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Conjectural results for cohomological invariants of wild character
varieties are obtained by counting curves in degenerate Calabi-Yau
threefolds. A conjectural formula for E-polynomials is derived from
the Gromov-Witten theory of local Calabi-Yau threefolds with nor-
mal crossing singularities. A refinement is also conjectured, gener-
alizing existing results of Hausel, Mereb and Wong as well as recent
joint work of Donagi, Pantev and the author for weighted Poincaré
polynomials of wild character varieties.
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1. Introduction

The cohomology of character varieties and Higgs bundle moduli spaces is an
important problem in geometry, topology and mathematical physics. Several
approaches have been developed so far employing different methods. Arith-
metic methods for character varieties have been used in [24–26, 33] while
similar methods for Higgs bundles have been employed in [18, 32, 46, 55].
The motive of the moduli space of irregular connections as well as irregular
Higgs bundles over arbitrary fields has been determined in [19]. Moreover,
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a different approach based on wallcrossing for linear chains has been used
in [20, 21] for motivic and Hirzebruch genus computations. At the same the
topology of wild character varieties has been related to ploynomial invari-
ants of legendrian knots in [56, 57]. Finally, a string theoretic framework
for this problem has been developed in [10–12] based on an identification of
perverse Betti numbers of Higgs moduli spaces with degeneracies of spinning
BPS states in M-theory. In particular the conjectural formulas derived by
Hausel and Rodriquez-Villegas [26], Hausel, Letellier and Rogriguez-Villegas
[24] are identified with Gopakumar-Vafa expansions in the refined stable pair
theory of certain Calabi-Yau threefolds. Furthermore, this framework also
provides important evidence for the P = W conjecture formulated by de
Cataldo, Hausel and Migliorini [13].

The string theoretic approach has been recently generalized to wild char-
acter varieties in [14], providing a physical derivation and a generalization
for the results of Hausel, Mereb and Wong [25]. While the geometric frame-
work and the spectral construction of [14] are general, explicit formulas are
obtained only for wild character varieties with one singular point on the pro-
jective line. The goal of the present paper is to further extend these results
to wild character varieties with multiple singular points on higher genus
curves.

1.1. Wild character varieties

Wild character varieties are moduli spaces of Stokes data of irregular con-
nections on curves with fixed irregular type. Such moduli spaces played a
central role in Witten’s work on geometric Langlands correspondence [58]
and were rigorously constructed by Boalch in [5, 7]. The setup consists of
a smooth projective curve C with m pairwise distinct marked points pa,
1 ≤ a ≤ m, and a complex reductive algebraic group G, which in this paper
will be the general linear group, GL(r,C), r ≥ 1.

Let Tr ⊂ GL(r,C) be the standard maximal torus, and tr ⊂ gl(r,C) the
corresponding Cartan subalgebra. As in [7], a tr-valued irregular type at a
point p ∈ C is an equivalence class

Q ∈ tr(K̂p)/tr(Ôp),

where Ôp is the natural completion of the local ring at p and K̂p is its field
of fractions. Given a local coordinate z centered at p, any irregular type Q
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admits a representative of the form

Q =

n−1∑
i=1

Ai
zi

for some integer n ≥ 2 and some diagonal matrices A1, . . . , An−1 ∈ tr. The
common cetralizer of these Cartan elements depends only on the equivalence
class Q and will be denoted by HQ. Since A1, . . . , An−1 are diagonal, HQ is
equivalent under conjugation with a canonical subgroup ×`i=1GL(mi,C) ⊂
GL(r,C) for an ordered partition r = m1 + · · ·+m`.

Following [5, 7], a wild curve is determined by the data (C, pa,Qa), 1 ≤
a ≤ m, where Qa is a tr-valued irregular type at pa. For concreteness let za
be an affine coordinate at each pa, and let

Qa =

na−1∑
i=1

Aa,i
zia

be a representative of Qa for each 1 ≤ a ≤ m. Let Q = (Q1, . . . ,Qm). The
wild character variety associated to a wild curve is the moduli space of
Stokes data for irregular flat connections on C \ {p1, . . . , pm} which are lo-
cally gauge equivalent to

dQa + terms of order ≥ −1

in the infinitesimal neighhborhood of each marked point pa. One of the
main results of [7] proves that this is a smooth quasi-projective variety with
a natural Poisson structure. Moreover, the symplectic leaves of the Poisson
structure are obtained by fixing the conjugacy class τa in HQa of the formal
monodromy of the irregular flat connections at each pa for all 1 ≤ a ≤ m.
Note that the conjugacy class of the formal mondromy in HQa coincides with
the conjugacy class of the local monodromy around the puncture, which is
determined by the residue of the irregular connection.

Assuming the marked curve fixed, let SQ,τ be the symplectic leaf deter-
mined by τ = (τ1, . . . , τm). Throughout this paper all irregular types will be
chosen such that

(W.1) HQ = ×`i=1GL(mi,C) ⊂ GL(r,C) and HQ coincides with the central-
izer of the leading term in the Laurent expansion.
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(W.2) Each τa, 1 ≤ a ≤ m, is the conjugacy class of a diagonal matrix Ta
with eigenvalues

(1.1) (τa,1, . . . , τa,1︸ ︷︷ ︸
ma,1

, . . . , τa,`a , . . . , τa,`a︸ ︷︷ ︸
ma,`a

),

where τa,1, . . . , τa,`a are pairwise distinct complex numbers.

For each a let µa denote the partition of r determined by (ma,1, . . . ,ma,`a)
and let µ = (µ1, . . . , µm).

As shown in [7, Thm. 8.2], for fixed irregular types Q = (Q1, . . . ,Qm) and
fixed conjugacy classes τ = (τ1, . . . , τm) the associated moduli space SQ,τ of
Stokes data has an explicit presentation as an affine algebraic quotient. For
sufficiently generic τ this moduli space is a smooth quasi-projective variety
equipped with a holomorphic symplectic structure. Its dimension is given
by

(1.2) d(µ, n, g) = 2r2(g − 1) +

m∑
a=1

na

(
r2 −

`a∑
i=1

µ2
a,i

)
+ 2.

where n = (n1, . . . , nm).

1.2. Higgs bundles and wild non-abelian Hodge correspondence

Results proven by Biquard and Boalch [4] and Sabbah [54] show that moduli
spaces of irregular filtered flat connections are related by hyper-Kähler ro-
tations to moduli spaces of irregular parabolic Higgs bundles. This relation
is commonly refered to as the wild non-abelian Hodge correspondence. A
very clear and explicit statement can be found in [6] to which the reader is
refered for more details.

For the purposes of the present paper, it suffices to note that given suffi-
ciently generic parameters (Q, τ) the resulting Higgs bundle moduli problems
admit a specific formulation leading to a natural connection to Calabi-Yau
enumerative geometry. This construction as well as its relation to the moduli
spaces of [6] is explained in detail in Sections 2.1 and 2.3 of [14]. Very briefly,
one employs Higgs bundles with a coefficient line bundle M = KC(D) where
D =

∑m
a=1 napa is the total polar divisor of the fixed irregular types. The

parabolic structure consists of a locally-free filtration along each non-reduced
divisor Da = napa, 1 ≤ a ≤ m. The numerical type of such a filtration is
specified by a sequence of positive integers (ma,1, . . . ,ma,`a), where ma,i is
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the length of the i-th successive quotient of the a-th filtration as an ODa-
module. Let m = (ma,i), 1 ≤ i ≤ `a, 1 ≤ a ≤ m. The Higgs field is required
to preserve all these filtrations, and moreover the associated graded gr

(
Φ|Da)

is required to act as a scalar on each succesive quotient. More precisely, for
each 1 ≤ a ≤ m one requires

gr
(
Φ|Da) = ⊕`ai=1ξa,i ⊗ 1i

where ξa,i ∈ H0(Da,M |Da), 1 ≤ i ≤ `a are some fixed sections of M over
Da = napa. Let ξ

a
= (ξa,i) with 1 ≤ i ≤ `a and let also ξ = (ξa,i), 1 ≤ i ≤ `a,

1 ≤ a ≤ m. Throughout this paper the sections ξ
a

will be assumed generic
for all 1 ≤ a ≤ m, meaning that their values ξa,i(pa) at the reduced marked
point are pairwise distinct and nonzero.

In addition one has to specify real parabolic weights α = (αa,i), 1 ≤ i ≤
`a, 1 ≤ a ≤ m and impose the standard parabolic stability conditions on
such objects as in [41]. This results in a moduli stack Hssξ (C,D;α,m, d)

of semistable objects, where d is the degree of the Higgs bundles. More-
over, strictly semistable objects are absent for sufficiently generic parabolic
weights α. In such cases the moduli stack is a C×-gerbe over a smooth
quasi-projective moduli space Hsξ(C,D;α,m, d) as usual.

To conclude, note that the wild non-abelian Hodge correspondence leads
to a wild variant of the P = W conjecture of de Cataldo, Hausel and Miglior-
ini [13]. This correspondence identifies the weight filtration on the cohomol-
ogy of a character variety and the perverse Leray filtration on the cohomol-
ogy of the associated Higgs bundle moduli space.

1.3. Spectral correspondence and Calabi-Yau threefolds

As shown in detail in [14, Sect. 3.1], the string theoretic construction is
based on a spectral correspondence relating the irregular Higgs bundles to
dimension one sheaves on a holomorphic symplectic surface Sξ. Employing
the construction of [31], this surface is obtained by blowing up the images of
the sections ξa,i, taking a minimal resolution of singularities, and removing
an anti-canonical divisor.

The compact curve classes on Sξ are in one-to-one correspondence with
collections non-negative integers m = (ma,i), 1 ≤ i ≤ `a, 1 ≤ a ≤ m such

that the sum
∑`a

i=1ma,i takes the same value, r ≥ 1, for each 1 ≤ a ≤ m.
Any compact curve in such a class is a finite r : 1 cover of C. The curve
class corresponding to m = (ma,i) will be denoted by β(m).
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As shown in [14, Sect.3.2-3.4], for sufficiently generic ξ the moduli stack
Hssξ (C,D;α,m, d) is isomorphic to a moduli stack of Bridgeland semistable

pure dimension one sheaves F on Sξ with compact support. The topological
invariants of these sheaves are

ch1(F ) = β(m), χ(F ) = d− r(g − 1)

while the Bridgeland stability condition is determined by the parabolic
weights α.

This correspondence can be lifted one step further. Namely let Yξ be the

total space of the canonical bundle KSξ , which is isomorphic to Sξ × A1.
Then any moduli stack of compactly supported Bridgeland stable pure
dimension one sheaves on Yξ is isomorphic to a product of the form

Hsξ(C,D;α,m, d)× A1. The threefold Yξ will be called a wild local curve

throughout this paper. Occasionally it will be also referred to as a spectral
threefold for ease of exposition.

Applying the mathematical framework of [27, 45], in the present context
the degeneracies of spinning BPS particles in M-theory are given by the
perverse Betti numbers of the Higgs bundle moduli spaces Hsξ(C,D;α,m, d).

Therefore, using the P = W conjecture and the refined Gopakumar-Vafa
expansion [17, 22, 28, 30], it follows that the weighted Betti numbers of
wild character varieties are completely determined by the refined stable pair
theory of Yξ.

1.4. Curve counting invariants and degenerations

Computing the refined stable pair theory of the threefolds Yξ constructed
above is a difficult and challenging problem. Conjectural formulas were de-
rived in [14] for genus zero curves with a single marked point. The derivation
in loc. cit. uses refined virtual localization as in [47] and the refined colored
variant [15] of the Oblomkov-Shende-Rasmussen conjectures [48, 49] to re-
duce the problem to refined torus link invariants. The latter are computed
in turn using refined Chern-Simons theory [2] and large N duality.

This approach cannot be implemented directly for a genus g curve with
multiple marked points since there is no torus action on the associated spec-
tral surface Sξ. In fact, given the absence of a torus action, even the compu-
tation of unrefined invariants poses significant problems. The present work
develops an alternative strategy employing nodal degenerations of the curve
C to construct a normal crossing spectral surface equipped with a suitable
torus action. This torus action is then used to find an explicit formula for
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the unrefined stable pair theory of the resulting degenerate threefolds, pro-
viding conjectural formulas for E-polynomials of wild character varieties.
The resulting formulas admit a further conjectural refinement which leads
to explicit conjectures for weighted Poincaré polynomials. In more detail,
the main steps of this approach are summarized below.

(i) As defined by Pandharipande and Thomas [53], a stable pair (F, s) on
the smooth spectral threefold Yξ is a pure dimension one sheaf F equipped
with a generically surjective section s : OYξ → F . The support of F is re-
quired to be compact and one fixes the invariants ch1(F ) = β(m) ∈ H2(Yξ,Z)
and c = χ(F ). The resulting moduli space of pairs P(Yξ,m, c) has a perfect
obstruction theory and a virtual cycle of degree zero. However, since it is
non-compact and there is no torus action with compact fixed locus, hence
stable pair invariants cannot be defined by virtual integration. One has to
employ instead Behrend’s constructible function approach [3], definining the
unrefined invariants as weighted Euler characteristics of moduli spaces,

(1.3) PT (Yξ,m, c) = χ(P(Yξ,m, c), ν
B).

The weights are encoded in the constructible function νB : P(Yξ,m, c)→ Z
constructed in [3]. As opposed to virtual integration, this definition is not
known to be deformation invariant in general. However, in the present con-
text, it will be assumed that the constructible invariants are in fact invariant
under deformations of Yξ induced by deformations of the base curve C and
the marked points.

