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Differential zeros of period integrals and

generalized hypergeometric functions

JINGYUE CHEN, AN HUANG, BoNG H. LIAN, AND SHING-TUNG YAU

In this paper, we study the zero loci of locally constant sheaves of
the form JII, where II is the period sheaf of the universal family of
CY hypersurfaces in a suitable ambient space X, and 4§ is a given
differential operator on the space of sections VV = T'(X, K ;(1). Us-
ing earlier results of three of the authors and their collaborators,
we give several different descriptions of the zero locus of 0II. As
applications, we prove that the locus is algebraic and in some cases,
non-empty. We also give an explicit way to compute the polyno-
mial defining equations of the locus in some cases. This description
gives rise to a natural stratification to the zero locus.
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1. Introduction

Zeros of special functions have been of interests to many authors since the
times of Riemann. He of course famously conjectured that the zeros of the
Riemann zeta functions occur only on a certain critical line. Inspired by
works of Stieltjes, Hilbert and Klein, Hurwitz [Hul][Hu2] and Van Vleck
[V] determined the number of zeros of the Gauss hypergeometric function
oF1(a,b,c; z) for real a,b,c. Subsequently, many authors generalized their
results to confluent hypergeometric functions. Runckel [R] gave a simpler
proof of the results of Hurwitz and Van Vleck using the argument prin-
ciple. Eichler and Zagier [EZ] gave a complete description of the zeros of
the Weierstrass o function in terms of a classical Eisenstein series. Duke
and Imamoglu [DI] later used it to prove transcendence of values of certain
classical generalized hypergeometric functions at algebraic arguments. More
recently following Hille [H], Ki and Kim [KiK] studied the zeros of general-
ized hypergeometric functions of the form ,F),. For real parameters for such
a function, they showed that it can only have finitely many zeros, and that
they are all real.

Since all (except the Riemann zeta function) of those special functions
are solutions to ordinary differential equations, it is natural to consider
the higher dimensional analogues of these functions and their zeros. It is
well known that the theory of Gel’fand-Kapranov-Zelevinsky (GKZ) hyper-
geometric functions |[GKZ] generalize classical special functions, including
the Euler-Gauss, Appell, Clausen-Thomae, Lauricella hypergeometric func-
tions, and their multivariable generalizations. Therefore, GKZ hypergeo-
metric functions can be viewed as generalized special functions. Since the
theory of tautological systems generalizes the GKZ theory [LY], solutions
to tautological systems and their derivatives can be thought of as further
generalizations of special functions. The zero loci of their derivatives amount
to zeros of these vast generalizations of those for classical special functions.

In this paper, we shall study the zeros of derivatives of GKZ hyper-
geometric functions and their generalizations in the context of Calabi-Yau
geometry. It is well-known that period integrals of CY hypersurfaces in a
toric variety are GKZ hypergeometric functions. Moreover, since these func-
tions are local sections of locally constant sheaves, each admits a multi-
valued analytic continuation. Thus it is natural to consider zero loci that
are monodromy invariant. Recall that the period sheaf II of the universal
family of smooth CY hypersurfaces in a suitable ambient space X form a lo-
cally constant sheaf, which is generated by pairings between a nonvanishing
holomorphic top form and middle dimensional cycles on a CY hypersurface.
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Since every such hypersurface has at least one nonzero period, the zero lo-
cus of the period sheaf is always empty. However, as it turns out, it is more
natural to consider the zero locus of a locally constant sheaf of the form 411,
where ¢ is a differential operator on the affine space VV = I'(X, K)_(l) This
zero locus will be the main object of study in this paper.

We will follow closely the notations introduced in [HLZJ[BHLSY). Given
a Lie algebra g, a g-module V'V, and a g-invariant ideal I of the commutative
algebra C[V], then a tautological system 7 is a Dyv-module of the form

T = .va/(DVvI~ + va@)

where I C Dy is the Fourier transform of I. In this paper, we consider the
following special case of 7.

Let G be a connected complex algebraic group. Let X be a complex
projective G-variety and let L be a very ample G-equivariant line bundle
over X. This gives rise to a G-equivariant embedding

X = P(V),

where V =T'(X, L)". We assume that the action of G on X is locally effec-
tive, i.e. ker (G — Aut(X)) is finite. Let G := G x C*, whose Lie algebra is
d = g @® Ce, where e acts on V by identity. We denote by Z : G — GL(V) the
group action induced on V, and by Z : § — End(V') the corresponding Lie
algebra representation. Note that under our assumption, Z : § — End(V) is
injective.

Let i : X C V be the cone of X, and I(X) its defining ideal. Let 8 : § —
C be a Lie algebra homomorphism. Then a tautological system as defined
in [LSY]|LY] is the cyclic D-module on V'

7(X,L,G,B) = Dyv/(DyvI + Dyv(Z(z) + B(x), € 7)),

where
I={P|PeI(X)}

is the ideal of the commutative subalgebra C[0] C Dyv obtained by the
Fourier transform of (X' ). Here P denotes the Fourier transform of P.
Given a basis {a1,...,an} of V, we have Z(z) =}, xijaia%jv where
(xi;) is the matrix representing x in the basis. Since the a; are also linear
coordinates on V'V, we can view Z(z) € Der C[VY] C Dyv. In particular, the
identity operator Z(e) € End V becomes the Euler vector field on V'V.
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Let X be an m-dimensional compact complex manifold such that its anti-
canonical line bundle K)_(1 is very ample. Let L := K)_(l. We shall regard
the basis elements a; of V =T'(X, L)V as linear coordinates on VV. Let
B :=T(X,L)sm C VY be the space of smooth sections. Let  : ) — B be the
family of smooth CY hyperplane sections Y}, C X, and let H'P be the Hodge
bundle over B whose fiber at b € B is the line I'(Y;,wy,) C H™ }(Y}). In
ILY] the period integrals of this family are constructed by giving a canonical
trivialization of H'P. Let II be the period sheaf of this family, i.e. the locally
constant sheaf generated by the period integrals. Let G be a connected
algebraic group acting on X.

Theorem 1.1 (See [LY]). The period integrals of the family w:) — B
are solutions to

r=7(X,K", G, Bo)
where By is the Lie algebra homomorphism with fy(g) = 0 and By(e) = 1.

In [LSY] and [LY], it is shown that if G acts on X by finitely many
orbits, then 7 is regular holonomic. We shall assume this holds throughout
the paper.

Let R = C[V]/I(X). Let f = 3" a;a) be the universal section. Then the
Lie algebra g = g @ Ce acts on R[V"]e/ by the homomorphism ZY :§ —
End V" which is dual to Lie algebra action Z on V. Thus it takes the form

0 .

Here {a;},{a)} are the bases of V,V" dual to each other. Note that since
I(X) is a g-invariant ideal of C[V], there is an induced g-action on R hence
on R[VV]e! = R[a]ef. Recall that the Dyv-module structure on R[VV]e/ is
that a; € Dyv acts by left multiplication, while 9; € Dy v acts by the usual
derivative %. In particular, this action commutes with the g-action given

by ZV, and with left multiplication by R.

Theorem 1.2. [BHLSY|,[HLZ] There is a canonical isomorphism of Dy -
modules
(X, L, G, Bo) <> R[V"]e! /a(R[V]e])
1 — el
Denote by sol(7) the sheaf of classical solutions to 7. We will prove in
Section 2.
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Theorem 1.3. Let § € Dyv, and b€ VV. The following statements are
equivalent:

1) ds(b) =0 for all s € sol(T)y.

2) 67 =0 in Re/® /gRel®) ie. 5el®) € gRe/®).

This theorem generalizes [CHL, Corollary 4.2].
For any 6§ € Dyv, we introduce

(1.1) N(§)={be B|ds(b) =0, Vs € sol(7)p}

This will be a main object of study in this paper. By Theorem we have
N(5) = {b € B|def® ¢ g(Reﬂb))}.

In the special case 6 = p(0) € C[J] has constant coefficients, we have

PO ®) = pla¥)el
Thus making the identification R = R by Fourier transform ~: R — R,
p(a”) = p(9), we get

N(p) =N @) = {be B|p(a")e’® e g(re!) .

This recovers the definition of N'(p) introduced in [CHL].
We will prove in Section 5.

Theorem 1.4. If § € Dyv is homogeneous under scaling by C*, N(d) is
algebraic.

In Sections 6 and 8, we discuss the non-emptiness of A'(§) in a number
of cases. In Section 7, we give an explicit way to compute the polynomial
equations defining A(§) in PV in the case X = P™. We also show that
N (8) has a natural stratification in this case.

Acknowledgements. We would like to thank Masaki Kashiwara for help-
ful discussions. We also thank Mei-Heng Yueh for helping us with computer
calculations. We are grateful to the referees for helpful suggestions and cor-
rections, all of which have now been incorporated into the paper. Research
of J.C. is partially supported by a Special Financial Grant from the China
Postdoctoral Science Foundation 2016T90080. Part of the work was done



614 J. Chen, et al.

during her visit to Brandeis University. B.H.L is partially supported by an
NSF FRG grant MS-1564405 and a Simons Collaboration Grant on HMS
and Application 2015.

2. A coinvariant description of differential zeros

Let J = DyvI+ Dyv(Z(z) + Bo(z),z € §) be the defining left ideal of a
regular holonomic tautological system 7. Then 7 = Dy /J. Since 7 is cyclic,
sol(7) can be identified as a subsheaf of local analytic functions in Oyv =
Oy, annihilated by the left ideal J. Then we have the canonical isomorphism
of sheaves

Homp,,, (1,0yv) = sol(1), ¢ — @(1).

