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We show using Borcherds products that for any fixed-point free au-
tomorphism of the Leech lattice satisfying a “no massless states”
condition, the corresponding cyclic orbifold of the Leech lattice
vertex operator algebra is isomorphic to the Monster vertex oper-
ator algebra. This induces an “orbifold duality” bijection between
algebraic conjugacy classes of fixed-point free automorphisms of
the Leech lattice satisfying this condition and algebraic conjugacy
classes of non-Fricke elements in the Monster. We use the duality
to show that non-Fricke Monstrous Lie algebras are Borcherds-
Kac-Moody Lie algebras, and prove a refinement of Norton’s Gen-
eralized Moonshine conjecture: the ambiguous constants relating
generalized moonshine Hauptmoduln under conjugation and mod-
ular transformations are necessarily roots of unity. We also describe
a class of rank 2 Borcherds-Kac-Moody Lie algebras attached to
the Conway group.
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Introduction

In this paper, we extend the known cyclic orbifold constructions of the Mon-
ster vertex operator algebra V \ to cover all fixed-point free automorphisms
of the Leech lattice satisfying a “no massless states” condition, proving an
extended version of a 1993 conjecture of Tuite. By orbifold duality, we find
that these cases exhaust all possible cyclic orbifold constructions of V \. The
first construction along these lines was the original construction by [24],
using the −1 involution, and this construction gave birth to the notion of
orbifold conformal field theory. Some candidate constructions using prime
order elements were proposed in the 1990s by [38] and a proof in the order
3 case was announced in [18]. However, proofs have only been fully writ-
ten up relatively recently: in [11] for the order 3 case, and in [1] for the
remaining primes 5, 7, and 13, after the mathematical foundations of the
cyclic orbifold construction were settled in [22]. We complete this particular
picture by considering orbifolds for all fixed-point free automorphisms of
the Leech lattice that satisfy Tuite’s conditions. Furthermore, we show that
the “anomaly-free” condition can be removed using a more general orbifold
construction. We note that there are other, non-orbifold constructions of V \

in the literature: [29], [36].
In a pair of remarkable papers [44, 45], Tuite argued using physical con-

siderations that the genus zero property of McKay-Thompson series in Mon-
strous Moonshine follows from some conjectured properties of the Moonshine
module V \, namely:

1) If g is anomaly-free and Tg is Fricke-invariant, then the cyclic orbifold
V \/g is isomorphic to V \.

2) If g is anomaly-free and Tg is not Fricke-invariant, then the cyclic
orbifold V \/g is isomorphic to the Leech lattice vertex operator alge-
bra VΛ.

Furthermore, by analyzing twisted sectors of VΛ, he gave strong evidence
for a conjecture dual to the second assertion, that if g is a fixed-point free
automorphism of Λ satisfying the “no massless states” condition, with an
anomaly-free lift to an automorphism of VΛ, then VΛ/g ∼= V \. Since there
are 38 algebraic conjugacy classes of suitable fixed-point free automorphisms,
this would give 38 constructions of V \.

Recent progress in the theory of vertex operator algebras and orbifold
constructions make it reasonable to revisit these conjectures. In particular,
[22] showed that the cyclic orbifold construction V 7→ V/g is well-defined
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for any anomaly-free finite order automorphism g of a simple, C2-cofinite,
holomorphic vertex operator algebra of CFT type (such as V \ and VΛ). Using
this result, together with a method inspired by string-theoretic T-duality,
the first conjecture, about Fricke automorphisms, was settled in [42]. In this
paper, we resolve the second conjecture, and therefore its dual. We also use
an unrolling method to define a generalization of the orbifold construction to
allow automorphisms with anomalies. This gives us 13 extra constructions of
V \, for a total of 51, and it yields a duality between fixed-point free algebraic
conjugacy classes in Co1 satisfying the “no massless states” condition and
non-Fricke classes in M. This duality was first conjectured in vague terms
in Section 7 of [12], and further developed with explicit calculations on the
level of genus zero modular functions in [33]. Tuite then developed it into a
statement about orbifold conformal field theory.

We remark that [41] not only gives a strong physical argument for the va-
lidity of Tuite’s conjectures using string-theoretic tools, but also gives a new
physical interpretation of the Atkin-Lehner involutions that yield the genus
zero property in terms of T-duality. Some of their algebraic manipulations
are quite similar to ours, since they use the same Borcherds products, but
where they have an elegant argument for isomorphisms V \/g ∼= VΛ based on
physical reasoning, we have been unable to avoid a direct computation.

We now consider applications of the orbifold duality. First, we show
that all of the monstrous Lie algebras mg constructed in [9] are Borcherds-
Kac-Moody Lie algebras, using the orbifold correspondence to work out the
non-Fricke case that was left over from the earlier paper. We will not say
much about the general theory of Borcherds-Kac-Moody Lie algebras, except
to note that they are similar in many ways to finite dimensional simple Lie
algebras: they are generated by sl2-triples with relations encoded by a Car-
tan matrix, and their highest-weight representations satisfy a generalization
of the Weyl character formula. From Section 4 of [7], if we have a homoge-
neous group action on such a Lie algebra, we obtain a twisted denominator
formula, using the BGG-type methods of [32]. We note that in the Fricke
case, we recently showed in [8] that the BGG-type methods are avoidable
using a decomposition introduced in [31]. However, in the non-Fricke case,
the infinitely many norm zero simple roots make such arguments difficult.

I was unable to prove the Borcherds-Kac-Moody condition in full in [9],
because I did not know how to show that the norm zero simple roots com-
mute in the non-Fricke case. This commutativity turns out to follow from
the commutativity of the weight 1 Lie algebra in VΛ through the orbifold
correspondence, together with a short manipulation using a string quanti-
zation functor. From the twisted denominator identities of mg, we prove a
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refinement of the main theorem in [9], i.e., the resolution of Norton’s Gener-
alized Moonshine conjecture. Norton’s original statement of the conjecture
[39] noted the presence of some ambiguous constants relating the General-
ized Moonshine functions, and suggested that they are roots of unity. Our
original proof in [9] only implies the constants are nonzero complex numbers,
but here we obtain roots of unity whenever the functions are non-constant.

We conclude with a brief analysis of rank 2 Lie algebras attached to
g∗-twisted modules of VΛ where g∗ acts without fixed points on Λ. The
constructions are analogous to the Monstrous Lie algebras mg constructed
in [9], and we show using the orbifold correspondence that they are in fact
isomorphic. We briefly speculate on an analogue of generalized moonshine
for VΛ, at least for fixed-point free twists.

Overview

In Section 1, we give basic definitions from the theory of vertex operator al-
gebras and abelian intertwining algebras. In Section 2, we give an overview of
Tuite’s conditions on automorphisms of the Leech lattice Λ. In Section 3, we
generalize the cyclic orbifold construction given in [22] to allow for anoma-
lous conformal weights. In Section 4, we show that the cyclic orbifold of V \

by a non-Fricke element is isomorphic to VΛ, with the dual automorphism
g∗ fixed-point free, and hence, the corresponding cyclic orbifold of VΛ by
g∗ is isomorphic to V \. In Section 5, we show that the monstrous Lie al-
gebras mg constructed in [9] are Borcherds-Kac-Moody for all g ∈M. The
Fricke case was done in [9], so we resolve the non-Fricke case here. We use
this to show that all generalized moonshine functions are Hecke-monic. In
Section 6, we use the Hecke-monic property to prove a refinement of our
resolution of Norton’s Generalized Moonshine conjecture. In Section 7, we
analyze a class of Lie algebras that are constructed in a manner similar
to the monstrous Lie algebras, using abelian intertwining algebras attached
to fixed-point free automorphisms of Λ satisfying the “no massless states”
condition. In Section 8, we produce a table of non-anomalous non-Fricke ele-
ments, the non-negative eta-product expansions of their McKay-Thompson
series, norm zero root multiplicities of the corresponding Lie algebras, and
the corresponding elements of Co0 in GAP and ATLAS notations.

