 12a2

021a102a120a
2
201 − 24a2

021a
2
111a

2
201

+ 6a021a030a
2
102a201a210 + 12a021a030a102a111a

2
201

+ 36a021a
2
102a111a120a210 − 12a021a

2
102a

2
120a201

− 36a021a102a
3
111a210 − 12a021a102a

2
111a120a201 + 4a2

030a
3
102a300

− 3a2
030a

2
102a

2
201 − 12a030a

3
102a120a210 + 12a030a

2
102a

2
111a210

+ 12a030a
2
102a111a120a201 − 12a030a102a

3
111a201 + 8a3

102a
3
120

− 24a2
102a

2
111a

2
120 − 3a2

003a
2
120a

2
210 + 4a003a

3
021a

2
300 − 12a2

012a102a120a
2
210

− 12a012a102a
2
111a120a210 − 24a021a030a

2
102a111a300 + 24a021a

4
111a201

− 12a3
021a102a201a300 + 24a102a

4
111a120 − 8a6

111.
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