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r-tuple error functions and indefinite
theta series of higher-depth

CANER NAZAROGLU

Theta functions for definite signature lattices constitute a rich
source of modular forms. A natural question is then their gen-
eralization to indefinite signature lattices. One way to ensure a
convergent theta series while keeping the holomorphicity property
of definite signature theta series is to restrict the sum over lattice
points to a proper subset. Although such series do not generally
have the modular properties that a definite signature theta func-
tion has, as shown by Zwegers [I1] for signature (1,n — 1) lattices,
they can be completed to a function that has these modular prop-
erties by compromising on the holomorphicity property in a certain
way. This construction has recently been generalized to signature
(2,n — 2) lattices by Alexandrov, Banerjee, Manschot, and Pio-
line [I]. A crucial ingredient in this work is the notion of double
error functions which naturally lends itself to generalizations. In
this work we study the properties of such error functions which we
will call r-tuple error functions. We then construct an indefinite
theta series for signature (r,n — r) lattices and show they can be
completed to modular forms by using these r-tuple error functions.

1. Introduction

In his seminal work on mock theta functions, Zwegers [11] gives three closely
related constructions for mock modular forms. One of these constructions
involves theta series for lattices of signature (1,n — 1) extending an earlier
work on such lattices by Gottsche and Zagier [5]. A natural problem then
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is to construct similar modular objects out of signature (r,n — r) lattices.
Recently, Alexandrov, Banerjee, Manschot, and Pioline [I] gave such an
extension and investigated its properties in detail for the case r = 2 while
suggesting a natural generalization for r > 2. Further work along these lines
after the groundbreaking work of [I] includes [2] by Bringmann, Kaszian and
Rolen which uses and extends the results of [I] (in particular for r = 3 case)
to work out the modularity properties of a function that arises in the context
of Gromov-Witten theory and [6] by Kudla which among other things display
a relation between indefinite theta functions here and Kudla-Milson theta
series [7].

The main problem for indefinite signature lattices is that the usual g-
series one constructs for definite signature lattices is no longer a convergent
series. One can construct a convergent series by restricting the sum over
lattice points to a proper subset of them, however then generically one does
not get the modular properties one would get from definite signature lat-
tices. In [I1] holomorphicity properties of such g-series are compromised in
a specific way to get a modular object. Error functions used in this context
are replaced in [I] by generalized error functions. One of our goals in this
paper is to study the properties of generalized error functions which we call
r-tuple error functions in this work, closely following the methods of [I] in
their study of double error functions.

A crucial ingredient in the analysis of [I] is a result by Vignéras [I]
that shows conditions under which one can deform a theta series for an
indefinite signature lattice and obtain a modular object. The deformation
is accomplished through a kernel function satisfying a differential equation
which we will call Vignéras equation. Ordinary error functions used by [11]
and generalized error functions introduced by [I] and studied here satisfy
this equation and hence can be used in the construction of indefinite theta
functions. Mere existence of these functions still does not solve the problem
entirely though as one should still prove the convergence of the theta series
built as such. This is a nontrivial problem and we will give a sufficient set of
conditions for convergence again expanding on the methods of [I1] and [IJ.

The outline of this paper is as follows. In Section [2| we review the results
of [9] and set up some notation. Then in Section |3| we study r-tuple error
functions proving properties we need for the discussion of indefinite theta
functions. This allows us to set up a particular form of indefinite theta series
in Section[dand give a sufficient set of conditions for its convergence. Finally,
in Section [5| we discuss our results and future prospects.
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Note: During the course of this study the author heard of an upcoming
paper by Zagier and Zwegers on indefinite theta functions of generic signa-
ture. Also after this work was completed, a preprint by Westerholt-Raum [10]
has appeared discussing indefinite theta functions over tetrahedral cones. It
employs a geometrical approach to discussing asymptotic properties of the
kernel E,(M;u) we will define below. Our work instead bases its discus-
sion over generalized complementary error functions as defined in [I] and
proves its properties for general case through their integral definitions. In
particular, the decomposition of the kernel E,(M;u) in terms of generalized
complementary error functions M, (M;u) (see Propositions and
is what is used to establish convergence properties for theta functions.

2. Vignéras’ theorem and theta series for indefinite
signature lattices

The main technical tool we will use for establishing modularity proper-
ties is Vignéras’ theorem which we are going to review here. First we set
up some notation mainly following that of [I]. Let A be an n-dimensional
lattice (n € N) endowed with an integral bilinear form B(m,k) =mT Ak
for m,k € A (and an associated quadratic form Q(k) = kT Ak) which we
also linearly extend to R” = A ® R. Assume that the bilinear form has sig-
nature (r,n —r) where n >r and r € N denotes the number of positive
eigenvalues. We will also use the notation 0 f(2) := (9, f..., Op f)" for
x = (x1,...,15)T. Lastly, we define theta series with kernel ¢ by (for A € Z,
p € A*/A where A* is the dual lattice, 7 := 11 + i € Hfor 7y € R, 5 € RT,
q:=¢e’™ b,c€R" and p € A which is a characteristic vector satisfying
Q(k) + B(k,p) € 2Z for all k € A)

(1) Guld N (rbo) =7 ST T BED G( oy (K + b))
keA+p+p/2
% q—Q(k+b)/2 o2miB(ck+b/2)

If ¢(x)e™@@)/2 ¢ [1(R") the absolute convergence of the sum is ensured.
Now we can state Vignéras’s theorem:

Theorem 2.1 (Vignéras [9]). If for any degree <2 polynomial R(x)
and order <2 differential operator D(z), the functions ¢(z)e™@®)/2
D(z) [¢(2)e™@@)/2] and R(z)p(x)e™@@)/2 are in LY(R™) N L2(R") and if
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the kernel ¢(x) satisfies the Vignéras equation
(2) [B_l(&v, ) + 2maT O] ¢(x) = 2w\ ()

where B~ (z,y) = 2T A~ 1y, the theta function 0, (¢, N (1,b,c) transforms

like a Jacobi form of weight (A +n/2,0). That is we hcwe

- )\+T( iT)An/2 7”Q(p 2miB(u,v
0, (¢, Al ( ¢, —b)= m E%A ¢, Al (7,0, ¢),

0# [¢7 >‘] (T + 17 b7 ¢+ b) = 6—#1Q(M+P(2)9u [d)v A] (Tu b7 C)a
© 0,[0, A (7, b+ k,¢) = (=1)PFPle=mBENG, (6, \] (1,b,¢) for any k €
A,

O8] (7B, ¢ + k) = (=1)PEDTECRG, [6, X] (7,b,¢) for any k € A,
When we state holomorphicity in 7 and z = bt — ¢, we mean holomorphicity

of the function 5# [0, \] (1, 2) = e™BO2)g,, [, ] (1, b, ¢).

When the kernel asymptotes to a locally polynomial and homogeneous
function of degree A one can recover it from its shadow ¢ = (x 0, — \)o
and its asymptotic behavior. See [I] for further details.

3. Generalized error functions

In this section we will study a natural generalization of double error functions
as suggested by [I] and prove the properties we need to define indefinite theta
functions out of them. In this section and in the rest of this paper we will
use the following notation: For an s x ¢t matrix G, Ggr where S C [s] and
T C [t] will mean the matrix G restricted to rows and columns corresponding
to subsets S and T, respectively. If G is a column vector we will drop 7" from
this notation if T = {1}. Also for a column matrix z = (z1,...,zs)’ we will

use [[z = [[}_; z; and sign (z) = [[}_, sign (z;).

3.1. r-tuple error functions

Definition 3.1. Let m(?), ..., m(") e R"™*! be a collection of r non-degenerate
column vectors and w, ..., w € R"™*1 be the corresponding dual basis
(with respect to the Euclidean norm so that they satisfy w)? mUz) = §5152),
Let us also define M € R"™" by M = (m(1)~--m(T)) and W € R"™" by
W = (w(l) . --w(”)) so that M~T = W. Finally let v € R™!, where u =
(ug,...,u,)T is such that u” w\@) # 0 for all j=1,...,r. Then we define
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‘complementary r-tuple error function’ M, (M;u) using the following abso-
lutely convergent integral:

677I'ZT2727T7:ZT’U,

(3) M, (M) = <;>T|detM|_1 / et

R —iu

where the integration variable is represented as a column matrix z = (z1, . ..

P

Definition 3.2. Let m®, ..., m() e R"™! be a collection of r non-
degenerate column vectors (where we use M = (m(l) : '-m(r)) as in Def-
inition and let u = (uq,...,u,)T € R™1. We then define ‘r-tuple error
function’ E,(M;u) as

(4) E,(M;u) = /dTu’ e~ mumu) T (u=w) giom (MTd) .

R
Note that E,(M;u) is a C* function of u for any non-degenerate MD

Proposition 3.3.

(a) M, and E, are invariant under permutations of m) s, In other words,
for any r x r permutation matriz P we have M, (MP;u) = M,(M;u)
and E,(MP;u) = E.(M;u). Moreover, M, and E, do not change
under independent positive scalings of m\9)’s and change their sign
whenever one of mY’s changes its sign; in other words, for any diag-
onal v X r diagonal matriz D all of whose diagonal entries are non-
zero real numbers we have M,(MD;u) = sign (det D) M,(M;u) and
E,.(MD;u) = sign (det D) E,.(M;u).

(b) M, and E, are invariant under orthogonal transformations, that is,
for any A € O(r;R) we have

(5)  Mp(AM;Au) = M, (M;u) and E.(AM;Au) = E,(M;u).

Tt is useful to compare our definitions to those of [I]. M;(1;u) here is simply
equal to M (u) = —sign (u) erfc (Ju|y/7) there, My (((1) _1a)_T i (s )) here is equal

to the double error function Ma(a;u1,us) of [I] and My (( N Jﬁ)iT s )) here
is equal to — My (a, S u1, uz2) sign (a — ) there.
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M

(c) If M = ( N M?Z) ) is of block diagonal form then

(6)

(7)

M, (Ma u) = M; (Mgl) ) u[l,s}) Mrfs(Mq(«{)s; u[s—l—l,r])

and

E,(M;u) = ES(MS); u[l,s]) ET—S(M?—)s; U[s+1,r})

where ujj, j,) = (ujl,...,ujz)T. Note that whenever m\Y)’s split into
two sets spanning orthogonal subspaces we have a similar factorization
property using parts (a) and (b) of this proposition since then M can
be brought into a block diagonal form using O(r;R) transformations
and permutations.

Proof. All of the statements trivially follow from Definitions[3.J]and[3:2l O

Before proceeding any further let us introduce some notation.

e For each S C [r] consider the subspace spanned by {m() : je S}

and pick an orthonormal basis for it, b(ls) bfs‘), where we will use
the standard basis by = (1,0,...,0)7, by = (0,1,0 L0 b=
(0,0,...,0,1)T for S = [r].

