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In this paper we show that certain Feynman integrals can be ex-
pressed as linear combinations of iterated integrals of modular
forms to all orders in the dimensional regularisation parameter ε.
We discuss explicitly the equal mass sunrise integral and the kite
integral. For both cases we give the alphabet of letters occurring
in the iterated integrals. For the sunrise integral we present a com-
pact formula, expressing this integral to all orders in ε as iterated
integrals of modular forms.
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1. Introduction

Precision predictions in high-energy particle physics rely on our ability to
compute higher-order terms in perturbation theory for scattering ampli-
tudes. In particular one faces the challenge to calculate quantum loop am-
plitudes, involving Feynman integrals. Unfortunately we are far away from
having a complete theory telling us to which functions Feynman integrals
evaluate. The best we can do is to analyse step-by-step classes of Feyn-
man integrals of increasing sophistication. Fortunately, several methods from
mathematics – and here from algebraic geometry in particular – have en-
tered in recent years the field of precision calculations in particle physics
[1–21].

Multiple polylogarithms [22–24] play an important role for a wide class
of Feynman integrals. The richness of their mathematical structure derives
from the fact that they have at the same time a representation in the form
of nested sums and a representation in the form of iterated integrals. Over
the years many techniques and algorithms have been developed to evaluate
Feynman integrals from this class to multiple polylogarithms [25–52].

However, it is well-known that the class of functions of multiple poly-
logarithms is not large enough to express all Feynman integrals. Prominent
examples of Feynman integrals which cannot be expressed in terms of multi-
ple polylogarithms are the sunrise integral [53–71] or the kite integral[72–74].
Further examples from quantum field theory can be found in [75–78], related
examples from string theory are discussed in [79–83]. Current research ef-
forts are centred around suitable generalisations of multiple polylogarithms.
Common to all examples of Feynman integrals evaluating beyond the class of
multiple polylogarithms and discussed so far is the fact that their geometry
is related to an elliptic curve. The extension of the class of functions re-
quired to express these integrals consisted in a generalisation of the multiple
polylogarithms towards the elliptic setting [66–69, 74, 75, 84–90]. Multiple
polylogarithms are associated to a punctured Riemann surface of genus zero
[91] and elliptic generalisations of multiple polylogarithms are associated to
a punctured Riemann surface of genus one [88]. In [69, 74] we were able to
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express the equal mass sunrise integral and the kite integral to all orders in
the dimensional regularisation parameter in terms of elliptic generalisations
of (multiple) polylogarithms. The concrete set of functions which we used
(ELi-functions, reviewed in Appendix B) were obtained from generalising
the sum representation of the (multiple) polylogarithms towards the elliptic
setting.

The motivation for this paper is two-fold: First we would like to investi-
gate in more detail the iterated integral aspects of our results. Secondly we
would like to explore the modular properties of the solutions. The outcome
of these investigations rewards our efforts: We show that the equal mass sun-
rise integral and the kite integral can be expressed to all orders as iterated
integrals of modular forms. For the sunrise integral the alphabet consists of
three modular forms f2, f3 and f4 of modular weight 2, 3 and 4, respectively
and the trivial constant modular form 1 (of modular weight 0). For the kite
integral we need on top of those five additional modular forms, three modular
forms of weight 2 (which we label g2,0, g2,1 and g2,9) and two modular forms
of weight 3 (labelled g3,0 and g3,1). All of these modular forms are modular
forms of a congruence subgroup. The concrete congruence subgroup depends
on the elliptic curve we start with and on the choice of periods for the ellip-
tic curve. We present two calculations, one where we start from an elliptic
curve obtained from the second graph polynomial of the sunrise integral in
the Feynman parameter representation. In the Euclidean region the lattice
generated by the periods of this elliptic curve is rectangular and we may
choose the periods such that one period is real, the other purely imaginary
in the Euclidean region. With this choice the congruence subgroup turns out
to be Γ1(12). It is possible to express all formulae in terms of modular forms
from the smaller space of the congruence subgroup Γ1(6). One possibility to
arrive at Γ1(6) is to start from an elliptic curve obtained from the maximal
cut of the sunrise integral. This is our second calculation. In this case we
no longer have a rectangular lattice in the Euclidean region. However, with
a standard choice of periods we obtain directly the congruence subgroup
Γ1(6). Of course, both approaches give identical results and we discuss the
relation between the two approaches. The two elliptic curves are related by
a quadratic transformation. and the final formulae are related by a simple
substitution qC = −q2.

Let us stress that for a different choice of periods one also obtains Γ1(6)
when working with the elliptic curve obtained from the second graph polyno-
mial of the sunrise integral in the Feynman parameter representation. In or-
der to understand this point, we discuss the effect of SL2(Z)-transformations
on the periods.
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We present a compact formula for the two-loop sunrise integral with
equal masses around two space-time dimensions, valid to all orders in di-
mensional regularisation parameter ε. This formula reads

S111 (2− 2ε, t)(1)

=
ψ1(q2)

π
e
−εI(f2;q2)−2εL−2γEε+2

∞∑
n=2

(−1)n

n
ζnεn

×


 ∞∑
j=0

(
ε2jI

(
{1, f4}j ; q2

)
− 1

2
ε2j+1I

(
{1, f4}j , 1; q2

))
×
∞∑
k=0

εkB(k) (2, 0)

+

∞∑
j=0

εj
b j
2
c∑

k=0

I
(
{1, f4}k , 1, f3, {f2}j−2k ; q2

) .

where the full ε-dependence on the right-hand side is explicit. The notation is
explained in detail in the main part of this paper, the essentials are as follows:
We denote by I(fi1 , . . . , fin ; q2) an n-fold iterated integral, where the letters
fi1 , . . . , fin are modular forms and q2 the nome of the elliptic curve. Repeated
sequences of letters are abbreviated as in {fi1 , fi2}3 = fi1 , fi2 , fi1 , fi2 , fi1 , fi2 .
The function ψ1(q2) is a period of the elliptic curve (and a modular form
of weight 1 for the relevant congruence subgroup), the variable L equals
L = ln(m2/µ2), and the B(k) (2, 0)’s are boundary constants. From Eq. (1)
one easily obtains the j-th term of the ε-expansion of S111(2− 2ε, t) by
expanding the exponential function and by collecting all terms proportional
to εj . Products of iterated integrals may be converted to a linear combination
of single iterated integrals with the help of the shuffle product. Eq. (1) is not
only helpful in retrieving quickly the j-th term of the ε-expansion, it will
also be useful to elaborate and to extend the recently proposed coaction for
Feynman integrals [92–94].

Our results are based on comparing q-series expansions to high orders.
A typical value for the order of the expansion is O(q1000). It is clear that for
a pure mathematician this does not constitute a strict proof. However, the
use of “experimental mathematics”, like for example the PSLQ-algorithm
[95], is standard practice in theoretical particle physics. The fact, that our
equations agree to a very high power in the q-expansion gives us sufficient
confidence that the equations are correct. Let us mention that it is not too
difficult to prove our results in a strict mathematical sense. The specific
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elliptic curve associated to the Feynman parameter representation has been
studied in the mathematical literature [96–99]. Using the existing results in
the mathematical literature, the fact that the spaces of modular forms are
finite-dimensional, and the first few terms in the q-expansion will constitute
a strict mathematical proof. However, the focus of our paper is on generic
methods. Thus we will not make use of existing results on specific elliptic
curves.

This paper is organised as follows: In Section 2 we recall a few basic
facts about modular forms, we introduce iterated integrals of modular forms
and discuss the special case of Eichler integrals. Section 3 introduces the
two-loop sunrise integral. We give the basic definitions and present the dif-
ferential equation satisfied by the two-loop sunrise integral. In Section 4 we
discuss one elliptic curve associated to the two-loop sunrise integral. This
elliptic curve is obtained from the zero set of the second graph polynomial.
Section 5 is one of the main sections of this paper. In this section we show
that all integration kernels for the equal mass sunrise integral and the kite
integral can be expressed in terms of modular forms for the congruence sub-
group Γ0(12) with characters. It follows that these two Feynman integrals
can be expressed to all orders in ε in terms of iterated integrals of modular
forms. For the sunrise integral we present in this section the explicit results
for the first three terms in the ε-expansion. The first term in the ε-expansion
of the sunrise integral is an Eichler integral and we investigate in Section 6
the transformation properties of this term under modular transformations
of Γ0(12). In Section 7 we derive Eq. (1) by solving the appropriate dif-
ferential equation to all orders in ε (as opposed to order-by-order in ε). In
Section 8 we repeat the calculation with the elliptic curve obtained from the
maximal cut of the sunrise integral. With a standard choice of periods this
gives us modular forms of level 6. In Section 9 we discuss the effect of the
freedom to choose a different pair of periods spanning the lattice, related
to the original pair by a SL2(Z)-transformation. Finally, our conclusions are
given in Section 10. The appendix contains useful information on gener-
alised Eisenstein series (Appendix A), on the definition of the ELi-functions
(Appendix B) and a summary on all modular forms of level 12 relevant to
the sunrise integral and the kite integral (Appendix C).
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2. Review of basic definitions and facts

We expect the reader to be familiar with modular forms. General and de-
tailed introductions to modular forms can be found in many textbooks [100–
106]. In addition, the arXiv version of this article contains a concise intro-
duction to modular forms.

2.1. Iterated integrals of modular forms

Let f1(τ), f2(τ), . . . , fn(τ) be a set of modular form for a congruence sub-
group Γ. We denote the modular weight of the modular form fi(τ) by ki, in
particular we do not require that all modular forms in the set have the same
weight. We define the n-fold iterated integral [107–110] of these modular
forms by

I (f1, f2, . . . , fn; τ, τ0)(2)

= (2πi)n
τ∫

τ0

dτ1

τ1∫
τ0

dτ2 · · ·
τn−1∫
τ0

dτn f1 (τ1) f2 (τ2) · · · fn (τn) .

With q = exp(2πiτ) we may equally well write

I (f1, f2, . . . , fn; τ, τ0)(3)

=

q∫
q0

dq1

q1

q1∫
q0

dq2

q2
· · ·

qn−1∫
q0

dqn
qn

f1 (τ1) f2 (τ2) · · · fn (τn) , τj =
1

2πi
ln qj .

The definition includes the special case, where the first (n− 1) modular
forms are the constant function 1:

I(1, . . . , 1︸ ︷︷ ︸
n−1

, fn; τ, τ0) =

q∫
q0

dq1

q1

q1∫
q0

dq2

q2
· · ·

qn−1∫
q0

dqn
qn

fn (τn) .(4)

It will be convenient to introduce a short-hand notation for repeated letters.
We use the notation

{fi}j = fi, fi, . . . , fi︸ ︷︷ ︸
j

(5)
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to denote a sequence of j letters fi. More generally we will use in the sequel
the notation

{fi1 , fi2 , . . . , fin}
j = fi1 , fi2 , . . . , fin , . . . , fi1 , fi2 , . . . , fin︸ ︷︷ ︸

j copies of fi1 ,fi2 ,...,fin

(6)

to denote a sequence of (j · n) letters, consisting of j copies of fi1 , fi2 , . . . , fin .
For example

{f1, f2}3 = f1, f2, f1, f2, f1, f2.(7)

Thus we may write the left-hand side of Eq. (4) as

I({1}n−1, fn; τ, τ0) = I(1, . . . , 1︸ ︷︷ ︸
n−1

, fn; τ, τ0).(8)

We follow standard practice and define the zero-fold iterated integral to be
one:

I (; τ, τ0) = 1.(9)

In analogy with the case of multiple polylogarithms we define the depth of an
iterated integral I(f1, . . . , fn; τ, τ0) to be the number of iterated integrations
n. Note that in the case of multiple polylogarithms the depth is often called
transcendental weight. Here, it is more appropriate to use the word “depth”.
(Also the word “length” is used [110]). The depth should not be confused
with the modular weight, the former is the depth of the iterated integral,
the latter is associated to individual modular forms f1, . . . , fn. We have the
shuffle product for iterated integrals

I (f1, . . . , fr; τ, τ0) · I (fr+1, . . . , fr; τ, τ0)(10)

=
∑

shuffles σ

I (fσ1
, . . . , fσn ; τ, τ0) ,

where the sum runs over all shuffles of (1, . . . , r) and (r + 1, . . . , n), i.e. all
permutations of (1, . . . , n), which keep the relative order of (1, . . . , r) and
(r + 1, . . . , n) fixed.