(ii) A nodal degeneration C of the curve C is constructed in Section 2.1
consisting of a smooth central component C0 and m pairwise disjoint ra-
tional components C1, . . . , Cm. Each projective line Ca contains exactly one
marked point pa and intersects C0 transversely at another point νa. For fixed
data ξ, this degeneration yields normal crossing degenerations of the spec-
tral surface Sξ as well as the threefold Yξ. Moreover, as shown in Section 2.2,
for a suitable choice of data, the resulting normal crossing threefold admits
a torus action preserving the normal crossing Calabi-Yau structure. Using
the work of J. Li and B. Wu [37], for any pair (m, c) there is a moduli space
of stable pairs on the normal crossing threefold Y ξ equipped with a perfect
obstruction theory. Moreover, the fixed locus of the torus action is compact,
hence in this limit one can construct equivariant residual stable pair invari-
ants PT (Y ξ,m, c). Then a stronger deformation invariance assumption will
be made in this paper, claiming that

(1.4) PT (Y ξ,m, c) = PT (Yξ,m, c)



i
i

“2-Diaconescu” — 2018/8/14 — 15:50 — page 498 — #8 i
i

i
i

i
i

498 Duiliu-Emanuel Diaconescu

for all m, c.
(iii) The equivariant residual stable pair theory of degenerations is ex-

plicitely computed in Section 3 using GW/PT correspondence, which will
be assumed without proof in the present context. In principle one should
be able to give a proof by analogy with [44], but this would be beyond
the scope of the present paper. Granting this correspondence, the residual
Gromov-Witten theory of degenerations is computed in Section 3 using J.
Li’s theory of relative stable maps [34] and the degeneration formula [35], the
relative virtual localization theorem of Graber and Vakil [23], as well as the
local TQFT formalism of Bryan and Pandharipande [9]. The computation
also uses the Marino-Vafa formula proven by C.-C. M. Liu, K. Liu and J.
Zhou [38] respectively Okounkov and Pandharipande [50] as well as results
of Bryan and Pandharipande [8], Okounkov and Pandharipande [51, 52] and
C.-C. M. Liu, K. Liu and J. Zhou [39] on relative Gromov-Witten invariants
of (local) curves. For completeness, a self-contained exposition of relative
stable maps and relative virtual localization, including one the main exam-
ples used in the computation, is provided in Section 4. The final outcome is
presented below.

1.5. The main formula

To summarize the current setup, in this section C will be a nodal curve
consisting of a smooth genus g central component C0 and m pairwise disjoint
smooth genus zero components C1, . . . , Cm. Each component Ca intersects
C0 transversely at one point νa and. One also specifies a nonreduced effective
divisor D =

∑m
a=1 napa on C such that pa ∈ Ca \ {νa} for each 1 ≤ a ≤ m.

Each marked point is assigned in addition a collection ξ
a

= (ξ
a,1
, . . . , ξ

a,`a
) of

`a ≥ 1 pairwise disjoint, nonzero, sections of M = ωC(D) over the thickening
Da = napa, where ωC is the dualizing sheaf of C.

Using this data one constructs a normall crossing spectral surface Sξ
following the algorithm of [31], as in [14, Sect. 3.1]. One has to blow up the
images of the sections ξ in the total space of M , take a minimal resolution of

singularities, and remove a certain divisor. The spectral threefold Y ξ is the

total space of the dualizing sheaf of Sξ, hence it has a normal-crossing Calabi-
Yau structure. It consists of a central component, Y0, which is isomorphic
to the total space of a rank two bundle over C0 and m components Ya,
1 ≤ a ≤ m, each of them isomorphic to the total space of a line bundle over
a surface Sa, 1 ≤ a ≤ m. By construction, both Ya and Sa have natural log
Calabi-Yau structures for all 1 ≤ a ≤ m. The polar divisor of the dualizing
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sheaf of Ya, denoted by ∆a, 1 ≤ a ≤ m, is isomorphic to the affine plane.
Moreover, the threefolds Ya are glued to the central component Y0 along
the divisors ∆a, which are naturally identified with fibers of the projection
Y0 → C0. Each pair (Ya,∆a) will be called a wild cap in the following.

As shown in Section 2.2, assuming that

n1 = · · · = nm = n,

and making a suitable choice of local data ξ, one constructs a torus action

on Sξ. This action lifts to an action on the spectral threefold Y ξ preserving
the normal-crossing Calabi-Yau structure. Moreover for each 1 ≤ a ≤ m the
cone of compact curve classes on Ya is freely generated by `a torus invariant
sections of the projection map Ya → Ca. Therefore the compact curve classes
on Ya are in one-to-one correspondence with collections (mi,a) 6= (0, . . . , 0),
1 ≤ i ≤ `a of non-negative integers. At the same time the cone of compact
curve classes in Y0 is freely generated by the zero section. Hence any such
class is classified by the degree r ≥ 1. In conclusion the compact curve classes
on Y ξ in one-to-one correspondence with numerical data (m, r).

As shown in [42, 43, 53], in the context of GW/DT/PT correspondence
one has to consider stable maps to Y ξ with disconnected domains such
that no connected component is mapped to a point. Using the degeneration
formula proven in [35] it follows that only pairs (m, r) satisfying

(1.5)

`a∑
i=1

ma,i = r ≥ 1

for all 1 ≤ a ≤ m contribute to the Gromov-Witten theory of Y ξ. In partic-
ular r is determined by m, hence the residual equivariant invariants will be
denoted by GW •m,h, where h ∈ Z is the arithmetic genus of the domain. By
convention for any h ∈ Z, and any integral vector m let GW •m,h = 0 unless m
has non-negative entries satisfying condition (1.5). Therefore the partition
function takes the form

(1.6) Z(Y ξ; x, gs) = 1 +
∑
m

∑
h∈Z

g2h−2
s GWm,h

m∏
a=1

`a∏
i=1

x
ma,i

a,i .

An explicit formula for Z(Y ξ; x, gs) is derived in Section 3 by relative
virtual localization. The formula is written as a sum over partitions

λ = (λ1 ≥ λ2 ≥ · · · ≥ λl(λ)),
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identified with Young diagrams consisting of l(λ) left-aligned rows such that
the i-th row contains λi boxes. The following notation and definitions are
used in the computation.

• The total number of boxes in λ will be denoted by |λ| and its transpose
will be denoted by λt.

• The content of λ is defined as

c(λ) =
∑
2∈λ

(a(2)− l(2))

where a(2), l(2) are the arm and leg length respectively.

• The Schur function corresponding to λ will be denoted by sλ(x). The
fusion coefficients for ` partitions ν1, . . . , ν` are defined by

∏̀
i=1

sνi(x) =
∑

|λ|=|ν1|+···+|µ`|

cλν1,...,ν`sλ(x).

Then the formula derived in Section 3 reads

(1.7) ZGW (Y ξ; x, gs) = 1 +
∑
|λ|>0

sλt(q)
2−2g−m

m∏
a=1

Fn−1,`a,λ(xa, q)

where q = eigs , q = (q1/2, q3/2, . . .), and

(1.8) Fk,`,λ(x, q) = q−kc(λ)
∑

|ν1|+···+|ν`|=|λ|

cλν1,...,ν`

∏̀
i=1

x
|νi|
i qkc(νi)sνti (q).

for any integers k, ` ≥ 1. The factors Fn−1,`a,λ(xa, q) encode the relative
Gromov-Witten invariants of the wild caps (Ya,∆a), which are the main
novelty in this computation.

Assuming GW/PT correspondence, the above partition function coin-
cides with the generating function of residual stable pairs invariants
PT (Y ξ,m, c) of the threefolds Yξ. Further assuming deformation invariance
as in(1.4), the above formula provides an explicit expression for the gener-
ating function

ZPT (Yξ, x, q) = 1 +
∑
m

∑
c∈Z

PT (Yξ,m, c)(−q)c
m∏
a=1

`a∏
i=1

x
ma,i

a,i
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associated to a smooth spectral threefold Yξ.
The above formula is derived under the assumption that all integers na

used as input data in the construction of Yξ are equal, n1 = · · · = nm. More-
over, one also requires the sections ξ

a
to satisfy an equivariance condition for

all 1 ≤ a ≤ m in order for a torus action to exist in the degenerate limit. At
the same time, the invariants (1.3) are defined more generally for any values
of na and for generic sections ξ

a
, 1 ≤ a ≤ m. The next section formulates a

conjectural refined generalization of formula (1.7) allowing arbitrary values
of na, as well as arbitrary generic sections ξ

a
, 1 ≤ a ≤ m.

1.6. Conjectural refinement

The conjectural refinement of the partition function (1.7) is inferred from
the structure of the wild factors (1.8) by comparison with previous refined
formulas derived in [10, 12, 14]. The refinement will be written in terms of
Macdonald polynomials Pλ(s, t; x) and uses the following quantities:

• the fusion coefficients Nλ
ν1,...,ν`(s, t) defined by the product identity

∏̀
i=1

Pνi(s, t; x) =
∑

|λ|=|ν1|+···+|ν`|

Nλ
ν1,...,ν`(s, t)Pλ(s, t; x)

• the specializations

Rµ(q, y) = Pµ(s, t; t)
∣∣
s=qy, t=qy−1 , Lµ(q, y) = Pµ(t, s; s)|s=qy, t=qy−1

Ñλ
ν1,...,ν`(q, y) = Nλ

ν1,...,ν`(qy, qy
−1)

where

t = (t1/2, t3/2, . . .), s = (s1/2, s3/2, . . .),

and

• the framing factors

gµ(q, y) = fµ(qy, qy−1), fµ(s, t) =
∏
2∈µ

sa(2)t−l(2).

One of the main building blocks of the refined formulas derived in [10, 12]
is the polynomial function

Tg,λ(q, y) =
∏
2∈λ

(qy)−(2a(2)+1)g(1− ya(2)−l(2)qh(2))2g
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encoding the genus dependence of the partition function. Furthermore, by
comparison with the refined formula of [14], one is led to conjecture the
following refinement of the wild factor (1.8).

Gk,`,λ(x, q, y) =
∑

µ1,...,µ`
|µ1|+···+|µ`|=|λ|

Ñλ
µ1,...,µ`(q, y)gλ(q, y)−k(1.9)

×
∏̀
i=1

(
x
|µi|
i gkµi(q, y)Lµti(q, y)

)
.

Then the refined stable pair theory of a threefold Yξ with arbitrary data
(na, `a, ξa), 1 ≤ a ≤ m, at the marked points is conjectured to be

ZrefPT (Yξ; q, y, x) = 1+
∑
|λ|>0

gλ(q, y)Rλ(q, y)Tg,λ(q, y)Lλt(q, y)1−m(1.10)

×
m∏
a=1

Gna−1,`a,λ(xa, q, y)

As a consistency check, this formula reduces to the one conjectured in [12] in
the absence of marked points, in which case the wild cap factors are absent.
Moreover, it also reduces to the main formula conjectured in [14] for a genus
zero curve with one marked point. Moreover hard numerical evidence for this
conjecture is obtained by comparison with the main conjecture of Hausel,
Mereb and Wong [25], as discussed in the next section.

1.7. Conjectures for wild character varieties

As explained in Section 1.2, for sufficiently generic data ξ the wild non-
abelian Hodge correspondence relates moduli spaces of irregular parabolic
Higgs bundles with singular type ξ to moduli spaces of filtered flat con-
nections. A set of generic of local data ξ and a set of generic parabolic
weights determine uniquely a collection Γ(ξ) of irregular types as well as
a collection τ of conjugacy classes associated to the marked points. Both
Γ(ξ) and τ satisfy conditions (W.1) and (W.2) in Section 1.1. This relation
leads to a wild variant of the P = W conjecture of [13] identifying the per-
verse Leray filtration on the moduli space of Higgs bundles with the weight
filtration on the cohomology of wild character varieties. Using the refined
Gopakumar-Vafa expansion, the refined stable pair partition function (1.10)
yields explicit predictions for weighted Poincaré polynomials of wild charac-
ter varieties. By analogy with [10, 12, 14], in the present context the refined
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Gopakumar-Vafa formula is a conjectural expansion

lnZref (Yξ; x, q, y) = −
∑
k≥1

∑
|µ1|=···=|µm|=r≥1

(1.11)

m∏
a=1

mµa(x
k
a)

k

y−kr(qy−1)kd(µ,n,g)/2Pµ,n((qy)−k, yk))

(1− (qy)−k)(1− (qy−1)k)

where Pµ,n(u, v) are polynomials with integer coefficients which count the

degeneracies of spinning BPS states in M-theory. The coefficients mµ(xk)
are the monomial symmetric functions evaluated at xk = (xk1, x

k
2, . . .) for

any k ≥ 1. Note that xa = (x1, . . . , x`a , 0, 0, . . .) for each 1 ≤ a ≤ m.
Using the mathematical theory of [27, 45], since Yξ is a spectral threefold,

the polynomials Pµ,n are identified with the perverse Poincaré polynomials of
the Higgs bundle moduli spaces Hsξ(C,D;α,m, d) for sufficiently generic α.

This yields the following conjectural statement for wild character varieties.
Let SΓ(ξ),τ be the wild character variety corresponding to some generic

sections ξ and generic conjugacy classes τ satisfying conditions (W.1), (W.2)
in Section 1.1. Let

P (SΓ(ξ),τ ;u, v) =
∑
i,j

dim GrWi H
j(SΓ(ξ),τ )ui/2(−v)j

be the weighted Poincaré polynomial of SΓ(ξ),τ where GrWi H
j(SΓ(ξ),τ ) are

the successive quotients of the weight filtration on cohomology. Then

P (SΓ(ξ),τ ;u, v) = Pµ,n(u, v).