Acknowledgments. The author would like to thank Toshiyuki Abe, Terry
Gannon, and Michael Tuite for helpful discussions, and Ching-Hung Lam,
Sven Möller, and Hiroki Shimakura for pointing out errors in an earlier
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version of this article. This research was partly funded by JSPS Kakenhi
Grant-in-Aid for Young Scientists (B) 17K14152.

1. Vertex algebras and abelian intertwining algebras

We introduce some basic terminology for vertex algebras [2], vertex operator
algebras [24], and abelian intertwining algebras [15]. We will not explore the
theories behind these objects much, because the proofs of our results do not
require us to use any substantial details beyond what was established in the
literature. However, we will give brief definitions.

Definition 1.1. A vertex algebra over C is a complex vector space V
equipped with a distinguished vector 1 ∈ V , a distinguished linear transfor-
mation T : V → V , and a left multiplication map Y : V → (EndV )[[z, z−1]],
written Y (a, z) =

∑
n∈Z anz

−n−1 satisfying the following conditions:

1) Y (1, z) = idV = idV z
0, and Y (a, z)1 ∈ a+ zV [[z]].

2) For any a, b ∈ V , Y (a, z)b ∈ V ((z)), i.e., anb = 0 for n sufficiently large.

3) [T, Y (a, z)] = d
dzY (a, z)

4) The Jacobi identity: for any a, b ∈ V ,

x−1δ

(
y − z
x

)
Y (a, y)Y (b, z)− x−1δ

(
z − y
−x

)
Y (b, z)Y (a, y)

= z−1δ

(
y − x
z

)
Y (Y (a, x)b, z)

where δ(z) =
∑

n∈Z z
n and δ(y−zx ) is expanded as a formal power series

in z.

An automorphism of a vertex algebra V is a linear transformation g : V → V
that fixes 1, and satisfies Y (ga, z)gb = gY (a, z)b for all a, b ∈ V .

Definition 1.2. A conformal vertex algebra of central charge c ∈ C is a
vertex algebra equipped with a distinguished nonzero vector ω, satisfying
the following conditions:

1) If we write Y (ω, z) =
∑

n∈Z Lnz
−n−2, then the coefficients Ln ∈ EndV

satisfy the Virasoro relations:

[Lm, Ln] = (m− n)Lm+n + c
m3 −m

12
δm+n,0idV
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2) L0 acts semisimply on V , with integer eigenvalues.

3) L−1 = T .

An automorphism of a conformal vertex algebra is an automorphism of
the underlying vertex algebra that fixes ω. A vertex operator algebra is a
conformal vertex algebra for which the eigenvalues of L0 are bounded below
and have finite multiplicity.

Vertex algebras have a more complicated representation theory than
ordinary algebras, because modules may be twisted by automorphisms of
the vertex algebra. Here and for the remainder of the paper, we use the
notation e(x) to denote the normalized exponential e2πix.

Definition 1.3. Let V be a vertex algebra over C, and let g be an auto-
morphism of order n. Then a g-twisted V -module is a complex vector space
M equipped with an action map YM : V → (EndM)[[z1/n, z−1/n]], written
YM (a, z) =

∑
k∈ 1

n
Z akz

−k−1 satisfying the following conditions:

1) YM (1, z) = idM

2) For any a ∈ V , u ∈M , YM (a, z)u ∈M((z1/n)), i.e., aku = 0 if k is
sufficiently large.

3) If a ∈ V satisfies ga = e(k/n)a for some k ∈ Z, then YM (a, z) ∈
zk/n(EndM)[[z, z−1]].

4) The twisted Jacobi identity holds: if ga = e(k/n)a, then for any b ∈ V ,

x−1δ

(
y − z
x

)
YM (a, y)YM (b, z)− x−1δ

(
z − y
−x

)
YM (b, z)YM (a, y)

= z−1

(
y − x
z

)−k/n
δ

(
y − x
z

)
YM (Y (a, x)b, z)

If V is a vertex operator algebra, these conditions define the notion of “weak
g-twisted V -module”. An “admissible g-twisted V -module” is a weak g-
twisted V -module that admits a 1

nZ≥0-grading that is compatible with the
L0-grading on V . An “ordinary g-twisted V -module” is an admissible g-
twisted V -module for which L0 acts semisimply, with finite dimensional
eigenspaces, and eigenvalues that are bounded below in each coset of Z in
C. When g = 1, we replace “g-twisted V -module” with “V -module”.
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Definition 1.4. Here are a few more technical conditions about vertex al-
gebras. We won’t use them in any specific way, but they appear as conditions
in the theorems we need.

1) A vertex algebra V is C2-cofinite if the subspace C2(V ) spanned by
{a−2b|a, b ∈ V } satisfies the property that V/C2(V ) is finite dimen-
sional.

2) A vertex operator algebra V is holomorphic if all admissible V -modules
are isomorphic to direct sums of V .

3) A vertex operator algebra V is of CFT type if L0 has only non-negative
eigenvalues, and the kernel of L0 is spanned by 1.

Definition 1.5. ([15]) Let A be an abelian group, and let (F,Ω) be a
normalized abelian 3-cocycle on A, i.e., a pair of maps F : A⊕3 → C×, Ω :
A⊕2 → C× satisfying:

1) (pentagon) F (i, j, k)F (i, j + k, `)F (j, k, `) = F (i+ j, k, `)F (i, j, k + `)

2) (hexagon) F (i, j, k)−1Ω(i, j + k)F (j, k, i)−1 = Ω(i, j)F (j, i, k)−1Ω(i, k)

3) (hexagon) F (i, j, k)Ω(i+ j, k)F (k, i, j) = Ω(j, k)F (i, k, j)Ω(i, k)

4) (normalization) F (i, j, 0) = F (i, 0, k) = F (0, j, k) = 1 and Ω(i, 0) =
Ω(0, j) = 1

for all i, j, k, ` ∈ A. We define the bilinear form bΩ : A×A→ C/Z by

e(bΩ(a, b)) = Ω(a+b,a+b)
Ω(a,a)Ω(b,b) . Then an abelian intertwining algebra of level N ∈

Z≥1 and central charge c ∈ Q associated to the datum (A,F,Ω) is a complex
vector space V equipped with

1) a 1
NZ×A-grading V =

⊕
n∈ 1

N
Z Vn =

⊕
i∈A V

i =
⊕

n∈ 1

N
Z,i∈A V

i
n

2) a left-multiplication Y : V → (EndV )[[z1/N , z−1/N ]] written Y (a, z) =∑
n∈ 1

N
Z anz

−n−1, and

3) distinguished vectors 1 ∈ V 0
0 and ω ∈ V 0

2

satisfying the following conditions for any i, j, k ∈ A, a ∈ V i, b ∈ V j , u ∈ V k,
and n ∈ 1

NZ:

1) anb ∈ V i+j .

2) anb = 0 for n sufficiently large.

3) Y (1, z)a = a
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4) Y (a, z)1 ∈ a+ zV [[z]].

5) Y (a, z)b =
∑

k∈bΩ(i,j)+Z akbz
−k−1.

6) The Jacobi identity:

x−1

(
y − z
x

)bΩ(i,j)

δ

(
y − z
x

)
Y (a, y)Y (b, z)u

−B(i, j, k)x−1

(
z − y
eiπx

)bΩ(i,j)

δ

(
z − y
−x

)
Y (b, z)Y (a, y)u

= F (i, j, k)z−1δ

(
y − x
z

)
Y (Y (a, x)b, z)

(
y − x
z

)−bΩ(i,k)

u

where B(i, j, k) = Ω(i,j)F (i,j,k)
F (j,i,k) .

