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r-tuple error functions and indefinite

theta series of higher-depth

Caner Nazaroglu

Theta functions for definite signature lattices constitute a rich
source of modular forms. A natural question is then their gen-
eralization to indefinite signature lattices. One way to ensure a
convergent theta series while keeping the holomorphicity property
of definite signature theta series is to restrict the sum over lattice
points to a proper subset. Although such series do not generally
have the modular properties that a definite signature theta func-
tion has, as shown by Zwegers [11] for signature (1, n− 1) lattices,
they can be completed to a function that has these modular prop-
erties by compromising on the holomorphicity property in a certain
way. This construction has recently been generalized to signature
(2, n− 2) lattices by Alexandrov, Banerjee, Manschot, and Pio-
line [1]. A crucial ingredient in this work is the notion of double
error functions which naturally lends itself to generalizations. In
this work we study the properties of such error functions which we
will call r-tuple error functions. We then construct an indefinite
theta series for signature (r, n− r) lattices and show they can be
completed to modular forms by using these r-tuple error functions.

1. Introduction

In his seminal work on mock theta functions, Zwegers [11] gives three closely
related constructions for mock modular forms. One of these constructions
involves theta series for lattices of signature (1, n− 1) extending an earlier
work on such lattices by Göttsche and Zagier [5]. A natural problem then
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582 Caner Nazaroglu

is to construct similar modular objects out of signature (r, n− r) lattices.
Recently, Alexandrov, Banerjee, Manschot, and Pioline [1] gave such an
extension and investigated its properties in detail for the case r = 2 while
suggesting a natural generalization for r > 2. Further work along these lines
after the groundbreaking work of [1] includes [2] by Bringmann, Kaszian and
Rolen which uses and extends the results of [1] (in particular for r = 3 case)
to work out the modularity properties of a function that arises in the context
of Gromov-Witten theory and [6] by Kudla which among other things display
a relation between indefinite theta functions here and Kudla-Milson theta
series [7].

The main problem for indefinite signature lattices is that the usual q-
series one constructs for definite signature lattices is no longer a convergent
series. One can construct a convergent series by restricting the sum over
lattice points to a proper subset of them, however then generically one does
not get the modular properties one would get from definite signature lat-
tices. In [11] holomorphicity properties of such q-series are compromised in
a specific way to get a modular object. Error functions used in this context
are replaced in [1] by generalized error functions. One of our goals in this
paper is to study the properties of generalized error functions which we call
r-tuple error functions in this work, closely following the methods of [1] in
their study of double error functions.

A crucial ingredient in the analysis of [1] is a result by Vignéras [9]
that shows conditions under which one can deform a theta series for an
indefinite signature lattice and obtain a modular object. The deformation
is accomplished through a kernel function satisfying a differential equation
which we will call Vignéras equation. Ordinary error functions used by [11]
and generalized error functions introduced by [1] and studied here satisfy
this equation and hence can be used in the construction of indefinite theta
functions. Mere existence of these functions still does not solve the problem
entirely though as one should still prove the convergence of the theta series
built as such. This is a nontrivial problem and we will give a sufficient set of
conditions for convergence again expanding on the methods of [11] and [1].

The outline of this paper is as follows. In Section 2 we review the results
of [9] and set up some notation. Then in Section 3 we study r-tuple error
functions proving properties we need for the discussion of indefinite theta
functions. This allows us to set up a particular form of indefinite theta series
in Section 4 and give a sufficient set of conditions for its convergence. Finally,
in Section 5 we discuss our results and future prospects.
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r-tuple error functions and indefinite theta series 583

Note: During the course of this study the author heard of an upcoming
paper by Zagier and Zwegers on indefinite theta functions of generic signa-
ture. Also after this work was completed, a preprint by Westerholt-Raum [10]
has appeared discussing indefinite theta functions over tetrahedral cones. It
employs a geometrical approach to discussing asymptotic properties of the
kernel Er(M;u) we will define below. Our work instead bases its discus-
sion over generalized complementary error functions as defined in [1] and
proves its properties for general case through their integral definitions. In
particular, the decomposition of the kernel Er(M;u) in terms of generalized
complementary error functions Mr(M;u) (see Propositions 3.11 and 3.15)
is what is used to establish convergence properties for theta functions.

2. Vignéras’ theorem and theta series for indefinite
signature lattices

The main technical tool we will use for establishing modularity proper-
ties is Vignéras’ theorem which we are going to review here. First we set
up some notation mainly following that of [1]. Let Λ be an n-dimensional
lattice (n ∈ N) endowed with an integral bilinear form B(m, k) = mTAk
for m, k ∈ Λ (and an associated quadratic form Q(k) = kTAk) which we
also linearly extend to Rn ∼= Λ⊗ R. Assume that the bilinear form has sig-
nature (r, n− r) where n ≥ r and r ∈ N denotes the number of positive
eigenvalues. We will also use the notation ∂xf(x) := ( ∂x1

f, . . . , ∂xsf)T for
x = (x1, . . . , xs)

T . Lastly, we define theta series with kernel φ by (for λ ∈ Z,
µ ∈ Λ∗/Λ where Λ∗ is the dual lattice, τ := τ1 + iτ2 ∈ H for τ1 ∈ R, τ2 ∈ R+,
q := e2πiτ , b, c ∈ Rn and p ∈ Λ which is a characteristic vector satisfying
Q(k) +B(k, p) ∈ 2Z for all k ∈ Λ)

θµ [φ, λ] (τ, b, c) := τ
−λ/2
2

∑
k∈Λ+µ+p/2

eπiB(k,p) φ(
√

2τ2(k + b))(1)

× q−Q(k+b)/2 e2πiB(c,k+b/2).

If φ(x)eπQ(x)/2 ∈ L1(Rn) the absolute convergence of the sum is ensured.
Now we can state Vignéras’s theorem:

Theorem 2.1 (Vignéras [9]). If for any degree ≤ 2 polynomial R(x)
and order ≤ 2 differential operator D(x), the functions φ(x)eπQ(x)/2,
D(x)

[
φ(x)eπQ(x)/2

]
and R(x)φ(x)eπQ(x)/2 are in L1(Rn) ∩ L2(Rn) and if
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the kernel φ(x) satisfies the Vignéras equation

(2)
[
B−1( ∂x, ∂x) + 2πxT ∂x

]
φ(x) = 2πλφ(x)

where B−1(x, y) := xTA−1y, the theta function θµ [φ, λ] (τ, b, c) transforms
like a Jacobi form of weight (λ+ n/2, 0). That is we have:

• θµ [φ, λ] (− 1
τ , c,−b)= iλ+r (−iτ)λ+n/2√

|Λ∗/Λ|
e
πi

2
Q(p)

∑
ν∈Λ∗/Λ

e2πiB(µ,ν)θν [φ, λ] (τ, b, c),

• θµ [φ, λ] (τ + 1, b, c+ b) = e−πiQ(µ+p/2)θµ [φ, λ] (τ, b, c),
• θµ [φ, λ] (τ, b+ k, c) = (−1)B(k,p)e−πiB(c,k)θµ [φ, λ] (τ, b, c) for any k ∈

Λ,
• θµ [φ, λ] (τ, b, c+ k) = (−1)B(k,p)eπiB(b,k)θµ [φ, λ] (τ, b, c) for any k ∈ Λ.

