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Jacobian elliptic Kummer surfaces and

special function identities

Elise Griffin and Andreas Malmendier

We derive formulas for the construction of all inequivalent Jacobian
elliptic fibrations on the Kummer surface of two non-isogeneous
elliptic curves from extremal rational elliptic surfaces by ratio-
nal base transformations and quadratic twists. We then show that
each such decomposition yields a description of the Picard-Fuchs
system satisfied by the periods of the holomorphic two-form as
either a tensor product of two Gauss’ hypergeometric differential
equations, an Appell hypergeometric system, or a GKZ differential
system. As the answer must be independent of the fibration used,
identities relating differential systems are obtained. They include
a new identity relating Appell’s hypergeometric system to a prod-
uct of two Gauss’ hypergeometric differential equations by a cubic
transformation.

1. Introduction

In [15] Oguiso studied the Kummer surface Y = Kum(E1 × E2) obtained by
the minimal resolution of the quotient surface of the product abelian sur-
face E1 × E2 by the inversion automorphism, where the elliptic curves Ei for
i = 1, 2 are not mutually isogenous. As it is well known, such a Kummer
surface Y is an algebraic K3 surface of Picard rank 18 and can be equipped
with Jacobian elliptic fibrations. Oguiso classified them, and proved that on
Y there are eleven distinct Jacobian elliptic fibrations, labeled J1, . . . ,J11.
Kuwata and Shioda furthered Oguiso’s work in [13] where they computed
elliptic parameters and Weierstrass equations for all eleven different fibra-
tions, and analyzed the reducible fibers and Mordell-Weil lattices. All pos-
sible types of elliptic fibrations with a section on a general K3 surface bi-
rationally isomorphic to the double cover of the projective plane branched
over the union of six lines in general position were described in [11].

These Weierstrass equations are in fact families of minimal Jacobian
elliptic fibrations over a two-dimensional moduli space. We denote by λi ∈
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P1\{0, 1,∞} for i = 1, 2 the modular parameter for the elliptic curve Ei
defined by the Legendre form

(1.1) y2
i = xi (xi − 1) (xi − λi).

The moduli space for the fibrations J1, . . . ,J11 is then given by unordered
pairs

(1.2) (τ1, τ2) ∈M =
(

Γ(2)× Γ(2)
)
o Z2\H×H,

such that λi = λ(τi) where λ is the modular lambda function of level two
for the genus-zero, index-six congruence subgroup Γ(2) ⊂ PSL2(Z), and the
generator of Z2 acts by exchanging the two parameters.

Base changes and quadratic twists provide powerful methods to produce
new elliptic surfaces from simpler ones. Miranda and Persson provided in
[14] a classification of all extremal rational elliptic surfaces. Extremal ra-
tional Jacobian elliptic surfaces are among the simplest non-trivial elliptic
surfaces. The first goal of this article is to construct all eleven Jacobian
elliptic fibrations on the Kummer surface Kum(E1 × E2) from a small num-
ber of extremal rational elliptic surfaces by using only these two operations.
As it will turn out, four extremal rational elliptic surfaces from the list
in [14] will suffice. For each elliptic fibration Ji for i = 1, . . . , 11 there is a
two-dimensional variety in algebraic correspondence with M such that the
elliptic fibration Ji is obtained from an extremal rational Jacobian elliptic
fibration by base change and quadratic twisting. In this way, the modular
parameters λ1 and λ2 of the elliptic curves E1 and E2, respectively, determine
a rational base transformation and quadratic twist for an extremal rational
elliptic surface (without moduli) that yield the Jacobian elliptic fibration on
Kum(E1 × E2). This will be proved in Section 2.

It is easy to show that the family q : Yλ1,λ2
→M is in fact a projective

family of smooth connected projective varieties over C and q is a proper and
smooth morphism. Moreover, there is a unique holomorphic two-form ω (up
to scaling) on each K3 surface Yλ1,λ2

, and differential equations can be used
to express the variation in the cohomology H2,0(Yλ1,λ2

,C) as the moduli
vary. One of the fundamental problems in Hodge theory is to determine the
canonical flat connection, known as the Gauss-Manin connection. The con-
nection reduces to a system of differential equations satisfied by the periods
of ω called the Picard-Fuchs system [8, Sec. 4, 21]. Since the second homology
of a K3 surface has rank 22 and the Picard rank of Kum(E1 × E2) is eighteen
if the the two elliptic curves are not mutually isogenous, there must be four
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transcendental two-cycles which upon integration with the holomorphic two-
form ω will give four linearly independent periods. In turn, the Picard-Fuchs
system for Yλ1,λ2

must be a system of linear partial differential equations in
two variables which is holonomic of rank four.

