
i
i

“1-Cherednik” — 2018/9/25 — 15:51 — page 409 — #1 i
i

i
i

i
i

Communications in
Number Theory and Physics
Volume 12, Number 3, 409–490, 2018

Riemann Hypothesis for DAHA

superpolynomials and

plane curve singularities

Ivan Cherednik†

Dedicated with admiration to Yuri Ivanovich Manin

on the occasion of his 80th birthday

Stable Khovanov-Rozansky polynomials of algebraic knots are ex-
pected to coincide with certain generating functions, superpolyno-
mials, of nested Hilbert schemes and flagged Jacobian factors of
the corresponding plane curve singularities. Also, these 3 families
conjecturally match the DAHA superpolynomials. These super-
polynomials can be considered as singular counterparts and gen-
eralizations of the Hasse-Weil zeta-functions. We conjecture that
all a-coefficients of the DAHA superpolynomials upon the sub-
stitution q 7→ qt satisfy the Riemann Hypothesis for sufficiently
small q for uncolored algebraic knots, presumably for q ≤ 1/2 as
a = 0. This can be partially extended to algebraic links at least
for a = 0. Colored links are also considered, though mostly for rec-
tangle Young diagrams. Connections with Kapranov’s motivic zeta
and the Galkin-Stöhr zeta-functions are discussed.
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List of basic notations

R={α}⊂Rn+1, αi=εi−εi+1 root system of type An, simple roots

W = Sn+1, P,Q, Π = P/Q the Weyl group, weight/root lattices

R̃={α̃=[α, j]}, α0 =[−θ, 1] affine root system, θ =maximal root

W̃=〈sα̃〉, Ŵ=WnP =W̃oΠ affine, extended Weyl groups: (2.3)

HH = 〈Xb, Yb, Ti, q±
1

n+1 , t±
1
2 〉 DAHA: Definition 2.1, Yb (b∈P): (2.8)

τ±, σ=τ+τ
−1
− τ+, ϕ : (2.12), ? automorphisms & involutions: (2.9)

Pb= Macdonald polynomials V = polynomial module: Sect. 2.4.1

{H}ev = H(1)(t−ρ), H ∈ HH coinvariant, H(1) = H ⇓ ∈ V: (2.14)

P ◦b = Pb(X)/(Pb(t
−ρ), b ∈ P+ spherical normalization of Pb: (2.22)

Jλ = hλPb, λ = λ(b), b ∈ P+ J-polynomials for diagramsλ: (2.24)

hλ=
∏
2∈λ

(1− qarm(2)tleg(2)+1) arm and leg numbers in : Sect. 2.5.1

~r = {r1, . . . , r`}, ~s = {s1, . . . , s`} Newton’s pairs, gcd(ri, si)= 1 : (3.1)

a1 = s1, ai = ai−1ri−1ri + si cable (topological) parameters : (3.2)

L = LΥ,(bj)

(~rj ,~sj)
, ′L = ′L

′Υ,(′bj)
(′~rj ,′~sj)

pairs of labeled/colored graphs: (3.9)

ĴD
min

(~rj ,~sj),(′~rj ,′~sj)((b
j), (′bj); q, t) hat-DAHA-Jones polynomials: (3.14)

ĤminL, ′L(q, t, a) =

d∑
i=0

Hi(q, t)ai superpolynomials, d=dega(Ĥ): (4.16)

Ĥi(q, t)=Hi(qt, t)̂ , ςi, πi, Si hat-normalized Hi(qt, t): Conject. 4.9

Ĥi
sym=(Hi(q, t)+Hi(q,

1

qt
))̂ hat-symmetrization of Hi(q, t): (4.42)
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Ĥ(q, t, a, u)=

∞∑
m=0

(u
t

)g(m)

Ĥm family superpolynomials (τ
m
−γ1) : (4.21)

Hmot(q, t, a),H0
mot

=Hmot(a=0) flagged motivic s- polynomials: (4.34)

Z(q, t, a),L(q, t, a), Z, L(q, t) flagged Galkin-Stöhr functions: (4.33)

given Ĥi, $i = min(ω′) s.t. (weak) RH holds for ω=
1

q
>ω′: (4.44)

{γ[3, 2]γ[2, 1](P )}={γ̂3,2(γ̂2,1(P )⇓)} coinvariants’ abbreviations: Sect. 5.1.2

1. Introduction

The aim of the paper is to approach the Riemann Hypothesis, RH, for
DAHA superpolynomials of algebraic links colored by Young diagrams upon
the substitution q 7→ qt. The parameter q, a counterpart of the cardinality
of F in the Weil conjectures, is assumed sufficiently small, which is com-
plementary to the classical theory. Then RH presumably holds for any a–
coefficients of DAHA superpolynomials of uncolored algebraic knots ; more-
over, q ≤ 1/2 seems sufficient when a=0. For links, stable (any q) irregular
(non-RH) zeros appear. For instance, the number of their pairs is conjec-
tured to coincide with the number of components of uncolored algebraic
links minus 1 as a=0. We provide tools for finding such bounds for any
Young diagrams and arbitrary a–coefficients; finding the exact RH–range
of q is much more subtle, which is somewhat parallel to the theory of spectral
zeta-functions .

Let us try to put this conjecture into perspective and explain the ratio-
nale behind it and its relations to the classical Weil conjectures.

1.1. Superpolynomials

1.1.1. Topological and geometric theories. The superpolynomials
have several reincarnations in mathematics and physics; the origin is the
theory of stable Khovanov-Rozansky polynomials , which are Poincaré poly-
nomials of the HOMFLY-PT triply-graded link homology [Kh, KhR1]. They
depend on 3 parameters q, t, a and are actually infinite series in the unreduced
case. Generally, they are difficult to calculate and there are unsettled prob-
lems with the formulas for links, in the presence of colors and in the reduced
case, though the categorification theory generally provides their definition
for any colors (dominant weights). For uncolored unreduced algebraic links,
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they were conjectured to coincide with the ORS superpolynomials , certain
generating series for nested Hilbert schemes of the corresponding plane curve
singularties [ORS].

These two families in the reduced setting are conjecturally related to the
geometric superpolynomials introduced in [ChP1, ChP2]. They were defined
there for any algebraic knots colored by columns (wedge powers of the fun-
damental representation), developing [ChD1, GM, Gor]. Their construction
is in terms of the flagged Jacobian factors of unibranch plane curve singular-
ities. Jacobian factors are (indeed) factors of the corresponding compactified
Jacobians ; the definition is entirely local. In turn, Jacobian factors are al-
most directly related to the affine Springer fibers in type A (the nil-elliptic
case), and therefore to the corresponding p–adic orbital integrals; see the
end of [ChP1] for some references and discussion.

Inspired by [ORS, GORS], [ChP1, ChP2] and various prior works, es-
pecially [Kap, GSh], the geometric superpolynomials can be considered as
“singular” analogs of the Weil polynomials , the numerators of the Hasse-
Weil zeta-functions of smooth curves. To analyze this we switch to the 4th

type of superpolynomials, the DAHA ones from [Ch2, Ch3, GN] and further
works; the most comprehensive paper on them by now is [ChD2].

1.1.2. DAHA superpolynomials. The DAHA superpolynomials deal
with the combinatorial data of iterated torus links and allow any colors
(Young diagrams). Importantly, they almost directly reflect the topological
type of singularity, in contrast to the ORS construction and the geometric
superpolynomials from [ChP1, ChP2]. We note that the latter are related to
restricted nested Hilbert schemes of singularities, some subvarieties of those
used in [ORS] (geometrically simpler). See Section 4.2.5. The DAHA super-
polynomials are expected to be connected with physics superpolynomials
[DGR, AS, GS, DMS, FGS], which is not discussed in this work.

They are defined so far for iterated torus links . All initial intrinsic con-
jectures from [Ch2] concerning torus knots were proved (but the positivity
discussed below) and extended to any colored iterated torus links (not only
algebraic). The theory of DAHA-Jones polynomials is very much uniform
for any colors (dominant weights) and root systems; the DAHA superpoly-
nomials are in type A.

In other approaches, the limitations and practical problems are more sig-
nificant, especially with links and colors. The ORS polynomials are generally
difficult to calculate since they are based on the weight filtration in cohomol-
ogy of the corresponding nested Hilbert schemes. The KhR polynomials are
known only for simple knots. For torus knots, they were recently calculated
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using Soergel bimodules [Mel2]; see also Corollary 3.4 there, which proves
Conjecture 2.7 (ii) (uncolored) from [Ch2]; not all details are provided in
[Mel2], but the proof seems essentially a direct identification of Gorsky’s
combinatorial formulas with those in [Ch2]. See also [EH, Hog] concerning
T (mr ± 1, r) and links T (mr, r). The geometric superpolynomials and flagged
Jacobian factors from [ChP1, ChP2] are relatively simple to define, but this
is done so far only for algebraic links colored by columns.

1.2. DAHA and Weil conjectures

Let us present the main features of the theory of DAHA superpolynomials as
analogs of the Weil conjectures. This connection is mostly heuristic and our
RH mostly serves the sector of q < 1, complementary to Weil’s RH. The key
point of the whole work is the identification of t in DAHA superpolynomials
with T in the singular counterpart of the Weil zeta-function.

1.2.1. Polynomiality and super-duality. First of all, the DAHA the-
ory and the geometric construction from [ChP1, ChP2] directly provide su-
perpolynomials, counterparts of the Weil P1(T ). This is in contrast to the
classical theory, where P1(T ) appears due to the rationality theorem:

ζ(X,T )
def
== exp

( ∞∑
n=1

Tn |X(Fqn)|/n

)
=

P1(T )

(1− T )(1− qT )
,

where X is a smooth projective curve over a finite field F = Fq with q ele-
ments and P1 is of degree 2g for the genus g of X (its smoothness is actually
needed only for RH).

The coefficients of DAHA superpolynomials are presumably all positive
for rectangle Young diagrams and algebraic knots (the positivity conjectures
from [Ch2, ChD1]), which is not present in the Weil-Deligne theory [Del1,
Del2]. Such a positivity hints at a possible geometric interpretation and
“categorification” of these polynomials. However, they can be positive for
“very” non-algebraic knots. For links and non-rectangle Young diagrams, the
positivity holds only upon the division by some powers of (1− t), (1− q).
For instance, (1− t)κ−1 is presumably sufficient for uncolored links with κ
components.

To avoid misunderstanding, let us emphasize that the positivity of DAHA
superpolynomials for knots (and for links upon the division above) is neither
necessary nor sufficient for the validity of the corresponding RH. However
when such positivity holds, one may expect a geometric interpretation of
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DAHA superpolynomials as in [ChP1, ChP2], which actually implies RH
for sufficiently small q.

Thus, a counterpart of the existence of P1(T ) is the polynomiality for
DAHA-Jones polynomials from Theorem 1.2,[Ch3] (for torus knots, any
colors, and root systems) and its generalizations to iterated torus links.
The passage to the superpolynomials, Theorem 1.3 there, was announced in
[Ch2] (based on [SV]); its complete proof was provided in [GN]. See [ChD2]
for the most general version. We provide here many examples of algebraic
links and the corresponding DAHA procedures, significantly developing and
extending those from [ChD1, ChD2].

Accordingly, the super-duality of DAHA superpolynomials matches the
Weil’s functional equation: ζ(X, q−1T−1) = q1−gT 2−2gζ(X,T ). It was con-
jectured in [Ch2] (let us mention prior [GS] in the context of physics su-
perpolynomials) and proved in [GN] on the basis of the q ↔ t–duality of
the modified Macdonald polynomials. An alternative approach to the proof
via roots of unity and the generalized level-rank duality was presented in
[Ch3]; it can work for classical root systems and some other families. The
proof of the duality from Proposition 3 from [ORS] is parallel to that of the
motivic functional equation [Kap]; see also Section 6 in [Gal], Section 3 in
[Sto] and formula (4.29) below concerning the functional equation for the
Galkin-Stöhr functions.

We note that our parameter a and adding colors (numerically, we mostly
consider rectangle Young diagrams) do not have direct origins in the the-
ory of Hasse-Weil zeta-functions. The parameter a is associated with flagged
Jacobian factors in [ChP1, ChP2]; we also define flagged Galkin-Stöhr func-
tions by considering standardizable flags of ideals.

1.2.2. Riemann Hypothesis. For large q, corresponding to the cardinal-
ity |F|, RH for our superpolynomials and the zeta-functions from [Gal, Sto]
generally fails. However the inequality q ≤ 1/2 is (surprisingly) sufficient for
uncolored algebraic knots at a=0 we considered; F[[z4, z6 + z7+2m]] pre-
sumably make 1/2 sharp here as m→∞. For uncolored algebraic links , the
number of stable pairs of irregular zeros is conjectured to be the number
of components minus 1 as a = 0. Adding colors to knots and links is more
subtle, though rectangle Young diagrams satisfy RH for sufficiently small q
upon the symmetrization at least for a = 0 in all examples we considered.
We note that RH can hold for non-algebraic links too, but algebraic links,
more generally positively iterated torus links , are a major class for RH (for
small q).
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Deviations from the classical theory. Focusing on the sector 0<q<1
is a significant deviation. Even for q close to 0, irregular zeros generally
appear. For instance, one pair (always real) of such zeros is conjectured to
occur for uncolored algebraic links with 2 components.

The main change is of course that q is arbitrary real in the DAHA
approach. It is a counterpart of |F| in the Weil conjectures, but this is just a
parameter for us. Accordingly, we calculate minimal $ such that RH holds

for all ω
def
== 1/q > $. Also, we add colors and one more parameter a due to

the flagged Jacobian factors (or Hilbert schemes), which is a clear extension
of the Weil conjectures.

The field with one element is of importance. It corresponds to q= t in the
DAHA parameters (which becomes q = 1 after the substitution q 7→ qt), and
describes the HOMFLY-PT polynomials in topology. However, the bound $
is generally beyond 1; RH is not expected to hold for q = t for sufficiently
general non-torus knots. We note that t = 1 can be also interpreted as the
case of “field with one element”; see [ChP1, ChP2].

1.2.3. On the structure of the paper. The motivic Conjecture 4.5 is
the best we have to clarify the meaning of the substitution q 7→ qt. Finding
πi and polynomials Si from Conjecture 4.9 is an entirely algebraic procedure
and for any Young diagrams; these invariants are expected to be meaningful
topologically.

Conjecture 4.10, the “qualitative RH”, for small q is actually a corollary
of Conjecture 4.9. Conjecture 4.11, the “quantitative RH”, gives a bound
for q in the case of uncolored algebraic knots.

If the motivic superpolynomials are known and coincide with the DAHA
superpolynomials (which is conjectured), then the validity of RH for suffi-
ciently small q (sufficiently large ω), i.e. Conjectures 4.9,4.10, can be checked
by an entirely algebraic and relatively straightforward procedure. For uncol-
ored algebraic knots, the geometric superpolynomials were defined in [ChP1]
and they do satisfy Conjecture 4.9, which almost directly follows from their
definition in terms of the corresponding flagged Jacobian factors.

The motivic superpolynomials at a = 0 are quite close to the Hasse-Weil
zeta-function for singular curves and the Galkin-Stöhr (local) zeta-functions.
The exact relation is Conjecture 4.5; Conjecture 4.7 is its generalization to
any a. Adding colors is more subtle; the motivic superpolynomials of alge-
braic links are known by now for (any) columns. The DAHA superpolyno-
mials are well developed for any Young diagrams.
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1.3. Motivic approach

Let us discuss some arithmetic-geometric details. Connecting DAHA super-
polynomials with the numerators of the Hasse-Weil zeta-functions seems a
priori some stretch, but we think that the following chain of steps provides
a sufficiently solid link.

1.3.1. Kapranov’s zeta. The first step is the Kapranov zeta-function of
a smooth algebraic curve C of genus g over a field k. It is defined via the
classes of [C [n]] of the n-fold symmetric products of C in the Grothendieck
ring K0(Var/k) of varieties over k. The motivic zeta-function of C from

[Kap] is then a formal series ζ(C, u)
def
==

∑
n≥0 u

n[C [n]]. Here one can replace

[C [n]] by µ([C [n]]) for any motivic measure µ. If k = F = Fq and µ(X) is the
number of F–points of X, then this is the classical presentation of the Hasse-
Weil zeta-function for u = T .

Theorem 1.1.9 from [Kap] establishes the first two Weil conjectures (the
rationality and the functional equation) in the motivic setting. The justifi-
cation is close to the Artin’s proof in the case of F.

One can then extend the definition of motivic zeta to reduced singular
curves C, replacing C [n] by the corresponding Hilbert schemes of n points
on C, subschemes of length n to be exact. Let us assume now (and later)
that C is a rational planar projective reduced curve of arithmetic genus δ.
Then Conjecture 17 from [GSh] states that in K0(Var/C):

(1.1)
∑
n≥0

un+1−δ[C [n]] =
∑

0≤i≤δ
Nc(i)

(
u

(1− u)(1− u[A1])

)i+1−δ
,

where N (i)
C ∈ Z+[A1]. To be exact, this is stated for any reduced curve, not

only rational, the total arithmetic genus g must be then used in the left-hand
side instead of δ and the resulting expression must be divided by the same
series for the normalization of C (calculated by Macdonald for smooth C).
In the right-hand side, we must set i+ 1− δ 7→ i− δ. This substitution is
due to the Macdonald formula for P1.

1.3.2. Nested Hilbert schemes. When the classes [X] are replaced by
their (topological) Euler numbers e(X), we arrive at

∑
n≥0

un+1−δe(C [n]) =
∑

0≤i≤δ
nC(i)

(
u

(1− u)2

)i+1−δ
.(1.2)
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The rationality here was motivated by Gopakumar and Vafa (via the BPS

invariants) and justified in [PaT]. The positivity of n
(i)
C was deduced from

the approach based on versal deformations: [FGvS] for i = δ and then (for
arbitrary i) in [Sh].

The OS-conjecture [ObS], (extended and) proved in [Ma], is a geometric
interpretation and an a-generalization of (1.2) for rational planar curves C
and their nested Hilbert schemes C [n≤n+m]. It is actually a local formula and
one can switch from a rational curve C to its germ C at the singular point
under consideration. Then C[n≤n+m] = {In+m⊂In | mIn⊂In+m}, where In∈
C[n] and m is the maximal ideal in the (local) ring of C.

1.3.3. ORS polynomials. Let C be an arbitrary plane curve singularity
of arithmetic genus δ (its Serre number); the Hilbert schemes are defined cor-
respondingly. Considering the construction above for K0(Var/F) and then
applying the motivic integration from Example 1.3.2b from [Kap] is essen-
tially what was suggested in [ORS] (for nested Hilbert schemes of punctual
pairs). The reduced ORS polynomial is

Palg =

(
qst
ast

)µ 1− q2
st

1 + a2
sttst

∑
n,m≥0

q2n
st a

2m
st t

m2

st w(C[n≤n+m]).(1.3)

Here µ is the Milnor number (µ = 2δ in the unibranch case) and w is the
weight filtration in the compactly supported cohomology of the correspond-
ing scheme. See the Overview and Section 4 in [ORS]; Proposition 3 there
contains the functional equation. And also see Section 9.1 from [GORS].
The parameter tst is associated with this filtration, we put qst, tst, ast here
to distinguish these parameters from the DAHA parameters (below). They
are really standard in quite a few topological-geometric papers; see (1.4)
below. For tst = 1, u = qst and at the minimal possible degree of ast, the
sum in (1.3) essentially reduces to the right-hand side of (1.2).

Conjecture 2 of [ORS] states that Palg coincides with the reduced sta-
ble Khovanov-Rozansky polynomial of the corresponding link, the Poincarè
polynomials of the triply-graded HOMFLY-PT homology. Accordingly, its
unreduced version Palg is related to the unreduced stable KhR polynomial.
The problem with the identification of the ORS and KhR polynomials is
that the number of examples is very limited in both theories. Though see
[Mel2] concerning the stable KhR polynomials for torus knots via Soergel
bimodules.
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1.4. DAHA approach

The following two families of superpolynomials are much more explicit and
calculatable. DAHA superpolynomials are the key for us; their full definition
will be provided in this paper. They were defined in [Ch2] for torus knots,
triggered by [AS], and extended to any iterated torus links in further papers.

1.4.1. Geometric superpolynomials. The connection of the DAHA
superpolynomials to geometry of plane curve singularities goes through
the geometric superpolynomials , a class of superpolynomials introduced in
[ChP1, ChP2], which generalizes [ChD1], [GM] (for a = 0 and torus knots)
and Gorsky’s approach from [Gor] (a combinatorial theory for torus knots
and any powers of a). Flagged Jacobian factors were used in [ChP1] instead
of the nested Hilbert schemes in [ORS]; though see Section 4.2.5 where re-
stricted nested Hilbert schemes emerge (the pairs of ideals that become
trivial upon tensoring with the normalization ring).

The geometric superpolynomials do not require root systems at and the
a–stabilization of the DAHA-Jones-WRT polynomials . They are uniformly
defined for any root systems, but their a–stabilization naturally requires
classical series A,B,C,D. However see [ChE] for some superpolynomials for
the Deligne-Gross exceptional family [DG]. Presumably they exist for any
root systems and their construction is geometric, in terms of the correspond-
ing spectral curve .

The relation between the DAHA superpolynomials and geometric su-
perpolynomials for algebraic knots from [ChP1, ChP2] is confirmed in many
examples and is verifiable theoretically. One can connect the standard
(monoidal) transformations of the plane curve singularities with the cor-
responding recurrence relations in the DAHA theory.

1.4.2. ORS polynomials vs. geometric ones. Our uncolored geomet-
ric superpolynomials are parallel to Palg from [ORS]. Upon the division
by (1− t) there is a conjectural connection with those. See Sections 4.2.4
and 4.2.5 below. They can be expressed is terms of the weight filtration too
via a theorem due to N. Katz; see the end of [ChP1]. The DAHA parameter
q (or t−1 due to the super-duality) is a counterpart of cardinality of F there.
Accordingly, q = 1 is the case of the “field with one element”, which leads to
the DAHA theory at critical center charge for q = 1. When t−1 is used, the
case t = 1 is the so-called ”free theory”. This is different from the usage of
the weight filtration in [ORS], where |F| corresponds to q2

st = q/t. Generally,
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the DAHA parameters a, q, t are connected with those in (1.3) as follows:

t = q2
st, q = (qsttst)

2, a = a2
sttst,

q2
st = t, tst =

√
q

t
, a2

st = a

√
t

q
.(1.4)

In the ORS polynomials, the motivic measure and finite fields vanish at
tst = 1, i.e. at q = t in the DAHA parameters, which is quite different from
q = 1 in geometric superpolynomials. Also, the normalization of singularities
is heavily used for the flagged Jacobian factors and our construction does not
require ideals and Hilbert schemes, though the Galkin-Stöhr zeta-functions
are directly related to the latter.

Let us mention here that colors and arbitrary root systems (available
in the DAHA approach) are a challenge from the geometric-motivic per-
spective. However the OS conjecture (the case t = q in DAHA parameters)
was established and proved in [Ma] for any colors (Young diagrams) and
algebraic links using non-reduced singularities.

1.4.3. Galkin-Stöhr zeta. We will consider here only the case a = 0.
The motivic measure will be the count of points over a finite field F of
cardinality q. With some simplifications, the zeta-function from [Gal, Sto]
is defined as the sum ZR(t) of tdimF(R/a) over all ideals a ⊂ R for the local
ring R of a curve singularity. This ring is assumed Gorenstein to ensure the
functional equation for (1− t)ZR(t), which is for the substitution t 7→ 1/(tq).
The function ZR(t) is a (local) version of the Weil zeta for singularities. It
is quite natural from number theoretical viewpoint, but the corresponding
RH generally fails. However if we treat q as a variable (which is q/t in the
DAHA parameters), then q ≤ 1/2 is presumably sufficient for RH in the
unibranch case at a=0.

The connection with our geometric superpolynomials can be stated as
some “combinatorial” identity, which seems not straightforward to check;
for instance, it generally holds only for planar singularities (not arbitrary
Gorenstein rings). Also, the positivity of the coefficients of (1−t)ZR(t),
which follows from this connection, generally requires plane curve singu-
larities. The formula from [Sto] has many positive and negative terms can-
celing each other in a non-trivial way. We provide examples of non-plane
curve singularities where the connection with our formula can be fixed, but
some non-trivial adjustments are needed for this. Importantly, the func-
tional equation for (1−t)ZR(t) is not difficult to established (see [Sto]) and
we do not see any direct proof of super-duality for our geometric (motivic)
superpolynomials, without the passage to ideals.
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1.4.4. Modular periods. The construction of DAHA superpolynomials
is actually parallel to that for modular periods, a starting point for p–
adic measures (Mazur, Manin, Katz, eigenvarieties), and for Manin’s zeta-
polynomials [OnRS]. Namely, the DAHA-Jones polynomials of torus knots
T (r, s) colored by Young diagrams λ are essentially obtained by apply-
ing γr,s =

(
r ∗
s ∗

)
∈ PSL(2,Z) to the Macdonald polynomials Pλ followed

by taking the DAHA coinvariant. The superpolynomials are due to the a–
stabilization for the root systems An; this is important, since the super-
duality holds only upon the a–stabilization.

This procedure is analogous to taking the integral of a cusp form Φ(z)
for z ∈ H multiplied by zk for certain integers k over the paths γ[0, ı∞]. Here
zk can be seen (with some stretch) as counterparts of Pλ, the integration∫
{·}Φ(y)dy plays the role of the coinvariant.

The latter obviously has nothing to do with modular forms. However, it
is the simplest level-one coinvariant among all DAHA coinvariants of arbi-
trary levels ` > 0 from [ChM]. They are in one-to-one correspondence with
elliptic functions of level ` (Looijenga functions for any root systems). Using
them makes these constructions closer to each other. Vice versa, a challenge
is to find modular counterparts of the DAHA-Jones polynomials and super-
polynomials for iterated non-torus algebraic knots. It is not impossible that
they can be related to Manin’s iterated Shimura integrals [Man].