Our standard choice for the base point τ0 will be τ0 = i∞, corresponding
to q0 = 0. This is unproblematic for cusp forms. Here we have for a single
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integration

f =

∞∑
j=1

ajq
j ⇒

q∫
0

dq1

q1
f =

∞∑
j=1

aj
j
qj .(11)

For non-cusp forms we proceed as follows: We first take q0 to have a small
non-zero value. The integration will produce terms with ln(q0). Let R be
the operator, which removes all ln(q0)-terms. After these terms have been
removed, we may take the limit q0 → 0. With a slight abuse of notation we
set

I (f1, f2, . . . , fn; q)(12)

= lim
q0→0

R

 q∫
q0

dq1

q1

q1∫
q0

dq2

q2
· · ·

qn−1∫
q0

dqn
qn

f1 (τ1) f2 (τ2) · · · fn (τn)

 .
This prescription is compatible with the shuffle product. For a single inte-
gration we have for a non-cusp form

f =

∞∑
j=0

ajq
j ⇒ I(f ; q) = a0 ln(q) +

∞∑
j=1

aj
j
qj .(13)

The above prescription is familiar to physicists from regularisation and
renormalisation. For the more mathematical oriented reader let us mention
that this prescription is equivalent to choosing a tangential base point [110].
This prescription is also commonly applied in the context of the integral
representation of multiple polylogarithms with trailing zeros.

2.2. Eichler integrals

In general, an integral over a modular form does not have particular “nice”
properties under modular transformations. However, a (k − 1)-fold integral
over a modular form of weight k does. These integrals are called Eichler
integrals [111]. In this paragraph we review Eichler integrals.

We have already seen that a modular form f of weight k and character
χ transforms under a modular transformation γ as

f(γ(τ)) = χ(d)(cτ + d)kf(τ), γ =

(
a b
c d

)
.(14)
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Let k ≥ 2. We may generalise the modular transformation law. An Eichler
integral F of weight (2− k) and character χ transforms under a modular
transformation γ as

F (γ(τ)) = χ(d)(cτ + d)2−k [F (τ) + Pγ(τ)] ,(15)

where Pγ(τ) is a polynomial in τ of degree at most (k − 2). The polynomial
Pγ(τ) is called the period polynomial. Let us denote

D =
1

2πi

d

dτ
= q

d

dq
.(16)

If we set

f(τ) = Dk−1F (τ),(17)

it follows from Bol’s identity [112](
Dk−1F

)
(γ(τ)) = (cτ + d)kDk−1

[
(cτ + d)k−2 F (γ(τ))

]
,(18)

that f(τ) transforms under a modular transformation as in Eq. (14). Thus
we obtain from an Eichler integral of weight (2− k) a modular form of weight
k by (k − 1)-fold differentiation.

Let us now look in the reverse direction. Given a modular form f(τ) of
weight k (and possibly with a character χ) we set

F (τ) =
(2πi)k−1

(k − 2)!

τ∫
τ0

dσ f(σ) (τ − σ)k−2,(19)

where τ0 denotes the fixed value of the lower integration boundary. Then
F (τ) transforms as in Eq. (15), with the period polynomial given by

Pγ(τ) =
(2πi)k−1

(k − 2)!

τ0∫
γ−1(τ0)

dσ f(σ) (τ − σ)k−2.(20)

Thus, Eq. (19) gives us an Eichler integral of the modular form f(τ).
Let us now investigate the set of all Eichler integrals corresponding to

the modular form f(τ). Let Q(τ) be an arbitrary polynomial in τ of degree
at most (k − 2). If F (τ) is an Eichler integral (i.e. F (τ) transforms under
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modular transformations as in Eq. (15)), then

F̃ (τ) = F (τ) +Q(τ)(21)

is an Eichler integral as well. Given a modular form f(τ) of weight k as
above with Fourier expansion

f =

∞∑
n=0

anq
n(22)

we see from Eq. (17) that all Eichler integrals of f are of the form

F (τ) =
a0

(k − 1)!
(ln q)k−1 +

∞∑
n=1

an
nk−1

qn +

k−2∑
j=0

bj
j!

(ln q)j ,(23)

with arbitrary constants b0, b1, . . . , bk−2. It will be convenient to set these
arbitrary constants to zero and we will take the Eichler integral of f(τ) to
be

FEichler(τ) =
a0

(k − 1)!
(ln q)k−1 +

∞∑
n=1

an
nk−1

qn,(24)

unless specified otherwise. In the notation of Section 2.1 this equals

FEichler(τ) = I({1}k−2, f ; q) = I(1, . . . , 1︸ ︷︷ ︸
k−2

, f ; q).(25)

We further have

FEichler(τ) =
(2πi)k−1

(k − 2)!

τ∫
i∞

dσ (f(σ)− a0) (τ − σ)k−2(26)

+
a0

(k − 1)!
(ln q)k−1 ,

with a0 = f(i∞).
We note that one finds in the literature also slightly different definitions

of an Eichler integral, the definition given in [113] is based on an analytic con-
tinuation of the L-series and will give under the transformation of Eq. (15)
not a period polynomial but a period function.
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3. The two-loop sunrise integral

We are interested in the family of Feynman integrals related to the two-loop
sunrise graph with equal internal masses. This family is given by

Sν1ν2ν3
(
D, p2,m2, µ2

)
(27)

=
(
µ2
)ν−D ∫ dDk1

iπ
D

2

dDk2

iπ
D

2

dDk3

iπ
D

2

× δD (p− k1 − k2 − k3)(
−k2

1 +m2
)ν1 (−k2

2 +m2
)ν2 (−k2

3 +m2
)ν3 ,

with ν = ν1 + ν2 + ν3 and ν1, ν2, ν3 ∈ Z. The dimension of space-time is de-
noted by D. The arbitrary scale µ is introduced to keep the integral dimen-
sionless. The quantity p2 denotes the momentum squared (with respect to
the D-dimensional Minkowski metric defined by gµν = diag(1,−1,−1,−1,
. . . )) and we will write

t = p2.(28)

Where it is not essential we will suppress the dependence on the mass m and
the scale µ and simply write Sν1ν2ν3(D, t) instead of Sν1ν2ν3(D, t,m

2, µ2). In
terms of Feynman parameters the two-loop integral is given by

Sν1ν2ν3 (D, t) =
Γ (ν −D)

Γ(ν1)Γ(ν2)Γ(ν3)

(
µ2
)ν−D ∫

σ

xν1−1
1 xν2−1

2 xν3−1
3

Uν−
3

2
D

Fν−D
ω(29)

with the two Feynman graph polynomials

U = x1x2 + x2x3 + x3x1, F = −x1x2x3t+m2 (x1 + x2 + x3)U .(30)

The differential two-form ω is given by

ω = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2,(31)

and the integration is over

σ =
{

[x1 : x2 : x3] ∈ P2|xi ≥ 0, i = 1, 2, 3
}
.(32)

Integration-by-parts identities [114, 115] allow us to express any member
of the Feynman integral family in terms of a few master integrals. For the
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Figure 1: A set of master integrals for the sunrise family. A dot on a prop-
agator indicates, that this propagator is raised to the power two.

sunrise family we need three master integrals. A possible basis of master
integrals is given by

S110(D, t), S111(D, t), S211(D, t).(33)

The Feynman graphs for these integrals are shown in Fig. (1). In the top-
topology with three different propagators we have two master integrals (S111

and S211). The integral S110 has only two different propagators and corre-
sponds to a subtopology.

Dimensional-shift relations [116, 117] relate integrals in (D − 2) space-
time dimensions to integrals in D space-time dimensions. We may therefore
work without loss of generality in D = 2− 2ε space-time dimensions. The
physical relevant expressions for D = 4− 2ε space-time dimensions may be
obtained from the ones for 2− 2ε space-time dimensions with the help of
the dimensional-shift relations. Let us pause for a moment and consider
the sunrise integral S111 around two space-time dimensions. Working in 2−
2ε space-time dimensions is advantageous for two reasons: First of all, the
integral S111 is finite for D = 2. Secondly – and this is the main reason for
working in D = 2− 2ε dimensions – the lowest-order term of the ε-expansion
of S111(2− 2ε, t) depends only on the graph polynomial F , but not on U .
Indeed, we have from Eq. (29)

S111 (2, t) = µ2

∫
σ

ω

F
.(34)

The integral S111(2, t) depends on two geometric objects: The integration
region σ and the variety defined by the zero set of the polynomial F :

F = 0.(35)
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Eq. (35) is a polynomial of degree 3 in the Feynman parameters x1, x2 and
x3 and defines together with the choice of a rational point an elliptic curve.
This elliptic curve will be discussed in more detail in Section 4.

In order to present the system of differential equations for the set of
master integrals it will be convenient to rescale them and to take as a basis
of master integrals the set

I1 (t) = ε2S110 (2− 2ε, t) ,

I2 (t) =
m2

µ2
S111 (2− 2ε, t) ,(36)

I3 (t) =
m4

µ4
S211 (2− 2ε, t) .

We denote the vector of basis integrals by ~I = (I1, I2, I3)T . Let us now con-
sider the derivatives of the basis integrals with respect to the variable t.
These derivatives can be expressed again as a linear combination of the
basis integrals. This gives us a differential equation for the basis integrals
[36–43, 46]: The differential equation is of Fuchsian type, where the only
singularities are at t ∈ {0,m2, 9m2,∞}. We have

µ2 d

dt
~I =

[
µ2

t
A0 +

µ2

t−m2
A1 +

µ2

t− 9m2
A9

]
~I,(37)

where the 3× 3-matrices A0, A1 and A9 are polynomials in ε with rational
coefficients. The matrices are given by

A0 =

 0 0 0
0 −1− 2ε 3
0 −1

3 −
5
3ε− 2ε2 1 + 3ε

 ,

A1 =

 0 0 0
0 0 0
1
4

1
4 + 5

4ε+ 3
2ε

2 −1− 2ε

 ,(38)

A9 =

 0 0 0
0 0 0
−1

4
1
12 + 5

12ε+ 1
2ε

2 −1− 2ε

 .

The tadpole integral I1 is t-independent and given to all orders in ε by

I1(t) = I1(0) = Γ (1 + ε)2

(
m2

µ2

)−2ε

.(39)
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It is easily checked that the ε-expansion of the basis integrals ~I = (I1, I2, I3)
starts at ε0. For the basis integrals ~I = (I1, I2, I3) we write

Ik (t) = e−2γEε
∞∑
j=0

εjI
(j)
k (t) , k = 1, . . . , 3,(40)

where γE is Euler’s constant. For the tadpole integral I1(t) we have with
L = ln(m2/µ2)

I1(t) = e−2γEε

{
1− 2Lε+

[
ζ2 + 2L2

]
ε2 −

[
2

3
ζ3 − 2Lζ2 −

4

3
L3

]
ε3

}
(41)

+O
(
ε4
)
.