Theorem 2.1. Let § € Dyv = Cla;, 0], and b= ba) € VV. The fol-

lowing statements are equivalent:
1) ds(b) = 0 for all s € sol(T)y,
2) 6ef® =0 in Re®) JgRe/®) ie. 5ef) € gReS®).
3) d € myDyv + J, where my := (a; — b;) is the ideal sheaf of the point b.

Proof. First we prove @. Consider the evaluation map
ey Dyvy = @aCO =CO)l, > gad™ Y ga(b)0™.
Let i, : b — V'V be the inclusion and O, = C be the constant sheaf over b.
Claim 2.2. The morphism
ey sigDyv = Oy =10, Dvvp = ep(Dyvy) =Cl0], 1®6+ ep(d)

1s well-defined and it is an isomorphism.
Proof. 1t is clear that the map

ey, : Op ®c Dyvp — ep(Dyvy),  1®@68 5 ep(d)
is well-defined. Let f € i, 'Oyv = Oy, then

18 f5— F(b) @8> e(f6) — F(B)en(d) = 0.

Thus e} descends and it is well-defined on ; Dyv.
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Surjectivity: For any 6. := Y co0“ € C[0] where ¢, € C, we have §. €
Dy v and ey(dc) = 0. Thus e, (1 ® 6.) = ep(de) = de.

Injectivity: Let my := (a; — b;) be the ideal sheaf of the point b. Then
e, (1® Z 9a0%) =" ga(b)0% = 0 implies that g, € m;, for all a. Thus 1 ®
Y0 900" =3, ga(b) ® 0% = 0, which means that ker e; = 0. O

Since O ®;-1¢,, Jo ={1® 6| § € Jp}, similarly we can show that
Ob ®i;1(9vv Jb >~ 6b(Jb).

Next we claim that e, induces a map ey, : 7, — i;7. Since i;lT = Tp, W€
have

kL =1
T 1= Ob ®i;1(9vv Zb T = Ob ®i;1(9vv Tb

Consider the exact sequence
0= Jy = Dyvy 2 m = Dyvy/Jy — 0.

Since tensoring over any ring is right exact, we have

Oy O,
Oy ;10,0 Jo 2% Oy @100, Dy =5 Oy @10, (Dyv b/ Jy) = 0.
Thus
ker O, @ p=ImO, @1t = O, ®i;10W Jp,
hence

5T =0y R0, (Dvvp/ds) = (Op ®-10,, Dvvp) /(O ®;-10,, Jb)-
Therefore by Claim [2.2] we have
7 = (O @10, Dvvp) /(O @10, Jo) = es(Dyvp)/en( ).
Now we have a surjective map
ey 2 — ep(Dyvp)/en(Jy) 2 iy
Consider the pairing
(2.1) T ®c Homp,,, (17,0vv) = Oyv, @@ 0(p).
And note that evaluation is Oy v-bilinear. Taking a b-germ of yields

T, ®c Homp,,., (1, Oyv)p = Oy p.
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Applying Oy ®;-10, — to both sides, we get
(22) a:0,®;10,, v ®c Homp,., (1,0vv)s = Op @10, Ovv .
The morphism is given by a(1 ® 0 ® ¢) = 1 ® ¢(d) = ep((d)). Here
O ®;-10,,, Ovvp = iy (Oyv) = Oy
Since 7 is regular holonomic, it follows that
Homp,., (1,0vv ) = Home (151, Op),

where ¢ — ¢ and @(ep(0)) := ep(p(0)).
Next, consider the canonical non-degenerate pairing

(2.3) B iy @ Home (i, Op) — Op = C,
together with pairing (2.2) we have a diagram

a
Oy (X)l-;l(g‘/v Ty @c Homp,,., (1, 0pv)p —— Oy ®i;1(9vv OVV,b

-
iy @ Home (35T, Op) Op.

Since

Boy((1®0) @) = pes(d) © @) = plen(d)) = ep(#(9)) = a(1© 0 © @),

the above diagram commutes.
Since

Homp,. (1,0yv) = sol(1), ¢ (1),

then condition (I)): ds(b) = 0 for all s € sol(7)y is equivalent to

(0p(1))(b) = (#(6 - 1))(b) = ex(p(9)) = B(es(0) ® p) =0

for all ¢ € Homp,,, (1,0Oyv). By the non-degeneracy of pairing (2.3)), this is
equivalent to e;(d) = 0 in ;7.
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On the other hand, by the isomorphism
T = (R[VV]e! JgR[VV]eS), &+ del,
we have

iy = i (RIVY)e! [GRIV)e!) = g RV e! /gi; RV ]e!
~ Ref® JgRef®),

Thus e;(8) = 0 in 4§7 is equivalent to (5ef)(b) = 0 in Ref®) /gRef®)| which
is the condition . This completes the proof of <:>.
Next, we prove @.

Claim 2.3. The following diagram commutes:

€p .
T iy

| Joe

R[VV]el JgRIVV]el 22— Ref®) /gRef )

where the ep are evaluation maps, and

P (Z ga(90‘> = (Z gaaa) cef = Zga(av)aef,
0,2 9) (3 90)ad”) = (D 90)0d”) -¢7) )
= (X g®)ata”)e ) (b)
= > gb)ala’) el

Define the map
Oy : Dyv — Ref(b)/@llzef(b)7 5 5el®),
Let
Oy :7=Dyv/J = RSV JgReI V) 5 5T,

Let

O, 7 = T/myT = i, 6 8+ myT = 5(b),
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which is an Oyv-module morphism. Then we have a diagram:

7 —O% Ref®) /gReS®)
:T(’)b(@@z@’
e/

T — 7 /myT QT
Claim 2.4. O, = &' 00}, i.e. the above diagram commutes.
b g
7)(b). On the other

e
). Thus ©, = @' 0 ©].
g

Proof. Let 6 = 3 go0%, Oy(8) = (3e)(b) = 3= g(b)a(0”
hand, ®'(3(b)) = (3(b)e”)(b) = 22(9(b)ade!)(b) = O4(0

Let pr: Dyv — 7 = Dyv/J be the projection.
Proposition 2.5. For allbe V"V,
ker ©p = mpDyv + J.
(Note that myDy v is a right ideal and J is a left ideal.)

Proof. By the previous claim ©, = ©,0pr = ® 00, opr. Since ®' is an
isomorphism,

ker ©p, = ker ©} o pr.

ker ©} o pr =ker (Dyv — 7 = Dyv/J — 7/my7) = mDyv + J. O

Therefore given § € Dyv, then de/® = 0 in Re/® /gRef®) iff ©,(8) = 0 iff
d € ker ©p = mpDyv + J, ie. (2)<(3). This completes the proof of Theo-
rem 2.1 O

The theorem shows that for each b€ V'V, the membership condition
5ef(® € gRe/®) determines exactly if b is a zero of the sheaf dsol(7) of an-
alytic functions. Thus describing the vector subspace gRe/® c Ref(® ig
crucial in understanding differential zeros of the solutions to 7 in general,
and of generalized hypergeometric functions in particular. In Appendix [A]
we give an explicit basis for gRe/(® for a number of interesting examples.
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3. Analyticity along singularity

In this section, we shall consider the zero locus of certain sheaf of analytic
functions on a complex manifold B E]

Definition 3.1. Let B be a complex manifold. A locally constant sheaf
S of finite dimensional vector spaces on B is called analytic (ALCS) if it
is equipped with an embedding & < Op of sheaves. We shall identify an
ALCS S with its image in Op via the given embedding, and treat S as a
subsheaf of Op.

The classical solution sheaf sol(7) of a holonomic D-module 7 on B is
an ALCS. For a given ALCS S and for any 6 € Dyv, let 4§ be the sheaf
such that (6S), = {ds | s € Sp}, then it is also an ALCS. An ALCS of the
form Jsol(7) for a tautological system 7 will be our primary focus here.

Definition 3.2. Let B be a smooth partial compactification of B such
that D = B\B is a normal crossing divisor in B. We say that an ALCS S
on B has regular singularity along D, if for each by € D, there exists local
coordinates z = (21,...,2,) on B in some polydisk U centered at by such
that UND =U N (U;_;{z = 0}) for some 1 < r < n and every s € S(U\D)
has the form

(3.1) 5= 303 gur() [ hog 2!

acN €O
on U\D, where A is a finite subset of C", [2]% = 2§ ---22"; © is a finite
subset of Z%, [log 2L = (logz1)"" --- (log 2,)"", and g4 are meromorphic
functions with poles along D.

Note that if S is the solution sheaf of a regular holonomic D-module
with singular hypersurface being a normal crossing divisor D, then § is an
ALCS with regular singularity along D (cf. [KK]| p.862], [SST), p.83]).

The typical situation we shall consider is when & = dsol(7), where 7
is a regular holonomic tautological system defined on VV as before and
d € Dyv. Since B is a Zariski open subset of VY, VV can be viewed as a
smooth partial compactification of B. However, it may be the case that the
divisor D = VV\ B fails to be normal crossing. In that case we can remedy

"'We thank Professor M. Kashiwara for his helpful insights which provide the
basis for the analytic argument in this section.
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this by blowing up V'V along D to achieve normal crossing, which we will
talk about in the next section.

Our main goal here is to show that the differential zero locus N (§) of
dsol(7) has an analytic closure in V'V if D is a normal crossing divisor. Then
we can use the proper mapping theorem to conclude for the general case.

For the rest of this section, S is assumed to be an ALCS on B with
regular singularity along D = B\B.