Now for any S C S’ C [r], form matrices Qg € RIS swhose

rows are the components of ng) b|(§|) in the basis b(S) b‘(g,?,

in other words (Qs,5); ;, = bf)Tbgf) We also will use Qg = Qg |-
Essentially, these matrices will form the projectors to subspaces (m @) .
j € S). Choosing different orthonormal bases correspond to transform-
ing QS,S’ — A|S|QS,S’A‘7;*/| for S’ 75 [’I“] and Qg — A\S\QS where A, €
O(n;R).

Let us state now a couple of properties for future reference:
1) Qs,s Q§ g = I for any S C " C [r].
2) Qgng(j) =ml for j e S.
3) Qswl) =0 for j € [r]/S.
4) Qs,5Qs 57 = Qs,sv for any S € .§" C S" C [r].

e Similarly, for each S C [r] consider the subspace spanned by {w/)

j € S} and pick an orthonormal basis for it, cgs), ... ,c‘(5|), where again

we will use the standard basis ¢; = (1,0,...,0)7, co = (0,1,0,...,0)7T,
o e =(0,0,...,0,1)T for S = [r].

For any S C S C [r] we form matrices Pg g € RISXIST whose rows
are the components of cgs),. |(§|) in the basis cgs,) yenn c(S/)

sy
(S)T (5")
qigs = S G We also will use Ps = Pg,).

or

in other words (Pgsg ).
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Choosing different orthonormal bases correspond to transforming Pg g
— A|S|PS,S/A‘7;,| for S’ # [r] and Pg — A5 Ps where A, € O(n;R).
These matrices satisfy:

1) PSS'PSS/—I|5| for any S C S’ C [r].
2) PIPsw) =wl) for j € S.
3) PgmU) =0 for j € [r]/S.
4) PS S/PS! g = PS’SN for any S C S’ - S C [T‘]
Qs
C |r|.
5) Puys € O(r,R) for any S C [r]

e Let Mg denote the matrix Mg = (m(jl) mU2) ... m(jls‘)) where
J15325 -5 J)s) € S € [r] and j1 < ja < -+ < jjg)- We will also use Wg
for similarly constructed matrices out of w)’s. Note that Wg Mg =
I5) and moreover since Q:‘QQSM s = Mgand PST PsWsg = Wg we have
(QsMs)fl = W;‘CQ%: and (PSMs)fl = WSTng

Proposition 3.4. For any nonsingular M € R™" and v € R™*! away from
the loci w9 Tu = 0, the function M,(M;u) is a real valued C* function. Its
discontinuity as w( DTy — 0 for all j € [r] /S is given by

(8)  Mp(Miw) > (=1)Slsign (W gu) Mg (Qs M3 Qo).

wT 5

Proof. We start by defining variables v; = i '%+> +i. The Jacobian fac-
tor associated with this change of variables is % = % Defining
vwMTy
v(v,u, M) = : we can rewrite M, (M;u) as
vpwTy
i\" T
9) () sign (Wg:]/su> sign (Wgu) e T
T

/ e*ﬂﬁ(’U,U,M)TMTM (v,u,M)
ar

H;:1(Uj — i)

R

As w9 Ty — 0 for j € [r] /S, the components of ¥(v,u, M) corresponding
to j € [r] /S go to zero and Mv(v,u, M) — Zjes m(j)vjw(j)Tu and hence

(10)  o(v, u, M)T MTMT(v,u, M) = Ts(v, u, M)T MEM g Tg(v, u, M),
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where we should also note that MEMg = MLQLQsMs. Also for W[j;]/su =
0 we have Qngu = u which in turn gives

Wiu =WEQ§Qsu = (QsMs) 'Qsu, u'u=u"Q§Qsu

and implies vg(v,u, M) = v(vg, Qsu, QsMg). Then we can combine the
factor (%)ls‘ sign (Wg:u) e~™"% with integrals over vg to obtain the
Mg (QsMs; Qsu) part. Finally, in the limit W[::]/Su — 0, remaining v} /g
integrals give (iw)“‘s | and we obtain the discontinuity described in . O

Remark. For large u, E,(M;u) is locally constant as
E,(M;u) ~ sign (MTu)

whereas M, (M;u) is exponentially suppressed as

2 M) ~ et gt S

ju) ~ ——— |de _.
B IOV )
The asymptotic behavior of E,(M;u) is obvious from its definition in equa-
tion (4)) whereas the asymptotic behavior of M, (M;u) can be deduced from
a saddle point approximation. We will make the asymptotic behavior of both

functions more precise in our discussion.

Lemma 3.5. First derivatives of M,(M;u) and E,(M;u) with respect to
u are given by:

(11) w(])T auMT(M, u) — i‘efﬂ-uTQa}Q{j}u

]

X M1 (P g3 My 453 P30
(12) w(J)T auET(M’u) — 2 6_7|"LLT {j}Q{j}u

[|m@)]|

X Er—1 (P (3 M/ 51 By w)-
Proof. We start with M, (M;u) and its definition in terms of the integral

—mzT 2—2mizTu

MT(M;U):<;>T|detM1_1 / o

R —qu

The derivative 0, acting on the integral limits gives vanishing contribu-
tion because of the exponential suppression, then we simply act it on the
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integrand to find

e*ﬂsz727rizTu

.\ r—1
(13) w(j)TauMT(/\/l;u):(l> 2|det M|~ / e
T
. H(“’m/{j}z)

. Qy
Since (Pm{/j;} € O(r,R) and Py 15y Py (53 Wpi/ 53 = Wirlyisy we can re-
write this as

.\ r—1
(14) w9 9, M, (M;u) = <:T) 2 |det M|

/ e~ T2 Bty iy Pirisiay 22wz Py gy Py u
X d"z

T T .
R IT (Wi P o P ?)
x e—ﬂuTQ{j}Q{j}ue—Tr(z—&—iu)TQ{j}Q{j} (z+iu) )

Performing a change of variables z = P,/j32 and 29 = Qy;}(2 + iu) and
taking the integral over zy we get

. ror det Pyj /i M/t
)T o —raT QT Qe 1906 Py M)
(15) w0y My (M;u) = 2e 0 det M|

X My—1 (B3 Miy iy By yw)-

Now note that

(16)  |det M| = ‘( @y >M‘ _ ‘( QuMui/is) Q{j}m(j()_)ﬂ
Py PoyinyMpy - Bryym”

Since Py, /{j}m(j) = 0 this simply reduces to

{17) [det M| = ’Q{J‘}m(j)’ |det Py M|
= Hm(”H |det Py 1y Mt 53

finally proving our assertion for M, (M;u).