In particular, under the current genericity assumptions the weighted Poincaré
polynomial depends only on the discrete data (µ, n).

The main supporting evidence for this conjecture is obtained from the
comparison with the conjecture of Hausel, Mereb and Wong [25] which yields
explicit predictions for partitions of the form µ = ((1r), . . . , (1r)). Their par-
tition function is defined as

ZHMW (z, w) = 1 +
∑
|λ|>0

Ωg,n
λ (z, w)

m∏
a=1

H̃λ(xa; z
2, w2)

where:

• the sum in the right hand side is over all Young diagrams λ with
|λ| > 0,
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• for each λ

Ωg,n
λ (z, w) =

∏
2∈λ

(−z2a(2)w2l(2))n−m(z2a(2)+1 − w2l(2)+1)2g

(z2a(2)+2 − w2l(2))(z2a(2) − w2l(2)+2)
,

• xa = (xa,1, xa,2, . . .) is an infinite set of formal variables for each 1 ≤
a ≤ m, and H̃λ(xa; z

2, w2) are the modified Macdonald polynomials.

Let Hµ,n(z, w) be defined by
(1.12)

lnZHMW (z, w) =
∑
k≥1

∑
µ

(−1)(n−m)|µ|wkd(µ,n,g) Hµ,n(zk, wk)

(1− z2k)(w2k − 1)

m∏
a=1

mµa(x
k
a)

where the sum is again over all Young diagrams, mµ(x) are the monomial
symmetric functions and xk = (xk1, x

k
2, . . .). Then for µa = (1r), 1 ≤ a ≤ r,

one has the following conjectural formula

(1.13) WP (SQ,T;u, v) = H(1r),n(u1/2, u−1/2v−1)

where n =
∑m

a=1 na. Note that the v = 1 specialization of this conjecture is
proven in [25] using arithmetic methods.

Although the two conjectural formulas are quite different, direct numer-
ical comparison shows that they yield the same predictions for

• 0 ≤ g ≤ 2, m = 2, µ1 = µ2 = (13), 2 ≤ deg(D) = n1 + n2 ≤ 7

• 0 ≤ g ≤ 1, m = 3, µ1 = µ2 = µ3 = (13), 3 ≤ deg(D) = n1 + n2 + n3 ≤
9.

It should be noted that these are highly nontrivial tests. For example for
g = 2, deg(D) = 7, µ1 = µ2 = (13), as well as g = 1, deg(D) = 9, µ1 = µ2 =
µ3 = (13) the polynomials Pµ,n(u, v) have bidegree (56, 56), hence a total
of 3248 terms. Moreover, as a further consistency check, explicit computa-
tions for rank r = 3 and r = 4 character varieties confirm that the partition
function (1.10) has indeed a BPS expansion of the form (1.11) for arbitrary
partitions µa, including µa 6= (1r). For illustration some numerical results
for the polynomials Pµ,n are listed in Appendix A.
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Hausel, Davesh Maulik and Yan Soibelman for very helpful discussions and
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was partially supported by NSF grant DMS-1501612.
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2. Wild degenerate local curves

2.1. Degenerations

In this section C will be a nodal curve consisting of m rational components
C1, . . . , Cm and a smooth projective genus g curve C0. Each rational compo-
nent Ca, 1 ≤ a ≤ m, intersects C0 transversely at a node νa ∈ C0 and is at
the same time disjoint from all other rational components Cb, b 6= a. More-
over, each component Ca contains a marked point pa 6= νa, and each marked
point is assigned the pair of positive integers (na, `a). This data will be de-
noted by n = (na), ` = (`a) with 1 ≤ a ≤ m. Furthermore let Da = napa,
1 ≤ a ≤ m, and D =

∑m
a=1Da.

A degenerate wild curve is then specified by the collection (C, p1, . . . , pm)
and a collection ξ

a
= (ξa,i), 1 ≤ i ≤ `a of generic sections of M |Da for each

1 ≤ a ≤ m. Recall that the genericity condition requires the values ξa,i(pa)
to be pairwise distinct and nonzero for each 1 ≤ a ≤ m. Let ξ = (ξ

a,i
), 1 ≤

i ≤ `a, 1 ≤ a ≤ m.
Let M = ωC(D), where ωC is the dualizing line bundle of C. In analogy

with [14, 31], one constructs a surface Sξ by blowing-up the total space
of M along the images of the sections ξ

a,i
, taking a minimal resolution

of singularities, and removing an anticanonical divisor. This process can be
alternatively viewed as a sequence of successive blowups of M at closed points
lying recursively on the strict transforms of the sections ξa,i. The resulting
surface is reducible, with normal crossing singularities, and there is a natural
projection map η : Sξ → C. The smooth irreducible components of Sξ are

Sa = η−1(Ca) and S0 = η−1(C0). The central component S0 = π−1(C0) is
isomorphic to the total space of

M |C0
' KC0

(ν1 + · · ·+ νm)

and intersects each Sa transversely along the fiber Fa = η−1(νa). For all
1 ≤ a ≤ m the surface Sa is obtained by succesively blowing up the total
space of

M |Ca ' KCa(napa + νa)

and removing a certain divisor, as shown in detail in Section 2.2. The divisor
in question is chosen such that the pair (Sa, Fa) is a log Calabi-Yau surface,
KSa ' OSa(−Fa), for all 1 ≤ a ≤ m.

Finally, let Y ξ be the total space of the dualizing line bundle of the

normal crossing surface Sξ. Note that there is a natural projection π : Y ξ →
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C and Y ξ has normal crossing singularities along the divisors ∆a = π−1(νa),

1 ≤ a ≤ m. The irreducible components of Y ξ are Ya = π−1(Ca), 1 ≤ a ≤
m, and Y0 = π−1(C0). Each Ya is isomorphic to the total space of the line
bundle KSa(Fa) ' OSa over Sa, hence KYa ' OYa(−∆a) for all 1 ≤ a ≤ m.
The central component Y0 is isomorphic to the total space of the rank two
bundle

(2.1) OC0
⊕M |C0

' OC0
⊕KC0

(ν1 + · · ·+ νm).

Hence KY0
' OYa(−∆1 − · · · −∆m) as expected. The log Calabi-Yau three-

folds (Ya,∆a) will be called wild caps in the following.

2.2. Torus action and invariant curves

A torus action on the degenerate threefold Y ξ will be constructed in this
section satisfying the following criteria:

• The restriction to Ya, 1 ≤ a ≤ m, is a lift of the natural action on the
rational curve Ca which preserves the log Calabi-Yau structure.

• The restriction to Y0 is an anti-diagonal torus action on the total space
of the rank two bundle (2.1).

The torus action will be obtained by gluing separate torus actions on each
irreducible component of Y ξ. To fix notation, let Ma denote the total space
of M |Ca and let (za, wa) be standard affine coordinates on the rational
component Ca centered at pa, νa respectively. Let ka = deg(M |Ca) = na − 1,
1 ≤ a ≤ m. The inverse image of the standard open cover of Ca determines
an affine open cover (Ua, Va) of Ma with coordinates (za, ua), (wa, va) related
by the transition function

wa = z−1
a , va = zkaa ua

on the overlap. Then there is a one dimensional torus action T×Ma →Ma,

(2.2) t× (za, ua) 7→ (t−1za, ua) and t× (wa, va) 7→ (twa, t
kava),

on Ma leaving the fiber over pa pointwise fixed.
In order for this action to lift to the blow-up, the local sections ξa,i :

Da →MDa must be chosen to be equivariant. This means the image of each
section ξa,i : Da →Ma will be a non-reduced zero dimensional subscheme
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Figure 1: Chains of exceptional curves on the blow-up.

δa,i ⊂Ma given by

znaa = 0, ua = λa,i,

with λa,i ∈ C, 1 ≤ i ≤ `a. By the genericity assumption, (λa,i), 1 ≤ i ≤ `a
must be pairwise distinct and nonzero for each 1 ≤ a ≤ m. Then there is a
canonical lift of the action (2.2) to the blow-up along the union ∪`ai=1δi.

In more detail, the surface obtained by blowing up Ma contains `a lin-

ear chains of exceptional divisors Ξ
(a)
i,j , 1 ≤ i ≤ `a, 1 ≤ j ≤ na as shown in

Figure 1. The surface Sa is the complement of the union

∪`ai=1 ∪
na−1
j=1 Ξ

(a)
i,j .

Note in particular that the last component Ξ
(a)
i,na

, 1 ≤ i ≤ `a of each chain is
not removed, but it restricts to a non-compact curve on Sa. Moreover, the
torus action (2.2) restricts to a torus action on Sa.
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By construction there is an affine open subset of Sa which is canonically
identified with affine chart Va ⊂Ma by the blow-up map. Therefore one can
use (wa, va) as local coordinates on Sa as well. The threefold Ya is the total
space of the line bundle KSa(Fa) ' OSa , where Fa is the divisor wa = 0. In
particular, Ya is a log Calabi-Yau threefold with KYa ' OYa(−∆a), where ∆a

is the inverse image of Fa. The torus action on Sa lifts to a torus action on
Ya preserving the log Calabi-Yau structure. In order to write a local formula,
note that the inverse image of Va in Ya is an affine coordinate chart on Ya
with coordinates (wa, ya, va) where ya is a natural vertical affine coordinate.
In this chart the torus action reads

(2.3) t× (wa, ya, va) = (twa, t
−kaya, t

kava).

It is important to note that there is a finite collection of smooth rational
torus invariant curves Xa,i in Ya locally given by

(2.4) ya = 0, va = λa,iw
ka
a , 1 ≤ i ≤ `a.

This is sketched in Figure 2. Each of these curves is a (0,−1) curve on Ya
intersecting the exceptional divisor Ξ

(a)
i,na

transversely at a torus fixed point
pa,i. In fact for each 1 ≤ i ≤ ` the blow-up construction yields an affine open
coordinate chart on Ya with coordinates (zi,a, xi,a, ui,a) centered at pa,i which
are related to (wa, ya, va) by the transition functions

wa = z−1
i,a , ya = xi,a, va = zi,aui,a.

In this coordinate chart the curve Xi,a is cut by ui,a = xi,a = 0. Furthermore,
the local form of the torus action reads

(2.5) t× (zi,a, xi,a, ui,a) 7→ (t−1zi,a, t
−kaxi,a, t

ka+1ui,a).

In conclusion, if the local sections ξ
a

are equivariant, each irreducible
component Ya, 1 ≤ a ≤ m has a torus action preserving the log Calabi-Yau
structure. According to equation (2.3), the restriction of this action to the
divisor ∆a ' A2 has weights (ka,−ka) on the tangent space at the origin,
which is spanned by (∂/∂ya, ∂/∂va). In order to construct a torus action on
the normal crossing threefold Y ξ, the weights (ka,−ka) must be identical for
all values of a, that is ka = k for all 1 ≤ a ≤ m. If this condition is satisfied,
there is a fiberwise torus with weights (k,−k) on the central component Y0

which agrees with the torus actions on the components Ya along the gluing
divisor ∆a for 1 ≤ a ≤ m. This will be assumed to be the case in the next
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Figure 2: Torus invariant curves in Sa.

section. The log Calabi-Yau threefolds (Ya,∆a), 1 ≤ a ≤ m equipped with
the above torus action will be called degree k wild caps in the following.

3. Wild degenerate Gromov-Witten theory

The goal of this section is to derive an explicit formula for the Gromov-
Witten theory of a degenerate wild local curve. This will be carried out using
J. Li’s theory of relative stable morphisms [34] and degeneration formula [35],
the relative virtual localization theorem of Graber and Vakil [23], as well as
the local TQFT formalism of Bryan and Pandharipande [9]. Several results
proven in [8, 38, 39, 50–52] will be also needed in the process.

The main building blocks will be residual relative Gromov-Witten in-
variants of log Calabi-Yau threefolds (Y,∆) equipped with a torus action,
where ∆ ⊂ Y is a smooth divisor. For completeness a review of relative sta-
ble maps is provided in Section 4. As explained there, simple relative stable
maps to the pair (Y,∆) are stable maps f : Σ→ Y with prescribed contact
conditions along ∆ specified by a Young diagram λ = (λ1, . . . , λlλ). More
precisely, one requires that f−1(∆) =

∑lλ
j=1 λjσj for some pairwise distinct

smooth points σ1, . . . , σlλ ∈ Σ. The topological invariants of a relative stable
map are the genus h ∈ Z and the homology class β = f∗[Σ] ∈ H2(Y,Z). As
in [8, 9, 51, 52], disconnected domains are allowed as long as no connected
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component is mapped to a point. Moreover, following loc. cit., the points
σ1, . . . , σlλ in the domain will be unmarked, as opposed to [34, 35].

3.1. The wild cap

A wild cap is a log Calabi-Yau threefold (Ya,∆a), as constructed in the
previous section, equipped with a torus action as in Section 2.2. Since the
relative target will be fixed throughout this subsection, it will be simply
denoted by (Y,∆).