3.1. Regular singularities

For fixed I € ©, we can combine terms in with log component being
[log z]Z. Then we have a finite sum of the form ()¢ ga,1(2)[2]%)[log 2]!. Let
ar, ... ,ara, denote all the o’s that appear in this sum, and let gji(z) :=
Gayr,1(2). Then we can rewrite as

Ar
52 o= 3 (o) ol
Ie© \k=1

For fixed I, if there exist k, k' such that oy, — agp = ny € Z", then

gi(2) 27" + g (2)[2]77 = (91 (2) + gmwe (2) [2]77) [2]7

and grx(2) + g (2)[z]7" is a meromorphic function with poles along
Ui_,{z = 0}. So without loss of generality we can assume further in the

expression that for each I,

(33) VI<k<AReanecl0,)"andV1<k=#k <A an# anp.
We say that s is of reduced form if holds.

Proposition 3.3. Assume S on B has regular singularity along D. For

bo € D, let U be a polydisk centered at by € UND =U N (J;_,{z = 0})
such that for every s € S(U\D),

AP
(s)
s= > [ S g RN | Nog2)?
I1€O(s) k=1

on U\D and is of reduced form. Then s(b) =0 for all s € Sy if and only if
952)(2(1))) =0 for all gﬁ) on U\D.
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We are going to prove this proposition for r =1 and r = 2. Then by a
straightforward induction the proposition holds for general cases.

3.2. Caser=1

Consider s € S(U\D),

d A
(3.4) s=> > gi(2)1" | (log z1)]
j=0 \ k=1

where g;(2) are meromorphic functions with poles along {z; = 0}. Then s
is of reduced form if it satisfies further that

(3.5) Reaji € [0,1) and when k # £/, ajr # o

Suppose for some b € U\D, s(b) =0 for all s € Sp. Then the zero locus
is monodromy invariant. Let z(b) denote the coordinate of b in U, then
21(b) # 0. Fix z; = 2;(b) for 2 < i < n in s, the analytic continuation of s
around z; = 0 also vanishes at b. Let log z1(b) = w 4 2wim, m € Z for some
w € C, then

d A
0=s(m)= Z Z cjre?™mer | (w4 2mim)!, ¥Ym € Z
j=0 \ k=1

where ¢, = g;1(2(b))e®*" € C.
Claim 3.4. cjp =0 forall0 < j <d,1 <k <Aj.

Proof. Let {a1,...,as} = {aji};r where aq,...,as are pairwise distinct.
Then we can write

S
s(m) = Z gZmiman Z cjk(w + 2mim)’
=1

{j1k|ajk:al}

Let P/(m) := Z{j7k|a]_k:al} cji(w + 2mim)?. Since (3.5)) holds, the j’s appear-
ing in the summands are pairwise distinct. We have

(3.6) 0=s(m)=> ™™ P/(m), YmeL.
=1
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Let 8 := min;<j<s{Im oy} and let p be the number of «;’s that reaches
this minimum. Without loss of generality we can assume Ima; =--- =
Im oy, = 3. Consider

s
0= (Z e27rimqul/(m)> /e2m‘m(i,8)
=1
— e27rim Re a; Pll(m) RS eZm‘mRe oapPI/)(m)

s
+ Z 627rm(,6’—1m a1)627rim Re alpl/(m)'
l=p+1

Since f — Imay; < 0 for [ > p, let m — oo,

lim |e27rm(,371m al)eZﬂ'im Reay Pl’(m) ‘

m—0oQ
= lim |e2™—Ime) plim)| =0 for I > p.
m—0o0
Thus
(3.7) mlgnoo e27rimRea1P{(m) I 627rimReaple)(m) —0.
We have

p
Z 627rim Re al];)ll(m)

=1

p2mim Re ay Z Cjk(w + 27Tim)j
1 {5.klajr=cu}

P
(w + 2mim)’ Z Z cjredmimBeas

=1 {1<k<Aj|ajr=ai}

I
NE

l

I
.M&

Il
=)

J

Since for every 0 < j < d, Y7, Z{k‘lajk:al} ¢jre2mmReas is hounded for
all m, then (3.7)) implies

p
(3.8) lim § § cire?™mRect — 0 for 0 < j <d.
*>
A {1<k<Aj|oyr=au}

Note that (3.5 implies that for fixed j and [, there is at most one k such
that a;, = ag. Thus for fixed j, aj;, appearing in (3.8) are pairwise distinct.
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By our assumption their imaginary parts all equal 3, then Reaj; € [0,1)
and are pairwise distinct in the summands of ([3.8)).

Lemma 3.5. Given oy € R, ;€ C, 1 <1 <p. If oy —oj ¢ Z when i # j,
then

lim eZﬂ'zmalal 4+oa 627rzmapap =0
m—oo

implies that a; =0 for all 1 <1 < p.
Proof. When p =1, we have

lim 2™y = (.
m—0o0

Then
lim |a;| =0

m—o0

and thus a; = 0. Assume that lemma holds for p = n. Now we consider

(3.9) Tr}g}(l)o XTImO gy o @2 g = (),

The difference of replacing m by m + 1 in (3.9) and multiplying (3.9) by

e2miont1 hecomes

lim 627mmo¢1 (627”041 _ e%w‘"“)al N 627rzmozn (627rwzn _ eQﬂzanH)an —0.
m—00

Then by our inductive hypothesis we can conclude that
(e2m‘o¢l _ EQWW”“)(IZ =0

for 1 <1 < n. Since by our assumption e2micn _ p2mian i1 #0 for 1 <1 <n,
then a1 = --- =a, = 0. Thus

lim €2ﬁima"+lan+1 =0
m—0o0
and therefore a,4+1 = 0. By induction the lemma holds for all p. O

Hence by Lemma we can conclude that c;; = 0 for all {j,k | aj, =
al,l = 1,...,p}.
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Now our original summation (3.6)) reduces to

S

Z eQWimalﬂl(m) =0.

l=p+1

We can repeat our strategy of considering terms that reach minimum imag-
inary part in this sum, then eventually we have cj;, = 0 for all j, k. O

QW

Since c¢ji = gji(2(b))e® ™, it implies g;(2(b)) = 0 for all j, k.
We just showed that if s(b) =0 for all s € S, then gj(k)( (b)) = 0 for

all g(k) On the other hand, it is clear that if g(k)( (b)) = 0, then s(b) = 0.
Therefore Proposition [3:3 holds if » = 1.

3.3. Caser =2
Consider s € S(U\D),
-y (z e ﬂ) (g 21 (log 22
7-]

where g;;;(2) are meromorphic functions with poles along {21 = 0} U {22 =
0}. Then s is of reduced form if

(3.10) Re Qijk € [0, 1), Reﬂijk S [O, 1);
when k # k', either ayji # ijir or Bijk # Bijk-

For each i, let {a;jp}jr = {au1,..., s} where a;i,..., 4, are pairwise
distinct. We can rewrite s as

S

5= Z(log z1)° Z zfé“" Z Gijk(2)z ) 7 (log 22)7

i li=1 {4 k|aiji=cuir, }

Suppose for some b € U\D, s(b) = 0 for all s € Sy. Then z1(b)z2(b) # 0.
First we fix z; = z;(b) for 2 <i < n and consider the analytic continuation
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around z; = 0. Then

5= Z(log zl)’< P < Z Gijk(z1,22(b), ..., 2n(D))

X zz(b)ﬁ”"' (log zz(b))j> > .
Let 51,(2) 7= 32 koo ) 9ist(2) 7 " (log 22)7, then

(3.11) 5= Z(log 21)° (Z 21 Y500, (21, 22(b), . .. ,zn(b))>

i li=1
and s;, (21, 22(b), . . ., z,(b)) is a meromorphic function in z; with poles along
{#1 = 0}. Then (3.11) satisfies (3.5 and by case r = 1 of Proposition [3.3 we
have

sin(20) = D gin(2(0)22(0)" (log (b)) = 0.

{j:klaijr=cvir; }

for all 4, ;.

Fix i,[;. Note that if k¥ # k" and ik = Qijlkr = Oy, implies ﬁijk #*
Bijir - Now in s; 5, we fix z; = 2;(b) for i # 2,1 < i < n and do analytic contin-
uation around 22 = 0, then by case r = 1 of Propositionagain s;1,(2(b)) =
0 implies g;;1(2(b)) = 0 for all j, k such that oy, = ayy,.

Hence if 5(b) = 0 for all s € Sy, then g5, (2(b)) = 0 for all g5). Therefore
Proposition [3.3] holds for r = 2.

3.4. Analyticity of the zero locus
Let N := {b€B | 5(b)=0, Vs€S;}. Let N denote its analytic closure in B.

Proposition 3.6. If an ALCS S on B has regular singularity along D,
then N is analytic.

Proof. s is locally holomorphic away from D, thus A is an analytic subva-
riety of B. In particular, N is a closed subset of B.
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Let by € D NN. Then by Proposition there exists a polydisk U cen-
tered at by such that

NN (U\D) = {b € B| g\ (2(b)) = 0, Vs € S, VI, k} N (U\D)

where gri; are meromorphic functions with poles along |J;_,{z; = 0}. Let
X7 € Z" be the order of poles of gri(2) corresponding to z; respectively.
Then [2]¥"* g1k (z) is holomorphic on the neighborhood U. Then

N B X5 (s)
NNU = {b e B| 20X g% (2(b) = 0, Vs € S, W,k} nu,
i.e. N is analytic. O
4. Algebraicity of N(4)

As before, let 7 be a regular holonomic tautological system on V'V, B be a
Zariski dense open subset of V'V, and D = VV\B.