The system of first-order differential equations has always a block-triangular
structure induced by the subtopologies. We may therefore first solve all mas-
ter integrals for all subtopologies and only then solve the top topology. For
the sunrise integral there is only one subtopology, whose solution has been
given in eq (39). Let us now turn to the top topology consisting of two
master integrals (I2, I3). It will be convenient to re-write the two coupled
first-order differential equations for the top-sector (I2, I3) as an inhomoge-
neous second-order differential equation for a single master integral. We may
take S111(2− 2ε, t) or I2(t) as this master integral, but it is advantageous
to use 1

S̃111(2− 2ε, t) = [Γ (1 + ε)]−2

(
3µ4
√
−t

m (t−m2) (t− 9m2)

)−ε
S111(2− 2ε, t).

(42)

The differential equation for the integral S̃111(2− 2ε, t) reads

L2S̃111(2− 2ε, t) = − 6µ2

t (t−m2) (t− 9m2)

((
t−m2

) (
t− 9m2

)
3m3
√
−t

)ε
,(43)

1Note that the prefactor differs slightly from our previous publication [69]. Here
we use

√
−t, whereas in [69] we used

√
t. In this publication the base of the ε-power

is positive for t < 0, whereas in [69] it is positive for 0 < t < m2. The conventions
in this publication are adapted to the Euclidean region t < 0. Since the final result
is analytic in a neighbourhood of t = 0, both approaches lead in a neighbourhood
of t = 0 to the same result.
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where the Picard-Fuchs operator L2 is given by

L2 = L
(0)
2 + ε2L

(2)
2 ,(44)

with

L
(0)
2 =

d2

dt2
+

(
1

t
+

1

t−m2
+

1

t− 9m2

)
d

dt
(45)

+
1

m2

(
− 1

3t
+

1

4 (t−m2)
+

1

12 (t− 9m2)

)
,

L
(2)
2 = −

(
t+ 3m2

)4
4t2 (t−m2)2 (t− 9m2)2 .

The choice of the master integral in Eq. (42) ensures that the Picard-Fuchs
operator in Eq. (45) has a particular nice form, i.e. the only terms involving

higher powers of ε are the ones given by ε2L
(2)
2 . These terms do not involve

any derivatives d/dt.

4. The elliptic curve

We may view the graph polynomial F as a polynomial in the Feynman
parameters x1, x2, x3 with parameters t and m2. The algebraic equation

F = 0(46)

defines together with the choice of a rational point as origin an elliptic
curve. Rational points are for example the three intersection points of the
integration region σ (defined in Eq. (32)) with the variety defined by F = 0.
These points are given by

P1 = [1 : 0 : 0] , P2 = [0 : 1 : 0] , P3 = [0 : 0 : 1] .(47)

We may choose one of these three points P1, P2, P3 as the origin O. Let
us take O = P3. The elliptic curve can be transformed into the Weierstrass
normal form

y2z = 4x3 − g2xz
2 − g3z

3(48)
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by a birational transformation. Explicitly, this transformation is given for
[x1 : x2 : x3] 6= [0 : 0 : 1] by [118]

x =
1

µ4

[(
t− 3m2

)2
(x1 + x2)2 − 12m2

(
t−m2

)
(x1 + x2)x3

]
,

y = −
12m2

(
t−m2

)
µ6

(x1 − x2)
[
m2 (x1 + x2)−

(
t−m2

)
x3

]
,(49)

z = 12 (x1 + x2)2 .

The inverse transformation is given for [x : y : z] 6= [0 : 1 : 0] by

x1 = −6m2

µ8
z
[(
t−m2

) (
t2 − 6m2t− 3m4

)
z − 12

(
t−m2

)
µ4x+ 12µ6y

]
,

(50)

x2 = −6m2

µ8
z
[(
t−m2

) (
t2 − 6m2t− 3m4

)
z − 12

(
t−m2

)
µ4x− 12µ6y

]
,

x3 = − 1

µ8

[(
t− 3m2

)2
z − 12µ4x

] [(
t2 − 6m2t− 3m4

)
z − 12µ4x

]
.

The point [x1 : x2 : x3] = [0 : 0 : 1] is transformed to the point [x : y : z] =
[0 : 1 : 0]. Let us denote by Q1 and Q2 the images of the points P1 and P2,
respectively. Q1 and Q2 are given by

Q1 =

[(
t− 3m2

)2
12µ4

: −
m4
(
t−m2

)
µ6

: 1

]
,

Q2 =

[(
t− 3m2

)2
12µ4

:
m4
(
t−m2

)
µ6

: 1

]
.

(51)

In the following we will work in the chart z = 1. Factorising the cubic poly-
nomial on the right-hand side of Eq. (48), the Weierstrass normal form can
equally be written as

y2 = 4 (x− e1) (x− e2) (x− e3) , with e1 + e2 + e3 = 0,(52)

and

g2 = −4 (e1e2 + e2e3 + e3e1) , g3 = 4e1e2e3.(53)
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The roots are given by

e1 =
1

24µ4

(
−t2 + 6m2t+ 3m4 + 3

√
D̃
)
,

e2 =
1

24µ4

(
−t2 + 6m2t+ 3m4 − 3

√
D̃
)
,(54)

e3 =
1

24µ4

(
2t2 − 12m2t− 6m4

)
.

As abbreviation we used

D̃ =
(
t−m2

)3 (
t− 9m2

)
.(55)

The modulus k and the complementary modulus k′ of the elliptic curve are
defined by

k =

√
e3 − e2

e1 − e2
, k′ =

√
1− k2 =

√
e1 − e3

e1 − e2
.(56)

The periods of the elliptic curve are given by

ψ1 = 2

e3∫
e2

dx

y
=

4µ2

D̃
1

4

K (k) , ψ2 = 2

e3∫
e1

dx

y
=

4iµ2

D̃
1

4

K
(
k′
)
,

φ1 =
8µ4

D̃
1

2

e3∫
e2

(x− e2) dx

y
=

4µ2

D̃
1

4

(K (k)− E (k)) ,

φ2 =
8µ4

D̃
1

2

e3∫
e1

(x− e2) dx

y
=

4iµ2

D̃
1

4

E
(
k′
)
.

(57)

K(x) and E(x) denote the complete elliptic integral of the first kind and
second kind, respectively:

K(x) =

1∫
0

dt√
(1− t2) (1− x2t2)

, E(x) =

1∫
0

dt

√
1− x2t2

1− t2
.(58)

The derivatives of the periods with respect to the variable t are given by

d

dt

(
ψi
φi

)
= B

(
ψi
φi

)
, B =

d

dt

(
−1

2 lnZ2
1
2 ln Z2

Z1

−1
2 ln Z2

Z3

1
2 ln Z2

Z2
3

)
,(59)
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with i ∈ {1, 2} and

Z1 = e3 − e2, Z2 = e1 − e3, Z3 = e1 − e2.(60)

Eq. (59) gives a coupled system of two first-order differential equations.
Alternatively, we may give a a single second-order differential equation for
ψi. One finds

L
(0)
2 ψi = 0,(61)

where the second-order differential operator is given by Eq. (45). Thus, the
two periods ψ1 and ψ2 are the homogeneous solutions of the ε0-part of the
differential operator for the integral S̃111(2− 2ε, t). The Wronskian is given
by

(62) W = ψ1
d

dt
ψ2 − ψ2

d

dt
ψ1 = − 12πiµ4

t (t−m2) (t− 9m2)
.

We denote the ratio of the two periods ψ2 and ψ1 by

τ =
ψ2

ψ1
(63)

and the nome by

q2 = eiπτ .(64)

We continue to use q = exp(2πiτ) for the square of the nome. This notation
is consistent with the notation used in the section on modular forms. We
denote by r3 the third root of unity

r3 = e
2πi

3 =
1 + i

√
3

1− i
√

3
= −1

2
+
i

2

√
3.(65)

r3 and r−1
3 are the images of Q1 and Q2 in the Jacobi uniformization C∗/qZ

of the elliptic curve [67].

5. Integration kernels

In this section we solve the differential equation (43) and express the inte-
gration kernels as modular forms.
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The integral S̃111(2− 2ε, t) has a Taylor expansion in ε, which we write
as

S̃111(2− 2ε, t) =

∞∑
j=0

εjS̃
(j)
111(2, t).(66)

We insert this expansion into the differential equation (43) and consider

the coefficient of εj . This gives us a differential equation for S̃
(j)
111(2, t). This

differential equation will involve lower-order terms S̃
(i)
111(2, t) with i < j, but

not higher-order terms S̃
(k)
111(2, t) with k > j. We may therefore successively

solve these differential equations, starting with S̃
(0)
111(2, t). The differential

equation for S̃
(j)
111(2, t) reads

L
(0)
2 S̃

(j)
111(2, t) = µ2I(j)(t), I(j)(t) = I(j)

a (t) + I
(j)
b (t),(67)

where the inhomogeneous terms are given by

I(j)
a (t) = − 6

t (t−m2) (t− 9m2)

1

j!
lnj

((
t−m2

) (
t− 9m2

)
3m3
√
−t

)
,

I
(j)
b (t) =

(
t+ 3m2

)4
4µ2t2 (t−m2)2 (t− 9m2)2 S̃

(j−2)
111 (2, t).

(68)

We already know that the space of homogeneous solutions of the differential
equation (67) is spanned by the two periods ψ1 and ψ2, defined in Eq. (57).
Note that we have iπψ2 = ψ1 ln(q2). Thus, we may write the general solution
for the inhomogeneous equation as

S̃
(j)
111(2, t) = C

(j)
1 (t0)ψ1 (t) + C

(j)
2 (t0)ψ1 (t) ln (q2(t)) + S̃

(j)
special (t, t0) ,(69)

where S̃
(j)
special (t, t0) is a special solution of the inhomogeneous differential

equation. Variation of the constants gives us an expression for the special
solution

S̃
(j)
special (t, t0) = µ2

t∫
t0

dt1
I(j)(t1)

W (t1)
[−ψ1(t)ψ2(t1) + ψ2(t)ψ1(t1)] .(70)

We then change the integration variable from t = p2 to the nome q2 =
exp(πiτ), where τ is defined by Eq. (63). In a neighbourhood of t = 0 we
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may invert the relation and obtain [67]

t = −9m2 η (τ)4 η
(

3τ
2

)4
η (6τ)4

η
(
τ
2

)4
η (2τ)4 η (3τ)4

.(71)

Eq. (71) is obtained as follows: We consider the modular lambda function
[119] defined by

λ = k2 =
e3 − e2

e1 − e2
.(72)

We may either view λ as a function of t

(73) λ =
t2 − 6m2t− 3m4 +

(
m2 − t

) 3

2
(
9m2 − t

) 1

2

2 (m2 − t)
3

2 (9m2 − t)
1

2

,

or as a function of τ (or q2)

λ = 16
η
(
τ
2

)8
η (2τ)16

η (τ)24 .(74)

The point t = 0 corresponds to τ = i∞ and q2 = 0. We expand λ on the one
hand as a function of t around t = 0, and on the other hand as a function
of q2 around q2 = 0. This gives

− 16

9

t

m2
− 64

27

(
t

m2

)2

− 2080

729

(
t

m2

)3

+ · · ·(75)

= 16q2 − 128q2
2 + 704q3

2 + · · ·

Both Taylor series start at order 1. We may therefore use reversion on power
series and obtain t as a power series of q2:

(76) t = −9m2
(
q2 + 4q2

2 + 10q3
2 + 20q4

2 + 39q5
2 + 76q6

2 + 140q7
2 + · · ·

)
This can be done to high powers in q2. We may then use the algorithms
of [120] to see if a representation in the form of an eta quotient exists. For
the case at hand, the first 13 coefficients are actually enough to find the eta
quotient of Eq. (71). We have checked that expanding up to O(q1000