7) The coefficients of Y (ω, z) =
∑

k∈Z Lkz
−k−2 satisfy the Virasoro rela-

tions at central charge c.

8) L0a = na if a ∈ Vn.

9) d
dzY (a, z) = Y (L−1a, z).

The type of a quadratic form is the pair (A, q), where q : A→ C/Z is the
unique quadratic form satisfying e(q(a)) = Ω(a, a) for all a ∈ A.

Abelian intertwining algebras of type (A, q) form a category AIA(A,q) -
see [9] Section 2.2 for details.

The standard example of an abelian intertwining algebra, described in
detail in Chapter 12 of [15], is that of a rational lattice, i.e., a free abelian
group L of finite rank equipped with a non-degenerate Q-valued quadratic
form Q. By non-degeneracy of Q, there is some r, s ∈ Z≥0 such that L⊗Z
R ∼= Rr,s. The corresponding abelian intertwining algebra VL is constructed
as a sum

⊕
λ∈L π

r,s
λ of irreducible modules of the Heisenberg Lie algebra

(L⊗Z C[z, z−1])⊕ CK. Here, πr,sλ is generated by a vector |λ〉 on which
L⊗Z zC[z] acts by zero, elements µ ∈ L⊗ z0 act by the scalar (µ, λ), and
K acts by identity. Multiplication operations between Heisenberg modules
are given by intertwining operators, which are unique up to a constant. Any
normalized choice of intertwining operators then yields a suitable 3-cocycle.
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2. Fixed-point free automorphisms yielding no
massless states

We consider the vertex operator algebra VΛ attached to the Leech lattice Λ. If
g is a fixed-point free automorphism of Λ, then all lifts of g to automorphisms
of VΛ are conjugate to each other. I believe this is well-known to experts,
but I couldn’t find anything close to an explicit statement in the literature
before this year.

Proposition 2.1. ([34]) Let g be an automorphism of Λ such that (Λ⊗
C)g = {0}. Then a lift of g to an automorphism of VΛ exists, and for any
two lifts ĝ, g̃ of g to automorphisms of VΛ, there exists some h ∈ AutVΛ such
that hĝ = g̃h.

Proof. This follows immediately from the results of [34] Section 4.2, but
we offer a brief outline of the reasoning. By [35], any finite order automor-
phism admits a lift. By Theorem 2.1 of [21], for any two lifts ĝ, g̃ of g to
automorphisms of VΛ, there exists a ∈ Λ⊗ C such that ĝ = ea0 g̃, and expo-
nentials satisfy the commutation relation ea0 g̃ = g̃eg

−1(a)0 . Since g is fixed-
point free, there is some b ∈ Λ⊗ C such that g(b)− b = a, e.g., we may take

b =
∑|g|−1

i=0
i
|g|g

i(a). Thus,

ĝ = ea0 g̃ = e−b0eg(b)0 g̃ = e−b0 g̃eb0

and the two lifts are conjugate by a lift of the identity on Λ. �

Naturally, this proof extends to fixed-point free automorphisms of any
even lattice that has no roots.

In Section 3.3 of [45], we are introduced to 3 conditions on automor-
phisms a of Λ. Letting n be the order of the automorphism a, we de-
compose the characteristic polynomial of a as a product det(xI24 − a) =∏
k|n(xk − 1)ak for uniquely defined integers ak. Following [23], we define the

Frame shape of a as the “generalized permutation”
∏
k|n k

ak = 1a1 · · ·nan .
Then we define the “a-twisted vacuum energy” Ea0 = −

∑
k|n

ak

k , and con-
sider the following three conditions:

1) (fixed-point free)
∑

k|n ak = 0

2) (no massless states) Ea0 > 0

3) (anomaly-free) Ea0 ∈ 1
nZ
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By a short calculation, one can show that the first condition is equiv-
alent to dim(Λ⊗ C)a = 0, and that Ea0 + 1 is the lowest L0-eigenvalue of
the irreducible a-twisted VΛ-module VΛ(a). In order for the orbifold VΛ/a
to be isomorphic to V \, and in particular to have no weight 1 space, it is
necessary that a be fixed-point free (giving no contribution from VΛ) and
that Ea0 > 0 (giving no contribution from the a-twisted module VΛ(a)). In
fact, it is also necessary that all other nontrivially twisted modules yield no
weight 1 contribution, meaning the lift of a on VΛ(aj) acts fixed-point freely
on the weight 1 subspace. I do not know a way to rewrite this additional
condition in terms of Frame shape, but we will find experimentally that it
does not eliminate any new classes.

A brief examination of the character table of Co0 yields 165 conjugacy
classes of elements, which form 160 algebraic conjugacy classes (where classes
are algebraically conjugate if a Galois automorphism of a suitable cyclo-
tomic extension of Q permutes the corresponding columns of the character
table). By examining frame shapes in [33], we find that there are 95 conju-
gacy classes of fixed-point free elements, which form 90 algebraic conjugacy
classes. A more detailed examination by Tuite showed that there are 53 con-
jugacy classes satisfying the first two conditions, which form 51 algebraic
conjugacy classes. Furthermore, 40 conjugacy classes satisfy all three con-
ditions, and they form 38 algebraic conjugacy classes. We note that Frame
shapes only detect algebraic conjugacy.

If we define the modular forms ηa(τ) by
∏
k|n η(kτ)ak and θa(τ) by the

theta function of the fixed-point sublattice Λa, then in Section 7 of [12],
we find the claim that θa(τ)/ηa(τ) is the McKay-Thompson series of some
element of M. In this paper, we are only concerned with the special case that
a is fixed-point free, so we simply consider 1/ηa(τ). One may find all of the
relevant Frame shapes in Tables 1 and 2 of [45], and one may see that they
are the reciprocals of the corresponding eta expansions of McKay-Thompson
series in the appendix to this paper.

3. Anomalous orbifolds

We recall from Theorem 10.3 of [17] that if V is a simple, C2-cofinite, holo-
morphic vertex operator algebra V , and g is an automorphism of finite order
n, then there is a unique g-twisted V -module, up to isomorphism (which we
will call V (g)), and its L(0)-spectrum lies in t

n2 + 1
nZ for some uniquely de-

termined t ∈ Z/nZ. We say that g is anomalous if t 6= 0, and we say that g
is anomaly-free if t = 0.
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The key construction for this paper is the following: By [22] Theo-
rem 5.15, if V is a simple, C2-cofinite, holomorphic vertex operator al-
gebra V of CFT type, and g is an automorphism of finite order n, such
that the nontrivial irreducible twisted modules V (gi) have strictly positive
L(0)-spectrum, then there is an abelian intertwining algebra structure on
gV =

⊕n−1
i=0 V (gi), graded by an abelian group D that lies in an exact se-

quence 0→ Z/nZ→ D → Z/nZ→ 0, with addition law determined by the
“add with carry” 2-cocycle

c2t(i, k) =

{
0 in + kn < n

2t in + kn ≥ n

where the notation in denotes the unique representative of i ∈ Z/nZ in
{0, . . . , n− 1}. By loc. cit. Proposition 5.13, the quadratic form on D is
isomorphic to the discriminant form on the even lattice with Gram matrix(−2tn n

n 0

)
.

