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Using contour deformations and integrations over modular forms,
we compute certain Bessel moments arising from diagrammatic
expansions in two-dimensional quantum field theory. We evaluate
these Feynman integrals as either explicit constants or critical val-
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Broadhurst.
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1. Introduction

1.1. Background and motivations

In quantum field theory (QFT), we encounter integrals over Bessel func-
tions while performing diagrammatic expansions in the configuration space.
For two-dimensional QFT, we need Bessel functions J0 and Y0, as well as
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modified Bessel functions I0 and K0, to define propagators and compute
Feynman integrals [1, 10, 12, 19, 21].

We are interested in Bessel moments

JYM(α, β; ν) :=

∫ ∞
0

[J0(t)]α[Y0(t)]βtν d t

and

IKM(a, b;n) :=

∫ ∞
0

[I0(t)]a[K0(t)]btn d t,

where the non-negative integers α, β, ν, a, b, n are chosen to ensure conver-
gence of the corresponding integrals. The Bessel moments JYM’s are use-
ful auxiliary tools for computing IKM’s in two-dimensional QFT. Further-
more, the IKM’s also show up in the finite part for renormalized pertur-
bative expansions of four-dimensional QFT: for example, IKM(1, 5; 1) and
IKM(1, 5; 3) are part of the 4-loop contributions (from 891 Feynman dia-
grams) to electron’s magnetic moment [26, (19) and Fig. 3(a)(a′)], according
to the standard formulation of quantum electrodynamics (four-dimensional
QFT).

The mathematical understanding of JYM(α, β; ν) for α+ β ≥ 5 and
IKM(a, b;n) for a+ b ≥ 5 is relatively scant. While numerical experiments
have suggested a rich collection of identities relating various cases of
IKM(a, b; 1) (each of which corresponding to a Feynman diagram con-
taining b− 1 loops) to special values of certain Hasse–Weil L-series for
a+ b ∈ {5, 6, 7, 8} [10, 12, 19], most of these conjectural evaluations are
heretofore unproven.

In our recent work [43], we have shown that

∫ ∞
0

[πI0(t) + iK0(t)]m + [πI0(t)− iK0(t)]m

i
[K0(t)]mtn d t = 0(1.1.1)

for m ∈ Z>1, n ∈ Z≥0,
m−n

2 ∈ Z>0, and

∫ ∞
0

[πI0(t) + iK0(t)]m − [πI0(t)− iK0(t)]m

i
[K0(t)]mtn d t = 0(1.1.2)

for m ∈ Z>0, n ∈ Z≥0,
m−n−1

2 ∈ Z>0 (Bailey–Borwein–Broadhurst–Glasser
sum rule [1, “final conjecture”, (220)], with generalizations). In addition,
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we have also confirmed that

21+2(n−1)[1−(−1)m]

πm+1

∫ ∞
0

[πI0(t) + iK0(t)]m − [πI0(t)− iK0(t)]m

i
(1.1.3)

× [K0(t)]m(2t)2n+m−3 d t

evaluates to a positive integer for all m,n ∈ Z>0 (Broadhurst–Mellit inte-
ger sequence [12, (149) in Conjecture 5] and Broadhurst–Roberts rational
sequence [13, Conjecture 2]). While the aforementioned results resolve some
longstanding conjectures, they barely scratch the surface of the algebraic
and arithmetic nature of Bessel moments. For example, the determinant
IKM(1, 4; 1) IKM(2, 3; 3)−IKM(2, 3; 1) IKM(1, 4; 3) = 2π3/

√
3355 [conjec-

tured in 12, (100)] and the sum rule 9π2 IKM(4, 4; 1)− 14 IKM(2, 6; 1) = 0
[conjectured in 12, (147)] had not been covered by the real-analytic methods
we employed in [43].

1.2. Statement of results and plan of proof

In this article, we supplement our previous work with complex analysis and
modular forms, which are two powerful devices that not only produce new
algebraic relations among different IKM moments, but also connect Feyn-
man diagrams to special L-values and Kluyver’s “random walk integrals”
JYM(n, 0, 1), n ∈ Z≥5 [7, 8, 24].

The layout of this paper is described in the next four paragraphs.
Beginning with a brief survey of the analytic properties for (modified)

Bessel functions in §2.1, we introduce Wick rotations, which are contour
deformations that allow us to convert IKM problems into JYM problems,
in §2.2. We demonstrate the usefulness of Wick rotations by a very short
(yet self-contained) proof of the closed-form evaluation of a Bessel moment

∫ ∞
0

I0(t)[K0(t)]4td t =
Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
240
√

5
(1.2.1)

in terms of Euler’s gamma function Γ(x) :=
∫∞

0 ux−1e−u du for x > 0. It is
worth noting that nearly a decade had elapsed between the original proposal
[1, 25] of (1.2.1) and its first rigorous (and highly technical) verification
[4, 31]. Our simplified proof of (1.2.1) draws on its connection to a “random
walk integral” JYM(5, 0; 1).
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In §3, we push the evaluation of (1.2.1) one step further, to give explicit
verifications of all the entries in the following 2× 2 matrix:(

IKM(1, 4; 1) IKM(1, 4; 3)
IKM(2, 3; 1) IKM(2, 3; 3)

)
(1.2.2)

=

(
π2C π2

(
2
15

)2 (
13C − 1

10C

)
√

15π
2 C

√
15π
2

(
2
15

)2 (
13C + 1

10C

)) ,
where C = 1

240
√

5π2
Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
is the “Bologna constant” at-

tributed to Broadhurst [1, 9] and Laporta [25]. (Here, the rigorous eval-
uation of the top-right entry IKM(1, 4; 3) was previously unattested in
the literature.) We accomplish this by using a modular function of level
6 (§3.1) that parametrizes a Picard–Fuchs differential equation of third or-
der (§3.2) attached to a family of K3 surfaces formerly studied by Bloch–
Kerr–Vanhove [4] and Samart [31]. In addition to proving (1.2.2) in §3.3, we
work out the Eichler integral representations of IKM(1, 4; 1), IKM(1, 4; 3)
and IKM(1, 4; 5), which involve contour integrals over certain holomorphic
modular forms.

We devote §4 to the verification of the following integral formulae [con-
jectured in 12, (109)–(111)]:

3

π2
IKM(1, 5; 1) = IKM(3, 3; 1)(1.2.3)

= −6π2

∫ i∞

0
f4,6(z)z d z =

3

2
L(f4,6, 2),

and

IKM(2, 4; 1) =
π3

i

∫ i∞

0
f4,6(z) d z =

π2

2
L(f4,6, 1)(1.2.4)

= 6π3i

∫ i∞

0
f4,6(z)z2 d z =

3

2
L(f4,6, 3),

where

f4,6(z) = [η(z)η(2z)η(3z)η(6z)]2(1.2.5)

is a weight-4 modular form defined through the Dedekind eta function

η(z) := eπiz/12
∞∏
n=1

(1− e2πinz), z ∈ H := {w ∈ C| Imw > 0}.(1.2.6)
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To prove these formulae relating Bessel moments to critical L-values (a
special L-value L(f, s) is said to be critical if s is a positive integer less
than the weight of the modular form f), we use modular parametrizations
of Hankel transforms and the Parseval–Plancherel identity.

In §5, we fully exploit the techniques developed in the previous two
sections, to confirm the following identities [cf. 12, (143)–(146)]:

IKM(4, 4; 1)(1.2.7)

= 4π3i

∫ i∞

0
f6,6(z)z2 d z = L(f6,6, 3),

1

π2
IKM(1, 7; 1) = IKM(3, 5; 1)(1.2.8)

= 6π4

∫ i∞

0
f6,6(z)z3 d z =

9

4
L(f6,6, 4),

IKM(2, 6; 1)(1.2.9)

=
9π5

i

∫ i∞

0
f6,6(z)z4 d z =

27

4
L(f6,6, 5),

which involve a weight-6 modular form

f6,6(z) =
[η(2z)η(3z)]9

[η(z)η(6z)]3
+

[η(z)η(6z)]9

[η(2z)η(3z)]3
.(1.2.10)

In addition, we also use explicit computations to verify the Eichler–Shimura–
Manin relation L(f6,6, 5)/L(f6,6, 3) = 2π2/21 [cf. 12, (142)] and the sum rule
9π2 IKM(4, 4; 1)− 14 IKM(2, 6; 1) = 0 [cf. 12, (147)].

Broadhurst has recently proposed a vast set of conjectures [12–19] con-
necting Feynman diagrams to special values of Hasse–Weil L-functions,
whose local factors arise from Kloosterman sums [12, §§2–6]. Our current
work only touches upon IKM(a, b; 1) for a+ b ∈ {5, 6, 8}, where the cor-
responding L-series are modular. It is our hope that, by verifying a small
subset of Broadhurst’s thought-inspiring conjectures about Bessel moments,
we could make first steps towards an arithmetic understanding of these im-
portant mathematical constants deeply embedded in fundamental laws of
nature, viz. quantum electrodynamics. On one hand, we have Feynman dia-
grams realized as motivic integrals, whose cohomology belongs to the realm
of algebraic geometry; on the other hand, these Feynman integrals also eval-
uate to arithmetic objects, such as Eichler integrals and special L-values,
whose symmetries embellish modern number theory.
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2. Bessel functions and their Wick rotations

2.1. Some analytic properties of Bessel functions

For ν ∈ C,−π < arg z < π, the Bessel functions Jν and Yν are defined by
Jν(z) :=

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(z
2

)2k+ν
,

Yν(z) := lim
µ→ν

Jµ(z) cos(µπ)− J−µ(z)

sin(µπ)
,

(2.1.1)

which may be compared to the modified Bessel functions Iν and Kν :
Iν(z) :=

∞∑
k=0

1

k!Γ(k + ν + 1)

(z
2

)2k+ν
,

Kν(z) :=
π

2
lim
µ→ν

I−µ(z)− Iµ(z)

sin(µπ)
.

(2.1.2)

Hereafter, the fractional powers of complex numbers are defined through
wβ = exp(β logw) for logw = log |w|+ i argw, where | argw| < π.

We will also need the cylindrical Hankel functions H
(1)
0 (z) = J0(z) +

iY0(z) and H
(2)
0 (z) = J0(z)− iY0(z) of zeroth order, which are both well

defined for −π < arg z < π. In view of (2.1.1) and (2.1.2), we can verify

J0(ix) = I0(x) and
πi

2
H

(1)
0 (ix) = K0(x)(2.1.3)

as well as

H
(1)
0 (±x+ i0+) = ±J0(x) + iY0(x)(2.1.4)

for x > 0.
As |z| → ∞,−π < arg z < π, we have the following asymptotic behavior:

H
(1)
0 (z) =

√
2

πz
ei(z−

π

4 )
[
1 +O

(
1

|z|

)]
,

H
(2)
0 (z) =

√
2

πz
e−i(z−

π

4 )
[
1 +O

(
1

|z|

)]
.

(2.1.5)

The asymptotic behavior of J0(z) = [H
(1)
0 (z) +H

(2)
0 (z)]/2 can be inferred

accordingly.
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2.2. Contour deformations for Bessel moments

In the next lemma, we present a mechanism that generates cancelation for-
mulae for JYM. Special cases of this lemma (involving four Bessel factors)
have already appeared in [42, §2].

Lemma 2.2.1 (Bessel–Hankel–Jordan). For `,m, n ∈ Z≥0 satisfying
either `− (m+ n)/2 < 0;m < n or `−m = `− n < −1, we have∫ i0++∞

i0+−∞
[J0(z)]m[H

(1)
0 (z)]nz` d z(2.2.1)

:= lim
ε→0+

lim
R→∞

∫ iε+R

iε−R
[J0(z)]m[H

(1)
0 (z)]nz` d z = 0.

Proof. As the integrand goes asymptotically like O(z`−(m+n)/2ei(n−m)z) for
Im z > 0, |z| → ∞, we can close the contour in the upper half-plane with the
help of Jordan’s lemma. �

Remark 2.2.1.1. Noting (2.1.4) and J0(−x) = J0(x), we may reformu-
late (2.2.1) as

∫ ∞
0

[J0(x)]m
{

[J0(x) + iY0(x)]n + (−1)`[−J0(x) + iY0(x)]n
}
x` dx = 0,

(2.2.1′)

which is a more convenient form to be used later.

In addition to closing the contour upwards (Lemma 2.2.1), sometimes
we also need to turn the contour 90◦ clockwise, from the positive imaginary
axis to the positive real axis. This trick is known as Wick rotation in QFT.
Instead of stating and justifying the general procedures for Wick rotations,
we illustrate with a concrete example that relates IKM(1, 4; 1) to a well-
studied integral in probability theory.

Theorem 2.2.2 (“Tiny nome of Bologna”). We have∫ ∞
0

I0(t)[K0(t)]4t d t =
π4

30

∫ ∞
0

[J0(x)]5x dx(1.2.1′)

=
Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
240
√

5
.
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Proof. Thanks to Jordan’s lemma, we can deform the contour in(
2

π

)4 ∫ ∞
0

I0(t)[K0(t)]4t d t = −Re

∫ i∞

0
J0(z)[H

(1)
0 (z)]4z d z,(2.2.2)

and identify it with its “Wick-rotated” counterpart:

−Re

∫ ∞
0

J0(x)[H
(1)
0 (x)]4x dx = −

∫ ∞
0

J(J4 − 6J2Y 2 + Y 4)x dx,(2.2.3)

where J (resp. Y ) stands for J0(x) (resp. Y0(x)) in the last expression. Now
that

J(J4 − 6J2Y 2 + Y 4)− 2J2

3
[(J + iY )3 − (−J + iY )3](2.2.4)

− (J + iY )5 − (−J + iY )5

10
= −8J5

15
,

we can verify the first equality in (1.2.1′), while referring back to (2.2.1′) in
Lemma 2.2.1.