This is connected with the following (heuristic) interpretation of the
Dirichlet L–functions of conductor r via the families T (r, ∗). The sums of
DAHA superpolynomials over the knots in such families are supposed to
be considered. In a more conceptual way, one applies

∑∞
m=1 χ(m)

(
1 m
0 1

)
inside the coinvariant for the corresponding Dirichlet character χ. The q–
analogs of zeta and Dirichlet functions from [Ch4] are of this kind, but for
a different action of PSL(2,Z). They are the integrals of

∑∞
m=1 χ(m)qmx

2/2

for the Gaussian qx
2/2 with respect to the Macdonald measure for A1. See

also Section 3 in [ChD2].

2. Double Hecke algebras

2.1. Affine root systems

Let us adjust the standard DAHA definitions to the case of the root systems
An, which is R={α=εi−εj , i 6=j} for the basis {εi, 1 ≤ i ≤ n+1} ∈ Rn+1,
orthonormal with respect to the usual euclidean form (·, ·). The Weyl group
is W = Sn+1; it is generated by the reflections (transpositions) sα for the
set of positive roots R+ = {εi − εj , i < j}; R− = −R+. The simple roots are
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αi = εi−εi+1. The weight lattice is P = ⊕ni=1Zωi, where {ωi} are fundamen-
tal weights: (ωi, αj) = δij . Explicitly,

ωi = ε1 + · · ·+ εi −
i

n+ 1
(ε1 + · · ·+ εn+1) for i = 1, . . . , n,(2.1)

ρ = ω1+ · · ·+ωn =
1

2

(
(n−1)ε1 + (n−3)ε2 + · · ·+ (1−n)εn

)
.

The root lattice is denoted by Q = ⊕ni=1Zαi. Replacing Z by Z± = {m ∈
Z,±m ≥ 0}, we obtain P±, Q±. See e.g., [Bo] or [Ch1].

The vectors α̃ = [α, j] ∈ Rn+2 for α ∈ R, j ∈ Z form the affine root sys-

tem R̃ ⊃ R, where α ∈ R are identified with [α, 0]. We add α0
def
== [−θ, 1] to

the simple roots for the maximal root θ = ε1 − εn+1. The corresponding set
R̃+ of positive roots is R+ ∪ {[α, j], α ∈ R, j > 0}.

2.1.1. Affine Weyl group. Given α̃ = [α, j] ∈ R̃, b ∈ P , let

sα̃(z̃) = z̃ − (z, α∨)α̃, b′(z̃) = [z, ζ − (z, b)](2.2)

for z̃ = [z, ζ] ∈ Rn+2. The affine Weyl group W̃ = 〈sα̃, α̃ ∈ R̃+〉 is the semidi-
rect product WnQ of its subgroups W = 〈sα, α ∈ R+〉 and Q, where α is
identified with

sαs[α, 1] = s[−α, 1]sα for α ∈ R.

The extended Weyl group Ŵ is WnP , where the action is

(wb)([z, ζ]) = [w(z), ζ − (z, b)] for w ∈W, b ∈ P.(2.3)

It is isomorphic to W̃oΠ for Π
def
== P/Q. The latter group consists of π0 =id

and the images πr of ωr in P/Q. Note that π−1
r is πrι , where ι is the standard

involution of the non-affine Dynkin diagram of R, induced by αi 7→ αn+1−i.
Generally, we set ι(b) = −w0(b) = b ι , where w0 is the longest element in W
sending {1, 2, . . . , n+ 1} to {n+ 1, . . . , 2, 1}.

The group Π is naturally identified with the subgroup of Ŵ of the ele-
ments of the length zero; the length is defined as follows:

l(ŵ) = |Λ(ŵ)| for Λ(ŵ)
def
== R̃+ ∩ ŵ−1(−R̃+).

One has ωr = πrur for 1 ≤ r ≤ n, where ur is the element u ∈W of minimal
length such that u(ωr) ∈ P−, equivalently, w = w0u is of maximal length
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such that w(ωr) ∈ P+. The elements ur are very explicit. Let wr0 be the
longest element in the subgroup W r

0 ⊂W of the elements preserving ωr;
this subgroup is generated by simple reflections. One has:

ur = w0w
r
0 and (ur)

−1 = wr0w0 = urι for 1 ≤ r ≤ n.(2.4)

Setting ŵ = πrw̃ ∈ Ŵ for πr ∈ Π, w̃ ∈ W̃ , l(ŵ) coincides with the length
of any reduced decomposition of w̃ in terms of the simple reflections si, 0 ≤
i ≤ n. Thus, indeed, Π is a subgroup of Ŵ of the elements of length 0.

2.2. Definition of DAHA

We follow [Ch3, Ch2, Ch1]. Let m=n+1; generally it is the least natural
number such that (P, P ) = (1/m)Z. The double affine Hecke algebra, DAHA ,
of type An depends on the parameters q, t and will be defined over the

ring Zq,t
def
== Z[q±1/m, t±1/2] formed by polynomials in terms of q±1/m and

t±1/2. Note that the coefficients of the Macdonald polynomials will belong
to Q(q, t).

It is convenient to use the following notation:

t = qk, ρk
def
==

k

2

∑
α>0

α = k

n∑
i=1

ωi.

We set mi i+1 = 3 = mn0 for 0 ≤ i ≤ n and mij = 2 otherwise, generally,
{2, 3, 4, 6} when the number of links between αi, αj in the affine Dynkin
diagram is {0, 1, 2, 3}.

For pairwise commutative X1, . . . , Xn,

X
b̃

def
==

n∏
i=1

X li
i q

j if b̃ = [b, j], ŵ(X
b̃
) = X

ŵ(b̃)
,(2.5)

where b =

n∑
i=1

liωi ∈ P, j ∈
1

m
Z, ŵ ∈ Ŵ .

For instance, X0
def
== Xα0

= qX−1
θ .

Definition 2.1. The double affine Hecke algebra HH is generated over
Zq,t by the elements {Ti, 0 ≤ i ≤ n}, pairwise commutative {Xb, b ∈ P}
satisfying (2.5) and the group Π, where the following relations are imposed:

(o) (Ti − t1/2)(Ti + t−1/2) = 0, 0 ≤ i ≤ n;
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(i) TiTjTi... = TjTiTj ..., mij factors on each side;
(ii) πrTiπ

−1
r = Tj if πr(αi) = αj ;

(iii) TiXb = XbX
−1
αi T

−1
i if (b, αi) = 1, 0 ≤ i ≤ n;

(iv) TiXb = XbTi when (b, αi) = 0 for 0 ≤ i ≤ n;
(v) πrXbπ

−1
r = Xπr(b) = Xu−1

r (b)q
(ωι(r),b), 1 ≤ r ≤ n.

Given w̃ ∈ W̃ , 1 ≤ r ≤ n, the product

Tπrw̃
def
== πrTil · · ·Ti1 , where w̃ = sil · · · si1 for l = l(w̃),(2.6)

does not depend on the choice of the reduced decomposition of w̃. Moreover,

Tv̂Tŵ = Tv̂ŵ whenever l(v̂ŵ) = l(v̂) + l(ŵ) for v̂, ŵ ∈ Ŵ .(2.7)

In particular, we arrive at the pairwise commutative elements

Yb
def
==

n∏
i=1

Y li
i if b =

n∑
i=1

liωi ∈ P, Yi
def
== Tωi , b ∈ P.(2.8)

When acting in the polynomial representation V (see below), they are called
difference Dunkl operators.

2.3. The automorphisms

The following maps can be (uniquely) extended to automorphisms of HH ,
where q1/(2m) must be added to Zq,t (see [Ch1], (3.2.10)–(3.2.15)) :

τ+ : Xb 7→ Xb, Ti 7→ Ti (i > 0), Yr 7→ XrYrq
− (ωr,ωr)

2 ,(2.9)

τ+ : T0 7→ q−1XθT
−1
0 , πr 7→ q−

(ωr,ωr)

2 Xrπr (1 ≤ r ≤ n),

τ− : Yb 7→ Yb, Ti 7→ Ti (i ≥ 0), Xr 7→ YrXrq
(ωr,ωr)

2 ,(2.10)

τ−(Xθ) = qT0X
−1
θ T−1

sθ ; σ
def
== τ+τ

−1
− τ+ = τ−1

− τ+τ
−1
− ,

σ(Xb) = Y −1
b , σ(Yb) = T−1

w0
X−1
b ι Tw0

, σ(Ti) = Ti(i > 0).(2.11)

These automorphisms fix t, q and their fractional powers, as well as the
following anti-involution :

ϕ : Xb 7→ Y −1
b , Yb 7→ X−1

b , Ti 7→ Ti (1 ≤ i ≤ n).(2.12)
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The following anti-involution results directly from the group nature of
the DAHA relations:

H? = H−1 for H ∈ {Tŵ, Xb, Yb, q, t}.(2.13)

To be exact, it is naturally extended to the fractional powers of q, t:

? : t
1

2 7→ t−
1

2 , q
1

2m 7→ q−
1

2m .

This anti-involution serves the inner product in the theory of the DAHA
polynomial representation.

Let us list the matrices corresponding to the automorphisms and anti-
automorphisms above upon the natural projection onto SL2(Z), correspond-
ing to t

1

2 = 1 = q
1

2m . The matrix
(
α β
γ δ

)
will then represent the map Xb 7→

Xα
b Y

γ
b , Yb 7→ Xβ

b Y
δ
b for b ∈ P . One has:

τ+  

(
1 1
0 1

)
, τ−  

(
1 0
1 1

)
, σ  

(
0 1
−1 0

)
, ϕ 

(
0 −1
−1 0

)
.

The projective PSL2(Z) (due to Steinberg) is the group generated by τ±
subject to the relation τ+τ

−1
− τ+ = τ−1

− τ+τ
−1
− . The notation will be PSL∧2(Z);

it is isomorphic to the braid group B3.

2.3.1. The coinvariant. The projective PSL2(Z) and the coinvariant ,
to be defined now, are the main ingredients of our approach.

Any H ∈ HH can be uniquely represented in the form

H =
∑
a,w,b

ca,w,bXaTwYb for w ∈W,a, b ∈ P

(the DAHA-PBW theorem, see [Ch1]). Using this presentation, the coin-
variant is a functional HH → C defined as follows:

{ }ev : Xa 7→ q−(ρk,a), Yb 7→ q(ρk,b), Ti 7→ t1/2.(2.14)

The main symmetry of the coinvariant is

{ϕ(H) }ev = {H }ev for H ∈ HH.(2.15)

Also, { ι(H) }ev = {H }ev, where we extend ι to HH as follows:

ι(Xb)=Xι(b), ι(Yb)=Yι(b), T ιi =Tι(i), 1 ≤ i ≤ n.(2.16)
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The following interpretation of the coinvariant is important. For any
H ∈ HH, one has: {HTwY b}ev = {H}ev χ(TwYb), where χ is the standard
character (one-dimensional representation) of the affine Hecke algebra HY ,
generated by Tw, Yb for w ∈W, b ∈ P ; χ sends Yb 7→ q(ρk,b) and Ti 7→ t1/2.

Therefore {. . .}ev acts via the projection H 7→ H ⇓def
== H(1) of HH onto the

polynomial representation V, which is the HH–module induced from χ; see
[Ch1, Ch2, Ch3] and the next section.

2.4. Macdonald polynomials

2.4.1. Polynomial representation. It is isomorphic to Zq,t[Xb] as a vec-
tor space with the action of Ti(0 ≤ i ≤ n) given by the Demazure-Lusztig
operators :

Ti = t1/2si + (t1/2 − t−1/2)(Xαi − 1)−1(si − 1), 0 ≤ i ≤ n.(2.17)

The elements Xb become the multiplication operators and πr(1 ≤ r ≤ n) act

via the general formula ŵ(Xb) = Xŵ(b) for ŵ ∈ Ŵ . Note that τ− naturally
acts in the polynomial representation. See formula (1.37) from [Ch3], which
is based on the identity

τ−(H ⇓) = τ−(H)⇓ =
(
τ−
(
H
))

(1) for H ∈ HH.(2.18)

Symmetric Macdonald polynomials. The standard notation is Pb(X)
for b ∈ P+; see [Mac, Ch1] (they are due to Kadell for the classical root
systems and due to Rogers for A1). The usual definition is as follows. Let
c+ be such that c+ ∈W (c) ∩ P+ (it is unique); recall that Q+ = ⊕ni=1Z+αi.
For b ∈ P+, the following are the defining relations:

Pb−
∑

a∈W (b)

Xa ∈ ⊕c+ 6=bc+∈b−Q+
Q(q, t)Xc and 〈PbXc ι µ(X; q, t) 〉=0 for

all c in ⊕ above; µ(X; q, t)
def
==

∏
α∈R+

∞∏
j=0

(1−Xαq
j)(1−X−1

α qj+1)

(1−Xαtqj)(1−X−1
α tqj+1)

.

Here and further 〈f〉 is the constant term of a Laurent series or polynomial
f(X); µ is considered a Laurent series of Xb with the coefficients expanded
in terms of positive powers of q. The coefficients of Pb belong to the field
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Q(q, t). One has (see (3.3.23) from [Ch1]):

Pb(X
−1) = Pbι(X) = P ?b (X), Pb(q

−ρk) = Pb(q
ρk)(2.19)

= (Pb(q
−ρk))? = q−(ρk,b)

∏
α>0

(α,b)−1∏
j=0

(
1− qj tXα(qρk)

1− qjXα(qρk)

)
.(2.20)

Recall that ι(b) = b ι = −w0(b) for b ∈ P .
DAHA provides an important alternative (operator) approach to the

P–polynomials; namely, they satisfy the (defining) relations

Lf (Pb) = f(q−ρk−b)Pb, Lf
def
== f(Xa 7→ Ya)(2.21)

for any symmetric (W–invariant) polynomial f ∈ C[Xa, a ∈ P ]W . Here b ∈
P+ and the coefficient of Xb in Pb is assumed 1.

Spherical normalization. We call P ◦b
def
== Pb/Pb(q

−ρk) spherical Macdo-
nald polynomials for b ∈ P+. One has (the evaluation theorem):

Pb(q
−ρk) = q−(ρk,b)

(α,b)>0∏
α>0

(α,b)−1∏
j=0

(
1− qjtXα(qρk)

1− qjXα(qρk)

)
.(2.22)

2.5. J-polynomials

They are necessary below for managing algebraic links (spherical polynomi-
als P ◦b are sufficient for knots) and are important for the justification of the
super-duality .

For b =
∑n

i=1 biωi ∈ P+, i.e. for a dominant weight with bi ≥ 0 for all
i, the corresponding Young diagram is as follows:

λ=λ(b)={λ1 =b1+· · ·+bn, λ2 =b2+· · ·+bn, . . . , λn=bn},(2.23)

b =

n∑
i=1

λiεi −
|λ|
n+ 1

(
ε1 + · · ·+ εn+1

)
for |λ| def==

n∑
i=1

λi.

One has: (b, εi−εj) = bi+· · ·+bj−1 = λi−λj , (b, ρ)=(|λ|−λ1)/2. Also, b2
def
==

(b, b) =
∑n

i=1 λ
2
i − |λ|2/(n+1).

Let us calculate the set of all [α, j] in the product from (2.22); it is

{ [α, j], α = εl−εm ∈ R+, j > 0 | bl + · · ·+ bm−1 > j > 0}.
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2.5.1. Their definition. The J–polynomials are as follows:

Jλ
def
== hλPb for λ = λ(b), hλ =

∏
2∈λ

(1− qarm(2)tleg(2)+1);(2.24)

they are q, t–integral.
Here arm(2) is the arm number , which is the number of boxes in the

same row as 2 strictly after it; leg(2) is the leg number , which is the num-
ber of boxes in the column of 2 strictly below it. This is for the standard
presentation of λ : λ1≥ λ2≥· · ·≥λn−1≥ λn are the numbers of boxes in the
corresponding rows and the ith row is above the (i+ 1)th.

Equivalently:

Jλ = t−(ρ,b)
n∏
p=1

λp∗ −1∏
j=0

(
1−qjt p+1

)
P ◦b , p

∗ = n−p+1, b ∈ P+.(2.25)

See, for instance, Theorem 2.1 from [GN]. Note that the arms and legs do
not appear in the latter presentation (in terms of P ◦b ). In this approach,
counterparts of J–polynomials exist for any root systems, but there are
some deviations. See [ChD2], Section 2.6.

2.5.2. Stabilization. The following formula is important:

Jλ(t−ρ)=(a2)−
λ1
4 t

|λ|
2

n∏
p=1

λp−1∏
j=0

(
1+qj a t−p+1

)
for a=−tn+1.(2.26)

More generally, we have the following a–stabilization; see [ChD2]. We
note that the geometric/motivic superpolynomials are defined without any
An (and further stabilization), but so far they are known only for columns
(b = mω1).

Proposition 2.2. Given two Young diagrams λ and µ, the values Pλ(qµ+ρk)
are a–stable, which means that there is a universal expression in terms of
q, t, a such that its value at a = −tn+1 coincides with Pb(q

c+ρk) for λ =
λ(b), µ = λ(c), b, c ∈ P+ for An with n no smaller than the number of rows
in λ and in µ. Up to powers of a1/2 and t1/2, they are rational function
in q, t, a. Also, P ◦λ (qµ+ρk), 〈Pλ, Pλ〉 and 〈P ◦λ , P ◦λ 〉 are a–stable (in the same
sense).
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3. DAHA-Jones theory

3.1. Iterated torus knots

We will first introduce the data necessary in the construction of DAHA-
Jones polynomials and DAHA superpolynomials of algebraic iterated torus
knots .

3.1.1. Newton pairs. The (algebraic) torus knots T (r, s) are defined for
any positive integers assuming that gcd(r, s) = 1. One has the symmetry
T (r, s) = T (s, r), where we use “=” for the ambient isotopy equivalence. Also
T (r, s) =© if r = 1 or s = 1 for the unknot ©. Here and below see e.g., [RJ,
EN, ChD1] for details and/or Knot Atlas for the corresponding invariants.

Following [ChD1], the [r,s]-presentation of an iterated torus knots (de-
fined below) will be T (~r,~s) for any two sequences of positive integers:

~r = {r1, . . . , r`}, ~s = {s1, . . . , s`} such that gcd(ri, si) = 1;(3.1)

` will be called the length of ~r,~s. The pairs [ri, si] can be interpreted as
characteristic or Newton pairs in terms of plane curve singularities. The
necessary and sufficient condition for being algebraic is ri, si > 0, which will
be imposed in this paper unless stated otherwise.

3.1.2. Cabling parameters. The above parameters are the ones needed
in the DAHA approach. However they are not optimal for establishing the
symmetries of our polynomials and the justification that our construction
depends only on the corresponding knot/link. We need the cable presentation
for this. It requires one more sequence of integers:

a1 = s1, ai = ai−1ri−1ri + si (i = 2, . . . ,m).(3.2)

See e.g., [EN]. In terms of the cabling discussed below, the corresponding
knots are as follows. First, T (r, s) = Cab(s, r)(©) (note that we transpose r, s
here), and then we set:

T (~r,~s) Cab(~a,~r)(©) =
(
Cab(a`, r`) · · ·Cab(a2, r2)

)(
T (r1,s1)

)
.(3.3)

Knots and links will be considered up to ambient isotopy ; we use “=”
for it. The cabling Cab(a, b)(K) of any oriented knot K in (oriented) S3 is
defined as follows; see e.g., [Mo, EN] and references therein. We consider a
small 2–dimensional torus around K and put there the torus knot T (a, b)
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in the direction of K, which is Cab(a, b)(K) (up to ambient isotopy); we set

Cab(~a,~r)
def
== Cab(~a,~r)(©).

This procedure depends on the order of a, b and orientation of K. We
choose them in the standard way: the parameter a gives the number of turns
around K. This construction also depends on the framing of the cable knots;
we take the natural one, associated with the parallel copy of the torus where
a given cable knot sits (its parallel copy has zero linking number with this
knot).

3.2. From knots to links

Switching to links, we need to add colors to the cables above, which are
dominant weights b. For knots, there is always one color, so it gives an extra
(external) piece of information on top of the topological data above. Now
adding colors becomes an internal part of the definition.

3.2.1. Graphs and labels. The [r,s]-presentation of a iterated torus link
will be a union of κ colored knots

LΥ, (bj)
(~r j ,~s j) =

(
{T (~rj ,~sj), bj ∈ P+}, j = 1, . . . , κ

)
together with(3.4)

the incidence matrix Υ = (υj,k), where 0 ≤ υj,k = υk,j ≤ min{`j , `k}
implies that [rji , s

j
i ]=[rki , s

k
i ] for all 1 ≤ i ≤ υj,k and any 1 ≤ j, k ≤ κ.

Here `j is the length of ~rj = {rji } and ~sj = {sji} for 1 ≤ j ≤ κ; we naturally
set υj,j = `j .

Thus Υ determines a graph L with the vertices {i, j} identified as in
(3.4). The paths are sequences of increasing consecutive i–vertices with fixed
j; their orientation is from i to i+ 1. The vertices for neighboring i in the
same path j are naturally connected by the edges. This graph is a disjoint
union of trees. Any its subtree contains a unique initial vertex i = i0 such
that the i–indices are the distances in this subtree from i0 one plus i0. Every
subtree has at least one base path , the one that intersects all other paths in
this subtree.

For i ≤ `j , the pairs [rji , s
j
i ] become labels, called [r,s]-labels of the vertices

i, j of L; the square brackets will be used for them.
Additionally, we put arrowheads at the end of every path (which is at

the vertex with i = `j). The paths with coinciding vertices but different ar-
rowheads will be treated as different paths. So j are the indices of all different
maximal paths in L including the arrowheads at their ends. The colors bj
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will be assigned to the arrowheads. Topologically, the jth path corresponds
to the knot T (~rj ,~sj) colored by bj ∈ P+ (later, by the corresponding Young
diagrams λj). If a graph contains no vertices; then it is a collection of paths
that are pure arrowheads (a set of colors).

3.2.2. Topological parameters. The a–parameters above must be now
calculated along the paths exactly as we did for the knots (i.e. starting from
i = 1, a1 = s1); then aji depends only on the corresponding vertex. The pairs

{aji , r
j
i } will be called the cab-labels of the vertices. Actually only the [r,s]-

labels will be needed in the DAHA constructions; we will call them simply
labels (and use [ , ] only for them). However the cab-labels are necessary for
understanding the topological symmetries.

The torus knot colored by b ∈ P+ (or by the corresponding λ) is denoted
by T br,s; Cab

b
a,r(L), equivalently Cabb0,1Caba,r(L), is the cable Cab(a, r)(L) of

a link L colored by b. The color is attached to the last Cab in the sequence
of cables. In the absence of vertices, the notation is ©b (the unknot colored
by b ∈ P+) or Cab(0, 1)b. We will use the same notation L for the graph and
the corresponding link L.

The passage from the [r,s]-presentation to the cab-presentation is

L
(
~rj ,~sj , 1 ≤ j ≤ κ

)
 

 κ∐
j=1

Cab(~aj ,~rj)

 (©),(3.5)

where the composition and coproduct of cables is with respect to the graph
structure and Cab(~aj ,~rj) = · · ·Cab(aj2, r

j
2)T (rj1, s

j
1) is as in (3.3). In this work,

the coproduct symbol
∐

, which stands for the union of cables, will be
simply replaced by comma; we set

(
Cab(a, r), Cab(a′, r′)

)
instead of

Cab(a, r)
∐
Cab(a′, r′). The a–parameters are calculated as above along the

corresponding paths. See [ChD2] for details and (many) examples. Actually,
we do not need much the topological aspects in this work; the graphs are
sufficient for the DAHA construction.

3.3. Pairs of graphs

This extension is necessary to incorporate all iterated torus links (in this
work, all algebraic links); see [ChD2] for details. Let {L, ′L} be a pair of
labeled graphs defined above.

3.3.1. Twisted union. The cabling construction provides a canonical
embedding of the iterated torus links into the solid torus. Their twisted
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union for the pair {L, ′L} is as follows: we put the links for L and ′L into
the horizontal solid torus and the complementary vertical one.

Since we consider only algebraic links, we will always change here the
natural orientation of the second component by the opposite one. Without
this switch, the resulting link is never algebraic. For instance,

{
L = {◦ →

}, ′L = {◦ → }
}

represents uncolored Hopf 2–links with the linking num-
ber lk = +1, which is {◦ → , ◦ → ∨} in [ChD2].

Thus the pairs {L, ′L} in this work are actually {L, ′L∨} in the notation
from [ChD2]; we consider only such pairs (with ∨) here. We note that {L, ′L}
and {′L, L} result in isotopic links; this corresponds to formula (4.24) from
[ChD2] in the DAHA setting.

3.3.2. Positivity conditions. Arbitrary algebraic links can be obtained
using this construction including the twisted union for the pairs of positive
algebraic graphs subject to the inequality ′s1s1 >

′r1r1 for any pairs of the
first vertices of these two graphs. Then {L, ′L} is called a positive pair . See
e.g. [New] [ChD2]. These inequalities are imposed upon the full usage of the
symmetries of the corresponding splice diagram . In the absence of vertices
or if there is only one vertex with r1 = 1, the pair {r1, s1} is technically
treated as {0, 1} for L (or for ′L, with primes), so the inequality above holds
tautologically. Recall that Cab(0, 1)L = L for any link L (it is a path along
the link). Note that the transposition of r1 and s1 (only in the first pair!)
does not change the isotopy type of the corresponding component, but this
may influence the resulting twisted union. Let us comment on it.