2 ) will
not alter our findings.



i
i

“1-Weinzierl” — 2018/6/20 — 11:21 — page 213 — #21 i
i

i
i

i
i

Feynman integrals and iterated integrals of modular forms 213

For the differential we have

dt =
ψ2

1

iπW

dq2

q2
.(77)

Partial integration leads to

S̃
(j)
special = −ψ1

π

q2∫
q2,0

dq′2
q′2

q′2∫
q2,0

dq′′2
q′′2

ψ1(q′′2)3

πW (q′′2)2
µ2I(j)(q′′2).(78)

We obtain a two-fold integration over the inhomogeneous term multiplied

by ψ3
1/(πW

2). The function S̃
(j−2)
111 (2, t) contains always a prefactor ψ1/π

and it is convenient to write

S̃
(j)
111 (2, t) =

ψ1

π
Ẽ

(j)
111 (2, q2) .(79)

We would like to show that all functions Ẽ
(j)
111 (2, q) can be written as iterated

integrals of modular forms. To this aim we investigate the integration kernels
in more detail. Let us start with the first term in the ε-expansion. For j = 0

only the term I
(0)
a contributes. Let us denote

f3 =
µ2ψ3

1

πW 2

6

t (t−m2) (t− 9m2)
.(80)

We may express f3 in terms of ELi-functions, where the definition of the
ELi-functions is given in Appendix B:

f3 =
3

i

[
ELi0;−2 (r3;−1;−q2)− ELi0;−2

(
r−1

3 ;−1;−q2

)]
.(81)

In addition, we have a representation in the form of an eta quotient:

f3 = 3
√

3
η (τ)11 η (3τ)7

η
(
τ
2

)5
η (2τ)5 η

(
3τ
2

)
η (6τ)

.(82)

Let us introduce two primitive Dirichlet characters χ̄0, χ̄1, defined in terms
of the Kronecker symbol by

χ̄0 =

(
1

n

)
, χ̄1 =

(
−3

n

)
.(83)

We denote by χ0 and χ1 the induced characters modulo 12. The conductors
of the characters χ0 and χ1 are 1 and 3, respectively. Setting τ2 = τ/2 we
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may now check with the help of the theorem of Ligozat [121, 122] if f3

corresponds to a modular form. It does and we find

f3(τ2) ∈M3(12, χ1).(84)

We may therefore express f3 as a linear combination of the basis elements
of M3(12, χ1). We find with q2 = exp(2πiτ2) = exp(iπτ)

f3(τ2) = 3
√

3 [E3 (τ2; χ̄1, χ̄0) + 2E3 (2τ2; χ̄1, χ̄0)− 8E3 (4τ2; χ̄1, χ̄0)] .(85)

The notation for the generalised Eisenstein series is given in Appendix A.

Let us now go to higher orders in ε. For j > 0 we obtain from I
(j)
a in addition

to the modular form f3 powers of the logarithm

Linhom = ln

((
t−m2

) (
t− 9m2

)
3m3
√
−t

)
.(86)

We may re-write the logarithm as an integral over a modular form

Linhom = I (f2; q2) ,(87)

where f2 ∈M2(12, χ0) is given by

f2(τ2) = 14B2,2(τ2)− 4B2,3(τ2)− 8B2,4(τ2)(88)

+ 10B2,6(τ2)− 4B2,12(τ2).

The Eisenstein seriesB2,K(τ2) are defined in Appendix A. For the j-th power
of the logarithm we may use the shuffle product to re-write this expression
as a single iterated integral:

1

j!
(Linhom)j = I({f2}j ; q2) = I(f2, . . . , f2︸ ︷︷ ︸

j

; q2).(89)

Let us now look at the inhomogeneous parts coming from I
(j)
b . We have to

consider

f4 = −µ
2ψ3

1

πW 2

(
t+ 3m2

)4
4µ2t2 (t−m2)2 (t− 9m2)2

ψ1

π
,(90)

where the additional factor of ψ1/π comes from Eq. (79). We have

f4 = f4
1 ,(91)
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Figure 2: The kite integral. Solid lines correspond to massive propagators,
dashed lines to massless propagators.

with

f1 =

(
t+ 3m2

)
2
√

6µ2

ψ1

π
.(92)

f1 is a modular form of weight 1 and f1 ∈M1(12, χ1). We have

f1 = −3
√

2 [E1(τ2, χ̄0, χ̄1)− 2E1(4τ2, χ̄0, χ̄1)] .(93)

Thus f4 ∈M4(12, χ0) since χ2
1 = χ0 and hence χ4

1 = χ0.
From Eqs. (85), (88) and (92) we see that all integration kernels are

modular forms with characters for Γ0(12). It follows that Ẽ
(j)
111 can be written

as a linear combination of iterated integrals of modular forms.
Let us make a small detour towards the kite integral. The kite integral

is a two-loop two-point function with five internal propagators, shown in
Fig. (2). Three internal propagators are massive with mass m, two internal
propagators are massless. The kite integral contains the sunset integral as
subtopology. The kite integral can be expressed to all orders in ε in terms
of ELi-functions, an algorithm to obtain the εj-term in the ε-expansion
has been given in [74]. For the discussion of the kite integral we follow the
notation of ref. [74]. We may now ask, if the kite integral can be expressed
at each order in the ε-expansion as a linear combination of iterated integrals
of modular forms. This is indeed the case. In order to show this, all what
needs to be done is to express the additional integration kernels in terms of
modular forms. For the kite integral we have in addition to the integration
kernels already present in the sunrise integral, five additional integration
kernels. Three of them are modular forms of weight 2. We denote them as
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g2,0, g2,1, g2,9 ∈M2(12, χ0). They are given by

g2,0 =
1

iπ

ψ2
1

W

1

t
= 4 [B2,2(τ2) +B2,3(τ2)−B2,4(τ2)−B2,6(τ2) +B2,12(τ2)] ,

g2,1 =
1

iπ

ψ2
1

W

1

t−m2

= 3 [6B2,2(τ2) +B2,3(τ2)− 3B2,4(τ2)− 2B2,6(τ2) +B2,12(τ2)] ,

g2,9 =
1

iπ

ψ2
1

W

1

t− 9m2

= −2B2,2(τ2)− 5B2,3(τ2)−B2,4(τ2) + 14B2,6(τ2)− 5B2,12(τ2).

(94)

The remaining two additional integration kernels are modular forms of weight
3, which we denote as g3,0, g3,1 ∈M3(12, χ1). They are given by

g3,0 =
1

iπµ2

ψ2
1

W

ψ1

π
= −2f3,

g3,1 =
1

iπµ2

ψ2
1

W

ψ1

π

t

t−m2
= −54

√
3E3 (2τ2; χ̄1, χ̄0) .

(95)

Since all integration kernels are modular forms it follows that the kite inte-
gral can be written as a linear combination of iterated integrals of modular
forms. We have collected useful formulae for all modular forms relevant to
the sunrise integral and the kite integral in Appendix C.

Let us now return to the two-loop sunrise integral. From Eq. (69) and

Eq. (78) we easily obtain Ẽ
(j)
111(2, q2), order by order in ε. We have

Ẽ
(j)
111(2, q2) = C

(j)
1 + C

(j)
2 ln(q2)(96)

+

q2∫
0

dq′2
q′2

q′2∫
0

dq′′2
q′′2

[
f3I

(
{f2}j ; q′′2

)
+ f4Ẽ

(j−2)
111 (2, q′′2)

]
,

where C
(j)
1 and C

(j)
2 are integration constants chosen in such a way as to

match the boundary value at q2 = 0. The first few terms for Ẽ
(j)
111 are given
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by

Ẽ
(0)
111(2, q2) = C

(0)
1 + C

(0)
2 ln(q2) + I(1, f3; q2),

Ẽ
(1)
111(2, q2) = C

(1)
1 + C

(1)
2 ln(q2) + I(1, f3, f2; q2),

Ẽ
(2)
111(2, q2) = C

(2)
1 + C

(2)
2 ln(q2) + C

(0)
1 I(1, f4; q2)

+ C
(0)
2 I(1, f4, 1; q2) + I(1, f3, f2, f2; q2)

+ I(1, f4, 1, f3; q2).

(97)

We may then put all pieces together and obtain the solution for the sunrise
integral S111(2− 2ε, t). We recall that we defined the Taylor expansions by

S111 (2− 2ε, t) = e−2γEε
∞∑
j=0

εjS
(j)
111 (2, t) ,

S̃111(2− 2ε, t) =

∞∑
j=0

εjS̃
(j)
111(2, t).

(98)

It will be convenient to factor out ψ1/π, therefore we set

S111 (2− 2ε, t) =
ψ1

π
E111(2− 2ε, q2) =

ψ1

π
e−2γEε

∞∑
j=0

εjE
(j)
111 (2, q2) ,

S̃111(2− 2ε, t) =
ψ1

π
Ẽ111(2− 2ε, q2) =

ψ1

π

∞∑
j=0

εjẼ
(j)
111(2, q2).

(99)

In the Taylor expansion of S111(2− 2ε, t) and E111(2− 2ε, t) we have fac-
tored out a prefactor exp(−2γEε). This ensures that in the Taylor coefficients

S
(j)
111(2, t) and E

(j)
111(2, t) Euler’s constant γE does not appear. S111(2− 2ε, t)

and S̃111(2− 2ε, t) (and E111(2− 2ε, t) and Ẽ111(2− 2ε, t)) are related by

S111 (2− 2ε, t) = Γ (1 + ε)2 e−2εL−εI(f2;q2)S̃111 (2− 2ε, q2) ,

E111 (2− 2ε, t) = Γ (1 + ε)2 e−2εL−εI(f2;q2)Ẽ111 (2− 2ε, q2) ,
(100)

with L = ln(m2/µ2). The factor (Γ(1 + ε))2 ensures that also the Taylor

coefficients S̃
(j)
111(2, t) and Ẽ

(j)
111(2, t) are free of Euler’s constant γE . Note

that we have

eγEεΓ (1 + ε) = exp

 ∞∑
j=2

(−1)j

j
ζjε

j

 .(101)
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In order to obtain the full solution we have to specify some boundary values.
It will be convenient to do this at t = 0 (corresponding to q2 = 0). The
homogeneous solution ψ1 has at t = 0 the value

ψ1(0)

π
=

2µ2

√
3m2

.(102)

The boundary values for the two-loop sunrise integral can be obtained to
any order in ε from the expansion of [69]

∞∑
j=0

εjS
(j)
111 (2, 0)(103)

= e2γεΓ (1 + 2ε)

(
m2
√

3

µ2

)−1−2ε
[

3

2ε2

Γ (1 + ε)2

Γ (1 + 2ε)
h− π

ε

]
,

where

h =
1

i

[
(−r3)−ε 2F1 (−2ε,−ε; 1− ε; r3)(104)

−
(
−r−1

3

)−ε
2F1

(
−2ε,−ε; 1− ε; r−1

3

) ]
.

The hypergeometric function can be expanded systematically in ε with the
methods of [27]. The first few terms are given by

2F1 (−2ε,−ε; 1− ε;x)(105)

= 1 + 2ε2Li2 (x) + ε3 [2Li3 (x)− 4Li2,1 (x, 1)]

+ ε4 [2Li4 (x)− 4Li3,1 (x, 1) + 8Li2,1,1 (x, 1, 1)] +O
(
ε5
)
.