In our situation, period integrals of the holomorphic two-form ω over
transcendental two-cycles on Yλ1,λ2

can be evaluated using any of the eleven
elliptic fibrations. Moreover, since we are able to relate every elliptic fibra-
tion to an extremal rational elliptic surface by a rational base transforma-
tion and quadratic twist, period integrals reduce to simple iterated double
integrals representing so-called A-hypergeometric functions. In Section 3,
we will determine — using the geometry of the eleven fibrations — sev-
eral different descriptions for the Picard-Fuchs system. As the answer must
be independent of the fibration used, we obtain identities relating different
GKZ systems, i.e., systems of linear partial differential equations satisfied
by A-hypergeometric functions. All identities are then summarized in Theo-
rem 3.14; among them we recover the linear transformation law for Appell’s
hypergeometric system and a famous quadratic identity due to Barnes and
Bailey [1, 2]. We also derive new identities relating Appell’s hypergeometric
system to a product of two Gauss’ hypergeometric differential equations by
a cubic transformation and relating it to certain holonomic non-resonant
GKZ systems.

The central idea of this article is that a class of non-trivial identities for
special functions follows entirely from geometry. In fact, this article takes
a classification of a geometric nature, namely the classification of inequiva-
lent elliptic fibrations on the Kummer surface of two non-isogeneous elliptic
curves, and translates it into the language of differential equations. There,
it offers an interesting geometric explanation for when the Appell’s hyperge-
ometric function has a decomposition into two Gauss hypergeometric func-
tions and a birational relation to certain holonomic GKZ hypergeometric
systems.

Acknowledgments. The first author acknowledges support from the Un-
dergraduate Research and Creative Opportunities Grant Program by the
Office of Research and Graduate Studies at Utah State University. We also
thank the referees for their useful comments.

2. Elliptic fibrations

A surface is called a Jacobian elliptic fibration if it is a (relatively) minimal
elliptic surface π : X → P1 over P1 with a distinguished section S0. The
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complete list of possible singular fibers has been given by Kodaira [12]. It
encompasses two infinite families (In, I

∗
n, n ≥ 0) and six exceptional cases

(II, III, IV, II∗, III∗, IV ∗). To each Jacobian elliptic fibration π : X → P1

there is an associated Weierstrass model π̄ : X̄ → P1 with a corresponding
distinguished section S̄0 obtained by contracting all components of fibers not
meeting S0. X̄ is always singular with only rational double point singularities
and irreducible fibers, and X is the minimal desingularization. If we choose
t ∈ C as a local affine coordinate on P1, we can write X̄ in the Weierstrass
normal form

(2.1) y2 = 4x3 − g2(t)x− g3(t),

where g2 and g3 are polynomials in t of degree four and six, or, eight and
twelve if X is a rational surface or aK3 surface, respectively. In the following,
we will use t and (x, y) as the affine base coordinate and coordinates of the
elliptic fiber for a rational elliptic surface, and u and (X,Y ) for an elliptic
K3 surface. It is of course well known how the type of singular fibers is read
off from the orders of vanishing of the functions g2, g3 and the discriminant
∆ = g3

2 − 27 g2
3 at the singular base values. Note that the vanishing degrees of

g2 and g3 are always less or equal to three and five, respectively, as otherwise
the singularity of X̄ is not a rational double point.

For a family of Jacobian elliptic surfaces π : X → P1, the two classes
in Néron-Severi lattice NS(X ) associated with the elliptic fiber and section
span a sub-lattice H isometric to the standard hyperbolic lattice H with
the quadratic form Q = x1x2, and we have the following decomposition as
a direct orthogonal sum

NS(X ) = H⊕W.