The “random walk integral”
∫∞

0 [J0(x)]5x dx has been thoroughly stud-
ied by Borwein and coworkers [8]. One can evaluate this integral through a
special value of a modular form (to be elaborated later in §3.1). Here, we
simply point out that the second equality in (1.2.1′) can be directly deduced
from [8, (5.2)]. �

Remark 2.2.2.1. We pause to give a brief account for the history of the
integral identity in (1.2.1). The closed-form evaluation in (1.2.1) was initially
proposed by Broadhurst in the form of elliptic theta functions [1, (93)], and
the current (equivalent) form involving products of gamma functions was
suggested by Laporta [25, (7), (16), (17)]. Bloch–Kerr–Vanhove studied the
momentum space reformulation of IKM(1, 4; 1) as a triple integral of a
rational function over the first octant:

IKM(1, 4; 1) =
1

8

∫ ∞
0

dX

X

∫ ∞
0

dY

Y

∫ ∞
0

dZ

Z
(2.2.5)

× 1

(1 +X + Y + Z)(1 +X−1 + Y −1 + Z−1)− 1
,

with a tour de force in motivic cohomology. They effectively verified (1.2.1)

by casting IKM(1, 4; 1) into π3

8
√

15

[η(z)η(3z)]4

[η(2z)η(6z)]2 for z = 3+i
√

15
6 [4, (2.5.9)].

Drawing on a result of Rogers–Wan–Zucker [29, Theorem 5], Samart reana-
lyzed the aforementioned triple integral formulation of IKM(1, 4; 1), before
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finally expressing IKM(1, 4; 1) as explicit gamma factors, and identifying
it with a special L-value 3π

2
√

15
L(f3,15, 2) for the modular form f3,15(z) =

[η(3z)η(5z)]3 + [η(z)η(15z)]3 [31, (35)].

Remark 2.2.2.2. In [8, §5], the authors remarked on the uncanny resem-
blance of the “random walk integral”

∫∞
0 [J0(x)]5x dx to the “tiny nome of

Bologna”, without supplying a mechanistic interpretation later afterwards.
Moreover, these authors recorded [8, Remark 7.3]

4

π3

∫ ∞
0

[K0(t)]3 d t =

∫ ∞
0

[J0(x)]3 dx(2.2.6)

and [8, between Theorems 7.6 and 7.7]

4

π3

∫ ∞
0

I0(t)[K0(t)]3 d t =

∫ ∞
0

[J0(x)]4 dx(2.2.7)

after comparing explicit expressions of all the integrals in question, probably
unaware that such equalities would follow easily from a Wick rotation and
an application of Lemma 2.2.1 above.

3. Feynman diagrams with 5 Bessel factors

3.1. A modular form associated with Bessel moments

In this paper, we will mainly deal with modular forms of level 6, which
respect the symmetries in the Hecke congruence group

Γ0(6) :=

{(
a b
c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− bc = 1, c ≡ 0 (mod 6)

}
.(3.1.1)

Furthermore, following the notation of Chan–Zudilin [20], we write Ŵ3 =
1√
3

(
3 −2
6 −3

)
and construct a group Γ0(6)+3 = 〈Γ0(6), Ŵ3〉 by adjoining Ŵ3 to

Γ0(6). To set the stage for later developments in this article, we present some
characteristics of a modular function on Γ0(6)+3.
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Lemma 3.1.1 (A modular function of level 6). The function X6,3(z) :=[
η(2z)η(6z)
η(z)η(3z)

]6
, z ∈ H has the following properties:


X6,3

(
az+b
cz+d

)
= X6,3(z), if

(
a b
c d

)
∈ Γ0(6)+3;

ImX6,3(z) = 0, if 2 Re z ∈ Z;

X6,3

(
1
2 + iy

2
√

3

)
= X6,3

(
1
2 + i

2
√

3y

)
, if y ∈ (0,∞).

(3.1.2)

Moreover, the following mappings{
X6,3 : {z |Re z = 0, Im z > 0} −→ (0,∞)

X6,3 :
{
z
∣∣∣ Re z = 1

2 , Im z > 1
2
√

3

}
−→

(
− 1

16 , 0
)(3.1.3)

are bijective.

Proof. The functionX6,3 is a Hauptmodul of Γ0(6)+3 with genus 0 [20, (2.2)],
so it must satisfy the modular invariance relation, as displayed in the first
line of (3.1.2). To prove the second line in (3.1.2), use the infinite product
expansion for the Dedekind eta function in (1.2.6). To prove the last line in
(3.1.2), note that

Ŵ3z =
3z − 2

6z − 3
=

1

2
+

i

2
√

3y
for z =

1

2
+

iy

2
√

3
.(3.1.4)

The domains of the mappings in (3.1.3) are proper subsets of the fun-
damental domain for Γ0(6)+3, so these mappings are necessarily injective.
Furthermore, by the second line in (3.1.2), these mappings are continuous
real-valued functions defined on path-connected sets, so these injective map-
pings must also be monotone along the respective paths, and their contin-
uous images are also path-connected. Consequently, the modular function
X6,3 induces bijective mappings from these two domains to their respective
ranges, and the extent of the latter is inferred from the “boundary values”
of the function X6,3 at the extreme points of the domains of definition. �

As a demonstration for the relevance of modularity in our studies of
Bessel moments, we recall some known results from [8, 30], in slightly reor-
ganized form. In particular, we will use the Chan–Zudilin notation Z6,3(z) =
[η(z)η(3z)]4

[η(2z)η(6z)]2 [20, (2.5)] for a modular form of weight 2 on Γ0(6)+3.
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Proposition 3.1.2 (Bessel moments as modular forms). For z/i > 0,
we have ∫ ∞

0
J0

([
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
I0(t)[K0(t)]3t d t =

π2

16
Z6,3(z),(3.1.5)

which gives a modular parametrization of
∫∞

0 J0(xt)I0(t)[K0(t)]3td t for x >
0. For z = 1

2 + iy, y > 1
2
√

3
, we have

∫ ∞
0

I0

(
1

i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
I0(t)[K0(t)]3t d t =

π2

16
Z6,3(z)(3.1.6)

and ∫ ∞
0

J0

(
1

i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]4t d t =

3(2z − 1)

4πi
Z6,3(z),(3.1.7)

which give modular parametrizations of
∫∞

0 I0(xt)I0(t)[K0(t)]3td t and∫∞
0 J0(xt)[J0(t)]4td t for x ∈ (0, 2).

Proof. We recall from [1, (55) and (56)] the following formula∫ ∞
0

I0(t)[K0(t)]3t2n+1 d t =
π2

16

(
n!

4n

)2 n∑
k=0

(
n

k

)2(2(n− k)

n− k

)(
2k

k

)
(3.1.8)

=
π2

16

(
n!

4n

)2

Dn,

where
(
m
j

)
= m!

j!(m−j)! and Dn is the nth Domb number. Meanwhile, we note

that Rogers has shown in [30, Theorem 3.1] that

3F2

(
1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 27u2

4(1− u)3

)
= (1− u)

∞∑
n=0

Dn

4n
un(3.1.9)

holds for |u| sufficiently small, where

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x
)

:= 1 +

∞∑
n=1

∏p
j=1

Γ(aj+n)
Γ(aj)∏q

k=1
Γ(bk+n)

Γ(bk)

xn

n!
.(3.1.10)
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Table 1: Values of X6,3(z), Z6,3(z) and their derivatives at z = 1
2 +

i
√

5
2
√

3

[
with “rescaled Bologna constant” c =

√
5C = 1

240π2 Γ
(

1
15

)
Γ
(

2
15

)
×

Γ
(

4
15

)
Γ
(

8
15

)]
.

X6,3(z) −
1

64

X′
6,3(z)

3
√
15c

32i

X′′
6,3(z)

9c(9c+ 1)

16

X′′′
6,3(z)

27
√
15c(18c2 − 18c− 1)

80i

X′′′′
6,3(z)

81c(753c3 + 54c2 − 27c− 1)

20

Z6,3(z)
8
√
3c

π

Z′
6,3(z)

48c(3c− 1)
√
5πi

Z′′
6,3(z) −

48
√
3c(62c2 − 18c+ 3)

5π

Z′′′
6,3(z)

1728ic(57c3 − 62c2 + 9c− 1)

5
√
5π

Z′′′′
6,3(z)

1728
√
3c(266c4 − 228c3 + 124c2 − 12c+ 1)

5π

By termwise summation, we see that∫ ∞
0

J0(xt)I0(t)[K0(t)]3t d t(3.1.11)

=
π2

16 + x2 3F2

(
1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣∣ 108x4

(16 + x2)3

)

is valid for x sufficiently small. Parametrizing the right-hand side of the
equation above with modular forms (see [20, (2.8)] or [8, (4.13)]), we observe
that (3.1.5) holds when Im z is sufficiently large and positive. By analytic
continuation, the validity of (3.1.5) extends to the entire positive Im z-axis,

from which x =
[

2η(2z)η(6z)
η(z)η(3z)

]3
maps bijectively to x ∈ (0,∞).

Performing further analytic continuation on (3.1.5), we arrive at (3.1.6).

Here, according to Lemma 3.1.1, we know that x = 1
i

[
2η(2z)η(6z)
η(z)η(3z)

]3
maps

y ∈
(

1
2
√

3
,∞
)

bijectively to x ∈ (0, 2).

The integral identity in (3.1.7) paraphrases [8, (4.16)]. (A special case of
this modular parametrization led to a closed-form evaluation of the “random
walk integral”

∫∞
0 [J0(x)]5x dx in [8, (5.2)], which we quoted in our proof of

Theorem 2.2.2. See also Table 1.) �

Remark 3.1.2.1. For any CM point z ∈ H (a complex number in the upper
half-plane that solves a quadratic equation with integer coefficients), the
absolute value |η(z)| of the Dedekind eta function η(z) can be explicitly
written as the product of an algebraic number, a rational power of π, and
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rational powers of special values for Euler’s gamma function (see [32, §12]
or [34, Theorem 9.3]). At any CM point z, the following expressions are
computable algebraic numbers [39, (1.2.9) and Appendix 1]:

E2(z)

[η(z)]4
=

12

πi[η(z)]4

[
d log η(z)

d z
− i

4 Im z

]
,

E4(z)

[η(z)]8
,

E6(z)

[η(z)]12
,(3.1.12)

where

E4(z) = 1 + 240

∞∑
n=1

n3e2πinz

1− e2πinz
, E6(z) = 1− 504

∞∑
n=1

n5e2πinz

1− e2πinz
(3.1.13)

are Eisenstein series of weights 4 and 6. Higher order derivatives of the
Dedekind eta function can be deduced from Ramanujan’s differential equa-
tions [28]: 

1

2πi

dE∗2(z)

d z
=

[E∗2(z)]2 − E4(z)

12
,

1

2πi

dE4(z)

d z
=
E∗2(z)E4(z)− E6(z)

3
,

1

2πi

dE6(z)

d z
=
E∗2(z)E6(z)− [E4(z)]2

2
,

(3.1.14)

where E∗2(z) = E2(z) + 3
π Im z is a holomorphic “weight-2 Eisenstein series”.

Samart has computed the values of X6,3(z) and Z6,3(z) at z = 1
2 + i

√
5

2
√

3
explicitly [31, Lemma 1]. We may combine his results with (3.1.14) to eval-

uate derivatives of X6,3(z) and Z6,3(z) at z = 1
2 + i

√
5

2
√

3
, as summarized in

Table 1.

Remark 3.1.2.2. As the Bessel differential equation leaves us [1, §1](
∂2

∂x2
+

1

x

∂

∂x

)k
I0(xt) = t2kI0(xt), ∀k ∈ Z>0,(3.1.15)

we will have no difficulties in computing

IKM(2, 3; 1) =

√
15π

2
C, IKM(2, 3; 3) =

√
15π

2

(
2

15

)2(
13C +

1

10C

)
and IKM(2, 3; 5) =

√
15π

2

(
4

15

)3(
43C +

19

40C

)



i
i

“5-Zhou” — 2018/4/9 — 16:39 — page 140 — #14 i
i

i
i

i
i

140 Yajun Zhou

from (3.1.6), with assistance from Table 1. These Bessel moments were pre-
viously evaluated in [1, §5.10] with combinatorial techniques.

3.2. Symmetric squares and Eichler integrals

Central to the studies of Bloch–Kerr–Vanhove [4] and Samart [31] was the
following motivic integral:

I (u) :=

∫ ∞
0

I0(
√
ut)[K0(t)]4td t(3.2.1)

=
1

8

∫ ∞
0

dX

X

∫ ∞
0

dY

Y

∫ ∞
0

dZ

Z

× 1

(1 +X + Y + Z)(1 +X−1 + Y −1 + Z−1)− u
,

and the geometry for the family of K3 surfaces that compactify the locus
of (1 +X + Y + Z)(1 +X−1 + Y −1 + Z−1)− u = 0 and resolve singulari-
ties. Inspired by their analysis, we give a modular parametrization of I (u)
for u ≤ 16. In [4] and [31], the authors parametrized the Feynman integral

I (u) with the modular function u(z) = −
[
η(z)η(3z)
η(2z)η(6z)

]6
, and needed sophisti-

cated computations at the CM point z∗ = −3+i
√

15
24 where u(z∗) = 1. In what

follows, we will use a different modular parametrization (Lemma 3.2.1) to
facilitate the representation of Bessel moments via Eichler integrals (Propo-
sition 3.2.2).