The first observation is that the cone of compact curve classes on Y
is freely generated by the classes [Xi], 1 ≤ i ≤ `, of torus invariant curves
determined by the equations (2.4). Again the subscript a will be dropped.
Given any collection of non-negative integers m = (m1, . . . ,m`), let β(m) =∑`

i=1mi[Xi] be the corresponding curve class, and let M
•
h,m(λ) be the mod-

uli stack of genus h relative stable maps to (Y,∆) with homology class β(m)
and relative conditions specified by λ. The torus fixed locus M

•
h,m(λ)T is

compact and the residual relative invariants are defined by virtual integra-
tion

(3.1) GW •(h,m, λ) =

∫
[M
•
h,m(λ)T]vir

1

eT(Nvir)

where Nvir denotes the virtual normal bundle to the fixed locus. The wild
cap is the generating function

(3.2) Wλ(x, gs) =
∑
h∈Z

∑
(m1,...,m`)

g2h−2+l(µ)
s GW •(h,m, λ)

∏̀
i=1

xmi

The computation of the residual invariants (3.1) proceeds by analogy
with the (0,−1) cap reviewed in Section 4.3. Using the relative virtual local-
ization theorem [23], the partition function of the wild cap is a convolution

(3.3) Wλ(x, gs) = Sλ(x, gs) +
∑
|ρ|=|λ|

(iku)2l(ρ)ζ(ρ)Sρ(x, gs)Rρ,λ(gs)

where

Sρ(x, gs) =
∑
h∈Z

∑
(m1,...,m`)

g2h−2+l(ρ)
s GW •s (h,m, ρ)

∏̀
i=1

xmi
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is the generating function of equivariant simple residues and Rρ,λ(gs) is the
generating function of rubber integrals. In the above formula u ∈ H2(BT)
is the equivariant parameter and the combinatorial factor ζ(ρ) is defined by

ζ(ρ) =
∏
j≥1

kj !j
kj

for a partition ρ = (1k12k2 · · · ).
An important observation is that the rubber target occuring in the ex-

panded degenerations of the wild cap is P1 × A2 with antidiagonal torus
action of type (k,−k) on A2. Therefore using the results of [39, 51, 52]
collected in Section 4.5, the rubber generating function is

(3.4) Rρ,λ(gs) = (iku)−(l(ρ)+l(λ))
∑
|ν|=d

(
e−ikc(ν)gs − 1

)χν(ρ)

ζ(ρ)

χν(λ)

ζ(λ)
.

for any Young diagrams (ρ, λ) with |ρ| = |λ| = d. Note that χν(λ) denotes
the character of the irreducible symmetric group representation correspond-
ing to ν evaluated on the conjugacy class corresponding to λ.

The generating function Sρ(x, gs) for the residues of the simple fixed loci
is computed by localization arguments generalizing those used in Section 4.3
for the (0,−1) Calabi-Yau cap. The domain of a simple fixed map in the
current setup is union

Σ =
(
∪`i=1 Σi

)
∪
(
∪`i=1 ∪

ki
j=1Λi,j

)
where

• each Σi, 1 ≤ i ≤ ` is a possibly disconnected genus hi component
mapped to the fixed point pi in Y ,

• for each 1 ≤ i ≤ `, the components Λi,1, . . . ,Λi,ki are projective lines
attached to Σi mapped in a torus invariant fashion to the curve Xi in
the target with some degrees di,1, . . . , di,ki ≥ 1.

Note that

h =
∑̀
i=1

hi, mi =

ki∑
j=1

di,j

for all 1 ≤ i ≤ `. Moreover, the infinitesimal neighborhood of each target
curve Xi ⊂ Y is isomorphic to the infinitesimal neighborhood of the zero
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section in the (0,−1) cap geometry discussed in detail in Section 4.3. In
conclusion a simple fixed locus is isomorphic to a product

×`i=1Γs(hi, ρi)

where ρi be the partition of mi determined by (di,j), 1 ≤ j ≤ ki, and each
factor Γs(hi, ρi) is a fixed locus of type (hi, ρi) in the (0,−1) cap geometry.
Furthermore, the Young diagram ρ encoding the contact conditions along ∆
is given by

ρ = ∪`i=1ρi.

This yields

(3.5) Sλ(x, gs) =
∑

ρ1∪···∪ρ`=λ

∏̀
i=1

(
x
|ρi|
i Sρi(gs)

)
where Sρ(gs) is the contribution of simple fixed loci with relative conditions
ρ for the (0,−1) cap geometry. As explained in Section 4.4, the latter is
given by the Marino-Vafa formula [40] proven in [38, 50]. This reads

Sρ(Y,∆; gs) = (iku)−l(ρ)
∑
|ν|=|ρ|

χν(ρ)

ζ(ρ)
V (k+1)
ν (q),

where q = eigs and

V (k+1)
ν (q) = q(k+1)c(ν)sν(q) = qkc(ν)sνt(q), q = (q1/2, q3/2, . . .).

is the one leg topological vertex [1].
The computation of the wild cap then proceeds by substituting equa-

tions (3.5) and (3.4) in (3.3). As shown in detail below, the final expression
is

Wλ(x, gs) = (iku)−l(λ)ζ(λ)−1(3.6)

×
∑
|µ|=|λ|

∑
ν1,...,ν`

|ν1|+···+|ν`|=|λ|

q−kc(µ)cµν1,...,ν`χ
µ(λ)

∏̀
i=1

(
x
|νi|
i qkc(νi)sνti (q)

)

where cµν1,...,ν` are the fusion coefficients for Schur functions i.e.

(3.7)
∏̀
i=1

sνi(x) =
∑

|µ|=|ν1|+···+|ν`|

cµν1,...,ν`sµ(x).
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The proof of formula (3.6) will proceed in a few steps.
Step 1. Using the orthogonality relation

∑
|µ|=|λ|=|ρ|

χµ(ρ)χµ(λ) = ζ(λ)δρ,λ,

the generating function Sλ(x, gs) in (3.5) will be rewritten as follows

Sλ(x, gs) = (iku)−l(λ)
∑

ρ1∪···∪ρ`=λ

∑
ν1,...,ν`

|νi|=|ρi|, 1≤i≤`

∏̀
i=1

(
xi
|ρi|ζ(ρi)

−1χνi(ρi)V
(k+1)
νi (q)

)
= (iku)−l(λ)ζ(λ)−1

∑
|ρ|=|λ|

∑
ρ1∪···∪ρ`=ρ

ζ(λ)δρ,λ

×
∑

ν1,...,ν`
|νi|=|ρi|, 1≤i≤`

∏̀
i=1

(
xi
|ρi|ζ(ρi)

−1χνi(ρi)V
(k+1)
νi (q)

)

= (iku)−l(λ)ζ(λ)−1
∑
|µ|=|λ|

∑
|ρ|=|λ|

∑
ρ1∪···∪ρ`=ρ

χµ(ρ)χµ(λ)

×
∑

ν1,...,ν`
|νi|=|ρi|, 1≤i≤`

∏̀
i=1

(
xi
|ρi|ζ(ρi)

−1χνi(ρi)V
(k+1)
νi (q)

)

= (iku)−l(λ)ζ(λ)−1
∑

ν1,...,ν`
|ν1|+···+|ν`|=|λ|

∑
|µ|=|λ|

χµ(λ)
∏̀
i=1

(
x
|νi|
i V (k+1)

νi (q)
)

×
∑

ρ1,...,ρ`
|ρi|=|νi|, 1≤i≤`

χµ(ρ1 ∪ · · · ∪ ρ`)
∏̀
i=1

(
ζ(ρi)

−1χνi(ρi)
)

Now note the following combinatorial formula

(3.8) cµν1,...,ν` =
∑

ρ1,...,ρ`
|ρi|=|νi|, 1≤i≤`

χµ(ρ1 ∪ · · · ∪ ρ`)
∏̀
i=1

(
ζ(ρi)

−1χνi(ρi)
)
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for the fusion coefficients, which can be easily proven by writing the Schur
functions in terms of power sum symmetric functions. This yields by substi-
tution:

Sλ(x, gs) = (iku)−l(λ)ζ(λ)−1(3.9)

×
∑

ν1,...,ν`
|ν1|+···+|ν`|=|λ|

∑
|µ|=|λ|

cµν1,...,ν`χ
µ(λ)

∏̀
i=1

(
x
|νi|
i V (k+1)

νi (q)
)
.

for the generating function of simple residues.
Step 2. The second term in the convolution formula (3.3) is computed

using equation (3.5) and identity (3.8)∑
|ρ|=|λ|

(iku)2l(ρ)ζ(ρ)Sρ(x, gs)Rρ,λ(gs)(3.10)

= (iku)−lλζ(λ)−1
∑
|ρ|=|λ|

∑
|µ|=|λ|

(
e−ikc(µ)gs − 1

)
χµ(ρ)χµ(λ)

×
∑

ρ1∪···∪ρ`=ρ

∑
ν1,...,ν`

|νi|=|ρi|, 1≤i≤`

∏̀
i=1

(
x
|ρi|
i ζ(ρi)

−1χνi(ρi)V
(k+1)
νi (q)

)
= (iku)−lλζ(λ)−1

∑
|µ|=|λ|

(
e−ikc(µ)gs − 1

)
χµ(λ)

×
∑

|ν1|+···+|ν`|=|λ|

cµν1,...,ν`

∏̀
i=1

(
x
|νi|
i V (k+1)

νi (q)
)

Finally, substituting (3.9) and (3.10) in (3.3) one obtains formula (3.6).

3.2. The central component

The central component of the degenerate threefold Y ξ is isomorphic to the
total space of the rank two bundle

OC0
⊕KC0

(ν1 + · · ·+ νm)

over the smooth genus g curve C0. Under the current assumption there is
a fiberwise torus action with weights (k,−k) on Y0. Recall that Y0 is glued
to the wild caps Y1, . . . , Ym along the fibers ∆1, . . . ,∆m over the points
ν1, . . . , ν2m. The goal of this section is to determine the generating function
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of relative Gromov-Witten invariants for the data (Y0,∆1, . . . ,∆m) with
contact conditions λ1, . . . , λm. An explicit formula for this generating func-
tion follows from the two dimensional TQFT formalism for local curves
constructed in [9]. The main building blocks are determined in the proof of
Theorems 7.3 in loc. cit. as explained below, mainly using the same notation.

For the antidiagonal torus action, the TQFT constructed in [9] takes
values in the category of R-modules, where R = Q[i](t)((gs)) is the ring of
Laurent series in the genus counting variable gs over the algebraic extension
Q[i]. Given a fixed degree d ≥ 1, the R-module GWd(S

1) assigned to the
circle is freely generated by elements eα in one-to-one correspondence with
Young diagrams |α| = d. Let eα be the dual generators given by

eα(eβ) = (−t2)l(α)ζ(α)δαβ .

Note that the coefficients (−t2)l(α)ζ(α) are the gluing factors in the degen-
eration formula for local relative Gromov-Witten invariants [9, Thm. 3.2].
The multiplication operator is determined by the residual relative invariants
of a local genus zero (0, 0) curve with contact conditions along three fibers

(3.11) M =
∑

|α|=|β|=|γ|=d

GW(0|0, 0)γα,βe
α ⊗ eβ ⊗ eγ .

The genus operator is defined as

(3.12) G =
∑

|α|=|β|=d

GW(1|0, 0)βαe
α ⊗ eβ

where the coefficients GW(1|0, 0)βα are the residual relative invariants of a
local genus one (0, 0) curve one (0, 0) curve with contact conditions along
two fibers. An important observation is that the multiplication operator
takes the canonical form

(3.13) Mµ
λ,ρ = δµλδ

µ
ρ .

with respect to the idempotent basis,

(3.14) vλ = ζ(λ)−1
∑
|α|=d

(it)l(α)−dχλ(α)eα.

The remaining TQFT elements needed in this section are:
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• the (0, 1) annulus in the v-basis,

(3.15) Aρλ = (it)−dζ(λ)−1sλt(q)
−1δρ,λ,

• the genus operator in the v-basis,

(3.16) Gλ,ρ = (it)2dζ(λ)2δλ,ρ,

• and the counit in the v-basis, which is determined by the (0, 0) cap,

(3.17) Cλ = (it)−2dζ(λ)−2.

In this formalism, a genus g local curve of type (p, q) with marked
points ν = (ν1, . . . , νm) determines an R-module morphism GWd(C, ν|p, q) :
GWd(S

1)⊗m → R given by

GWd(C, ν|p, q) =
∑

|α1|=···=|αm|=d

GW(g|p, q)α1,...,αse
α1 ⊗ · · · ⊗ eαs .

Here GW(g|p, q)α1,...,αs are residual relative Gromov-Witten invariants of the
local (p, q) curve C with contact conditions (α1, . . . , αs) along the m fibers
∆1, . . . ,∆m. In the present case, recall that (p, q) = (0, 2g − 2 +m) and t =
ku. In order to write down an explicit formula, let Pm : GWd(S

1)⊗m →
GWd(S

1) be the operator

Pm(v1, . . . , vm) = M(M(· · · (M(v1, v2), v3), . . .), vm).

Then note that

(3.18) GWd(C, ν|0, 2g − 2 +m) = CA2g−2+mGPm.

Using equations (3.13), (3.15), (3.16) and (3.17), the coefficients of this op-
erator in the v-basis are

(3.19) Zλ1,...,λm = (iku)−(2g−2+m)d
∑
|ρ|=d

sρt(q)
−(2g−2+m)

m∏
a=1

δρλa .

3.3. The wild curve formula

The residual Gromov-Witten of a wild degenerate local curve is obtained
from equations (3.6) and (3.18), (3.19) using the degeneration formula. For
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fixed degree r ≥ 1 each wild cap yields an element

w =
∑
|α|=r

(iku)2l(α)ζ(α)Wα(x, gs)eα

in GWd(S
1). The degree r degenerate wild curve partition function is then

given by

(3.20) Zr = GWr(C, ν|0, 2g − 2 +m)(w1 ⊗ · · · ⊗ wm).