The first few boundary values for the sunrise integral are given by

S
(0)
111 (2, 0) =

√
3µ2

im2

[
Li2 (r3)− Li2

(
r−1

3

)]
,

S
(1)
111 (2, 0) =

√
3µ2

im2

{
−2Li2,1 (r3, 1)− Li3 (r3) + 2Li2,1

(
r−1

3 , 1
)

+ Li3
(
r−1

3

)}
− 2 ln

(
m2
√

3

µ2

)
S

(0)
111 (2, 0) ,
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S
(2)
111 (2, 0) =

√
3µ2

im2

{
4Li2,1,1 (r3, 1, 1)− 2Li3,1 (r3, 1) + Li4 (r3)

− 4Li2,1,1
(
r−1

3 , 1, 1
)

+ 2Li3,1
(
r−1

3 , 1
)

− Li4
(
r−1

3

)
+

2π2

9

[
Li2 (r3)− Li2

(
r−1

3

)]}
− 2 ln

(
m2
√

3

µ2

)
S

(1)
111 (2, 0)− 2 ln2

(
m2
√

3

µ2

)
S

(0)
111 (2, 0) .(106)

The multiple polylogarithms are defined by

(107) Lin1,n2,...,nl (x1, x2, . . . , xl) =

∞∑
j1=1

j1−1∑
j2=1

· · ·
jl−1−1∑
jl=1

xj11
jn1

1

xj22
jn2

2

· · ·
xjll
jnll

.

In accordance with Eq. (99) we set

E
(j)
111(2, 0) =

π

ψ1(0)
S

(j)
111(2, 0) =

√
3m2

2µ2
S

(j)
111(2, 0).(108)

Putting everything together we obtain the solution of the two-loop sunrise
integral. The first few terms in the ε-expansion are given by

S
(0)
111(2, t) =

ψ1

π

[
E

(0)
111(2, 0) + I (1, f3; q2)

]
,

S
(1)
111(2, t) =

ψ1

π

[
E

(1)
111(2, 0)−

(
I (f2; q2) +

1

2
I (1; q2)

)
E

(0)
111(2, 0)

+ I (1, f3, f2; q2)− I (f2; q2) I (1, f3; q2)− 2LI (1, f3; q2)

]
,

S
(2)
111(2, t) =

ψ1

π

[
E

(2)
111(2, 0)−

(
I (f2; q2) +

1

2
I (1; q2)

)
E

(1)
111(2, 0)

+

(
I (1, f4; q2) + I (f2, f2; q2) +

1

2
I (1; q2) I (f2; q2)

)
E

(0)
111(2, 0)

+ I (1, f3, f2, f2; q2) + I (1, f4, 1, f3; q2)

− I (f2; q2) I (1, f3, f2; q2) + (ζ2 + I (f2, f2; q2)) I (1, f3; q2)

− 2L (I (1, f3, f2; q2)− I (f2; q2) I (1, f3; q2)) + 2L2I (1, f3; q2)

]
.(109)

We observe that the individual terms S
(j)
111(2, t) have uniform depth.
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6. Modular transformations of the first term
in the ε-expansion

We have seen in the previous section that each term of the ε-expansion of
the sunrise integral and the kite integral can be expressed as an iterated
integral of modular forms. The properties under modular transformations
can be deduced from this representation. The transformation properties are
particularly simple for the first term in the ε-expansion of the sunrise integral
around two space-time dimensions. This is due to the fact that this term is
an Eichler integral. Concretely, I(1, f3; q2) is an Eichler integral as defined by
Eqs. (24)–(26). In this section we discuss as an example the sunrise integral in
two space-time dimensions, i.e. the first term in the ε-expansion around two
space-time dimensions. We show explicitly, how the period polynomial can
be obtained. The modular transformation properties of the sunrise integral
in two space-time dimensions have also been discussed in [66].

The integral is given by

S
(0)
111(2, t) =

ψ1(q2)

π
E

(0)
111(2, q2),(110)

with

E
(0)
111(2, q2) = E

(0)
111(2, 0) + I (1, f3; q2) = 3 E2;0 (r3;−1;−q2) .(111)

The E-function are defined in Appendix B. We may view this integral either
as a function of t, q2 or τ2. In this section we consider the integral as a
function of τ2 and investigate the transformation properties under the group
Γ0(12). The group Γ0(12) is generated by the elements{(

1 1
0 1

)
,

(
7 −1

36 −5

)
,

(
19 −4
24 −5

)
,(112) (

17 −5
24 −7

)
,

(
7 −3

12 −5

)
,

(
−1 0

0 −1

)}
.

With a slight abuse of notation let us denote

ψ1(τ2) = ψ1(q2(τ2)), E
(0)
111(2, τ2) = E

(0)
111(2, q2(τ2)),(113)

S
(0)
111(2, τ2) =

ψ1(τ2)

π
E

(0)
111(2, τ2).
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As we show in Appendix C, the function ψ1(τ2) is a modular form of weight
1 for Γ0(12) with character χ1: ψ1 ∈M1(12, χ1). Thus

ψ1 (γ(τ2)) = χ1(d) (cτ2 + d)ψ1 (τ2) for all γ ∈ Γ0(12).(114)

E
(0)
111(2, τ2) is an Eichler integral of f3 ∈M3(12, χ1) and transforms therefore

as

E
(0)
111 (2, γ(τ2)) = χ1(d) (cτ2 + d)−1

[
E

(0)
111 (2, τ2) + Pγ (τ2)

]
(115)

for all γ ∈ Γ0(12),

where Pγ(τ2) is a linear polynomial in τ2:

Pγ = aγτ2 + bγ .(116)

It follows that S
(0)
111(2, τ2) transforms as (note that χ2

1 = χ0)

S
(0)
111 (2, γ (τ2)) = χ0(d)

[
S

(0)
111 (2, τ2) +

ψ1 (τ2)

π
Pγ (τ2)

]
(117)

for all γ ∈ Γ0(12).

The period polynomial Pγ for γ ∈ Γ0(12) can be obtained as follows: One

chooses two values τ
(a)
2 and τ

(b)
2 and computes E

(0)
111(2, τ

(a)
2 ), E

(0)
111(2, γ(τ

(a)
2 )),

E
(0)
111(2, τ

(b)
2 ) and E

(0)
111(2, γ(τ

(b)
2 )). The coefficients of the period polynomial

are then obtained by solving the linear system

aγτ
(a)
2 + bγ = χ1(d)−1

(
cτ

(a)
2 + d

)
E

(0)
111(2, γ(τ

(a)
2 ))− E(0)

111(2, τ
(a)
2 ),

aγτ
(b)
2 + bγ = χ1(d)−1

(
cτ

(b)
2 + d

)
E

(0)
111(2, γ(τ

(b)
2 ))− E(0)

111(2, τ
(b)
2 ).(118)

Let us look at an example. We consider

γa =

(
7 −1

36 −5

)
.(119)

Choosing τ
(a)
2 = 1/6 and τ

(b)
2 = (5 + i)/36 one obtains for the period poly-

nomial

Pγa (τ2) = 9
[

(1 + i) E2;0

(
r3;−1;−e

πi(5+i)

18

)
(120)

+ (1− i) E2;0

(
r3;−1;−e

πi(7+i)

18

) ]
(6τ2 − 1)

= 4iπ2 (6τ2 − 1)
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and S
(0)
111(2, τ2) transforms under γa as

S
(0)
111(2, γa(τ2)) = S

(0)
111(2, τ2) +

ψ1 (τ2)

π
Pγa (τ2) .(121)

7. A compact expression to all orders

In Section 5 we showed that the solution for the two-loop sunrise can be
expressed as a linear combination of iterated integrals of modular forms.
Each term in the ε-expansion of the sunrise integral is obtained from simple
integrations within this class of functions. In this section we show that we
may even give a generating function for the j-th term in the ε-expansion. Let
us consider in more detail the function Ẽ111(2− 2ε, q2), defined in Eq. (99).
From Eq. (96) it follows that Ẽ111(2− 2ε, q2) satisfies the differential equa-
tion [(

q2
d

dq2

)2

− ε2f4

]
Ẽ111 (2− 2ε, q2) = f3e

εI(f2;q2).(122)

Previously we solved this differential equation order by order in ε. This
allows us to treat the expression ε2f4Ẽ111(2− 2ε, q2) as part of the inhomo-
geneous term. The differential operator is then just(

q2
d

dq2

)2

,(123)

whose homogeneous solutions are simply

1, ln(q2).(124)

In order to find the generating function for the j-th term of the ε-expansion
we now consider the differential operator(

q2
d

dq2

)2

− ε2f4.(125)

The homogeneous solutions for this differential operator are

(126) H1 =

∞∑
j=0

ε2jI
(
{1, f4}j ; q2

)
, H2 =

∞∑
j=0

ε2jI
(
{1, f4}j , 1; q2

)
.
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The Wronskian equals

H1
dH2

d ln q2
−H2

dH1

d ln q2
= 1.(127)

It is easily verified that a special solution for the differential equation (122)
is given by

∞∑
j=0

εj
b j
2
c∑

k=0

I
(
{1, f4}k , 1, f3, {f2}j−2k ; q2

)
,(128)

where bac denotes the largest integer smaller or equal to a. This allows us to
write down a generating function for the j-th term of the ε-expansion of the
sunrise integral. In oder to present this formula let us first define boundary
values B(j)(2, 0) through

S111(2− 2ε, 0) =
ψ1(0)

π
Γ(1 + ε)2e−2εL

∞∑
j=0

εjB(j)(2, 0),(129)

i.e. we factor off from S111(2− 2ε, 0) the normalised period ψ1(0)/π and the
terms

Γ(1 + ε)2e−2εL = e
−2εL−2γEε+2

∞∑
n=2

(−1)n

n
ζnεn

.(130)

We obtain

S111 (2− 2ε, t) =
ψ1(q2)

π
e
−εI(f2;q2)−2εL−2γEε+2

∞∑
n=2

(−1)n

n
ζnεn

×


 ∞∑
j=0

(
ε2jI

(
{1, f4}j ; q2

)
− 1

2
ε2j+1I

(
{1, f4}j , 1; q2

))
×
∞∑
k=0

εkB(k) (2, 0)

+

∞∑
j=0

εj
b j
2
c∑

k=0

I
(
{1, f4}k , 1, f3, {f2}j−2k ; q2

) .(131)

This is one of the main results of this paper. Eq. (131) gives us easily the
j-th term in the ε-expansion of S111(2− 2ε, t) in terms of iterated integrals
of modular forms: One expands the exponential function and collects all
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terms contributing to the j-th power of ε. Products of iterated integrals can
be converted to a sum of single iterated integrals with the help of the shuffle
product. We would like to point that the prefactor ψ1/π is itself a modular
form (ψ1/π ∈M1(12, χ1)). Thus the structure of our result is

sunrise = modular form× iterated integrals of modular forms.(132)

The key point to obtain this solution was the transformation from the origi-
nal integral S111(2− 2ε, t) to the integral Ẽ111(2− 2ε, q2). The latter satisfies
the rather simple differential equation given in Eq. (122). The differential
operator on the left-hand side is a quadratic polynomial in ε. Let us briefly
comment on the consequences if we transform to a new basis integral, such
that the corresponding differential operator is linear in ε. We recall that
f4 = f4

1 . The transformation

Ẽ′111(2− 2ε, q2) = e−εI(f
2
1 ;q2)Ẽ111(2− 2ε, q2)(133)

eliminates the ε2-term of the differential operator and we find as differential
equation for Ẽ′111[(

q2
d

dq2

)2

+ 2εf2
1

(
q2

d

dq2

)
+ 2εf1

(
q2
df1

dq2

)]
Ẽ′111 (2− 2ε, q2)(134)

= f3e
εI(f2−f2

1 ;q2).