When we state holomorphicity in τ and z := bτ − c, we mean holomorphicity
of the function θ̃µ [φ, λ] (τ, z) := eπiB(b,z)θµ [φ, λ] (τ, b, c).

When the kernel asymptotes to a locally polynomial and homogeneous
function of degree λ one can recover it from its shadow ψ = i

4(x ∂x − λ)φ
and its asymptotic behavior. See [1] for further details.

3. Generalized error functions

In this section we will study a natural generalization of double error functions
as suggested by [1] and prove the properties we need to define indefinite theta
functions out of them. In this section and in the rest of this paper we will
use the following notation: For an s× t matrix G, GS,T where S ⊆ [s] and
T ⊆ [t] will mean the matrix G restricted to rows and columns corresponding
to subsets S and T , respectively. If G is a column vector we will drop T from
this notation if T = {1}. Also for a column matrix x = (x1, . . . , xs)

T we will
use

∏
x :=

∏s
j=1 xj and sign (x) :=

∏s
j=1 sign (xj).

3.1. r-tuple error functions

Definition 3.1. Letm(1), . . . ,m(r)∈Rr×1 be a collection of r non-degenerate
column vectors and w(1), . . . , w(r) ∈ Rr×1 be the corresponding dual basis
(with respect to the Euclidean norm so that they satisfy w(j1)T m(j2) = δj1j2).
Let us also define M∈ Rr×r by M =

(
m(1) · · ·m(r)

)
and W ∈ Rr×r by

W =
(
w(1) · · ·w(r)

)
so that M−T =W. Finally let u ∈ Rr×1, where u =

(u1, . . . , ur)
T is such that uT w(j) 6= 0 for all j = 1, . . . , r. Then we define
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‘complementary r-tuple error function’ Mr(M;u) using the following abso-
lutely convergent integral:

(3) Mr(M;u) :=

(
i

π

)r
|detM|−1

∫
Rr−iu

drz
e−πz

T z−2πizTu∏
(M−1z)

,

where the integration variable is represented as a column matrix z = (z1, . . . ,
zr)

T .

Definition 3.2. Let m(1), . . . ,m(r) ∈ Rr×1 be a collection of r non-
degenerate column vectors (where we use M :=

(
m(1) · · ·m(r)

)
as in Def-

inition 3.1) and let u = (u1, . . . , ur)
T ∈ Rr×1. We then define ‘r-tuple error

function’ Er(M;u) as

(4) Er(M;u) :=

∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MTu′

)
.

Note that Er(M;u) is a C∞ function of u for any non-degenerate M.1

Proposition 3.3.

(a) Mr and Er are invariant under permutations of m(j)’s. In other words,
for any r × r permutation matrix P we have Mr(MP ;u) = Mr(M;u)
and Er(MP ;u) = Er(M;u). Moreover, Mr and Er do not change
under independent positive scalings of m(j)’s and change their sign
whenever one of m(j)’s changes its sign; in other words, for any diag-
onal r × r diagonal matrix D all of whose diagonal entries are non-
zero real numbers we have Mr(MD;u) = sign (detD) Mr(M;u) and
Er(MD;u) = sign (detD) Er(M;u).

(b) Mr and Er are invariant under orthogonal transformations, that is,
for any Λ ∈ O(r;R) we have

(5) Mr(ΛM; Λu) = Mr(M;u) and Er(ΛM; Λu) = Er(M;u).

1It is useful to compare our definitions to those of [1]. M1(1;u) here is simply

equal to M1(u) = −sign (u) erfc (|u|
√
π) there, M2

((
1 −α
0 1

)−T
; ( u1
u2

)
)

here is equal

to the double error function M2(α;u1, u2) of [1] and M2

((
1 1

−α −β
)−T

; ( u1
u2

)
)

here

is equal to −M2 (α, β;u1, u2) sign (α− β) there.
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(c) If M =
(
M(1)

s 0

0 M(2)
r−s

)
is of block diagonal form then

Mr(M;u) = Ms(M(1)
s ;u[1,s])Mr−s(M(2)

r−s;u[s+1,r])(6)

and

Er(M;u) = Es(M(1)
s ;u[1,s])Er−s(M

(2)
r−s;u[s+1,r])(7)

where u[j1,j2] := (uj1 , . . . , uj2)
T . Note that whenever m(j)’s split into

two sets spanning orthogonal subspaces we have a similar factorization
property using parts (a) and (b) of this proposition since then M can
be brought into a block diagonal form using O(r;R) transformations
and permutations.

Proof. All of the statements trivially follow from Definitions 3.1 and 3.2. �

Before proceeding any further let us introduce some notation.
• For each S ⊆ [r] consider the subspace spanned by {m(j) : j ∈ S}

and pick an orthonormal basis for it, b
(S)
1 , . . . , b

(S)
|S| , where we will use

the standard basis b1 = (1, 0, . . . , 0)T , b2 = (0, 1, 0, . . . , 0)T , . . . , br =
(0, 0, . . . , 0, 1)T for S = [r].

Now for any S ⊆ S′ ⊆ [r], form matrices QS,S′ ∈ R|S|×|S′| whose

rows are the components of b
(S)
1 , . . . , b

(S)
|S| in the basis b

(S′)
1 , . . . , b

(S′)
|S′| ,

in other words (QS,S′)j1j2 = b
(S)T
j1

b
(S′)
j2

. We also will use QS := QS,[r].

Essentially, these matrices will form the projectors to subspaces 〈m(j) :
j ∈ S〉. Choosing different orthonormal bases correspond to transform-
ing QS,S′ → Λ|S|QS,S′Λ

T
|S′| for S′ 6= [r] and QS → Λ|S|QS where Λn ∈

O(n;R).
Let us state now a couple of properties for future reference:

1) QS,S′ Q
T
S,S′ = I|S| for any S ⊆ S′ ⊆ [r].

2) QTSQSm
(j) = m(j) for j ∈ S.

3) QSw
(j) = 0 for j ∈ [r] /S.