Let ′L be a pure arrow (no vertices) colored by λ and L is a positive
graph. Then the pair {L,′L} is positive and it corresponds to adding “the
meridian” colored by λ to L. The meridian and its linking number with L
(always positive) obviously may change when r1, s1 are transposed. In the
DAHA construction, this pair will be treated as taking the coinvariant of
Pλ(Xb 7→ Yb) applied to the pre-polynomial associated to L. If the color here
is λ = (common in our numerical examples), then P is the Sn+1–orbit
sum of Xω1

.
See [EN, New] and [ChD2] for details. The theory in [EN] is without

colors, as well as that in [ObS, ORS]. Attaching colors to the branches can
be incorporated topologically using framed links, but this requires more
involved combinatorial definitions (and some usage of the skein ). Colors are
natural in the DAHA construction, but colored DAHA superpolynomials are
of course more complicated than the uncolored ones. See also [Ma, ChP2].

3.3.3. Algebraic links. We provide here only basic facts; see [EN] for
details and references, especially Theorem 9.4 there. Generally, one begins
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with a polynomial equation f(x, y) = 0 considered in a neighborhood of
an isolated singularity 0 = (x = 0, y = 0). Its intersection with a small 3-
dimensional sphere in C2 around 0 is called an algebraic link . Assuming
that rji , s

j
i > 0 , any labeled graph L = LΥ

(~rj ,~sj) (in the [r,s]-presentation, with-

out colors) corresponds to a germ of plane curve singularity at 0. If these
inequalities hold, the graph is called positive . Using positive pairs {L,′L}
provide all of them.

The corresponding (germs of) singularities are unions of unibranch com-
ponents corresponding for the paths of Υ (numbered by j), which are given
as follows:

y = cj1 x
sj1/r

j
1

(
1 + cj2 x

sj2/(r
j
1r
j
2)
(

1 + cj3 x
sj3/(r

j
1r
j
2r
j
3)(. . .)

))
at 0.(3.6)

The numbers r, s are obtained from the corresponding labels; the parame-
ters cji ∈ C must be sufficiently general here. The simplest example is the
equation yrκ = xsκ under gcd(r, s) = 1, which corresponds to the torus link
T (rκ, sκ) with κ knot components isotopic to T (r, s). The pairwise linking
numbers here are all equal to r s in this case.

The unibranch components and their (pairwise) linking numbers uniquely
determine the corresponding germ due to the Reeve theorem; see e.g. [EN].
All linking numbers must be strictly positive for algebraic links. The DAHA
constructions works for any (not only positive) labels. The above discussion
is of course in the absence of colors.

3.4. DAHA-Jones polynomials

They can be uniformly defined for any (reduced, irreducible) root systems
R; for its twisted affinization R̃, to be exact. We need only R = An in this
work. The P, J–polynomials and the necessary DAHA tools are from the
previous sections.

3.4.1. Data and ingredients. The combinatorial data will be the [r,s]-

labeled graphs LΥ,(bj)
(~rj ,~sj) from (3.4) and their pairs. Recall that

1 ≤ j ≤ κ, ~r j = {rji }, ~s j = {sji}, 1 ≤ i ≤ `j ,

and Υ is the incidence graph/matrix ; the arrowheads (at the ends of all
paths ) are colored by bj ∈ P+. The incidence graph is not supposed to be
connected here and the paths can contain no vertices; see (3.4). The con-
struction below will be for two arbitrary such graphs L, ′L (the second can
be empty).
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In the case of algebraic knots , spherical polynomials P ◦λ are sufficient; one

obviously has J◦λ
def
== Jλ/Jλ(tρ) = P ◦λ . Generally (for links), we need the J–

polynomials; see (2.24). For the latter reference, let λj = λ(bj) for dominant
bj . We set:

(b1, . . . , bm)Jev=(λ1, . . . , λm)Jev=LCM
(
Jλ1(tρ), . . . , Jλm(tρ)

)
,(3.7)

where LCM is normalized by the condition that it is a q, t–polynomial with
the constant term 1.

One has the following combinatorially transparent formula:

(λ1, . . . , λm)Jev = (λ1∨ · · · ∨λm)Jev , where(3.8)

λ1∨ · · · ∨λm is the union of diagrams {λj}.

The latter union is by definition the smallest Young diagram containing all
diagrams λ1, . . . , λm.

Note that the J–polynomials in the An–case are not minimal integral
(without q, t–denominators) even for t = q. They are important for the a–
stabilization (including HOMFLY-PT polynomials for links ) and for the
super-duality. However, the switch from P to J does not influence the
DAHA-construction for iterated knots, though their role is still important
even for knots; see [GN],[ChD2].

Let us now go to the DAHA construction. Recall that H⇓ def
== H(1),

where the action of H ∈ HH in V is used. We represent torus knots T (r, s)
by the matrices γ[r, s] = γr,s ∈ PSL 2(Z) with the first column (r, s)tr (tr is
the transposition) for r, s ∈ N provided gcd(r, s) = 1. Let γ̂r,s ∈ PSL∧2(Z) be
any pullback of γr,s to the projective PSL 2(Z).

3.4.2. Pre-polynomials. The definition is for any pair {L,′L} from (3.4)
(the positivity of L,′L and the pair is actually not needed). Let

L = LΥ,(bj)
(~rj ,~sj),

′L =′L
′Υ,(′bj)
(′~rj ,′~sj) where bj , ′bj ∈ P+,(3.9)

1 ≤ j ≤ κ, ′κ for L, ′L, ~rj = (rji | 1 ≤ i ≤ `
j), ′~rj = (′rji | 1 ≤ i ≤

′̀ j).

First of all, we lift (rji , s
j
i )
tr, (′rji ,

′sji )
tr to γ̂ji ,

′γ̂ji ∈ PSL∧2(Z) as above.
Then for any vertex of L, i.e. a pair {i, j}, we begin the (inductive) definition
with:

Pj
`j+1

def
== Jbj , γ

j
`j+1

def
== id for 1 ≤ j ≤ κ.

Recall that `j = 0 when the jth path contains only an arrowhead and υj,k = 0
if the corresponding paths do not intersect.
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For a given path with the index j, we define the pre-polynomials Pj
i by

induction with respect to i, starting with i = `j down to i = 0:

Pj
i =

υ(k,j)= i∏
1≤k≤κ

(
γ̂ki+1(Pk

i+1)⇓
)
.(3.10)

I.e. the last product is over all paths k that enter (intersect) the path for
j exactly at the index i ≥ 0, including k = j when i = `j . Note that Pj

`j =∏υ(k,j)=`j

1≤k≤κ Jbk for a base path j, where this product is over all κ arrowheads

from (originated at) the vertex {i = `j , j}.
The polynomial Pj

0 actually depends only on the corresponding subtree

for any path j there. If L is a union of subtrees, then Pj
0 is the product

of the corresponding polynomials
(
γ̂k1 (Pk

1)⇓
)

over all these subtrees. The

pre-polynomial is defined then as Ptot
0 = Pj

0 (the end of the above inductive
procedure). The pre-polynomial ′Ptot

0 for ′L is defined in the same way.

3.4.3. Finale. Using the notations b = (bj), ′b = (′bj), the DAHA-Jones
polynomial for the J–polynomials Jbj , J′bj and a fixed index 1 ≤ jo ≤ κ
(which determines the normalization) is as follows:

JDR, jo,Υ, ′Υ
(~rj ,~sj) , (′~rj , ′~sj)((b

j), (′bj) ; q, t) = JDjo,Υ, ′Υ
(~rj ,~sj) ,( ′~rj , ′~sj)(b,

′b ; q, t)(3.11)

= JDjo
L, ′L

def
==

{
′Ptot

0 (Y ) Ptot
0 /Jbjo (q−ρk)

}
ev
.

Here jo can be ∅, which means that there is no divisions by the evaluations
at q−ρk = t−ρ; R is the root system, which is An.

In the case of iterated torus knots (when there is only one path) and in
the absence of ′L, we arrive at formula (2.12) from [ChD1]:

JD~r,~s(b; q, t)=
{
γ̂1

(
· · ·
(
γ̂`−1

((
γ̂`(Pb)/Pb(q

−ρk)
)
⇓
)
⇓
)
· · ·
)}

ev
.(3.12)

It includes only one b ∈ P+ and therefore one can use Pb instead of Jλ.
The simplest link is for the union of any number of arrowheads colored

by b1, . . . , bκ. It is represented by the graph →· · ·→ . A single → is associated
with Pb/Pb(q

−ρk); generally we arrive at the product:

P1
` = J1

`+1 · · · Jκ`+1/Jbjo (q−ρk) = Jb1 · · · Jbκ/Jbjo (q−ρk),(3.13)

where j◦ can be ∅. It will be later allowed to divide by the LCM of the
evaluations for all Jbj here, for the minimal normalization from (3.14).
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3.5. Polynomiality etc

The following theorem and other statements in this and the next sections
are from [ChD1] and [ChD2].

Theorem 3.1. For any choice of the normalization index 1 ≤ jo ≤ κ (it can
be ∅), the DAHA-Jones polynomial JDjo

L, ′L is indeed a polynomial in terms
of q, t up to a factor q•t•, where the powers • can be rational. Modulo such
factors, it does not depend on the particular choice of the lifts γji ∈ PSL2(Z)

and γ̂ji ∈ PSL∧2(Z) for 1 ≤ i ≤ `j.
Up to the q•t•–equivalence and Q–proportionality we pick the hat-

normalization, denoted ĴD
jo
L, ′L , as follows. It is a q, t–polynomial not di-

visible by q and by t , with integral coefficients of all q, t–monomials such
that their GCD is 1 and, finally, the coefficient of the minimal pure power
of t is assumed positive.

3.5.1. Minimal normalization. The q, t–integrality and other claims
from Theorem 3.1 hold for the following modifications of DAHA-Jones poly-
nomials (which is sharper and does not require picking jo). Make jo = ∅ (no
normalization in P̂), we set:

ĴD
min

(~rj ,~sj) ,( ′~rj , ′~sj)(b,
′b ; q, t) = ĴD

min

L, ′L
def
==

{
ϕ◦ ι ( ′P̂tot

0 ) P̂tot
0

(b, ′b)Jev

}
ev

,(3.14)

in the notation from (3.8), (2.16). We put jo = min if the minimal normal-
ization (division by the corresponding LCM) is taken.

Some modification is needed for t = 1 to ensure the connection with the
HOMFLY-PT polynomials. We take P

(k=1)
b instead of Jλ for λ = λ(b) and

t=q, which do not depend on q at all; they simply coincide with the corre-
sponding Schur functions. The LCM (b1, . . . , bm)ev then must be understood
correspondingly. Recall that the polynomials Jλ generally have extra factors
vs. the Schur functions in this case.

3.5.2. Topological symmetries. The polynomial ĴD
jo
L, ′L defined in The-

orem 3.1 and ĴD
min

L, ′L introduced above actually depend only on the topo-
logical link corresponding to the pair of graphs {L, ′L}. For instance, the
reduction of the vertices with r = 1 can be applied in L or in ′L. Also, the

transposition [rj1, s
j
1] 7→ [sj1, r

j
1] (only for i = 1) does not influence ĴD

j◦
L or

ĴD
min

L provided that ′L = ∅, and the pairs {L,′L} and {′L,L} result in co-
inciding polynomials.
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The justification of this and other symmetries is essentially parallel to
Theorem 1.2 from [Ch3]. Let us discuss torus knots. Essentially, one needs
to check here that T (mr + s, r) results in the same DAHA-Jones polyno-
mial as the “2-cable” corresponding to the tree [m, 1]→ [r, s]. Topologically,
T (mr + s, r) is isotopic to Cab(mr + s, r)T (m, 1), since T (m, 1) is unknot.
The corresponding relation for the JD–polynomials readily follows from the
commutativity τm− with ⇓, which simply means that τ− acts in V.

3.5.3. Specialization q = 1. We now make q = 1, assuming that t is
generic and using the notation (b1, . . . , bm)Jev from (3.7). Then

(b1, . . . , bκ, ′b1, . . . ,′b
′κ)Jev

(b1)Jev · · · (bκ)Jev (′b1)Jev · · · (′b
′κ)Jev

(q=1) ĴD
min

L, ′L(q=1)(3.15)

=

κ∏
j=1

JD~rj ,~sj
(
bj ; q=1, t)

′κ∏
j=1

JD ′~rj , ′~sj
( ′bj ; q=1, t),

where JD~r,~s

(
b; q=1, t

)
=
∏n
p=1JD~r,~s (ωp; q=1, t)bp ,

for b =
∑n
p=1bpωp ∈ P+, where the JD–polynomials from (3.12) are used (for

knots). See formula (2.18) in [ChD1].
Notice the factor in the left-hand side. It would be 1 if the polynomials P ◦b

were taken in this construction (without any further division) instead of Jλ
under the minimal normalization. This can result in the q, t–denominators
of the resulting coinvariants, but there will be no correction factor in the
left-hand side.

4. DAHA-superpolynomials

4.1. Existence and duality

4.1.1. Stabilization. Following [Ch2, GN, Ch3, ChD1, ChD2], the con-
struction from Theorem 3.1 and other statements above can be extended
to the DAHA- superpolynomials , the result of the stabilization of ĴD

An,jo
L, ′L

(including jo = min, the minimal normalization).
The a–stabilization for torus knots was announced in [Ch2]; its proof was

published in [GN]. Both approaches use [SV]. The super-duality conjecture
was proposed in [Ch2] (let us also mention [GS]) and proven in [GN] for torus
knots; see also [Ch3] for an alternative approach based on the generalized
level-rank duality. The justifications of the a–stabilization and the super-
duality was extended to arbitrary iterated torus knots in [ChD1].
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The main change for links vs. knots is that the polynomiality of the
superpolynomials for links requires the usage of Jλ–polynomials. Actually
{Jλ} were already employed in [GN] for the stabilization and duality, but the
construction of (reduced) JD–polynomials and superpolynomials for knots
requires only spherical P ◦λ . For links (vs. knots), the role of polynomials
{Jλ} is the key; without the usage of J–polynomials the superpolynomials
have non-trivial t–denominators.

The sequences ~rj , ~sj of length `j for the graph L and ′~rj ,′~sj of length
′̀ j for the graph ′L will be from the previous sections. We always use the

DAHA-Jones polynomials under the hat-normalization, i.e. ĴD
jo
, ĴD

min
.

For t=q, the Schur functions P
(k=1)
λ will be employed when discussing the

connection with the HOMFLY-PT polynomials. Recall that λ = λ(b) is the
Young diagram representing b ∈ P+.

We consider now P+ 3 b =
∑n

i=1 biωi for An as a (dominant) weight for
any Am (for slm+1) for m ≥ n− 1; we set ωn = 0 upon its restriction to
An−1. See [Ch2, GN, Ch3, ChD1] concerning the versions of the following
theorem for torus knots and iterated torus knots.

Theorem 4.1. [ChD2, Theorem 2.3] Given a pair {L, ′L} colored by b =
(bj), ′b = (′bj) and the normalization index 1 ≤ jo ≤ κ or jo=min, there
exists a unique polynomial from Z[q, t±1, a]

ĤjoL, ′L = ĤΥ,jo
(~rj ,~sj),(′~rj , ′~sj)(b,

′b; q, t, a)(4.16)

such that for any m≥n−1 and proper powers of q, t (possibly rational) :

ĤjoL, ′L(q, t, a=−tm+1) = ± q•t• ĴD
Am,jo
L, ′L (q, t).(4.17)

Let us pick Ĥ such that Ĥ(a=0) is under the hat-normalization from Theo-
rem 3.1. Then relations (4.17) will automatically hold for sufficiently large
m without any correction factors ±q•t• (and one sufficiently large m is
actually sufficient to fix Ĥ uniquely).

4.1.2. Symmetries. The polynomials Ĥ depend only on the isotopy class
of the corresponding iterated torus links. All symmetries from the previous
section hold for Ĥ = Ĥjo , including jo = min. For instance, this includes
the specialization relation from (3.15) at q = 1 for Ĥ. The exact product
formula there holds when spherical polynomials P ◦b = Pb/Pb(t

ρ) are used in

the formulas for ĴD, Ĥ instead of J–polynomials. We note that mirroring of
torus iterated links results in changing ai 7→ −ai for all i and in q 7→ q−1, t 7→
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t−1, a 7→ a−1 in the superpolynomials (followed by the hat-normalization).
Also, algebraically Y must be replaced by Y −1 in the case of two graphs
(the change or their relative orientation); see [ChD2].

The key new feature of the stable theory is super-duality . We switch
from b, ′b to the corresponding sets of Young diagrams {λj}, {′λj}; their
transpositions will be denoted by {·}tr. Up to powers of q and t denoted
here and below by q•t•, one has:

ĤL,′L({λj}, {′λj}; q, t, a)=q•t•ĤL,′L({λj}tr, {′λj}tr; t−1, q−1, a).(4.18)

Let us discuss the a–degree of Ĥ–polynomials. We conjectured in [ChD2]
(for algebraic links only) that

degaĤminL, ′L =
∑κ
j=1 min{ rj1, s

j
1} r

j
2 · · · r

j
`j |λ

j |(4.19)

+
∑ ′κ
j=1 min{ ′rj1,

′sj1}
′rj2 · · ·

′rj′̀ j | ′λj | −∆

for ∆ = |λ1∨. . .∨λκ∨ ′λ1∨. . .∨ ′λ′κ| from (3.8),

where |λ| is the number of boxes in λ. A somewhat weaker statement can be
justified. This is connected with the product formula at q = 1, which gives
that the a–degree is no smaller than that in (4.19). The right-hand side
of this formula is actually the multiplicity of the corresponding singularity
generalized to the colored case, e.g. |λ|(s− 1) for T (r, s) colored by λ, where
s < r.

From now on we will always impose the minimal normalization of Ĥ
unless stated otherwise.

4.1.3. Family superpolynomials. There are important reasons to con-
sider superpolynomials in the “families” of links. Namely, (a) the correspond-
ing generating functions have better algebraic structure than individual su-
perpolynomials, (b) DAHA provides uniform tools for calculations within
families (see below), (c) the families are natural to match the classical the-
ory of zeta and [Ch4], (d) considering families is similar to Iwasawa theory
in number theory (see [Mor] and below).

Generally, the definition is as follows. One replaces one (or several) γi in
the formula for DAHA superpolynomials by

∑
vmτm± γi for m ∈ Z+ and a

new variable/parameter v. When i = 1 in the case of uncolored torus iterated
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knots described by formula (3.12), we set

JD~r,~s(b; q, t, u) =

∞∑
m=0

(u
t

)g(m)
JDm(4.20)

=

∞∑
m=0

(u
t

)g(m) {
τ̂m− γ1

(
· · ·
(
γ̂`−1

((
γ̂`(Pb)/Pb(q

−ρk)
)
⇓
)
⇓
)
· · ·
)}

ev
,

where g(m) is the arithmetic genus of the corresponding singularity; this is δ
from Section 4.2. Combinatorially, the pair r1, s1 is replaced by r1,mr1 + s1.
The corresponding rings are naturally embedded for i = 1. The division by
tg(m) provides the exact super-duality q ↔ 1/t (not only up to proportiona-
lity). The corresponding family superpolynomial is defined accordingly. For
Ĥm corresponding to JDm,

Ĥ(q, t, a, u)
def
==

∞∑
m=0

(u
t

)g(m)
Ĥm(q, t, a).(4.21)

The simplest example is for the family T (2, 2m+ 1), i.e. for the summa-
tion over τm− τ+τ− with m ∈ Z+. The formula is as follows

Ĥ2,1+2Z+
(q, t, a, u) =

1 + auq/t

(1− u/t)(1− uq)
,(4.22)

which is simple to establish; the superpolynomials for T (2, 2m+1) are well
known. From the DAHA perspective, this is the simplest application of
the formula for the pre-polynomial P2,1 = (τ+τ−(Pω1

))(1). Importantly the
polynomials Pb in (4.20) can be replaced by the corresponding nonsymmet-
ric polynomials Eb for b ∈ P+. They are eigenfunctions of Y –operators:
Ya(Eb) = q−(a,b)t−(ρ,b)Eb (for dominant b); the normalization is Eb = Xb

modulo lower terms. We use that

Pb
Pb(t−ρ)

= P

(
Eb

Eb(t−ρ)

)

for P =
∑
w∈W tl(w)/2Tw∑
w∈W tl(w) ; P commutes with taking the coinvariant. See Sec-

tion 2.4.1 and [Ch1, Ch2, Ch3]. Also we can switch here to GLn instead of
An. Thus, we need E2,1 = (τ+τ−(Eω1

))(1), which is proportional to Xω1
=

X1. Using the standard GLn variables Xi for 1 ≤ i ≤ n, Xωi = X1X2 · · ·Xi
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and

E2ω1
=X2

1

1−q
1−qt

+
(1−t)q
1−qt

(X1+· · ·+Xn)X1, E2ω1
(t−ρ)=

1−qtn

tn−1(1−qt)
.

Applying P here, we arrive at some DAHA-Rosso-Jones relation.

Proposition 4.2. Let γ1 = γr1,s1 be a matrix from PSL(2,Z), γ2 = τ+τ− =

γ2,1, Ĥγ1,γ2
the corresponding (hat-normalized) uncolored superpolynomial,

corresponding to the cable Cab(2r1s1+1, 2)T (r1, s1). Then

Ĥγ1,γ2
=

1 + aq

1− q
Ĥr1,s1 −

q

1− q
Ĥ2r1,2s1 for r, s ≥ 0,(4.23)

where Ĥr,s is the superpolynomial for γ = γr,s colored by 2ω1, Ĥ2r,2s is the
uncolored superpolynomial for the link 2T (r, s).

When γ1 =τm− =γ1,m for m∈Z+, we use (4.26) below and obtain:

Ĥ2,2m+1 =
1 + aq

1− q
− q

1− q
Ĥ2,2m; e.g. for m=1 :(4.24)

1 + qt+ aq =
1 + aq

1− q
− q

1− q
(
1 + aq − t(1− q)

)
.

Generally, this approach gives that H(q, t, a, u) are rational functions in
terms of q, t, u, a (the details will be published elsewhere).

Corollary 4.2 is a typical recurrence relation in the DAHA theory of
superpolynomials; topological justification of such DAHA formulas within
the Khovanov -Rozansky theory is an obvious challenge. The calculation of
Ĥ2r2,2s2 can be generally performed using the Pieri rules from (1.4.50),[Ch1].
See also Proposition 4.3 below.

Let us provide the formula for H(q, t, a, u) in the case of the family
T (3, 3n+ 1), where g(n) = 3n and the superpolynomials are sufficiently well
known; see e.g. Conjecture 7 from [GORS] and [Ch2]. One has:

Ĥ3,1+3Z+
(q, t, a, u) =

1

(1− (u/t)3)(1− (uq)3)(1− u3q2/t2)
(4.25)

×

(
1 + u3

(
q

t2
+
q2

t

)
+ a2u3 q

3

t3

(
1 + u3

(
q

t2
+
q2

t

))

+ au3 q

t

(
1

t2
+
q

t
+ q2 +

q

t2
+
q2

t
+ u3 q

3

t3

))
.
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Family Cab(13+2m,2)T(3,2). These cables can be obtained for γ1 =
τ+τ

2
− and γ2 = τm− τ+τ−, i.e. the procedure γ 7→ τm− γ is used her for γ2. We

use the above formula for E2ω1
rewriting it as follows:

X2
1 = E2ω1

− (1−t)q
1−qt

(X2+· · ·+Xn)X1.

Formula (2.18) defines the action of τ− in V. We used in [ChD2] the notation
τ̇− to avoid confusion with the action of τ− inHH. Formula (1.37) there states
that τ−(Eb) = q−b

2
+/2t−(ρ,b+), where b+ is the unique weight in P+ ∩W (b)

for b ∈ P . We need here the relations

τ−(E2ω1
)=q−2t1−nE2ω1

, τ−(XiXj)=q−1/2t(1−n)/2, 1≤ i<j ≤ n.(4.26)

One has: τm− (X2
1 ) =

(q−2t1−n)m

(1−qt)

(
E2ω1

E2ω1
(t−ρ)

(1−qtn)

tn−1
− (1−t)q(qt)X1(X2+· · ·+Xn)

)
.

Proposition 4.3. For any m ∈ Z+, r1, s1 ≥ 0, let γ1 =γr1,s1 ∈PSL(2,Z),

γ2(m)=τm− τ+τ− = γ2,2m+1, Ĥγ1,γ2(m) be the corresponding superpolynomial

for the cable Cab(2r1s1+2m+1, 2)T (r1, s1). Then

Ĥγ1,γ2(m) =
1 + aq

1− qt

(
1 + (qt)m

q(1− t)
1− q

)
Ĥr1,s1 − (qt)m

q

1− q
Ĥ2r1,2s1(4.27)

=
1− (qt)m

1− qt
(1 + aq)Ĥr1,s1 + (qt)mĤγ1,γ2(0),

where Ĥr,s , Ĥ2r,2s are as in the previous proposition (which is used to obtain
the second formula from the first). The formula for γ2(m) in terms of γ2(0)
actually works for any m ∈ Z.

In the case of γ1 = γ3,2 these formulas are an important addition to
the (mostly numerical) analysis of this family in [ChD1]. For instance, for
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m = −5 we obtain the superpolynomial (c) from Section 4.1 there:

(c) ~r = {3, 2}, ~s={2,−9} for Cab(3, 2)T (3, 2);

H~r,~s(�; q, t, a) = 1− q2 + qt+ q2t− q3t+ q2t2 + q3t3 + a3

(
−q

4

t2
− q5

t

)
+ a2

(
q3 − q4 − q5 − q3

t2
− q3

t
− 2q4

t

)
+ a

(
q + q2 − 2q3 − q4 − q2

t
− q3

t
+ q2t+ q3t− q4t+ q3t2

)
.

Negative m result in non-algebraic knots, however the formula is uniform
for any m. Negative powers of q, t cancel each other for m < 0. A geometric
interpretation of non-algebraic torus iterated knots/links is an interesting
problem. See Section 4.2.3 below. We note that Proposition 4.3 and its gen-
eralizations provide important tools for counting points of Jacobian factors
over finite fields in families , which is parallel to Iwasawa theory in number
theory. See the end of Section 4.4.4.