The differential operator is now linear in ε, however we left the space of
modular forms: The derivative of a modular form (e.g. df1/d ln q2) is in
general not a modular form again, just a quasi-modular form [123, 124].

8. The elliptic curve related to the maximal cut

In expressing the sunrise integral and the kite integral to all orders in the di-
mensional regularisation parameter ε as iterated integrals of modular forms
we worked up to now with modular forms of Γ1(12). Bloch and Vanhove
gave in [66] an expression for the first term in the ε-expansion of the sunrise
integral related to the congruence subgroup Γ1(6). This raises the question
if we may express the sunrise integral and the kite integral to all orders in
the dimensional regularisation parameter ε as iterated integrals of modular
forms from the smaller space Mk(Γ1(6)) only, instead of the larger space
Mk(Γ1(12)). The answer is yes. One possibility which leads us with a stan-
dard choice of periods directly to Γ1(6) starts from an elliptic curve related
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to the maximal cut of the sunrise integral. The maximal cut is interesting in
its own right [45] and we discuss the calculation based on an elliptic curve
obtained from the maximal cut in this section. However, there is a small
trade-off: In the region t < 0 the sunrise integral and the kite integral are
real. The previously defined nome q2 related to the elliptic curve obtained
from the second graph polynomial is real as well in this region. Further-
more, the nome q2 when viewed as a function of t is smooth around t = 0.
These two properties do no longer hold for the elliptic curve obtained from
the maximal cut. Let us call the nome in the maximal cut-case q2,C , it will
be defined below. One finds that q2,C is complex for t < 0 and q2,C(t) is
continuous, but not differentiable at t = 0. There is nothing wrong with the
fact that q2,C(t) is not differentiable at t = 0. The point t = 0 is a regu-
lar singular point of the differential equation. However, the sunrise integral
and the kite integral are regular at this point and one might prefer working
with variables which are smooth around t = 0. This simplifies the discussion
of the analytic continuation of the Feynman integrals [125]. Geometrically
we have the following situation: The elliptic curve associated to the second
graph polynomial defines for t < 0 a rectangular lattice. This is not the case
for the elliptic curve associated to the maximal cut. The final results of the
two cases are closely related. If we set qC = q2

2,C the results are related by
the simple substitution qC = −q2. The function qC(t) is again differentiable
at t = 0.

Bloch and Vanhove obtained their result by realising that the relevant
family of elliptic curves has been studied in the mathematical literature [96,
97, 99]. Here we follow a different path: We may obtain the relevant modular
forms of Γ1(6) by looking at the maximal cuts of the sunrise integral. There
are two possibilities to obtain an elliptic curve from the sunrise integral. The
first possibility is the one followed in the main text of this paper: The zero
set of the second graph polynomial

(135) F = 0

defines together with the choice of a rational point as origin an elliptic curve.
Let us denote this curve by E. The periods ψ1 and ψ2 and the nome q2 are
then defined as given in Section 4, following the conventions of [126]. The
curve E has the j-invariant

(136) j (E) =

(
3m2 + t

)3 (
3m6 − 3m4t+ 9m2t2 − t3

)3
m12t2 (m2 − t)3 (9m2 − t)

.
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There is a second possibility to obtain an elliptic curve. We look at the
maximal cut of the sunrise integral around two space-time dimensions. The
maximal cut is given by

MaxCutC S111 (2− 2ε, t)(137)

=
uµ2

π2

∫
C

dP

(P − t)
1

2 (P − t+ 4m2)
1

2 (P 2 + 2m2P − 4m2t+m4)
1

2

+O (ε) ,

where u is an (irrelevant) phase and C an integration contour. The denom-
inator of the integrand defines a second elliptic curve, which we denote by
EC :

(138) EC : w2−
(
z− t

µ2

)(
z− t− 4m2

µ2

)(
z2+

2m2

µ2
z+

m4 − 4m2t

µ4

)
= 0.

The curve EC has the j-invariant

(139) j (EC) =

(
3m2 + t

)3 (
3m6 + 75m4t− 15m2t2 + t3

)3
m6t (m2 − t)6 (9m2 − t)2 .

The j-invariants of Eq. (136) and Eq. (139) differ, therefore the two elliptic
curves E and EC are not related by a modular PSL(2,Z)-transformation.
They are however related by a quadratic transformation. To see this, let us
denote the roots of the quartic polynomial in Eq. (138) by

(140)

z1 =
t− 4m2

µ2
, z2 =

−m2 − 2m
√
t

µ2
,

z3 =
−m2 + 2m

√
t

µ2
, z4 =

t

µ2
.

We consider a neighbourhood of t = 0 without the branch cut of
√
t along

the negative real axis. The correct physical value is specified by Feynman’s
iδ-prescription: t→ t+ iδ. We further set

k2
C =

(z3 − z2) (z4 − z1)

(z3 − z1) (z4 − z2)
, k′C

2 =
(z2 − z1) (z4 − z3)

(z3 − z1) (z4 − z2)
.(141)

A standard choice of periods is then

(142) ψ1,C =
4µ2K (kC)(

m+
√
t
) 3

2
(
3m−

√
t
) 1

2

, ψ2,C =
4iµ2K (k′C)(

m+
√
t
) 3

2
(
3m−

√
t
) 1

2

.
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We denote the ratio of the two periods and the nome by

τC =
ψ2,C

ψ1,C
, q2,C = eiπτC .(143)

Comparing (ψ1,C , ψ2,C) with (ψ1, ψ2) we find in a neighbourhood of t = 0

ψ1,C = ψ1, 2ψ2,C = ψ2 + ψ1.(144)

For the Wronskian we have

(145) WC = ψ1,C
d

dt
ψ2,C − ψ2,C

d

dt
ψ1,C = − 6πiµ4

t (t−m2) (t− 9m2)
=

1

2
W.

Thus, the lattice generated by the periods (ψ1, ψ2) is a sub-lattice of the one
generated by the periods (ψ1,C , ψ2,C). This is illustrated in Fig. (3). The

ψ1

ψ2

ψ1,C

ψ2,C

Figure 3: The lattices generated by the periods (ψ1, ψ2) (left) and
(ψ1,C , ψ2,C) (right). The lattice generated by (ψ1, ψ2) is rectangular for t < 0.
It is a sub-lattice of the one generated by (ψ1,C , ψ2,C).



i
i

“1-Weinzierl” — 2018/6/20 — 11:21 — page 228 — #36 i
i

i
i

i
i

228 L. Adams and S. Weinzierl

quantities τC and τ are related by

τC =
τ + 1

2
, τ = 2τC − 1,(146)

and therefore

q2
2,C = −q2.(147)

We note that for t < 0 the ratio τ is purely imaginary and hence q2 is real. On
the other hand, the ratio τC has in this region a non-vanishing real part and
hence q2,C is complex. Let us further note that both pairs (ψ1,C , ψ2,C) and
(ψ1, ψ2) are a pair of two independent solutions of the differential equation[

d2

dt2
+

(
1

t
+

1

t−m2
+

1

t− 9m2

)
d

dt
(148)

+
1

m2

(
− 1

3t
+

1

4 (t−m2)
+

1

12 (t− 9m2)

)]
ψ = 0.

This is immediately clear: If (ψ1,C , ψ2,C) (or (ψ1, ψ2)) is a pair of two inde-
pendent solutions, so is any other pair obtained by a GL(2,C)-transformation.

Let us now look at the modular aspects of the elliptic curve EC . The
analogue of Eq. (71) reads

t = 9m2 η (6τC)8 η (τC)4

η (2τC)8 η (3τC)4 .(149)

This is a modular function of level 6. Eq. (149) is obtained from expressing
k2
Ck
′
C

2 on the one hand as a function of t, and on the other hand as a function
of τC

(150) 16
m3
√
t
(
3m+

√
t
) (
m−

√
t
)3(

3m−
√
t
)2 (

m+
√
t
)6 = k2

Ck
′
C

2 = 16
η
(
τC
2

)24
η (2τC)24

η (τC)48 ,

and by solving for t as a power series of q2,C = exp(iπτC). We may now
express all integration kernels in terms of modular forms of Γ1(6). To this aim
we denote now with a slight abuse of notation by χ0 and χ1 the characters
of Γ1(6) induced by the primitive characters

χ̄0 =

(
1

n

)
, χ̄1 =

(
−3

n

)
.(151)
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We have ψ1,C/π ∈M1(6, χ1):

ψ1

π
=

2µ2

√
3m2

η (3τC) η (2τC)6

η (τC)3 η (6τC)2(152)

=
6µ2

√
3m2

[E1 (τC ; χ̄0, χ̄1) + E1 (2τC ; χ̄0, χ̄1)] .

In the sunrise integral the integration kernels are now expressed in terms of
three modular forms f1,C ∈M1(6, χ1), f2,C ∈M2(6, χ0) and f3,C ∈M3(6, χ1),
with

(153)

f1,C =

(
t+ 3m2

)
2
√

6µ2

ψ1,C

π
= 3
√

2E1(τC , χ̄0, χ̄1),

f2,C =
1

2iπ

ψ2
1,C

WC

(
3t2 − 10m2t− 9m4

)
2t (t−m2) (t− 9m2)

= −10B2,2(τC) + 4B2,3(τC)− 2B2,6(τC),

f3,C =
µ2ψ3

1,C

4πW 2
C

6

t (t−m2) (t− 9m2)

= −3
√

3
η (τC)5 η (3τC) η (6τC)4

η (2τC)4

= −3
√

3 [E3 (τC ; χ̄1, χ̄0)− 8E3 (2τC ; χ̄1, χ̄0)] .

We set further f4,C = f4
1,C .

In the kite integral we have in addition three modular forms g2,0,C , g2,1,C ,
g2,9,C ∈M2(6, χ0) and two modular forms g3,0,C , g3,1,C ∈M3(6, χ1). The
weight 2 modular forms are

(154)

g2,0,C =
1

2iπ

ψ2
1,C

WC

1

t
=

η (τC)4 η (3τC)4

η (2τC)2 η (6τC)2

= −8B2,2(τC)− 4B2,3(τC) + 8B2,6(τC),

g2,1,C =
1

2iπ

ψ2
1,C

WC

1

t−m2
= −9

η (3τC)3 η (6τC)3

η (τC) η (2τC)

= −9B2,2(τC)− 3B2,3(τC) + 3B2,6(τC),

g2,9,C =
1

2iπ

ψ2
1,C

WC

1

t− 9m2
= − η (τC)7 η (6τC)7

η (2τC)5 η (3τC)5

= −5B2,2(τC) + 5B2,3(τC)−B2,6(τC).
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The weight 3 modular forms are given by

(155)

g3,0,C =
1

2iπµ2

ψ2
1,C

WC

ψ1,C

π
= 6
√

3
η (τC)5 η (3τC) η (6τC)4

η (2τC)4

= 6
√

3 [E3 (τC ; χ̄1, χ̄0)− 8E3 (2τC ; χ̄1, χ̄0)] ,

g3,1,C =
1

2iπµ2

ψ2
1,C

WC

ψ1,C

π

t

t−m2
= −54

√
3
η (6τC)9

η (2τC)3

= −54
√

3E3 (2τC ; χ̄1, χ̄0) .