Lemma 3.2.1 (Jacobian for a modular function). The modular para-
metrization

x =
1

i

[
2η(2z)η(6z)

η(z)η(3z)

]3

(3.2.2)

satisfies

1

x

dx

d z
= πi

{
[η(z)η(2z)]3

η(3z)η(6z)
+ 9

[η(3z)η(6z)]3

η(z)η(2z)

}
.(3.2.3)

With q = e2πiz, we have the following asymptotic behavior

q
dx

d q
=

1

2πi

dx

d z
=

4
√
q

i
[1 + 9q + 30q2 + 112q3 + 297q4 +O(q5)](3.2.4)

near the infinite cusp (z → i∞, q → 0).
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Proof. We can verify the following identity

d

d z
log

η(2z)

η(z)
=
πi

12

[η(z)]8 + 32[η(4z)]8

[η(2z)]4
, ∀z ∈ H(3.2.5)

by showing that the ratio between both sides defines a bounded function on
the compact Riemann surface X0(2) = Γ0(2)\(H ∪Q ∪ {i∞}), and that this
ratio tends to 1 as z approaches the infinite cusp. Employing an identity due
to Chan–Zudilin [20, (4.3)], we rewrite (3.2.5) as

d

d z
log

η(2z)

η(z)
=
πi

12

{
[η(z)η(2z)]3

η(3z)η(6z)
+ 27

[η(3z)η(6z)]3

η(z)η(2z)

}
, ∀z ∈ H.(3.2.5′)

Meanwhile, a cubic transformation brings us [20, second equation below
(4.5)]

d

d z
log

η(6z)

η(3z)
=
πi

4

{
[η(z)η(2z)]3

η(3z)η(6z)
+ 3

[η(3z)η(6z)]3

η(z)η(2z)

}
, ∀z ∈ H.(3.2.5′′)

The two equations above add up to (3.2.3).
The expansion in (3.2.4) follows directly from (3.2.3) and the q-product

η(z) = q1/24
∏∞
n=1(1− qn). �

Proposition 3.2.2 (Eichler integral representation of I (u)). Let
ζ(3) =

∑∞
n=1 n

−3 be Apéry’s constant. For z/i > 0, we have

∫ ∞
0

J0

([
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[K0(t)]4td t(3.2.6)

= Z6,3(z)

[
7ζ(3)

8
+ 12π3i

∫ i∞

z

[
η(2z′)η(6z′)

η(z′)η(3z′)

]3

×
{

[η(z′)η(2z′)]4 + 9[η(3z′)η(6z′)]4
}

(z − z′)2 d z′

]
,

which parametrizes
∫∞

0 J0(xt)[K0(t)]4t d t for x > 0. For z = 1
2 + iy, y ∈(

1
2
√

3
,∞
)
, we have
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∫ ∞
0

I0

(
1

i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[K0(t)]4td t(3.2.7)

= Z6,3(z)

[
7ζ(3)

8
+ 12π3i

∫ i∞

z

[
η(2z′)η(6z′)

η(z′)η(3z′)

]3

×
{

[η(z′)η(2z′)]4 + 9[η(3z′)η(6z′)]4
}

(z − z′)2 d z′

]
,

which parametrizes
∫∞

0 I0(xt)[K0(t)]4td t for x ∈ (0, 2). Moreover, the equa-
tion above remains valid for z = 1

2 + iy, y ∈
(
0, 1

2
√

3

)
, corresponding to x ∈

(0, 2); and for z = 1
2 + i

2
√

3
eiϕ, ϕ ∈ [0, π/3], corresponding to x ∈ [2, 4].

Proof. Unlike the expressions∫ ∞
0

I0(xt)I0(t)[K0(t)]3xtd t and

∫ ∞
0

J0(xt)[J0(t)]4xtd t

(covered in Proposition 3.1.2), which are annihilated by the Picard–Fuchs
operator [8, (2.6) and (2.7)]

Â4 := x4

(
x

d

dx
+ 1

)3

− 4x3 d

dx

[
5

(
x

d

dx

)2

+ 3

]
+ 64

(
x

d

dx
− 1

)3

(3.2.8)

= (x− 4)(x− 2)x3(x+ 2)(x+ 4)
d3

dx3
+ 6x4(x2 − 10)

d2

dx2

+ x(7x4 − 32x2 + 64)
d

dx
+ (x2 − 8)(x2 + 8),

the function xI (x2) =
∫∞

0 I0(xt)[K0(t)]4xt d t satisfies an inhomogeneous
differential equation [cf. 4, Theorem 2.2.1]:

Â4[xI (x2)] = −24x3.(3.2.9)

For a solution to the homogeneous equation Â4[f(x)] = 0, a modular

parametrization [cf. 8, Remark 4.10] x = 1
i

[
2η(2z)η(6z)
η(z)η(3z)

]3
leaves us general

solutions in the form of

f(x)

x
= Z6,3(z)(c0 + c1z + c2z

2),(3.2.10)
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where the constants c0, c1, c2 can be determined by the behavior of f(x) in
specific contexts. We have the simple functional form in (3.2.10) because the
operator Â4 is a symmetric square [8, Remark 4.6] and the corresponding
family of K3 surfaces (1 +X + Y + Z)(1 +X−1 + Y −1 + Z−1) = u admit
Shioda–Inose structure (see [27, Corollary 7.1], [4, §3.2] and [31, §5]).

To construct a particular solution to the inhomogeneous equation in
(3.2.9), we follow the Bloch–Kerr–Vanhove recipe [4, (2.3.9)], and derive the
differential equation for the Wrońskian determinant W (x) via

d

dx
logW (x) = − 6x4(x2 − 10)

(x− 4)(x− 2)x3(x+ 2)(x+ 4)
(3.2.11)

= −3

2

d

dx
log[(16− x2)(4− x2)].

Here, we determine the normalizing constant κ = 1024i/π3 for the Wrońskian

W (x) =
κ

[(16− x2)(4− x2)]3/2
= det

y0(x) y1(x) y2(x)
y′0(x) y′1(x) y′2(x)
y′′0(x) y′′1(x) y′′2(x)

(3.2.12)

by choosing a basis

yj(x)

x
= Z6,3(z)zj , j ∈ {0, 1, 2},(3.2.13)

differentiating in x with the help of (3.2.4) in Lemma 3.2.1 for small values
of q = e2πiz → 0, and extracting the leading coefficient in the q-expansion
κ

512 [1− 30q + 474q2 +O(q3)] = 2i
π3 [1− 30q + 474q2 +O(q3)]. Then, we sim-

plify the integral representation of a particular solution [cf. 4, (2.3.8)]

y∗(X ) =

∫ X

0

W̃ (X , x)Â4[xI (x2)] dx

W (x)(x− 4)(x− 2)x3(x+ 2)(x+ 4)
(3.2.14)

where

W̃ (X , x) = det

 y0(x) y1(x) y2(x)
y′0(x) y′1(x) y′2(x)
y0(X ) y1(X ) y2(X )

 ,(3.2.15)
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using the cofactors

det

(
y0(x) y1(x)

y′0(x) y′1(x)

)
= x2[Z6,3(z)]2

d z

dx
,

det

(
y0(x) y2(x)

y′0(x) y′2(x)

)
= x2[Z6,3(z)]2

d z

dx
(2z),

det

(
y1(x) y2(x)

y′1(x) y′2(x)

)
= x2[Z6,3(z)]2

d z

dx
z2.

(3.2.16)

With the parametrization x = 1
i

[
2η(2z)η(6z)
η(z)η(3z)

]3
,X = 1

i

[
2η(2Z )η(6Z )
η(Z )η(3Z )

]3
, we see

that the general solution f(X ) to the inhomogeneous equation Â4f(X ) =
−24X 3 is

X Z6,3(Z )(c0 + c1Z + c2Z
2)(3.2.17)

+ 12π3iX Z6,3(Z )

∫ i∞

Z

√
1 + 4X6,3(z)

√
1 + 16X6,3(z)

× [Z6,3(z)]2X6,3(z)(Z − z)2 d z.

Since Z6,3(z)→ 1 as z → i∞, we must have

c0 = IKM(0, 4; 1) =

∫ ∞
0

[K0(t)]4t d t =
7ζ(3)

8
, c1 = 0, c2 = 0(3.2.18)

for our Eichler integral representations of Bessel moments.
When z/i > 0 or z = 1

2 + iy for y > 1
2
√

3
, according to Chan–Zudilin [20,

(3.3) and (3.5)], we have√
1 + 4X6,3(z)

√
1 + 16X6,3(z)(3.2.19)

=
[η(2z)η(6z)]2

[η(z)η(3z)]4

 ∑
m,n∈Z

e2πi(m2+mn+n2)z

 ∑
m,n∈Z

e4πi(m2+mn+n2)z

,
where the two double sums appear in Ramanujan’s cubic theory for elliptic
functions [3, Chap. 33]. Meanwhile, Borwein–Borwein–Garvan [5, Proposi-
tion 2.2(i)(ii) and Theorem 2.6(i)] identified the product of these two double
sums with

[η(z)η(2z)]3

η(3z)η(6z)
+ 9

[η(3z)η(6z)]3

η(z)η(2z)
,(3.2.20)
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so we have a weight-4 modular form

[Z6,3(z)]2X6,3(z)
√

1 + 4X6,3(z)
√

1 + 16X6,3(z)(3.2.21)

=

[
η(2z)η(6z)

η(z)η(3z)

]3 {
[η(z)η(2z)]4 + 9[η(3z)η(6z)]4

}
,

as given in the integrands of (3.2.6) and (3.2.7).
In addition to a routine analytic continuation, we need to check two

more things for the extension of our modular parametrization to x ∈ [2, 4].

First, we show that the modular function X6,3(z) =
[

2η(2z)η(6z)
η(z)η(3z)

]6
is real-

valued along the geodesic segment z = 1
2 + i

2
√

3
eiϕ, ϕ ∈ [0, π/3]. From an

analytic continuation of the last line in (3.1.2), it is clear that X6,3

(
1
2 +

i
2
√

3
eiϕ
)

= X6,3

(
1
2 + i

2
√

3
e−iϕ

)
. By modular invariance with respect to z 7→

z − 1, we see that the same expression is also equal to X6,3

(
− 1

2 + i
2
√

3
e−iϕ

)
= X6,3

(
1
2 + i

2
√

3
eiϕ
)
, its own complex conjugate.

Then, by modifying our arguments in the second half of Lemma 3.1.1, we
can check that X6,3 :

{
1
2 + i

2
√

3
eiϕ
∣∣ϕ ∈ [0, π/3]

}
−→

[
− 1

4 ,−
1
16

]
is bijective.

�

Remark 3.2.2.1. In the proposition above, our modular parametrizations
of the motivic integral I (u) differ from the Bloch–Kerr–Vanhove approach
[4, (2.3.44)], but closely resemble certain Eichler integrals in our previous
work [40, §4] that served as precursors to Epstein zeta functions. In fact,
the only methodological innovation here is that we are now working with
Eichler integrals on Γ0(6)+3, rather than on the simpler Hecke congruence
group Γ0(4), as in [40, §4]. We refer our readers to [41, §2] for more arithmetic
applications of inhomogeneous Picard–Fuchs equations.

3.3. Special values of Eichler integrals

If we want to compute the integral

IKM(1, 4; 2k + 1) =

∫ ∞
0

I0(t)[K0(t)]4t2k+1 d t

for k ∈ {1, 2}, we may apply the differential identity in (3.1.15) to the Eichler

integral representation in (3.2.7), at z = 1
2 + i

√
5

2
√

3
. As we have closed-form

evaluations of X6,3(z), Z6,3(z) and their derivatives at this specific CM point
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in Table 1, the remaining challenge resides in the computation of the Eichler
integral

E (z) := 12π3i

∫ i∞

z

[
η(2z′)η(6z′)

η(z′)η(3z′)

]3

(3.3.1)

×
{

[η(z′)η(2z′)]4 + 9[η(3z′)η(6z′)]4
}

(z − z′)2 d z′ +
7ζ(3)

8

=
1

Z6,3(z)

∫ ∞
0

I0

(
8
√
−X6,3(z)t

)
[K0(t)]4td t,

along with its derivatives

E ′(z) := 24π3i

∫ i∞

z

[
η(2z′)η(6z′)

η(z′)η(3z′)

]3

(3.3.2)

×
{

[η(z′)η(2z′)]4 + 9[η(3z′)η(6z′)]4
}

(z − z′) d z′,

and

E ′′(z) := 24π3i

∫ i∞

z

[
η(2z′)η(6z′)

η(z′)η(3z′)

]3

(3.3.3)

×
{

[η(z′)η(2z′)]4 + 9[η(3z′)η(6z′)]4
}

d z′,

at z = 1
2 + i

√
5

2
√

3
. Meanwhile, special values of higher-order derivatives, such

as

(3.3.4)

E ′′′
(

1

2
+
i
√

5

2
√

3

)
= 27i

√
5πc2,

E ′′′′
(

1

2
+
i
√

5

2
√

3

)
= −108

√
3πc2(3c+ 1),

[
with c = 1

240π2 Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)]
are readily computable from the

expression [see (3.2.21) and (3.3.3)]

E ′′′(z) = −24π3i[Z6,3(z)]2X6,3(z)
√

1 + 4X6,3(z)
√

1 + 16X6,3(z),(3.3.5)

and entries in Table 1.
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Lemma 3.3.1 (Special values of E (z) and E ′(z)). We have the following
identities:

E

(
1

2
+
i
√

5

2
√

3

)
=

π3

8
√

15
,(3.3.6)

E ′
(

1

2
+
i
√

5

2
√

3

)
=

π3

20i
− 3π IKM(0, 3; 1)

2
√

5i
.(3.3.7)

Proof. The evaluation in (3.3.6) comes from Theorem 2.2.2 and the special

value for Z6,3

(
1
2 + i

√
5

2
√

3

)
in Table 1.

Before computing E ′(z) at z = 1
2 + i

√
5

2
√

3
, we need to consider

d

dx

∣∣∣∣
x=1

∫ ∞
0

I0(xt)[K0(t)]4t d t =

∫ ∞
0

I1(t)[K0(t)]4t2 d t.(3.3.8)

Integrating by parts, we obtain

∫ ∞
0

I1(t)[K0(t)]4t2 d t(3.3.9)

= −2

∫ ∞
0

I0(t)[K0(t)]4t d t+ 4

∫ ∞
0

I0(t)K1(t)[K0(t)]3t2 d t.

Using the Wrońskian relation I0(t)K1(t) + I1(t)K0(t) = 1/t, we get

∫ ∞
0

I1(t)[K0(t)]4t2 d t(3.3.10)

=
4

5

∫ ∞
0

[K0(t)]3t d t− 2

5

∫ ∞
0

I0(t)[K0(t)]4t d t

=
2

5
[2 IKM(0, 3; 1)− IKM(1, 4; 1)].