Conjecture 4.7 is expected to follow from such recurrence relations (in
full generality), to be considered elsewhere. We also hope that these relations
will connect DAHA superpolynomials with the stable KhR–polynomials
(via the approach based on Soergel modules).

There are no actual problems with applying this formula to any γ1;
practically, its complexity is generally comparable with that of the starting
Ĥγ1,γ2(0). The simplest example is for γ1 = γ3,2 and the range m ≥ 0. Here
the genus is g(m) = 8 +m and we have:

(
t

u

)8

Ĥ{3,2},{2,3+2Z+} =

∞∑
m=0

(u
t

)m
Ĥ{3,2},{2,3+2m},(4.28)

(1− u/t)(1− uq)
(
t

u

)8

Ĥ{3,2},{2,3+2Z+}

= 1 + qt+ q2t+ q3t+ q2t2 + q3t2 + 2q4t2 + q3t3 + q4t3 + 2q5t3

+ q4t4 + q5t4 + 2q6t4 + q5t5 + q6t5 + q7t5 + q6t6 + q7t6

+ q7t7 + q8t8 +
(
−q − q2t− q3t− q4t− q3t2 − q4t2 − 2q5t2

− q4t3 − q5t3 − 2q6t3 − q5t4 − q6t4 − q7t4 − q6t5 − q7t5

− q7t6 − q8t7
)
u + a3

(
q6 + q7t+ q8t2 +

(
−q7 − q8t

)
u
)
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+ a2
(
q3 + q4 + q5 + q4t+ 2q5t+ 2q6t+ q5t2 + 2q6t2 + 2q7t2

+ q6t3 + 2q7t3 + q8t3 + q7t4 + q8t4 + q8t5 +
(
−q4 − q5 − q6

− q5t− 2q6t− 2q7t− q6t2 − 2q7t2 − q8t2 − q7t3 − q8t3 − q8t4
)
u
)

+ a
(
q + q2 + q3 + q2t+ 2q3t+ 3q4t+ q5t+ q3t2 + 2q4t2 + 4q5t2

+ q6t2 + q4t3 + 2q5t3 + 4q6t3 + q7t3 + q5t4 + 2q6t4 + 3q7t4 + q6t5

+ 2q7t5 + q8t5 + q7t6 + q8t6 + q8t7 +
(
−q2 − q3 − q4 − q3t− 2q4t

− 3q5t− q6t− q4t2 − 2q5t2 − 4q6t2 − q7t2 − q5t3 − 2q6t3 − 3q7t3

− q6t4 − 2q7t4 − q8t4 − q7t5 − q8t5 − q8t6
)
u
)
.

We note that when a = 0, the coefficient of u1 considered upon the sub-
stitution q 7→ qt satisfies RH (its t–roots ζ are complex such that |ξ| = q1/2)
provided that q < 0.7562688464467736 . . .. This is better than the bound
q ≤ 1/2 in Conjecture 4.11 for (individual) m.

4.2. Motivic superpolynomials

In the unibranch uncolored case, let us compare the motivic superpolynomi-
als from [ChP1] and the Galkin-Stöhr zeta-functions .

4.2.1. Standard modules. Let R ⊂ O def
== F[[z]] be a Gorenstein ring

over a finite field F=Fq of cardinality q, δ = dimF(O/R) (the arithmetic
genus), ΓR = valz(R) for the usual z–valuation. It is a semigroup and δ =

|Z+ \ Γ|. For the later, we assume that R = R̃Fq
def
== R̃ ⊗Z F, where R̃ ⊂

Z[[z]], and ΓC for R̃ ⊗Z C coincides with Γ over F.

Given an R–module M ⊂ O, ∆ = ∆M
def
== valz(M) is Γ–module, i.e.

Γ+∆ = ∆. One has: dev(M)
def
== δ−dimF(O/M) = δ−|Z+ \∆| def== dev(∆).

If 0 ∈ ∆, then ∆ and the corresponding M are called standard ; equivalently,

M · O = O. For any R–module M , let Mst
def
== z−mM for m = min ∆M ,

which is a standard module corresponding to ∆st = ∆−min{∆}. Also,

M? def
== {x∈F((z)) | xM⊂R} corresponds to ∆? def

== {n ∈ Z+ | n+ ∆ ⊂ Γ}
for any modules M,∆.

Definition 4.4. For any F–subalgebra R ⊂ O with F((z)) as its field of

fractions, let J=JR(F)
def
== {M = Mst} be the Jacobian factor , J∆

def
== {M =

Mst,∆(M) = ∆}, H0
mot(q, t) =

∑
M∈J t

dimF(O/M). For a standard ∆, we set
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H0
mot(∆, q, t) =

∑
M∈J∆ t

dimF(O/M). Following [Sto] for Gorenstein R, M ⊂
O, and standard ∆:

Z(∆, q, t) =

Mst∈J∆∑
M⊃R

tdimF(M/R) =

(M?)st∈J∆∑
M⊂R

tdimF(R/M).

Accordingly, Z(q, t) =
∑

∆=∆st
Z(∆, q, t). Also we set

L(∆, q, t)
def
== (1−t)Z(∆, q, t), L(q, t)

def
== (1−t)Z(q, t).

4.2.2. Stöhr’s formula. We begin with the functional equation :

(qt2)δ L

(
∆, q,

1

qt

)
= L((∆?)st, q, t) for standard ∆.(4.29)

The natural setting here is when the summation over M from Definition 4.4
is reduced to (any) O∗–orbits; O∗ = {x ∈ O | x−1 ∈ O} acts in J∆ by mul-
tiplication. See [Sto],(3.10). We are going to state a version of Theorem 3.1
there, which almost directly provides (4.29). Let

g∆(n) =
∣∣{N 3 m 6∈ ∆ | m < n}

∣∣ for n ∈ Z+, so g∆(0)=0=g∆(1).

Using the relations dev(M ∩ (znO)) = dev(M)−n+g∆(n), one has:

Z(∆, q, t) = (qt)dev(∆)q−δ
∣∣J∆

∣∣∑
n∈∆

tn qg∆(n) for ∆ = ∆st,

L(∆, q, t) = (qt)dev(∆)q−δ
∣∣J∆

∣∣(4.30)

×

 ∑
n∈∆ 63n−1

tn qg∆(n) −
∑

n6∈∆3n−1

tn qg∆(n−1)

 .

Note that the second formula readily gives that L(∆, q, t = 1) =
∣∣J∆

∣∣.
Conjecture 4.5. Let RC ⊂ C[[z]] be the ring of plane curve singularity
(with 2 generators and the same field of fractions). Within its topological
type, there exists RZ ⊂ Z[[z]] such that RC and RF have coinciding Γ. Let
Ĥ(q, t, a) be the corresponding uncolored DAHA superpolynomial for the link

of RC. Then H0
mot(q, t) = Ĥ0 def

== Ĥ(q, t, a=0), which is the case a = 0 of
Conjecture 2.3,(iii) from [ChP1]. Then one has:

H0
mot(q 7→ qt, t) = L(q, t) = Ĥ(q 7→ qt, t, a=0),(4.31)

L(Γ, q, t) = Ĥ(q, t, a 7→ −(t/q))
∣∣
q 7→qt ,

∣∣JΓ

∣∣ = qδ.(4.32)
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This conjecture (and its a–generalization, see below), clarifies the substi-
tution q 7→ qt; the DAHA super-duality then becomes the functional equa-
tion. The DAHA super-duality (with a and for any colors) is not very difficult
to justify, but some theory is needed; see [GN] and [Ch3] for a sketch of the
proof via roots of unity. (which can work beyond An). The positivity of
L(q, t) seems new for the Galkin-Stöhr zeta (beyond some special values/
coefficients). The corresponding cancelations in (4.30) generally hold only
for plane curve singularities.

Corollary 4.6. Provided (4.31), Ĥ(t, t, a=0)=
∑

∆=∆st
tdev(∆)æ(∆), where

æ(∆) is the image of J∆ considered as an abstract (projective) variety in
the quotient of the Grothendieck ring K0(V ar) by 1− L for L = [A1], e.g.
æ(∆) = 1 if J∆ is an affine space AN .

4.2.3. A non-planar example. Relation (4.31) was checked numerically
for quite a few examples of plane curve singularities, including many torus
knots,R = F[[z4, z6 + z7+2m]] for many m ≥ 0, F[[z6, z8 + z9,...,15]], andR =
F[[z6, z9 + z10]].

Interestingly, it fails for non-planar Gorenstein singularities. Let R =
F[[z4, z6, z9]]. Here δ = 6 and it corresponds in some sense (which we omit
here) to the non-algebraic knot Cab(9, 2)T (3, 2), called pseudo-algebraic in
[ChD1]. See also Corollary 1.4 from [Hed]. The positivity of the DAHA
superpolynomial and its algebraic similarity to that for Cab(13, 2)T (3, 2)
were the defining features in [ChD1]. One has:

Ĥ = 1 + a3q6 + qt+ q2t+ q3t+ q2t2 + q3t2 + 2q4t2 + q3t3 + q4t3 + q5t3

+ q4t4 + q5t4 + q5t5 + q6t6 + a2(q3 + q4 + q5 + q4t+ 2q5t+ q6t+ q5t2

+ q6t2 + q6t3) + a(q + q2 + q3 + q2t+ 2q3t+ 3q4t+ q5t+ q3t2 + 2q4t2

+ 3q5t2 + q4t3 + 2q5t3 + q6t3 + q5t4 + q6t4 + q6t5).

The smallest positive Ĥ is for Cab(7, 2)T (3, 2) associated with F[[z4, z6, z7]],
but its a–degree drops to 2.

The motivic interpretation of Ĥ above at a = 0 is as follows. We define
′H0

mot,
′L by restricting the summation in H0

mot, Z to ∆ such that ∆1,2 \ Γ 6=
{2, 11}, {2, 7, 11}. We note that ∆1,2 satisfy (∆?)st = ∆. Then ′H0

mot(q 7→
qt, t)= ′L(q, t) (and with a, see (4.34) below), but H0

mot(q 7→qt) 6= L. We note
that (4.32) holds without prime.

Namely, H0
mot−′H0

mot = q6t4 + q5t3; the latter monomials are contribu-
tions of ∆1,∆2. One has: L(q, t)− ′L(q, t) = q2t2 − q2t4 + q3t4 − q3t6 +
q4t6 − q4t8 + q5t8 + q6t10; by the way, L(q, t) has positive coefficients. Here
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L(q, t))/t6 and ′L(q, t)/t6 satisfy the functional equation t 7→ 1/(qt). How-
ever, H0

mot/t
6 is not self-super-dual for q ↔ t−1. This failure is typical for

motivic pseudo-algebraic superpolynomials.

Observation. For planar R, let R̈ be the corresponding quasi-homoge-

neous ring, which is R̈ def
== F[zv, v ∈ Γ], and Ḧmot(q, t, a) as in (4.34). The

following holds for F[[z4, z6+z7+2m]] we checked and for R=F[[z6, z8+z9]]:
Ĥ is Ḧsymmot , which is Ḧmot minus the sum of positive terms in Ḧmot(q, t, a)−
(qt)δḦmot(1

t ,
1
q , a). The same tendency holds for (non-planar) R associated

with pseudo-algebraic knots.
The smallest counterexample we found at a = 0 is F[[z6, z9 + z10]] (δ =

21), where Ḧsymmot−Ĥ
∣∣
a=0

= q13t5 + q14t5 + 2q14t6 + 2q15t6 + 2q15t7 + q16t7 +

q16t8. The number of ∆ is 447 for the corresponding R̈. By the way, JR̈ has

a component of dim=δ+2 and there exist 9 non-affine cells J̈∆, but they
do not contribute to Ḧsymmot−Ĥ

∣∣
a=0

(all J∆ are affine).
The rationale here is that i−j=dim(J∆)+dev(∆)−δ is high for ∆ (with

affine J∆) and the corresponding qitj in Ĥ if dim(J̈∆)>dim(J∆) (dim ∅=
−∞). In the difference above, i−j = 8, 9, when max{i−j}=9 in Ĥ0, and
only very few ∆ there are with i−j≥8.

For instance, let R = F[[z4, z6, z11]]. Then the reduction above and
the relations ′Hmot(q 7→ qt, t, a) =′L(q, t, a) = Ĥ(q 7→ qt, t, a) hold for non-
admissible ∆ \ Γ = {2, 13}, {2, 9, 13}. For z7 instead of z9,11 (not pseudo-
algebraic according to [ChD1]): Ĥ= ′Hmot if {2, 9}, {1, 5, 9} are excluded,
but then Ĥ − ′L=q2t4(1−t)(1−qt)(1+aq+aqt), which requires further ad-
justments. Also, the observation above holds only for a = 0. We note that
H0
mot−Ĥ(a=0) for 11, 9, 7, 5, 3 is uniform: (qt)δ(t−2+t−3q−1), where δ=

7, 6, 5, 4, 3.

4.2.4. Flagged zeta-functions. Following [ChP1], the standard `–flag
of Γ–modules is a sequence ~∆ = {∆0⊂∆1 =∆0 ∪ {g1} ⊂· · ·⊂ ∆i=∆i−1 ∪
{gi} ⊂∆`} of standard Γ–modules ∆i such that 0 6= gi ∈ Z+ \∆i−1 and

gi−1 < gi for 1 ≤ `. Thus dev(Di) = dev(Di−1) + 1. We set dev(~∆)
def
==

dev(∆m) and define the standardizable flag of R–modules of length ` as

the sequences of R–modules
−→
M = {M0⊂M1· · ·⊂M`} such that ∆(

−→
M)

def
==

{∆(Mi)} becomes a standard flag as above upon the subtraction of m =

min(∆`), i.e. for
−→
M st

def
== z−m

−→
M . Accordingly,

Z(q, t, a)
def
==

∑
−→
M⊂R

a` tdimF(R/M`), L(q, t, a)
def
== (1−t)Z(q, t, a),(4.33)
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where the summation is over standardizable flags. The (full) motivic super-
polynomial from [ChP1] is as follows:

Hmot(q, t, a) =
∑
−→
M∈ ~J

a` tdimF(O/M`),(4.34)

where ~J = ~JR is a scheme of all standard flags of submodules in O.

Conjecture 4.7. In the case of plane curve singularity,

Ĥ(q, t, a) = Hmot(q, t, a) = L
(q
t
, t, a

)
, Hmot

(
qt, t, a = −1

q

)
= L(Γ, q, t),

where the latter possibly holds for any Gorenstein rings R.

It was checked in quite a few case; as for Hmot(q, t, a)=L( qt , t, a), in-
cluding F[[z6, z8+z9]] for ` = 0, 1 and F[[z6, z9+z10]] for ` = 0. We will omit
here flag generalizations of formulas from (4.30), which result in a relatively
straightforward proof of the flagged functional equation for t−δL(q, t, a) upon
the (same) transformation t 7→ 1/(qt). The generalization to algebraic (un-
colored) links is also known, as well as some steps of the justification based
on the analysis of the monoidal transformations of singularities. (at least for
some families).

4.2.5. Nested Hilbert schemes. Our flags of R–modules can be inter-
preted via restricted nested Hilbert schemesHilbm,m−`res , and nested Jacobian
factors Jm,m−`res :

Hilbm,m+`
res = {M ⊃M ′ ⊃ mM |M ⊂ R,(4.35)

dim(R/M)=m, dim(M/M ′)=`, M ⊗R O=M ′ ⊗R O},
J m,m+`
res = {M ⊃M ′ ⊃ mM |M ⊂ O,(4.36)

dim(O/M)=m, dim(M/M ′)=`, M ′ = M ′st}.

Here m is the maximal ideal of R. If the condition M ⊗R O=M ′ ⊗R O or
M ′ = M ′st is omitted, one obtains nested Hilb from [ORS] or its variant for
J . As above, the pairs satisfying this condition are called standardizable ;
also, M ′=M ′st obviously implies M=Mst.

Using Proposition 2.3 from [ChP1], we obtain that mM` ⊂M0 for any

standardizable flag
−→
M . Moreover, given any standardizable pair {M=M`⊃

M ′=M0}, the number of the corresponding standardizable `–flags
−→
M is

q`(`−1)/2. Furthermore, we have the following proposition.
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Proposition 4.8. For an R–module M , let ∆=∆(M)=∆(mM)∪ {d1<
d2<, . . . , <dr}, where d1 =min{∆(M)} and r=dimR/m(M/mM). And let
∆′=∆(M) \ {g1<g2<, . . . , <g`} for gj taken from the set {di, i=2, . . . , r};
it is a Γ–module (containing d1). Setting {di}\{gi}={d1 =g◦1<g

◦
2<, . . . , <

g◦r−`}, the number of standardizable `–flags
−→
M = {Mi} with M` = M and

∆(M0)=∆′ equals qN for N = N(M,∆′) =

|{gi>g◦1}|+|{gi>g◦2}|+· · ·+|{gi>g◦r−`}|+
`(`−1)

2
, 1≤ i≤`<r.

Geometrically, the flags with fixed M` and ∆0 = ∆(M0) form an affine
space AN(M`,∆0). We use here the Nakayama Lemma; cf. Section 2.1 from
[ORS] and Section 9.1 from [GORS]. Thus, assuming that the stratification
of J∆`

with respect to the Nakayama rank r(M`) is known, the calcula-
tion of Hmot(q, t, a) and L(q, t, a) becomes in terms of ∆l,∆0. Using that
r(M`) = const within JΓ–orbits (they are affine spaces), we obtain the func-
tional equation for L(q, t, a) (following Stöhr). This proposition coupled with
our conjectures provides far-reaching generalizations of the so-called Shuffle
Conjecture; see [CaM].

Let us relax the definition of standardizable flags by allowing g1 to be
m=min(D0). Such flags can be called (partial) full gap-increasing due to
gi−1<gi. We actually add to the standardizable `–flags the standardizable
(`−1)–flags from M0 extended by M−1 =M0 ∩ zm+1O. This gives the fol-
lowing connection with the usual nested Hilbert schemes:

(1 + a)Z(q, t, a) =

∞∑
m,`=0

q(`−1)`/2 a`tm
∣∣Hilbm+`,m(Fq)

∣∣,(4.37)

where | · | is the number of points, which is directly related to the ORS
conjecture. Namely, one replaces w in (1.3) by the count of Fq–points (we
will not comment on that) and substitutes q2

st 7→ t, a2
sttst 7→a, t2st 7→q; recall

that q in this section is q/t via the DAHA parameters q, t.

Using Proposition 4.8. In fact, we gave a different definition of Hmot
in [ChP1]: HX

mot
def
== tδ

∑
−→
M∈
−→
J
a` qdev(M`) for the field F1/t. Accordingly, if

J~∆ is AN , its contribution to HX
mot is a`qdev(M`)tδ−N . It coincides with Hmot

assuming its self-duality, but can be more convenient.
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Let R=F[[z4, z6+z7]]. For `=3=dega(Ĥ), we use [ChP1],(4.1):

D0 = [9, 11, 15], ~g = (2, 5, 7), dim = 8  q6t0a3,(4.38)

D0 = [7, 9, 11, 15], ~g = (2, 3, 5), dim = 7  q7t1a3,

D0 = [5, 7, 9, 11, 15], ~g = (1, 2, 3), dim = 6  q8t2a3,

where Di=∆i\Γ, ~g are the gaps (consecutively) added to D0, and we show
the contributions of the corresponding cells to HX

mot. One has:

D3 = [2, 5, 7, 9, 11, 15], [2, 3, 5, 7, 9, 11, 15], [1, 2, 3, 5, 7, 9, 11, 15].

The corresponding M3/mM3 are all of rank r = 4 for any M3 for these
D3 with an important reservation. In the case of D3 = [2, 5, 7, 9, 11, 15], the
rank is r = 3 for generic M3, and an affine subspace of codimension 1 in J∆3

must be taken to ensure r = 4; otherwise ∆[mM3] = [7, 9, 11, 15]. Thus the
proposition gives that the dimensions in (4.38) are (indeed) `(`− 1)/2 + ` =
6 plus dimJ∆3

= 3, 1, 0 minus 1 for the first D3. See Table 1,[ChP1]; all cells
J∆ are affine for R=F[[z4, z6+z7]].

The case `=2, D2=[2,5,7,9,11,15]. There are now 3 possibilities for D0

here: D0 = [2, 9, 11, 15], D′0 = [7, 9, 11, 15], D′′0 = [5, 9, 11, 15]; see now Table
3. The dimension of J∆2

, which is 3, must be diminished by 1 for D0 and D′′0
due to the absence of 7 there (similar to the example above; the same sub-
space serves D0 and D′′0). Then r = 4 and {di} = {0, 2, 5, 7}. The summation

in Proposition 4.8 becomes: `( −̀1)
2 + {4, 2, 3} = {7, 6, 6} for {D0, D

′
0, D

′′
0}.

The corresponding contribution to HX
mot is 2q6t2 + q6t. This matches Ta-

ble 3 in [ChP1].

Z(q,t,a) for trefoil. This proposition can be equally used for ideals in R,
though for R = F[[z2, z3]] this is simple. The corresponding standardizable
ideals M = 〈·〉d ⊂ R with d =dimR/M are as follows:

〈1, z2, z3〉0, 〈z2, z3〉1, 〈z2 + λz3〉2, 〈z3, z4〉2, 〈z3 + λz4〉3, 〈z4, z5〉3, . . . ,

where λ ∈ F. The standardizable pairs of `=1 are 〈zi, zi+1〉i−1 ⊃ 〈zi + λzi+1〉i
for i ≥ 2. Thus Z = (1 + qt2 + aqt)/(1− t).

The pair R ⊃ m is non-standardizable of `=1; the other such pairs are
〈zi, zi+1〉i−1 ⊃ 〈zi+1, zi+2〉i and 〈zi + λzi+1〉i ⊃ 〈zi+2, zi+3〉i+1. Also, there
are pairs 〈zi, zi+1〉i−1 ⊃ 〈zi+2, zi+3〉i+1 with `=2. Formula (4.37) gives then
(1+a)(1+qt2+aqt)/(1−t), which matches (1.3).
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4.3. On connection conjectures

4.3.1. HOMFLY-PT polynomials. Given a link colored by a set of
Young diagrams, let HOM(qst, ast) be the corresponding unreduced HOMFLY-
PT polynomial. They can be defined via Quantum Groups (in type A) or
using the corresponding skein relations and Hecke algebras. See e.g. [QS]
and references there; we provide here only a sketchy discussion.

Recall that iterated torus links are determined by the pairs of graphs
{L, ′L} colored by arbitrary sequences {λj}, {′λj} of Young diagrams. We
need to switch to the reduced HOMFLY-PT polynomials with respect to
one of its components, say j◦, and then perform the hat-normalization; the

notation will be ĤOM
jo
L, ′L (qst, ast). Let us mention that the q–polynomiality

of the unreduced HOM(qst, ast) generally does not hold for links.
We put Ĥj◦L, ′L (q, t, a)st for Ĥj◦L, ′L (q, t, a) from Theorem 4.1 expressed in

terms of the standard topological parameters (see [Ch2], Section 1 in [ORS],
and (1.4) above):

t = q2
st, q = (qsttst)

2, a = a2
sttst,

q2
st = t, t2st = q/t, a2

st = a
√
t/q.(4.39)

I.e. we use the substitutions from the first line here in Ĥj◦L, ′L (q, t, a). Taking
jo = min here (the main setting of the paper) is generally “non-topological”,
though very reasonable algebraically.

The case t = q results in HOMFLY-PT polynomials, i.e. we set k=1 in
t = qk. Recall that J–polynomials must be replaced in the definition of Ĥ
by P

(k=1)
λ in this case, which are Schur functions. Finally:

ĤjoL, ′L (q, t 7→q, a 7→−a)st = ĤOM
jo
L, ′L (qst, ast),(4.40)

A combination of [ChD2] with Section 7.1 from [MS] (the case of it-
erated knots) proves (4.40) for any iterated links . Another way to justify
this coincidence is via a relatively straightforward generalization of Propo-
sition 2.3 from [Ch2] (for torus knots), where we used [Ste]; see also [ChD1].
This approach is based on the DAHA shift operators and Verlinde algebras.
Also, instead of using [MS] or the knot operators from CFT (and the Ver-
linde algebras), one can directly apply here the Rosso-Jones cabling formula
[RJ, Mo, ChE] upon its relatively straightforward adjustment to iterated
torus links.

4.3.2. Khovanov-Rozansky theory. Let us restrict ourselves to λi =
= ′λj for all i, j (the uncolored case). Then {J2}ev = t1/2(1 + a)/(a2)1/4
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and we conjecture that for the hat-normalization of the stable KhR polyno-
mials: (

Ĥ∅L, ′L
(1− t)κ+′κ

)
st

=

(
(1+a) ĤminL, ′L
(1− t)κ+′κ

)
st

= K̂hR stab
L, ′L(qst, tst, ast).(4.41)

The topological setting is unreduced here; recall that jo = ∅ in the first term
means that we do not divide by the evaluations of Macdonald polynomials
at tρ. Unreduced KhR stab are polynomials in terms of ast, qst, but their
coefficients are generally infinite tst–series .

The stable Khovanov-Rozansky homology is the slN homology from
[KhR1, KhR2, Rou] in the range of N where the isomorphism in Theorem
1 from [Ras1] holds (see also [Kh]). They can be obtained for any N from
the triply-graded HOMFLY-PT homology, assuming that the corresponding
differentials are known, which are generally involved.

Let us also mention the relation to the Heegaard-Floer homology : N = 0.
Also, the Alexander polynomial of the corresponding singularity is
ĤminL (q, q, a = −1)/(1− q)κ−δκ,1 in the case of one uncolored graph L with
κ paths (the number of connected components in the corresponding link).
This is the zeta-monodromy from [DGPS] upon t 7→ q (unless for the un-
knot). The DAHA parameters are used here.