4) QS,S′QS′,S′′ = QS,S′′ for any S ⊆ S′ ⊆ S′′ ⊆ [r].
• Similarly, for each S ⊆ [r] consider the subspace spanned by {w(j) :

j ∈ S} and pick an orthonormal basis for it, c
(S)
1 , . . . , c

(S)
|S| , where again

we will use the standard basis c1 = (1, 0, . . . , 0)T , c2 = (0, 1, 0, . . . , 0)T ,
. . ., cr = (0, 0, . . . , 0, 1)T for S = [r].

For any S ⊆ S′ ⊆ [r] we form matrices PS,S′ ∈ R|S|×|S′| whose rows

are the components of c
(S)
1 , . . . , c

(S)
|S| in the basis c

(S′)
1 , . . . , c

(S′)
|S′| , or

in other words (PS,S′)j1j2 = c
(S)T
j1

c
(S′)
j2

. We also will use PS := PS,[r].
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Choosing different orthonormal bases correspond to transforming PS,S′

→ Λ|S|PS,S′Λ
T
|S′| for S′ 6= [r] and PS → Λ|S|PS where Λn ∈ O(n;R).

These matrices satisfy:
1) PS,S′ P

T
S,S′ = I|S| for any S ⊆ S′ ⊆ [r].

2) P TS PSw
(j) = w(j) for j ∈ S.

3) PSm
(j) = 0 for j ∈ [r] /S.

4) PS,S′PS′,S′′ = PS,S′′ for any S ⊆ S′ ⊆ S′′ ⊆ [r].

5)

(
QS
P[r]/S

)
∈ O(r,R) for any S ⊆ [r].

• Let MS denote the matrix MS =
(
m(j1) m(j2) · · ·m(j|S|)

)
where

j1, j2, . . . , j|S| ∈ S ⊆ [r] and j1 < j2 < · · · < j|S|. We will also use WS

for similarly constructed matrices out of w(j)’s. Note that WT
S MS =

I|S| and moreover since QTSQSMS =MS and P TS PSWS =WS we have

(QSMS)−1 =WT
SQ

T
S and (PSMS)−1 =WT

S P
T
S .

Proposition 3.4. For any nonsingularM∈ Rr×r and u ∈ Rr×1 away from
the loci w(j)Tu = 0, the function Mr(M;u) is a real valued C∞ function. Its
discontinuity as w(j)Tu→ 0 for all j ∈ [r] /S is given by

(8) Mr(M;u)→ (−1)r−|S| sign
(
WT

[r]/Su
)
M|S| (QSMS ;QSu) .

Proof. We start by defining variables vj = w(j)T z
w(j)Tu + i. The Jacobian fac-

tor associated with this change of variables is
∣∣ ∂v
∂z

∣∣ = |detM|−1∏r
j=1|w(j)Tu| . Defining

ṽ(v, u,M) :=

v1w
(1)Tu
...

vrw
(r)Tu

 we can rewrite Mr(M;u) as

(
i

π

)r
sign

(
WT

[r]/Su
)

sign
(
WT
S u
)
e−πu

Tu(9)

×
∫
Rr

drv
e−πṽ(v,u,M)TMTM ṽ(v,u,M)∏r

j=1(vj − i)
.

As w(j)Tu→ 0 for j ∈ [r] /S, the components of ṽ(v, u,M) corresponding
to j ∈ [r] /S go to zero and M ṽ(v, u,M)→

∑
j∈Sm

(j)vjw
(j)Tu and hence

(10) ṽ(v, u,M)TMTM ṽ(v, u,M)→ ṽS(v, u,M)TMT
SMS ṽS(v, u,M),
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where we should also note thatMT
SMS =MT

SQ
T
SQSMS . Also forWT

[r]/Su =

0 we have QTSQSu = u which in turn gives

WT
S u =WT

SQ
T
SQSu = (QSMS)−1QSu, uTu = uTQTSQSu

and implies ṽS(v, u,M) = ṽ(vS , QSu,QSMS). Then we can combine the

factor
(
i
π

)|S|
sign

(
WT
S u
)
e−πu

Tu with integrals over vS to obtain the
M|S| (QSMS ;QSu) part. Finally, in the limit WT

[r]/Su→ 0, remaining v[r]/S

integrals give (iπ)r−|S| and we obtain the discontinuity described in (8). �

Remark. For large u, Er(M;u) is locally constant as

Er(M;u) ∼ sign
(
MTu

)
whereas Mr(M;u) is exponentially suppressed as

Mr(M;u) ∼ (−1)r

πr
|detM|−1 e−πu

Tu∏
(WTu)

.

The asymptotic behavior of Er(M;u) is obvious from its definition in equa-
tion (4) whereas the asymptotic behavior of Mr(M;u) can be deduced from
a saddle point approximation. We will make the asymptotic behavior of both
functions more precise in our discussion.

Lemma 3.5. First derivatives of Mr(M;u) and Er(M;u) with respect to
u are given by:

w(j)T ∂uMr(M;u) =
2∥∥m(j)
∥∥e−πuTQT{j}Q{j}u(11)

×Mr−1(P[r]/{j}M[r]/{j};P[r]/{j}u),

w(j)T ∂uEr(M;u) =
2∥∥m(j)
∥∥e−πuTQT{j}Q{j}u(12)

× Er−1(P[r]/{j}M[r]/{j};P[r]/{j}u).

Proof. We start with Mr(M;u) and its definition in terms of the integral

Mr(M;u) =

(
i

π

)r
|detM|−1

∫
Rr−iu

drz
e−πz

T z−2πizTu∏
(WT z)

.

The derivative ∂u acting on the integral limits gives vanishing contribu-
tion because of the exponential suppression, then we simply act it on the
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integrand to find

(13) w(j)T ∂uMr(M;u) =

(
i

π

)r−1

2 |detM|−1
∫

Rr−iu

drz
e−πz

T z−2πizTu∏(
WT

[r]/{j}z
) .

Since

(
Q{j}
P[r]/{j}

)
∈ O(r,R) and P T[r]/{j}P[r]/{j}W[r]/{j} =W[r]/{j} we can re-

write this as

w(j)T ∂uMr(M;u) =

(
i

π

)r−1

2 |detM|−1(14)

×
∫

Rr−iu

drz
e−πz

TPT[r]/{j}P[r]/{j}z−2πizTPT[r]/{j}P[r]/{j}u∏(
WT

[r]/{j}P
T
[r]/{j}P[r]/{j}z

)
× e−πu

TQT{j}Q{j}ue−π(z+iu)TQT{j}Q{j}(z+iu).

Performing a change of variables z̃ = P[r]/{j}z and z0 = Q{j}(z + iu) and
taking the integral over z0 we get

w(j)T ∂uMr(M;u) = 2e−πu
TQT{j}Q{j}u

∣∣detP[r]/{j}M[r]/{j}
∣∣

|detM|
(15)

×Mr−1(P[r]/{j}M[r]/{j};P[r]/{j}u).