At the point z = 1
2 + i

√
5

2
√

3
where X6,3(z) = − 1

64 , we differentiate both

sides of ∫ ∞
0

I0

(
8
√
−X6,3(z)t

)
[K0(t)]4td t = Z6,3(z)E (z)(3.3.11)
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in z, to deduce, respectively,

− 32X ′6,3(z)

∫ ∞
0

I1(t)[K0(t)]4t2 d t(3.3.12)

= 3
√

15ic

∫ ∞
0

I1(t)[K0(t)]4t2 d t

=
6
√

15ic

5
[2 IKM(0, 3; 1)− IKM(1, 4; 1)]

and

Z ′6,3(z)E (z) + Z6,3(z)E ′(z)(3.3.13)

= −2
√

3π2ic(3c− 1)

5
+

8
√

3c

π
E ′
(

1

2
+
i
√

5

2
√

3

)
,

where c =
√

5C = 1
240π2 Γ

(
1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
=
√

5 IKM(1, 4; 1)/π2 is
the “rescaled Bologna constant” introduced in Table 1. Comparing the last

two displayed equations, we arrive at the value of E ′
(

1
2 + i

√
5

2
√

3

)
given in

(3.3.7). �

Lemma 3.3.2 (A special value of E ′′(z)). We have the following iden-
tity:

240

∫ i∞

1

2
+ i

√
5

2
√

3

[
η(2z)η(6z)

η(z)η(3z)

]3

(3.3.14)

×
{

[η(z)η(2z)]4 + 9[η(3z)η(6z)]4
}

(2z − 1) d z = 1,

which entails

E ′′
(

1

2
+
i
√

5

2
√

3

)
=

3
√

3π

5
IKM(0, 3; 1).(3.3.15)

Proof. Upon comparison between (3.2.3) and (3.2.21), we see that[
η(2z)η(6z)

η(z)η(3z)

]3 {
[η(z)η(2z)]4 + 9[η(3z)η(6z)]4

}
(3.3.16)

=
Z6,3(z)

2πi

dX6,3(z)

d z
.
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Integrating (3.1.7), namely∫ ∞
0

J0

(
8
√
−X6,3(z)t

)
[J0(t)]4td t =

3(2z − 1)

4πi
Z6,3(z)(3.3.17)

over the differential dX6,3(z), we identify the left-hand side of (3.3.14) with

5

∫ ∞
0

J1(t)[J0(t)]4 d t = −
∫ ∞

0

d

d t
[J0(t)]5 d t = 1.(3.3.18)

Meanwhile, the integral representations in (3.3.2) and (3.3.3) tell us that
the left-hand side of (3.3.14) is also equal to

20i

π3

[
E ′
(

1

2
+
i
√

5

2
√

3

)
− i
√

5

2
√

3
E ′′
(

1

2
+
i
√

5

2
√

3

)]
.(3.3.19)

This verifies (3.3.15). �

Theorem 3.3.3 (IKM(1, 4; 3) and IKM(1, 4; 5) via E (z), E ′(z) and
E ′′(z)). We have

IKM(1, 4; 3) = π2

(
2

15

)2(
13C − 1

10C

)
,

IKM(1, 4; 5) = π2

(
4

15

)3(
43C − 19

40C

)
,

(3.3.20)

where C = 1
240
√

5π2
Γ
(

1
15

)
Γ
(

2
15

)
Γ
(

4
15

)
Γ
(

8
15

)
is the “Bologna constant”.

Proof. As we twice differentiate (3.3.11) with respect to z, and set X6,3(z) =
− 1

64 afterwards, we obtain a formula

− 32(64X ′2+X ′′)

∫ ∞
0
I1(t)[K0(t)]4t2 d t+1024X ′2 IKM(1, 4; 3)(3.3.21)

= Z ′′E + 2Z ′E ′ + ZE ′′,

where the subscripts for X6,3 and Z6,3 are dropped, and the argument z =
1
2 + i

√
5

2
√

3
is suppressed throughout, to save space. Substituting known results

from Table 1 and Lemmata 3.3.1–3.3.2, we may transcribe the last equality
into

135c2 IKM(1, 4; 3) =
6
√

5π2c(26c2 − 1)

25
,(3.3.22)

which confirms the evaluation for IKM(1, 4; 3).
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Taking fourth-order derivatives on (3.3.11), we arrive at

− 32
[
X ′′′′ + 64(3X ′′2 + 24576X ′4 + 4X ′′′X ′ + 768X ′2X ′′)

]
(3.3.23)

×
∫ ∞

0
I1(t)[K0(t)]4t2 d t

+ 1024(3X ′′2 + 24576X ′4 + 4X ′′′X ′ + 768X ′2X ′′) IKM(1, 4; 3)

− 65536X ′2(3X ′′ + 128X ′2)

∫ ∞
0

I1(t)[K0(t)]4t4 d t

+ 1048576X ′4 IKM(1, 4; 5)

= Z ′′′′E + 4Z ′′′E ′ + 6Z ′′E ′′ + 4Z ′E ′′′ + ZE ′′′′,

where ∫ ∞
0

I1(t)[K0(t)]4t4 d t =
4

5
[IKM(0, 3; 3)− IKM(1, 4; 3)](3.3.24)

can be derived in a similar vein as (3.3.10), and the relation IKM(0, 3; 3) =
2[2 IKM(0, 3; 1)− 1]/3 has been proved in [1, §3.2]. Now that the left-hand
side of (3.3.23) equals

− 648c(78c3 − 36c2 + 18c− 1)

5
× 2

5

[
2 IKM(0, 3; 1)− π2c√

5

]
− 2916c2(3c+ 1)(5c− 1) IKM(1, 4; 3)

− 14580(c− 1)c3 × 4

15
[4 IKM(0, 3; 1)− 3 IKM(1, 4; 3)− 2]

+ 18225c4 IKM(1, 4; 5)

(3.3.25)

and its right-hand side amounts to

216π2c(1330c4 − 684c3 + 124c2 + 12c− 3)

25
√

5
+ 7776(c− 1)c3

− 2592c(228c3 − 186c2 + 18c− 1)

25
IKM(0, 3; 1),

(3.3.26)

we can simplify the relation above into

− 729c2[4(11c2 + 6c− 1) IKM(1, 4; 3)− 25c2 IKM(1, 4; 5)](3.3.27)

=
216π2c(862c4 − 468c3 + 16c2 + 18c− 3)

25
√

5
.
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This confirms the evaluation for IKM(1, 4; 5). (Furthermore, based on the
recursion for the rescaled moments IKM(1, 4; 2n+ 1)/π2, n ∈ Z≥0 [1, (11)],
one can show that all of them are rational combinations of C and 1/C.) �

Remark 3.3.3.1. We have recently found [44, §2] that the closed-form
evaluation of IKM(1, 4; 3) can also be deduced from a result of Borwein–
Straub–Vignat [7, Theorem 4.17], using Wick rotations.

Remark 3.3.3.2. It is also possible to use factorizations of Wrońskians to
compute the determinant of the matrix in (1.2.2), without evaluating the
four individual Bessel moments. Such an algebraic approach is described in
our recent manuscript [45, §2].

4. Feynman diagrams with 6 Bessel factors

4.1. Modular parametrization for certain Hankel transforms

Instead of working directly on the modularity of Feynman integrals with
6 Bessel factors, we will first analyze a small building block with 4 Bessel
factors. The latter problem can be solved using the classical elliptic inte-
grals [cf. 36, §13.46, (9)], whose modular parametrization will be our major
concern.

Lemma 4.1.1 (Some Wick rotations).

(a) The following identities hold:

∫ ∞
0

[I0(t)]2[K0(t)]4t d t =
π4

30

∫ ∞
0

[J0(x)]6x dx,(4.1.1) ∫ ∞
0

I0(t)[K0(t)]5t d t = −π
5

12

∫ ∞
0

[J0(x)]5Y0(x)x dx.(4.1.2)

(b) For x ∈ [0, 1), we have

∫ ∞
0

I0(xt)I0(t)[K0(t)]2td t =
π2

6

∫ ∞
0

J0(xt)[J0(t)]3t d t.(4.1.3)
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(c) For x ∈ [0, 3), we have

∫ ∞
0

I0(xt)[K0(t)]3t d t(4.1.4)

= −π
3

8

∫ ∞
0

J0(xt)Y0(t){3[J0(t)]2 − [Y0(t)]2}t d t,

3

∫ ∞
0

K0(xt)I0(t)[K0(t)]2t d t(4.1.5)

= −π
3

8

∫ ∞
0

J0(xt)Y0(t){3[J0(t)]2 + [Y0(t)]2}t d t

− π3

4

∫ ∞
0

Y0(xt)[J0(t)]3t d t.

Proof. (a) As in the proof of Theorem 2.2.2, we compute

(
2

π

)4 ∫ ∞
0

[I0(t)]2[K0(t)]4td t(4.1.6)

= −
∫ i∞

0
[J0(z)]2[H

(1)
0 (z)]4z d z

= −Re

∫ ∞
0

[J0(x)]2[H
(1)
0 (x)]4x dx

= −
∫ ∞

0
J2(J4 − 6J2Y 2 + Y 4)x dx,

where J = J0(x), Y = Y0(x) in the last step. Applying Lemma 2.2.1 to

− J2(J4 − 6J2Y 2 + Y 4) +
J

10
[(J + iY )5 − (−J + iY )5](4.1.7)

+
2J3

3
[(J + iY )3 − (−J + iY )3]

=
8J6

15
,

we arrive at (4.1.1).
The proof of (4.1.2) is essentially similar.

(b) By Jordan’s lemma, we can justify the following Wick rotation for x ∈
[0, 1):
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(
2

π

)2 ∫ ∞
0

I0(xt)I0(t)[K0(t)]2t d t(4.1.8)

=

∫ i∞

0
J0(xz)J0(z)[H

(1)
0 (z)]2z d z

= Re

∫ ∞
0

J0(xt)J0(t)[H
(1)
0 (t)]2t d t

=

∫ ∞
0

J0(xt)J(J2 − Y 2)t d t,

where J = J0(t), Y = Y0(t) in the last expression. Meanwhile, by a vari-
ation on Lemma 2.2.1, we have

∫ ∞
0

J0(xt)
(J + iY )3 − (−J + iY )3

2
td t(4.1.9)

=

∫ ∞
0

J0(xt)J(J2 − 3Y 2)t d t = 0,

so the claimed identity is proved.

(c) To show (4.1.4), simply take a Wick rotation:

(
2

π

)3 ∫ ∞
0

I0(xt)[K0(t)]3td t = − Im

∫ i∞

0
J0(xz)[H

(1)
0 (z)]3z d z(4.1.10)

= − Im

∫ ∞
0

J0(xt)[H
(1)
0 (t)]3t d t

= −
∫ ∞

0
J0(xt)Y (3J2 − Y 2)t d t,

where we use the abbreviation J = J0(t), Y = Y0(t) as before.
For (4.1.5), Wick rotation alone brings us

(
2

π

)3 ∫ ∞
0

K0(xt)I0(t)[K0(t)]2td t(4.1.11)

= −2

∫ ∞
0

J0(xt)J2Y t d t−
∫ ∞

0
Y0(xt)J(J2 − Y 2)t d t.
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In the meantime, we extend the technique in Lemma 2.2.1 to

∫ ∞
0

[J0(xt) + iY0(xt)](J + iY )3 − [−J0(xt) + iY0(xt)](−J + iY )3

2i
td t = 0,

(4.1.12)

which implies∫ ∞
0

J0(xt)Y (3J2 − Y 2)t d t+

∫ ∞
0

Y0(xt)J(J2 − 3Y 2)t d t = 0.(4.1.13)

The equation above allows us to eliminate the term
∫∞

0 Y0(xt)JY 2t d t
from (4.1.11) and arrive at the right-hand side of (4.1.5). �

Let h(x) =
∫∞

0 J0(xt)I0(t)[K0(t)]2t d t be the Hankel transform of the

function I0(t)[K0(t)]2, and h̃(x) =
∫∞

0 J0(xt)[J0(t)]3t d t be a “random walk

integral” (h̃(x) = p3(x)/x, where p3(x) is the radial probability density of the
distance travelled by a random walker in the plane, taking three consecutive
steps of unit lengths). According to the Parseval–Plancherel theorem for
Hankel transforms [cf. 1, (16)], we have


∫ ∞

0
[I0(t)]2[K0(t)]4t d t =

∫ ∞
0

[h(x)]2x dx,∫ ∞
0

[J0(t)]6t d t =

∫ ∞
0

[h̃(x)]2x dx.

(4.1.14)

In order to recast the left-hand sides of the equations above into Eichler
integrals, we need to represent the Hankel transforms h(x) and h̃(x) as
modular forms.

Proposition 4.1.2 (Two Hankel transforms). (a) For x > 0, we have
a hypergeometric evaluation∫ ∞

0
J0(xt)I0(t)[K0(t)]2td t(4.1.15)

=
π√
3

1

3 + x2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ x4(9 + x2)

(3 + x2)3

)
,
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which can be parametrized as

∫ ∞
0

J0

i[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 I0(t)[K0(t)]2t d t(4.1.16)

=
π

3
√

3

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
,

where θ(z) :=
∑

n∈Z e
πin2z is one of Jacobi’s elliptic theta functions

(“Thetanullwerte”), and w = −1
2 + iy for y > 0.

(b) For x ∈ (0, 1), the function p3(x)/x =
∫∞

0 J0(xt)[J0(t)]3t d t admits a
modular parametrization

∫ ∞
0

J0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [J0(t)]3t d t(4.1.17)

=
2√
3π

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
,

where w/i > 0; for x ∈ (1, 3), the function p3(x)/x can be parametrized
as

∫ ∞
0

J0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [J0(t)]3t d t(4.1.18)

=
2(1− 3w)√

3π

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
,

where w = (1 + eiϕ)/6, ϕ ∈ (0, π); for x > 3, we have p3(x)/x = 0.

Proof. (a) For sufficiently small x, we have∫ ∞
0

J0(xt)I0(t)[K0(t)]2t d t(4.1.19)

=
π√
3

1

3− x2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ −x2(9 + x2)2

(3− x2)3

)
,

by the Wick rotation in (4.1.3) and an analytic continuation of the hy-
pergeometric representation for

∫∞
0 J0(xt)[J0(t)]3t d t [8, (3.4)]. Setting



i
i

“5-Zhou” — 2018/4/9 — 16:39 — page 156 — #30 i
i

i
i

i
i

156 Yajun Zhou

p = − 2x2

x2+3 in the following hypergeometric identity [3, Chap. 33, Theo-
rem 6.1]:

2F1

(
1
3 ,

2
3

1

∣∣∣∣ p(3 + p)2

2(1 + p)3

)
= (1 + p)2F1

(
1
3 ,

2
3

1

∣∣∣∣ p2(3 + p)

4

)
,(4.1.20)

we recast (4.1.19) into (4.1.15). The validity of (4.1.15) extends to all
x > 0, by analytic continuation.