By Hironaka’s Theorem [Hi|] there exists a proper analytic morphism
(blow-up) f:

AR

J I

B=VY\D-—=-B=VY\D

such that D := f~Y(D) is a normal crossing divisor in VV. We can then
consider the D-module 7 = f*7 on VY and its solution sheaf. Since 7 is
regular holonomic, 7 is also regular holonomic. Note that f|z induces an
isomorphism from dsol(7) on B to dsol(7) on B. Let N'(8) := {b € B | 5(b) =
0, Vs € dsol(7)p}.

Claim 4.1. The closure in analytic topology N (8) is analytic in VV.

Proof. Since D is a normal crossing divisor and 7 is regular holonomic, sol(7)
has regular singularity along D. Then it is clear that dsol(7) also has regular
singularity along D. Then by Proposition N (0) is analytic in Vv, O

Proposition 4.2. The closure in analytic topology N () is analytic in V.

Proof. First we claim two properties.
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f |W is proper: Given a compact subset C' C V'V,

(fl) (@) =N 7O,
Since f is proper, f~*(C) is compact. Since N (J) is closed, N'(5) N f~1(C)
is compact in N ().

f |W is holomorphic: The restriction of a holomorphic map to an analytic
space is holomorphic. -

Then by Proper Mapping Theorem (cf. [GR], p.162]) f(N(8)) is analytic.

Since f is continuous, f(N'(8)) C f(N'(5)). On the other hand, given
any sequence Zj € N'(8) such that limy_o f(Z1) =y € D. We can take
a compact neighborhood C C VV of y. Then for k >> 0, f(zx) € C, i.e.
ip € f~YC) c VV. Since f is proper, f~1(C) is compact. Thus there ex-
ists a convergent subsequence x such that limy/_,., zx exists. Therefore by
continuity of f we have

f < lim l’k/> = lim f(zp) =1y
k'—o00 k'—o00

which means y € f(N(5)). Thus

FIN(8)) = fN(9)) = N(9)

and therefore N (9) is analytic. O

Proposition 4.3. If § € Dyv is homogeneous under scaling by C*, N (9)
s algebraic.

Proof. By Proposition N(§) C VV = C" is closed analytic. Suppose ¢ is
homogeneous of degree d under scaling by C*. Given A € C*, for s € sol(7)y,

(85)(Ab) = A4=F() (65)(b).

Thus \b € N(9) if b € N(§), i.e. the C*-action by scaling on V" leaves N (4)
invariant. Hence C* also leaves N (§) invariant.

Let p : C"\{0} — P*! be the projection. Then p(N(5)\{0}) is a closed
analytic subspace of P"~!, by Chow’s theorem it is an algebraic subvariety.
Thus its cone N () is an algebraic variety. O

Since N(4) is a closed subset of B, N'(§) = N (d) N B.
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Theorem 4.4. If § € Dyv is homogeneous under scaling by C*, N(9) is
algebraic.

5. Non-emptiness of N'(d): P! case

We now consider the problem of non-emptiness of AV/(§), starting with the
simplest nontrivial case when X =P!, G =SLy. In this case R=
Cla?, 23, 2122), f = apz122 + a107 4 aza3. Recall that

Z(h) = —2@181 + 2&282
Z(x) = —2a260 — a081
Z(y) == —2@180 - aoag.

b 1 0 v 0 1 (0 0
o -1)0 "7 \o o) Y71 o)
Proposition 5.1. If X =P, G = SLsy, given a positive integer d, then
N(8) # 0 for every § € C[9]4.

for

Proof. Step 1: sly acts on C[0]4 by commutator [Z(§),d] for £ € sly, 6 €
C[0]4. Since sl is a semisimple Lie algebra and C[0], is a finite dimensional
slp-module, C[0]4 is a semisimple sla-module.

Step 2: Let A := a% — 4ajas. When X = P!, up to scalar the solution of
T is A7z, Define

Anng := Annc[a}d(A_%) = {a € Cl0]q | oz(A_%) = O}.

Given o € Anng, then a(A™2) = 0, thus [Z(€),a](A™2) = 0 and [Z(€), 0] €
Anng. Therefore Anng is an slp-submodule of C[9].

Step 3: By Step 1, C[0]4 is a semisimple slp-module, then there exists
an slp-submodule Sy such that C[0]; = Anng @ Sy as sly-modules.

Step 4: It is well known that sly-invariant ring is

{a € CA]a]|[Z(€),a] = 0 V¢ € slp} = C[O]5? = C[9§ — 1]

where C[02 — 0102] denotes the polynomial ring generated by a single ele-
ment 92 — 0102 It is clear that C[9]5” C Anng for d > 0.
Step 5: Let & € C[d]q, we claim that AV(§) = 0 if and only if §(A™2) €

d+1

C*A~% . If §(A~3) € C*A~"%, then §(A~2) is nowhere vanishing. Thus
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N (6) = 0. For the other direction, we first observe that
(A7%) = A727"Py(ag, a1, az)

where P, is a homogeneous polynomial of degree d. Suppose Py factors into
Py = A*qy_o, where ged(A,qg_or) =1. Then §(A™ ) A3 R o
N(6) = () implies that

{A 3Gy o = 0} N{A#0} =10

and thus {gs_or =0} C {A =0}. But qa—2k and A are coprime, it implies
that gg_or C C*. Thus d = 2k and §(A~2) € CXA~ %

Step 6: Suppose N(8) = 0, then by Step 5 we have §(A™2) € CXA~ .
Since Z(sly)(A™ =R = ) =0, it implies that [Z(sl2),d] C Anng. Step 3 tells us
that § = ¢’ + 8" where &' € Anng, 6" € Sy and

2(£), 6] = [2(£), '] + [2(£),0"].

Since [Z(§),d] C Anng and [Z(€),0'] C Anng, the direct sum forces
[Z(£),8"] = 0 for all £ € sly. This implies §” € C[9]5* C Anng when d > 0.
Then the direct sum further forces that 0" = 0. Thus § = & € Anng. There-
fore 6(A~z) = 0, contradicts §(A~2) € € CXA~%,

Therefore given a positive integer d, N'(§) # ) for every 6 € C[0]y. O

6. A degree bound

In this section we consider X = P™, G = SL,,+1. In this case, we will view
R = Cl[a"] as the subring of C[xg,...,T;] generated by the degree m + 1
monomials in the x;. This degree however will not be used below. The degree
deg below shall refer to the degree in the variables a) which can be identified
with a monomial basis of V. We now prove an important degree bound and
use a rank approach to give another proof of N'(§) being algebraic.

Lemma 6.1 (Degree bound lemma). Take X =P, g =sl,41 & C. Let
Z; = Z"(x;) where x; is a basis of §. Suppose f(b) is nonsingular. For h €
R, hel®) =0 in Hy(g, Re!®)) iff

hel ) — Z Zi(rief®)

for some r; € R, and degr; < degh — 1, Vi.



630 J. Chen, et al.

Proof. The ‘if’ direction is obvious. For the ‘only if’ direction, consider the
homogeneous ideal I := (2,0, f(0)|0 < u,v < m) of R. Let By, denote a C-
basis for the degree k part of R/I. First, since f(b) is homogeneous of degree
1, the degree 0 part of R/I is nonzero, and is spanned by 1. For any h € R,
consider expanding the highest degree component of h, which we denote by
ho, in degree = deg h part of R/I in terms of the chosen basis: i.e. by defini-
tion, there exist elements s; € R, such that hg — > s;Z;(f(b)) can be written
as a linear combination of the chosen basis elements in degree = deg h. Obvi-
ously, we can require that deg s; < deg h — 1 for each i by dropping all higher
degree components of each of these r;, if there are any. Working degree by
degree, it is clear that we can choose r; € R with degr; < degh — 1, Vi, such
that he/® =3 Z;(r;ef®) + 3" ¢ By, where 3 ¢, By, denote a linear combi-
nation of elements of the By, with all k < deg h. Therefore, Hy(g, Ref(®) is
spanned by Bjy.

On the other hand, observed that R/I = (Clxg,...,zy]/J)*+, where
J = (0;f(b)|0 <i < m) is the Jacobian ideal of the nonsingular hypersur-
face f(b), and puy,+1 is the group of (m + 1)-th root of unity. By [AS][G],
dimc(Clzo, . . ., )/ TPt = K"™(X — V(f(b))). Combining the algebraic
and geometric rank formula for 7, we have in this case, h"™(X — V(f(b))) =
dim Ho(§, Re/®)). Therefore, the collection of By, consists of linearly inde-
pendent elements, and he/(®) =0 in Hy(g, Re/®)) iff all coefficients ¢, =
0. O

We now apply the lemma to derive explicit polynomial equations for the
variety N'(6). Fix § € C[9] be of degree d. Then he/ = §ef where h € R such

that h = §. By the lemma, each b € N'(4) lies in the locus of an equation of
the form

(6.1) he! =" Zi(rie!) = > (Zi(ri)e! + Zi(f)rse’)

i

for some r; =3, )\;ej, )\3'» € C, where {e;}jez, , being a basis of the
subspace of R of degree <d —1. Thus deg Z;(r;) <d—1 and Z;(f)r; is
linear in the variables a;, but is of degree < d in the variables a'.

In the basis {ej}jc7,, h can be viewed as a vector © € C7<. Let A be
the column vector with entries )\;, Vi, j. Then comparing coefficients of the
expansion of gives us a matrix My(a) (depending only on d but not on &
itself) whose entries lie in C 4 ), Ca; such that the following inhomogeneous

linear system holds:

(6.2) My(b)A = ©.