Now note that

(16) |detM| =
∣∣∣∣( Q{j}
P[r]/{j}

)
M
∣∣∣∣ =

∣∣∣∣( Q{j}M[r]/{j} Q{j}m
(j)

P[r]/{j}M[r]/{j} P[r]/{j}m
(j)

)∣∣∣∣ .
Since P[r]/{j}m

(j) = 0 this simply reduces to

|detM| =
∣∣∣Q{j}m(j)

∣∣∣ ∣∣detP[r]/{j}M[r]/{j}
∣∣(17)

=
∥∥∥m(j)

∥∥∥ ∣∣detP[r]/{j}M[r]/{j}
∣∣

finally proving our assertion for Mr(M;u).
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Now let us study Er(M;u) =

∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MTu′

)
:

w(j)T ∂uEr(M;u) =

∫
Rr

dru′
[
−w(j)T ∂u′e

−π(u−u′)T (u−u′)
]

(18)

× sign
(
MT

[r]/{j}u
′
)

sign
(
m(j)Tu′

)
.

Noting that

w(j)T ∂u′
(
MT

[r]/{j}u
′
)

= 0 and

w(j)T ∂u′
[
sign

(
m(j)Tu′

)]
= 2δ

(
m(j)Tu′

)
=

2∥∥m(j)
∥∥ δ (Q{j}u′)

and integrating by parts we get

w(j)T ∂uEr(M;u)(19)

=
2∥∥m(j)
∥∥ ∫
Rr

dru′ e−π(u−u′)T (u−u′) sign
(
MT

[r]/{j}u
′
)
δ
(
Q{j}u

′)
=

2∥∥m(j)
∥∥ ∫
Rr

dru′ e−π(u−u′)T (PT[r]/{j}P[r]/{j}+QT{j}Q{j})(u−u′)

× sign
(
MT

[r]/{j}

(
P T[r]/{j}P[r]/{j} +QT{j}Q{j}

)
u′
)
δ
(
Q{j}u

′) .
Performing a change of variables ũ′ = P[r]/{j}u, u0 = Q{j}u and performing

the integral over u0 we can rewrite w(j)T ∂uEr(M;u) as

2∥∥m(j)
∥∥ ∫
Rr−1

dr−1ũ′ e−π(P[r]/{j}u−ũ′)T (P[r]/{j}u−ũ′)(20)

× e−πu
TQT{j}Q{j}u sign

(
MT

[r]/{j}P
T
[r]/{j}ũ

′
)

which finally can be written as

(21)
2∥∥m(j)
∥∥ e−πuTQT{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u)

proving our assertion for Er(M;u). �
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Proposition 3.6. The shadows of Er and Mr are given by

i

4
uT ∂uMr(M;u) =

i

2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT{j}Q{j}u(22)

×Mr−1(P[r]/{j}M[r]/{j};P[r]/{j}u),

and

i

4
uT ∂uEr(M;u) =

i

2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT{j}Q{j}u(23)

× Er−1(P[r]/{j}M[r]/{j};P[r]/{j}u).

Proof. Using the fact that WTM =MWT = Ir we have

uT ∂uMr(M;u) = uTMWT ∂uMr(M;u)(24)

=

r∑
j=1

(
m(j)Tu

)
w(j)T ∂uMr(M;u).

Using Lemma 3.5 then proves our statement for Mr. The proof for Er is
exactly the same. �

Proposition 3.7. Mr(M;u) and Er(M;u) solve Vignéras equation with
λ = 0 for quadratic form Q(u) = uTu on their domain of definition. In other
words,

(25)

r∑
j=1

(
∂2
uj + 2πuj ∂uj

)
Mr(M;u) = 0 and

r∑
j=1

(
∂2
uj + 2πuj ∂uj

)
Er(M;u) = 0.

Proof. We start with the case for Mr(M;u). Since

(26)
(
∂2
uj + 2πuj ∂uj

)
e−πz

T z−2πizTu = 2πzj ∂zje
−πzT z−2πizTu
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we get

r∑
j=1

(
∂2
uj + 2πuj ∂uj

)
Mr(M;u)(27)

=

(
i

π

)r
|detM|−1

∫
Rr−iu

drz
2π∏

(WT z)

r∑
j=1

zj ∂zje
−πzT z−2πizTu.

Integrating by parts and noting that
∑r

j=1 ∂zj

(
zj∏

(WT z)

)
= 0 proves the

statement for Mr.
For Er(M;u) we first note that by Proposition 3.6 we have

2πuT ∂uEr(M;u) = 4π

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT{j}Q{j}u(28)

× Er−1(P[r]/{j}M[r]/{j};P[r]/{j}u).

Next we note that by Lemma 3.5 we have

r∑
j=1

∂uj ∂ujEr(M;u) =

r∑
j=1

m(j)T ∂u

(
w(j)T ∂uEr(M;u)

)(29)

=

r∑
j=1

m(j)T ∂u

(
2∥∥m(j)
∥∥e−πuTQT{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u)

)
.

Since P[r]/{j}m
(j) = 0 we only need

(30) m(j)T ∂u

(
e−πu

TQT{j}Q{j}u
)

= −2π
(
m(j)Tu

)
e−πu

TQT{j}Q{j}u

to find

r∑
j=1

∂uj ∂ujEr(M;u)(31)

= −4π

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πuTQT{j}Q{j}uEr−1(P[r]/{j}M[r]/{j};P[r]/{j}u)
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canceling the contribution from equation (28) and proving

r∑
j=1

(
∂2
uj + 2πuj ∂uj

)
Er(M;u)

vanishes. Note that the same proof can also be used for Mr(M;u) giving a
second proof for the statement for Mr(M;u). �

Proposition 3.8. Mr(M;u) is uniformly bounded as

|Mr(M;u)| ≤ (r!) e−πu
Tu.

Proof. We will use induction to prove the statement. For r = 1 we have
|M1(M;u)| = |erfc (|u|

√
π)| ≤ e−πu2

establishing the base case. Now we as-
sume the hypothesis holds for Mr−1 to prove the inductive step. By Propo-
sition 3.6 we have

d

dt
Mr(M; tu) = 2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ e−πt2uTQT{j}Q{j}u(32)

×Mr−1(P[r]/{j}M[r]/{j}; tP[r]/{j}u).

Integrating from t = 1 to ∞ and noting that Mr(M; tu)→ 0 as t→∞ we
have

Mr(M;u) = 2

r∑
j=1

m(j)Tu∥∥m(j)
∥∥ ∫ ∞

1
dt e−πt

2uTQT{j}Q{j}u(33)

×Mr−1(P[r]/{j}M[r]/{j}; tP[r]/{j}u).