The ORS conjecture, namely Conjecture 2 from [ORS], states (in the
unreduced setting) that KhR stab

L, ′L = Palg, where the latter series is defined
there for (the germ of) the corresponding plane curve singularity C from
(3.6) in terms of the weight filtration in the cohomology of its nested Hilbert
scheme. This (conjecturally) connects the DAHA superpolynomial upon the
division from (4.41) with Palg under the hat-normalization. See Section 4.2.5
above.

There are also other conjectures connecting KhR polynomials with ra-
tional DAHA, Gorsky’s combinatorial polynomials (for torus knots), Hilbert
scheme of C2 and physics superpolynomials (the name “superpolynomials”
came from [DGR]). We will not discuss these and other related directions in
the present paper.

4.4. Riemann Hypothesis

We are now ready to state RH for DAHA superpolynomials. The notation is
from the previous section. We will use Theorem 4.1; see also formula (4.19)
for degaĤ.
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4.4.1. The RH-substitution. For any positive pair of graphs {L, ′L},
let

Ĥ(q, t, a) = ĤminL, ′L(q, t, a) =

d∑
i=0

Hi(q, t)ai for d = degaĤ(q, t, a),

H(q, t; a) = Ĥ(q 7→ qt, t, a), H i(q, t) = Hi(q 7→ qt, t), 0 ≤ i ≤ d.

We also set Ĥ i(q, t)
def
== q−mt−nH i(q, t) for the minimal degrees m,n of q, t

in H i. Switching from Hi to their hat-normalizations Ĥi with the constant
term 1 as above, one has Ĥ i(q, t) = Ĥi(qt, t). They are considered as poly-

nomials in terms of t, and we will almost entirely switch below to ω
def
== 1/q

from q. The super-duality for H(q, t, a) is now for the map q 7→ q, t 7→ 1/(qt).
For any uncolored algebraic links, the t–degree of Ĥ0(q, t) is conjec-

turally the sum of δ–invariants of its components plus (κ− 1) for the num-
ber κ of the components, which follows from Conjecture 2.4 of [ChD1]; for
any a, see Conjecture 2.3 from [ChP1]. Indeed, the top term in Hi is “diag-
onal” for uncolored algebraic knots, i.e. of the form (qt)mi for any i due to
the DAHA super-duality; the passage to links results from (3.15).

We mostly stick to rectangle Young diagrams in this work; the square
diagrams are especially valuable for us because they are transposition-
invariant. The (expected) geometric interpretation of DAHA superpolyno-
mials is directly related to RH below; this is known for and any columns
[ChP1, ChP2]. For non-square rectangles, l ×m (corresponding to mωl), one
can do the following symmetrization :

H i 7→ H i
sym

def
== H i(q, t) +H i(q, 1/(qt)) for 0 ≤ i ≤ degaĤ.(4.42)

Then we employ the hat-normalization: Ĥ i
sym

def
== Ĥ i

sym = q−mt−nH i
sym for

the minimal degrees m,n of q, t in H i
sym. We always switch to Ĥ i

sym below
if the transposition of all Young diagrams involved changes the isomorphism
class of the diagram/link L or the pair {L,′L}.

4.4.2. Algebraic RH. We assume that ω = 1/q is real positive. Recall
that Ĥ = ĤminL, ′L(λ, ′λ ; q, t, a) =

∑
iHiai for 0 ≤ i ≤ degaĤ. Also Ĥ i is the

hat-normalization ofHi upon the substitution q 7→ qt; they are polynomial in
terms of q, t with the constant term 1. For the sake of definiteness, we assume
that degq≤ degt in Ĥ(a = 0), employing the super-duality if necessary. For
instance, l ≥ m will be always imposed for knots colored by rectangles l ×m
(columns instead of rows).
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Furthermore, let Hi• = Hi, Ĥ i
• = Ĥ i if the corresponding colored link is

self-dual with respect to the transposition of the diagrams in λ, ′λ (and the
equivalence of graphs). Otherwise Hi• = Hisym, Ĥ i

• = Ĥ i
sym.

Conjecture 4.9. (i) For any pair of iterated links L, ′L (possibly non-
algebraic), any colors (Young diagrams) and arbitrary 0 ≤ i ≤degaĤ, the
following limits exist and coincide:

Ĥ i
†= ςit

πi Si(t)
def
== lim

q→0
Ĥ i
•

(
q, t 7→ t

q
1

2

)
= t−πi lim

q→0
Hi•
(
q, t 7→ t2

q

)
,(4.43)

where ςi = ±, πi ≥ 0, Si(t=0) = 1. Moreover, the relation 2(πi+σi)=degtĤ
i

always holds, where we set 2σi
def
== degtS

i.
(ii) All zeros of the polynomials Si are roots of unity if L, ′L are colored

only by rectangle diagrams. They are simple for any iterated torus links
if either i = 0 or they are uncolored. Furthermore, Si = (1− t2σi+2)/(1−
t2) for uncolored algebraic knots and Si = (1 + t2σi) for those colored by
columns upon the symmetrization (including ); i are arbitrary and πi = 0
in such cases. For uncolored algebraic links, π0 coincides with the number of
components minus 1.

The passage to t2/q in (i) is not difficult to justify; thus Si are actually
polynomials in terms of t2. This is somewhat parallel to [OnRS] and a recent
work [GORZ] of Griffin, Ono, Rolen, and Zagier. We expect that at least
in the uncolored case, the invariants πi and Si(t) have topological meaning
beyond iterated torus links. For instance, if the stable, reduced and hat-
normalized KhR polynomials at a = 0 are used instead of Ĥ, then (πi+
σi) is presumably the 4-genus for any positively iterated torus knot (not
only algebraic). See [Ras2] for the connection to the Khovanov polynomial
and other invariants and also [Hed]. For instance, assuming that i≤2j in

K̂hR
stab

red (ast=0) =
∑

i,j ci,jq
2i
stt

2j
st (possibly upon some adjustment of i, j), π0

and S0(t) can exists for the sum of borderline terms
∑

i c2i,iq
4i
stt

2i
st not only

for algebraic knots.
For our geometric superpolynomials of algebraic knots, πi+σi = δ, e.g.

= (r − 1)(s− 1)/2 for T (r, s). This becomes significantly more involved for
non-rectangle Young diagrams. It seems that non-cyclotomic factors of Si

appear only for non-rectangle diagrams for any knots.
The diagram deserves a special comment; no symmetrization is nec-

essary here. In this case, there are no multiple zeros of Si for algebraic
knots in the examples we reached (though not many) for any i ≥ 0. Also,



i
i

“1-Cherednik” — 2018/9/25 — 15:51 — page 454 — #46 i
i

i
i

i
i

454 Ivan Cherednik

πi = 0 for even i and πi = 1 for odd i, when Ĥ i always has two trivial ir-
regular zeros {−1,−ω}. Correspondingly (conjecturally) for even and odd i:
ςit

πiSi = 1−t2σi+4

1−t4 and ςit
πiSi = t1−t2σi+2

1−t4 .
Part (i) is expected to hold under antisymmetrization instead of sym-

metrization, which is H i
asym

def
== H i(q, t)−H i(q, 1/(qt)) followed by H i

asym 7→
Ĥ i
asym. As above, we assume that degq≤ degt in Ĥ(a = 0); in particular,

l > m for non-square diagrams l ×m. Then the properties of πi, S
i gener-

ally become somewhat “better” vs. the symmetrization. Extra trivial zeros
of Ĥ i now can emerge, which are t = ±

√
ω. Presumably Si = t2σi − 1 in this

case for any algebraic knots colored by columns and for any i.

4.4.3. Analytic aspects. Conjecture 4.9 gives that the number of non-
RH (irregular) zeros of Ĥi in the vicinity of q = 1/ω = 0 is no greater that
2πi plus the number of non-unimodular zeros of Si and multiplicities of
its multiple zeros. It can be smaller when some multiple zeros of Si are
unimodular (not always). We arrive at the following.

Conjecture 4.10. (i) Strong RH . For an arbitrary uncolored algebraic knot
and any given 0 ≤ i ≤degaĤ, there exists ω′ = ω′i > 0 such that for all ω >

ω′i, the t–zeros ξ (if any) of Ĥ i are all complex, simple and satisfying the
RH–equality: |ξ| =

√
ω.

(ii) The same holds for algebraic knots colored by if the trivial zeros
ξ=−1,−ω are omitted, which occur in Ĥ i if and only if i is odd. Also, Ĥ i

sym

satisfies (i) for columns (any i ≥ 0) and non-square rectangles l ×m with
l > m for i = 0.

(iii) Weak RH . Given an uncolored algebraic link, there exists ω′0 such
that the number of pairs of stable irregular zeros of Ĥ i=0 (satisfying |ξ| 6=

√
ω)

for ω > ω′0 equals the number of components minus 1.

A connection is expected with the spectral zeta-functions , especially in
the case of Schottky uniformization of Riemann surfaces; see e.g. [CM]. The
following conjecture is of this nature.

Conjecture 4.11. For any uncolored algebraic knot, $i
def
== inf ω′i for i =

0 is smaller than 2. Moreover, limm→∞$0 = 2 for R = C[[z4, z6+z7+2m]]
corresponding to the cables Cab(13 + 2m, 2)T (3, 2), which sequence of $0 is
actually increasing when m mod 4 is fixed. Also, supm$1 = 2.2132458 . . .,
supm$2 = 1.
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This is actually the only “family” with $0 near 2 we found. Let us
provide $i for i = 0, 1, 2 in the following 3 cases:

Cab(13 , 2)T (3, 2) : $i = 1.495583269, 2.176487419, 0.9430445115,

Cab(113, 2)T (3, 2) : $i = 1.993679388, 2.134669951, 0.9955504853,

Cab(313, 2)T (3, 2) : $i = 1.997705951, 2.210868584, 0.9992171315.

Using formula (4.28) for m = 110, 210, 310, 510, 1010, 1510, we have:

$0 = 1.996921, 1.998340, 1.998863, 1.999303, 1.999645, 1.99976261

and the corresponding

q =
1

$0
= 0.500771, 0.500415, 0.500284, 0.500174, 0.500088, 0.50005935.

The convergence is the best for m mod 4 = 1, 2. Such limits can be gener-
ally calculated using the conjectural coincidence of Ĥ with the geometric
superpolynomials from [ChP1].

This family also has the largest $i for i = 1, 2 among uncolored algebraic
knots we considered. Here degaĤ=3, and Ĥ3 =1; $i(i > 0) exceed 2 only
for this family in our “database”.

The greatest $0 we found so far among uncolored algebraic links is
2.062433590332 for (Cab(5, 3), Cab(4, 3))T (1, 1) corresponding to the coin-
variant {γ[1, 1](γ[3, 1]P (1)γ[3, 2]P (1))} in the notation from the table. Here
Weak RH holds for all i. The corresponding singularity is (x5−y3)(x3−
y4)=0 with Z = 1 + q7 + q8 + q14 + q15 + q16 + q22 + q23 + q30 and lk = 9
(in this table, $0 < 2 for uncolored algebraic links).

4.4.4. Comments. For algebraic knots colored by columns, the state-
ments of Conjecture 4.9 can be verified if one switches from DAHA su-
perpolynomials Ĥ to geometric (motivic) ones. The proof goes as follows.
Only J∆ with dimensions no smaller than dev(∆) contribute to the limit of
Hmot from Definition 4.4. Given dev(∆), such ∆ occurs only for a single ∆,
namely, the one obtained by adding consecutive gaps to Γ starting with the
top one, which is max{Z+ \ Γ}.

The generalization to any powers of a and columns follows from [ChP1,
ChP2]. Part (i) of Conjecture 4.9 for (at least) algebraic knots upon a = 0
and in the case of columns can be managed within the DAHA theory. We
use that only positive powers of τ± appear in the formulas and that Xωi are
nonsymmetric Macdonald polynomials.
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An extension of Part (ii) there to rectangle Young diagrams larger that
is likely, but there is a lack of (numerical) examples. Also, the restriction

i=0 in our conjectures can presumably be replaced by “for any even i”, but
we will stick to i=0 in this paper.

Torus knots. The polynomials Ĥ i at ω=1 are products of cyclotomic
polynomials for uncolored torus knots and any i ≥ 0. They can be calculated
explicitly; for a = 0, the formula can be deduced from the shuffle conjecture
(proven in [CaM]). In the absence of multiple zeros at ω=1 (which is always
true for i=0), this implies RH in some neighborhood of ω=1. However this
is not generally the case for i > 0 (for torus knots); multiple zeros do occur.
We note that $0 can be beyond 1 for uncolored torus knots for sufficiently
general torus knots. Then RH fails somewhere between ω = 1 and $0.

We mention that there are sufficiently explicit known/conjectured for-
mulas for uncolored torus knots T (m, km+ 1). See [GM, Mel1, ChP1] and
also [ORS, DMS, FGS]; the proof of the formula for DAHA superpolynomials
colored by any rows for T (2m+ 1, 2) is in [Ch3]. Even when explicit formulas
are known/conjectured, they are generally involved for explicit finding $i,
but can be helpful (at least) to examine the point ω = 1 for torus knots and
obtain family superpolynomials (actually rational functions) as was done in
(4.22,4.25,4.28).

Note that H i(ω=1) upon t 7→ q2
st is the a2i

st–coefficient of the correspond-
ing HOMFLY-PT polynomial up to ±q•st. See (4.40). This coincidence for
torus knots was justified in [Ch2] using [Ste]. See also [MS, ChD2] for any
iterated torus knots and links.

Asymptotic class numbers. A natural application of Conjecture 4.11
is to the growth estimates for |J(Fq)| for the Jacobian factors J = JR from
Definition 4.4. This is a classical track (for any curves). The conjecture that
RH holds for ω = 1/q ≤ 2 provides some estimates for |J(Fq)| with any q.
Here we obtain “pure singular” contributions; the smooth case is covered by
the Weil RH.

The switch to the families and the family polynomials Ĥ from (4.21)
seems the most relevant here. This can potentially clarify the parallelism
between the Alexander knot polynomials and Iwasawa theory observed by
B.Mazur; see e.g. [Mor] and around (6.46) below. The Iwasawa polynomials
give exact formulas for the growth of ideal class groups inΓ-extensions; we
do the towers of Puiseux field extensions in the families for i = 1. This is
connected with the so-called Drinfeld-Vladut bound, but superpolynomials
provide exact formulas (as in the Iwasawa theory) ; see e.g. [GaS].
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4.5. Non-classical features

Similar to the classical Riemann zeta, all t•Ĥ i are real-valued at U√ω
def
==

{z∈C | |z|=
√
ω} for proper powers of t due to the super-symmetry (our

functional equation) and the reality of Ĥ i. Also, if ξ is a zero of Ĥ i, then√
ω/ ξ is its zero with the same angle, where ξ is the complex conjugation

of ξ.

4.5.1. The range of ω. There are new opportunities here vs. the classical
theory, since ω is arbitrary for us (a free parameter).

Lemma 4.12. Assuming that ω′i from Conjecture 4.10,(iii) exists for some
i ≥ 0, let $i be (as above) the lowest such ω′i. Then $i is a (real) root of the

reduced t–discriminant Di of Ĥ i, which is the product of all simple factors
in the actual discriminant of Ĥ i. For instance, $i is an algebraic number;
it coincides with the greatest real zero ωtopi of Di if we add the simplicity of
zeros ξ for ω > ω′i to the definition of ω′i.

Also, assuming that Ĥ i satisfies Weak RH in an interval beyond (greater
than) ωtopi , Weak RH holds then for all ω ≥ ωtopi . The same is true if Weak

RH holds in the interval ωtopi − ε < ω < ωtopi for some ε > 0 and Ĥ i has no
multiple roots at ω = ωtopi of norm

√
ω.

Proof. Here we use that the zeros apart from U√ω vanish or emerge

only at (real) zeros of Di. Indeed, they appear in pairs {z, z′} with coinciding
angles and therefore create multiple zeros of Ĥ i when approaching U√ω.

In particular, if Weak RH holds for ω in an interval greater than ωtop,
then the formation of a non-RH pair (i.e. that apart from U√ω) at some

ω > ωtopi results in a multiple zero of Ĥ i beyond ωtopi , which is impossible.
Similarly, if Weak RH holds for ωtopi − ε < ω < ωtopi , then the multiple zeros
at ω = ωtopi can emerge only from some pairs of zeros of norm

√
ω. �

4.5.2. Non-RH zeros. By RH for links, we will always mean Weak RH
from Conjecture 4.10, (iii), allowing multiple zeros and κ− 1 super-dual
pairs of (stable) irregular zeros for κ branches. Accordingly,

$i
def
== inf {ω′ |Weak RH holds for Ĥ i for ω ≥ ω′};(4.44)

this is a real zero of Di from the lemma.
Thus, $i conjecturally exist for uncolored algebraic knots for any i ≥ 0.

Also, they exist for algebraic knots colored by (a) , where trivial zeros
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−1,−ω are excluded, (b) columns ωl upon the symmetrization, (c) any
rectangles upon the symmetrization and for i = 0.

Concerning (4.44), it is possible that $i < ωtopi ; then multiple zeros ap-
pear after $i; this occurs only twice in the table. Also, there are no reasons
for “nice” formulas for $i, ω

top
i , but at least they are algebraic numbers

(zeros of Di) and can be calculated as exactly as necessary.
If $i = 0, then Weak RH holds for any ω > 0. This happens for any un-

colored T (2m+1, 2) and for iterated Hopf-type links 2T (m, 1). Here dega = 2
and i = 0, 1. For the Hopf 2-link, ς0t

π0S0 = t1−t2m
1−t2 . It corresponds to the 2–

branch singularity (xm − y)(xm + y) = 0 with the linking number lk = m.
One pair of irregular (real) zeros of H0 approaching {1, ω} as ω →∞ occurs
here after ωtop0 = (m+ 1)2/m2; the other zeros for any ω > 0 are of norm√
ω. Thus ωtop0 > $0 in this case. There is only one instance of non-Hopf

link in the table when this happens: entry 35 (N0
z = 26).

5. RH numerically

We calculated quite a few examples in the range dega ≤ 8 (and sometimes
beyond). The most instructional ones are collected in the table below, though
we provide many examples beyond it.

5.1. Table organization

It is based on the Ĥ–polynomials above with the following deviation: we
consider Ĥ i not only for algebraic links/knots. The DAHA construction is
fully applicable without any positivity conditions for r, s, though the connec-
tion with plane singularities will be lost then. Numerical experiments clearly
indicate that the class of iterated links with Ĥ–polynomials satisfying RH
is wider than algebraic links only (combinatorially, positive pairs of graphs).

5.1.1. Main notations. By RH, we will mean below Weak RH from
(iii) of Conjecture 4.10; multiple zeros will be allowed. The number of pairs
{ξ, ω/ξ} of irregular zeros of Ĥ i is shown in the last column of the table
below after ”−”. Since |ξ| >

√
ω (assuming the simplicity) for one of the

zeros of a non-RH pair, they significantly influence expected counterparts
of Weil-style estimates (those in his proof of RH).

Status. For knots and links we simply put “knot” or “link” in the cor-
responding entry; “alg” or “alg=” are naturally stand for algebraic and non-
algebraic knots/links. The first column provides the status of Weak RH with
the following 3 options:
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“HOLDS ”, if it holds for all ai, “FAILS ”, when it fails at a=0,
“OK a=0 ”, if it holds for a=0 but fails for some other ai (i>0).
In the “OK ”-case, we give the range of ai when RH holds; the total

number of polynomials Ĥ i is also provided, which is (dega + 1). We calculate
only until the first failure of RH in this table; then we stop. We numerate
the examples and provide he corresponding numbers N0

z of all zeros of Ĥ0

(only for i=0) after “No”. See the first column in the table below. Note that
N0
z = 2δ for algebraic knots.

The last two columns contain $0 and the maximum, denoted by $max
1... ,

of $1, $2, . . . calculated till the first failure of RH. They can be zero when
all ω > 0 satisfy RH. We put ”−” for $0 if RH fails at a = 0, and make
$max

1... =”−” if RH fails for a = 0 or fails for a1.

5.1.2. DAHA formulas. The 4th column contains the DAHA formula
used to calculate the corresponding Ĥ, where {· · · } means the coinvariant
and γ[r, s] is understood as the lift of γr,s ∈ PSL 2(Z) to γ̂r,s ∈ PSL∧2(Z). We
somewhat abuse the notations by omitting H ⇓= H(1); the a–stabilization
is also assumed. For instance, {γ[3, 2]γ[2, 1](P )} must be understood as
{γ̂3,2(γ̂2,1(P )⇓)}, not as a product of two γ inside the coinvariant, and
upon the further a–stabilization.

Also, we actually use the J–polynomials (not P–polynomials) for links
and always do division by the LCM of the evaluations at tρ; see the definition
of the min -normalization of Ĥ. In the table, we simply put P assuming the
rest. There are the following abbreviations: P stands for P = Pω1

, P (1 +
1), P (2 + 0), P (2 + 1), P (2 + 2), and P (3 + 3) stand for 2ω1 = and ω2 =

, ω1 + ω2 = (the hook), 2ω2 = , 2ω3 = . Recall that if some of r, s
are negative then the corresponding link/knot is non-algebraic.

5.1.3. Basic cables. The cab-presentations in the table are partial: we
omit the arrows and do not show at which vertex the corresponding poly-
nomials are inserted. This can be seen from the DAHA presentations. For
instance, entry 46 with the number of zeros N0

z = 72 is represented by the
graph ◦→◦→→ with both arrows colored by (omitted) and the [r,s]–labels
[5, 2] (for the left vertex) and [2, 1]. Also, applying P (Y ) in the DAHA-
formula means that we consider a pair of graphs: the one shown in the table
and ′L that is a pure arrow → colored by (without vertices).

To give another example,
(
Cab(11, 3), Cab(11, 3)

)
T (3, 1) from entry No=

45 (with 94 zeros) means the tree ◦⇒◦◦⇒ , where the first vertex is labeled
by [3, 1] and the other two by (coinciding) labels [3, 2] with the arrows colored
by . RH holds here for all Ĥ i (from i = 0 through i =dega = 5). This link
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is algebraic, $0 = 1.39031 (we calculate them with much greater accuracy),
$max

1,... = 1.55923, which is the maximum of $i from i=1 to i=6 in this case.

Generally, this maximum is taken from Ĥ1 till the last Ĥ i where RH holds.
The last column gives the corresponding number of pairs of irregular

zeros, where Nmax
irz is calculated in the same manner; the first Nirz is calcu-

lated right after $ and the second one (after ”−”) is the stable number of
such pairs (for any large ω).

5.2. On Conjecture 4.9

The presence of non-unimodular roots of polynomials Si(t) from Conjec-
ture 4.9 is interesting. The only examples we found so far are only for non-
rectangle diagrams, which includes links (possibly non-algebraic). Many ex-
amples were considered beyond the table and for all i, not only those till the
first failure of RH, which are presented in the table below.

5.2.1. The case of 3-hook. We will give here all links from the table
where Si are not products of cyclotomic polynomials, also providing the
corresponding π0, S

0, even if S0 are such products. Actually all S0 are prod-
ucts of cyclotomic polynomials within the table (so only Si>0 can be non-
cyclotomic), but is not always the case. We will provide below an example
when S0 is non-cyclotomic. Also, In all examples we considered ςit

πi = −t3,
so we will omit it. This factor contributes 3 to the number of stable irregular
(non-RH) pairs of zeros of Ĥ i. Thus, let us focus on Si.

(1) T (5, 2), {γ[5, 2](P (2 + 1))} :

(i = 0) ς0t
π0S0 = −t3

(
1−t6
1−t2

)
1−t12

1−t2 , where the quantity
(
. . .
)

is the multiple

part of S0. So there are potentially 4 pairs of non-RH zeros due to S0 and
3 pairs due to t3; this matches entry No = 57 with N0

z = 20 from the table.

(i = 1) ς1t
π1S1 = −t3(1 + t2)(1 + 2t2 + 2t4 + 3t6 + 2t8 + 2t10 + t12), where

the latter factor is irreducible and non-cyclotomic . It has 4 non-unimodular
zeros, which matches the total number of 6 non-RH pairs for Ĥ1 (this is
not in the table).

(2) T (4, 3), {γ[4, 3](P (2 + 1))} :

(i = 0) S0 = 1−t20

1−t2
1−t8
1−t2 , where the multiple zeros come from 1−t4

1−t2 . The ex-
pected number of non-RH pairs is therefore 5, which matches entry 59 with
N0
z = 30 in the table.

(i = 1) S1 = 1−t9
1−t2 (1 + 2t2 + 2t4 + t6 + t8 + t10 + 2t12 + 2t14 + t16), where

the latter factor is irreducible and non-cyclotomic .
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(3) T (5, 3), {γ[5, 3](P (2 + 1))} :

(i = 0) S0 = 1−t28

1−t2
1−t10

1−t2 , where there are no multiple roots of S0; this matches

the number of non-RH pairs, which is 3, in entry 60 with N0
z = 40.

(i = 1) S1 = 1−t4
1−t2

1−t6
1−t2

1−t8
1−t4

1−t10

1−t2 (1− t4 + t6 + t10 − t12 + t16), where there are
no multiple roots and the last factor is irreducible non-cyclotomic .

(i = 3) S3 = (1+t2)2 1−t6
1−t2 (1 + 2t2 + 2t4 + 2t6 + t8 + t10 + t12 + 2t14 + 2t16 +

2t18 + t20), where the latter factor is non-cyclotomic ; we have totally 2 mul-
tiple roots and 4 non-unimodular zeros, so the expected number of non-
RH zeros is 4 + 4 + 6 = 14. This corresponds to the actual number for
ω > 3.402358077 (not in the table).

(4) T (7, 3), {γ[7, 3](P (2 + 1))} :

(i = 0) S0 = 1−t44

1−t2
1−t14

1−t2 , which has no multiple nonzero zeros, and the num-

ber of pairs of non-RH zeros in entry 61 with N0
z = 60 is 3 indeed.