With a substitution x = i
[
θ
(
− 2

3z − 1
)/
θ
(
− 2

z − 3
)]2

, one can ver-
ify

x4(9 + x2)

(3 + x2)3
=

{
1 +

1

27

[
η(z)

η(3z)

]12
}−1

(4.1.21)

by showing that the ratio between the two sides defines a bounded func-
tion on X0(3) = Γ0(3)\(H ∪Q ∪ {i∞}), and that the leading order q-
expansions of both sides agree. One can also check that the geodesic
z = (5 + eiϕ)/12, ϕ ∈ (0, π) is mapped bijectively to x ∈ (0,∞), using a
method similar to what was employed in the proof of Proposition 3.2.2.

Meanwhile, with the aforementioned relation between x ∈ (0,∞)
and z = (5 + eiϕ)/12 for ϕ ∈ (0, π), we paraphrase an identity [3, Chap-
ter 33, Corollary 3.4] from Ramanujan’s notebook as follows:

√
3 3
√
x 4
√

1 + x2 12
√

9 + x2

3 + x2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ x4(9 + x2)

(3 + x2)3

)
(4.1.22)

=

[
η

(
2z − 1

3z − 1

)]2

.

Multiplying both sides with

√
3 12
√

1 + x2

3
√
x 12
√

9 + x2
=

η(z)

η(3z)
=
η
(

2z−1
3z−1

)
η
(

6z−3
3z−1

) , where
(

2 −1
3 −1

)
∈ Γ0(3),(4.1.23)

we obtain

3 3
√

1 + x2

3 + x2 2F1

(
1
3 ,

2
3

1

∣∣∣∣ x4(9 + x2)

(3 + x2)3

)
=

[
η
(

2z−1
3z−1

)]3

η
(

6z−3
3z−1

) .(4.1.24)
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Furthermore, by a theta function identity [2, Chap. 18, (24.31)] in Ra-
manujan’s notebook, we have

3
√

1 + x2 =
3

√√√√1−

[
θ
(
− 2

3z − 1
)

θ
(
−2
z − 3

) ]4

= 1−
θ
(
− 2

9z −
1
3

)
θ
(
−2
z − 3

) ,(4.1.25)

and the last expression can be reduced by an identity

1−
θ
(

2τ
3 − 1

)
θ(6τ − 9)

= 2
η(τ)

η(2τ)

[
η(6τ)

η(3τ)

]3

, ∀τ ∈ H,(4.1.26)

also due to Ramanujan [2, Chap. 16, Entry 24(iii) and Chap. 20, En-
try 1(ii)].

Finally, setting

τ = 1− 1

3z
and

2z − 1

3z − 1
= 1 + 2w ∈ iR

for z = (5 + eiϕ)/12, ϕ ∈ (0, π), while simplifying eta functions with the
modular transformation η(−1/τ ′) =

√
τ ′/iη(τ ′) where necessary, we ar-

rive at the expression in (4.1.16).

(b) The modular parametrization in (4.1.17) follows directly from analytic
continuation of (4.1.16) and the Wick rotation relation in (4.1.3).

One notes that the smooth functions p3(x), x ∈ (0, 1) and p3(x), x ∈
(1, 3) satisfy the same ordinary differential equation of second order [8,
Theorem 2.4], so p3(x)/x, x ∈ (1, 3) must be a linear combination of

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
and

wη(3w)[η(2w)]6

[η(w)]3[η(6w)]2
(4.1.27)

for x =
[
θ
(
1− 1

3w

) /
θ
(
3− 1

w

)]2
. Here, the linear combination must be

proportional to (1− 3w), so as to guarantee finiteness of p3(x)/x in
the x→ 3− 0+ regime. The precise prefactor can be determined by
asymptotic analysis of p3(x)/x and q-expansion of the modular form.
This proves (4.1.18).

For x > 3, one can prove
∫∞

0 J0(xt)[J0(t)]3t d t = 0 by extracting the
real part from the following Wick rotation:∫ ∞

0
H

(1)
0 (xt)[J0(t)]3td t =

2i

π

∫ ∞
0

[I0(t)]3K0(xt)t d t, ∀x > 3.(4.1.28)
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Alternatively, one may invoke the probabilistic interpretation of p3(x) =∫∞
0 J0(xt)[J0(t)]3xtd t to conclude that p3(x)/x = 0 for x > 3. �

Remark 4.1.2.1. The modular parametrizations in the proposition above
are foreshadowed by the following formula (see [36, §13.46, (9)] and [6, (3)])
for x ∈ (0, 1) ∪ (1, 3):∫ ∞

0
J0(xt)[J0(t)]3t d t(4.1.29)

=
1

π2
√
x

Re 2F1

(
1
2 ,

1
2

1

∣∣∣∣ (3− x)(1 + x)3

16x

)
,

and the fact that [3, Chap. 33, Lemma 5.5 and Theorem 5.6]

2F1

(
1
2 ,

1
2

1

∣∣∣∣ −(3 + t2)(1− t2)3

16t2

)
(4.1.30)

= [θ(3z)]2, for t =
θ(z)

θ(3z)
, z/i > 0.

Formally, we may regard (4.1.16) as an analytic continuation of the identities
above, along with a modular transformation corresponding to (4.1.20).

Remark 4.1.2.2. It is also possible to parametrize the aforementioned
Hankel transforms without using Jacobi’s theta functions. For example, after
comparing the Taylor expansion of p3(x), 0 ≤ x < 1 due to Borwein–Straub–
Wan–Zudilin [6, (3.2)] to Zagier’s Apéry-like recurrence (Case C) [38], we
arrive at ∫ ∞

0
J0

(
3[η(w)]2[η(6w)]4

[η(3w)]2[η(2w)]4
t

)
[J0(t)]3t d t(4.1.17′)

=
2√
3π

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
,

for w/i > 0, which is an alternative formulation of (4.1.17). For yet another
approach to this modular parametrization, see Broadhurst’s recent talks in
Vienna ([16, §1.2] and [17, §1.2]), which referred to his earlier talk at Les
Houches [11, §2.5].

In addition to the usual Hankel transform
∫∞

0 J0(xt)f(t)t d t of a function
f(t), t ∈ (0,∞), we will also need the Y -transform

∫∞
0 Y0(xt)f(t)td t and the

K-transform
∫∞

0 K0(xt)f(t)t d t for certain Bessel moments.
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Proposition 4.1.3 (Y - and K-transforms). (a) We have

∫ ∞
0

J0

i[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [K0(t)]3t d t(4.1.31)

− 3π

2

∫ ∞
0

Y0

i[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 I0(t)[K0(t)]2t d t

=
π2(2w + 1)

2
√

3i

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
,

where w = −1
2 + iy for y > 0, and

∫ ∞
0

I0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [K0(t)]3td t(4.1.32)

+ 3

∫ ∞
0

K0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 I0(t)[K0(t)]2t d t

=
π2w√

3i

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2

for w/i > 0.

(b) We have

3

∫ ∞
0

J0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [J0(t)]2Y0(t)t d t(4.1.33)

+

∫ ∞
0

Y0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [J0(t)]3t d t

= − 4w√
3πi

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2

for w/i > 0 and w = (1 + eiϕ)/6, ϕ ∈ (0, π).

Proof. (a) We observe that the sequences c3,k :=
∫∞

0 [K0(t)]3tk d t and
s3,k :=

∫∞
0 I0(t)[K0(t)]2tk d t satisfy the same recursion [1, (8)], namely,

(k + 1)4c3,k − 2(5k2 + 20k + 21)c3,k+2 + 9c3,k+4 = 0 and (k + 1)4s3,k −
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2(5k2 + 20k + 21)s3,k+2 + 9s3,k+4 = 0 both hold for non-negative inte-
gers k. As a result, the function∫ ∞

0
J0(
√
ut)I0(t)[K0(t)]2td t(4.1.34)

=
π√
3

1

3 + u
2F1

(
1
3 ,

2
3

1

∣∣∣∣ u2(9 + u)

(3 + u)3

)
is annihilated by the differential operator

B̂3 := u(u+ 1)(u+ 9)
d2

du2
+ (3u2 + 20u+ 9)

d

du
+ (u+ 3),(4.1.35)

and we have an inhomogeneous differential equation

B̂3

{∫ ∞
0

J0(
√
ut)[K0(t)]3t d t

}
=

3

2
.(4.1.36)

Meanwhile, differentiating under the integral sign and integrating by
parts [cf. 35, §9], we can verify that

B̂3

{∫ ∞
0

Y0(
√
ut)πI0(t)[K0(t)]2t d t

}
= 1.(4.1.37)

In view of the analysis above, the left-hand side of (4.1.31) must be
equal to

η(3w)[η(2w)]6

[η(w)]3[η(6w)]2
[k0 + k1(2w + 1)](4.1.38)

where k0 and k1 are constants. Since Y0(xt) = 2
π log(xt) +O(1) as x→

0+, and
∫∞

0 I0(t)[K0(t)]2td t = π
3
√

3
[1, (23)], we can determine k1 = π2

2
√

3i
immediately. Superimposing with (4.1.16), we obtain

∫ ∞
0

J0

i[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [K0(t)]3td t(4.1.39)

− 3π

2i

∫ ∞
0

H
(1)
0

i[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 I0(t)[K0(t)]2t d t

=
η(3w)[η(2w)]6

[η(w)]3[η(6w)]2

(
k0 +

π2w√
3i

)
,
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which analytically continues to

∫ ∞
0

I0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 [K0(t)]3t d t(4.1.40)

+ 3

∫ ∞
0

K0

[θ (1− 1
3w

)
θ
(
3− 1

w

) ]2

t

 I0(t)[K0(t)]2t d t

=
η(3w)[η(2w)]6

[η(w)]3[η(6w)]2

(
k0 +

π2w√
3i

)
for w/i > 0. Taking the w → i0+ limit, and recalling the evaluation∫∞

0 I0(t)[K0(t)]3t d t = π2/16 from [1, (54)], we find k0 = 0.
Thus far, we have confirmed both (4.1.31) and (4.1.32).

(b) We note that the expression
∫∞

0 I0(xt)[K0(t)]3t d t + 3
∫∞

0 K0(xt)I0(t)
[K0(t)]2t d t is continuous with respect to x ∈ (0, 3), and the right-hand
side of (4.1.32) is smooth in a neighborhood of i0+. Therefore, the va-
lidity of (4.1.32) extends to the geodesic w = (1 + eiϕ)/6, ϕ ∈ (0, π), by
analytic continuation.

Adding up (4.1.4) and (4.1.5), we derive (4.1.33) from (4.1.32). �

4.2. Eichler integrals via Hankel fusions

We can now use the modular parametrizations in Proposition 4.1.2 to fuse
Hankel transforms into Feynman integrals involving 6 Bessel factors, as
planned in (4.1.14).

Proposition 4.2.1 (Eichler formulation of IKM(2, 4; 1)). We have∫ ∞
0

[I0(t)]2[K0(t)]4t d t(4.2.1)

=
π3i

3

∫ − 1

2
+i∞

− 1

2

[η(w)η(2w)η(3w)η(6w)]2 dw.

Proof. By the Parseval–Plancherel theorem for Hankel transforms, we have∫ ∞
0

[I0(t)]2[K0(t)]4t d t(4.2.2)

=
1

2

∫ ∞
0

∣∣∣∣∫ ∞
0

J0(
√
ut)I0(t)[K0(t)]2t d t

∣∣∣∣2 du.
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Here, for τ = 2− 1
6w , the modular parameter [cf. (4.1.25) and (4.1.26)]

u = x2 = −

[
θ
(
1− 1

3w

)
θ
(
3− 1

w

) ]4

=

[
1−

θ
(

1
3 −

1
9w

)
θ
(
3− 1

w

) ]3

− 1(4.2.3)

= 8

[
η(τ)

η(2τ)

]3 [η(6τ)

η(3τ)

]9

− 1 =

[
η(6w)

η(3w)

]3 [ η(w)

η(2w)

]9

− 1

satisfies [cf. (3.2.5′) and (3.2.5′′)]

du

dw
= −18πi

[
η(6w)

η(3w)

]3 [ η(w)

η(2w)

]9 [η(3w)η(6w)]3

η(w)η(2w)
(4.2.4)

= −18πi
[η(w)]8[η(6w)]6

[η(2w)]10
,

so (4.2.1) follows immediately. �

Proposition 4.2.2 (Eichler formulation of JYM(6, 0; 1)). We have∫ ∞
0

[J0(t)]6t d t =
12

πi

∫ i∞

0
[η(w)η(2w)η(3w)η(6w)]2 dw(4.2.5)

− 6

πi

∫ 1

2
+i∞

1

2

[η(w)η(2w)η(3w)η(6w)]2 dw.

Proof. Applying the arguments in the last proposition directly to (4.1.17)
and (4.1.18), we obtain∫ ∞

0
[J0(t)]6td t(4.2.6)

=
12

πi

∫ i∞

0
[η(w)η(2w)η(3w)η(6w)]2 dw

+
12

πi

∫ 0+i0+

1

3
+i0+

[η(w)η(2w)η(3w)η(6w)]2(3w − 1)2 dw,

where the second integral runs along the semi-circular path w = (1 + eiϕ)/6,
ϕ ∈ (0, π).

Before arriving at the expression in (4.2.5), we need to perform modular
transformations on the last integral.