Differential zeros of period integrals 631

But in turn this is equivalent to the rank condition

(6.3) vk My(b) = rk[My(b)|©)].

To summarize, let’s fix 6 € C[J] (hence fix h and O) of degree d. For a given
b € B, Lemma says that b € N(0) iff there exists r; € R with degr; <
d — 1 such that

(6.4) hel O =" Zi(rief®)).
This is equivalent to saying that holds. Thus we can conclude:
Theorem 6.2. For a given § € C[J] of degree d

N(8) = {b € B | tk My(b) = rk[Mq(b)|©]}.

Therefore N'(8) is an algebraic variety defined by the rank condition (6.3)).
In particular, N'(0) has a natural stratification given by rk My(b).

7. Periods of elliptic curves
7.1. Some preparation

In this section we consider the case X =P2. G = SL3. Then 7:) — B is
the family of smooth elliptic curves in X. We write the basis of V as {ar | I =
(ijk), i+ j +k =3, 4,5,k > 0}, which is dual to the monomial basis zx}x5
of sections in VV. Let S,T be Aronhold invariants of a ternary cubic, then
C[VV]®Ls = C[S, T]. Let A = 6453 — T? be the discriminant.

Lemma 7.1. There is a natural action of G on B. B/G = Spec C[S, T, A™1].
In particular, S, T give a global coordinate system on the two dimensional
nonsingular variety B/G.

Proof. We have B = Spec C[a;, A™!], the stable locus of the G-action on B
(see [N, Theorem 1.6]). Thus every G-orbit in B is closed, and we have

B/G = SpecCla;, A™']% = SpecC[S, T, A7,
where it is well known that S, T are algebraically independent. U

Lemma 7.2. Let § be a first order differential operator with constant coeffi-
cient (i.e. 0 =) /\16%1, for constants \p). Let h := 8 f where f :=3;aray
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is the universal section. Then given any point b € B, the following are equiv-
alent:

1) be N(9),
2) h=Z,f(b) for some x € sl3,
3) (65)(b) =0 and (6T)(b) = 0.

Proof. Since § is of degree 1, by Lemma be N() iff

8
(7.1) he! O =" Zi(cie? ) + (B + 1) (cge’™)
=1

for some complex numbers ¢; and cg, where Z; is a basis of slg, F is the
Euler operator. h = §f implies that & is a homogeneous polynomial in a} of
degree 1 with constant coefficients, i.e. an element in the section space V.

So (7-1) holds iff

8
(7.2) hel O =" Zi(c;e!®))
=1

for some complex numbers ¢;. This is equivalent to
(7.3) h=Z,f(b)

for some x € sl3.

Next, we identify V'V with its tangent space at b, where a} is identified
with 2.

Note that the identification is compatible with the action of sl3. Under
this identification, it is clear that h is identified with 6. (6 =), /\18%1 is
identified with >~ ; Araj = h.) We consider the projection map p : B — B/G.
We denote the tangent map at b by dp,. At b, dpp(5) = 0 iff § = h lies in the
tangent space of the G-orbit G - b, i.e. iff holds.

S and T are global coordinates of B/G C Spec(VY)% = SpecC[S, T].
Thus, we have

+ 2 (o)

0
. 0) = =508
(7.4) W0) = 5505)| + 57

08

b

So dpy(0) = 0 iff (65)(b) = 0 and (67)(b) = 0. O
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This shows that
N() = MnNB, ./\/l::{bEB|5S(b):5T(b):0}CV\/.

In particular, this implies that N'(§) = 0 iff M C {A =645 — T? = 0}. By
Nullstellensatz, this is equivalent to

A € /(0S,0T)
the radical of the ideal (65,07). In other words
(7.5) A™ e (65,0T)
for some integer m > 0.

Remark 7.3. If we do not require § to be constant coefficients, then N (4)
can be empty. E.g. Take ¢ to be Euler and 8 # 1. Then N (§) is the set b
where ds(b) = s(b) = 0 for all periods s, hence empty because there is no
point b € B where all periods vanish.

7.2. Main theorem

Theorem 7.4. Let § = Y ; \[0r, where (A1) € Z[i]** and
(76) ng(A[)j =1, (1 + i)|)\111 n Z[l] and {)\300,)\030,)\003} 75 {1,0,0} mod (1 + l)
Then N(d) # 0.

We prove this by a series of lemmas.
Recall that

C[VV)5Ls = C[8, T]

where S, T are the Aronhold invariants, which are respectively polynomials
of degree 4 and 6 with integer coefficients in 10 variables. In order to use their
explicit expressions given in [S] which we include in Appendix [B] we must
multiply each variable a; = a;;x appearing in our universal cubic section
f=> arxz! by the factor i!g!!k'. All use of the ay in this proof will be the ay
defined in [S)].

Recall that the discriminant polynomial for the cubic plane curves is
A = 6453 — T? € Z[a]12. Evaluating A at the point a111 = 1 and a; = 0 for
I # (111) yields A = 0, since this point defines the singular curve xjxox3 =
0. Thus the monomial a13; does not appear in the polynomial A.
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Suppose N'(§) = (). Then by Nullstellensatz there exists a positive integer
m and

(hs,hr) € W := Clali2m—3 © Cla]12m-s5
such that (7.5) becomes
(7.7) A™ = (648% — T?)™ = hgdS + hyoT.

Fix an ordering of the monomial basis in the a; for each Q(i)[a]g, and so
that we can now represent the polynomial A™ by the column Z-vector 6
given by the polynomial’s coefficients, and (hg, hr) by a column C-vector h.
Then is equivalent to a matrix equation of the form

(7.8) Mh=0

where M is a matrix over Z[i] defined by the expressions of .5 and §7". This
equation has a solution h iff

(7.9) rkc(M) =rkc[M|6].

But since M and [M|6] are defined over Q(7) this equation is equivalent to
(because rank of a matrix remains the same under field extensions)

Therefore, we can assume that

(hs, hr) € Wog = Q(i)[ali2m—3 © Q(i)[al12m—5-

Write hg = ﬁrs, hr = érT, where the coeflicients of each of the poly-
nomials rg,rr € Z[i][a] have ged 1, and p, ¢, d € Z]i], with ged(p,¢) =1 in
Z[i]. Then we get

Lemma 7.5. There exist rg,rr € Z[i][a] each having coefficients with ged
1, and p,q,d € Zi], with ged(p,q) = 1 in Z[i], and m € Z~qo such that

(7.11) pqd(64S% — T?)™ = qrgdS + prodT.

Notations. er denotes the standard unit vector in Z!° corresponding to
I.For pn= (pur) € (Zz0)'?, write a** = [[; a4" and |u| = > pu1. Note that a*
is invariant under the diagonal maximal torus of SL3(C) iff the index sum
>y prl of pis equal to |p|(1,1,1).
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Lemma 7.6. Let p, 1 € (Z>0)'" such that |u| = |i/| = ¢ and a*,a" are
torus invariant. Then for any I # I', if Ora* and Opa” are nonzero, then
they are not proportional (over any field).

Proof. This is because the index sums of the monomials in 0ra* and o at
are different:

(il l— k)£ (E—d 0—f 0K
for I #1'. O

We will apply this to the cases £ = 4,6. For homogeneous polynomial P &
Cla], denote by ¢, (P) the coefficient of the monomial a* in P, so that

P=> cu(P)a".

Lemma 7.7. Consider the degree 4 invariant polynomial S. For each index
I, there exists j such that c,(S) = £1 and puy = 1. For each such pair (I, j1)

C,ufez (55’) = :|:)\[.

Therefore the ged(c, (0S)), =1. More generally, without assuming ged(Ar)r=
1, we also have

ged(c, (09))u] ged(Ar) 1.

Proof. The explicit expression of S shows the first statement holds. For the
second statement, consider

55 =3 cu(S)Ardra =3 e (S)Apphat .
I',/j,’ I/,,U/

For the given pair (I, i), the summands on the right that are proportional
to the monomial term ¢, (S)A\;0ra* = £Ara” = must be those with p’ —
ey = i — er. But Lemma forces I = I', hence pu = /. This proves the
second statement. Finally, the last statement follows from the second and
the assumption ([7.6)). O
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Now consider the explicit expression 7' € Z[a]. There are exactly 6 mono-
mial terms with odd coefficients, namely

2 2 2 2 2 9 2 2 2
(7.12) T == a300a030%003 — 33000219012 — 3403042014102
2 2 9 2 2 2 2 2 2
— 3aj03a3100120 — 2705017200012 — 27051001020021
so that T" has the form T' = Ty + 27} with T} € Z][a].

(1) Note that ¢, (0Tp) # 0 implies that v satisfies the index sum condition
that

ZV}I: (6,6,6) — (i,4,k), for some 4,5,k >0 with i+ j+ k = 3.
1
If v=p—ey then this condition uniquely determines p and I, with >, purf =

(6,6,6).
(2) Each a; # aq11 appears in some monomial a* in Ty and with exponent

2.
(3) Since T' = Ty + 271, by Lemma for a;r # ai11
(7.13) Cumer (9T0) = e (To) s

where pu, I are uniquely determined by a given v = p — ej.
(4) By the same lemma

o C,u(TO))\I,UI or 2Cu(T1))\IHI I 75 (1, 1, 1)
Cp—e; (0T') = o
QCH(Tl)AI,u] I= (17 1a 1)

where p, are uniquely determined by a given v = u — e;. Note that if
Cp—e; (5T) = C“<T0))\[M] % 0 then uy = 2.