(i = 1) S1 = (1 + t2)(1 + 2t2 + 3t4 + 4t6 + 5t8 + 6t10 + 6t12 + 7t14 + 6t16 +
7t18+6t20+7t22+6t24+7t26+6t28 + 7t30 + 6t32 + 7t34 + 6t36 + 7t38 + 6t40 +
6t42 + 5t44 + 4t46 + 3t48 + 2t50 + t52), where the last factor is irreducible
non-cyclotomic .

(i = 3) S3 = (1+t2)2 1−t14

1−t2
1+t10

1+t2 (1 + t2 + t4 + t6 − t12 + t18 + t20 + t22 + t24),
with non-cyclotomic last factor, 4 non-unimodular zeros and 2 multiple
zeros ± ı due to (1+t2)2. The total number of non-RH pairs is expected
2 + (4/2) + 3 = 7, which is actually greater than the actual number 5; these
5 pairs occur after a huge $3 = 159557.4798. Thus, the q–deformations of
± ı are RH–zeros for any ω >> 0 in this case.

5.2.2. Non-cyclotomic Si=0. The last example we will provide is for
the 3–hook where S0 is not a product of cyclotomic polynomials (even
for i = 0). This is not in the table.

T (7, 2), {γ[7, 2](P (2 + 1))} :

(i = 0) ς0t
π0S0 = −t3 1−t10

1−t2 (1 + t2 + 2t4 + t6 + t8 + t10 + 2t12 + t14 + t16),
where the last factor has 4 pairs of non-unimodular zeros, which results
in the total of 7 pairs of non-RH pairs for Ĥ0. These 7 pairs occur after
$0 = 6522.513197. The total number of zeros here is N0

z = 30.
This is actually unexpected because there is quite a regular behavior of

S0 for the family T (3m± 1, 3). Namely, the following formula for is likely
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to hold for this family:

ς0t
π0S0 = −t3 1− t4(2n−3)

1− t2
1− t2n

1− t2
for T (n, 3), n = 3m± 1 > 2.

It was checked in the examples above and for T (8, 3). It obviously collapses
for T (3, 2), where the actually one is S0 = 1−t6

1−t2 .
Surprisingly, a similar formula for the 3–hook is more involved for T (2m+

1, 2). Namely, non-cyclotomic factors occur in S0 for m ≥ 3. For instance for
T (11, 2): ς0t

π0S0 = −t3 1−t10

1−t2 (1 + t2 + 2t4 + 2t6 + 3t8 + 3t10 + 3t12 + 3t14 +

4t16 + 3t18 + 4t20 + 3t22 + 3t24 + 3t26 + 3t28 + 2t30 + 2t32 + t34 + t36). There
is some pattern here, but not too simple.

5.2.3. Multiple zeros. Let us provide ςit
πiSi for all links from the table

colored by rectangles where at least one Si has multiple zeros. We give them
for all 0 ≤ i ≤ degaĤ (not only when multiple roots occur).

(1) {γ[3, 2](P (3 + 3)}, entry 58(N0
z = 60) :

ς0t
π0S0 =

1− t120

1− t60
, ς1t

π1S1 = t
1− t109

1− t54
, ς2t

π2S2 = (1 + t2)(1 + t48),

ς3t
π3S3 = t

1− t84

1− t42
, ς4t

π4S4 = (1 + t2)(1 + t34),

ς5t
π5S5 = t

1− t52

1− t26
, ς6t

π6S6 = (1− t36)(1− t18).

The failure of Strong RH at i = 1 is due to the factor t. The multiple factor
is (1 + t2) at i = 4, but it does not result in non-RH zeros.

(2) {γ[3, 2](P (2 + 0)P (1 + 1)}, entry 63(N0
z = 36) :

ς0t
π0S0 =−t2(1+t2)(1+t30), ς1t

π1S1 =−t2(1+t2)(1+t28),

ς2t
π2S2 =−t2 1−t56

1−t28
, ς3t

π3S3 =−t2 1− t44

1− t22
,

ς4t
π4S4 = −t2 1− t28

1− t14
, ς5t

π5S5 = −t2 1− t8

1− t4
.

The expected number of pairs of non-RH zeros at i = 0 is 4: 2 because of
t2 plus 2 due to the multiple (1 + t2), which matches the table. Here the
q–deformations of multiple ±ı are not of the RH– type.
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(3) {γ[1, 1](γ[2, 1](P )(1)γ[3, 2](P )(1))}, entry 37(N0
z = 22) :

ς0t
π0S0 = −t1− t

22

1− t2
, ς1t

π1S1 = −t1− t
20

1− t2
, ς2t

π2S2 = −t1− t
16

1− t2
,

ς3t
π3S3 = −t(1 + t2)

1− t8

1− t2
, ς4t

π4S4 = 1 + t2.

Here the multiple factor is (1 + t2) for i = 3; however Weak RH holds (with
one pair of real non-RH zeros due to t = 0). The q–deformations of zeros of
1 + t2 = 0 are (remain) of the RH–type.

(4) {γ[1, 1](γ[3, 2](P )(1)γ[3, 2](P )(1))}, entry 64(N0
z = 34) :

ς0t
π0S0 = −t1− t

34

1− t2
, ς1t

π1S1 = −t1− t
32

1− t2
, ς2t

π2S2 = −t1− t
28

1− t2
,

ς3t
π3S3 = −t1− t

22

1− t2
, ς4t

π4S4 = −t(1 + t2)2(1 + t4)2, ς5t
π5S5 = (1 + t2)2,

Here Weak RH fails at i = 4 (N4
z = 14) with 5 pairs of nonzero non-RH

zeros; the expected number is 7, i.e. all of them (including the contribution
of t = 0). However the q–deformations of the roots of (1 + t2) = 0 remain of
RH–type. Similarly, Weak RH holds for i = 5.

5.3. The table

It is focused on the validity of Weak RH for all 0≤ i≤dega, especially in the
case i=0. See below some review of our calculations presented in the table
(and beyond).

No (N0
z ) GOOD ALG DAHA-formula $0 N0

irz

RH-type dega+1 type CABLE(basic) $max
1,... Nmax

irz

1 (12) 0≤ i≤2 alg {γ[7,3](P)} 0.95272 0-0
HOLDS all= 3 knot T(7,3) 1. 0-0

2 (14) 0≤ i≤2 alg {γ[8,3](P)} 0.96465 0-0
HOLDS all= 3 knot T(8,3) 0.962706 0-0

3 (18) 0≤ i≤2 alg {γ[10,3](P)} 0.980586 0-0
HOLDS all= 3 knot T(10,3) 0.95272 0-0

4 (20) 0≤ i≤2 alg {γ[11,3](P)} 0.984635 0-0
HOLDS all= 3 knot T(11,3) 1. 0-0

5 (360) 0≤ i≤2 alg {γ[181,3](P)} 0.999995 0-0
HOLDS all= 3 knot T(181,3) 1. 0-0

6 (366) 0≤ i≤2 alg {γ[184,3](P)} 0.999995 0-0
HOLDS all= 3 knot T(184,3) 0.999995 0-0
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7 (16) 0≤ i≤3 alg {γ[3,2]γ[2,1](P)} 1.49558 0-0
HOLDS all= 4 knot Cab(13,2)T(3,2) 2.17649 0-0

8 (12) 0≤ i≤3 alg {γ[5,4](P)} 0.945441 0-0
HOLDS all= 4 knot T(5,4) 1. 0-0

9 (24) 0≤ i≤3 alg {γ[9,4](P)} 0.987206 0-0
HOLDS all= 4 knot T(9,4) 0.978578 0-0

10 (32) 0≤ i≤4 alg {γ[5,2](P(2+2))} 2.17837 0-0
HOLDS all= 5 knot T(5,2) 3.72664 0-0

11 (36) 0≤ i≤4 alg {γ[4,3](P(2+0))} 1.69034 0-0
HOLDS all= 5 knot T(4,3) 1.79669 0-0

12 (20) 0≤ i≤4 alg {γ[6,5](P)} 0.98107 0-0
HOLDS all= 5 knot T(6,5) 1. 0-0

13 (32) 0≤ i≤4 alg {γ[9,5](P)} 0.993845 0-0
HOLDS all= 5 knot T(9,5) 1. 0-0

14 (74) 0≤ i≤5 alg {γ[5,2]γ[3,2](P)} 1.36037 0-0
HOLDS all= 6 knot Cab(32,3)T(5,2) 1.57212 0-0

15 (36) 0≤ i≤5 alg {γ[4,3]γ[2,1](P)} 1.42228 0-0
HOLDS all= 6 knot Cab(25,2)T(4,3) 1.6464 0-0

16 (30) 0≤ i≤5 alg {γ[7,6](P)} 0.993335 0-0
HOLDS all= 6 knot T(7,6) 1. 0-0

17 (50) 0≤ i≤5 alg {γ[11,6](P)} 1.14474 0-0
HOLDS all= 6 knot T(11,6) 1.13811 0-0

18 (96) 0≤ i≤6 alg {γ[3,2]γ[2,1](P(2+0))} 1.49797 0-0
HOLDS all= 7 knot Cab(13,2)T(3,2) 1.65491 0-0

19 (108) 0≤ i≤6 alg {γ[3,2]γ[2,3](P(2+0))} 1.45667 0-0
HOLDS all= 7 knot Cab(15,2)T(3,2) 1.56317 0-0

20 (66) 0≤ i≤6 alg {γ[12,7](P)} 1.119 0-0
HOLDS all= 7 knot T(12,7) 1.11544 0-0

21 (72) 0≤ i≤6 alg {γ[13,7](P)} 1.16157 0-0
HOLDS all= 7 knot T(13,7) 1.17036 0-0

22 (84) 0≤ i≤7 alg {γ[3,2]γ[2,1]γ[2,1](P)} 1.4672 0-0
HOLDS all= 8 knot Cab(53,2)Cab(13,2)T(3,2) 1.56196 0-0

23 (80) 0≤ i≤7 alg {γ[3,2]γ[4,1](P)} 1.37538 0-0
HOLDS all= 8 knot Cab(25,4)T(3,2) 1.46552 0-0

24 (66) 0≤ i≤7 alg {γ[5,4]γ[2,3](P)} 1.51732 0-0
HOLDS all= 8 knot Cab(43,2)T(5,4) 1.58227 0-0

25 (48) 0≤ i≤8 alg {γ[4,3](P(2+2))} 2.73447 0-0
HOLDS all= 9 knot T(4,3) 6.01964 0-0

26 (90) 0≤ i≤8 alg {γ[4,3]γ[3,1](P)} 1.31174 0-0
HOLDS all= 9 knot Cab(37,3)T(4,3) 1.42245 0-0

27 (64) 0≤ i≤8 alg {γ[5,3](P(2+2))} 2.1449 0-0
HOLDS all= 9 knot T(5,3) 21.1022 0-0

28 (116) 0≤ i≤8 alg {γ[5,3]γ[3,2](P)} 1.31641 0-0
HOLDS all= 9 knot Cab(47,3)T(5,3) 1.57212 0-0

29 (72) 0≤ i≤8 alg {γ[10,9](P)} 1.19316 0-0
HOLDS all= 9 knot T(10,9) 1.21884 0-0

30 (80) 0≤ i≤8 alg {γ[11,9](P)} 1.20386 0-0
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HOLDS all= 9 knot T(11,9) 1.26173 0-0

31 (96) 0≤ i≤8 alg {γ[13,9](P)} 1.18157 0-0
HOLDS all= 9 knot T(13,9) 1.20367 0-0

32 (6) 0≤ i≤1 alg {γ[3,1](PP)} 0 0-1
HOLDS all= 2 link T(3,1) 0 0-1

33 (24) 0≤ i≤3 alg {γ[1,1](γ[1,1](PPPP)(1))} 1.87601 3-3
HOLDS all= 4 link (4Cab(1,1))(T(1,1)) 1.89877 3-3

34 (28) 0≤ i≤3 alg {γ[5,2](PP)} 1.60724 1-1
HOLDS all= 4 link T(5,2) 1.94384 1-1

35 (26) 0≤ i≤3 alg {γ[2,1](P γ[3,2](P)(1))} 1.21155 0-1
HOLDS all= 4 link T(2,1) 1.54031 0-1

36 (52) 0≤ i≤4 alg {γ[3,2](P(2+0)P)} 1.61361 1-1
HOLDS all= 5 link T(3,2) 1.81723 1-1

37 (22) 0≤ i≤4 alg {γ[1,1](γ[2,1](P)(1)γ[3,2](P)(1))} 1.91393 1-1
HOLDS all= 5 link (Cab(5,3),Cab(3,2))(T(1,1)) 2.00929 1-1

38 (42) 0≤ i≤4 alg {γ[2,1](γ[2,1](P)(1)γ[3,2](P)(1))} 1.37608 1-1
HOLDS all= 5 link (Cab(7,3),Cab(5,2))(T(2,1)) 1.91393 1-1

39 (24) 0≤ i≤4 alg {P(Y)(γ[2,3](PP)(1))} 0.736757 2-2
HOLDS all= 5 link T(2,3) 1.2963 2-2

40 (46) 0≤ i≤5 alg {γ[1,1]γ[3,2](PP)} 1.61257 1-1
HOLDS all= 6 link Cab(5,3)T(1,1) 1.94384 1-1

41 (76) 0≤ i≤5 alg {γ[2,1]γ[3,2](PP)} 1.4269 1-1
HOLDS all= 6 link Cab(8,3)T(2,1) 1.61257 1-1

42 (42) 0≤ i≤5 alg {γ[3,2](PPP)} 1.59651 2-2
HOLDS all= 6 link 3T(3,2) 1.99525 2-2

43 (36) 0≤ i≤5 alg {γ[4,3](PP)} 1.69177 1-1
HOLDS all= 6 link T(4,3) 1.72808 1-1

44 (64) 0≤ i≤5 alg {γ[2,1](γ[3,2](P)(1)γ[3,2](P)(1))} 1.55923 1-1
HOLDS all= 6 link (Cab(8,3),Cab(8,3))(T(2,1)) 2.18422 1-1

45 (94) 0≤ i≤5 alg {γ[3,1](γ[3,2](P)(1)γ[3,2](P)(1))} 1.39031 1-1
HOLDS all= 6 link (Cab(11,3),Cab(11,3))(T(3,1)) 1.55923 1-1

46 (72) 0≤ i≤5 alg {γ[5,2](P γ[2,1](P))} 1.39868 1-1
HOLDS all= 6 link Cab(21,2)T(5,2) 1.60752 1-1

47 (100) 0≤ i≤6 alg {P(Y)(γ[2,1]γ[3,2](PP)(1))} 1.35321 2-2
HOLDS all= 7 link Cab(8,3)T(2,1) 1.52945 2-2

48 (80) 0≤ i≤7 alg {γ[3,2](PPPP)} 1.59986 3-3
HOLDS all= 8 link 4T(3,2) 1.912 3-3

49 (84) 0≤ i≤7 alg {γ[3,2]γ[2,1](PP)} 1.47591 1-1
HOLDS all= 8 link Cab(13,2)T(3,2) 1.60724 1-1

50 (62) 0≤ i≤7 alg {γ[1,1](γ[5,2](P)(1)γ[3,2](P)(1))} 1.59801 1-1
HOLDS all= 8 link (Cab(7,5),Cab(5,3))(T(1,1)) 2.06334 1-1

51 (82) 0≤ i≤7 alg {γ[3,2](P γ[3,2](P))} 1.35745 1-1
HOLDS all= 8 link Cab(20,3)T(3,2) 1.59033 1-1

52 (90) 0≤ i≤8 alg {γ[4,3](PPP)} 1.55728 2-2
HOLDS all= 9 link 3T(4,3) 1.6737 2-2

53 (10) 0≤ i≤2 alg= {γ[3,2]γ[-2,5](P)} 1.8969 0-0
HOLDS all= 3 knot Cab(7,2)T(3,2) 0.75 0-0

54 (8) 0≤ i≤3 alg= {γ[3,2]γ[-2,7](P)} 0.88617 0-0
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HOLDS all= 4 knot Cab(5,2)T(3,2) 0.5 0-0

55 (14) 0≤ i≤3 alg= {γ[3,2]γ[-2,1](P)} 1.42745 0-0
HOLDS all= 4 knot Cab(11,2)T(3,2) 1.88749 0-0

56 (26) 0≤ i≤5 alg= {γ[4,3]γ[2,-9](P)} 1.6649 0-0
HOLDS all= 6 knot Cab(15,2)T(4,3) 1.61525 0-0

57 (20) 0≤ i≤-1 alg {γ[5,2](P(2+1))} – –5
FAILS all= 4 knot T(5,2) – —

58 (60) 0≤ i≤0 alg {γ[3,2](P(3+3))} 2.15141 0-0
OK a=0 all= 7 knot T(3,2) – —

59 (30) 0≤ i≤-1 alg {γ[4,3](P(2+1))} – –5
FAILS all= 7 knot T(4,3) – —

60 (40) 0≤ i≤-1 alg {γ[5,3](P(2+1))} – –3
FAILS all= 7 knot T(5,3) – —

61 (60) 0≤ i≤-1 alg {γ[7,3](P(2+1))} – –3
FAILS all= 7 knot T(7,3) – —

62 (8) 0≤ i≤-1 alg {γ[2,1](P(2+2)P)} – –2
FAILS all= 2 link T(2,1) – —

63 (36) 0≤ i≤-1 alg {γ[3,2](P(2+0)P(1+1))} – –4
FAILS all= 6 link T(3,2) – —

64 (34) 0≤ i≤3 alg {γ[1,1](γ[3,2](P)(1)γ[3,2](P)(1))} 2.18422 1-1
OK a=0 all= 6 link (Cab(5,3),Cab(5,3))(T(1,1)) 2.61867 1-1

65 (42) 0≤ i≤-1 alg {γ[3,2](P(2+2)P)} – –5
FAILS all= 7 link T(3,2) – —

66 (6) 0≤ i≤-1 alg= {γ[3,2]γ[-2,13](P)} – –2
FAILS all= 4 knot Cab(1,-2)T(3,2) – —

67 (8) 0≤ i≤-1 alg= {γ[3,2]γ[-2,15](P)} – –4
FAILS all= 4 knot Cab(3,-2)T(3,2) – —

68 (10) 0≤ i≤-1 alg= {γ[3,2]γ[-2,17](P)} – –3
FAILS all= 4 knot Cab(5,-2)T(3,2) – —

69 (12) 0≤ i≤-1 alg= {γ[3,2]γ[-2,19](P)} – –6
FAILS all= 4 knot Cab(7,-2)T(3,2) – —

70 (4) 0≤ i≤0 alg= {γ[3,2]γ[-2,11](P)} 1.33333 0-0
OK a=0 all= 4 knot Cab(1,2)T(3,2) – —

71 (22) 0≤ i≤-1 alg= {γ[4,3]γ[-2,25](P)} – –6
FAILS all= 6 knot Cab(-1,2)T(4,3) – —

72 (20) 0≤ i≤-1 alg= {γ[4,3]γ[-2,23](P)} – –4
FAILS all= 6 knot Cab(1,2)T(4,3) – —

73 (18) 0≤ i≤-1 alg= {γ[4,3]γ[-2,21](P)} – –2
FAILS all= 6 knot Cab(3,2)T(4,3) – —

74 (16) 0≤ i≤0 alg= {γ[4,3]γ[-2,19](P)} 1.29137 0-0
OK a=0 all= 6 knot Cab(5,2)T(4,3) – —

75 (18) 0≤ i≤1 alg= {γ[4,3]γ[-2,17](P)} 1.06963 0-0
OK a=0 all= 6 knot Cab(7,2)T(4,3) 1.38291 0-0

76 (22) 0≤ i≤3 alg= {γ[4,3]γ[-2,13](P)} 1.69298 0-0
OK a=0 all= 6 knot Cab(11,2)T(4,3) 1.51094 0-0
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5.4. Brief analysis

The attachment to this paper contains the formulas for quite a few (not all)
superpolynomials used in this table ; the link is: http://intlpress.com/

site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip

We will focus here on the most instructional cases and features. Only
a few formulas for DAHA superpolynomials are provided in this work; the
files are available and see our prior works, which contain many.

5.4.1. Non-algebraic links. The validity of RH is certainly most likely
for algebraic knots/links. However, the table and calculations we performed
show that it holds significantly beyond this class. For instance, the whole
series of cables Cab(2m+ 1, 2)T (3, 2) from Cab(13, 2)T (3, 2) (which is the
smallest algebraic) down to Cab(3, 2)T (3, 2) satisfies RH for all i ≥ 0. If
a = 0 and one continues to diminish m, then RH fails at Cab(−1, 2)T (3, 2)
(and further on).

We note that the DAHA superpolynomials remain positive in this series
till Cab(7, 2)T (3, 2) (all their q, t, a–coefficients are positive). We called them
pseudo-algebraic in [ChD1], where this series was considered in detail. They
do resemble algebraic knots (especially for 2m+ 1 = 11, 9). Interestingly, the
positivity of the superpolynomial recovers starting with Cab(−7, 2)T (3, 2),
but with a different pattern of superpolynomials (not like those for m ≥ 4).
However, generally, RH has a clear tendency to fail when “approaching”
non-algebraic links.

Let us consider entry No= 64 with 34 zeros (at i=0), already discussed
above. This is an algebraic link where RH is valid only partially (till a3,
where dega = 5). The outer γ is γ[1, 1] here, i.e. minimal possible to make
it algebraic. Using γ[2, 1] and γ[3, 1] here instead of γ[1, 1] results in RH
for all ai (the entries are 44, 45 with N0

z = 64, 94). This can be informally
considered as “moving away” from non-algebraic ones. By the way, uncol-
ored Cab(13, 2)T (3, 2), the smallest non-torus cable, has $3 > 2, the only
uncolored algebraic knot in the table with $i > 2 for i > 0; we conjecture
that it is below 2 for i = 0.

5.4.2. Non-square diagrams. Strong RH always fails for in the ex-
amples we calculated. This diagram is self-dual with respect to transposition,
which is valuable to us. See entries 57, 59, 60, 61 (with N0

z = 20, 30, 40, 60)
and Section 5.2.2.

For the entry 60, there are 3 pair of irregular zeros of Ĥ0 (of t–degree
40) that tend to {ω1/3, ω2/3} for the 3 different values of the cube root as

http://intlpress.com/site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip
http://intlpress.com/site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip
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ω →∞. This is directly related to the expansion Ĥ0 = ω + 2t2 − t3 +O(ω2),
so a variant of Weak RH holds in this case.

In the remaining 3 cases, there are two more complex (conjugated to
each other) irregular pairs. See the last column of the table, which provides
the (actual) number of pairs of irregular zeros. Recall that we provide this
number only for i = 0 for entries with ”FAILS ”. These additional pairs
{ξ′, ω/ξ′} stay in the vicinity of U√ω. More exactly, ξ′ = ±(

√
ω + C)ı+ (C +

o(1))/
√
ω, where C ∈ R tends to some limit as ω →∞. Similar ξ′ occur for

entries 62, 63, 65 (with N0
z = 8, 36, 42).

For non-square rectangles, RH for Ĥ i
sym can hold beyond i = 0, where

this was conjectured. For instance, it holds for any i for entries 18, 19 (N0
z =

96, 108): {γ̂3,2(γ̂2,1(P ( )))}, {γ̂3,2(γ̂2,3(P ( )))}.
For {γ̂3,2(P ( ))}, only one non-RH pair appears for entry 58 (N0

z = 60,
dega = 6) when i = 1; it is real and quickly approaches {−1,−ω} as ω →∞.
See Section 5.2.3. RH also fails here for i = 1, 3, 5 upon the antisymmetriza-
tion ; the corresponding ςit

πiSi are −t(1 + t54,42,26).
For the two 2–rectangle and 2T (3, 2), i.e. for {γ̂3,2(P ( )2)}, there are

2 real pairs of such zeros when i = 0 (from 48 pairs) approaching {1, ω}
and {±

√
ω}. One has: ς0t

π0S0 = −t1−t92

1−t4 (1− t2)2(1 + t2) in this case. The
multiple roots ±1 and those due to t give the total number of pairs of
non-RH zeros 3 (all are real). Upon the antisymmetrization here, ς0t

π0S0

becomes t(1− t2)(1 + t92); Weak RH is satisfied now.
Also, RH holds for {γ̂3,2(P ( )P ( )} upon the symmetrization for all

0 ≤ i ≤ 4. One respectively has ςit
πiSi = −t(1 + t50,46,40,32,22).

5.4.3. Large-small $. When RH holds, which is a qualitative property,
the “actual” RH is in finding $ quantitatively . In the following example
of 2× 2–diagram, RH “almost” fails. The $–number becomes much larger
than “usual” 1 ∼ 2 due to the color and i > 0. This is entry No=27 with
64 zeros and dega = 8 for T (5, 3) colored by . The corresponding $4 is
21.1022; it is ωtop4 for D4 (and can be calculated as exactly as necessary).
By contrast, $0 = 2.1449, not too large.

This is similar to entry 25 (with 48 zeros). The latter is for T (4, 3) and
. Its superpolynomial is significantly simpler to calculate than that for

T (5, 3) (which took about 4 days). One has $4 = 6.01964 for T (4, 3), which
is large but not too much.

The inequality $ < 2. This seems a counterpart of the bounds for the
spectrum of Laplace-Dirac operators in the theory of spectral zeta-functions.
We conjecture that $0 < 2 upon a = 0 for uncolored algebraic knots. For
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i > 0, entry 7 (with 16 zeros) is an example when $1 > 2. This is for
Cab(13, 2)T (3, 2). Concerning algebraic uncolored links for i = 0, the great-
est $0 in the table is 1.919393 for the entry 37 (with N0

z = 22), but it can
go beyond 2.