In order to derive an explicit formula, one needs the coefficients of the wild
cap in the v-basis. Using the inverse change of basis

(3.21) eα = (it)r−l(α)ζ(α)−1
∑
|λ|=r

ζ(λ)χλ(α)vλ.

one obtains

wλ = ζ(λ)
∑
|α|=r

(iku)r+l(α)χλ(α)Wα(x, gs).

Using equation (3.6), this yields

(3.22) wλ = (iku)|λ|ζ(λ)q−kc(λ)
∑

|ν1|+···+|ν`|=|λ|

cλν1,...,ν`

∏̀
i=1

x
|νi|
i qkc(νi)sνti (q).

Substituting (3.19) and (3.22) in (3.20), it follows that

Zr =
∑
|λ|=r

sλt(q)
2−2g−m

m∏
a=1

Fk,`a,λ(xa, q)

where

Fk,`,λ(x, q) = q−kc(λ)
∑

|ν1|+···+|ν`|=|λ|

cλν1,...,ν`

∏̀
i=1

x
|νi|
i qkc(νi)sνti (q).

This proves formula (1.7).

4. Relative stable maps

This section is a self-contained review of relative stable maps following
[34, 35], and some of their applications [8, 9, 23, 38, 39, 50–52]. No re-
sults presented here are new, the goal being to collect all results needed in
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Section 3.1 in a self-contained manner in order to streamline the derivation
of the wild cap formula. This review is primarily aimed at the non-expert
reader.

4.1. Background

Suppose Y is a smooth complex projective variety and ∆ ⊂ Y is a smooth
connected divisor. A simple relative stable map to the pair (Y,∆) consists
of the data (Σ, f, σ1, . . . , σl) where Σ is a connected nodal curve f : Σ→ Y
a map to Y , and σ1, . . . , σl are smooth pairwise distinct points on Σ such
that:

• f−1(∆) =
∑l

i=1miσi for some positive integers m1, . . . ,ml, and

• the automorphism group of the data (Σ, f, σ1, . . . , σl) is finite.

The topological invariants of simple relative stable maps are the arithmetic
genus g ≥ 0 of the domain and the homology class β = f∗[Σ] ∈ H2(X,Z).

The moduli stack of simple relative stable maps with fixed invariants
(g, l, β), (m1, . . . ,ml) is not proper. A compactification is constructed in
[34] by allowing the target to degenerate in a controlled way. The allowed
degenerations of the target are normal crossing varieties constructed by glu-
ing Y and an arbitrary number of copies of the projective bundle

P = P∆(N∆/Y ⊕O∆),

where N∆/Y is the normal bundle of ∆ in Y . This projective bundle has two

canonical sections ∆0,∆∞ with normal bundles N−1
∆/Y , N∆/Y respectively.

For any integer n ≥ 1 let Pn be the normal crossing variety obtained by
gluing n copies of P such that the section ∆∞ of the i-th copy is identified
with section ∆0 of the (i+ 1)-th copy. Note that no gluing occurs along ∆0

in the first copy and ∆∞ in the last. Abusing notation, these two divisors on
Pn will be denoted by ∆0,∆n respectively. The singular locus of Pn consists
of the union ∆1 ∪ · · · ∪∆n−1 of copies of ∆ where ∆i is the intersection
between the i-th and the (i+ 1)-th copy of P . For further reference let
Aut∆(Pn) ' (C×)n denote the group of automorphisms of Pn acting trivially
on all sections ∆0, . . . ,∆n over ∆. The degenerate targets Yn are constructed
by gluing Y to Pn so that ∆ ⊂ Y is identified with ∆0 ⊂ Pn. Therefore one
obtains a relative pair (Yn,∆n) such that the singular set of Yn is the union of
the n copies ∆0 ∪ · · · ∪∆n−1 of copies of ∆. Note that there is an algebraic
stack E of expanded degenerations parameterizing all degenerate targets
which occur in this construction, and a universal family Y → E.
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Compactification of the moduli stack of relative stable maps is achieved
by including relative stable morphisms to degenerate pairs (Yn,∆n). Such
relative maps consist of data (Σ, f, σ1, . . . , σl) satisfying the following con-
ditions

• Σ is a connected nodal curve and f : Σ→ Yn is a predeformable map
to Yn.

• σ1, . . . , σl are smooth points of Σ such that

f−1(∆n) =

l∑
i=1

miσi.

Predeformable morphisms f : Σ→ Yn are defined by the following condi-
tions:

• The set theoretic inverse image of any gluing divisor ∆i ⊂ Y sing
n is a

set of nodes of Σ.

• The two branches of Σ crossing at each such node are mapped to dif-
ferent irreducible components of Yn meeting along ∆i such the contact
orders along ∆i are equal.

The topological invariants of a relative map to an expanded target are the
arithmetic genus g of the domain, and the homology class β = πn∗f∗[Σ] ∈
H2(Y,Z) where πn : Yn → Y is the natural projection.

Two relative maps (Σ, f), (Σ′, f ′) to Yn are isomorphic if there is an
isomorphism ψ : Σ→ Σ′ and an automorphism ϕ : Yn → Yn fixing Y and
the divisors ∆0, . . . ,∆n pointwise, such that f ′ ◦ ψ = ϕ ◦ f . Note that ϕ|Pn ∈
Aut∆(Pn) acts by fiberwise scalar multiplication on each copy of P used in
the construction of Pn. Stability is defined by requiring the relative maps to
have a finite automorphism group according to this notion of isomorphism.

The main result of [34] proves that for fixed data (g, l, β), m = (m1, . . . ,
ml) there is a proper Deligne-Mumford moduli stack Mg,β(Y,∆,m) of rel-
ative stable morphisms equipped with a perfect obstruction theory and a
universal relative morphism to the universal family Y of expanded degener-
ations.

A slightly different flavor of relative theory will be used throughout this
paper, as in [8, 9, 51, 52]. Namely, as opposed to [34], the points (σ1, . . . , σl)
in the inverse image of the divisor D are unmarked, and one also allows
disconnected domains as long as no connected component is contracted to
a point. In particular the numerical invariants (m1, . . . ,ml) are unordered,
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hence they are encoded in a Young diagram µ with l rows. The moduli
stack of stable relative maps with fixed invariants (g, β), µ will be denoted
by Mg,β(Y,∆;µ) for connected domains, respectively M

•
g,β(Y,∆;µ) for dis-

connected domains. Note that in the second case g is allowed to be negative.
In both cases the moduli stack is equipped with a virtual cycle and a uni-
versal morphism to the stack of expanded degenerations Y.

Finally, given a torus action on Y which preserves ∆, there is a virtual
localization formula for moduli stacks of relative stable maps, which has
been extensively used in the literature. The foundations have been proven
in [23]. In particular, this allows one to define residual relative invariants for
non-compact pairs (Y,∆) provided that there is a torus action on Y which
preserves ∆ and has compact fixed locus.

4.2. Rubber target

The classification of torus fixed loci in moduli stacks of relative maps leads
naturally to a variant of the above construction employing non-rigid tar-
gets. Namely one constructs a moduli stack of predeformable stable maps to
degenerate targets Pn imposing fixed contact conditions along the sections
∆0,∆∞ specified by two partitions ρ, µ. Moreover two such maps (Σ, f),
(Σ′, f ′) are isomorphic if there is an isomorphism ψ : Σ→ Σ′ and an auto-
morphism ϕ ∈ Aut∆(Pn) such that f ′ ◦ ψ = ϕ ◦ f . This construction yields
a Deligne-Mumford moduli stack M

•
h,β(P, ρ, µ)∼ equipped with a perfect

obstruction theory, where β ∈ H2(P,Z). Again, disconnected domains are
allowed.

In this case there is again a stack of expanded degenerations E, a uni-
versal family P → E, and a universal map to P. Moreover, E is naturally
isomorphic to an open substack of the algebraic moduli stack M0,2 of genus
zero curves with two marked points 0,∞. In particular one obtains a co-
homology class ψ0 on the rubber moduli stack by pulling back the ψ-class
associated to the marked point 0 on M0,2. Abusing the language, the class
ψ0 will be referred to as the rubber ψ-class at 0.

4.3. Local (0,−1) rational curves

As an example, this section presents the computation of relative Gromov-
Witten theory by localization for a local (−1, 0) rational curve. Although this
computation has already been carried out for example in [8, 38, 50], a self-
contained review will be helpful since many details are needed in Section 3.1.
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Let C = P1 and let (U, z), (V,w) denote the standard affine coordinate
charts on C. Let T× C → C be the torus action on C given by

(t, z) 7→ t−1z, (t, w) 7→ tw

in the two charts respectively. Let also p ∈ U and δ ∈ V be the points z = 0,
w = 0 respectively. Let Y be the total space of OC ⊕OC(−p) and let ∆ be
the fiber of Y over δ. The open subsets YU , YV are affine coordinate charts
on Y with coordinates (z, u, x), (w, v, y) related by the transition functions

w = z−1, x = y, v = zu.

Let T× Y → Y denote the lift of the torus action to Y such that

t× (z, u, x) 7→ (t−1z, t−kx, tk+1u), t× (w, v, y) 7→ (tw, t−ky, tkv).

Note that in this case any expanded degeneration Yn, n ≥, is naturally
isomorphic to the total space of the rank two bundle OCn ⊕OCn(−p) where
Cn is the n step degeneration of the target curve. As explained in Section 4.1,
Cn is constructed by gluing C to a linear chain of n rational curves, (P1)n,
where each curve in chain contains two marked points δ0, δ∞. Similarly, any
rubber target Pn is isomorphic to (P1)n × A2 and the two divisors ∆0,∆n

are the fibers of the projection to (P1)n over the marked points δ0, δn. The
above torus action lifts to a torus action T× Yn → Yn on any expanded de-
generation of the target which scales the fibers over Cn with weights (k,−k)
leaving the zero section pointwise fixed. This holds for Pn as well.

The residual invariants of the pair (Y,∆) are defined by evaluating an
equivariant obstruction class on the virtual cycle of the moduli space of
relative stable maps to (C,∞). Clearly, the degree of any such relative map is
given by d =

∑l
i=1 µi = |µ|, where µ = (µ1, . . . , µl) is the partition specifying

the relative conditions at δ∞. Therefore the moduli stack of relative stable
maps with disconnected domains can be denoted by M

•
h(C, δ;µ), where h ∈

Z is the arithmetic genus of the domain.
Let φ : S → C denote the universal relative stable map to (C, δ∞) and

π : S →M
•
h(C, δ;µ) denote the natural projection. Note that there is a line

bundle OC(−℘) which restricts to OCn(−p) on each closed point. Then the
obstruction is the equivariant K-theory class

Ob = −T−kRπ∗φ∗OC(−℘)− T kRπ∗φ∗OC

where T denotes the canonical representation of the torus and OC(−℘), OC
are equipped with their natural equivariant structures. The relative local
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invariants are defined by

(4.1) GW •(h, µ) =

∫
[M
•
h(C,δ;µ)]virT

eT(Ob),

where [M
•
h(C, δ;µ)]virT is the equivariant virtual cycle. They can be computed

by relative virtual localization as explained below.
The torus fixed loci in moduli stacks of relative stable maps have been

analyzed in detail for example in [8, 38, 39, 50]. The main observation is
that the domain of a generic torus invariant relative map f : Σ→ Cn splits
naturally as a union of two curves Σ = Σs ∪ Σ∞ whose intersection is a finite
set of nodes of Σ. The restriction fs = f |Σs maps Σs to C while f∞ = f |Σ∞
maps Σ∞ to (P1)n. Using the predeformability condition, it follows that
fs : Σs → C must be a simple relative stable map to (C, δ) with relative
invariants specified by a Young diagram ρ such that |ρ| = |µ|. At the same
time f∞ : Σ∞ → (P1)n is a relative stable map to the triple ((P1)n, δ0, δn)
with relative invariants (ρ, µ) respectively. Using the definition of isomor-
phisms of relative maps, it follows that the data (Σ∞, f |Σ∞) determines a
point in the rubber moduli stack of stable relative maps to P1.

At the same time, as explained in [8, Appendix A], identifying the ramifi-
cation divisors on the two components Σs, Σ∞ over δ = δ0 requires ordering
the ramification points in the two components, which are unmarked in the
present construction. This implies that a generic fixed locus Γ(h, µ) in the
moduli stack M

•
h(C, δ, µ) is isomorphic to a finite etale cover of the product

Γs(h1, ρ)×M•h2
(P1, δ0, δ∞; ρ, µ) where h = h1 + h2 while ρ is a Young dia-

gram with |ρ| = |µ| and Γs(h1, ρ) is a simple fixed locus in the moduli stack
M
•
h1

(C, δ, ρ).
Using the relative virtual localization theorem [23], the equivariant re-

sidue of such a fixed locus factors as

(4.2) ZΓ(h,µ) = ζ(ρ)eT(Tδ∆0)ZΓs(h1,ρ)

∫
[M
•
h2

(P1,δ0,δ∞;ρ,µ)]vir

eT(Ob∞)

−u− ψ0

where

• ZΓs(h1,ρ) is the equivariant residue of the simple fixed locus Γ(h1, ρ),

• Ob∞ is an equivariant obstruction class on the rubber moduli space,

• ψ0 is the rubber ψ-class at 0 defined as in Section 4.2,

• u ∈ H2
T(point) is the natural generator of the equivariant cohomology

ring of the point, and
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• given a partition ρ = (1k12k2 · · · ), the factor ζ(ρ) is defined by
ζ(ρ) =

∏
j≥1 kj !j

kj .