Furthermore, by Theorem 5.16, if t = 0 (i.e., g is anomaly-free), then the
abelian intertwining algebra gV is naturally graded by Z/nZ× Z/nZ, such
that V is the sum of the degree (0, i) pieces, and that there is a simple C2-
cofinite, holomorphic vertex operator algebra V/g of CFT type given by the
sum of the degree (j, 0) pieces (for 0 ≤ j < n). The natural Z/nZ-grading
from this decomposition endows V/g with a canonical automorphism g∗

whose order is equal to |g|, such that (V/g)/g∗ ∼= V and g∗∗ = g. We remove
the condition on t in this theorem using the following unrolling construction
given in [9].

Definition 3.1. ([9] Definition 2.3.3) Given a diagram (A, q)
π
� (A′, q′)

i
↪→

(A′′, q′′) of quadratic spaces, we define the unrolling functor AIA(A,q) →
AIA(A′′,q′′) to be the composite of the following two functors:

• Pullback along π: For any a′ ∈ A′, the degree a′ part of the pullback
abelian intertwining algebra is equal to the degree π(a′) part of the
source abelian intertwining algebra. Multiplication is defined in the
obvious way.

• Extension by zero: The degree a′′ part of the target abelian intertwin-
ing algebra is zero if a′′ /∈ i(A′), and equal to the degree a′ part of
the source abelian intertwining algebra if a′′ = i(a′). Multiplication is
defined in the obvious way.
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Proposition 3.2. ([9] Proposition 2.3.4) Let V be a simple, C2-cofinite,
holomorphic vertex operator algebra V of CFT type, and let g be an auto-
morphism of finite order n, such that the nontrivial twisted modules V (gi)
have strictly positive conformal weight. Let N = n2

(n,t) , where t is given in the
introduction of the section. Then we may unroll gV along the diagram

(D, q) �

〈(
1,

tn
(n, t)

)
,

(
0,

n

(n, t)

)〉
↪→ Z/NZ× Z/NZ

where the first arrow is given by a(1, tn
(n,t)) + b(0, n

(n,t)) 7→ (an, bn + 2tnba/nc),
and the quadratic form on Z/NZ× Z/NZ is given by (a, b) 7→ ab

N . Unrolling
then yields a Z/NZ× Z/NZ-graded abelian intertwining algebra structure on
g
NV =

⊕N−1
i=0 V (gi), where the first copy of Z/NZ parametrizes twisting, and

the second is determined by the eigenvalues of the unique homogeneous auto-
morphism g̃ of order N that acts on V by g, and on V (g) by e(L0) = e2πiL0.
Furthermore, if the central charge of V is a multiple of 24, then the char-
acters of these graded pieces of g

NV form a vector-valued modular function
F g = {F gi,j(τ)}i,j∈Z/NZ of type ρII1,1(N).

We then define the generalized orbifold construction:

Definition 3.3. Let V be a simple, C2-cofinite, holomorphic vertex opera-
tor algebra V of CFT type, and let g be an automorphism of finite order n,
such that the nontrivial twisted modules V (gj) have strictly positive confor-
mal weight. We define V/g = (gNV )g̃ =

⊕N−1
j=0

g
NV

(j,0), and we define g∗ to be

the automorphism that takes any vector v ∈ V (gj) to e(j/N)v = e2πij/Nv.

We now show that anomalous orbifolds do not produce any new vertex
operator algebras. While we do not get new objects, the construction is still
useful, because we obtain a correspondence of automorphisms.

Proposition 3.4. The smallest positive power of g that is anomaly-free
is gn/(n,t) = gN/n, and V/g is a simple, C2-cofinite, holomorphic vertex op-
erator algebra of CFT type that is isomorphic to V/gN/n. Furthermore, g∗

restricts to an automorphism of order n on V/g that further restricts to g
on V gN/n

= (V/g)(g∗)N/n

. Finally, (V/g)/g∗ ∼= V and g∗∗ = g.

Proof. The claim about the anomaly-free power follows straightforwardly
from considering the quadratic form (and hence conformal weights) on g

NV .
From the structure of our unrolling, we see that the summand g

NV
(j,0) mak-

ing up V/g is nonzero if and only if j tn
(n,t) ∈

n
(n,t)Z, i.e., j ∈ n

(n,t)Z. Thus, we
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have n summands, giving the order of g∗, and the claim about the restriction
is clear. To prove the isomorphism V/g ∼= V/gN/n, we apply the uniqueness
of simple current extensions from Proposition 5.3 of [19], so it suffices to
show that the irreducible V g-modules making up V/g are isomorphic to the
irreducible V g-modules making up V/gN/n.

In the course of unrolling, we replicate the twisted modules, but with
a shifted g̃-action. The shifting is determined uniquely by the kernel of the
pullback map, which is generated by (n, −ntn(n,t) ) ∈ Z/NZ× Z/NZ. In particu-

lar, the module labeled V (gn) is isomorphic to V as a V -module, but where
the action of g is shifted by the constant e(− t

n). We therefore have V g-

module isomorphisms identifying V (gjn+k)g̃=ζ with V (gk)g̃=e(−jt/n)ζ for all
constants ζ, so the sum defining V/g is identified with

n/(n,t)−1⊕
j=0

(n,t)−1⊕
k=0

V (gnk/(n,t))g̃=e(−jt/n),

and this is equal to the sum defining V/gn/(n,t). �

Corollary 3.5. Let V be a simple, C2-cofinite, holomorphic vertex opera-
tor algebra V of CFT type, and let g be an automorphism of finite order.
Then the automorphism of Z/NZ× Z/NZ given by (a, b) 7→ (b, a) preserves
the quadratic form q : (a, b) 7→ ab

N , and this automorphism on grading groups

induces an isomorphism g
NV
∼= g∗

N (V/g) in AIA(Z/NZ×Z/NZ,q).

Proof. It suffices to show that gNV , under the switched grading, satisfies the

defining properties of g
∗

N (V/g). It is immediate that we have an abelian inter-

twining algebra of the correct type, and that
⊕N−1

j=0 (gNV )(0,j) is isomorphic

to V/g. It remains to show that for each 1 ≤ i < N , the sum
⊕N−1

j=0 (gNV )(i,j)

is an irreducible (g∗)i-twisted V/g-module. However, this follows immedi-
ately from restricting the Jacobi identity for abelian intertwining algebras
to the appropriate graded pieces. �

4. Non-Fricke orbifolds of Moonshine

We examine the McKay-Thompson series of non-Fricke elements of the Mon-
ster, and their product expansions, building on the analysis in [7].

Let us review the description of McKay-Thompson series that was ini-
tially conjectured in [12], and proved in [4] to hold for the moonshine mod-
ule V \ constructed in [24]. For each element g ∈M, the graded character
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Tg(τ) = Tr(gqL0−1|V \) is a Hauptmodul for some genus zero subgroup Γg
of SL2(R), and we refer to it using the notation n|h+ e1, e2, . . ., where n is
the order of g, h is the smallest divisor of n and 24 such that Γg contains
Γ0(nh), and e1, e2, . . . are exact divisors of n/h. If n/h appears on this list
of exact divisors, or if n = h, then we say that g is Fricke (i.e., the Fricke
involution τ 7→ −1

nhτ acts by ±1 on Tg(τ)), and if not, then we say that g is
non-Fricke.

By [9] Proposition 2.3.4 (which is basically [22] Theorem 5.14 with an
unrolling adjustment), the abelian intertwining algebra g

NV
\ has charac-

ter given by a vector-valued modular function F g = {F gi,j(τ)}i,j∈Z/NZ for
the Weil representation ρII1,1(N) attached to a hyperbolic lattice. This func-
tion has appeared earlier, in [7], where it was lifted to a Borcherds product
that described an infinite dimensional Borcherds-Kac-Moody Lie algebra Lg
(written as Wg in that paper). The root multiplicities of Lg are coefficients
of F g, and we will use the fact that the coefficients are non-negative integers
to determine V \/g for all non-Fricke classes in M. We note that by Theo-
rem 1 of [42], V \/g ∼= V \ for all anomaly-free Fricke elements g (hence also
all anomalous Fricke elements, by Proposition 3.4), so this completes the
determination of cyclic orbifolds. As a consequence, Tuite’s explanation of
the genus zero property of moonshine functions is no longer conditional on
uniqueness conjectures [45].