Cyclotomic polynomials at ω = 1. Let us discuss T (11, 6); its super-
polynomial was posted in the online version of [Ch2]. See entry 17 (N0

z =
50); strong RH for i=0 holds for $0 = 1.1447417735112874 . . . and for
0.9985190700739621 < ω < 1.0021178996517260. We expect that $0 = 1 +
O(1/r) for knots T (r→∞, s>2), which is based on numerical evidence for
s = 3, 6, 7, 9 and the considerations of geometric superpolynomials [ChP1] as
r→∞. One has: Ĥ0(ω=1) =

∏s−1
j=1

1−tr+s−j

1−t1+j , which follows from the Shuffle
Conjecture proved in [CaM].

This can be deduced from Corollary 4.6; here Ĥ0(ω=1) is the rational
slope t–Catalan number . The following formula can be checked using the geo-
metric superpolynomials from [ChP1], their (conjectured) connection with
DAHA and the a–version of Corollary 4.6. For r > s, 0 ≤ i ≤ s− 1,

Ĥ i(ω = 1) =

s−1∏
j=1

(1− tr+s−j)

(1− t1+s−j)

×
(
(1− tr−1)(1− tr−2) · · · (1− tr−i)

)(
(1− ts−1)(1− ts−2) · · · (1− ts−i)

)(
(1− t)(1− t2) · · · (1− ti)

) (
(1− tr+s−1)(1− tr+s−2) · · · (1− tr+s−i)

) .
The second line here is trivial when i = 0. Similar formulas exist for (at

least) the family Cab(13 + 2m, 2)T (3, 2) with m ∈ Z+, where all Piontkowski
cells J∆ are affine spaces.

We note that Ĥ i(ω=1) for i > 0 generally have multiple zeros. For in-
stance, in the case of T (11, 6): Ĥ1(ω=1)=Φ2

5Φ7Φ10Φ12Φ13Φ14Φ15 for cy-
clotomic polynomials Φm. It has 4 pairs of irregular (non-RH) zeros in
any punctured neighborhood of ω=1. Strong RH begins only after $1 =
1.1381148969721394 . . . = ωtop1 .

5.4.4. Irregular zeros. We provide the number of super-dual-invariant
pairs of irregular zeros in the last column; the upper two numbers are for
a = 0, the lower ones are for the maximum among i > 0. The first gives the
number of pairs right after $; the second, after ”−”, is for the stable number
for ω >> 0. Mostly they coincide in this table.

Trivial zeros , −1,−ω, are not counted in the table. For ω>ωtopi such
zeros appear for for odd i. They are likely to reflect some symmetries of
the DAHA construction, and presumably can be interpreted geometrically.
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We note that more general squares result in huge superpolynomials, which
we do not have by now.

If the number of pairs of irregular zeros is {·} − 0 in the last column,
then Strong RH holds for ω >> 0; multiple RH–zeros appear after $ in
this case. If it is 0− 0, then RH holds starting with $ from the table. Thus
Strong RH always holds in the table for uncolored algebraic knots and those
colored by (where we disregard trivial zeros).

Recall that Weak RH allows κ− 1 pairs of irregular zeros for uncolored
algebraic links, where κ is the number of components of a link. Practically,
the number of allowed irregular pairs (disregarding trivial ones) equals the
total number of symbols P in the DAHA presentation of a link minus 1.
Mostly this difference is 0 or 1 in the table. It is 1 for 2–links and the
corresponding irregular pair is automatically real (the number of irregular
complex pairs is always even). For entry 33 (with N0

z = 24), there are four
P in its DAHA presentation and, indeed, Ĥ i have 3 irregular pairs of zeros.
Similarly, RH holds for {γ̂(3, 2)(P 3)} (entry 52 with N0

z = 90), with 2 pairs
of (automatically complex) irregular roots. We provide one algebraic link
(entry 64 with N0

z = 34) where Weak RH fails for i = 4 (only for such i).
See below.

5.5. Composite theory, etc

We do not discuss in this work other root systems. The a–stabilization was
conjectured for classical series in [Ch2]; the corresponding polynomials are
called DAHA hyperpolynomials. The hyper-duality is expected to hold too;
one can expect the corresponding RH for algebraic knots/links. However,
the corresponding DAHA hyperpolynomials are known so far only for small
knots. We think it makes some sense to provide at least one example from the
composite theory for the exceptional series from [DG], which is topologically
for the annulus multiplied by R1 instead of S3. Algebraically, this is the case
of a–stabilization when two Young diagrams are placed at the opposite ends
of the (nonaffine) Dynkin diagram of type A and the stabilization is with
respect to the distance between these diagrams.

We will consider only the case of uncolored T (4, 3) from [ChE]. Then RH
is “OK” for the corresponding composite superpolynomial . Namely, it holds
for i = 0, 1 but fails for i = 2 (dega = 5 in this case). One has: $0 = 0.84405,
$1 = 0.6874328. The first coincides with ωtop0 , the second is among the toots
ω = 1/q of D1 (which is always true for $), but smaller than ωtop1 = 2. The
factor of D1 corresponding to $1 is the square of:

−9248 + 12492q − 14345q2 + 844q3 + 6308q4 − 1608q5 + 112q6.
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Some recalculation is necessary from the setting of [ChE] to make the
super-duality exactly as in the present work. So we will provide the corre-
sponding Ĥ(q, t, a):

1 + 2qt+ 2q2t+ 3q2t2 + 2q3t2 + q4t2 + 4q3t3 + 2q4t3 + 3q4t4 + 2q5t4 + 2q5t5

+ q6t6 + a5
(
−q5 + q6 − q4t+ 2q5t− q6t+ q4t2 − q5t2

)
+ a4

(
−q3 + 2q4 − q5

+ q2t− 4q4t+ 4q5t− q6t+ q3t2 + q4t2 − 4q5t2 + 2q6t2 + q4t3 − q6t3 + q5t4
)

+ a3
(
q − q2 − 3q3 + 3q4 + q5 − q6 + qt+ 3q2t− q3t− 8q4t+ 4q5t+ q6t

+ 2q2t2 + 5q3t2 − 2q4t2 − 8q5t2 + 3q6t2 + 3q3t3 + 5q4t3 − q5t3 − 3q6t3

+ 2q4t4 + 3q5t4 − q6t4 + q5t5 + q6t5
)

+ a2
(
1 + 2q − 2q2 − 3q3 + q5 + q6

+ 4qt+ 5q2t− 2q3t− 8q4t+ q6t+ 7q2t2 + 9q3t2 − 2q4t2 − 8q5t2 + 8q3t3

+ 9q4t3 − 2q5t3 − 3q6t3 + 7q4t4 + 5q5t4 − 2q6t4 + 4q5t5 + 2q6t5 + q6t6
)

+ a
(
2 + q − q2 − q3 − q4 + 5qt+ 5q2t− q3t− 3q4t− 2q5t+ 8q2t2 + 7q3t2

+ q4t2 − 3q5t2 − q6t2 + 9q3t3 + 7q4t3 − q5t3 − q6t3 + 8q4t4 + 5q5t4 − q6t4

+ 5q5t5 + q6t5 + 2q6t6
)
.

Let us also mention here that Heegaard-Floer homology is the specializa-
tion of Khovanov-Rozansky link homology at for the differential at a = −1
(in DAHA parameters). This specialization preserves the super-duality, in
contrast to the differentials at a = −tn+1 (in DAHA parameters) to the
An–theories. Practically everything we conjecture for Ĥ i is applicable when
a = −1. In this paper, we do not discuss polynomials/series that are sums
of Hi over all i, which is a clear potential of the theory. The specialization
a 7→ −(t/q) from (4.31) is of obvious importance too. Also, employing the
connection conjectures, one has an opportunity to interpret RH for the topo-
logical and other superpolynomials, including the HOMFLY-PT polynomi-
als, KhR polynomials, physical ones and those associated with the rational
DAHA and the Hilbert scheme of C2.

6. Some formulas, conclusion

6.1. A non-RH link for i>0

The only counterexample to the total (all ai) Weak RH among algebraic
knots/links in the table is for the entry 64 (N0

z = 34), where it fails for a4

(but holds for all other ai). See also Section 5.2.3, (4) and Section 6.3.3
below. Let us discuss it.
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The corresponding cable is L1 = (Cab(5, 3), Cab(5, 3))T (1, 1), which is
the link of the singularity C1 = {(x5 − y3)(x3 − y5) = 0} at x=0=y. The
linking number is lk = 9 for its two components, which are T (5, 3). The zeta-
monodromy from [DGPS] upon t 7→ q, essentially the Alexander polynomial,
is Z1 = q32 + 2q24 + 3q16 + 2q8 + 1. According to Section 5.4 from [ChD2],
the following connection with our superpolynomials is expected (unless for
the unknot):

Z = ĤminL (q, q, a = −1)/(1− q)κ−δκ,1 .(6.45)

This is for uncolored graph L (without ′L) with κ paths (the number of
connected components in the corresponding cable). The linking number is
then Z(q=1). Recall that we always impose the minimal normalization Ĥmin
in the present paper.

Let us mention that the link 2T (5, 3) = (Cab(1, 1), Cab(1, 1))T (5, 3), cor-
responding to C′1 = {(x5−y3)(x5+y3) = 0} with the linking number Z ′1(1) =
15, satisfies RH. One has: Z ′1 = q44 + q38 + q34 + q32 + q28 + q26 + q24

+ q22 + q20 + q18 + q16 + q12 + q10 + q6 + 1 in this case. This is actually en-
try No= 40 (with N0

z = 46), because the cables Cab(1, 1)T (3, 2) and T (5, 3)
are isotopic. Note that the degree of Z is N0

z − 2.
Also, RH holds for all i for the following direct modifications of L1: L2 =

(Cab(8, 3), Cab(8, 3))T (2, 1), L3 = (Cab(11, 3), Cab(11, 3))T (3, 1), which are
entries 44, 45 (N0

z = 64, 94). They are correspondingly unions of two copies
of T (8, 3) and T (11, 3) with linking numbers 18 and 27.

Finding the equations of the corresponding plane curve singularities is
more involved in these examples. Say for C2, we begin with (x8 − y3)(x3 −
y5) = 0 and replace x3 = y5 by “its double”, which is x3 = y8, provided
that the corresponding link is in the vicinity of T (5, 3) (then the resulting
linking number becomes 18). This is the meaning of cabling in this case.
The equations and Z–polynomials are as follows:

C2 = {(x8−y3)((y+x2)3+x8)=0}, C3 = {(x11−y3)((y+x3)3+x11)=0},
Z2 = 1+q6+2q14+2q20+3q28+3q34+2q42+2q48+q56+q62,

Z3 = 1+q6 + q12+2q20+2q26+2q32+3q40+3q46+3q52+2q60+2q66

+2q72+q80+q86+q92.

6.1.1. Non-RH superpolynomial. The failure of Weak RH for the link
of C1 = {(x5 − y3)(x3 − y5) = 0} above is at a4; let us provide ĤminL :
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1− t+ qt+ q2t+ q3t+ q4t+ q5t− qt2 + q4t2 + 2q5t2 + 4q6t2 + q7t2 + q8t2

− q2t3 − q4t3 − q5t3 + 5q7t3 + 4q8t3 + 4q9t3 − q3t4 − q5t4 − 2q6t4 − 2q7t4

+ 3q8t4 + 5q9t4 + 7q10t4 + q11t4 − q4t5 − q6t5 − 2q7t5 − 4q8t5 + q9t5

+ 5q10t5 + 8q11t5 + 2q12t5 − q5t6 − q7t6 − 2q8t6 − 5q9t6 + 5q11t6 + 8q12t6

+ q13t6 − q6t7 − q8t7 − 2q9t7 − 6q10t7 + 5q12t7 + 7q13t7 − q7t8 − q9t8

− 2q10t8 − 5q11t8 + q12t8 + 5q13t8 + 4q14t8 − q8t9 − q10t9 − 2q11t9 − 4q12t9

+ 3q13t9 + 4q14t9 + q15t9 − q9t10 − q11t10 − 2q12t10 − 2q13t10 + 5q14t10

+ q15t10 − q10t11 − q12t11 − 2q13t11 + 4q15t11 − q11t12 − q13t12 − q14t12

+ 2q15t12 + q16t12 − q12t13 − q14t13 + q15t13 + q16t13 − q13t14 + q16t14

− q14t15 + q16t15 − q15t16 + q16t16 − q16t17 + q17t17 + a5
(
q15 + 2q16t+ q17t2

)
+ a4

(
q10 + q11 + q12 + q13 + q14 − q10t+ q11t+ 3q12t+ 3q13t+ 3q14t

+ 3q15t− 2q11t2 − q12t2 + 3q13t2 + 4q14t2 + 4q15t2 + 3q16t2 − 3q12t3 − q13t3

+ 2q14t3 + 4q15t3 + 3q16t3 + q17t3 − 4q13t4 − q14t4 + 3q15t4 + 3q16t4 + q17t4

− 3q14t5 − q15t5 + 3q16t5 + q17t5 − 2q15t6 + q16t6 + q17t6 − q16t7 + q17t7
)

+ a3
(
q6 + q7 + 2q8 + 2q9 + 2q10 + q11 + q12 − q6t+ q8t+ 4q9t+ 6q10t

+ 8q11t+ 5q12t+ 4q13t+ q14t− q7t2 − 2q8t2 − 3q9t2 + q10t2 + 7q11t2

+ 14q12t2 + 10q13t2 + 7q14t2 + 2q15t2 − q8t3 − 2q9t3 − 6q10t3 − 4q11t3

+ 5q12t3 + 16q13t3 + 12q14t3 + 7q15t3 + q16t3 − q9t4 − 2q10t4 − 8q11t4

− 8q12t4 + 5q13t4 + 16q14t4 + 10q15t4 + 4q16t4 − q10t5 − 2q11t5 − 8q12t5

− 8q13t5 + 5q14t5 + 14q15t5 + 5q16t5 + q17t5 − q11t6 − 2q12t6 − 8q13t6

− 4q14t6 + 7q15t6 + 8q16t6 + q17t6 − q12t7 − 2q13t7 − 6q14t7 + q15t7

+ 6q16t7 + 2q17t7 − q13t8 − 2q14t8 − 3q15t8 + 4q16t8 + 2q17t8 − q14t9

− 2q15t9 + q16t9 + 2q17t9 − q15t10 + q17t10 − q16t11 + q17t11
)

+ a2
(
q3 + q4 + 2q5 + 2q6 + 2q7 + q8 + q9 − q3t+ 3q6t+ 6q7t+ 8q8t+ 7q9t

+ 6q10t+ 2q11t+ q12t− q4t2 − q5t2 − 3q6t2 − 2q7t2 + 3q8t2 + 12q9t2

+ 16q10t2 + 15q11t2 + 7q12t2 + 3q13t2 − q5t3 − q6t3 − 4q7t3 − 6q8t3 − 6q9t3

+ 8q10t3 + 20q11t3 + 23q12t3 + 11q13t3 + 4q14t3 − q6t4 − q7t4 − 4q8t4

− 8q9t4 − 13q10t4 + 2q11t4 + 21q12t4 + 26q13t4 + 11q14t4 + 3q15t4 − q7t5

− q8t5 − 4q9t5 − 9q10t5 − 16q11t5 − q12t5 + 21q13t5 + 23q14t5 + 7q15t5

+ q16t5 − q8t6 − q9t6 − 4q10t6 − 10q11t6 − 16q12t6 + 2q13t6 + 20q14t6

+ 15q15t6 + 2q16t6 − q9t7 − q10t7 − 4q11t7 − 9q12t7 − 13q13t7 + 8q14t7

+ 16q15t7 + 6q16t7 − q10t8 − q11t8 − 4q12t8 − 8q13t8 − 6q14t8 + 12q15t8
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+ 7q16t8 + q17t8 − q11t9 − q12t9 − 4q13t9 − 6q14t9 + 3q15t9 + 8q16t9 + q17t9

− q12t10 − q13t10 − 4q14t10 − 2q15t10 + 6q16t10 + 2q17t10 − q13t11 − q14t11

− 3q15t11 + 3q16t11 + 2q17t11 − q14t12 − q15t12 + 2q17t12 − q15t13 + q17t13

− q16t14 + q17t14
)

+ a
(
q + q2 + q3 + q4 + q5 − qt+ q3t+ 2q4t+ 4q5t+ 6q6t

+ 3q7t+ 2q8t+ q9t− q2t2 − q3t2 − q4t2 − q5t2 + 2q6t2 + 10q7t2 + 10q8t2

+ 9q9t2 + 4q10t2 + q11t2 − q3t3 − q4t3 − 2q5t3 − 4q6t3 − 4q7t3 + 5q8t3

+ 13q9t3 + 18q10t3 + 9q11t3 + 3q12t3 − q4t4 − q5t4 − 2q6t4 − 5q7t4 − 8q8t4

− 2q9t4 + 11q10t4 + 22q11t4 + 14q12t4 + 4q13t4 − q5t5 − q6t5 − 2q7t5 − 5q8t5

− 11q9t5 − 7q10t5 + 9q11t5 + 23q12t5 + 14q13t5 + 3q14t5 − q6t6 − q7t6 − 2q8t6

− 5q9t6 − 13q10t6 − 8q11t6 + 9q12t6 + 22q13t6 + 9q14t6 + q15t6 − q7t7 − q8t7

− 2q9t7 − 5q10t7 − 13q11t7 − 7q12t7 + 11q13t7 + 18q14t7 + 4q15t7 − q8t8 − q9t8

− 2q10t8 − 5q11t8 − 11q12t8 − 2q13t8 + 13q14t8 + 9q15t8 + q16t8 − q9t9 − q10t9

− 2q11t9 − 5q12t9 − 8q13t9 + 5q14t9 + 10q15t9 + 2q16t9 − q10t10 − q11t10

− 2q12t10 − 5q13t10 − 4q14t10 + 10q15t10 + 3q16t10 − q11t11 − q12t11 − 2q13t11

− 4q14t11 + 2q15t11 + 6q16t11 − q12t12 − q13t12 − 2q14t12 − q15t12 + 4q16t12

+ q17t12 − q13t13 − q14t13 − q15t13 + 2q16t13 + q17t13 − q14t14 − q15t14

+ q16t14 + q17t14 − q15t15 + q17t15 − q16t16 + q17t16
)
.

It makes sense to provide Ĥ4, responsible for the failure of RH. It is H4

upon the substitution q 7→ qt and under the hat-normalization:
Ĥ4(1 + qt2)−2 = 1− t+ qt− qt2 + q2t2 + q2t3 + q3t3 + q3t4 + q4t4 − 2q2t5 +
q4t5 + q4t6 + q5t6 + q4t7 + q5t7 − q4t8 + q5t8 − q4t9 + q5t9 + q5t10. We note
that ς4t

π4S4 =−t
(
(1+t2)(1+t4)

)2
. In the case of Heegaard-Floer substitu-

tion , which is a = −1 in ĤL, Weak RH holds for this link.

6.2. An example of 3-link

The appearance of κ− 1 (super-dual) pairs of zeros certainly deserves a com-
ment. Non-real non-RH roots can occur only when the number of branches
is κ > 2 and they do appear. Let

L = 3T (4, 3) = (Cab(1, 1), Cab(1, 1), Cab(1, 1))T (4, 3)

be the link of (x4 − y3)(x4 + y3)(x4 + 2y3) = 0, which has 3 components
T (4, 3) and the pairwise linking numbers 12. The corresponding zeta-mono-
dromy from (6.45) is Z=1 + q9 + q12 + q18 + q21 + q24 + q27 + q30 + q33 −
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q36 + q39 + q42 − q45 − q48 + q51 − q54 − q57 − q60 − q63 − q66 − q69 − q75 −
q78 − q87.

This example is entry No= 52 with N0
z = 90 from the table. The corre-

sponding Ĥ is large (4308 different a, q, t–monomials). The polynomial Ĥ0

is of degree 90 with respect to t (and 45 with respect to q). Weak RH holds
after $0 = 1.55727521033844259502499..., coinciding with the top real zero
ωtop0 of the reduced discriminant D0. Let us make ω = 2. Then there is only
one non-RH pair of zeros up to the complex conjugation:

ξ = 1.99999963844688175553480 + 0.00001272650573633190499 ı,
ω

ξ
= 1.00000018073610079338078− 6.363255168562838442× 10−6ı.

Their product is 2. The first quickly approaches the corresponding ω as
ω →∞ (the difference is approximately some power of 1/ω). These zeros
cannot become real for any ω > ωtop0 because this would result in multiple

roots after ωtop0 . Weak RH holds for ω = 2 and any Ĥ i, 0 ≤ i ≤ 8 =dega with
2 pairs of complex irregular zeros. The number of zeros ξ is correspondingly
90, 88, 84, 78, 70, 60, 48, 34, 18 for i = 0, . . . , 8.

6.2.1. Superpolynomial at a = 0. Let us provide H0 = Ĥ(a = 0) (not
Ĥ0, i.e. without the substitution q 7→ qt) for this 3–link:

1− 2t+ qt+ q2t+ q3t+ q4t+ q5t+ q6t+ q7t+ q8t+ t2 − 2qt2 − q2t2 − q3t2

+ q6t2 + q7t2 + 2q8t2 + 4q9t2 + 4q10t2 + 2q11t2 + 2q12t2 + q13t2 + q14t2

+ qt3 − q2t3 − 2q4t3 − q5t3 − 2q6t3 − q7t3 − 2q8t3 − q9t3 + 5q11t3 + 5q12t3

+ 6q13t3 + 5q14t3 + 6q15t3 + 3q16t3 + q17t3 + q18t3 + q2t4 − q3t4 + q4t4

− q5t4 − q6t4 − 2q7t4 − q8t4 − 4q9t4 − 3q10t4 − 5q11t4 − 2q12t4 + 4q14t4

+ 4q15t4 + 11q16t4 + 11q17t4 + 7q18t4 + 5q19t4 + 3q20t4 + q3t5 − q4t5 + q5t5

− 2q8t5 − 3q10t5 − 3q11t5 − 6q12t5 − 5q13t5 − 7q14t5 − 2q15t5 − 5q16t5

+ 3q17t5 + 10q18t5 + 14q19t5 + 12q20t5 + 11q21t5 + 5q22t5 + q23t5 + q4t6

− q5t6 + q6t6 + q8t6 − q9t6 − 2q11t6 − q12t6 − 5q13t6 − 4q14t6 − 9q15t6

− 6q16t6 − 10q17t6 − 6q18t6 − 4q19t6 + 7q20t6 + 14q21t6 + 18q22t6 + 14q23t6

+ 8q24t6 + q25t6 + q5t7 − q6t7 + q7t7 + q9t7 + q11t7 − 2q12t7 − 3q14t7

− 2q15t7 − 7q16t7 − 6q17t7 − 13q18t7 − 8q19t7 − 12q20t7 − 8q21t7 + 2q22t7
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+ 17q23t7 + 21q24t7 + 18q25t7 + 8q26t7 + q27t7 + q6t8 − q7t8 + q8t8 + q10t8

+ 2q12t8 − q13t8 − 2q15t8 − 5q17t8 − 3q18t8 − 12q19t8 − 9q20t8 − 13q21t8

− 14q22t8 − 14q23t8 + 3q24t8 + 21q25t8 + 26q26t8 + 15q27t8 + 6q28t8 + q29t8

+ q7t9 − q8t9 + q9t9 + q11t9 + 2q13t9 + q15t9 − 2q16t9 + q17t9 − 3q18t9 − q19t9

− 9q20t9 − 7q21t9 − 13q22t9 − 13q23t9 − 21q24t9 − 15q25t9 + 10q26t9 + 31q27t9

+ 23q28t9 + 12q29t9 + 3q30t9 + q8t10 − q9t10 + q10t10 + q12t10 + 2q14t10

+ 2q16t10 − q17t10 + q18t10 − 2q19t10 + q20t10 − 7q21t10 − 4q22t10 − 11q23t10

− 12q24t10 − 20q25t10 − 25q26t10 − 5q27t10 + 25q28t10 + 30q29t10 + 18q30t10

+ 5q31t10 + q32t10 + q9t11 − q10t11 + q11t11 + q13t11 + 2q15t11 + 2q17t11

+ 2q19t11 − 2q20t11 + 2q21t11 − 5q22t11 − 2q23t11 − 8q24t11 − 10q25t11

− 20q26t11 − 27q27t11 − 14q28t11 + 13q29t11 + 34q30t11 + 23q31t11 + 7q32t11

+ q33t11 + q10t12 − q11t12 + q12t12 + q14t12 + 2q16t12 + 2q18t12 + 3q20t12

− q21t12 + 2q22t12 − 4q23t12 − 6q25t12 − 7q26t12 − 20q27t12 − 29q28t12

− 17q29t12 + 7q30t12 + 33q31t12 + 23q32t12 + 9q33t12 + q34t12 + q11t13

− q12t13 + q13t13 + q15t13 + 2q17t13 + 2q19t13 + 3q21t13 + 3q23t13 − 4q24t13

+ q25t13 − 4q26t13 − 5q27t13 − 18q28t13 − 30q29t13 − 24q30t13 + 6q31t13

+ 35q32t13 + 23q33t13 + 7q34t13 + q35t13 + q12t14 − q13t14 + q14t14 + q16t14

+ 2q18t14 + 2q20t14 + 3q22t14 + 4q24t14 − 3q25t14 + q26t14 − 3q27t14 − 4q28t14

− 16q29t14 − 29q30t14 − 26q31t14 + 6q32t14 + 33q33t14 + 23q34t14 + 5q35t14

+ q13t15 − q14t15 + q15t15 + q17t15 + 2q19t15 + 2q21t15 + 3q23t15 + 4q25t15

− 2q26t15 + 2q27t15 − 3q28t15 − 4q29t15 − 15q30t15 − 29q31t15 − 24q32t15

+ 7q33t15 + 34q34t15 + 18q35t15 + 3q36t15 + q14t16 − q15t16 + q16t16 + q18t16

+ 2q20t16 + 2q22t16 + 3q24t16 + 4q26t16 − 2q27t16 + 3q28t16 − 3q29t16

− 4q30t16 − 16q31t16 − 30q32t16 − 17q33t16 + 13q34t16 + 30q35t16 + 12q36t16

+ q37t16 + q15t17 − q16t17 + q17t17 + q19t17 + 2q21t17 + 2q23t17 + 3q25t17

+ 4q27t17 − 2q28t17 + 3q29t17 − 3q30t17 − 4q31t17 − 18q32t17 − 29q33t17

− 14q34t17 + 25q35t17 + 23q36t17 + 6q37t17 + q16t18 − q17t18 + q18t18 + q20t18

+ 2q22t18 + 2q24t18 + 3q26t18 + 4q28t18 − 2q29t18 + 2q30t18 − 3q31t18 − 5q32t18

− 20q33t18 − 27q34t18 − 5q35t18 + 31q36t18 + 15q37t18 + q38t18 + q17t19

− q18t19 + q19t19 + q21t19 + 2q23t19 + 2q25t19 + 3q27t19 + 4q29t19 − 2q30t19

+ q31t19 − 4q32t19 − 7q33t19 − 20q34t19 − 25q35t19 + 10q36t19 + 26q37t19

+ 8q38t19 + q18t20 − q19t20 + q20t20 + q22t20 + 2q24t20 + 2q26t20 + 3q28t20

+ 4q30t20 − 3q31t20 + q32t20 − 6q33t20 − 10q34t20 − 20q35t20 − 15q36t20
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+ 21q37t20 + 18q38t20 + q39t20 + q19t21 − q20t21 + q21t21 + q23t21 + 2q25t21