Towards this end, we recall from Chan–Zudilin [20] that the group

Γ0(6)+2 = 〈Γ0(6), Ŵ2〉, constructed by adjoining Ŵ2 = 1√
2

(
2 −1
6 −2

)
to Γ0(6),
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enjoys a Hauptmodul

X6,2(z) =

[
η(3z)η(6z)

η(z)η(2z)

]4

(4.2.7)

and a weight-2 modular form

Z6,2(z) =
[η(z)η(2z)]3

η(3z)η(6z)
.(4.2.8)

With these notations, we see that [η(z)η(2z)η(3z)η(6z)]2 = [Z6,2(z)]2X6,2(z)
is a modular form of weight 4 on Γ0(6)+2. In particular, we have

[η(Ŵ2z)η(2Ŵ2z)η(3Ŵ2z)η(6Ŵ2z)]
2(4.2.9)

= 4(3z − 1)4[η(z)η(2z)η(3z)η(6z)]2.

Consequently, a variable substitution w = Ŵ2z brings us

12

πi

∫ 0+i0+

1

3
+i0+

[η(w)η(2w)η(3w)η(6w)]2(3w − 1)2 dw(4.2.10)

= − 6

πi

∫ 1

2
+i∞

1

2

[η(z)η(2z)η(3z)η(6z)]2 d z,

thereby completing the proof. �

David Broadhurst considered the following modular form of weight 4
and level 6

f4,6(z) = [η(z)η(2z)η(3z)η(6z)]2 =

∞∑
n=1

a4,6(n)e2πinz,(4.2.11)

based on a suggestion from Francis Brown at Les Houches in 2010. Drawing
on the work of Hulek et al. [22] that related the aforementioned modular
form to a Kloosterman problem, Broadhurst conjectured that IKM(2, 4; 1)
is equal to 3

2L(f4,6, 3) [12, (110)], where the special L-value can be written
explicitly as [12, (108)]

L(f4,6, 3) :=

∞∑
n=1

a4,6(n)

n3

(
1 +

2πn√
6

+
2π2n2

3

)
e−2πn/

√
6.(4.2.12)

We now verify Broadhurst’s conjecture.
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Theorem 4.2.3 (IKM(2, 4; 1) as a critical L-value). We have

IKM(2, 4; 1) =

∫ ∞
0

[I0(t)]2[K0(t)]4td t =
3

2
L(f4,6, 3).(4.2.13)

Proof. Judging from termwise integration of uniformly convergent series, we
note that Broadhurst’s conjecture essentially says that

∫ ∞
0

[I0(t)]2[K0(t)]4t d t = 6π3i

∫ i∞

i/
√

6
f4,6(w)

(
w2 − 1

6

)
dw.(4.2.14)

What we will do is to show that this statement is consistent with our results
in Propositions 4.2.1 and 4.2.2. Here, one can prove

6π3i

∫ i∞

i/
√

6
f4,6(w)w2 dw = −π3i

∫ i/
√

6

0
f4,6(z) d z(4.2.15)

by a change of variable w = −1/(6z) and the modular transformation
η(−1/τ) =

√
τ/iη(τ), so the right-hand side of (4.2.14) is the same as

−π3i

∫ i∞

0
f4,6(w) dw.

However, according to Propositions 4.2.1 and 4.2.2, we have

− π3i

∫ i∞

0
f4,6(w) dw(4.2.16)

=
π4

12

∫ ∞
0

[J0(t)]6td t− 3

2

∫ ∞
0

[I0(t)]2[K0(t)]4td t.

Meanwhile, the Wick rotation in (4.1.1) tells us that this is precisely
IKM(2, 4; 1), as conjectured by Broadhurst. �

Before applying Proposition 4.1.3 to the 4-loop sunrise diagram
IKM(1, 5; 1), we need a cancelation formula related to Hankel and Y -
transforms.
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Lemma 4.2.4 (Hilbert cancelation). Consider a continuous function
F (t), t > 0, whose Kramers–Kronig transform

(K̂ F )(τ) :=

∫ ∞
−∞

F (|t|)|t|d t
π(τ − t)

, τ ∈ H(4.2.17)

is well-defined, and has the following asymptotic behavior:(K̂ F )(τ) = O(
√
τ), as |τ | → 0,

(K̂ F )(τ) = O

(
1

|τ |

)
, as |τ | → ∞.

(4.2.18)

Suppose that
∫∞

0 J0(xt)F (t)t d t, x ∈ (0,∞) and
∫∞

0 Y0(xt)F (t)t d t, x ∈
(0,∞) are both well-defined, then∫ ∞

0

[∫ ∞
0

J0(xt)F (t)td t

] [∫ ∞
0

Y0(xτ)F (τ)τ d τ

]
x dx = 0.(4.2.19)

Proof. According to the asymptotic behavior of K̂ F , we have a vanishing
identity for all x > 0:∫ i0++∞

i0+−∞
H

(1)
0 (xτ)(K̂ F )(τ) d τ = 0.(4.2.20)

Here, the contour can be closed upwards, thanks to Jordan’s lemma. As
Im τ → 0+, we have the following Plemelj jump relation for ξ ∈ (−∞, 0) ∪
(0,∞):

(K̂ F )(ξ + i0+) = P

∫ ∞
−∞

F (|t|)|t| d t
π(ξ − t)

− iF (|ξ|)|ξ|,(4.2.21)

where P denotes Cauchy principal value. Here, the first term on the right-
hand side of the equation above is the Hilbert transform of an even function
F (|t|)|t|, t ∈ (−∞, 0) ∪ (0,∞), so it must be an odd function in ξ [23, §4.2].
Meanwhile, we know that

H
(1)
0 (xξ + i0+) =

{
J0(xξ) + iY0(xξ), ξ > 0,

−J0(x|ξ|) + iY0(x|ξ|), ξ < 0,
(4.2.22)

so the vanishing identity in (4.2.20) brings us∫ ∞
0

Y0(xt)F (t)td t = −
∫ ∞

0
J0(xξ)

[
P

∫ ∞
−∞

F (|t|)|t| d t
π(ξ − t)

]
d ξ.(4.2.23)
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Now we compute∫ ∞
0

[∫ ∞
0

J0(xt)F (t)td t

] [∫ ∞
0

Y0(xτ)F (τ)τ d τ

]
x dx(4.2.24)

= −
∫ ∞

0

[∫ ∞
0

J0(xt)F (t)td t

]
×
{∫ ∞

0
J0(xτ)

[
P

∫ ∞
−∞

F (|t|)|t|d t
π(τ − t)

]
d τ

}
x dx

= −
∫ ∞

0
F (τ)

[
P

∫ ∞
−∞

F (|t|)|t|d t
π(τ − t)

]
d τ

=
1

4
Im

∫ i0++∞

i0+−∞

[(K̂ F )(τ)]2 d τ

τ
.

The last contour integral is indeed vanishing, because the integrand remains
bounded as τ → i0+, and we can close the contour upwards, according to
the asymptotic behavior of the Kramers–Kronig transform K̂ F . �

Theorem 4.2.5 (Sunrise at 4 loops). We have

3

π2

∫ ∞
0

I0(t)[K0(t)]5td t(4.2.25)

=

∫ ∞
0

[I0(t)]3[K0(t)]3td t

= −6π2

∫ i∞

0
f4,6(z)z d z =

3

2
L(f4,6, 2),

as stated in (1.2.3).

Proof. The first equality in (4.2.25) has been proved in [43, Lemma 3.1], as
a special case (m = 3, n = 1) of (1.1.1). The last equality comes from the
definition of L-functions via Mellin transforms of cusp forms. The rest of
this proof will revolve around the second equality.

We combine (4.1.16) with (4.1.31), and carry out computations as in
Proposition 4.2.1, to arrive at

∫ ∞
0

I0(t)[K0(t)]5td t =
π4

2

∫ − 1

2
+i∞

− 1

2

f4,6(w)(1 + 2w) dw.(4.2.26)
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Here, we have used the Parseval–Plancherel identity∫ ∞
0

{∫ ∞
0

J0(xt)I0(t)[K0(t)]2t d t

}
(4.2.27)

×
{∫ ∞

0
J0(xτ)[K0(τ)]3τ d τ

}
x dx

=

∫ ∞
0

I0(t)[K0(t)]5td t

and the Hilbert cancelation∫ ∞
0

{∫ ∞
0

J0(xt)I0(t)[K0(t)]2t d t

}
(4.2.28)

×
{∫ ∞

0
Y0(xτ)I0(τ)[K0(τ)]2τ d τ

}
x dx

= 0.

By an analog of Proposition 4.2.2, we fuse (4.1.17)–(4.1.18) and (4.1.33)
together into the following formula:∫ ∞

0
[J0(t)]5Y0(t)td t(4.2.29)

=
8

π

∫ i∞

0
f4,6(w)w dw +

8

π

∫ 0+i0+

1

3
+i0+

f4,6(w)w(1− 3w) dw.

Again, a variable substitution w = Ŵ2z gives rise to

8

π

∫ 0+i0+

1

3
+i0+

f4,6(w)w(1− 3w) dw =
4

π

∫ 1

2
+i∞

1

2

f4,6(z)(1− 2z) d z.(4.2.30)

Thus, we have

8

π

∫ i∞

0
f4,6(w)w dw(4.2.31)

=

∫ ∞
0

[J0(t)]5Y0(t)td t+
8

π5

∫ ∞
0

I0(t)[K0(t)]5t d t

by cancelation of Eichler integrals. We can rewrite the equation above as

8

π

∫ i∞

0
f4,6(w)w dw = − 4

π5

∫ ∞
0

I0(t)[K0(t)]5t d t,(4.2.32)
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with the aid of (4.1.2). As we have [cf. 12, (107)]

− 6π2

∫ i∞

0
f4,6(z)z d z(4.2.33)

= −12π2

∫ i∞

i/
√

6
f4,6(z)z d z

=
3

2

∞∑
n=1

a4,6(n)

n2

(
2 +

4πn√
6

)
e−2πn/

√
6

by termwise integration, this completes the proof. �

Like the determinant of (1.2.2), Broadhurst–Mellit also proposed that
[12, (113)]

det

(
IKM(1, 5; 1) IKM(1, 5; 3)
IKM(2, 4; 1) IKM(2, 4; 3)

)
=

π4

2632
.(4.2.34)

We have recently verified this conjecture in [45, §3], without explicitly com-
puting individual matrix elements.

The Eichler integral representations for the first column in the deter-
minant above have already been discussed. In a recent talk at the Erwin
Schrödinger Institute [18, §7.3], Broadhurst has announced his discoveries
of representations for the second column as integrals over modular forms.
We now prove Broadhurst’s empirical formulae.

Theorem 4.2.6 (Broadhurst integrals for IKM(1, 5; 3) and IKM(2, 4;

3)). Setting v = 3
[
η(3z)
η(z)

]4[
η(2z)
η(6z)

]2
and G(z) = f4,6(z)(v4−6v2+2−6v−2+

9v−4), we have

IKM(2, 4; 3) =
π3

i

∫ 1

2
+i∞

1

2

G(z)

96
d z,(4.2.35)

IKM(1, 5; 3) = −3π4

∫ 1

2
+i∞

1

2

G(z)

96

(
z − 1

2

)
d z.(4.2.36)

Proof. Writing f(u) :=
∫∞

0 J0(
√
ut)I0(t)[K0(t)]2td t for u > 0, and using the

Bessel differential equation along with B̂3f(u) = 0 [cf. (4.1.35)], one can
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show that ∫ ∞
0

J0(
√
ut)I0(t)[K0(t)]2t3 d t(4.2.37)

= −4

(
u

d2

du2
+

d

du

)∫ ∞
0

J0(
√
ut)I0(t)[K0(t)]2td t

=
4[2u(u+ 5)f ′(u) + (u+ 3)f(u)]

(u+ 1)(u+ 9)
.

By Hankel fusion and integration by parts, we have

∫ ∞
0

[I0(t)]2[K0(t)]4t3 d t

(4.2.38)

=
1

2

∫ ∞
0

4f(u)[2u(u+ 5)f ′(u) + (u+ 3)f(u)]

(u+ 1)(u+ 9)
du

= 2

∫ ∞
0

[
1

4(u+ 1)
− 1

2(u+ 1)2
+

3

4(u+ 9)
− 9

2(u+ 9)2

]
[f(u)]2 du.

As we may recall from Proposition 4.2.1, the differential form [f(u)]2 du
2 trans-

lates into π3i
3 [η(z)η(2z)η(3z)η(6z)]2 d z for Re z = −1

2 , and

u+ 1 =

[
η(6z)

η(3z)

]3 [ η(z)

η(2z)

]9

, u+ 9 = 9
η(z)

η(6z)

[
η(3z)

η(2z)

]5

,(4.2.39)

so IKM(2, 4; 3) has an integral representation:

π3

i

∫ − 1

2
+i∞

− 1

2

{
2[η(3z)]8[η(2z)]20

3[η(z)]16[η(6z)]4
+

2[η(6z)]4[η(2z)]12

27[η(3z)]8
(4.2.40)

− [η(3z)]5[η(2z)]11

3[η(z)]7η(6z)
− η(z)[η(6z)]3[η(2z)]7

9[η(3z)]3

}
d z.

Here, the path of integration can be shifted to Re z = 1
2 , by periodicity of

the integrand. To identify the integrand inside the braces of (4.2.40) with
G(z)/96 in (4.2.35), simply compare their q-expansions up to sufficiently
many terms [20, Remark 1]. This proves Broadhurst’s integral representation
for IKM(2, 4; 3) in (4.2.35).
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To verify (4.2.36), we start by rewriting (4.1.31) as

g(u) :=

∫ ∞
0

J0(
√
ut)[K0(t)]3td t(4.2.41)

− 3π

2

∫ ∞
0

Y0(
√
ut)I0(t)[K0(t)]2t d t

=
π2

2

1

3 + u
2F1

(
1
3 ,

2
3

1

∣∣∣∣ 1− u2(9 + u)

(3 + u)3

)
and noting that B̂3g(u) = 0. We can subsequently deduce Broadhurst’s in-
tegral representation for IKM(1, 5; 3) from Hankel fusion and a vanishing
identity for F (t) = I0(t)[K0(t)]2:∫ ∞

0

[∫ ∞
0

J0(xt)F (t)t d t

] [∫ ∞
0

Y0(xτ)F (τ)τ3 d τ

]
x dx(4.2.42)

+

∫ ∞
0

[∫ ∞
0

J0(xt)F (t)t3 d t

] [∫ ∞
0

Y0(xτ)F (τ)τ d τ

]
x dx = 0,

which is provable by a modest variation on Lemma 4.2.4. �

5. Feynman diagrams with 8 Bessel factors

5.1. Hankel transforms and Wick rotations

We open this section by a confirmation of Broadhurst’s conjecture on
IKM(2, 6; 1).