Definition 4.1. A eta product of the form
∏k
i=1 η(aiτ)bi is non-negative if

the resulting product expansion q
∑

i aibi/24
∏
j≥1(1− qj)cj has cj ≥ 0 for all

j ≥ 1.

Proposition 4.2. Let g be a non-Fricke element of M. Then there is a
unique non-negative eta product expansion of the McKay-Thompson series
Tg(τ).

Proof. By [7] Theorem 3.24 and Corollary 3.25, we have the following prod-
uct expansion:

Tg(σ)− Tg(−1/τ) = p−1
∏

i>0,j∈ 1

N
Z

(1− piqj)c
g
i,j(ij)

where cgi,j(ij) is the coefficient of qij−1 in the q-expansion of F gi,j . Because
Tg is non-Fricke, Tg(−1/τ) is regular at infinity, so this product expansion
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has no negative powers of q. By taking the limit q → 0, we find that

Tg(σ)− lim
τ→0

Tg(τ) = p−1
∏
i>0

(1− pi)c
g
i,0(0)

By Theorem 2.5.4 of [9] (essentially combining the previously mentioned
results of [22] with manipulations in [7]), each cgi,0(0) is the dimension of a

subspace of V \(gi), so it is a non-negative integer. We thus obtain a non-
negative eta product for Tg. Uniqueness follows from Lemma 3.6 in [7], which
asserts that F g, hence the set of its constant terms, is completely determined
by the McKay-Thompson series of the powers of g. �

Remark 4.3. Table 3 in [12] gives eta product expansions of many McKay-
Thompson series, but some elements are given multiple eta product expan-
sions, with no particular reason to choose one over the others. Proposition 4.2
gives us a way to make a distinguished choice, namely the non-negative ex-
pansions.

Remark 4.4. It would be nice to have a characterization of non-Fricke
completely replicable functions as eta products. Many of the properties of
the non-negative eta products, such as the balance between exponents on
η(aτ) and η(Na τ), seem to follow naturally from the Hauptmodul property
applied to the expansion at zero.

Theorem 4.5. If g is non-Fricke, then V \/g is isomorphic to the Leech
lattice vertex operator algebra VΛ, and g∗ induces a fixed-point free automor-
phism of the Leech lattice Λ satisfying the “no massless states” condition. If
σ is a fixed-point free automorphism of the Leech lattice Λ satisfying the “no
massless states” condition, then there is a lift σ̃ of σ to an automorphism of
VΛ, unique up to conjugation, such that VΛ/σ̃ ∼= V \, and σ∗ is non-Fricke.

Proof. We first note that by Theorem 2.2.9 of [9], the hypotheses of Def-
inition 3.3 apply to any automorphism of V \, so we may apply the cyclic
orbifold theory established in [22]. By Proposition 3.4, V \/g is a simple, C2-
cofinite, holomorphic vertex operator algebra V \/g with central charge 24
and of CFT type, and it is isomorphic to the anomaly-free orbifold V \/gN/n.
The weight 1 subspace of V \/gN/n has dimension equal to the sum of con-

stant terms
∑(n,t)−1

i=0 cg
N/n

i,0 (0). If TgN/n(τ) is given by the non-negative eta

product
∏k
i=1 η(aiτ)bi , then the constant terms of {Fj,0}j∈Z/(n,t)Z are given

by
∑

ai|j bi. Using these facts, we have enumerated the non-negative eta
products of the anomaly-free non-Fricke classes g in the Appendix, and
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found that the constant terms always sum to 24. By the uniqueness result
of [20], any simple C2-cofinite holomorphic vertex operator algebra of cen-
tral charge 24 with 24-dimensional weight one subspace is isomorphic to VΛ.
The claim about g∗ then follows from the fact that VΛ/g

∗ has dimension
zero weight 1 space, eliminating the possibility of fixed points and massless
states.

To show the claim about σ, it suffices to enumerate the relevant classes,
and see that all have the form g∗ for some non-Fricke g. This is done for the
38 non-anomalous classes in the Appendix, and for the 13 anomalous classes
in Table 2 of [45]. �

Corollary 4.6. The cyclic orbifold correspondence between V \ and VΛ in-
duces a natural bijection between algebraic conjugacy classes of non-Fricke
elements of M and algebraic conjugacy classes of fixed-point free automor-
phisms of Λ satisfying the “no massless states” condition. This bijection
respects the anomaly-free property, and induces isomorphisms between quo-
tients of centralizers by the centralizing elements.

Proof. From Theorem 4.5, we obtain a correspondence between non-Fricke
g ∈M and fixed-point free g∗ ∈ AutVΛ satisfying the “no massless states”
condition. Inside the automorphism group of (V \)g, which is identified with
(VΛ)g

∗
, we have the group of all automorphisms that admit lifts to homoge-

neous automorphisms of the abelian intertwining algebra gVΛ. This group is
identified with the quotients CM(g)/〈g〉 and CAutVΛ

(g∗)/〈g∗〉, respectively,
so the groups are isomorphic. �

5. Monstrous Lie algebras

In Sections 2 and 3 of [9], we constructed an infinite dimensional Lie algebra
mg for each g ∈M by applying the composite of an “add a torus” functor
AT iL (where i : (L∨/L, e(Q))→ (D, q) is an orbifold-admissible quadratic
isomorphism) and a bosonic string quantization functor OCQ to the abelian
intertwining algebra gV \. In Proposition 3.4.3 of loc. cit., we showed that if
g is Fricke, then mg is a Borcherds-Kac-Moody Lie algebra (defined in [3]),
by appealing to a sufficient set of conditions adapted from [5]. However,
for the case that g is non-Fricke, we were unable to verify that one of the
conditions holds. The Fricke case was sufficient to prove the Generalized
Moonshine conjecture, so we left it at that. However, with the results of the
previous sections, we can prove that the missing condition also holds in the
non-Fricke case.
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We begin by defining Borcherds-Kac-Moody Lie algebras.

Definition 5.1. If I is a countable index set, a matrix A = (ai,j)i,j∈I of
real numbers is called a generalized Cartan matrix if it satisfies the following
conditions:

1) A is symmetrizable, i.e., there is a diagonal matrix Q whose diagonal
entries Qi,i = qi are positive real numbers, such that QA is symmetric.

2) ai,j < 0 if i 6= j.

3) If ai,i > 0, then ai,i = 2 and for all j ∈ I, ai,j ∈ Z.

Given a generalized Cartan matrix (ai,j)i,j∈I , its universal Borcherds-Kac-
Moody algebra g(A) is the Lie algebra with generators {hi, ei, fi}i,j∈I , and
the following relations:

1) sl2 relations: [hi, ek] = ai,kek, [hi, fk] = −ai,kfk, [ei, fj ] = δi,jhi.

2) Serre relations: If ai,i > 0, then

ad(ei)
1−2ai,j (ej) = ad(fi)

1−2ai,j (fj) = 0.

3) Orthogonality: If ai,j = 0, then [ei, ej ] = [fi, fj ] = 0.

A Borcherds-Kac-Moody algebra is a Lie algebra of the form (g(A)/C).D,
where C is a central ideal, and D is a commutative Lie algebra of outer
derivations.