590 Caner Nazaroglu

Now let us study E,(M;u) = /dru’ e~ mlumu) () gio (MTd):

Rr

(18) w7 9, B (M;u) = / dr’ [—w(j)T 3u,e_n<u_u/)T(u_u/)}
R™
x sign (M) sign (mO7').
Noting that

T T AN
2

w9, [sign (mOTw)| =26 (mOTu') = o] ® (@)

and integrating by parts we get
(19) w8, B, (M;u)

2 r —m(u—u')T (u—u') .:
- Hm(J)H/ aral e T sign (M50 8 (Qiye)
R’r

- | 2()H /dTu/e—”(“—“’)T(P[fl/mP[r]/m+Q{Tj}Qm)(“—“’)
m\J
Rr

xsign (M (Bl By + Q1@ ) o) 8 Q) -

Performing a change of variables @' = Py,/¢;3u, uo = Q;3u and performing
the integral over ug we can rewrite w7 9, E,(M;u) as

2

SN Fe
R

/ A" e Py yu—u) T (P 5y u—1d")
—1

—WUTQTJ- Q J u - T T ~
< e QU gign (Mm/{j}P[ /{j}u/>

]

which finally can be written as

(21) TR, (

[mO] Py iy M5y Pl w)

proving our assertion for E,(M;u). O
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Proposition 3.6. The shadows of E, and M, are given by

(22) Ta M, (M;u) Zumo i e~ Quiyu

X M1 (P53 M /453 Py

)Ty,
e U TRTHQuiyu

LT _
(23) 24 OuEr(M;u) 5 2::

[m@]°

X Er—1 (P /(3 Miri 453 P53 0)-
Proof. Using the fact that W M = MW = I, we have

(24) ul 9, M, (M;u) = uf MWT 9, M, (M u)

_Z( ) DT g, M, (M; ).

Using Lemma, then proves our statement for M,. The proof for E, is
exactly the same. O

Proposition 3.7. M, (M;u) and E.(M;u) solve Vignéras equation with
A = 0 for quadratic form Q(u) = uu on their domain of definition. In other
words,

ET: (ng + 27, 8uj) M,(M;u) =0 and
j=1

2 U u) =
jzl(aJrzj ) Br(Mi ) =0,

Proof. We start with the case for M, (M;u). Since

(26) (8ZJ + 27T’U,J 8,“]) e_WZTz—QﬂiZTU — 271—2] azj €—7I'ZTZ—27rizTu
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we get
(27) (82 + 2muj 0y ) M, (M;u)
j=1
B 1 -1 r 27 - —m2T2—2mizTu
= (ﬂ_) |det./\/l| / le_[(VvTZ);ZJazje .
R™—iu -

Integrating by parts and noting that »._, 0, (W) = 0 proves the
statement for M,..
For E,(M;u) we first note that by Proposition we have

])u

—WuTQ{Tj}Q{j}u
m(J) H

(28) 2nu’ Oy Ep(M;u) = 4n Z H
* Er1 (B 3y Mt iy Py iy w)-
Next we note that by Lemma [3.5 we have

(29)

zr: Ou,; O, Er(Miu) = XT: mT Ou <w(j)T Oy Er(M; u))
=1

J=1

- j 2 —muTQT. AU
=2 m" o, (Hm(j)He G Er—l(ﬂrl/{j}MM/{j};P[r}/{j}u)) :

Since P[,.}/{j}m(j) = 0 we only need
(30) mWT 9, (e*”“TQ?j}Q{J‘}“> — 91 (m(j)Tu) o™ QT, Qi

to find

(31) i Ou, Ou, Er(M; )

J=1

= —471'2

m(J)T

Hm e U Qi Qunu Er 1 (P i3 M5y Pl i)
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canceling the contribution from equation and proving

zT: (82 + 2mu; Oy ) (M u)

J=1

vanishes. Note that the same proof can also be used for M, (M;u) giving a
second proof for the statement for M, (M;u). ]

Proposition 3.8. M, (M;u) is uniformly bounded as
| M (M; )| < (1) e ™",

Proof. We will use induction to prove the statement. For » =1 we have
| My (M;u)| = |erfe (Ju| /7)| < e=™ establishing the base case. Now we as-
sume the hypothesis holds for M,_; to prove the inductive step. By Propo-
sition [3.6] we have

) 2, T T
(32) (M tu) = 22” m u mtPut Qry Quiyu

mU H
X My—1(Pyyyp Mgy P01 /451 0)-

Integrating from ¢ = 1 to oo and noting that M, (M;tu) — 0 as t — oo we
have

(4)
(33) M U = 2ij H / t —mtu Q{]}Q{J}“

X My—1 (P p My P01 /451 0)-
By the induction hypothesis
<'>Tu

0o
X / dt 677“52“ Q{j}Q{j}“e*ﬂ'trzuTP[z]/{j}P[r]/{j}“
1

(34) | M (M u)| <

=(r—1)! Z |Q{j;u‘ erfc <v WUTU) )
= Vulu

Using % < 1 and erfc (\/ 7ruTu> < e then gives the result. U
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Proposition 3.9. On its domain of definition (which is [[ (WTu) # 0) the
function M, (M;u) can be decomposed as