Note that the factor 1/(−u− ψ0) corresponds to normal infinitesimal defor-
mations in the ambient moduli stack M

•
h(C, δ;µ) induced by deformations

of the degenerate target. As shown in [8, Eqn. 14], the combinatorial factor
ζ(ρ) encodes the degree of the finite etale cover involved in the presentation
of the fixed locus as a direct product.

The rubber obstruction class is given by

Ob∞ =
(
−T k[Rπ∗φ∗OP1 ]− T−k[Rπ∗φ∗OP1 ]

) ∣∣
Γ∞(h,ρ,µ)

where φ : S → P1 is the universal relative morphism to the rubber target
and π : S →M

•
h2

(P1, δ0, δ∞; ρ, µ) the natural projection. Therefore

eT(Ob∞) = (ku)−1(−ku)−1eT(E∨(ku))eT(E∨(−ku))

where E is the Hodge bundle. Using Mumford’s relation c(E∨)c(E) = 1, one
further obtains

(4.3) eT(Ob∞) = (−1)h−1(ku)2h−2.

Therefore the rubber factors in (4.2) reduce to

(4.4) GW •(h, ρ, µ)∼ = (−1)h−1(ku)2h−2

∫
[M
•
h2

(P1,δ0,δ∞;ρ,µ)]vir

1

−u− ψ0
.

Next note that the equation (4.2) yields a gluing formula for the partition
function

(4.5) Zµ(Y,∆; gs) =
∑
h∈Z

g2h−2+l(µ)
s GW •(h, µ)

of residual local invariants with relative conditions µ. Let

Sµ(gs) =
∑
h∈Z

g2h−2+l(µ)
s GW •s (h, µ)

be the generating function of simple residual invariants with relative condi-
tions and

Rρ,µ(gs) =
∑
h∈Z

g2h−2+l(µ)+l(ρ)
s GW •(h, ρ, µ)∼
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be the generating function of rubber relative invariants with relative condi-
tions (ρ, µ). Then equation (4.5) yields

(4.6) Zµ(Y,∆; gs) = Sµ(gs) +
∑
|ρ|=|λ|

(iku)2l(ρ)ζ(ρ)Sρ(gs)Rρ,µ(gs).

4.4. Simple fixed loci

The domain of a simple fixed map is a union

Σ = Σ0 ∪
(
∪lj=1 Λi

)
where

• Σ0 is a possibly disconnected genus h component mapped to the fixed
point p ∈ C, and

• the components Λ1, . . . ,Λl are projective lines attached to Σ0, which
are mapped in a torus invariant fashion to C with some degrees di, . . . ,
dl ≥ 1.

The partition µ encoding the contact conditions at δ∞ is determined by
(d1, . . . , dl).

The equivariant residues of simple fixed loci are evaluated by standard
localization computations in terms of Hodge integrals on moduli spaces of
curves with marked points. Such computations have been done in detail for
example in [8, 38, 39, 50], the results being in agreement with the open string
Gromov-Witten invariants computed in [29, 36]. Omitting the details the end
result is a closed form expression for the generating function S•α(gs) provided
by the Marino-Vafa formula [40], proven in [38, 50]. To write this formula
explicitly, for any Young diagram ν let sν(x1, x2, . . .) are the corresponding
Schur function and let c(ν) =

∑
2∈ν(a(2)− l(2))/2 be the content of ν. As

above, if ν = (1k12k2 · · · ), let ζ(ν) =
∏
j≥1 kj !j

kj . Moreover let χν denote
the character of the irreducible representation of the symmetric group S|ν|
determined by ν. For any Young diagram µ with |µ| = |ν| let χν(µ) denote
the value of χν on the conjugacy class determined by µ. Then the Marino-
Vafa formula reads

(4.7) Sµ(Y,∆; gs) = (iku)−l(µ)
∑
|ν|=|µ|

χν(µ)

ζ(µ)
q(k+1)c(ν)sν(q).

where q = eigs and q = (q1/2, q3/2, . . .).
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4.5. Rubber integrals and Hurwitz numbers

In order to finish the computation one has to evaluate the rubber integrals
in equation (4.4), which has been done in [39, 51, 52]. First note that

GW •(h, ρ, µ)∼ = (−1)h(ku)2h−2
∑
n≥0

(−1)nu−n−1〈ρ, n|µ〉∼h

where

〈ρ, n|µ〉∼h =

∫
[M
•
h(P1,δ0,δ∞;ρ,µ)∼]vir

ψn0 .

These rubber correlators have been evaluated by rigidification in [39, 51, 52],
the final formulas being expressed in terms of Hurwitz numbers,

(4.8) 〈ρ, n|µ〉∼h =
H•h(ρ, µ)

(n+ 1)!

if n+ 1 = 2h− 2 + l(ρ) + l(µ), respectively 〈ρ, n|µ〉∼h = 0 for all other values
of n.

For completeness, recall that the double Hurwitz number H•h(ρ, µ) is the
weighted number of genus h disconnected d : 1 covers of P1 with fixed branch
locus of type (

µ, ν, (2, 1d−1), . . . , (2, 1d−1)︸ ︷︷ ︸
n(h,ρ,µ)

)
where d = |ρ| = |µ|, and

n(h, ρ, µ) = 2h− 2 + l(ρ) + l(µ).

Each cover is weighted by the inverse of the order of its automorphism
group. The double Hurwitz numbers are given by the following combinatorial
formula [16]

(4.9) H•h(ρ, µ) =
∑
|ν|=d

c(ν)n(h,ρ,µ)χ
ν(ρ)

ζ(ρ)

χν(µ)

ζ(µ)

where c(ν) =
∑

2∈ν(a(2)− l(2)) is the content of ν.
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Using equation (4.8), the generating series of rubber invariants is written
as

Rρ,µ(gs) = (iku)−(l(ρ)+l(µ))

×
∑
h∈Z

2h−2+l(ρ)+l(µ)≥1

(−ikgs)2h−2+l(ρ)+l(µ) H•h(ρ, µ)

(2h− 2 + l(ρ) + l(µ))!

= (iku)−(l(ρ)+l(µ))
∑
n≥1

(−ikgs)n
Hh(n,ρ,µ)

n!

where

h(n, ρ, µ) =

{
(n− l(ρ)− l(µ) + 2)/2, if n− l(ρ)− l(µ) even

0, otherwise.

Next note that formula (4.9) yields the following identity

(4.10)
∑
n≥1

tn

n!
H•h(n,ρ,µ)(ρ, µ) =

∑
ν

(
etc(ν) − 1

)χν(ρ)

ζ(ρ)

χν(µ)

ζ(µ)
.

for any variable t. Therefore the final formula for the rubber generating
series for two partitions (ρ, µ) with |ρ| = |µ| = d is

(4.11) Rρ,µ(gs) = (iku)−(l(ρ)+l(µ))
∑
|ν|=d

(
e−ikc(ν)gs − 1

)χν(ρ)

ζ(ρ)

χν(µ)

ζ(µ)
.

The computation of the (0,−1) cap is concluded by substituting formulas
(4.7), (4.11) in equation (4.6). Using the orthogonality relations∑

|ρ|=|µ|=|ν|

ζ(ρ)−1χµ(ρ)χν(ρ) = δµ,ν ,

it follows that

(4.12) Zµ(Y,∆; gs) = (iku)−l(µ)
∑
|ν|=|µ|

χν(µ)

ζ(µ)
qc(ν)sν(q).

Using the identity,

qc(ν)sν(q) = sνt(q)

this formula agrees with the antidiagonal (0,−1) cap computed in [9] for
torus weight t = ku. Indeed, applying the TQFT formalism of [9], reviewed
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in Section 3.2, the element of GWd(S
1) determined by the above formula

is ∑
|µ|=d

(iku)2l(µ)ζ(µ)Zµ(Y,∆; gs)eµ =
∑
|µ|=d

∑
|ν|=d

(iku)l(µ)χν(µ)qc(ν)sν(q)eµ.

Using the change of basis formula (3.21), one finds∑
|ρ|=d

(iku)dζ(ρ)sρt(q)vρ

in the indempotent basis (3.14). This is an agreement with the formula for
the coefficients ηρ derived on page 38 of [9].

Appendix A. Examples

Example 1. g = 1, m = 2, µ1 = µ2 = (2, 1), n1 = 3, n2 = 4.

Pm,n(u, v) = u30v30 + 2u29v30 − 2u29v29 + 4u28v30 − 6u28v29 + 5u27v30

+ 2u28v28 − 14u27v29 + 7u26v30 + 9u27v28 − 22u26v29

+ 8u25v30 − 2u27v27 + 23u26v28 − 32u25v29 + 10u24v30

− 10u26v27 + 44u25v28 − 40u24v29 + 11u23v30 + 2u26v26

− 28u25v27 + 68u24v28 − 50u23v29 + 11u22v30 + 10u25v26

− 60u24v27 + 94u23v28 − 58u22v29 + 10u21v30 − 2u25v25

+ 31u24v26 − 100u23v27 + 119u22v28 − 58u21v29 + 9u20v30

− 10u24v25 + 69u23v26 − 148u22v27 + 144u21v28 − 54u20v29

+ 6u19v30 + 2u24v24 − 32u23v25 + 124u22v26 − 194u21v27

+ 144u20v28 − 48u19v29 + 4u18v30 + 10u23v24 − 74u22v25

+ 190u21v26 − 240u20v27 + 136u19v28 − 34u18v29 + u17v30

− 2u23v23 + 32u22v24 − 140u21v25 + 261u20v26 − 240u19v27

+ 118u18v28 − 20u17v29 − 10u22v23 + 77u21v24 − 222u20v25

+ 324u19v26 − 226u18v27 + 86u17v28 − 4u16v29 + 2u22v22

− 32u21v23 + 149u20v24 − 316u19v25 + 323u18v26 − 190u17v27

+ 44u16v28 + 10u21v22 − 78u20v23 + 246u19v24 − 392u18v25

+ 297u17v26 − 134u16v27 + 6u15v28 − 2u21v21 + 32u20v22

− 154u19v23 + 357u18v24 − 384u17v25 + 241u16v26 − 56u15v27
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− 10u20v21 + 78u19v22 − 262u18v23 + 443u17v24 − 340u16v25

+ 152u15v26 − 4u14v27 + 2u20v20 − 32u19v21 + 157u18v22

− 386u17v23 + 418u16v24 − 260u15v25 + 44u14v26 + 10u19v20

− 78u18v21 + 271u17v22 − 474u16v23 + 354u15v24 − 134u14v25

+ u13v26 − 2u19v19 + 32u18v20 − 158u17v21 + 405u16v22

− 428u15v23 + 241u14v24 − 20u13v25 − 10u18v19 + 78u17v20

− 276u16v21 + 484u15v22 − 340u14v23 + 86u13v24 + 2u18v18

− 32u17v19 + 158u16v20 − 412u15v21 + 418u14v22 − 190u13v23

+ 4u12v24 + 10u17v18 − 78u16v19 + 278u15v20 − 474u14v21

+ 297u13v22 − 34u12v23 − 2u17v17 + 32u16v18 − 158u15v19

+ 405u14v20 − 384u13v21 + 118u12v22 − 10u16v17 + 78u15v18

− 276u14v19 + 443u13v20 − 226u12v21 + 6u11v22 + 2u16v16

− 32u15v17 + 158u14v18 − 386u13v19 + 323u12v20 − 48u11v21

+ 10u15v16 − 78u14v17 + 271u13v18 − 392u12v19 + 136u11v20

− 2u15v15 + 32u14v16 − 158u13v17 + 357u12v18 − 240u11v19

+ 9u10v20 − 10u14v15 + 78u13v16 − 262u12v17 + 324u11v18

− 54u10v19 + 2u14v14 − 32u13v15 + 157u12v16 − 316u11v17

+ 144u10v18 + 10u13v14 − 78u12v15 + 246u11v16 − 240u10v17

+ 10u9v18 − 2u13v13 + 32u12v14 − 154u11v15 + 261u10v16

− 58u9v17 − 10u12v13 + 78u11v14 − 222u10v15 + 144u9v16

+ 2u12v12 − 32u11v13 + 149u10v14 − 194u9v15 + 11u8v16

+ 10u11v12 − 78u10v13 + 190u9v14 − 58u8v15 − 2u11v11

+ 32u10v12 − 140u9v13 + 119u8v14 − 10u10v11 + 77u9v12

− 148u8v13 + 11u7v14 + 2u10v10 − 32u9v11 + 124u8v12

− 50u7v13 + 10u9v10 − 74u8v11 + 94u7v12 − 2u9v9 + 32u8v10

− 100u7v11 + 10u6v12 − 10u8v9 + 69u7v10 − 40u6v11 + 2u8v8

− 32u7v9 + 68u6v10 + 10u7v8 − 60u6v9 + 8u5v10 − 2u7v7

+ 31u6v8 − 32u5v9 − 10u6v7 + 44u5v8 + 2u6v6 − 28u5v7

+ 7u4v8 + 10u5v6 − 22u4v7 − 2u5v5 + 23u4v6 − 10u4v5

+ 5u3v6 + 2u4v4 − 14u3v5 + 9u3v4 − 2u3v3 + 4u2v4 − 6u2v3

+ 2u2v2 + 2uv2 − 2uv + 1.
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Example 2. g = 1, m = 2, µ1 = (2, 1), µ2 = (1, 1, 1), n1 = 3, n2 = 4.