By the induction hypothesis

|Mr(M;u)| ≤ 2(r − 1)!

r∑
j=1

∣∣∣∣∣m(j)Tu∥∥m(j)
∥∥
∣∣∣∣∣(34)

×
∫ ∞

1
dt e−πt

2uTQT{j}Q{j}ue−πt
2uTPT[r]/{j}P[r]/{j}u

= (r − 1)!

r∑
j=1

∣∣Q{j}u∣∣√
uTu

erfc
(√

πuTu
)
.

Using
|Q{j}u|√
uTu

≤ 1 and erfc
(√

πuTu
)
≤ e−πuTu then gives the result. �
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Proposition 3.9. On its domain of definition (which is
∏(
WTu

)
6= 0) the

function Mr(M;u) can be decomposed as

(35) Mr(M;u) =
∑
S⊆[r]

(−1)r−|S| sign
(
WT

[r]/Su
)
E|S| (QSMS ;QSu) .

Proof. We start with a change of variables vj = w(j)T z (so that
∣∣ ∂v
∂z

∣∣ =

|detW| = |detM|−1) in the integral defining Mr(M;u) (see equation (3))
to get

(36) Mr(M;u) =

(
i

π

)r ∫
Rr−iWTu

drv
e−πv

TMTMv−2πiuTMv∏r
j=1 vj

.

Now we deform the integration contours without crossing any poles:

(37) Mr(M;u) =

(
i

π

)r
lim
εj→0+

∫
Rr

drv
e−πv

TMTMv−2πiuTMv∏r
j=1

(
vj − iεj sign

(
w(j)Tu

)) .
Under the integral and in the limit εj → 0+ we can replace 1

vj−iεj sign(w(j)Tu)

factors with PV
(

1
vj

)
+ iπ sign

(
w(j)Tu

)
δ(vj) and rewrite Mr(M;u) as

(
i

π

)r ∫
Rr

drv e−πv
TMTMv−2πiuTMv(38)

×
∑
S⊆[r]

∏
j∈S

PV

(
1

vj

) ∏
j∈[r]/S

[
iπ sign

(
w(j)Tu

)
δ(vj)

] .

Taking the integrals over v[r]/S using the delta functions we then have

∑
S⊆[r]

(−1)r−|S| sign
(
WT

[r]/Su
) ( i

π

)|S|
(39)

×
∫

R|S|

d|S|vS
∏
j∈S

PV

(
1

vj

)
e−πv

T
SMT

SMSvS−2πiuTMSvS .
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Using the fact that i
πPV

(
1
k

)
is the Fourier transform of sign (x) and that

QTSQSMS =MS we can rewrite the integral(
i

π

)|S| ∫
R|S|

d|S|vS
∏
j∈S

PV

(
1

vj

)
e−πv

T
SMT

SMSvS−2πiuTMSvS

as

(40)

∫
R|S|

d|S|x

∫
R|S|

d|S|vS sign (x) e2πixT vS e−πv
T
SMT

SQ
T
SQSMSvS−2πiuTQTSQSMSvS .

Performing a change of variables ṽS = QSMSvS and x̃ = (QSMS)−Tx (for
which the Jacobian is unity) we obtain

(41)

∫
R|S|

d|S|x̃

∫
R|S|

d|S|ṽS sign
(
MT

SQ
T
S x̃
)
e2πix̃T ṽS e−πṽ

T
S ṽS e−2πiuTQTS ṽS .

Finally performing the Gaussian integral over ṽS we find

(42)

∫
R|S|

d|S|x̃ sign
(
MT

SQ
T
S x̃
)
e−π(QSu−x̃)T (QSu−x̃) = E|S| (QSMS ;QSu)

finishing the proof. �

The decomposition given in Proposition 3.9 implies that one can con-
versely decompose Er(M;u) in terms of Mr functions. Before giving this
result we state a lemma that we will need in establishing that decomposi-
tion.

Lemma 3.10. For any n× n real positive definite matrix G and any v ∈
Rn×1 such that∏

S⊆[n]

(∏[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)])
6= 0

we have

(43)
∑
S⊆[n]

sign

((
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

))
= 0.

Proof. See Appendix A for the proof. �
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Taking GS,T =WT
SWT and vS =WT

S u in Lemma 3.10 and noting that

(44) MT
SP

T
S PSu =

(
WT
SWS

)−1WT
S u,

and

(45) WT
N/SQ

T
[r]/SQ[r]/Su =WT

N/Su−
(
WT
N/SWS

) (
WT
SWS

)−1WT
S u

we find

(46)
∑

S:S⊆N
(−1)|S| sign

(
MT

SP
T
S PSu

)
sign

(
WT
N/SQ

T
[r]/SQ[r]/Su

)
= 0

for all non-empty subsets N of [r] and for all u such that the arguments of
sign functions are non-zero.

Proposition 3.11. For any u such that
∏
S⊆[r]

[∏(
WT
SQ

T
SQSu

MT
[r]/SP

T
[r]/SP[r]/Su

)]
6=

0 we have

(47) Er(M;u) =
∑
S⊆[r]

sign
(
MT

[r]/SP
T
[r]/SP[r]/Su

)
M|S| (QSMS ;QSu) .

Before going into the proof note that M functions have discontinuities

M|S| (QSMS ;QSu)(48)

→ (−1)|S|−|S
′| sign

(
WT
S/S′Q

T
SQSu

)
M|S′| (QS′MS′ ;QS′u)

as WT
S/S′Q

T
SQSu→ 0 where S′ ⊆ S ⊆ [r] by Proposition 3.4. So these dis-

continuities cancel if
(49) ∑
S:N⊆S⊆[r]

(−1)|S|−|N | sign
(
WT
S/NQ

T
SQSu

)
sign

(
MT

[r]/SP
T
[r]/SP[r]/Su

)
= 0

for all proper subsets N of [r]. This in turn is ensured by Lemma 3.10 and
equation (46). We now turn to the proof of Proposition 3.11 to show the
decomposition precisely:
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Proof. Using Proposition 3.9 we find∑
S⊆[r]

sign
(
MT

[r]/SP
T
[r]/SP[r]/Su

)
M|S| (QSMS ;QSu)

is equal to:∑
S:S⊆[r]

∑
N :N⊆S

(−1)|S|−|N | sign
(
WT
S/NQ

T
SQSu

)
(50)

× sign
(
MT

[r]/SP
T
[r]/SP[r]/Su

)
E|N | (QNMN ;QNu) .

Changing the order of sums gives∑
N :N⊆[r]

E|N | (QNMN ;QNu)
∑

S:N⊆S⊆[r]

(−1)|S|−|N |(51)

× sign
(
WT
S/NQ

T
SQSu

)
sign

(
MT

[r]/SP
T
[r]/SP[r]/Su

)
.