+ 2q27t21 + 3q29t21 + 4q31t21 − 4q32t21 − 8q34t21 − 12q35t21 − 21q36t21

+ 3q37t21 + 21q38t21 + 8q39t21 + q20t22 − q21t22 + q22t22 + q24t22 + 2q26t22

+ 2q28t22 + 3q30t22 + 3q32t22 − 4q33t22 − 2q34t22 − 11q35t22 − 13q36t22

− 14q37t22 + 17q38t22 + 14q39t22 + q40t22 + q21t23 − q22t23 + q23t23 + q25t23

+ 2q27t23 + 2q29t23 + 3q31t23 + 2q33t23 − 5q34t23 − 4q35t23 − 13q36t23

− 14q37t23 + 2q38t23 + 18q39t23 + 5q40t23 + q22t24 − q23t24 + q24t24 + q26t24

+ 2q28t24 + 2q30t24 + 3q32t24 − q33t24 + 2q34t24 − 7q35t24 − 7q36t24 − 13q37t24

− 8q38t24 + 14q39t24 + 11q40t24 + q23t25 − q24t25 + q25t25 + q27t25 + 2q29t25

+ 2q31t25 + 3q33t25 − 2q34t25 + q35t25 − 9q36t25 − 9q37t25 − 12q38t25 + 7q39t25

+ 12q40t25 + 3q41t25 + q24t26 − q25t26 + q26t26 + q28t26 + 2q30t26 + 2q32t26

+ 2q34t26 − 2q35t26 − q36t26 − 12q37t26 − 8q38t26 − 4q39t26 + 14q40t26

+ 5q41t26 + q25t27 − q26t27 + q27t27 + q29t27 + 2q31t27 + 2q33t27 + q35t27

− 3q36t27 − 3q37t27 − 13q38t27 − 6q39t27 + 10q40t27 + 7q41t27 + q42t27 + q26t28

− q27t28 + q28t28 + q30t28 + 2q32t28 + 2q34t28 − q35t28 + q36t28 − 5q37t28

− 6q38t28 − 10q39t28 + 3q40t28 + 11q41t28 + q42t28 + q27t29 − q28t29 + q29t29

+ q31t29 + 2q33t29 + 2q35t29 − 2q36t29 − 7q38t29 − 6q39t29 − 5q40t29 + 11q41t29

+ 3q42t29 + q28t30 − q29t30 + q30t30 + q32t30 + 2q34t30 + q36t30 − 2q37t30

− 2q38t30 − 9q39t30 − 2q40t30 + 4q41t30 + 6q42t30 + q29t31 − q30t31 + q31t31

+ q33t31 + 2q35t31 − 3q38t31 − 4q39t31 − 7q40t31 + 4q41t31 + 5q42t31 + q43t31

+ q30t32 − q31t32 + q32t32 + q34t32 + 2q36t32 − q37t32 − 5q39t32 − 5q40t32

+ 6q42t32 + q43t32 + q31t33 − q32t33 + q33t33 + q35t33 + 2q37t33 − 2q38t33

− q39t33 − 6q40t33 − 2q41t33 + 5q42t33 + 2q43t33 + q32t34 − q33t34 + q34t34

+ q36t34 + q38t34 − 2q39t34 − 3q40t34 − 5q41t34 + 5q42t34 + 2q43t34 + q33t35

− q34t35 + q35t35 + q37t35 − 3q40t35 − 3q41t35 + 4q43t35 + q34t36 − q35t36

+ q36t36 + q38t36 − q39t36 − 4q41t36 − q42t36 + 4q43t36 + q35t37 − q36t37

+ q37t37 + q39t37 − 2q40t37 − q41t37 − 2q42t37 + 2q43t37 + q44t37 + q36t38

− q37t38 + q38t38 − 2q41t38 − q42t38 + q43t38 + q44t38 + q37t39 − q38t39

+ q39t39 − q41t39 − 2q42t39 + q43t39 + q44t39 + q38t40 − q39t40 + q40t40

− q41t40 − q42t40 + q44t40 + q39t41 − q40t41 + q41t41 − 2q42t41 + q44t41

+ q40t42 − q41t42 − q43t42 + q44t42 + q41t43 − q42t43 − q43t43 + q44t43

+ q42t44 − 2q43t44 + q44t44 + q43t45 − 2q44t45 + q45t45.
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The irregular zeros become more distant from ω for H i with i close to
dega, but the tendency remains the same. The counterpart of irregular ξ
above for i =dega = 8 is ξ = 1.973849767 + 0.055623630.

Let us very briefly discuss entry No=48 (N0
z = 80) with the link 4T (3, 2),

corresponding to the 4–branch plane curve singularity

(x3 − y2)(x3 + y2)(x3 − 2y2)(x3 + 2y2) = 0.

It has 1 real and 2 complex pairs of irregular zeros. Up to the complex
conjugation and ξ 7→ ω/ξ, they are for ω = 2: 1.999451149, 2.000252243 +
0.000499389ı, and for ω = 20: 19.999999999999995, 20.000000000000003 +
4×10−15ı.

6.3. Some simple cases

Let us provide the simplest algebraic uncolored knots, links, and discuss
the simplest non-algebraic cable where Weak RH fails, which are Cab(−1−
2m)T (3, 2) for m ≥ 0.

6.3.1. Trefoil, Hopf link. For the simplest unibranch plane curve sin-
gularities C32 = {x3 =y2} at x=0=y and C52 = {x5 =y2}:

Ĥ32 = 1 + qt+ aq, Ĥ52 = 1 + qt+ q2t2 + a(q + q2t),

H32 = 1 + qt2 + aqt, H52 = 1 + qt2 + q2t4 + a(qt+ q2t3).

The corresponding Ĥ i obviously have only (complex) zeros satisfying RH;
note that Ĥ1

32 = 1 and Ĥ1
52 = 1 + qt2.

For 2–branch C22 ={(x+y)(x−y)=0}, C42 ={(x2+y)(x2−y)=0}:

Ĥ22 = 1− t+ qt+ aq, Ĥ42 = 1− t+ qt− qt2 + q2t2 + a(q − qt+ q2t),

H22 =1−t+qt2 + aqt, H42 = 1−t+qt2−qt3+q2t4 + a(qt−qt2+q2t3).

The zeros are obviously real irregular if ω = 1/q > 4 for Ĥ0
22 and Ĥ1

42. One
(real) pair of irregular zeros occurs if ω > 2.25 for Ĥ0

42; this pair approaches
{1, ω} as ω →∞, which is obvious from the formula. Otherwise their norms
are
√
ω.

6.3.2. Adding Y , colors. Let us provide 2 examples in the case of the
non-trivial pairs {L,′L}. In the notation from the table, they are

{P (Y )(γ[2, 3](P ))} and {P (Y )(γ[3, 2](P ))}.
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The corresponding singularities are C1,23 = {(x3−y2)x=0}, C1,32 = {(x3−
y2)y=0}; their links are T (3, 2) ∪© with the linking numbers 2, 3. One
has:

Ĥ1,23 = 1− t+ qt+ q2t− qt2 + q2t2 − q2t3 + q3t3 + a2q3

+ a(q + q2 − qt+ q2t+ q3t− q2t2 + q3t2),

H1,23 = 1− t+ qt2 + q2t3 − qt3 + q2t4 − q2t5 + q3t6 + a2q3t3

+ a(qt+ q2t2 − qt2 + q2t3 + q3t4 − q2t4 + q3t5),

Ĥ1,32 = 1− t+ qt+ q2t− qt2 + q3t2 − q2t3 + q3t3 − q3t4 + q4t4

+ a2(q3 − q3t+ q4t)

+ a(q + q2 − qt+ 2q3t− q2t2 + q4t2 − q3t3 + q4t3),

H1,32 = 1− t+ qt2 + q2t3 − qt3 + q3t5 − q2t5 + q3t6 − q3t7 + q4t8

+ a2(q3t3 − q3t4 + q4t5)

+ a(qt+ q2t2 − qt2 + 2q3t4 − q2t4 + q4t6 − q3t6 + q4t7).

They satisfy Weak RH with one pair of stable real irregular zeros, approach-
ing 1, ω for ω →∞. For instance, Ĥ1

1,23 = (1− t+ qt2)(1 + qt+ qt2).

Using colors. The simplest colored superpolynomials is for T (3, 2) col-
ored by ω2: Ĥ= 1 + a2 q2

t + qt+ qt2 + q2t4 + a(q + q
t + q2t+ q2t2). Accordingly,

Ĥ0
sym=1 + q2t3 + q3t4 + 2q4t6 + q5t8 + q5t9 + q6t12, which has 12 RH–zeros for

ω = 1/q > $ = 1.464541725162 . . . .

Let us also provide H0 for {γ̂2,1(P ( )P ( )}= {γ̂2,1(P ( )P ( ))}
(they coincide!). It is 1− t2 + q2t2 − q2t4 + q4t4. The corresponding ς0t

π0S0

is −t2(1 + t4), so Weak RH fails in this case with 2 pairs of non-RH zeros
due to t2.

6.3.3. A failure at i > 0. The superpolynomials Ĥ1,23, Ĥ1,32 can be also
obtained as {(γ[2, 3](P )⇓)(Y )(P )} and {(γ[3, 2](P )⇓)(Y )(P )}, i.e. using the
pairs {L,′L} with non-trivial ′L. We use here that the DAHA construc-
tion is isotopy-invariant. A similar one is {(γ[2, 3](P )⇓)(Y )(γ[3, 2](P ))},
corresponding to C32,32 ={(x3−y2)(x3+y2) = 0} with the link 2T (3, 2) and
lk = 6.

Transposing 3 and 2 in the second factor of the last equation, the sin-
gularity C32,23 ={(x3−y2)(x2−y3)=0} with Z = 1 + 2q5 + q10 and lk = 4
provides a counterexample to Weak RH with i > 0 among uncolored alge-
braic links . Here dega = 3 and the failure of RH is only at i = 2. This is a
simplification of the counterexample from Section 6.1, where the failure is
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at i=dega−1(=4) too. The DAHA procedure in this case is {(γ[2, 3](P )⇓
)(Y )(γ[2, 3](P ))}; the superpolynomial is Ĥ32,23=

a3q6 + a2(q3 + q4 + q5 − q3t+ q4t+ q5t+ q6t− 2q4t2 + q5t2 + q6t2 − q5t3

+ q6t3) + a(q + q2 + q3 − qt+ 2q3t+ 2q4t+ q5t− q2t2 − 2q3t2 + 2q4t2

+ 2q5t2 − q3t3 − 2q4t3 + 2q5t3 + q6t3 − q4t4 + q6t4 − q5t5 + q6t5) + 1− t
+ qt+ q2t+ q3t− qt2 + q3t2 + q4t2 − q2t3 − q3t3 + q4t3 + q5t3 − q3t4 + q5t4

− q4t5 + q5t5 − q5t6 + q6t6.

Then Ĥ2
32,23 = 1−t+qt+qt2+q2t2−2qt3+q2t3+q2t4+q3t4−q2t5+q3t5+q3t6

has 1 pair of real zeros approaching {1, ω} for ω >> 0, and 2 conjugated
pairs of complex zeros not satisfying RH (though staying in the vicinity of
U√ω). One has: ς1t

π2S2 =−t(1+t2)2 in this case; some “irregular behavior”
of the corresponding flagged Jacobian factor can be expected.

We note that unless for (xa − yb)(xb − ya), the corresponding singulari-
ties satisfy Weak RH in the examples we calculated. For instance, RH holds
for all i for C34,23 ={(x4−y3)(x2−y3)=0} with Z = 1 + 2q6 + 2q12 + q18 and
the linking number Z(1) = 6. The DAHA procedure here is {(γ[2, 3](P )⇓
)(Y )(γ[3, 4](P ))}.

Non-algebraic knots. The first failures of RH for a = 0 in the family
Cab(2m+1, 2)T (3, 2) are for Cab(−1, 2)T (3, 2) and Cab(−3, 2)T (3, 2). Let us
provide the corresponding Ĥ0 for the latter: 1 + 2qt2 + qt3 − qt4 + 2q2t4 +
q2t5 + 2q3t6 + q4t8. Actually there are no zeros at all of norm

√
ω in this case

for ω >> 0. This remains equally chaotic for all Cab(−3−2m, 2)T (3, 2) as
m ≥ 0. We note that Ĥ become positive starting with Cab(−7, 2)T (3, 2); the
corresponding Ĥ0 for −7 is 1 + 2qt2 + qt3 + 2q2t4 + q2t5 + q2t6 + 2q3t6 +
q3t7 + 2q4t8 + q4t9 + 2q5t10 + q6t12. In this case, ς0t

π0S0 = t6, all zeros are
non-RH (and quite random).

6.4. Concluding remarks

Let us begin with the computational aspects. Superpolynomials have many
symmetries: super-duality, evaluation at q = 1, color exchange, dega–formula
and more of these. They are routinely checked by the programs that calcu-
late superpolynomials, including extra evaluations a = −tn+1, and it is very
unlikely that there are mistakes with the formulas for Ĥ. The attachment
to this paper contains the formulas for quite a few (not all) superpolynomi-
als used in the table from Section 5.3; the link is: http://intlpress.com/
site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip

http://intlpress.com/site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip
http://intlpress.com/site/pub/files/_supp/CNTP-2017-v12n3-cherednik-s1.zip
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Numerical finding the zeros of Ĥ i is a relatively simple (and fast) task.
We mostly rely here on the standard software. The symmetry ξ 7→ ω/ξ pro-
vides a good independent test of the correctness of this part of our pro-
grams. Then the program increases ω to reach the RH–range (if it exists)
and then diminishes ω to find the lower bonds $i. Then it checks that they
are (within the accuracy) roots of the reduced discriminants Di. The (au-
tomated) comparison with the number of pairs of non-RH zeros resulting
from πi, S

i concludes the analysis.

6.4.1. Toward Riemann’s zeta. The most optimistic expectations are
that DAHA superpolynomials can be a move toward the Riemann zeta
and Dirichlet L–functions (and Grand RH). However, quite a few steps
are needed.

Families. First of all, Ĥ must be extended to the families of iterated torus
links; the family superpolynomials Ĥ(q, t, a, u) from Section 4.1.3 are natural
candidates (they are actually rational functions). Algebraic links emerge in
the DAHA theory as sequences of matrices γ ∈ PSL2(Z). The match of
this interpretation with the splice diagrams of [EN] is a surprising outcome
of [ChD2]. The families are when we multiply one of these γ by τm± . For
instance, {T (r +ms, s),m ∈ Z+} and {Cab(13 + 2m, 2)T (3, 2)} for m ∈ Z+

are families.
For algebraic knots and when γ1 7→ τm− γ1, there are natural embeddings

of the corresponding rings Rm. Geometrically, this means that we count
submodules M from Section 4.2 with some weights in terms of its (full)
ring of endomorphisms R from a given family. Algebraically, we sum the
corresponding Ĥ–polynomials over a given family with the weights (u/t)genus

for uncolored algebraic knots, where u is an additional parameter.
We use that the same super-symmetry serves all rings R. The cor-

responding Ĥ(q, t, a, u) are generally algebraically simpler than individual
Ĥm(q, t, a) and the $i for their a–coefficients are generally better (smaller)
than those for individual Ĥm as m >> 0. Cf. formulas (4.25),(4.28),(4.28).

Analytic DAHA superpolynomials. The key step could be a pas-
sage from algebraic superpolynomials to “analytic” ones, parallel to Section
“Topological vertex” from [ChD2]. As it was observed there, the analytic
counterparts of superpolynomials for Hopf links extend (by adding t) the
Rogers-Ramanujan expansions. The latter are interpreted in [ChF, GOW] as
expansions of powers/products of theta-functions in terms of q–Hermite and
Hall-Littlewood polynomials. They are (closely related) limits t→0, q→0 of
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the Macdonald polynomials. Since the invariants Si, πi we define are when
q → 0 (though this is not a direct substitution), one can expect interesting
connections here, which we will not discuss in the present paper.

To define analytic DAHA superpolynomials, we essentially replace the
DAHA-Jones polynomials by some integrals of the products of the powers of
the Gaussian qx

2/2 and their images under the action of γ ∈ PSL(2,Z). The
sums of such integrals with proper weights with respect to the families above
generalize the q–analogs of the Riemann zeta and Dirichlet L–functions from
[Ch4]. For instance, the q–zeta there is the integral of qx

2/2/(1− qx2/2) with
respect to the Macdonald measure µ(X; q, t) in type A1.

The theory of analytic DAHA superpolynomials is of clear independent
interest regardless of zeta-functions. Actually its main objective is in obtain-
ing the invariants of Seifert and lens spaces; fruitful algebraic applications
are expected too. The details will be published elsewhere. In contrast to
knot invariants (though these two theories are closely related), the invari-
ants of Seifert spaces are given in terms of modular functions, Maass forms
and Mock theta-functions.

An obvious problem with the passage to the analytic superpolynomials
is as follows. They are calculated in terms of a proper completion of the poly-
nomial representation V in contrast to the algebraic theory (we present here)
based on the “adjoint representation”, which is in EndCV via the conjuga-
tion (actually in HH). However this sufficiently transparent relation does not
guarantee any connection at the level of the zeros of the corresponding su-
perpolynomials. Generally, approaches to the Riemann Hypothesis (Grand
RH) via any theories of “zeta-polynomials” satisfying RH, including the
Hasse-Weil zeta functions, have little support in the classical and modern
mathematics.

6.4.2. Further perspectives. A connection of superpolynomials with
the zeta-functions of Laplace/Dirac operators of Riemann surfaces and p–
adic strings would be a fundamental development.

Spectral zeta-functions. The motivic zeta-functions are quite parallel to
the so-called spectral zeta-functions . Namely, let us consider the Schottky
uniformization of Riemann surfaces and the corresponding Dirac operators.
The corresponding “pure” zeta-functions then depend only on the genus in
the smooth case; see e.g. [CM]. This fact (but not the formula itself) matches
Macdonald’s formula, a starting point of the Kapranov zeta-function. Then
we switch to plane curve singularities. The bound q ≤ 1/2 from Conjec-
ture 4.11 resembles the inequalities in the theory of spectral zeta. Presum-
ably we can arrive at the same superpolynomials of plane curve singularities
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within this approach. Importantly, the p–adic Schottky uniformization is
closely related to the curve singularities (as the closed fibers), which can be
potentially a tool for establishing the link with superpolynomials.

Let us mention here Witten’s p–adic strings, which can be hopefully
revisited and extended toward the superpolynomials of plain curve singular-
ities. At least, the matrix models can be used for this; see e.g. [DMS], which
is actually closely connected with the DAHA approach. The physics insight
certainly can help here.

Adelic zeta-functions. Let us connect our considerations with the clas-
sical theory of zeta-functions of arithmetic varieties. The compactified Ja-
cobians and flagged Jacobian factors can be naturally defined over Z. Ac-
cordingly, one can consider their adelic zeta-functions , the products of local
zeta-functions. The latter are given in terms of the q–coefficients of the mo-
tivic superpolynomials when a = 0, t = 1; see Section 4.2. If all J∆ are affine
spaces, these coefficients simply give the numbers of cells in each dimension
and readily result in the formula for the adelic zeta. It will be the product
of the corresponding powers of the zeta-functions of affine spaces.

Generally, J∆ are not always affine. However the flagged Jacobian factors
are conjecturally strongly polynomial-count due to the discussion at the end
of [ChP1]. It is not impossible that they are even paved by affine spaces (no
counterexamples are known). Thus their local zeta-functions (presumably)
uniformly depend on |F|, ignoring the points of bad reduction (which are
not a problem within a given topological class of the singularity). Such
adelic zeta-functions generalize those of projective spaces, flag and Schubert
varieties; flagged Jacobian factors can be naturally seen as the next level of
Schubert calculus.

On Iwasawa polynomials. A similarity between the Iwasawa polyno-
mials and the Alexander polynomials observed by B.Mazur is basically as
follows in our setting. We use that the DAHA superpolynomial Ĥ(q, t, a)
(in the DAHA parameters) conjecturally coincide with Ĥmot(q, t, a). Due to
(4.32), the corresponding Alexander polynomial up to a normalization is

Ĥ (t, t, a = −1) = Ĥ (q, t, a = −t/q)
∣∣
q 7→t(6.46)

= L(Γ, q/t, t)
∣∣
q 7→t = L(Γ, 1, t) = Z(Γ, 1, t)/(1− t).

Recall that Z(Γ, q, t)=
∑∆(M)=Γ

M⊂R tdimF(R/M) (considered by Zúñiga-Galindo);
i.e. the summation here is over principal ideals M . Considering only the
group of principal ideals (the generalized Jacobian) matches the group of
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classes of ideals in the Iwasawa theory. Finding Iwasawa-type analogs of the
whole Ĥ(q, t, a) (presumably coinciding with reduced stable KhR–polyno-
mials of algebraic links) is a challenge.

According to what we discussed above, the passage to the families for
γ1 7→ τm− γ1 is natural here. The corresponding Puiseux extensions play the
role of Iwasawa towers. A u–counterpart of the Iwasawa polynomial is then
a weighted sum of the corresponding zeta-functions for principal ideals. The
limit of this construction at q = 1 (the field with one element) becomes the
corresponding weighted sum of Alexander polynomials, namely Ĥ(t, t, a =
−1, u) for Ĥ in (4.21). The techniques used to calculate the latter allow
to present Ĥ(t, t, a = −1, u) as finite sums of Alexander polynomials with
sufficiently simple denominators. We omit the action of the Galois group
and other related aspects here.

The deep connection of the Iwasawa polynomials with p-adic analytic
L–functions is of obvious importance to us. See Section 7 of [Mor], espe-
cially formula (7.2) and its further discussion there. Using flags and families
(parameters a, u) is beyond the approach there, and we have something else:
a connection with q–zeta from [Ch4]. We note that motivic superpolynomi-
als can be defined practically in the same way for local p–adic rings; we do
not really need Jacobian factors to be algebraic varieties, but the count of
modules becomes more involved. They may coincide with our ones (as in
the Fundamental Lemma).

What DAHA can provide. The coincidence of the DAHA superpoly-
nomials with the motivic superpolynomials and Galkin-Stöhr zeta-functions
can be checked as follows. One uses the DAHA recurrence relations similar
to those in Propositions 4.2, 4.3 and compare them with the transforma-
tions of geometric superpolynomials under the blowups. This was checked
for some families and seems doable in general.

For instance, this gives that the Galkin-Stöhr zeta-functions depend only
on the topological type of the singularity (i.e. on the corresponding link).
For L(Γ, q, t) from (4.32) and for any L(∆, q, t) such that J∆ is affine of the
same dimension as over C, this follows from Stöhr’s formula. However the
affineness of all J∆ holds only for torus knots and some “small” non-torus
families. The DAHA superpolynomials are topological invariants, which is a
relatively simple theorem.

Generally, the connection of the DAHA superpolynomials to the
Khovanov-Rozansky stable polynomials requires the recurrence relations for
the latter of Rosso-Jones type. They are not known, though the approach
via Soergel modules seems quite relevant. At t=q in the DAHA parameters,
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the DAHA superpolynomials were identified with the HOMFLY-PT polyno-
mials in full generality. The identification of the DAHA-Jones polynomials
with the corresponding WRT invariants was also done in quite a few ex-
amples (including some cases of special root systems). The CFT approach,
Rosso-Jones formulas, and the so-called Skein are used here.

The DAHA theory and Macdonald polynomials are also connected with
affine flag varieties, Hilbert schemes of CP 2 (and some similar surfaces),
Nekrasov’s instanton sums and the mixed Hodge polynomials of certain
related character varieties. Linking these theories to (classical and motivic)
zeta-functions is quite a challenge. Also, the geometric superpolynomials can
be expected to be connected with the spectral zeta-functions of the plane
curve singularities considered under the Schottky uniformization, but this is
only in the beginning and we do not see apriori reasons for DAHA to occur
here.

A clear potential of the DAHA superpolynomials is their connection with
q–analogs of Riemann’s zeta and L–functions from [Ch4]. Numerically, the
zeros of these q–analogs are absent in the left/right half-spaces in terms
of k=s− 1

2 (for s from the zeta and t=qk); if true, this would give the
Grand RH. We also suggested there a “straight” q–Riemann hypothesis
upon the symmetrization: Conjecture 6.3. The geometric applications of
DAHA outlined above may be not very surprising due to their origin: they
are deformations of Heisenberg and Weyl algebras. However, their link to the
classical zeta theory is certainly a surprising and promising development.
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