(35)  Mp(M;u)= > (=1)"lsign <W[z]/su> Eig (QsMs; Qsu).
5C[r]

Proof. We start with a change of variables v; = w(j)Tz (so that ‘ ‘ =
|det W| = |det M|™1) in the integral defining M, (M;u) (see equation @)
to get

i\" e—vaMTMv—QMuTMU
36) My (M:u) = () / "y i |
Hj:l Uj

Rr—iWTu
Now we deform the integration contours without crossing any poles:

—mvT MT Mv—27miuT Mv

(37) MT(M;u):<i>T lim [ d"v——

@ 6.¢—>0+RT [Ti= (vj — ie; sign (W Tw))

1
vj—i€; sign(wTu)

factors with PV < > + i sign (wTw) §(v;) and rewrite M, (M;u) as

(38) <’L> /drv e*ﬂ"UTMTMU*Qﬂ"L"LLTM’U

™

Under the integral and in the limit ¢; — 0% we can replace

RT

< ST IPv <U1J> I1 [iﬂsign (w(j)Tu> 5(%»)}

SClr] \Jes j€lr]/S

Taking the integrals over v}, /g using the delta functions we then have

(G9) D (1) Flsign (“ﬁ/ﬁ“) <7Zr> |S|

SClr]

/ d|S|’US H PV < > *TrngngU5727TiuTMsvs‘
UV
J

RISI ]ES
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Using the fact that %PV (%) is the Fourier transform of sign (z) and that
QEgQSMS = Mg we can rewrite the integral

- S
<Z> /d|S|US HPV <1> e~ Tvs Mg Msvs—2miu’ Msus
T v
RIS Jjes J

as
(10) [l [l sign (e) i o~ MEQEQs Mars i QEQ: s
RIS| RIS|
Performing a change of variables g = QsMgvg and T = (QsMyg) Lz (for
which the Jacobian is unity) we obtain
(41) / dslz / d¥5g sign (MEQEE) 2T Vs o —MUETs o—2miuT QFTs
RISI RIS|

Finally performing the Gaussian integral over vg we find

(42) / d¥1F sign (MEQET) e (@D (@su0) = g (QsMs; Qsu)

RIS
finishing the proof. O

The decomposition given in Proposition [3.9] implies that one can con-
versely decompose E,(M;u) in terms of M, functions. Before giving this
result we state a lemma that we will need in establishing that decomposi-
tion.

Lemma 3.10. For any n X n real positive definite matriz G and any v €
R such that
~G3k 0
S,S . ( vs > 7& 0
~Gys,s Gss In-is)) \Vin/s
we have

_G—1 0 vg
(43) sign 88 < ) _o.
5%%] —Gy/s,s Gsi@ I s Uln]/S

5C[n]
Proof. See Appendix [A] for the proof. O
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Taking Ggr = WgWT and vg = Wgu in Lemma and noting that
(44) MEPL Pu = (WEWs) ™ W,
and
(45)  WiysQpys@u/su = Wiysu — (WIE/SWS> WEWs) " Whu
we find

(46) Z (-1)!¥lsign (MEPE Pgu) sign (W]:\F,/SQ[T?:]/SQ[T]/SU) =0
S:SCN

for all non-empty subsets IV of [r] and for all u such that the arguments of
sign functions are non-zero.

Proposition 3.11. For any u such that H [H (
SClr]

Jigten
M[r}/sp[r]/sp[r]/su

0 we have

(47) By (Msu)= 3 sign (MysPl s Pyjsu) Mis (QsMesi Qo).
sl

Before going into the proof note that M functions have discontinuities

(48) M5 (QsMs; Qsu)
= (=) sign (W5, QEQsu) Mg (Qs Ms:; Qoru)

as W;‘C/S,Qngsu — 0 where S C S C [r] by Proposition So these dis-
continuities cancel if

(49)

Z (—I)ISI—IN\ sign (Wg/NQgqu> sign (M[Tr]/SP[f]/SP[T]/Su> =0
S:NCSCJr]

for all proper subsets N of [r]. This in turn is ensured by Lemma and
equation . We now turn to the proof of Proposition to show the
decomposition precisely:
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Proof. Using Proposition [3.9] we find

> sign (MFys Py sPojsu) Mis) (QsMs: Qsu)
Sch

is equal to:

(50) (—1)I51= NVl sign (Wg/NQ£Q5u>
S:Sg[r} N:NCS

X sign (M[TWSP[::]/SP[T]/SU> Ejn) (@vMn; Qnu) .
Changing the order of sums gives

(51) > En(@Q@vMy;Quu) > (—1)ISEIN]

N:NC[r] S:NCSC|r]
X sign (Wg:/NQgQSU) sign (M[Tyi]/sp[%/sp[r]/sw :

Then the sum over S is zero by Lemma and equation except for
the case N = [r] where it is unity. This then simply leaves E,(M;u). O

3.2. Boosted error functions

We can now use the functions Eq(M;u) and Ms(M;u) we defined for Eu-
clidean bilinear form in the previous section to spaces with arbitrary non-
degenerate bilinear forms. In particular let x € R™ and let us define a sig-
nature (r,n —r) bilinear form on this space by B(xz,y) = 2T Ay (or by the
associated quadratic form Q(z) = 7 Az). Here r denotes the number of pos-
itive definite directions. We will define F, and M, functions using vectors
c; € R" for j=1,...,5 <r (represented as column vectors) which span a
positive-definite subspace, in other words CT AC' > 0 where C = (¢ - - - ¢;.).