Then the sum over S is zero by Lemma 3.10 and equation (46) except for
the case N = [r] where it is unity. This then simply leaves Er(M;u). �

3.2. Boosted error functions

We can now use the functions Es(M;u) and Ms(M;u) we defined for Eu-
clidean bilinear form in the previous section to spaces with arbitrary non-
degenerate bilinear forms. In particular let x ∈ Rn and let us define a sig-
nature (r, n− r) bilinear form on this space by B(x, y) = xTAy (or by the
associated quadratic form Q(x) = xTAx). Here r denotes the number of pos-
itive definite directions. We will define Er and Mr functions using vectors
cj ∈ Rn for j = 1, . . . , s ≤ r (represented as column vectors) which span a
positive-definite subspace, in other words CTAC > 0 where C := (c1 · · · cr).

Let us introduce some notation before proceeding any further. Let E ∈
Rs×n be a matrix whose rows form an orthonormal basis for the plane
spanned by cj ’s so that EAET = Is and C = ETEAC. The projection of
x to the plane spanned by cj ’s will be denoted as

xC+ = ETEAx = C(CTAC)−1CAx.

Definition 3.12. Let A be a signature (r, n− r) bilinear form and C =
(c1 · · · cs) be an n× smatrix whose columns form a positive definite subspace
according to this bilinear form. Further define a matrix E ∈ Rs×n whose rows
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define an orthonormal basis for the subspace spanned by cj ’s. Then we define
EAs (C;x) and MA

s (C;x) as

(52) EAs (C;x) = Es(EAC;EAx) and MA
s (C;x) = Ms(EAC;EAx).

We will drop the superscript A whenever the bilinear form is implied from
the context and will drop the subscript s when the number of vectors in C
can be inferred.

Note that these functions do not depend on the choice of E since different
choices correspond to a transformation E → QE whereQ ∈ O(s,R) and that
leaves EAs (C;x) and MA

s (C;x) invariant by Proposition 3.3.
We also define D = (d1 · · · ds) ∈ Rn×s whose columns form a dual basis

to C for the subspace ci’s span. That is DTAC = Is and D = ETEAD which
can be easily verified for D = ET (EAC)−T . We also use CS for S ⊆ [s] to
denote the matrix CS =

(
cj1 cj2 · · · cj|S|

)
where j1, j2, . . . , j|S| ∈ S and j1 <

j2 < · · · < j|S|. The matrix DS for the dual basis vectors is similarly defined.
One last notation we will use is CS⊥S′ denoting the projection of vectors in
CS to the subspace orthogonal to the one spanned by CS′ .

2 More concretely
CS⊥S′ will be formed by vectors cj − CS′

(
CTS′ACS′

)−1
CTS′Acj for j ∈ S in

increasing j order though this choice will not be important. Now we can
state the following propositions following from our work in Section 3.1.

Proposition 3.13.

(a) E(C;x) is a C∞ function of x ∈ Rn for C ∈ Rn×s spanning a timelike
subspace as described above. It is invariant under permutations of cj,
independent positive scalings of cj and is odd under independent sign
flips of cj’s.

(b) If C splits into two sets C1 and C2 which span orthogonal subspaces,
then

(53) E(C;x) = E(C1;x)E(C2;x).

(c) As |B(cj , x)| → ∞ for all j we have E(C;x)→ sign (B(C, x)).

2In Section 4 we use the same notation also when the columns of CS span an
indefinite signature subspace.
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(d) The function E(C;x) satisfies the Vignéras equation for bilinear form
B(x, y) with λ = 0:

(54)
[
B−1( ∂x, ∂x) + 2πxT ∂x

]
E(C;x) = 0

where B−1 denotes B−1(x, y) = xTA−1y. The shadow of E(C;x) is

(55)
i

4
xT ∂xE(C;x) =

i

2

s∑
j=1

B(cj , x)√
Q(cj)

e−πB(cj ,x)2/Q(cj)E(C[s]/{j}⊥{j};x).

(e) The function E(C;x) has an integral representation:

(56) E(C;x) =

∫
〈C〉

dsx′ e−πQ(xC+−x′) sign
(
B(C, x′)

)

where the measure is normalized so that

∫
〈C〉

dsx′ e−πQ(x′) = 1.

Proposition 3.14.

(a) M(C;x) is a C∞ function of x ∈ Rn away from the loci B(dj , x) =
0 for C ∈ Rn×s spanning a timelike subspace. It is invariant under
permutations of cj, independent positive scalings of cj and is odd under
independent sign flips of cj’s.

(b) If C splits into two sets C1 and C2 which span orthogonal subspaces,
then

(57) M(C;x) = M(C1;x)M(C2;x).

(c) |M(C;x)| < (s!) e−πQ(xC+).

(d) The function M(C;x) satisfies the Vignéras equation for bilinear form
B(x, y) with λ = 0.

(e) The function M(C;x) has an integral representation:

(58) M(C;x) =

(
i

π

)s (
detCTAC

)−1
∫

〈C〉−ixC+

dsz
e−πQ(z)−2πiB(x,z)∏

[B(D, z)]

where the measure is normalized so that

∫
〈C〉

dsx′ e−πQ(x′) = 1.
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Proposition 3.15. On its domain of definition (that is
∏

[B(D, z)] 6= 0)
we have the decomposition

(59) M(C;x) =
∑
S⊆[s]

(−1)s−|S| sign
(
B(D[s]/S , x)

)
E(CS ;x).

Similarly we have

(60) E(C;x) =
∑
S⊆[s]

sign
(
B(C[s]/S⊥S , x)

)
M(CS ;x)

for any x such that the M function is well defined and the arguments of sign
functions are nonzero.

4. Indefinite theta functions of higher depth

In this section we will construct a certain indefinite theta series and give
sufficient conditions for its convergence. The holomorphic part of these series
will be given by restricting the sum over lattice points through the function

(61) φr(x) =
1

2r

r∏
j=1

[
sign (B(cj , x))− sign

(
B(c′j , x)

)]
.

Before stating our result let us introduce some notation. By CSP we will
mean the matrix whose columns are taken from the set {cj : j ∈ S ∩ P} ∪
{c′j : j ∈ S/P} in, say, increasing j order (we will also use C ′ for C[r]∅ and

CP for C[r]P ). We also form the matrix CSP⊥TQ by which we mean the
matrix formed by vectors in CSP projected to the subspace orthogonal to
the one spanned by the vectors in CTQ . Next we will use ∆(x1, . . . , xs) for
the determinant of the Gram matrix for the vectors x1, . . . , xs and Dj1,j2

for the cofactor at (j1, j2) position for the Gram matrix constructed from
{c1, c

′
1, . . . , cr, c

′
r} where we will use primes in the subscript to denote po-

sitions corresponding to vectors c′j ’s. Finally form the matrix M from the
cofactor matrix of the Gram matrix for (c1, c

′
1, . . . , cr, c

′
r) and by removing

cofactors Dj,j′ and Dj′,j for all j = 1, . . . , r.