Lemma 7.8. The prime 1+i appears in prime factorization of ged(c, (6T")),
in Z[i] with exponent exactly 2.

Proof. By assumption (7.6), in Z]i]
(1+4) tged( A1) r2(1,1,1)-
Trivially in Z[i]
2=(1+i)*—i), (+i)fn, n€2Z+1.

Note that by (4), for v = p — ey, (1 +1)?|c,(6T) for all v. So, it remains to
show that (14 1i)3 1 ¢, (0T) for some v. Pick I # (1,1,1) such that (14 14){
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Ar. By (2) and (4), we can find p such that
Cp—e, (0T) = 2¢,(To) A1 # 0.
Since ¢, (Tp) is odd, this number is not divisible by (1 + 7)3. O

Lemma 7.9. p is a unit in Z[i]. Therefore there exists rs,rr € Zlilla] each
rg,rr having coefficients with ged 1, such that

qd(645% — T*)™ = qrs65 + rpoT. |

Proof. Consider ([7.11]) in Lemma Since ged(p, q) = 1, if pg is a prime
factor of p in Z[i], then the right side mod pg is 7505 mod pg, which is

nonzero since the coefficients of rg have ged 1 by assumption, and likewise for
6S by Lemma But the left side of iszero mod pg, a contradiction.
This shows that p is a unit in Z[i] which we can assume it is 1, by absorbing
p~!into rg,rr. U

Lemma 7.10. (1+i)31q.

Proof. For otherwise Lemma/7.9|implies that (1 + i)3|rpdT. Since (1 + i)?|6T
but (14 4)3 1 6T by Lemma it follows that (1 + ¢)|ry, contradicting that
rs € Zli][a] has coefficients with ged 1. O

Lemma 7.11. (1+1i)%{q.

Proof. Suppose 2i = (1 +4)? divides ¢. Then we can write ¢ = 2¢; with ¢; €
Z[i] with ged(q1,1+14) = 1.
Since 16T € Z[i][a], we can divide equation in Lemma [7.9| by 2 and get

oT
(7.14) @dA™ = q1rgdS + e € Zli][a].
First we consider this equation in the residue field mod (1 + ¢), which
is Z/27[a) = Fa[a). Since 1 =1, 64 =0, T = H?, we get

T
(7.15) dH*™ = rg6S + rT%

where

H = a300a030a003 + a30000210012 + @€0300201a102
+ app3a210G120 + A201@120@¢012 + 42102102021 -
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This follows from direct observation that

A=T?=(01115)* = H* mod 2.

Claim 7.12. H is irreducible in Fala].

Proof. For otherwise, we can factorize
H = (Prasoo + ) Ps

with the P; € Fo[a] independent of agpp but P5 is nonconstant, and P P3 =
a030a003 + ag21a012. Check easily that this implies that P; is constant, so
that we can set P, = 1. Therefore P, has degree 1 and

P> (ap30a003 + @0210012) = @0300201@102 + 600302100120 + 420161200012

+ a21001020021

which is clearly impossible. (]

Now mod 2 (hence also mod (1 + 7)), the explicit expression of S gives
S=Ha +afy; + P

for some P € Fy[a] independent of aj;; and has deg P = 4. Setting @ =
M1 H + 0P, we get

Claim 7.13. There exists Q € Fala] independent of a111 such that
68 = (5H)a111 + ¢ mod (1 + Z)
Next, recall from ([7.12)) that T' = Ty + 277 . The explicit expression of T}

has the form T} = T, + T35 where T € Z[a] depends on aj1; and 2|T», and
T3 € Z[a] is independent of a111. Then

1 1

Note that 30T} € Z[a] is also independent of a111. Taking mod (1 + i), 675
drops out since 2|T5. This shows

Claim 7.14. %(5T mod (1 +1i) € Falals is independent of ai11, and it is
nonzero by Lemma[7.8
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Suppose (1 +14)|d. Let u := ged(4S, %T) € F[i][a]. By Lemma
ged(ey(09)), =1,

thus u # 0 mod (1 + 7). Then we have Ps, Pr € Z[i][a] such that 6S = uPg,
%T = uPp. Then in Fs[a] equation (7.14) becomes

6T
0=qrsdS + rT7 = u(q1rsPs + r7Pr).

Thus
0=qrsPs +r7Pr =rgPs+ rrPr.

Since (Ps, Pr) =1 € Z][i|[a], there exists a, 8 € Z[i][a] such that aPg +
BPr=1. Thus aPs+ fPr=1 mod (1+1i), ie. (Ps,Pr)=1¢ Fsal.
Therefore there exists some h € Fa[a] such that rs = hPr and rp = —hPg =
—q1hPs.

Now we take hg € Z[i][a] to be any lift of h in Z[i][a]. Then

rg = hoPr + rfg and rp = —q1hoPs + r'T

for some ry, r/. € Z[i][a] and (i + 1)|ry, (i+ 1)|r}. Then equation (7.14)
becomes

oT
@ dA™ = g1 (hoPr + 15)0S + (—q1ho Ps + T’T)7

oT
= qr'sdS + T'T7 € Z[il[al.

Now we can see that (i 4+ 1) is a common factor on both sides, so we have

d

rl. 0T
Q— L
1+

,,,,/
A" =g —5 — € Z[i][a].
q11+i(55+1+i 5 € [i][a]

Since d # 0, there exists a largest positive integer k such that

d , .
A= e €20 (DT

Then we can repeat the process and get

(7.16) A = rfaS + 4 € Zila).

for some ¢, /. € Z[i][a]. Note that rg, 77, not necessarily have the property
that their coefficients have ged 1.
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Claim [T.13] shows that
0S8 = (6H)ain1 +Q mod (1+1)
with Q = A\11H + 6P. By , A111 =0 mod (1 +1), then
08 = (6H)ai11 + 0P mod (1+1).

By looking at the explicit expression of T', we observe that 7= H? mod 4.
It implies that % = H0H mod 2 and hence

%f = HéH mod (1+1).

Then ([7.16) becomes
HY™ = v{((§H)ay1y + 0P) + (HSH) mod (1 +1).

Now we evaluate both sides at a111 = A120 = a102 = A210 = apl12 = Ap21 =
azo1 = 0. Let @] denotes the evaluation of () under this condition. We ob-
serve that every term in P contains at least two of these a’s, so (6P)| = 0.
Then we get

(7.17) (as00a0s0a003) ™" = 7| (6H)|.
We observe that

(0H)| = A300a030a003 + A030@300@003 + A003¢:300¢030-

Under condition ([7.6]), there are three types remaining:
1) {)\300,)\030, Aoog} = {0,0,0} mod (1 + 2) Then ((SH)‘ =0 mod (1 +
i) and it contradicts ([7.17]).
2) {)\300, 030, Aoog} = {1, 1, 1} mod (1 + Z) Then

(0H)| = ap30ao03 + a300a003 + 43000030

It is irreducible in Falaso, aoso, acos] and it does not divide

(azo0aoz0a003) ™1,

it contradicts the fact that Fo[asoo, aos0, ago3] is an UFD.
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3) {3005 A030, Mooz} = {1,1,0} mod (1 +14). If Azp0 = 1, Ao30 = 1, Mooz =
0,
(0H)| = ap30a003 + azooaoos = (@030 + a300)a003-

But ag3o + asoo doesn’t divide (azpoaozoags)*™ !, it contradicts the
fact that the fact that Fg [agoo, an30, aoog] is an UFD.

This shows that our initial supposition that (14 1i)2|q is false, hence
proving Lemma [7.11] O
Lemma 7.15. (1+1)|q.

Proof. Suppose not.

Claim 7.16. 05 = H mod (1 + ).
Proof. We have

(7.18) qdH*™ = qrgdS + rpoT.
Therefore in Fsla], we have
dH'™ = rg6S

since 2|07 Since the coefficients of rg have ged 1 by assumption, and same
for 6.5 by Lemma the right side is nonzero, hence d is coprime to (1 + i),
and hence H =4S in Fa[a] (because the only unit in Fy is 1). O

Claim 7.17. Without assuming gcd(6) := 6(Ar)r =1, if 65 =0 mod (1 +
i) then 6 =0 mod (1 + 7).

Proof. We have S=0 mod (1+1) iff (1+7)|ged(4S). Thus (144)|ged(Ar),
by Lemma [7.7} hence 6 =0 mod (1 + i). O
Claim 7.18. § = 01117 mod (1 + 2)

Proof. The explicit expression of S yields 91115 = H mod (1+14). So by
Claim [7.16]

((5—8111)S=H—H:0 mod (1+i).
Now letting § — 0111 play the role of § in Claim implies the claim. [

To finish the proof of Lemma observe that Claim [7.18] contra-
dicts ([7.6). This shows that the supposition that (1 + ) { ¢ is false. O
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Lemma 7.19. ¢ does not exists, hence Theorem[7.4] is proved.

Proof. Lemmas and imply (1 +1i)|q and (1+4)?{q. Lemma

gives

a4 aam _ 4 0T
dA™ = 1) .
[ T S0 T
Since (1 + i)‘%a taking mod (1 + 1) yields

dH*™ = rg6S mod (1 +1).
Again, since ged(rg) =1 and 5 # 0 mod (1 + 1), d # 0 hence
H =4S mod (1+14)

as in Claim hence

o= 3111 mod (1 + ’L)

as in Claim which contradicts (7.6 again. O

Proposition 7.20. The set of § where N(8) is nonempty, is dense in V",
in analytic topology. Hence it is dense in Zariski topology.