Pµ,n(u, v) = u38v38 + 3u37v38 − 2u37v37 + 6u36v38 − 8u36v37 + 9u35v38

+ 2u36v36 − 20u35v37 + 12u34v38 + 11u35v36 − 36u34v37

+ 15u33v38 − 2u35v35 + 32u34v36 − 54u33v37 + 18u32v38

− 12u34v35 + 67u33v36 − 72u32v37 + 21u31v38 + 2u34v34

− 38u33v35 + 112u32v36 − 90u31v37 + 24u30v38 + 12u33v34

− 88u32v35 + 162u31v36 − 108u30v37 + 27u29v38 − 2u33v33

+ 41u32v34 − 160u31v35 + 213u30v36 − 126u29v37 + 30u28v38

− 12u32v33 + 100u31v34 − 248u30v35 + 264u29v36 − 144u28v37

+ 30u27v38 + 2u32v32 − 42u31v33 + 193u30v34 − 342u29v35

+ 315u28v36 − 162u27v37 + 27u26v38 + 12u31v32 − 106u30v33

+ 314u29v34 − 438u28v35 + 366u27v36 − 168u26v37 + 24u25v38

− 2u31v31 + 42u30v32 − 214u29v33 + 451u28v34 − 534u27v35

+ 414u26v36 − 156u25v37 + 18u24v38 − 12u30v31 + 109u29v32

− 362u28v33 + 594u27v34 − 630u26v35 + 438u25v36 − 138u24v37

+ 12u23v38 + 2u30v30 − 42u29v31 + 226u28v32 − 538u27v33

+ 738u26v34 − 714u25v35 + 417u24v36 − 108u23v37 + 6u22v38

+ 12u29v30 − 110u28v31 + 395u27v32 − 726u26v33 + 879u25v34

− 756u24v35 + 366u23v36 − 72u22v37 − 2u29v29 + 42u28v30

− 232u27v31 + 604u26v32 − 918u25v33 + 996u24v34 − 726u23v35

+ 291u22v36 − 36u21v37 − 12u28v29 + 110u27v30 − 416u26v31

+ 835u25v32 − 1098u24v33 + 1044u23v34 − 630u22v35 + 192u21v36

+ 2u28v28 − 42u27v29 + 235u26v30 − 652u25v31 + 1073u24v32

− 1236u23v33 + 990u22v34 − 492u21v35 + 90u20v36 + 12u27v28

− 110u26v29 + 428u25v30 − 922u24v31 + 1287u23v32 − 1278u22v33

+ 843u21v34 − 312u20v35 − 2u27v27 + 42u26v28 − 236u25v29

+ 685u24v30 − 1202u23v31 + 1431u22v32 − 1182u21v33 + 627u20v34

− 120u19v35 − 12u26v27 + 110u25v28 − 434u24v29 + 988u23v30

− 1440u22v31 + 1449u21v32 − 972u20v33 + 360u19v34 + 2u26v26

− 42u25v27 + 236u24v28 − 706u23v29 + 1305u22v30 − 1578u21v31

+ 1302u20v32 − 672u19v33 + 90u18v34 + 12u25v26 − 110u24v27

+ 437u23v28 − 1036u22v29 + 1551u21v30 − 1554u20v31 + 1014u19v32
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− 312u18v33 − 2u25v25 + 42u24v26 − 236u23v27 + 718u22v28

− 1380u21v29 + 1665u20v30 − 1344u19v31 + 627u18v32

− 36u17v33 − 12u24v25 + 110u23v26 − 438u22v27 + 1068u21v28

− 1620u20v29 + 1590u19v30 − 972u18v31 + 192u17v32 + 2u24v24

− 42u23v25 + 236u22v26 − 724u21v27 + 1425u20v28 − 1692u19v29

+ 1302u18v30 − 492u17v31 + 6u16v32 + 12u23v24 − 110u22v25

+ 438u21v26 − 1086u20v27 + 1644u19v28 − 1554u18v29 + 843u17v30

− 72u16v31 − 2u23v23 + 42u22v24 − 236u21v25 + 727u20v26

− 1440u19v27 + 1665u18v28 − 1182u17v29 + 291u16v30 − 12u22v23

+ 110u21v24 − 438u20v25 + 1092u19v26 − 1620u18v27 + 1449u17v28

− 630u16v29 + 12u15v30 + 2u22v22 − 42u21v23 + 236u20v24

− 728u19v25 + 1425u18v26 − 1578u17v27 + 990u16v28 − 108u15v29

+ 12u21v22 − 110u20v23 + 438u19v24 − 1086u18v25 + 1551u17v26

− 1278u16v27 + 366u15v28 − 2u21v21 + 42u20v22 − 236u19v23

+ 727u18v24 − 1380u17v25 + 1431u16v26 − 726u15v27 + 18u14v28

− 12u20v21 + 110u19v22 − 438u18v23 + 1068u17v24 − 1440u16v25

+ 1044u15v26 − 138u14v27 + 2u20v20 − 42u19v21 + 236u18v22

− 724u17v23 + 1305u16v24 − 1236u15v25 + 417u14v26 + 12u19v20

− 110u18v21 + 438u17v22 − 1036u16v23 + 1287u15v24 − 756u14v25

+ 24u13v26 − 2u19v19 + 42u18v20 − 236u17v21 + 718u16v22

− 1202u15v23 + 996u14v24 − 156u13v25 − 12u18v19 + 110u17v20

− 438u16v21 + 988u15v22 − 1098u14v23 + 438u13v24 + 2u18v18

− 42u17v19 + 236u16v20 − 706u15v21 + 1073u14v22 − 714u13v23

+ 27u12v24 + 12u17v18 − 110u16v19 + 437u15v20 − 922u14v21

+ 879u13v22 − 168u12v23 − 2u17v17 + 42u16v18 − 236u15v19

+ 685u14v20 − 918u13v21 + 414u12v22 − 12u16v17 + 110u15v18

− 434u14v19 + 835u13v20 − 630u12v21 + 30u11v22 + 2u16v16

− 42u15v17 + 236u14v18 − 652u13v19 + 738u12v20 − 162u11v21

+ 12u15v16 − 110u14v17 + 428u13v18 − 726u12v19 + 366u11v20

− 2u15v15 + 42u14v16 − 236u13v17 + 604u12v18 − 534u11v19

+ 30u10v20 − 12u14v15 + 110u13v16 − 416u12v17 + 594u11v18

− 144u10v19 + 2u14v14 − 42u13v15 + 235u12v16 − 538u11v17
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+ 315u10v18 + 12u13v14 − 110u12v15 + 395u11v16 − 438u10v17

+ 27u9v18 − 2u13v13 + 42u12v14 − 232u11v15 + 451u10v16

− 126u9v17 − 12u12v13 + 110u11v14 − 362u10v15 + 264u9v16

+ 2u12v12 − 42u11v13 + 226u10v14 − 342u9v15 + 24u8v16

+ 12u11v12 − 110u10v13 + 314u9v14 − 108u8v15 − 2u11v11

+ 42u10v12 − 214u9v13 + 213u8v14 − 12u10v11 + 109u9v12

− 248u8v13 + 21u7v14 + 2u10v10 − 42u9v11 + 193u8v12

− 90u7v13 + 12u9v10 − 106u8v11 + 162u7v12 − 2u9v9

+ 42u8v10 − 160u7v11 + 18u6v12 − 12u8v9 + 100u7v10

− 72u6v11 + 2u8v8 − 42u7v9 + 112u6v10 + 12u7v8 − 88u6v9

+ 15u5v10 − 2u7v7 + 41u6v8 − 54u5v9 − 12u6v7 + 67u5v8

+ 2u6v6 − 38u5v7 + 12u4v8 + 12u5v6 − 36u4v7 − 2u5v5

+ 32u4v6 − 12u4v5 + 9u3v6 + 2u4v4 − 20u3v5 + 11u3v4

− 2u3v3 + 6u2v4 − 8u2v3 + 2u2v2 + 3uv2 − 2uv + 1.

Example 3. g = 1, m = 2, µ1 = µ2 = (2, 2), n1 = 3, n2 = 4.

Pµ,n(u, v) = u58v58 + 2u57v58 − 2u57v57 + 6u56v58 − 6u56v57 + 9u55v58

+ 2u56v56 − 18u55v57 + 17u54v58 + 9u55v56 − 36u54v57

+ 22u53v58 − 2u55v55 + 28u54v56 − 68u53v57 + 34u52v58

− 10u54v55 + 68u53v56 − 108u52v57 + 41u51v58 + 2u54v54

− 34u53v55 + 136u52v56 − 164u51v57 + 57u50v58 + 10u53v54

− 90u52v55 + 245u51v56 − 228u50v57 + 66u49v58 − 2u53v53

+ 37u52v54 − 196u51v55 + 391u50v56 − 308u49v57 + 86u48v58

− 10u52v53 + 102u51v54 − 378u50v55 + 591u49v56 − 396u48v57

+ 97u47v58 + 2u52v52 − 38u51v53 + 238u50v54 − 648u49v55

+ 826u48v56 − 500u47v57 + 121u46v58 + 10u51v52 − 108u50v53

+ 480u49v54 − 1030u48v55 + 1122u47v56 − 612u46v57

+ 134u45v58 − 2u51v51 + 38u50v52 − 262u49v53 + 873u48v54

− 1520u47v55 + 1447u46v56 − 740u45v57 + 162u44v58

− 10u50v51 + 111u49v52 − 550u48v53 + 1445u47v54 − 2136u46v55

+ 1839u45v56 − 876u44v57 + 169u43v58 + 2u50v50 − 38u49v51
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+ 274u48v52 − 1040u47v53 + 2235u46v54 − 2864u45v55

+ 2254u44v56 − 1028u43v57 + 183u42v58 + 10u49v50

− 112u48v51 + 594u47v52 − 1790u46v53 + 3242u45v54

− 3720u44v55 + 2742u43v56 − 1150u42v57 + 177u41v58

− 2u49v49 + 38u48v50 − 280u47v51 + 1152u46v52 − 2864u45v53

+ 4499u44v54 − 4688u43v55 + 3246u42v56 − 1232u41v57

+ 177u40v58 − 10u48v49 + 112u47v50 − 618u46v51 + 2049u45v52

− 4294u44v53 + 5977u43v54 − 5784u42v55 + 3738u41v56

− 1256u40v57 + 159u39v58 + 2u48v48 − 38u47v49 + 283u46v50

− 1224u45v51 + 3367u44v52 − 6118u43v53 + 7717u42v54

− 6988u41v55 + 4062u40v56 − 1232u39v57 + 144u38v58

+ 10u47v48 − 112u46v49 + 630u45v50 − 2226u44v51 + 5199u43v52

− 8336u42v53 + 9671u41v54 − 8150u40v55 + 4243u39v56

− 1152u38v57 + 112u37v58 − 2u47v47 + 38u46v48 − 284u45v49

+ 1268u44v50 − 3746u43v51 + 7582u42v52 − 10968u41v53

+ 11885u40v54 − 9034u39v55 + 4189u38v56 − 1020u37v57

+ 88u36v58 − 10u46v47 + 112u45v48 − 636u44v49 + 2340u43v50

− 5916u42v51 + 10577u41v52 − 14000u40v53 + 14025u39v54

− 9528u38v55 + 3966u37v56 − 824u36v57 + 56u35v58 + 2u46v46

− 38u45v47 + 284u44v48 − 1292u43v49 + 4015u42v50 − 8824u41v51

+ 14169u40v52 − 17426u39v53 + 15749u38v54 − 9528u37v55

+ 3502u36v56 − 624u35v57 + 34u34v58 + 10u45v46 − 112u44v47

+ 639u43v48 − 2412u42v49 + 6453u41v50 − 12554u40v51

+ 18404u39v52 − 20824u38v53 + 16718u37v54 − 9020u36v55

+ 2850u35v56 − 416u34v57 + 14u33v58 − 2u45v45 + 38u44v46

− 284u43v47 + 1304u42v48 − 4194u41v49 + 9817u40v50

− 17134u39v51 + 23193u38v52 − 23538u37v53 + 16823u36v54

− 7964u35v55 + 2128u34v56 − 232u33v57 + 6u32v58 − 10u44v45

+ 112u43v46 − 640u42v47 + 2456u41v48 − 6842u40v49

+ 14208u39v50 − 22596u38v51 + 28013u37v52 − 25108u36v53

+ 15875u35v54 − 6420u34v55 + 1422u33v56 − 96u32v57 + 2u31v58

+ 2u44v44 − 38u43v45 + 284u42v46 − 1310u41v47 + 4308u40v48
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− 10568u39v49 + 19733u38v50 − 28854u37v51 + 31799u36v52