Theorem 4.1. Let C and C ′ as described above be 2r vectors in Rn en-
dowed with an integral bilinear form B(x, y) of signature (r, n− r). Assume
that each CP for P ⊆ [r] spans a signature (r, 0) (i.e. positive-definite) sub-
space. Further assume that ∆ := ∆(C,C ′) satisfies ∆(−1)r > 0 (signifying
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that C ∪ C ′ forms a linearly independent set and spans a signature (r, r) sub-
space by our assumption above) and that Dj,j′(−1)r ≥ 0 for all j = 1, . . . , r.
Finally assume that the matrix (−1)rM as defined above is negative definite.

Then θµ[φr, 0] is a convergent series and it is holomorphic in τ and
z away from the loci where B(k + b, cj) = 0 or B(k + b, c′j) = 0 for some
j ∈ [r] and k ∈ Λ + µ+ p/2.

Moreover, assume that analogous conditions for vectors in C and C ′

we stated above also holds for C[r]/S⊥SP and C ′[r]/S⊥SP for any S ⊆ [r] and

P ⊆ S. Then θµ[φ̂r, 0] with the kernel

(62) φ̂r(x) =
1

2r

∑
P⊆[r]

(−1)|P |Er(C
P ;x)

is a convergent series and forms a modular completion for θµ[φr, 0] trans-
forming like a (vector-valued) Jacobi form of weight (n/2, 0).

Proof. We follow and generalize the proofs in [11] and [1]. The first thing to
note is that for any x ∈ Rn we have
(63)

∆(x, c1, c
′
1, . . . , cr, c

′
r) = ∆

[
Q(x)− 2

∑r
j=1Dj,j′B(cj , x)B(c′j , x)

∆

]
−XTMX

where XT = (B(c1, x) B(c′1, x) · · ·B(cr, x) B(c′r, x)). We define the part in
brackets as Q−(x):

(64) Q−(x) := Q(x)− 2

∑r
j=1Dj,j′B(cj , x)B(c′j , x)

∆
.

Now we note that if x is linearly independent from C ∪ C ′ the subspace
〈x, c1, c

′
1, . . . , cr, c

′
r〉 has signature (r, r + 1) and hence

(65) (−1)r∆(x, c1, c
′
1, . . . , cr, c

′
r) = (−1)r∆Q−(x)−XT [(−1)rM ]X < 0.

Using the negative definiteness of (−1)rM and positivity of (−1)r∆ we con-
clude Q−(x) < 0. On the other hand, if x is in the plane spanned by C ∪ C ′
we have ∆(x, c1, . . . , c

′
r) = 0 and hence Q−(x) < 0 unless x = 0 again argu-

ing through negative definiteness of (−1)rM and positivity of (−1)r∆. Now,

φr(x) 6= 0 only when sign (B(cj , x)) sign
(
B(c′j , x)

)
≤ 0 for all j = 1, . . . , r.

The assumptions Dj,j′(−1)r ≥ 0 and ∆(−1)r > 0 implies Q−(x) ≥ Q(x), i.e.
on the support of φr(x) the negative definite bilinear form Q−(x) dominates
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Q(x). Using this we can conclude that φr(x)eπQ(x)/2 ≤ eπQ−(x)/2 proving the
absolute convergence of θµ[φr, 0].

For the second part of the theorem we use the decomposition in Propo-
sition 3.15 to rewrite the kernel φ̂r(x) as

φ̂r(x) =
1

2|S|

∑
S⊆[r]

∑
P⊆S

(−1)|P |M(CSP ;x)
1

2r−|S|
(66)

×
∑

Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

)
.

Let us focus on each S ∈ [r] and P ⊆ S contribution
(67)

φSP (x) := M(CSP ;x)

 1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

)
separately. We start by decomposing each x ∈ Rn as x = x1 + x2 where x1

is in the linear span of CSP and x2 is in its orthogonal complement so
that Q(x) = Q(x1) +Q(x2). That divides φSP (x) eπQ(x)/2 into a factor along
〈CSP 〉⊥:

(68)

 1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x2)

) eπQ(x2)/2

and a factor along 〈CSP 〉:

(69) M(CSP ;x1) eπQ(x1)/2.

By our argument in the first part and by the hypothesis given for C[r]/S⊥SP ∪
C ′[r]/S⊥SP the factor

(70)

 1

2r−|S|

∑
Q⊆[r]/S

(−1)|Q| sign
(
B(C[r]/SQ⊥SP , x)

) eπQ(x2)/2

is dominated along 〈CSP 〉⊥ by eπQ
SP⊥
− (x2)/2 where QS

P⊥

− is a negative definite
bilinear form on 〈CSP 〉⊥ and correspondingly by Proposition 3.14

(71) |M(CSP ;x)| eπQ(x1)/2 ≤ |S|! e−πQ(x1)/2
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and this contribution is exponentially suppressed along 〈CSP 〉. That shows
the series in θµ[φ̂r, 0] is convergent and that φ̂r(x)eπQ(x)/2 satisfies the con-
ditions given in theorem 2.1. Moreover, since E(CP ;x) functions each sat-
isfies Vignéras equation with λ = 0 (see Proposition 3.13) by Vignéras’ the-
orem 2.1, θµ[φ̂r, 0] transforms like a (vector-valued) Jacobi form of weight
(n/2, 0). �

Remark. It is desirable to further relax and simplify the conditions we put
on C. See [6] and [10] for further discussion.

Aside from the obvious factorizable solutions to the hypothesis we put
for C and C ′ we will exhibit a non-factorizable example for r = 4 case.

Example. Consider signature (4, 4) integral bilinear form

(72) A =

(
G(A4) −I4

−I4 0

)
where G(A4) denotes the Gram matrix for the A4 root lattice:

(73) G(A4) =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 .

Then the vectors

(74) c1 =


1
0
0
0
0
0
0
0

 , c2 =


0
1
0
0
0
0
0
0

 , c3 =


0
0
1
0
0
0
0
0

 , c4 =


0
0
0
1
0
0
0
0


and

(75) c′1 =


1
0
0
0
0
−1
0
0

 , c′2 =


0
1
0
0
0
0
−1
0

 , c′3 =


0
0
1
0
0
0
0
−1

 , c′4 =


0
0
0
1
−1
0
0
0


satisfy the hypotheses of theorem 4.1.