Theorem 5.2. If g is non-Fricke, then the Monstrous Lie algebra mg is a
Borcherds-Kac-Moody Lie algebra.

Proof. From the proof of [9] Proposition 3.4.3, the only condition that is
not immediately verified is given as follows: “Any two roots of non-positive
norm that are both positive or both negative have inner product at most
zero, and if the inner product is zero, then the root spaces commute.”

The Lie algebra mg is II1,1(−1/N)-graded, where we identify the root
lattice II1,1(−1/N) with Z× 1

NZ with quadratic form (a, b) 7→ −ab, and the
space of degree (a, b) 6= (0, 0) is called the (a, b)-root space. Positive roots
(a, b) of non-positive norm necessarily lie in the region where both a and b
are non-negative, so their inner product is at most zero. The same conclusion
then holds for negative roots. The inner product is zero if and only if both
roots have norm zero, i.e., they both lie on the x-axis or on the y-axis.
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Thus, it suffices to show that the Lie bracket on norm zero roots of mg is
commutative.

We claim that the Lie bracket on norm zero roots of mg is induced by
the Lie bracket on the weight 1 subspace of V \/g, which can be identified
with the commutative Lie algebra Λ⊗ C by Theorem 4.5. We show this
through explicit analysis of the “old canonical quantization” functor, which
sends conformal vertex algebras of central charge 26 to Lie algebras, and is
defined so that the left multiplication map a 7→ [v, a] in the Lie algebra is
given by the v0 operation in the weight 1 subspace of the conformal vertex
algebra. The Goddard-Thorn no-ghost theorem [28] (see the appendix to
[31] for a detailed proof) identifies the subspace of mg in degree (i, 0) with

the weight 1 subspace of V \(gi)g̃ ⊗ C|(i, 0)〉, or equivalently V
g∗=e(i/N)

Λ ⊗
C|(i, 0)〉, where |(i, 0)〉 ∈ π1,1

(i,0) is the weight zero generating element of the
Heisenberg module. Thus, the Lie bracket is completely determined by the
following calculation:

[u1 ⊗ |(i, 0)〉, u2 ⊗ |(j, 0)〉] = (u1 ⊗ |(i, 0)〉)0u
2 ⊗ |(j, 0)〉

=
∑
n∈Z

u1
nu

2 ⊗ |(i, 0)〉−n−1|(j, 0)〉

= u1
0u

2 ⊗ |(i, 0)〉−1|(j, 0)〉
= u1

0u
2 ⊗ |(i+ j, 0)〉

Since the weight one subspace of VΛ is a commutative Lie algebra under the
bracket [u1, u2] = u1

0u
2, we have u1

0u
2 = 0, so the norm zero roots commute.

�

Corollary 5.3. For each non-Fricke g ∈M, the Lie algebra mg is isomor-
phic to the Lie algebra Lg (named Wg in [7] Proposition 4.4).

Proof. By Theorem 5.2, both Lie algebras are Borcherds-Kac-Moody, so by
[9] Lemma 3.4.4, it suffices to show that the root multiplicities match. For
both Lie algebras, the root multiplicity of (a, b) is given by cga,b(ab). �

We briefly recall the description of equivariant Hecke operators in [6] -
see also [46] and [26]. Let G be a finite group, and consider the moduli stack
MG

Ell of complex-analytic elliptic curves equipped with G-torsors. Then we
may define the equivariant Hecke operator Tn as an endomorphism on the
space of functions on MG

Ell by the formula

Tnf(P → E) =
1

n

∑
φ:E′→E

f(φ∗P → E′)
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where the sum runs over all degree n isogenies φ : E′ → E. The moduli

stack is a complex analytic quotient of the form Hom(Z× Z, G)
SL2(Z)
× H, so

a choice of oriented basis of H1(E) yields a conjugacy class of commuting
pairs of elements of G, and f can be written f(g, h; τ), where g, h ∈ G form
a commuting pair. Then the Hecke operator is written

Tnf(g, h; τ) =
1

n

∑
ad=n,0≤b<d

f

(
gd, g−bha;

aτ + b

d

)

As we explain in [6], this formula also works for the larger moduli space

Hom(Z× Z, G)
±Z
× H of elliptic curves equipped with G-torsors and mul-

tiplicative uniformizations. This allows us to describe Hecke operators on
abstract q-expansions without the assumption of modular invariance.

Remark 5.4. The formula for the Hecke operator depends on a sign con-
vention that is not uniform in the literature. In most of the generalized
moonshine literature, we find the implicit use of a uniformization of elliptic
curves that identifies the oriented basis of H1 with the pair (−1, τ) instead
of the usual pair (1, τ). On a representation theory level, this amounts to
the ambiguity between g-twisted modules and g−1-twisted modules, and the
literature is not uniform about which is which. On the level of functions, this
changes the SL2(Z) transformation rule from f(gahc, gbhd; τ) = f(g, h; aτ+b

cτ+d)

to f(gah−c, g−bhd; τ) = f(g, h; aτ+b
cτ+d). The former rule was given in [39] as

part of the Generalized Moonshine conjecture, while the latter was given in
[47] to describe orbifold genus one functions in conformal field theory.

We say that a function f on Hom(Z× Z, G)
±Z
× H (resp. Hom(Z× Z, G)

SL2(Z)
× H) is Hecke-monic on Hom(Z× Z, G)

±Z
× H (resp. Hom(Z× Z, G)

SL2(Z)
×

H) if there is a monic polynomial Φn ∈ Q[x] of degree n such that

nTnf(g, h; τ) = Φn(f(g, h; τ))

for all commuting pairs (g, h) in G.

Corollary 5.5. All Generalized Moonshine functions

Z(g, h; τ) = Tr(h̃qL0−1|V \(g))

are Hecke-monic on Hom(Z× Z,M)
±Z
× H.
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Proof. The Hecke-monic property follows from Proposition 4.8 of [7], once

we establish a suitably compatible action of C̃M(g) on Lg. Such an action is
given by transport de structure along the isomorphism given in Corollary 5.3.

As we noted in Remark 5.3 of [8], the proof of Proposition 4.8 in [7]
has an erroneous line in a string of equalities, but it can be fixed using the
reasoning given in the proof of Theorem 5.2 in [8]. �

6. Refined generalized Moonshine

Let us recall the statement of the Generalized Moonshine conjecture for
twisted V \ modules, in the form that it was solved in [9]:

Theorem 6.1. ([9], Theorem 4.2.2) Any rule that assigns:

• to each g ∈M the irreducible g-twisted V \-module V \(g), with its canon-
ical projective CM(g)-action, and

• to each commuting pair (g, h) the function

Z(g, h; τ) = Tr(h̃qL0−1|V \(g))

for some lift h̃ of h to a finite order linear transformation on V \(g),

satisfies the following conditions:

1) The formal series defining Z(g, h; τ) is the q-expansion of a holomor-
phic function on the upper half-plane H.

2) The function (g, h) 7→ Z(g, h; τ) is invariant under simultaneous con-
jugation on the pair (g, h) in M, up to rescaling.

3) Z(g, h; τ) is either a constant or a Hauptmodul.

4) For any
(
a b
c d

)
∈ SL2(Z) and any commuting pair (g, h) in M,

Z(g, h, aτ+b
cτ+d) is proportional to Z(gahc, gbhd, τ).

5) Z(g, h; τ) is proportional to J(τ) if and only if g = h = 1.