Proof. Let

S :={(\p) € Z[i]*° | ged(A\f)r =1, (144|111 in Z][i]
and {300, Ao30, Aoz} # {1,0,0} mod (1 +1)}.

Then we have shown in Theorem that NV () # 0 for all A € S. We are
going to show that given any point &5 := > ; A;0; € V¥, we can find a se-
quence \* € Q(i)'° such that limy_,0o A¥ = X and N (6yx) # 0 for all k.

We consider a subset of So C S:

So = {(Ar) € Z[i]" | ged(Ar)r = 1, A300 = Aozo = Aoos =1 mod (1 + 1)
and A\ =0 mod (1 + 1) for I # 300,030,003}.

Since Q(4)'° is dense in C, we can find a sequence z*¥ € Q(7)'° such that
limy,_,o ¥ = . For each k, we choose some ¢* € Z such that ¢*z* € Z[]'°
and limy_, o ¢* = o00.

Then we look at each entry, say I = 111. If qulf 1 =0 mod (1+1), let

k

T 1
Moo= aksif ¢Fak =1 mod (1414), let A¥y, = % We repeat this
q
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process to make each entry of ¢® \F satisfy the mod (1 + %) condition in Sp.

Then it is clear that limj_, [2* — A¥| = 0 and thus

lim \* = lim 2% = )\
k—oo k—oo

Note that ¢®A¥ is not necessarily in Sy since it may not satisfy the ged condi-
tion. Let d* = ged(¢*A¥); € Z[i]. Then by our construction d* =1 mod (1 +
k\k k)\k
i). Then we consider —— € Z[i]'%. Tt is clear that q—k € Sp and Theo-
rem [7.4] implies that /\/%6@) # (). Since 0 x,+ is homogeneous, N (dyx) =
k

ak

N (8 ) # 0, as desired. O

Corollary 7.21. There exists a nonempty Zariski open subset Uy C V'V,
such that for each 6 € Uy, N(8) # 0.

Proof. Consider the projection morphism of schemes of finite type over C:
f:SpecC[A\r,ar, A1/ <Z A0S, )\181T> — Spec C[\].
T I

Im(f) contains a dense subset of V'V in analytic topology and therefore also
in Zariski topology, so f is dominant, which implies that I'm(f) contains a
non-empty Zariski open subset Uy, and consequently the corollary holds. [J

7.3. Another proof

For the case X = P2, there is another simple proof for N (&) # () where 4 is a
first order homogeneous constant coefficient differential operator. However,
the proof cannot be generalized to higher dimension.

Proposition 7.22. For h =4§ (homogeneous, 1st order, constant coeffi-
cient) GIT-stable (i.e. in this case, smooth), and for each smooth section
f(b), we have N(6) NG - f(b) # 0 where G - f(b) denotes the G-orbit of f(b).
So in particular, N(8) # 0.

Proof. Since h is GIT-stable, h has finite stabilizer in PV, under the action
of G = SL3. Therefore, the G-orbit of h in PV" is a closed subvariety of
dimension 8. For the same reason, the G-orbit of f(b) in PV has dimension
8, so f(b) is not killed by any nonzero Lie algebra element in sl3, (otherwise
the exponential map would give rise to a one-parameter subgroup infinite



644 J. Chen, et al.

stabilizer of f(b), under the action of G) and therefore the C-vector space
Wy :={Z,f(b)|x € sl3} has dimension 8. Therefore the projectivization PW,,
is a closed subvariety of dimension 7 in PVV, which then must intersect with
the G-orbit of f(b) in PV by dimension reason. Therefore, there exists
g€ SLs, A€ C,\ #0, and x € slg such that

(7.19) gh = XZ,f(b).
Therefore, since =1 f(b) = fg-16, we have
(720) h = gilZ%zgfgflb.

Since g_lZixg = Z, for some 2’ € sl3, Lemma/7.2/implies that g~1b € N(9).
Since fg-1, € G - f(b), we have N(§) NG - f(b) # 0. Hence the lemma fol-
lows. U

8. An application to classical invariant theory

Let X =P" ! withn >3, VY =T'(X, K)_{l), and G = SL, as before. In this
section, we prove the following

Theorem 8.1. Let (S1,...,Sy) be a system of homogeneous polynomials
that generate (C[VV]G, then there exists an Si among these generators, such
that deg(Sk) = 1( mod n).

We first prove the following lemma for any X = G/P:

Lemma 8.2. Let d be a first order constant coefficient homogeneous differ-
ential operator, and h = 0 f as before. Let b € B. Then the following condi-
tions are equivalent:

1) be N(9).
2) h=Z,f(b) for some x € g.
3) (6P)(b) =0 for any P € C[VV]“.

Proof. We already proved that (1) and (2) are equivalent in Lemma
We now prove that (2) and (3) are equivalent. Again consider the projec-
tion morphism p : B — B/G. By GIT theory, the function ring of B/G is
identified with C[V'Y, A~ i.e. elements in C[VV]% divided by powers of A.

Assuming (3), take any regular function ¢ : B/G — C, then ¢ -p €
C[VY,A™Y%, and therefore (6(¢-p))(b) = 0. (Note that (§(A))(b) =0 as
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A e C[VVY]%.) So (dpy(6)¢)(p(b)) = (6(¢ - p))(b) = 0, where again dp; de-
notes the tangent map induced by p at b. Therefore dpy(d) = 0, which is
equivalent to (2) as we already know.

Assuming (2), for any P € C[VV]%, by abuse of notation we still denote
P restricting to B by P. Then P is a regular function on B invariant under
G, therefore P = ¢¢ - p for a regular function ¢9 on B/G. So (2) implies
dpy(0) = 0, which in turn implies (dpy(d)¢o)(p(b)) = 0. i.e. (P)(b) =0. O

Now we prove Theorem

Proof. Let X =P" tandlet § =0,, ,,s0h=x1...7,. Letb=2a? + -+
x» be the Fermat point, which lies in B. As n > 3, it is clear that h does
not satisfy condition (2) in lemma Therefore Lemma implies that
there exists a homogeneous element S € C[VV]%, such that (§5)(b) # 0. i.e.
(Oa, ,5)(b) # 0. This implies that S contains a monomial term that is lin-
ear in aj.1, which is a product of a;._ 1 with powers of ang..0,.-.,a0..0n-
Since any monomial in S is invariant under the maximal torus action,
for any monomial that appears in S, the sum of indexes at each posi-
tion has to be equal. Therefore, this monomial is a nonzero multiple of
a1..1(Ano..0 - - - o..0n)" for some nonzero k € N (as it is clear that there is no
invariant polynomial in degree 1).

Now, take S’ to be an element in C[V'V]“ such that it contains a mono-
mial term that is a nonzero multiple of a1, 1(ano.0--- ao,..On)k with minimal
k. Then it is clear that S’ can not be written as a polynomial of invariant
polynomials which do not contain monomial terms of this form. The theorem
is therefore proved. O

Remark 8.3. It is possible to elaborate on this argument to extract fur-
ther information about the invariant ring C[V'V]“, and to establish further
relations between N(0) and the invariant ring. Indeed, theorem [8.1does not
hold for n = 2, precisely because in that case, the Fermat point does lie in
N (8) for the ¢ in the above proof.

Remark 8.4. There are indications that our study of N (§) for 1st order
derivatives is also related with the local Torelli theorem, as the vanishing loci
of such derivatives of periods correspond to degenerations of the period map.
It would also be interesting to investigate the invariant theoretic or geometric
meaning of AV(d) for higher order 6. We plan to study these questions in a
future paper.
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Appendix A. Some examples for P™

Making use of methods in [BHLSY], we can compute a basis of gRe® explic-
itly at the large complex structure limit (LCSL) by, and the Fermat point
br for P! and P2. By Theorem this allows us to find explicit differential
relations, i.e. linear relations for constant coefficient differential operators
that kill periods at these points.

If X=P" G=S5Lpt1, then we can identify R with the subring of
Clxo, . .., zm] generated by degree m + 1 monomials.

Lemma A.1. [BHLSY, Lemma 2.12] We have
6 (ne/®) = /01 - (Clale!®)

for allb € B.

Computation for P! at LCSL. For X = P!, G = SLy, R = C[z?, 23, z172),
f=apri20 + alx% + agx% and bo = T129.

Claim A.2. For integers a, >0, a # 3, a+ >0 and 2|(a + (),
:L“fxge““ € g- (Re™™2).

Proof. Without loss of generality we assume « > 8 > 0. For m,n > 0, we
observe

0
(A.1) —(aah e m) = gl it lemi® 4 (n 4 1) g ale™ T2,
x

Since " Pem®s = %m?_ﬂ_le’““, then by (A.1)),

o T T 0 T1To
aah ez e Zaxi(C[x]e 12,

Thus by Lemma xf‘xgexl‘“ € g- (Re™*) if we further require 2|(a +
B). O
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Consider the Euler operator, for & > 0,

1 0
(E +1)(x129)ke™® = (2 leﬂ + 1) (w122)" ™

= (@122 + (k4 D(@1a2)") e € g - (Re™™).
By induction we have
((a:lxg)k + (—1)*+1E! )e" ™2 € g - (Re™ ™).
Claim A.3. For X =P, at the LCSL we have a basis description

ﬁ . (Rel'll'z) :(®211C(($1x2)k + (—l)k'Hk:! >6z1m)
D (@a+ﬁ>0,a¢6,2|(oz-I—B)(C'x(llxgexlxz) = A

Proof. We already showed g- (Re®™*2) D A. It is clear that e™'*> ¢ A and
A ® Ce™ " = Re™*2 thus dim¢ Re™"2 /A = 1. Since

(Re!® /g - (Re! ™))" = Hompy (r, O)y = sol(r),

and we know in this case dimc sol(7),_ = 1, then dim¢ Re®*2/g - (Re™*2)
1. Therefore g - (Re™*) = A.