5. Discussion

In this work we studied the properties of r-tuple error functions and in-
troduced indefinite theta series using these functions. One obvious question
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is to relax the conditions we imposed on cj ’s and c′j ’s that determine the
subset of lattice points used in the holomorphic part of the associated theta
series and ensure its convergence. Specifically, one would want to allow null
vectors and allow linear dependencies, which is essential to extend the range
of applications for indefinite theta functions. The other two constructions
for mock modular forms given by [11], namely using Appell-Lerch sums [12]
and meromorphic Jacobi forms [4], are closely related to signature (1, n− 1)
indefinite theta series. It is then natural to look for similar corresponding
constructions for signature (r, n− r) indefinite theta functions. On the side
of Appell-Lerch sums one such generalization is already available in litera-
ture under the name ‘generalized Appell functions’ [3, 8]. Indeed, [1] initiated
the study of their modular properties for the r = 2 case. To study the com-
plete story it is then desirable to study the null limits of the construction
we have given for higher r cases.

Appendix A.

In this section we are going to prove the Lemma 3.10 which we restate here
for reference.

Lemma A.1. For any n× n real positive definite matrix G and any v ∈
Rn×1 such that

∏
S⊆[n]

(∏[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)])
6= 0

we have

(A.1)
∑
S⊆[n]

sign

[(
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

)]
= 0.

Proof. We will use induction on n. The base hypothesis easily follows from
the positivity of G1,1. For the inductive step let us note the following facts
first. There are 2n n sign functions in our sum. We are going to show that
there are generically 2n−1 n independent ones that each appear twice and
that discontinuities cancel among each pair. In particular, we consider the
contribution to the sum above from subsets S and S ∪ {j} for some j ∈ [n]
and S ⊆ [n]/{j} and single out the contribution from the row corresponding
to vj .
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• The contribution from S reads (using Ŝ for [n]/(S ∪ {j})):

sign


 −G−1

S,S 0 0

−Gj,S G−1
S,S 1 0

−GŜ,S G
−1
S,S 0 I|Ŝ|


vSvj
vŜ


(A.2)

= sign
(
vj −Gj,S G−1

S,SvS

)
sign

[(
−G−1

S,S 0

−GŜ,S G
−1
S,S I|Ŝ|

)(
vS
vŜ

)]
.

• For the contribution from S ∪ {j} first note that

(A.3)

(
GS,S GS,j
Gj,S Gj,j

)−1

=

((
GS,S − 1

Gj,j
GS,j Gj,S

)−1
− 1
kG
−1
S,S GS,j

− 1
kGj,S G

−1
S,S

1
k

)

where k = Gj,j −Gj,S G−1
S,S GS,j and

(A.4)

(
GS,S −

1

Gj,j
GS,j Gj,S

)−1

= G−1
S,S +

1

k
G−1
S,S GS,j Gj,S G

−1
S,S .

By the assumption that G is positive definite we have k > 0. We can
rewrite the S ∪ {j} contribution

(A.5) sign

[(
−G−1

S∪{j},S∪{j} 0

−GŜ,S∪{j}G
−1
S∪{j},S∪{j} I|Ŝ|

)(
vS∪{j}
vŜ

)]

as

sign




−
(
GS,S− 1

Gj,j
GS,jGj,S

)−1
1

k
G−1
S,SGS,j 0

1

k
Gj,SG

−1
S,S − 1

k
0

−GŜ,S
(
GS,S− 1

Gj,j
GS,jGj,S

)−1

+ 1

k
GŜ,jGj,SG

−1
S,S

1

k
GŜ,SG

−1
S,SGS,j− 1

k
GŜ,j I|Ŝ|


vSvj
vŜ


 =

(A.6)

− sign
(
vj −Gj,SG−1

S,SvS

)
sign

[ −
(
GS,S− 1

Gj,j
GS,jGj,S

)−1

0

−
(
GŜ,S−

1

Gj,j
GŜ,jGj,S

)(
GS,S− 1

Gj,j
GS,jGj,S

)−1

I|Ŝ|

(ṽS
ṽŜ

)]

where we defined ṽS = vS −
vj
Gj,j

GS,j .
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Next we are going to show that possible discontinuities due to

sign
(
vj −Gj,S G−1

S,SvS

)
terms do cancel between these two contributions. For this we note that at
vj = Gj,S G

−1
S,SvS we have

−
(
GS,S −

1

Gj,j
GS,jGj,S

)−1

ṽS(A.7)

= −
(
G−1
S,S +

1

k
G−1
S,S GS,jGj,S G

−1
S,S

)(
vS −

1

Gj,j
GS,jGj,S G

−1
S,S vS

)
= −G−1

S,SvS

and

−
(
GŜ,S −

1

Gj,j
GŜ,jGj,S

)(
GS,S −

1

Gj,j
GS,jGj,S

)−1

ṽS + ṽŜ(A.8)

= −
(
GŜ,S −

1

Gj,j
GŜ,jGj,S

)
G−1
S,S vS +

(
vŜ −

1

Gj,j
GŜ,jGj,S G

−1
S,S vS

)
= −GŜ,S G

−1
S,S vS + vŜ .

So at
∏[(

−G−1
S,S 0

−GŜ,SG
−1
S,S I|Ŝ|

)(
vS
vŜ

)]
6= 0 (ensured by the hypothesis) the

sum

(A.9)
∑
S⊆[n]

sign

((
−G−1

S,S 0

−G[n]/S,S G
−1
S,S In−|S|

)(
vS
v[n]/S

))

is equal on both sides of vj −Gj,S G−1
S,S vS = 0. The argument generalizes for

all the sign functions in the sum.
Let us now specialize to j = n (the choice of j = n is not important),

use Ŝ = [n− 1]/S and rewrite the sum in (A.9) as

∑
S⊆[n−1]

[
sign

[(
−G−1

S,S 0

−GŜ,S G
−1
S,S I|Ŝ|

)(
vS
vŜ

)]
(A.10)

− sign

[(
−G̃−1

S,S 0

−G̃Ŝ,S G̃
−1
S,S I|Ŝ|

)(
ṽS
ṽŜ

)]]
× sign

(
vn −Gn,S G−1

S,S vS

)
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where ṽS = vS − vn
Gn,n

GS,n and G̃ is a positive definite matrix defined by

(A.11) G̃[n−1],[n−1] := G[n−1],[n−1] −
1

Gn,n
G[n−1],nGn,[n−1].

Now for any v satisfying the hypothesis, we start increasing vn while
keeping v[n−1] fixed until vn −Gn,S G−1

S,S vS > 0 for all S ⊆ [n− 1] and v
satisfies the hypothesis of the lemma. The value of our sum does not change
across any of the possible discontinuities by our argument above. The fact
that the sum over S ⊆ [n− 1] is zero by the induction hypothesis then proves
the statement of the lemma. �
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