Let us introduce some notation before proceeding any further. Let E €
R**™ be a matrix whose rows form an orthonormal basis for the plane
spanned by ¢;’s so that EAET = I; and C = ETEAC. The projection of
x to the plane spanned by c¢;’s will be denoted as

2$ = ETEAz = C(CTAC)™'C Ax.

Definition 3.12. Let A be a signature (r,n — r) bilinear form and C =
(c1-+-¢s) beann x s matrix whose columns form a positive definite subspace
according to this bilinear form. Further define a matrix E € R**™ whose rows
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define an orthonormal basis for the subspace spanned by ¢;’s. Then we define
EA(C;x) and MA(C;x) as

(52) EMC;z) = Es(EAC; EAz) and MA(C;x) = M,(EAC; EAz).

We will drop the superscript A whenever the bilinear form is implied from
the context and will drop the subscript s when the number of vectors in C'
can be inferred.

Note that these functions do not depend on the choice of E since different
choices correspond to a transformation £ — QF where @ € O(s,R) and that
leaves E2(C;z) and MZ2(C; ) invariant by Proposition

We also define D = (dy - - - ds) € R™** whose columns form a dual basis
to C for the subspace ¢;’s span. That is DT AC = I, and D = ET EAD which
can be easily verified for D = ET(EAC)~T. We also use Cs for S C [s] to
denote the matrix Cg = (cj1 Cjy - '-cj‘s‘) where j1, jo2,...,jj5) € S and j1 <
J2 < -+ < Jjs)- The matrix Dg for the dual basis vectors is similarly defined.
One last notation we will use is Cq) g+ denoting the projection of vectors in
Cy to the subspace orthogonal to the one spanned by CS/E| More concretely
Cs s will be formed by vectors ¢; — Cg: (C’:‘SC,ACS/)_l C’g,ch for j € S in
increasing j order though this choice will not be important. Now we can
state the following propositions following from our work in Section

Proposition 3.13.

(a) E(C;x) is a C* function of x € R™ for C' € R™™* spanning a timelike
subspace as described above. It is invariant under permutations of c;,
independent positive scalings of c; and is odd under independent sign

flips of ¢;’s.
(b) If C splits into two sets C1 and Cy which span orthogonal subspaces,
then
(53) E(C;z) = E(C1;2) E(Cy; ).

(¢) As |B(cj,x)| — oo for all j we have E(C;z) — sign (B(C,z)).

2In Section [4] we use the same notation also when the columns of Cg span an
indefinite signature subspace.
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(d) The function E(C;x) satisfies the Vignéras equation for bilinear form
B(x,y) with A =0:

(54) [B_l(&p, 0y) + 2maT d:) E(C;2) =0
where B~! denotes B™(x,y) = T A~'y. The shadow of E(C;x) is

(55) xT(? E(C

B(cj,x
i Z q

(e) The function E(C;x) has an integral representation:

e TPl B(Cly 5y 115 ).

(56) E(C;x) /dsm' e ™R ) gion (B(C, "))
(©)

where the measure is normalized so that / dsaz’ e QW) — 1,
(©)

Proposition 3.14.

(a) M(C;z) is a C™ function of x € R" away from the loci B(d;,z) =
0 for C € R™*® spanning a timelike subspace. It is invariant under

permutations of cj, independent positive scalings of c; and is odd under
independent sign flips of c;’s

(b) If C splits into two sets Cy and Cy which span orthogonal subspaces,
then

(57) M(Ciz) = M(Cr;2) M(Co; ).
(¢) IM(C;x)| < (s!) e %),

(d) The function M (C';z) satisfies the Vignéras equation for bilinear form
B(z,y) with A = 0.

(e) The function M(C;x) has an integral representation:

.\ S —7Q(z)—2miB(z,z)
7 -1 (&
— ] (detcTAC / dsz
m ) ( ) [T[B(D, 2)]

(58)  M(Ciz) = <

(C)—izS

where the measure is normalized so that / dsa’ e~ QW) — 1,

(€)
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Proposition 3.15. On its domain of definition (that is [[[B(D,z)] #0)
we have the decomposition

(59) M(Csz) =Y (=1)* Plsign (B(Dyys,7)) E(Cs;x).
SCls]

Similarly we have

(60) E(C;x) = Z sign (B(Clgj/s15, %)) M(Cs; x)
SCls]

for any x such that the M function is well defined and the arguments of sign
functions are nonzero.

4. Indefinite theta functions of higher depth

In this section we will construct a certain indefinite theta series and give
sufficient conditions for its convergence. The holomorphic part of these series
will be given by restricting the sum over lattice points through the function

r

H [sign (B(c;,x)) — sign (B(c),x))] -

J=1

(61) br(a) = o
Before stating our result let us introduce some notation. By Cgr we will
mean the matrix whose columns are taken from the set {¢;: j € SNP}U
{cj: j € S/P} in, say, increasing j order (we will also use C” for Cype and
CcF for Cmp). We also form the matrix C'sp | 7¢ by which we mean the
matrix formed by vectors in Cgr projected to the subspace orthogonal to
the one spanned by the vectors in Cpe. Next we will use A(zq,...,z,) for
the determinant of the Gram matrix for the vectors x1,...,zs and Dj, j,
for the cofactor at (j1,j2) position for the Gram matrix constructed from
{c1,¢},...,¢cr, .} where we will use primes in the subscript to denote po-
sitions corresponding to vectors cg-’s. Finally form the matrix M from the
cofactor matrix of the Gram matrix for (¢1,c,..., ¢, ¢.) and by removing
cofactors Dj ; and Dj ; for all j =1,...,7.