This is more or less the weakest form that can be reasonably called a so-
lution to Norton’s conjecture, because there is no control over the ambiguous
constants in the simultaneous conjugation rule or the SL2(Z)-rule. Norton
suggested in his original statement of the conjecture [39] that that these
ambiguous constants can be refined to roots of unity, and further proposed
in [40] that they can be refined to 24th roots of unity. About 10 years later, a
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specific description of these constants in terms of a conjectural “moonshine
element” α\ ∈ H3(M, U(1)) was proposed in [25]. The group H3(M, U(1))
is still a relatively unknown quantity, although there have been suggestions
in the folklore for many years that it has order 24 or 48. We will not prove
any of these claims about ambiguous constants in their entirety, but instead
only show that Norton’s original “root of unity” proposal holds for all non-
constant functions. We follow an argument that was roughly sketched in the
final remark of [7].

Theorem 6.2. (Refined Generalized Moonshine) The ambiguous scalars in
conditions 2 and 4 of Theorem 6.1 can be refined to a root-of-unity ambiguity
whenever Z(g, h, τ) is not constant.

Proof. We recall that Z(g, h; τ) was defined as the graded character of a finite
order lift h̃ of the centralizing element h to a linear transformation on V \(g).
We showed in [9] Theorem 4.2.2 that Z(g, h; τ) is either a Hauptmodul or a
constant function. To prove the theorem, it suffices to show that if Z(g, h; τ)
is nonconstant, then the leading coefficient of its q-expansion at the unique
singular cusp is a root of unity. When g is Fricke, this follows from the
Hecke-monic property, by [6] Lemma 2.1, and the order of the root of unity
is bounded by the least common multiple of |g|, |h̃|, and 2. We note that
there is some ambiguity in the notion of leading coefficient. However, the
leading coefficients of different expansions of a modular form at a given cusp
only differ by roots of unity.

Let Z(g, h; τ) be non-constant, with g non-Fricke. Then by [9] Theo-
rem 4.2.2, it is a Hauptmodul invariant under Γ(M) for some M ∈ Z>0.
Write ĝ and ĥ for the coordinate generators of Z/MZ× Z/MZ, and define

a function Zs on Hom(Z× Z,Z/MZ× Z/MZ)
SL2(Z)
× H by

Zs(ĝaĥc, ĝbĥd; τ) =

{
Z(g, h; aτ+b

cτ+d) ad− bc = 1

0 otherwise

By [10] Corollary 6.3, Zs(ĝaĥc, ĝbĥd; τ) is proportional to Z(gahc, gbhd; τ),
for all

(
a b
c d

)
∈ SL2(Z).

By the SL2(Z)-invariance of the definition of equivariant Hecke opera-

tors on functions on Hom(Z× Z,Z/MZ× Z/MZ)
SL2(Z)
× H given in [6] Sec-

tion 1, we find that that if p is a prime congruent to 1 modulo M , then
TpZ

s(ĝaĥc, ĝbĥd; τ) = TpZ(g, h; aτ+b
cτ+d) for all

(
a b
c d

)
∈ SL2(Z). Thus, from the

Hecke-monic property of Z(g, h; τ) given in Corollary 5.5, we see that there
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is a monic polynomial Φp(x) ∈ Q[x] of degree p such that

pTpZ
s(ĝaĥc, ĝbĥd; τ) = Φp(Z

s(ĝaĥc, ĝbĥd; τ))

for all
(
a b
c d

)
∈ SL2(Z).

Since Z(g, h; τ) is a Hauptmodul and g is non-Fricke, there is some(
a b
c d

)
∈ SL2(Z) with c 6= 0 such that Zs(ĝaĥc, ĝbĥd; τ) has a pole at i∞.

We claim that the leading coefficient of the q-expansion at that pole is a
2M

(M,2)th root of unity. While the statement of [6] Lemma 2.1 assumes the in-
put function is weakly Hecke-monic, the argument only uses the pth Hecke
operators for primes p congruent to 1 modulo M , so the result still holds for
Zs(ĝaĥc, ĝbĥd; τ). We conclude that the pole of Z(g, h; τ) at a/c has leading
coefficient given by a root of unity, and this ends the proof. �

Recently a preprint [30] has appeared with the claim that α\ has order 24,
and a referee has requested that I comment on its relation to Theorem 6.2. At
the time of this writing, it does not seem that the argument in that preprint is
complete, because it rests on still-open conjectures concerning the dictionary
relating the orbifold theories of vertex operator algebras and conformal nets.
That said, Johnson-Freyd’s preprint is the first reasonably solid argument
for a definite value to appear in public, and the open questions on which
it depends are expected to have positive answers by essentially all experts.
The arguments in the preprint would yield a substantial strengthening of
Theorem 6.2 under the following assumptions:

1) Suppose the fixed-point vertex operator subalgebra (V \)M is regular.
This would more or less imply the existence of a well-defined 3-cocycle
α, such that the category of (V \)M-modules is a modular tensor cate-
gory equivalent to the α-twisted double of the category of M-modules,
and the category of twisted V \-modules is an M-crossed braided fusion
category. I am saying “more or less” because I have not seen a proof
of the precise implication. It is likely that this assumption implies the
twisted twining characters of a holomorphic vertex operator algebra
satisfy the relations given in [25], perhaps without too much difficulty.
However, I have only seen a proof of this claim in the case of cyclic
groups [22].

2) Suppose further the category of (V \)M-modules is equivalent as a mod-
ular tensor category to the category of sectors for the monster fixed-
point subnet of the moonshine conformal net. This subnet is already
known to be equivalent to the β-twisted double for some cocycle β. A
choice of braided equivalence would induce an identification between
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α and β, and in particular, we would know that they have the same
order. The existence of such a braided equivalence is an unstated as-
sumption in [30]. Alternatively, one could try to show that the category
of twisted V \-modules is equivalent as an M-crossed braided fusion cat-
egory to the category of twisted sectors of the moonshine conformal
net, and this would also canonically identify α and β.

Under the first assumption, the techniques in [30] appear to yield a proof
that α has order 24, although some work may be necessary. Under the second
assumption the proof in that paper becomes immediately valid.

7. Conway Lie algebras of rank 2

We introduce rank 2 analogues of the Monstrous Lie algebras attached to
fixed-point free automorphisms of VΛ, and show that they are Borcherds-
Kac-Moody. In fact they are isomorphic to the corresponding Monstrous Lie
algebras, once we switch coordinates in the Cartan subalgebra.

Definition 7.1. Let g be a non-Fricke element in M, and let g∗ be a cor-
responding automorphism of VΛ that is fixed-point free on Λ. We define
Lg∗ = OCQ(AT iII1,1(−1/N)(

g∗

N VΛ)) for some orbifold-admissible quadratic iso-
morphism

i : (II1,1(−1/N)/II1,1(−N), e(Q))→ (Z/NZ× Z/nZ, (a, b) 7→ e(ab/N)),

and we let F g
∗

be the vector-valued modular function defined by F g
∗

m,n(τ) =
F gn,m(τ), with coefficients cg

∗

m,n(k) = cgn,m(k).

Proposition 7.2. Let g be a non-Fricke element in M, and let g∗ be a
corresponding automorphism of VΛ that is fixed-point free on Λ, and satisfies
the “no massless states” condition. Then switching the coordinates in the

grading group Z× Z induces a C̃M(g)-equivariant Lie algebra isomorphism
mg
∼= Lg∗.

Proof. By Corollary 3.5, switching coordinates in the grading group induces
an abelian intertwining algebra isomorphism g

NV
\ ∼= g∗

N VΛ, up to coboundary
adjustment. Then applying the “add a torus and quantize” functor OCQ ◦
ATII1,1(−1/N) to this isomorphism, where we identify II1,1(−1/N) with Z× Z
with quadratic form (a, b) 7→ −ab

N , yields an isomorphism of Lie algebras. �
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Corollary 7.3. The Lie algebra Lg∗ is a rank 2 Borcherds-Kac-Moody Lie
algebra, graded by Z× Z, with Weyl vector (0,−1) and its denominator for-
mula is given by the identity

Tg(τ)− Tg(−1/σ) = q−1
∏

r∈Z>0,s∈ 1

N
Z

(1− qrps)cg
∗

r,s(rs)

In particular, the Weyl vector is (0, 1/N).