According to a theorem by Sebbar [98] the space of modular forms for Γ1(6)
is a polynomial ring2 with two generators of weight 1. As generators we may
take

e1 = E1 (τC ; χ̄0, χ̄1) , e2 = E1 (2τC ; χ̄0, χ̄1) .(156)

The theorem implies that we should be able to express all occurring modular
forms of Γ1(6) as polynomials in the two generators. Indeed we find

ψ1

π
= 2
√

3
µ2

m2
(e1 + e2) ,

f1,C = 3
√

2e1,

f2,C = −6
(
e2

1 + 6e1e2 − 4e2
2

)
,

f3,C = 36
√

3
(
e3

1 − e2
1e2 − 4e1e

2
2 + 4e3

2

)
,

g2,0,C = −12
(
e2

1 − 4e2
2

)
,

g2,1,C = −18
(
e2

1 + e1e2 − 2e2
2

)
,

g2,9,C = 6
(
e2

1 − 3e1e2 + 2e2
2

)
,

g3,0,C = −72
√

3
(
e3

1 − e2
1e2 − 4e1e

2
2 + 4e3

2

)
,

g3,1,C = −108
√

3
(
e3

1 − 3e1e
2
2 + 2e3

2

)
.(157)

The relation with the previously defined modular forms of Γ1(12) is given
by

fi (τ2) = fi,C (τC) , gi,j (τ2) = gi,j,C (τC) ,(158)

where τC is related to τ2 by τC = τ2 + 1/2. Let us introduce qC = q2
2,C =

exp(2iπτC) = −q2. The all-order expression for the sunrise integral in terms

2We thank the referee for pointing this out.
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of iterated integrals of modular forms of Γ1(6) reads

S111(2− 2ε, t) =
ψ1,C

π
e
−εI(f2,C ;qC)−2εL−2γEε+2

∞∑
n=2

(−1)n

n
ζnεn

×


 ∞∑
j=0

(
ε2jI

(
{1, f4,C}j ; qC

)
− 1

2
ε2j+1I

(
{1, f4,C}j , 1; qC

))
×
∞∑
k=0

εkB(k) (2, 0)

+

∞∑
j=0

εj
b j
2
c∑

k=0

I
(
{1, f4,C}k , 1, f3,C , {f2,C}j−2k ; qC

) .(159)

The boundary values B(k)(2, 0) are the ones from Eq. (129).

9. The choice of the periods

Let us return to the case, where the elliptic curve is defined by the second
graph polynomial

(160) F = 0.

We defined two periods ψ1 and ψ2 in Eq. (57). This choice was motivated
by the fact, that the lattice generated by the periods is rectangular in the
Euclidean region, and we chose the periods such that ψ1 is real and ψ2 is
purely imaginary in the Euclidean region. Any other choice of periods is
related to the original one by a SL2(Z)-transformation:

(161)

(
ψ′2
ψ′1

)
=

(
a b
c d

)(
ψ2

ψ1

)
, γ =

(
a b
c d

)
∈ SL2(Z).

This induces a transformation on τ :

τ ′ = γ (τ) =
aτ + b

cτ + d
.(162)

In this section we discuss the effects related to the choice of periods. Let us
start with an example: The transformation

T =

(
1 1
0 1

)
(163)
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induces

τ ′ = τ + 1, and q′2 = −q2.(164)

An inspection of the results from Section 8 shows that the transformation
q′2 = −q2 has the effect that all occurring transformed modular forms belong
to the smaller space Mk(Γ1(6)).

Note that there is no contradiction with the fact that T ∈ Γ1(12). In Sec-
tion 5 we showed that the integration kernels are modular forms of Γ1(12) in
the variable τ2 = τ/2. Here, we discuss the effects of SL2(Z)-transformations
on the choice of periods. The transformation τ ′ = τ + 1 corresponds to
τ ′2 = τ2 + 1/2 or τ ′2 = T2(τ2) with

T2 =

(
1 1

2
0 1

)
.(165)

The matrix T2 belongs to SL2(Q), but not to SL2(Z). If on the other hand we
consider τ ′′2 = T (τ2) = τ2 + 1, we have τ ′′ = τ + 2 and q′′2 = q2. This shows
that any modular form f(τ2) ∈ Γ1(N) is invariant under τ ′′2 = T (τ2), as it
should.

Let us now study the issue more systematically: We consider t ∈ Ĉ =
C ∪ {∞}. A choice of periods ψ′1, ψ′2 defines a map

Ĉ → H∗,

t → τ ′ =
ψ′2
ψ′1

= γ

(
ψ2

ψ1

)
.(166)

We are interested in inverting this map in a neighbourhood of a point t0 ∈ Ĉ
with τ ′(t0) = i∞. Of particular interest is the case, where t0 is one of the sin-
gular points of the differential equation: t0 ∈ {0,m2, 9m2,∞}. In Section 5
we used the modular lambda function for this purpose. The modular lambda
function is a modular function for Γ(2). The congruence subgroup Γ(2) has
index 6 in SL2(Z). Thus any γ ∈ SL2(Z) belongs to one of the six Γ(2)-cosets
in SL2(Z). The congruence subgroup Γ(2) is normal in SL2(Z), therefore the
left and right cosets are identical. For any coset one finds a representative
γrep and a t0 ∈ {0,m2, 9m2,∞} such that τ ′(t0) = i∞. For these representa-
tives γrep we may invert the map t→ τ ′ in a neighbourhood of t = t0. The
coset representatives γrep, the points t0 and the result of the inversion are
tabulated in Table (1), along with additional useful information.
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γrep τ ′ e′1 e′2 e′3 λ(τ ′) = e′3−e′2
e′1−e′2

t0 relation

(
1 0
0 1

)
τ e1 e2 e3 λ = e3−e2

e1−e2 0 t = −9m2 η(2τ ′2)4η(3τ ′2)4η(12τ ′2)4

η(τ ′2)4η(4τ ′2)4η(6τ ′2)4(
1 1
0 1

)
τ + 1 e1 e3 e2 − λ

1−λ = e2−e3
e1−e3 0 t = 9m2 η(τ ′2)4η(6τ ′2)8

η(3τ ′2)4η(2τ ′2)8(
0 −1
1 0

)
− 1
τ e2 e1 e3 1− λ = e3−e1

e2−e1 ∞ −1
t = 1

m2

η(2τ ′6)4η(3τ ′6)4η(12τ ′6)4

η(τ ′6)4η(4τ ′6)4η(6τ ′6)4(
3 −1
1 0

)
3τ−1
τ e2 e3 e1 −1−λ

λ = e1−e3
e2−e3 ∞ −1

t = − 1
m2

η(τ ′6)4η(6τ ′6)8

η(3τ ′6)4η(2τ ′6)8(
3 2
1 1

)
3τ+2
τ+1 e3 e2 e1

1
λ = e1−e2

e3−e2 m2 t−m2 = −8m2 η(τ ′3)3η(6τ ′3)9

η(2τ ′3)3η(3τ ′3)9(
0 −1
1 1

)
− 1
τ+1 e3 e1 e2

1
1−λ = e2−e1

e3−e1 m2 t−m2 = −8m2 η(τ ′3)3η(6τ ′3)9

η(2τ ′3)3η(3τ ′3)9

Table 1: The table shows in the first column representatives for the six
Γ(2)-cosets in SL2(Z). The second column expresses τ ′ in terms of τ . The
third column gives the permutation of the roots appearing in the Weierstrass
normal form. The fourth column expresses λ(τ ′) in terms of λ(τ). The fifth
column gives the point t0 such that τ ′(t0) = i∞. Finally, the last column
relates the variable t to an eta quotient in τ ′. Here the notation τ ′N = τ ′/N
is used.

An arbitrary γ ∈ SL2(Z) may be written as

γ = γ2γrep(167)

with γ2 ∈ Γ(2) and γrep being one of the six coset representatives tabulated
in table (1). If the result of the inversion for the case τ ′ = γrep(τ) is written
as t = F (τ ′), then we have for the case τ ′ = γ(τ) = γ2(γrep(τ))

t = F
(
γ−1

2

(
τ ′
))
.(168)
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The coset representatives are of course not unique. For example we may also
choose for the fifth coset the representative

γ =

(
1 0
3 1

)
=

(
1 −2
2 −3

)(
3 2
1 1

)
.(169)

For this γ we have τ ′(9m2) = i∞. Inverting this function in a neighbourhood
of t0 = 9m2 one finds

t− 9m2 = 72m2 η (2τ ′) η (6τ ′)5

η (3τ ′) η (τ ′)5 ,(170)

which is the relation given in ref. [66]. The transformed periods ψ′2 and ψ′1
generate the same lattice as ψ2 and ψ1. The transformation in Eq. (169)
induces

τ ′ =
τ

3τ + 1
.(171)

Note however that the relation between τ ′ and τ2 is

τ ′ =
2τ2

6τ2 + 1
,(172)

which is not a SL2(Z)-transformation (and there is no reason for this trans-
formation to be a SL2(Z)-transformation).

10. Conclusions

In this paper we showed that certain Feynman integrals, which cannot be
expressed in terms of multiple polylogarithms, have a representation as a
linear combinations of iterated integrals of modular forms. Specifically, we
showed that equal mass sunrise integral and the kite integral can be ex-
pressed to all orders in the dimensional regularisation parameter ε in this
form. This structure is very appealing, as it generalises the pattern observed
for Feynman integrals evaluating to multiple polylogarithms to the elliptic
setting. For the former we have the structure

algebraic prefactor×iterated integrals of rational/algebraic functions,(173)

for the latter we find

modular form× iterated integrals of modular forms.(174)
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In addition we presented a compact formula, expressing the two-loop sunrise
integral to all orders in ε as iterated integrals of modular forms.

In our calculations we started from an elliptic curve, which we may either
obtain from the Feynman parameter representation or from the maximal
cut. These two elliptic curves are not identical, however they are related
by a quadratic transformation. Of course, both approaches yield the correct
result.

The space of modular forms for the integration kernels depends on the
elliptic curve we start with and on the choice of periods for this elliptic
curve. We discussed both aspects. With a standard choice of periods we
find that the integration kernels belong to Mk(Γ1(12)) in the case where
the elliptic curve is obtained from the Feynman parameter representation,
and to Mk(Γ1(6)) in the case where the elliptic curve is obtained from
the maximal cuts. In the Feynman parameter case, the transformation τ ′ =
τ + 1 transforms the integration kernels from the larger space Mk(Γ1(12))
into the smaller space Mk(Γ1(6)).
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Appendix A. Generalised Eisenstein series

The space Mk(Γ1(N)) of modular forms of weight k for the congruence
subgroup Γ1(N) decomposes into a direct sum of spaces of modular forms
of weight k for the congruence subgroup Γ0(N) with characters:

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),(A.1)

where the sum runs over all Dirichlet characters modulo N . We have similar
decompositions for the space of cusp forms and the Eisenstein subspaces:

Sk(Γ1(N)) =
⊕
χ

Sk(N,χ), Ek(Γ1(N)) =
⊕
χ

Ek(N,χ).(A.2)

A basis for the Eisenstein subspace Ek(N,χ) can be given explicitly in terms
of generalised Eisenstein series. Let φ and ψ be primitive Dirichlet characters
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with conductors L and M , respectively. We set

Ek(τ ;φ, ψ) = a0 +

∞∑
m=1

∑
d|m

ψ(d) · φ(m/d) · dk−1

 qmM , qM = e2πiτ/M .