Theorem 4.1. Let C and C' as described above be 2r vectors in R™ en-
dowed with an integral bilinear form B(x,y) of signature (r,n —r). Assume
that each C* for P C [r] spans a signature (r,0) (i.e. positive-definite) sub-
space. Further assume that A = A(C,C") satisfies A(—1)" > 0 (signifying
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that C' U C" forms a linearly independent set and spans a signature (r,r) sub-
space by our assumption above) and that D (—1)" >0 forall j =1,... 7.
Finally assume that the matriz (—1)"M as defined above is negative definite.

Then 0,[¢,,0] is a convergent series and it is holomorphic in T and
z away from the loci where B(k+b,c;) =0 or B(k+b,c;) =0 for some
jerl and ke A+ p+p/2.

Moreover, assume that analogous conditions for vectors in C and C’
we stated above also holds for Cp /519 and C[/T]/SLSP for any S C [r] and

P CS. Then 6, [by, 0] with the kernel

(62) or(@) = 5 > (=) E(C;x)

PCr]

is a convergent series and forms a modular completion for 6,[¢.,0] trans-
forming like a (vector-valued) Jacobi form of weight (n/2,0).

Proof. We follow and generalize the proofs in [I1] and [I]. The first thing to
note is that for any z € R” we have

(63)
' D;.B(c;,z)B(d;,x
Alz,c1,),... e, ch) = A Q(:c)—2zj_l 3By, 1)Ble; )

- XTmx
A

where X7 = (B(c1,z) B(cy,z)--- B(cr,z) B(c.,z)). We define the part in
brackets as Q_(x):

(64) Q-(0) = Q) 2222 D PG DB

Now we note that if z is linearly independent from C' U C’ the subspace
(x,c1,¢y, ... ¢, ) has signature (r,r 4+ 1) and hence

(65) (—1)"A(z,c1,¢y, ... e d) = (—1)AQ_(z) — XT [(-1)"M] X < 0.

Using the negative definiteness of (—1)"M and positivity of (—1)"A we con-
clude Q_(z) < 0. On the other hand, if z is in the plane spanned by C'U C’
we have A(z,¢q1,...,c,) =0 and hence Q_(z) < 0 unless z = 0 again argu-
ing through negative definiteness of (—1)"M and positivity of (—1)"A. Now,
¢r(x) # 0 only when sign (B(cj, x)) sign (B(cé-,a;)) <Oforall j=1,... 7.
The assumptions D; j(—1)" > 0 and A(—1)" > 0 implies Q_(z) > Q(x), i.e.
on the support of ¢,(z) the negative definite bilinear form @)_(z) dominates
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Q(x). Using this we can conclude that ¢, (x)e™@®)/2 < ¢™@-(#)/2 proving the
absolute convergence of ,,[¢;, 0].

For the second part of the theorem we use the decomposition in Propo-
sition to rewrite the kernel ¢, (x) as

1
|P
(66) or () |S\ > ()P M (Cges ) i
SC[r] PCS
X Z |Q‘ 81gn (C[r]/SQLsP,ZL‘)) .
QClrl/S
Let us focus on each S € [r] and P C S contribution
(67)
1 .
¢SP($) = M(Cgp;x) m Z (—1)‘Q| s1gn (B(C[T.]/SQJ_SP, x))

QClr]/S

separately. We start by decomposing each z € R" as x = x1 + x2 where x;
is in the linear span of Csr and zg is in its orthogonal complement so
that Q(z) = Q(z1) + Q(z3). That divides ¢gr (x) e™@*)/2 into a factor along
<CSP>J_:

1 ) _
o5 O (D sign (B(Cpysavse, w2)) | €792
QClrl/s

(68)

and a factor along (Cgr):
(69) M(CSP;SL‘l) 67rQ(I1)/2.

By our argument in the first part and by the hypothesis given for Cj,j/5, 57 U
C'[’ /518" the factor

1 i TQ(x
(70> m Z (_l)lQ‘ s1gn (B(C[T]/SQJ_Spvx)) e Q( 2)/2
QC[r]/S

sPL

is dominated along (Cgr )’ by e™@>  (#2)/2 where Q% " is a negative definite
bilinear form on (Cgr)* and correspondingly by Proposition

(71> ‘M(CSP’ {I;)‘ eﬂQ(xl)/Q < ‘S’[ e—ﬂ'Q(a:l)/Q
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and this contribution is exponentially suppressed along (Cgr). That shows
the series in 0, [(ZT, 0] is convergent and that ¢,(x)e™@(®)/2 satisfies the con-
ditions given in theorem Moreover, since E(CT;x) functions each sat-
isfies Vignéras equation with A = 0 (see Proposition by Vignéras’ the-
orem 0, [QAST, 0] transforms like a (vector-valued) Jacobi form of weight

(n/2,0). O

Remark. It is desirable to further relax and simplify the conditions we put
on C. See [6] and [10] for further discussion.