− 25232u35v53 + 13903u34v54 − 4740u33v55 + 762u32v56

− 24u31v57 + 10u43v44 − 112u42v45 + 640u41v46 − 2480u40v47

+ 7113u39v48 − 15538u38v49 + 26397u37v50 − 35134u36v51

+ 33951u35v52 − 23668u34v53 + 11017u33v54 − 3080u32v55

+ 294u31v56 − 8u30v57 − 2u43v43 + 38u42v44 − 284u41v45

+ 1313u40v46 − 4380u39v47 + 11115u38v48 − 21900u37v49

+ 34131u36v50 − 40020u35v51 + 33933u34v52 − 20372u33v53

+ 7953u32v54 − 1592u31v55 + 42u30v56 − 10u42v43 + 112u41v44

− 640u40v45 + 2492u39v46 − 7292u38v47 + 16565u37v48

− 29708u36v49 + 41846u35v50 − 42580u34v51 + 31455u33v52

− 15768u32v53 + 4931u31v54 − 536u30v55 + 12u29v56 + 2u42v42

− 38u41v43 + 284u40v44 − 1314u39v45 + 4424u38v46

− 11506u37v47 + 23641u36v48 − 38818u35v49 + 47736u34v50

− 42196u33v51 + 26439u32v52 − 10952u31v53 + 2372u30v54

− 48u29v55 + 10u41v42 − 112u40v43 + 640u39v44 − 2498u38v45

+ 7406u37v46 − 17326u36v47 + 32473u35v48 − 47886u34v49

+ 50467u33v50 − 38400u32v51 + 19799u31v52 − 6372u30v53

+ 648u29v54 − 8u28v55 − 2u41v41 + 38u40v42 − 284u39v43

+ 1314u38v44 − 4448u37v45 + 11777u36v46 − 25002u35v47

+ 42804u34v48 − 54550u33v49 + 49370u32v50 − 31348u31v51

+ 13023u30v52 − 2688u29v53 + 42u28v54 − 10u40v41

+ 112u39v42 − 640u38v43 + 2501u37v44 − 7478u36v45

+ 17875u35v46 − 34684u34v47 + 53025u33v48 − 57160u32v49

+ 43870u31v50 − 22448u30v51 + 6918u29v52 − 536u28v53

+ 2u27v54 + 2u40v40 − 38u39v41 + 284u38v42 − 1314u37v43

+ 4460u36v44 − 11956u35v45 + 26033u34v46 − 46046u33v47

+ 60161u32v48 − 54904u31v49 + 34540u30v50 − 13752u29v51

+ 2372u28v52 − 24u27v53 + 10u39v40 − 112u38v41 + 640u37v42

− 2502u36v43 + 7522u35v44 − 18266u34v45 + 36388u33v46

− 57102u32v47 + 62238u31v48 − 47392u30v49 + 23364u29v50

− 6372u28v51 + 294u27v52 − 2u39v39 + 38u38v40 − 284u37v41
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+ 1314u36v42 − 4466u35v43 + 12070u34v44 − 26784u33v45

+ 48532u32v46 − 64342u31v47 + 58388u30v48 − 35648u29v49

+ 13023u28v50 − 1592u27v51 + 6u26v52 − 10u38v39

+ 112u37v40 − 640u36v41 + 2502u35v42 − 7546u34v43

+ 18536u33v44 − 37648u32v45 + 60049u31v46 − 65386u30v47

+ 48614u29v48 − 22448u28v49 + 4931u27v50 − 96u26v51

+ 2u38v38 − 38u37v39 + 284u36v40 − 1314u35v41 + 4469u34v42

− 12142u33v43 + 27309u32v44 − 50272u31v45 + 66922u30v46

− 59576u29v47 + 34540u28v48 − 10952u27v49 + 762u26v50

+ 10u37v38 − 112u36v39 + 640u35v40 − 2502u34v41 + 7558u33v42

− 18712u32v43 + 38508u31v44 − 61844u30v45 + 66448u29v46

− 47392u28v47 + 19799u27v48 − 3080u26v49 + 14u25v50

− 2u37v37 + 38u36v38 − 284u35v39 + 1314u34v40 − 4470u33v41

+ 12186u32v42 − 27656u31v43 + 51295u30v44 − 67792u29v45

+ 58388u28v46 − 31348u27v47 + 7953u26v48 − 232u25v49

− 10u36v37 + 112u35v38 − 640u34v39 + 2502u33v40 − 7564u32v41

+ 18820u31v42 − 39000u30v43 + 62450u29v44 − 65386u28v45

+ 43870u27v46 − 15768u26v47 + 1422u25v48 + 2u36v36 − 38u35v37

+ 284u34v38 − 1314u33v39 + 4470u32v40 − 12210u31v41

+ 27855u30v42 − 51632u29v43 + 66922u28v44 − 54904u27v45

+ 26439u26v46 − 4740u25v47 + 34u24v48 + 10u35v36 − 112u34v37

+ 640u33v38 − 2502u32v39 + 7567u31v40 − 18880u30v41

+ 39158u29v42 − 61844u28v43 + 62238u27v44 − 38400u26v45

+ 11017u25v46 − 416u24v47 − 2u35v35 + 38u34v36 − 284u33v37

+ 1314u32v38 − 4470u31v39 + 12221u30v40 − 27920u29v41

+ 51295u28v42 − 64342u27v43 + 49370u26v44 − 20372u25v45

+ 2128u24v46 − 10u34v35 + 112u33v36 − 640u32v37 + 2502u31v38

− 7568u30v39 + 18900u29v40 − 39000u28v41 + 60049u27v42

− 57160u26v43 + 31455u25v44 − 6420u24v45 + 56u23v46 + 2u34v34

− 38u33v35 + 284u32v36 − 1314u31v37 + 4470u30v38 − 12224u29v39

+ 27855u28v40 − 50272u27v41 + 60161u26v42 − 42196u25v43

+ 13903u24v44 − 624u23v45 + 10u33v34 − 112u32v35 + 640u31v36



i
i

“2-Diaconescu” — 2018/8/14 — 15:50 — page 535 — #45 i
i

i
i

i
i

Local curves, wild character varieties, and degenerations 535

− 2502u30v37 + 7568u29v38 − 18880u28v39 + 38508u27v40

− 57102u26v41 + 50467u25v42 − 23668u24v43 + 2850u23v44

− 2u33v33 + 38u32v34 − 284u31v35 + 1314u30v36 − 4470u29v37

+ 12221u28v38 − 27656u27v39 + 48532u26v40 − 54550u25v41

+ 33933u24v42 − 7964u23v43 + 88u22v44 − 10u32v33

+ 112u31v34 − 640u30v35 + 2502u29v36 − 7568u28v37

+ 18820u27v38 − 37648u26v39 + 53025u25v40 − 42580u24v41

+ 15875u23v42 − 824u22v43 + 2u32v32 − 38u31v33 + 284u30v34

− 1314u29v35 + 4470u28v36 − 12210u27v37 + 27309u26v38

− 46046u25v39 + 47736u24v40 − 25232u23v41 + 3502u22v42

+ 10u31v32 − 112u30v33 + 640u29v34 − 2502u28v35 + 7567u27v36

− 18712u26v37 + 36388u25v38 − 47886u24v39 + 33951u23v40

− 9020u22v41 + 112u21v42 − 2u31v31 + 38u30v32 − 284u29v33

+ 1314u28v34 − 4470u27v35 + 12186u26v36 − 26784u25v37

+ 42804u24v38 − 40020u23v39 + 16823u22v40 − 1020u21v41

− 10u30v31 + 112u29v32 − 640u28v33 + 2502u27v34 − 7564u26v35

+ 18536u25v36 − 34684u24v37 + 41846u23v38 − 25108u22v39

+ 3966u21v40 + 2u30v30 − 38u29v31 + 284u28v32 − 1314u27v33

+ 4470u26v34 − 12142u25v35 + 26033u24v36 − 38818u23v37

+ 31799u22v38 − 9528u21v39 + 144u20v40 + 10u29v30 − 112u28v31

+ 640u27v32 − 2502u26v33 + 7558u25v34 − 18266u24v35

+ 32473u23v36 − 35134u22v37 + 16718u21v38 − 1152u20v39

− 2u29v29 + 38u28v30 − 284u27v31 + 1314u26v32 − 4470u25v33

+ 12070u24v34 − 25002u23v35 + 34131u22v36 − 23538u21v37

+ 4189u20v38 − 10u28v29 + 112u27v30 − 640u26v31 + 2502u25v32

− 7546u24v33 + 17875u23v34 − 29708u22v35 + 28013u21v36

− 9528u20v37 + 159u19v38 + 2u28v28 − 38u27v29 + 284u26v30

− 1314u25v31 + 4469u24v32 − 11956u23v33 + 23641u22v34

− 28854u21v35 + 15749u20v36 − 1232u19v37 + 10u27v28

− 112u26v29 + 640u25v30 − 2502u24v31 + 7522u23v32

− 17326u22v33 + 26397u21v34 − 20824u20v35 + 4243u19v36

− 2u27v27 + 38u26v28 − 284u25v29 + 1314u24v30 − 4466u23v31
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+ 11777u22v32 − 21900u21v33 + 23193u20v34 − 9034u19v35

+ 177u18v36 − 10u26v27 + 112u25v28 − 640u24v29 + 2502u23v30

− 7478u22v31 + 16565u21v32 − 22596u20v33 + 14025u19v34

− 1256u18v35 + 2u26v26 − 38u25v27 + 284u24v28 − 1314u23v29

+ 4460u22v30 − 11506u21v31 + 19733u20v32 − 17426u19v33

+ 4062u18v34 + 10u25v26 − 112u24v27 + 640u23v28 − 2502u22v29

+ 7406u21v30 − 15538u20v31 + 18404u19v32 − 8150u18v33

+ 177u17v34 − 2u25v25 + 38u24v26 − 284u23v27 + 1314u22v28

− 4448u21v29 + 11115u20v30 − 17134u19v31 + 11885u18v32

− 1232u17v33 − 10u24v25 + 112u23v26 − 640u22v27 + 2501u21v28

− 7292u20v29 + 14208u19v30 − 14000u18v31 + 3738u17v32

+ 2u24v24 − 38u23v25 + 284u22v26 − 1314u21v27 + 4424u20v28

− 10568u19v29 + 14169u18v30 − 6988u17v31 + 183u16v32

+ 10u23v24 − 112u22v25 + 640u21v26 − 2498u20v27 + 7113u19v28

− 12554u18v29 + 9671u17v30 − 1150u16v31 − 2u23v23 + 38u22v24

− 284u21v25 + 1314u20v26 − 4380u19v27 + 9817u18v28

− 10968u17v29 + 3246u16v30 − 10u22v23 + 112u21v24 − 640u20v25

+ 2492u19v26 − 6842u18v27 + 10577u17v28 − 5784u16v29

+ 169u15v30 + 2u22v22 − 38u21v23 + 284u20v24 − 1314u19v25

+ 4308u18v26 − 8824u17v27 + 7717u16v28 − 1028u15v29 + 10u21v22

− 112u20v23 + 640u19v24 − 2480u18v25 + 6453u17v26 − 8336u16v27

+ 2742u15v28 − 2u21v21 + 38u20v22 − 284u19v23 + 1313u18v24

− 4194u17v25 + 7582u16v26 − 4688u15v27 + 162u14v28 − 10u20v21

+ 112u19v22 − 640u18v23 + 2456u17v24 − 5916u16v25 + 5977u15v26

− 876u14v27 + 2u20v20 − 38u19v21 + 284u18v22 − 1310u17v23

+ 4015u16v24 − 6118u15v25 + 2254u14v26 + 10u19v20 − 112u18v21

+ 640u17v22 − 2412u16v23 + 5199u15v24 − 3720u14v25 + 134u13v26

− 2u19v19 + 38u18v20 − 284u17v21 + 1304u16v22 − 3746u15v23

+ 4499u14v24 − 740u13v25 − 10u18v19 + 112u17v20 − 640u16v21

+ 2340u15v22 − 4294u14v23 + 1839u13v24 + 2u18v18 − 38u17v19

+ 284u16v20 − 1292u15v21 + 3367u14v22 − 2864u13v23 + 121u12v24

+ 10u17v18 − 112u16v19 + 639u15v20 − 2226u14v21 + 3242u13v22
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− 612u12v23 − 2u17v17 + 38u16v18 − 284u15v19 + 1268u14v20

− 2864u13v21 + 1447u12v22 − 10u16v17 + 112u15v18 − 636u14v19

+ 2049u13v20 − 2136u12v21 + 97u11v22 + 2u16v16 − 38u15v17

+ 284u14v18 − 1224u13v19 + 2235u12v20 − 500u11v21 + 10u15v16

− 112u14v17 + 630u13v18 − 1790u12v19 + 1122u11v20 − 2u15v15

+ 38u14v16 − 284u13v17 + 1152u12v18 − 1520u11v19 + 86u10v20

− 10u14v15 + 112u13v16 − 618u12v17 + 1445u11v18 − 396u10v19

+ 2u14v14 − 38u13v15 + 283u12v16 − 1040u11v17 + 826u10v18

+ 10u13v14 − 112u12v15 + 594u11v16 − 1030u10v17 + 66u9v18

− 2u13v13 + 38u12v14 − 280u11v15 + 873u10v16 − 308u9v17

− 10u12v13 + 112u11v14 − 550u10v15 + 591u9v16 + 2u12v12

− 38u11v13 + 274u10v14 − 648u9v15 + 57u8v16 + 10u11v12

− 112u10v13 + 480u9v14 − 228u8v15 − 2u11v11 + 38u10v12

− 262u9v13 + 391u8v14 − 10u10v11 + 111u9v12 − 378u8v13

+ 41u7v14 + 2u10v10 − 38u9v11 + 238u8v12 − 164u7v13

+ 10u9v10 − 108u8v11 + 245u7v12 − 2u9v9 + 38u8v10

− 196u7v11 + 34u6v12 − 10u8v9 + 102u7v10 − 108u6v11

+ 2u8v8 − 38u7v9 + 136u6v10 + 10u7v8 − 90u6v9 + 22u5v10

− 2u7v7 + 37u6v8 − 68u5v9 − 10u6v7 + 68u5v8 + 2u6v6

− 34u5v7 + 17u4v8 + 10u5v6 − 36u4v7 − 2u5v5 + 28u4v6

− 10u4v5 + 9u3v6 + 2u4v4 − 18u3v5 + 9u3v4 − 2u3v3 + 6u2v4

− 6u2v3 + 2u2v2 + 2uv2 − 2uv + 1
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