(A.3)

The normalisation is such that the coefficient of qM is one. The constant
term a0 is given by

a0 =

{
−Bk,ψ

2k , if L = 1,

0, if L > 1.
(A.4)

Note that L denotes the conductor of φ and the constant term a0 depends
therefore on φ and ψ. The generalised Bernoulli-numbers Bk,ψ are defined
by

M∑
m=1

ψ(m)
xemx

eMx − 1
=

∞∑
k=0

Bk,ψ
xk

k!
.(A.5)

The generalised Eisenstein series are modular forms [106]:

Theorem A.1. Suppose K is a positive integer, the Dirichlet characters
φ, ψ are as above and k is a positive integer such that φ(−1)ψ(−1) = (−1)k.
For k = 1 we require in addition φ(−1) = 1 and ψ(−1) = −1. Except when
k = 2 and φ = ψ = 1, the Eisenstein series Ek(Kτ ;φ, ψ) defines an element
of Mk(KLM, χ̃), where χ̃ is the Dirichlet character with modulus KLM
induced by φψ. In the case k = 2, φ = ψ = 1 and K > 1 we use the notation
E2(τ) = E2(τ ;φ, ψ) and B2,K(τ) = E2(τ)−KE2(Kτ). Then B2,K(τ) is a
modular form in M2(Γ0(K)).

We may now give a basis for the Eisenstein subspace Ek(N,χ):

Theorem A.2. The Eisenstein series in Mk(N,χ) coming from Theo-
rem A.1 with KLM |N and χ the Dirichlet character of modulus N induced
from φψ form a basis for the Eisenstein subspace Ek(N,χ).

Appendix B. Elliptic generalisations of polylogarithms

In this appendix we collect the definitions of three families of specific func-
tions: These are the ELi-functions, the E-functions and the E-functions
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[69, 74]. The latter two are just linear combinations of the ELi-functions.
Let us start with the ELi-functions. These are functions of (2l + 1) variables
x1, . . . , xl, y1, . . . , yl, q2 and (3l − 1) indices n1, . . . , nl, m1, . . . , ml, o1,
. . . , ol−1. For l = 1 we set

ELin;m (x; y; q2) =

∞∑
j=1

∞∑
k=1

xj

jn
yk

km
qjk2 .(B.6)

For l > 1 we define

ELin1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, . . . , xl; y1, . . . , yl; q2)(B.7)

=

∞∑
j1=1

· · ·
∞∑
jl=1

∞∑
k1=1

· · ·
∞∑
kl=1

xj11
jn1

1

· · ·
xjll
jnll

yk11

km1

1

· · ·
ykll
kml

l

× qj1k1+···+jlkl
2

l−1∏
i=1

(jiki + · · ·+ jlkl)
oi

.

We have the relations

ELin1;m1
(x1; y1; q2) ELin2,...,nl;m2,...,ml;2o2,...,2ol−1

(x2, . . . , xl; y2, . . . , yl; q2)
(B.8)

= ELin1,n2,...,nl;m1,m2,...,ml;0,2o2,...,2ol−1
(x1, x2, . . . , xl; y1, y2, . . . , yl; q2)

and

q2∫
0

dq′2
q′2

ELin1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1

(
x1, . . . , xl; y1, . . . , yl; q

′
2

)
(B.9)

= ELin1,...,nl;m1,...,ml;2(o1+1),2o2,...,2ol−1
(x1, . . . , xl; y1, . . . , yl; q2) .

It will be convenient to introduce abbreviations for certain linear combina-
tions, which occur quite often. We define a prefactor cn and a sign sn, both
depending on an index n by

cn =
1

2
[(1 + i) + (1− i) (−1)n] =

{
1, n even,

i, n odd,
(B.10)

sn = (−1)n =

{
1, n even,

−1, n odd.
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For l = 1 we define the linear combinations

En;m (x; y; q2) =
cn+m

i

[
ELin;m (x; y; q2)(B.11)

− sn+mELin;m

(
x−1; y−1; q2

) ]
.

More explicitly, we have

En;m (x; y; q2) =


1
i

[
ELin;m (x; y; q2)− ELin;m

(
x−1; y−1; q2

)]
, n+m even,

ELin;m (x; y; q2) + ELin;m

(
x−1; y−1; q2

)
, n+m odd.

(B.12)

For l > 0 we proceed as follows: For o1 = 0 we set

En1,...,nl;m1,...,ml;0,2o2,...,2ol−1
(x1, . . . , xl; y1, . . . , yl; q2)

(B.13)

= En1;m1
(x1; y1; q2) En2,...,nl;m2,...,ml;2o2,...,2ol−1

(x2, . . . , xl; y2, . . . , yl; q2) .

For o1 > 0 we set recursively

En1,...,nl;m1,...,ml;2o1,2o2,...,2ol−1
(x1, . . . , xl; y1, . . . , yl; q2)(B.14)

=

q2∫
0

dq′2
q′2

En1,...,nl;m1,...,ml;2(o1−1),2o2,...,2ol−1

(
x1, . . . , xl; y1, . . . , yl; q

′
2

)
.

The E-functions are linear combinations of the ELi-functions with the same
indices. More concretely, an E-function of depth l can be expressed as a
linear combination of 2l ELi-functions. We have

En1,...,nl;m1,...,ml;2o1,...,2ol−1
(x1, . . . , xl; y1, . . . , yl; q2)(B.15)

=

1∑
t1=0

· · ·
1∑

tl=0

 l∏
j=1

cnj+mj

i

(
−snj+mj

)tj
× ELin1,...,nl;m1,...,ml;2o1,...,2ol−1

(
x
st1
1 , . . . , x

stl
l ; y

st1
1 , . . . , y

stl
l ; q2

)
.

Finally, let us introduce the E-functions. These are closely related to the E-
functions, the difference being that the E-functions at depth 1 have a term
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proportional to q0
2, while the E do not. The E-functions are defined as

En1,...,nl−1,nl;m1,...,ml−1,ml;2o1,...,2ol−2,2ol−1
(x1, . . . , xl−1, xl; y1, . . . , yl−1, yl; q2)

(B.16)

= En1,...,nl−1,nl;m1,...,ml−1,ml;2o1,...,2ol−2,2ol−1
(x1, . . . , xl−1, xl; y1, . . . , yl−1, yl; q2)

+ En1,...,nl−2,nl−1+ol−1;m1,...,ml−2,ml−1+ol−1;2o1,...,2ol−2
(x1, . . . , xl−1; y1, . . . , yl−1; q2)

× cnl+ml

2i

[
Linl (xl)− snl+ml

Linl
(
x−1
l

)]
.

Appendix C. Summary on the relevant modular forms

In this appendix we collect useful formulae for all modular forms of Γ1(12)
appearing in the Feynman parameter calculation of the sunrise integral and
the kite integral. For all modular forms we give several equivalent repre-
sentations: A representation in the form of an eta quotient (if it exists), a
representation in terms of ELi-functions and a representation as a linear
combination of generalised Eisenstein series. We use the notation τ2 = τ/2
and q2 = exp(2πiτ2) = exp(πiτ). Let us start with ψ1/π ∈M1(12, χ1).

ψ1

π
=

2µ2

√
3m2

η (τ2)3 η (4τ2)3 η (6τ2)

η (2τ2)3 η (3τ2) η (12τ2)

=
2µ2

√
3m2

[
1 +

√
3

2
E0;0 (r3;−1;−q2) +

3
√

3

2
E0;0 (r3; 1;−q2)

]
= − 6µ2

√
3m2

[E1 (τ2; χ̄0, χ̄1)− E1 (2τ2; χ̄0, χ̄1)− 2E1 (4τ2; χ̄0, χ̄1)] .(C.17)

In the sunrise integral, three modular forms f1∈M1(12, χ1), f2∈M2(12, χ0)
and f3 ∈M3(12, χ1) occur. We have

f1 =

(
t+ 3m2

)
2
√

6µ2

ψ1

π

=

√
2

2
+
√

6E0;0 (r3; 1;−q2)

= −3
√

2 [E1(τ2, χ̄0, χ̄1)− 2E1(4τ2, χ̄0, χ̄1)] ,
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f2 =
1

iπ

ψ2
1

W

(
3t2 − 10m2t− 9m4

)
2t (t−m2) (t− 9m2)

= −1

2
+ 6E0;−1 (−1; 1;−q2) + E0;−1 (r3;−1;−q2)

− 3E0;−1 (r3; 1;−q2)

= 14B2,2(τ2)− 4B2,3(τ2)− 8B2,4(τ2) + 10B2,6(τ2)− 4B2,12(τ2),

f3 =
µ2ψ3

1

πW 2

6

t (t−m2) (t− 9m2)

= 3
√

3
η (2τ2)11 η (6τ2)7

η (τ2)5 η (4τ2)5 η (3τ2) η (12τ2)

= 3E0;−2 (r3;−1;−q2)

= 3
√

3 [E3 (τ2; χ̄1, χ̄0) + 2E3 (2τ2; χ̄1, χ̄0)− 8E3 (4τ2; χ̄1, χ̄0)] .(C.18)

In the kite integral we encounter in addition three modular forms g2,0, g2,1,
g2,9 ∈M2(12, χ0) of weight 2 and two modular forms g3,0, g3,1 ∈M3(12, χ1)
of weight 3. The weight 2 modular forms are

g2,0 =
1

iπ

ψ2
1

W

1

t
=

η (2τ2)10 η (6τ2)10

η (τ2)4 η (3τ2)4 η (4τ2)4 η (12τ2)4

= 1− 4E0;−1 (r3;−1;−q2)

= 4 [B2,2(τ2) +B2,3(τ2)−B2,4(τ2)−B2,6(τ2) +B2,12(τ2)] ,

g2,1 =
1

iπ

ψ2
1

W

1

t−m2

= 9
η (τ2) η (4τ2) η (6τ2)12

η (2τ2)4 η (3τ2)3 η (12τ2)3

= −3

2
E0;−1 (r3;−1;−q2) +

3

2
E0;−1 (r3; 1;−q2)

+ 3E0;−1 (−1; 1;−q2)

= 3 [6B2,2(τ2) +B2,3(τ2)− 3B2,4(τ2)− 2B2,6(τ2) +B2,12(τ2)] ,

g2,9 =
1

iπ

ψ2
1

W

1

t− 9m2

=
η (2τ2)16 η (3τ2)5 η (12τ2)5

η (τ2)7 η (4τ2)7 η (6τ2)8

=
1

2
E0;−1 (r3;−1;−q2)− 9

2
E0;−1 (r3; 1;−q2) + 3E0;−1 (−1; 1;−q2)

= −2B2,2(τ2)− 5B2,3(τ2)−B2,4(τ2) + 14B2,6(τ2)− 5B2,12(τ2).(C.19)
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For the modular forms of weight 3 we have the expressions

g3,0 =
1

iπµ2

ψ2
1

W

ψ1

π

= −6
√

3
η (2τ2)11 η (6τ2)7

η (τ2)5 η (4τ2)5 η (3τ2) η (12τ2)

= −6E0;−2 (r3;−1;−q2)

= −6
√

3 [E3 (τ2; χ̄1, χ̄0) + 2E3 (2τ2; χ̄1, χ̄0)− 8E3 (4τ2; χ̄1, χ̄0)] ,

g3,1 =
1

iπµ2

ψ2
1

W

ψ1

π

t

t−m2

= −54
√

3
η (6τ2)9

η (2τ2)3

= −27

4
E0;−2 (r3;−1;−q2)− 27

4
E0;−2 (r3; 1;−q2)

= −54
√

3E3 (2τ2; χ̄1, χ̄0) .(C.20)

Note that we have g3,0 = −2f3 and

f2 = −1

2
g2,0 + g2,1 + g2,9.(C.21)

Furthermore we note that the modular form g3,1 is actually already a mod-
ular form at level N = 6. The values at τ2 = i∞ for the various modular
forms are given by

ψ1(i∞)

π
=

2µ2

√
3m2

,

f1(i∞) =
1

2

√
2, f2(i∞) = −1

2
, f3(i∞) = 0,

g2,0(i∞) = 1, g2,1(i∞) = 0, g2,9(i∞) = 0,

g3,0(i∞) = 0, g3,1(i∞) = 0.(C.22)
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