Aside from the obvious factorizable solutions to the hypothesis we put
for C' and C’" we will exhibit a non-factorizable example for r = 4 case.
Example. Consider signature (4,4) integral bilinear form

(72) A= <G£1;1f) —014>

where G(A4) denotes the Gram matrix for the A4 root lattice:

2 -1 0 0
-1 2 -1 0
o -1 2 -1
0 0o -1 2

(73) G(A4) =

Then the vectors

(74) = cy = cq =

[elelelelelelelig
Q
()
SO0 OoOO+—O
OOOOoOO+OO
[eleloleldelale)

and

(75)

[
O
Il
Q.
O
Il

A

[y

[en]en) ‘ [l
—

ol coocoro
| coocoroo

H
coo |l rooco

satisfy the hypotheses of theorem
5. Discussion

In this work we studied the properties of r-tuple error functions and in-
troduced indefinite theta series using these functions. One obvious question
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is to relax the conditions we imposed on ¢;’s and c}’s that determine the
subset of lattice points used in the holomorphic part of the associated theta
series and ensure its convergence. Specifically, one would want to allow null
vectors and allow linear dependencies, which is essential to extend the range
of applications for indefinite theta functions. The other two constructions
for mock modular forms given by [I1], namely using Appell-Lerch sums [12]
and meromorphic Jacobi forms [4], are closely related to signature (1,n — 1)
indefinite theta series. It is then natural to look for similar corresponding
constructions for signature (r,n — r) indefinite theta functions. On the side
of Appell-Lerch sums one such generalization is already available in litera-
ture under the name ‘generalized Appell functions’ [3,[§]. Indeed, [I] initiated
the study of their modular properties for the r = 2 case. To study the com-
plete story it is then desirable to study the null limits of the construction
we have given for higher r cases.

Appendix A.

In this section we are going to prove the Lemma which we restate here
for reference.

Lemma A.1. For any n X n real positive definite matriz G and any v €

R™*L such that
—Ggls 0 < vg >
5 . # 0
<—G[n1/s,s Gss Iu-is)) \Vnys

—G‘;ls B 0 ( Vg ) —0
—GuyssGss Inys)) \Vml/s

SCln]

Proof. We will use induction on n. The base hypothesis easily follows from
the positivity of G1,1. For the inductive step let us note the following facts
first. There are 2" n sign functions in our sum. We are going to show that
there are generically 2" ! n independent ones that each appear twice and
that discontinuities cancel among each pair. In particular, we consider the
contribution to the sum above from subsets S and S U {j} for some j € [n]
and S C [n]/{j} and single out the contribution from the row corresponding
to v;.

we have

(A.1) Z sign

SC[n]
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e The contribution from S reads (using S for [n]/(S U {j})):
—Ggs 0 0\ /ug
(A.2) sign | | —Gjis G§i§ 1 0 v
~Gg5sGss 0 Ijg ) \vg

[ -GSl 0
. — . S,S vs
251n<v~—G-5G 11}5) sign =1 ( ) .
SOV T s Ys,s & \~CssGss 1g) \vs

e For the contribution from S U {j} first note that

_ -1
Gis G -GG i

where k = G, ; — Gj s G§15 Gg,; and

1

—1 -1
kGS,S Gs,j Gjs Gs,s-

1 o
(A4) (GS,S - @GSJ Gj,S) - GS,IS *

By the assumption that G is positive definite we have k > 0. We can
rewrite the S U {j} contribution

-Gl , 0
. SU{j},5uU Vsudj
(A.5) sign | | _ {CJJ}_I {7} I < v;{]}
8,805} T Su{j},suiit 7|5 5
as
(A.6)
—1
_<GS,S_$GS,]G]AS) iG;lsGS,J 0 US
sign 1G;.sG5s % 0 Uj =
~Gs o (Gasm i GasGrs) +EGs,GusGsl 165 GikGas—tGs, Tg | \Vg
. A 1 _ ~(Gasm gt GasGs) o\ (Vg
— sign (v] — Gj7SGS,S'US> sign [(—(Ggs—c‘a@ﬁ,,s) (cs,s—ﬁcs.A,Gm)fl " g

i

where we defined vg = vg —
Gjj

Gs,j-
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Next we are going to show that possible discontinuities due to
sign <vj - Gjs G;gvg)

terms do cancel between these two contributions. For this we note that at
v; =G5 Gggvs we have

1 s
(A7) — <GS7S — ijGS7jGj7S> vs
_ 1 _ 1 _
= - (Gsiq + 2G5 Gs,Gis Gs}g) <Us =G, G505 Css v5>
= —Gg5vs
and
1 1 o
(A.S) G§,S — ?G@jGj,S Gsyg — ?Gs,jGj,S Vs + Ug
757 757

_ A e o Na e e
= <GS,S GjJ‘ GS,jGJaS> GS,S Vg + (’US Gj,j GS,jGLS GS,S ?.15>

-1
§,S GS,S US + 'US?.

G
~Ggy 0\ [ug _
G Gl R ( ) # 0 (ensured by the hypothesis) the

vs

_G_l 0 vg
(A.9) sign S8 ( )
5%;1] —Gny/s,s stg L5 Uln]/S

is equal on both sides of v; — G g Ggg vg = 0. The argument generalizes for
all the sign functions in the sum.
Let us now specialize to j = n (the choice of j = n is not important),

use S = [n — 1]/S and rewrite the sum in ([A.9) as

. _G_l O v
(A.10) > [Slgn [(—Gg,ssésgfs d |§|) <Z>]

SCln—1]

— sign
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Un,

where vg = vg — a—Ggsn and Gisa positive definite matrix defined by

~ 1
(A.11) Gin-1],jn—1] = Gn—1],jn—1] — KG[n_u,nGn,[n_u-

)

Now for any v satisfying the hypothesis, we start increasing v, while
keeping v,_q) fixed until v, — Gy 5 Gg}g vg >0 for all SC[n—1] and v
satisfies the hypothesis of the lemma. The value of our sum does not change
across any of the possible discontinuities by our argument above. The fact
that the sum over S C [n — 1] is zero by the induction hypothesis then proves
the statement of the lemma. O
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