Ol

Now consider

o= (S ()" () (2)7) o0

— (E Ca$?0+2alfl}go+2a2) eT1%2

Let def (boo) € § - (Re™?2). By Claim [A.3}, when a1 # ag, there is no restric-
tion on ¢,; when a3 = ao, let d := ag + a7 + a9, it forces

(Z ca(xlxg)d> 7 = |3 ca((@iwe) + (~1)HL@)) | e

d>1

Thus
€000 =Y Cagan.on (—1)(d)!.

d>1
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We can rewrite this as
> (-1 =0.
ar1=as,|a|=d

Thus as a direct consequence of Theorem we have:

Claim A.4. When X =P, if the coefficients of

g\ o\ 0 \ ¢

satisfy the linear relation

> (-1 =0,

a1=ao, |a|=d
then 05(bso) = 0 for all s € sol(T)y.

Computation for P? at LCSL. For X = P?, G = SL3, R = C[z,, |a| = 3],
f=apr1x073 + ala:i{’ + agﬂf%.’ﬂg + agxlxg + a4x§ + a5x%az3 + aﬁchxg + aw:g +
agxlxg + CLQIE%CE;;, boo = T1X2T3.

Similar to the P! case, we can show

Claim A.5. For X =P?, at the LCSL we have a basis description

b (Re™) = (@2 C((zrmws) + (1) k) emeems)
D <@L1+L2+L3>0,L1,L2,L3 not all equal, 3|(L14—L2ﬂg)(cwil $§2 LIZ? ex1x2x3)‘
In this case we know dimc sol(7)p,. =1, so g - (Re®™**%3) is of codimen-

sion 1.
Now consider

= (S (&) () )0

(E :c xao+3a1+2a2+a3+as+2a9xao+a2+2a3+3a4+2a5+as
a1 2

T1T2T3

% xgo +as+2as+3ar+2as +a9> e
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Let

b1 := agp + 3aq + 2a9 + a3 + ag + 2ay,
(A.2) B := ag + ag + 203 + 3oy + 205 + o,
B3 := ap + a5 + 2a6 + 3ar + 2as + ag.

By Claim we can see that there is no restriction on the coefficient c,
unless

b1 =B2= B3 = |al.
Let def (boo) € g - (Re¥1%2%2), it forces

Y cal(-D%d) =0.

Br1=P2=B3=d
Thus by Theorem we have:

Claim A.6. When X = P2, if the coefficients of

g \ o\
=Y (5e) - (50)

satisfy the linear relation

S -1 =0,

Bl 2182 :B3:d

then ds(bso) = 0 for all s € sol(T)p.
Computation for P' at the Fermat point. X =P!, G = SLy, bp =
2 4 .2
7 + 735,
Let (—1)!! = 1. By straightforward induction which we omit here, we can

show

Claim A.7. For X =P, at the Fermat point we have a basis description
G- (Re™H72) = (@kzlzl(mod 2)C$If$lzez?+x§)

st (k= DT = DI\ o
® <@k5z50(mod 2),k+1>2C (xlfxlz —(=1)>= ( 2(3%5)/2 ) )e it 2) .

In this case we know dimesol(7),, = 1 and § - (Re®it%3) is of codimen-
sion 1.

And by Theorem we have:
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Claim A.8. When X = P!, if the coefficients of
AN N[ 9\
0= o |l — — —
ZC (8@0) <8a1> <8a2>
satisfy the linear relation

1)otartas (ap + 2a1 — 1)!M(ap + 202 — 1)!IT 0
Z Cao,a1,a2(_ ) 2(a0+a1+a2) =0,

ap=0 mod 2

then ds(bp) = 0 for all s € sol(T)p.

Computation for P? at the Fermat point. X =P2?, G = SLs, bp =
:U:f + x% + x%
Let (—=1)!!! = (=2)!l = 1. By straightforward induction, we can show

Claim A.9. Let iy + t1 + 2 := c. For X = P?, at the Fermat point we have
a basis description

. . N N Lo b1 bo T txd4ad
g- (Re®om™im2) = <@On@ of i=2(mod 3)Cag'wy wy e oI

@ <@L0 =11=t2=0(mod 3),c>3

C (xgoxilxé2 —(~1)s (o —2)!" (1 3@2)!”(L2 - 2)!”> €m8+m§+m§>
3

@ <®Lo =u1=t2=1(mod 3),c>6

wlo

—2)M (e — 2)M (g — 2)!M! :
C (xf)oxil:c? +(=1) Lo = 2) (L13c_1) (2= 2) a:ochz) emgﬂi’ﬂ%).
3

In this case we know dimg sol(7),, = 2 and § - (Re*1T#3+2%) is of codi-
mension 2.
Then by Theorem we have:

Claim A.10. When X = P2, if the coefficients of

o\ o\
=Y (Ga) (o)
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satisfy the linear relation

prteatag (B — 2)M(B2 — 2)M(Bz —2)!M 0

2,8155256350 mod 3 Ca(_ ) B1+Ba+B3 — Y
sreopiss (B — 2)M(By — 2)1M(B5 — 2)1!
ZﬂlEB2EIB351 mod 3 COC(_ ) 3 3/31+732+ﬂ3 1 =0

where f3; are defined in (A.2), then ds(bp) =0 for all s € sol(T)p.
Appendix B. Expressions of S and T
The degree 4 invariant S of a ternary cubic equals (see [S p.167])

S = —a300a312a120 + a%ua%lo + @3002012@021@111 — G012G:0216201G210
— @012010201200210 + @03043004012¢102 — 20001200%1100210
+ 3ap12a11101200201 — a030a012a301 - a300a321a102 + (1321(1301
+ 3a021010201110210 — 4021010201200201 — 2a021a%11a201
+ @003@3000021A120 — a003a021a§10 + a%oza%Qo - a030a%02a210
- 2a102a%11a120 + ap30a@102@111a201 + ailll + @003a111@1200210

2
— 003G03043000111 — G003@1200201 1 G003@0300201@210-
The degree 6 invariant 7" of the ternary cubic equals (see [S, p.171])

T= a303a330a§00 - 6a303a030a120a210a300 + 4a(2)03a030a§10 + 4a303a§20a300
— 60030120021 @030a300 + 18a00320120021a12042100300
— 12a003a012a021 031 + 12a003001200300111 32100300
+ 6a003@012003001200201 @300 — 12€003001200300201a310
— 24a003a0120111390a300 + 12a003001201110120031¢
+ 6400300127 90201210 — 2400030321 A1110210a300
— 12003321 1200201300 + 2400030521 2010310
+ 6a0030021@03001020210a300 + 1200030021 A03041110201@300
— 120030021 40300301 @210 — 12@0030021010203 20300
+ 6a003a021 010201200310 + 36a003a021 71 A1204300
+ 12a003a021a3110319 — 60a003a021a111a120201a210

2 2 2 2 3
+ 24a003a021a1200501 — 6@003a(3021020201a300 + 4@0032(30201
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+ 12a0030030@10241110120a300 — 240003003001020111a31¢

+ 18a0030030@102a1200201a210 — 20a003@030@}11A300

+ 3600300300111 a201a210 — 24003003001111200301

+ 12a0030102a11103 200210 — 12a0030102a720a201 — 1200030311 a120a210

+ 12a003a3 1, a3900201 + 401900300300 — 12a(1a120a210a300

+ 8a319519 — 3001905210300 + 1205120021011102104300

+ 6a819021@1200201 300 — 12a81200210201a319 — 12a8;5@030a102a210a300
— 24a2,5003001110201a300 + 2431500300301 0210 + 24a315a1020790a300

+ 12a(2)12a%11a120a300 — 24@%12a%11a%10 + 36&(2)1261111(“20(1201&210

— 27a15a320a301 + 6a012a82 1020210300 + 1200120821 a111a201a300

— 12a012a391a301a210 + 18a012a021@03001020201a300 — 1200120021 a0300301
— 60a012a021a1020111a1200300 + 36a0120021a10201110310

— 6a0120021a102a1200201 @210 — 120120210311 @300

— 1240120021031 a201a210 + 36a012a021a1110120050;

— 12a012a03003 0201204300 + 24a012003001020310

+ 36a012a030a102a7 114300 — 60a0120030@102a111a201a210

+ 6a012a030010201200501 + 120012003003 110301 — 12a012a3020720a210

+ 36a012a102011103200201 + 240120711 a210 — 36a012a7 11 a120a201

+ 8aiga30; + 240091 070201200300 — 270821 A1090510 + 120091 a1020711 3300
+ 36a321a102a111a201a210 — 12a%21a102a120a§01 — 24(1821(1%11(1%01

+ 6021003005 020201210 + 120021 a03001020111 301

+ 36a021a7520111a120a210 — 120021034903 90@201

— 36021010207 110210 — 12a021a102a111a120a201 + 403003020300

— 3a3007020501 — 12a030a70201200210 + 12003007 020711 210

+ 12a030aT02a111a1200201 — 12a030a102a711a201 + 8aTg2a3ag

— 2407090710390 — 380301200510 + 4300300916300 — 12071901020120051¢
— 12a012a102a3 1101200210 — 240021003003 020111300 + 24a021a711 @201

- 12@321611026120161300 + 2461102614111161120 - 861?11-
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