Theorem 5.1.1 (Eichler integral formulation of IKM(2, 6; 1)). We
have ∫ ∞

0
[I0(t)]2[K0(t)]6t d t(5.1.1)

=
π5

4i

∫ i∞

0

{
[η(2z)η(3z)]9

[η(z)η(6z)]3
+

[η(z)η(6z)]9

[η(2z)η(3z)]3

}
d z.

Proof. By the Parseval–Plancherel theorem for Hankel transforms, we have∫ ∞
0

[I0(t)]2[K0(t)]6t d t =

∫ ∞
0

∣∣∣∣∫ ∞
0

J0(xt)I0(t)[K0(t)]3td t

∣∣∣∣2 x dx.(5.1.2)

With the modular parametrization in (3.1.5), and the Jacobian in (3.2.3), we
transition from an integration over the variable x ∈ (0,∞) to its counterpart
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over the variable z on the Im z-axis. Accordingly, we see that∫ ∞
0

[I0(t)]2[K0(t)]6td t(5.1.3)

=
π5

4i

∫ i∞

0
[η(z)η(2z)η(3z)η(6z)]2

×
{

[η(z)η(2z)]3

η(3z)η(6z)
+ 9

[η(3z)η(6z)]3

η(z)η(2z)

}
d z

descends from (5.1.2).
Meanwhile, one can establish the following identity

[η(z)η(2z)η(3z)η(6z)]2
{

[η(z)η(2z)]3

η(3z)η(6z)
+ 9

[η(3z)η(6z)]3

η(z)η(2z)

}
(5.1.4)

=
[η(2z)η(3z)]9

[η(z)η(6z)]3
+

[η(z)η(6z)]9

[η(2z)η(3z)]3

by verifying that both sides are weight-6 modular forms on Γ0(6), and check-
ing the q-expansions of both sides up to sufficiently many terms [20, Re-
mark 1]. �

Remark 5.1.1.1. Encouraged by Yun’s recent contribution to Klooster-
man sums [37], Broadhurst wrote [12, (135)]

f6,6(z) =
[η(2z)η(3z)]9

[η(z)η(6z)]3
+

[η(z)η(6z)]9

[η(2z)η(3z)]3
=

∞∑
n=1

a6,6(n)e2πinz(5.1.5)

and conjectured that IKM(2, 4; 1) = 27
2 L(f6,6, 5) for [12, (141) and (145)]

L(f6,6, 5)(5.1.6)

:=

∞∑
n=1

a6,6(n)

n5

(
1 +

2πn√
6

+
2π2n2

3
+

2π3

9
√

6
+
π4n4

27

)
e−2πn/

√
6.

This said the same thing as

IKM(2, 4; 1)(5.1.7)

=
9π5

i

∫ i∞

i/
√

6

{
[η(2z)η(3z)]9

[η(z)η(6z)]3
+

[η(z)η(6z)]9

[η(2z)η(3z)]3

}(
z4 +

1

36

)
d z,

which is also equivalent to (5.1.1) per a Fricke involution z 7→ −1/(6z) and
a modular transformation η(−1/τ) =

√
τ/iη(τ).
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Remark 5.1.1.2. In an earlier version of his conjecture, Broadhurst for-
mulated the modular form f6,6 as [10, (90) and (91)]

f6,6(z) = [η(z)η(2z)η(3z)η(6z)]2

 ∑
m,n∈Z

e2πi(m2+mn+n2)z

(5.1.8)

×

 ∑
m,n∈Z

e4πi(m2+mn+n2)z

 .
This is of course compatible with the left-hand side of (5.1.4), in view of
an identity by Borwein–Borwein–Garvan [5, Proposition 2.2(i)(ii) and The-
orem 2.6(i)].

Before handling other Bessel moments IKM(a, b; 1) satisfying a+ b = 8,
we need a modest generalization of Lemma 4.1.1 and modular parametriza-
tions of some Hankel transforms not covered in §3.

Lemma 5.1.2 (Some identities for Bessel moments).

(a) The following formulae are true:

(
2

π

)6 ∫ ∞
0

[I0(t)]2[K0(t)]6t d t(5.1.9)

= −8

7

∫ ∞
0

[J0(x)]6{[J0(x)]2 − 7[Y0(x)]2}x dx,(
2

π

)4 ∫ ∞
0

[I0(t)]4[K0(t)]4t d t(5.1.10)

= −4

5

∫ ∞
0

[J0(x)]6{[J0(x)]2 − 5[Y0(x)]2}x dx.∫ ∞
0

[J0(x)]4[Y0(x)]4x dx(5.1.11)

= −1

5

∫ ∞
0

[J0(x)]6{[J0(x)]2 − 10[Y0(x)]2}x dx.

(b) For x ∈ [0, 2], we have∫ ∞
0

J0(xt)[J0(t)]4td t = 3

∫ ∞
0

J0(xt)[J0(t)]2[Y0(t)]2td t.(5.1.12)
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(c) For x ∈ [0, 2], we have(
2

π

)3 ∫ ∞
0

I0(xt)I0(t)[K0(t)]3td t(5.1.13)

= −2

∫ ∞
0

J0(xt)[J0(t)]3Y0(t)td t.

Proof. (a) By Wick rotation, we have(
2

π

)6 ∫ ∞
0

[I0(t)]2[K0(t)]6t d t = Re

∫ i∞

0
[J0(z)]2[H

(1)
0 (z)]6z d z(5.1.14)

= Re

∫ ∞
0

[J0(x)]2[H
(1)
0 (x)]6x dx

=

∫ ∞
0

J2(J6 − 15J4Y 2 + 15J2Y 4 − Y 6)x dx,

for J = J0(x), Y = Y0(x). With

J2(J6 − 15J4Y 2 + 15J2Y 4 − Y 6)(5.1.15)

− J

14
[(J + iY )7 − (−J + iY )7]− J3[(J + iY )5 − (−J + iY )5]

= −8

7
J6(J2 − 7Y 2),

we are able to reduce (5.1.14) into (5.1.9), by virtue of (2.2.1′) in Lemma
2.2.1.

One can prove (5.1.10) in a similar vein.
To prove (5.1.11), compute

J3

2
[(J + iY )5 − (−J + iY )5] = J4(J4 − 10J2Y 2 + 5Y 4)(5.1.16)

and invoke (2.2.1′).

(b) By a variation on (4.1.9), we have the following vanishing identity when
x ∈ [0, 2]: ∫ ∞

0
J0(xt)J

(J + iY )3 − (−J + iY )3

2
td t(5.1.17)

=

∫ ∞
0

J0(xt)J2(J2 − 3Y 2)td t = 0,

with J = J0(t), Y = Y0(t).
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(c) By Wick rotation, we can show that

(
2

π

)3 ∫ ∞
0

I0(xt)I0(t)[K0(t)]3td t(5.1.18)

= −
∫ ∞

0
J0(xt)(3J3Y − JY 3)t d t,

where J = J0(t), Y = Y0(t). Meanwhile, when x ∈ [0, 4], we also have∫ ∞
0

J0(xt)
(J + iY )4 − (−J + iY )4

8i
td t(5.1.19)

=

∫ ∞
0

J0(xt)(J3Y − JY 3)td t = 0,

by an extension of Lemma 2.2.1. �

Proposition 5.1.3 (Hankel transforms related to JYM).

(a) For z = 1
2 + i

2
√

3
eiϕ, ϕ ∈ (0, π/3), we have

∫ ∞
0

J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]4t d t =

1− 6z + 12z2

4πi
Z6,3(z)(5.1.20)

where x = i
[

2η(2z)η(6z)
η(z)η(3z)

]3
maps ϕ ∈ (0, π/3) bijectively to x ∈ (2, 4); for

x ≥ 4, we have ∫ ∞
0

J0(xt)[J0(t)]4td t = 0.(5.1.21)

Consequently, we have∫ ∞
0

[J0(x)]8x dx(5.1.22)

=
36

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

+
4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 6z + 12z2)2 d z.
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(b) For z = 1
2 + iy, y ∈

(
1

2
√

3
,∞
)

and z = 1
2 + i

2
√

3
eiϕ, ϕ ∈ [0, π/3), the for-

mula ∫ ∞
0

J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]2[Y0(t)]2t d t =

2z − 1

4πi
Z6,3(z)(5.1.23)

parametrizes
∫∞

0 J0(xt)[J0(t)]2[Y0(t)]2td t for x ∈ (0, 4), and brings us∫ ∞
0

[J0(x)]6[Y0(x)]2x dx(5.1.24)

=
12

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

− 4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 2z)(1− 6z + 12z2) d z.

In addition, for z = (1 + eiψ)/6, ψ ∈ [π/3, π), we have∫ ∞
0

J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]2[Y0(t)]2t d t(5.1.25)

= −z(1− 3z)

πi
Z6,3(z),

which parametrizes
∫∞

0 J0(xt)[J0(t)]2[Y0(t)]2td t for x ∈ [4,∞) and leads
us to ∫ ∞

0
[J0(x)]4[Y0(x)]4x dx(5.1.26)

=
4

πi

∫ 1

2
+i∞

1

4
+ i

4
√

3

f6,6(z)(1− 2z)2 d z

+
64

πi

∫ 1

4
+ i

4
√

3

0
f6,6(z)z2(1− 3z)2 d z.

(c) For z = 1
2 + iy, y ∈

(
1

2
√

3
,∞
)
, we have

∫ ∞
0

J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]3Y0(t)td t(5.1.27)

= − 1

4π
Z6,3(z),
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which parametrizes
∫∞

0 J0(xt)[J0(t)]3Y0(t)td t for x ∈ (0, 2); for z = 1
2 +

i
2
√

3
eiϕ, ϕ ∈ [0, π/3), the identity

∫ ∞
0

J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]3Y0(t)td t(5.1.28)

=
1− 6z + 6z2

4π
Z6,3(z)

parametrizes
∫∞

0 J0(xt)[J0(t)]3Y0(t)t d t for x∈ [2, 4); for z=(1+eiψ)/6,
ψ ∈ [π/3, π), we have∫ ∞

0
J0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[J0(t)]3Y0(t)td t(5.1.29)

= −3z2

2π
Z6,3(z),

a formula that parametrizes
∫∞

0 J0(xt)[J0(t)]3Y0(t)td t for x ∈ [4,∞).
As a result, the following identity holds:∫ ∞

0
[J0(x)]6[Y0(x)]2x dx(5.1.30)

= − 4

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z − 4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 6z + 6z2)2 d z

− 144

πi

∫ 1

4
+ i

4
√

3

0
f6,6(z)z4 d z.

Proof. (a) Judging from (3.2.10), we know that∫ ∞
0

J0(xt)[J0(t)]4t d t = Z6,3(z)(c0 + c1z + c2z
2), x ∈ (2, 4),(5.1.31)

where the constants c0, c1 and c2 can be determined by the continuity
at x = 2 and the asymptotic behavior as x→ 4− [8, Theorem 4.1]. This
proves (5.1.20).

To show (5.1.21), read off the real part from the following Wick
rotation:∫ ∞

0
H

(1)
0 (xt)[J0(t)]4t d t =

2i

π

∫ ∞
0

[I0(t)]4K0(xt)t d t, ∀x ≥ 4.(5.1.32)

Applying the Parseval–Plancherel theorem for Hankel transforms to
(3.1.7) and (5.1.20), we arrive at (5.1.22).
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(b) For z = 1
2 + iy, y ∈

(
1

2
√

3
,∞
)
, the Hankel transform formula in (5.1.23)

follows from (3.1.7) and (5.1.12). The remaining arguments run parallel
to those in (a).

(c) To verify (5.1.27), simply combine (3.1.6) with (5.1.13). The rest founds
on similar principles as the proof of (a). �

Remark 5.1.3.1. We note that Borwein et al. expressed∫ ∞
0

J0(xt)[J0(t)]4td t, x ∈ (2, 4)

as generalized hypergeometric series [8, Theorem 4.7], but did not give a
modular parametrization.

Proposition 5.1.4 (Y - and K-transforms). For z= 1
2 +iy, y∈

(
1

2
√

3
,∞
)
,

we have ∫ ∞
0

I0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[K0(t)]4td t(5.1.33)

+ 4

∫ ∞
0

K0

(
i

[
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
I0(t)[K0(t)]3t d t

=
π3(2z − 1)

8i
Z6,3(z).

For z/i > 0, we have∫ ∞
0

J0

([
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[K0(t)]4t d t(5.1.34)

− 2π

∫ ∞
0

Y0

([
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
I0(t)[K0(t)]3t d t

=
π3z

4i
Z6,3(z).

Proof. Let Â4 be the Picard–Fuchs operator given in (3.2.8), then one can
verify

Â4

{∫ ∞
0

K0(xt)I0(t)[K0(t)]3xtd t

}
= 6x3(5.1.35)
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by differentiation under the integral sign, and integration by parts [cf. 35,
§9]. Comparing this to (3.2.9), we know that∫ ∞

0
I0(xt)[K0(t)]4xtd t+ 4

∫ ∞
0

K0(xt)I0(t)[K0(t)]3xt d t

is annihilated by Â4. Therefore, the left-hand side of (5.1.33) must assume
the form

Z6,3(z)
[
k0 + k1(2z − 1) + k2(2z − 1)2

]
,(5.1.36)

for certain constants k0, k1, and k2. Since K0(xt) = − log(xt) +O(1) as x→
0+, and

∫∞
0 I0(t)[K0(t)]3t d t = π2/16 [1, (54)], the left-hand side of (5.1.33)

behaves like π3(2z−1+o(z))
8i Z6,3(z) as z → 1

2 + i∞. This shows that k1 = π3

8i
and k2 = 0. To demonstrate that k0 = 0, simply check the special value at

z = 1
2 + i

√
5

2
√

3
against Theorem 2.2.2 and Table 1.