Proof. The Borcherds-Kac-Moody property is invariant under isomorphism,
so the first claim follows from Proposition 7.2. The displayed identity is pre-
cisely the denominator formula for the Lie algebra Lg, as given in Theorem
4.2 of [7], but with p and q switched. Similarly, the coordinates of the Weyl
vector are suitably adjusted. �

We then obtain twisted denominator identities that are identical to those
in [7], but with variables switched.

Proposition 7.4. Let h ∈ C̃M(g), with its action on Lg∗ induced by its

action on g
NV

\. Let V
i,j/N
k denote the subspace of (gNV

\)j,i on which L(0)

acts by k, or equivalently, the subspace of (g
∗

N VΛ)i,j on which L0 acts by k.

Then for any h ∈ C̃M(g) (or equivalently, ˜CAutVΛ
(g∗)) we have the following

twisted denominator formula:

q−1 exp

−∑
i>0

∑
s∈ 1

N
Z>0

Tr(hi|V 0,s
1 )qis/i

− ∑
r∈Z≥0

Tr(h|V r,1/N
1+r/N )pr

= q−1 exp

−∑
i>0

∑
r∈Z≥0,s∈ 1

N
Z>0

Tr(hi|V r,s
1+sr)q

ispir/i

 .

Proof. By the isomorphism in Proposition 7.2, we just need the twisted
denominator formula given in Proposition 4.7 of [7], but with the variables
p and q1/N switched. �

Remark 7.5. When σ is a fixed-point free automorphism of Λ, but doesn’t
satisfy the “no masssless states” condition, we can still make a rank 2 Lie
algebra Lσ, but we find that there are norm zero simple roots on both
axes. By the same argument as in Theorem 5.2, the Borcherds-Kac-Moody
condition for this Lie algebra is then equivalent to the claim that VΛ/σ ∼= VΛ.
Sven Möller has recently informed me that he has proved this claim for all
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42 conjugacy classes (which form 39 algebraic conjugacy classes) of such σ.
It is therefore natural to consider Moonshine questions for these cases as
well.

Definition 7.6. Let g and h be commuting automorphisms of VΛ. We
define the orbifold functions ZΛ(g, h; τ) (up to a root of unity ambiguity) by
choosing a lift h̃ of h to a finite order automorphism of VΛ(g), and setting
ZΛ(g, h; τ) = Tr(h̃qL0−1|VΛ(g)).

Proposition 7.7. For any
(
a b
c d

)
∈ SL2(Z) and any commuting pair (g, h)

in AutVΛ, Z(g, h, aτ+b
cτ+d) is proportional to Z(gahc, gbhd, τ).

Proof. This follows immediately from Theorem 6.2 in [10], since VΛ is a
simple holomorphic C2-cofinite vertex operator algebra. �

We then find ourselves with behavior that is quite similar to what we
found in Generalized Monstrous Moonshine, so we have the following natural
questions:

1) Does the twisted denominator formula in Proposition 7.4 imply
ZΛ(g, h; τ) is Hecke-monic when g is fixed-point free and satisfies the
“no massless states” condition?

2) If g is fixed-point free and satisfies the “no massless states” condition,
are the functions ZΛ(g, h; τ) either constants or Hauptmoduln?

3) If g does not satisfy the two conditions, what can we say about
ZΛ(g, h; τ)?

In 2009, Tuite suggested to me that questions about VΛ-moonshine and
the fine structure of non-Fricke twists of V \ are susceptible to exhaustive
computational attack, since in principle everything can be written explicitly
in terms of the Leech lattice. These new results seem to add weight to his
claim, but I do not seem to have the computational fortitude to make serious
progress.

8. Appendix

We produce a table giving the correspondence between non-Fricke non-
anomalous classes in M and fixed-point free non-anomalous classes in Co0 in
[27] and ATLAS notation. The subscripts in the ATLAS notation come from
the separation of classes in Co1, and are explained in [13] Section 7.8, page
xxvi. As part of the computation, we include non-negative eta expansions
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M eta product norm zero roots GAP ATLAS

2B 124/224 241, 01 2a 1A1

3B 112/312 122, 01 3a 3A0

4C 18/48 82, 81, 01 4c 4A1

5B 16/56 64, 01 5a 5A0

6C 1636/2666 62, 02, 121, 01 6b 3B1

6D 1424/3464 42, 82, 01, 01 6e 6A0

6E 1531/2165 52, 42, 61, 01 6j 6D1

7B 14/74 46, 01 7a 7A0

8E 1442/2284 44, 22, 41, 01 8e 8C1

9B 13/93 36, 32, 01 9a 9A0

10B 1454/24104 44, 04, 81, 01 10b 5B1

10C 1222/52102 24, 44, 01, 01 10d 10A0

10E 1351/21103 34, 24, 41, 01 10i 10E1

12B 144464/2434124 44, 02, 02, 42, 01, 01 12c 12A0

12E 1232/42122 24, 22, 42, 02, 41, 01 12j 12E1

12I 134162/2231123 34, 12, 22, 22, 21, 01 12r 12K1

13B 12/132 212, 01 13a 13A0

14B 1373/23143 36, 06, 61, 01 14b 7B1

15B 1252/32152 28, 04, 42, 01 15b 15B0

16B 1281/21162 28, 14, 12, 21, 01 16c 16B1

18A 1121/91181 16, 26, 12, 22, 01, 01 18d 18A0

18C 136293/2332183 36, 06, 12, 02, 41, 01 18c 9C1

18D 126191/2131182 26, 16, 12, 12, 21, 01 18g 18B1

20C 1242102/2252202 28, 04, 24, 02, 01, 01 20c 20A0

21B 1131/71211 112, 26, 02, 01 21b 21B0

22B 12112/22222 210, 010, 41, 01 22a 11A1

24C 126182121/213241242 28, 14, 04, 02, 02, 22, 01, 01 24d 24B0

28C 1171/41281 112, 16, 06, 22, 21, 01 28c 28A1

30A 1363103153/233353303 38, 08, 04, 02, 04, 02, 01, 01 30a 15A1

30C 113151151/2161101301 18, 08, 24, 22, 04, 02, 41, 01 30d 15D1

30G 1261101152/223151302 28, 08, 14, 12, 04, 02, 21, 01 30e 15E1

33A 11111/31331 120, 010, 22, 01 33a 33A0

36B 1141181/2191361 112, 06, 14, 16, 02, 02, 12, 01, 01 36a 36A0

42B 1262142212/223272422 212, 012, 06, 06, 02, 02, 01, 01 42a 21A1

46AB 11231/21461 122, 022, 21, 01 46ab 23A1B1

60D 11121151201/314151601 116, 18, 08, 08, 04, 04, 02, 04, 02, 02, 01, 01 60d 60A1

70B 11101141351/215171701 124, 024, 06, 04, 06, 04, 01, 01 70a 35A1

78BC 1161261391/2131131781 124, 024, 012, 012, 02, 02, 01, 01 78ab 39A1B1

(see Definition 4.1), which are reciprocals of the corresponding Frame shapes
of Co0 classes, together with norm zero root multiplicities in the Lie algebra
mg. The multiplicity at (k, 0) for an element of order n, given by

∑
d|(k,n) ad,

is only listed for k|n in increasing order, since the multiplicities only depend
on gcd(k, n). We add the exponent φ(n/k) to indicate how many times the
root appears modulo n.
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