As we perform analytic continuation on the left-hand side of (5.1.33) to
the positive Im z-axis, and extract the real part, we arrive at (5.1.34). �

Remark 5.1.4.1. From a Hilbert transform formula [cf. 43, (3.2)]

P

∫ ∞
−∞

2πI0(t)[K0(|t|)]3|t| d t
π(τ − t)

(5.1.37)

= {[πI0(τ)]2 − [K0(|τ |)]2}[K0(|τ |)]2τ, ∀τ ∈ Rr {0},

we can deduce [cf. (4.2.23)]∫ ∞
0

J0(xt){[πI0(t)]2 − [K0(t)]2}[K0(t)]2t d t(5.1.38)

= −2π

∫ ∞
0

Y0(xt)I0(t)[K0(t)]3td t, ∀x > 0.

Thus, we may recast (5.1.34) into

∫ ∞
0

J0

([
2η(2z)η(6z)

η(z)η(3z)

]3

t

)
[I0(t)]2[K0(t)]2td t =

πz

4i
Z6,3(z)(5.1.34′)

for z/i > 0.
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Remark 5.1.4.2. From (4.1.32) and (5.1.33), we see that when n is 3 or
4, and u ∈ (0, 1), the expression∫ ∞

0
I0(
√
ut)[K0(t)]nt d t+ n

∫ ∞
0

K0(
√
ut)I0(t)[K0(t)]n−1t d t(5.1.39)

is annihilated by a differential operator (in u) of order n− 1. The same
pattern actually applies to all n ∈ Z≥2, and the corresponding differential
operator has been constructed by Vanhove in [35, §9]. The steps of inte-
grations by parts leading to these homogeneous differential equations are
described in [45, Lemma 4.2]. Such homogeneous differential equations are
crucial in our recent proofs [45, §4] of two determinant formulae proposed
by Broadhurst–Mellit [12, Conjectures 4 and 7].

5.2. Critical L-values for Bessel moments

A conjectural sum rule 9π2 IKM(4, 4; 1)− 14 IKM(2, 6; 1) = 0 dated back
to 2008 [1, at the end of §6.3, between (228) and (229)], and was restated as
an open problem in 2016 [12, (147)]. It has also been conjectured that [12,
(139) and (143)]∫ ∞

0
[I0(t)]4[K0(t)]4td t(5.2.1)

= L(f6,6, 3) :=

∞∑
n=1

a6,6(n)

n3

(
2 +

4πn√
6

+
2π2n2

3

)
e−2πn/

√
6.

With the preparations in §5.1, we can verify these claims.

Theorem 5.2.1 (Relation between IKM(2, 6; 1) and IKM(4, 4; 1)).

(a) We have a vanishing identity

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z +

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 4z + 8z2) d z = 0.(5.2.2)

(b) We have a sum rule

9π2

∫ ∞
0

[I0(t)]4[K0(t)]4t d t− 14

∫ ∞
0

[I0(t)]2[K0(t)]6t d t = 0.(5.2.3)
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Proof. (a) We spell out both sides of (5.1.11) using Hankel fusions. The
left-hand side becomes

∫ ∞
0

[J0(x)]4[Y0(x)]4x dx =
20

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z(5.2.4)

+
4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 2z)2 d z,

where we have transformed

∫ 1

4
+ i

4
√

3

0
f6,6(z)z2(1− 3z)2 d z =

1

4

∫ − 1

2
+i∞

− 1

2
+ i

2
√

3

f6,6(z)(1 + 2z)2 d z(5.2.5)

=
1

4

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z,

by a Fricke involution z 7→ −1/(6z) and a horizontal translation. The
right-hand side becomes

− 1

5

∫ ∞
0

[J0(x)]6{[J0(x)]2 − 10[Y0(x)]2}x dx(5.2.6)

=
84

5πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

− 4

5πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

[
11

9
+

4

3

(
z − 1

3

)

+ 12

(
z − 1

3

)2

− 192

(
z − 1

3

)3

+ 144

(
z − 1

3

)4
]

d z,

according to (5.1.9), (5.1.22), and (5.1.24). We bear in mind that
f6,6(z) = [Z6,2(z)]3X6,2(z)[1 + 9X6,2(z)] is a modular form of weight 6

on Γ0(6)+2, which transforms under Ŵ2z = 2z−1
6z−2 as

f6,6(Ŵ2z) = −8(3z − 1)6f6,6(z).(5.2.7)
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Thus, the identities

144

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

(
z − 1

3

)4

d z(5.2.8)

=
4

9

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z) d z,

192

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

(
z − 1

3

)3

d z(5.2.9)

= −32

3

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

(
z − 1

3

)
d z

allow us to rewrite (5.2.6) as

− 1

5

∫ ∞
0

[J0(x)]6{[J0(x)]2 − 10[Y0(x)]2}x dx(5.2.10)

=
84

5πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

+
4

5πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 4z − 12z2) d z.

Identifying (5.2.4) with (5.2.10), we arrive at (5.2.2), as claimed.

(b) In the light of (5.1.9) and (5.1.10), we see that the proposed sum rule
is equivalent to the following vanishing identity:∫ ∞

0
[J0(x)]6{2[J0(x)]2 − 5[Y0(x)]2}x dx = 0.(5.2.11)

We may compute∫ ∞
0

[J0(x)]6{2[J0(x)]2 − 5[Y0(x)]2}x dx(5.2.12)

=
12

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

+
1

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

[
28

9
+

32

3

(
z − 1

3

)

+ 96

(
z − 1

3

)2

− 96

(
z − 1

3

)3

+ 1152

(
z − 1

3

)4
]

d z
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=
12

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

+
12

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(1− 4z + 8z2) d z = 0,

where the first equality comes from (5.1.22) and (5.1.24), while the sec-
ond and third equalities hinge on (5.2.7) and (5.2.2), respectively. �

Theorem 5.2.2 (Relation between L(f6,6, 3) and L(f6,6, 5)).

(a) We have

7

6π5i

∫ ∞
0

[I0(t)]2[K0(t)]6td t(5.2.13)

=

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z2) d z +

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)z2 d z

− 2

∫ 1

4
+ i

4
√

3

0
f6,6(z)z2 d z.

(b) We have

21

2π5i

∫ ∞
0

[I0(t)]2[K0(t)]6t d t(5.2.14)

=

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(2 + 17z2) d z + 23

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)z2 d z

+ 17

∫ 1

4
+ i

4
√

3

0
f6,6(z)z2 d z.

(c) The following integral identity holds:∫ i∞

0
f6,6(z)z4 d z +

2

7

∫ i∞

0
f6,6(z)z2 d z = 0,(5.2.15)

which implies

L(f6,6, 5)

ζ(2)L(f6,6, 3)
=

4

7
,(5.2.16)
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where

L(f6,6, 3) :=

∞∑
n=1

a6,6(n)

n3

(
2 +

4πn√
6

+
2π2n2

3

)
e−2πn/

√
6.(5.2.17)

Proof. (a) According to (5.1.9), (5.1.22), (5.1.24) and (5.2.7), we have

− 7

8

(
2

π

)6 ∫ ∞
0

[I0(t)]2[K0(t)]6t d t(5.2.18)

+
48

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z

=
4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

[
8

9
+

4

3

(
z − 1

3

)
+ 12

(
z − 1

3

)2

−120

(
z − 1

3

)3

+ 144

(
z − 1

3

)4
]

d z

=
48

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)z2 d z.

In the meantime, by complex conjugation, we have

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z =

∫ − 1

2
+i∞

− 1

2
+ i

2
√

3

f6,6(z)(1 + 2z)2 d z,(5.2.19)

whereas f6,6(z) = f6,6(z + 1) brings us

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 4z) d z +

∫ − 1

2
+i∞

− 1

2
+ i

2
√

3

f6,6(z)(1 + 4z) d z(5.2.20)

= −2

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z.



i
i

“5-Zhou” — 2018/4/9 — 16:39 — page 184 — #58 i
i

i
i

i
i

184 Yajun Zhou

Therefore, we obtain

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z(5.2.21)

= −
∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z + 2

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)z2 d z

+ 2

∫ − 1

2
+i∞

− 1

2
+ i

2
√

3

f6,6(z)z2 d z

= −
∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z + 2

(∫ 1

4
+ i

4
√

3

0
+

∫ 1

2
+i∞

1

2
+ i

2
√

3

)
f6,6(z)z2 d z,

after invoking f6,6(−1/(6z)) = −216z6f6,6(z) in the last step.
All this allows us to rearrange (5.2.18) into (5.2.13).

(b) In view of (5.1.9), (5.1.22), and (5.1.30), we have

− 7

8

(
2

π

)6 ∫ ∞
0

[I0(t)]2[K0(t)]6td t(5.2.22)

− 4

πi

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)[9(1− 2z)2 + 7] d z

=
4

πi

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

[
8

9
+

32

3

(
z − 1

3

)
+ 12

(
z − 1

3

)2

−120

(
z − 1

3

)3

+ 396

(
z − 1

3

)4
]

d z

+
1008

πi

∫ 1

4
+ i

4
√

3

0
f6,6(z)z4 d z.

As before, we may reduce

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)[9(1− 2z)2 + 7] d z(5.2.23)

= −2

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z + 18

(∫ 1

4
+ i

4
√

3

0
+

∫ 1

2
+i∞

1

2
+ i

2
√

3

)
f6,6(z)z2 d z,
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36

∫ 1

4
+ i

4
√

3

0
f6,6(z)z4 d z =

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z,(5.2.24)

and ∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)

[
8

9
+

32

3

(
z − 1

3

)
+ 12

(
z − 1

3

)2

(5.2.25)

−120

(
z − 1

3

)3

+ 396

(
z − 1

3

)4
]

d z

=
1

3

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)(−7 + 28z + 36z2) d z.

By virtue of the vanishing identity in (5.2.2), the right-hand side of
(5.2.25) is also equal to

7

3

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z)(1− 2z)2 d z +
92

3

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)z2 d z(5.2.26)

= −7

3

∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z +
14

3

(∫ 1

4
+ i

4
√

3

0
+

∫ 1

2
+i∞

1

2
+ i

2
√

3

)
f6,6(z)z2 d z

+
92

3

∫ 1

2
+ i

2
√

3

1

4
+ i

4
√

3

f6,6(z)z2 d z.

Gathering the results above, we arrive at (5.2.14).

(c) Eliminating ∫ 1

2
+i∞

1

2
+ i

2
√

3

f6,6(z) d z(5.2.27)

from (5.2.13) and (5.2.14), we obtain∫ i∞

0
f6,6(z)z2 d z =

7

18π5i

∫ ∞
0

[I0(t)]2[K0(t)]6t d t,(5.2.28)

which is equivalent to (5.2.15). [There is also an alternative way to arrive
at the equation above, namely, by fusing (5.1.34′) with itself, and refer-
ring to (5.2.3).] Checking the definition of L(f6,6, 3) in (5.2.17) against



i
i

“5-Zhou” — 2018/4/9 — 16:39 — page 186 — #60 i
i

i
i

i
i

186 Yajun Zhou

termwise integration on the right-hand side of the following equation:

4π3i

∫ i∞

0
f6,6(z)z2 d z = 8π3i

∫ i∞

i/
√

6
f6,6(z)z2 d z,(5.2.29)

we can verify (5.2.16). �

Remark 5.2.2.1. Previously, Broadhurst observed that

L(f6,6, 5)

ζ(2)L(f6,6, 3)

must be a rational number, according to Eichler–Shimura–Manin theory [cf.
33, Theorem 1], and found this rational number to be numerically 4/7 [12,
(142)].

Remark 5.2.2.2. As a by-product of the foregoing computations, one may
eliminate JYM(6, 2; 1) from (5.1.9) and (5.1.10), to deduce∫ ∞

0
[J0(x)]8x dx =

70

9πi

∫ i∞

0
f6,6(z) d z = −80

πi

∫ i∞

0
f6,6(z)z2 d z(5.2.30)

=
280

πi

∫ i∞

0
f6,6(z)z4 d z,

which gives L-series representations for a “random walk integral”
JYM(8, 0; 1).

Furthermore, we have recently shown [44, Theorem 5.1] that for each
j ∈ Z>1, the function

∫∞
0 J0(xt)[J0(t)]2j+1td t, 0 ≤ x ≤ 1 is a Q-linear com-

bination of

∫ ∞
0

I0(xt)[I0(t)]2m+1

[
K0(t)

π

]2(j−m)

t d t, where m ∈ Z ∩ [0, (j − 1)/2].

(5.2.31)

This implies that, for all n ∈ Z>4, the “random walk integral” JYM(n, 0; 1)
is a Q-linear combination of IKM(a, b; 1)/πb for certain positive integers a
and b satisfying a+ b = n.

Finally, we verify Broadhurst’s conjectures regarding IKM(1, 7; 1) and
IKM(3, 5; 1).
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Theorem 5.2.3 (Sunrise at 6 loops). We have

π2

∫ ∞
0

[I0(t)]3[K0(t)]5t d t =

∫ ∞
0

I0(t)[K0(t)]7td t(5.2.32)

= −π6

∫ i∞

0
f6,6(z)z d z,

which is equivalent to (1.2.8).

Proof. The first equality in (5.2.32), which says∫ ∞
0

[πI0(t) + iK0(t)]4 − [πI0(t)− iK0(t)]4

i
[K0(t)]4td t = 0,(5.2.33)

is a special case (m = 4, n = 1) of (1.1.2).
Fusing together (3.1.5) and (5.1.34), while noting that (see Lemma 4.2.4)∫ ∞

0

{∫ ∞
0

J0(xt)I0(t)[K0(t)]3t d t

}
(5.2.34)

×
{∫ ∞

0
Y0(xτ)I0(τ)[K0(τ)]3τ d τ

}
x dx

= 0,

we arrive at the last equality in (5.2.32), after some computations similar
to those in Theorem 5.1.1. Alternatively, we can throw (3.1.5) and (5.1.34′)
into the Parseval–Plancherel theorem for Hankel transforms, and invoke the
first equality in (5.2.32).

It is clear that (5.2.32) is compatible with (1.2.8), up to a Fricke involu-
tion z 7→ −1/(6z) in the integrand. �
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