The orthogonal complement T (X ) = NS(X )⊥ ⊂ H2(X ,Z) is called the tran-
scendental lattice and carries the induced Hodge structure. Moreover, an
elliptic fibration π is called extremal if and only if the rank of the Mordell-
Weil group of sections, denoted by MW(π), vanishes, i.e., rank MW(π) = 0,
and the associated elliptic surface has maximal Picard rank.

2.1. Extremal rational elliptic surfaces

We describe the subset of the extremal rational elliptic surfaces in [10,
14] that will be needed in Section 2.2. In Table 1, g2, g3,∆, J = g3

2/∆ are
the Weierstrass coefficients, discriminant, and J-function; the ramification
points of J and the Kodaira-types of the fibers over the ramification points
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are given, as well as the sections that generate the Mordell-Weil group of
sections. For the rational families of Weierstrass models in Equation (2.1)
we will use dx/y as the holomorphic one-form on each regular fiber of X̄ . It
is well-known (cf. [19, Eq. (3.3)]) that the Picard-Fuchs equation is given by
the Fuchsian system

(2.2)
d

dt

(
ω1

η1

)
=

(
− 1

12
d ln ∆
dt

3 δ
2 ∆

−g2 δ
8 ∆

1
12
d ln ∆
dt

)
·
(
ω1

η1

)
,

where ω1 =
¸

Σ1

dx
y and η1 =

¸
Σ1

x dx
y for each one-cycle Σ1 and with δ =

3 g3 g
′
2 − 2 g2 g

′
3. We have the following lemma:

Lemma 2.1. For t 6∈ {0, 1,∞} there is a smooth family of closed one-cycles
Σ1 = Σ1(t) in the first homology of the elliptic curve given by Equation (2.1)
such that the period integral

¸
Σ1

dx
y for the rational elliptic surfaces in Ta-

ble 1 with µ 6= 0 reduces to the following hypergeometric function holomor-
phic near t = 0

(2.3) ω1 = (2π) 2F1

(
µ, 1− µ

1

∣∣∣∣ t) .
The period is annihilated by the second-order, degree-one Picard-Fuchs op-
erator

(2.4) L2 = θ2 − t
(
θ + µ

) (
θ + 1− µ

)
.

For µ = 0 in Table 1, the period holomorphic near t = 0 is given by

(2.5) ω1 = (2πi) 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ) 1F0

(
1

2

∣∣∣∣ t)
and annihilated by the first-order, degree-one Picard-Fuchs operator

(2.6) L1 = θ − t
(
θ +

1

2

)
.

Proof. The proof was given in [4]. �

Remark 2.2. The names of the Jacobian elliptic surfaces in Table 1 coin-
cide with the ones used by Miranda and Persson [14] and Herfurtner [9].
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Remark 2.3. The definition and basic properties of the hypergeometric
functions 2F1 will be given in Section 3.1. The function 1F0 is given by

1F0

(
1

2

∣∣∣∣ t) =
1√

1− t
=

∞∑
n=0

(
1
2

)
n

n!
tn.

Remark 2.4. For the rational elliptic surfaces in Table 1 with µ 6= 0, there
is a smooth family of closed dual one-cycles Σ′1 = Σ′1(t) such that the period
integral reduces to the second, linearly independent solution annihilated by
the operator (2.4) that has a singular point at t = 0 and is given by

(2.7) ω′1 =

˛
Σ′

1

dx

y
=

(2π)

tµ
2F1

(
µ, µ

2µ

∣∣∣∣ 1

t

)
.

2.2. K3 fibrations from base transformations and twists

Rational base changes provide a convenient method to produce Jacobian
elliptic K3 surfaces from rational elliptic surfaces. The set-up is as follows:
suppose we have a rational Jacobian elliptic surface π : X → CX = P1 over
the rational base curve CX . To apply a base change, we need a rational
ramified cover P1 → CX = P1 of degree d mapping surjectively to CX . To
be precise, for each [u : 1] ∈ P1 we set t = p(u)/un for n ∈ N where p is a
polynomial of degree d > n ≥ 0 with the following three properties: (1) the
points t = 0 and t = 1 have d pre-images each with branch numbers zero; (2)
t =∞ is a branching point with corresponding ramification points u =∞
with branch number d− n− 1 and u = 0 with branch number n− 1 if n ≥ 1;
(3) there are d additional ramification points not coincident with {0, 1,∞}
with branch number 1. The Riemann-Hurwitz formula g − 1 = B/2 + d ·
(g′ − 1) is then satisfied for g = g′ = 0, B = (d− n− 1) + (n− 1) + d. The
base change is defined as the following fiber product:

(2.8)
Y := X ×CX P1 −→ P1

↓ ↓
X −→ CX

Generically, one expects d = 2 in order to turn a rational surface into a K3
surface by a rational base change. However, the extremal rational elliptic
surfaces from Section 2.1 have star-fibers at t =∞ whence values with 2 ≤
d ≤ 4 can all produce K3 surfaces as well. We then obtain Jacobian elliptic
K3 surfaces with d singular fibers of the same Kodaira-type as the rational
elliptic surface X has at t = 0 and t = 1, respectively. The effect of a base
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change on the singular fiber at t =∞ depends on the local ramification of
the cover P1 → CX = P1.

Two elliptic surfaces with the same J-map have the same singular fibers
up to some quadratic twist. The effect of a quadratic twist on the singular
fibers is as follows:

(2.9) In ↔ I∗n, II ↔ IV ∗, III ↔ III∗, IV ↔ II∗.

It is well-known that any two elliptic surfaces that are quadratic twists
of each other become isomorphic after a suitable finite base change [18].
For us, quadratic twisting is understood by starting with the Weierstrass
equation (2.1) and replacing it by the following Weierstrass equation for Ȳ

(2.10) Y 2 = 4X3 − g2

(
p(u)

un

)
T (u)2 X − g3

(
p(u)

un

)
T (u)3,

where T is a quadratic polynomial in u, and we have already combined
the twisting with the aforementioned rational base transformation. We will
always require that Equation (2.10) is a minimal Weierstrass fibration.

We then have the following result constructing each Jacobian elliptic
fibration on Y = Kum(E1 × E2) from extremal rational elliptic surfaces:

Proposition 2.5. We have the following statements:

(1) The Jacobian elliptic fibrations J1, . . . , J7,J9 given in [13, 15] on the
Kummer surface Kum(E1 × E2) are obtained in Equation (2.10) from
the extremal Jacobian elliptic surfaces given in Table 1 by using the
rational base transformations t = ti(u) and quadratic twists T = Ti(u)
in Table 2 for i = 1, . . . , 9.

(2) For i∈{1, 2, 3, 7, 9} the formulas in Table 2 are given over the quadratic
field extension K[di] of the field K = C(λ1, λ2) of moduli of E1 and E2.
Table 2 presents d2

i as a polynomial in terms of their elliptic modular
parameters λ1 and λ2.

Proof. For each fibration we apply a transformation (Y,X) 7→ (Y/2, X +
p(λ1, λ2;u)) to the elliptic fibrations in [13] — where p(λ1, λ2;u) is a poly-
nomial in the modular parameters and the affine coordinate u — to obtain
a Jacobian elliptic fibration in Weierstrass normal form. In addition, for J5

we apply the transformation (Y,X, u) 7→ (Y/u6, X/u4, 1 + 1/u) to move the
singular fibers into convenient positions. The proof then follows by com-
paring the obtained Weierstrass normal forms with the ones obtained in
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Equation (2.10) from the extremal Jacobian elliptic surfaces given in Ta-
ble 1 by using the rational base transformations t = ti(u) and quadratic
twists T = Ti(u) in Table 2 for i = 1, . . . , 9. �

Remark 2.6. For J4,J5,J6 the base transformations and twists do not
depend on a quadratic field extension. In these cases, the decomposition
into a rational base transformation and quadratic twist is well-defined over
the function field K itself.

The remaining fibrations, i.e., J8, J10, and J11, are found to be related to
other Jacobian elliptic fibrations by rational transformations that leave the
holomorphic two-form invariant. We have the following proposition:

Proposition 2.7. The Jacobian elliptic fibrations J8,J10,J11 given in [13,
15] on the Kummer surface Y = Kum(E1 × E2) are obtained from the Jaco-
bian elliptic fibrations J7,J9, and J7, respectively, by the rational transfor-
mations given in Table 3 that leave the holomorphic two-form invariant.

Proof. The proof follows by explicit computation. The transformation (Y,X)
7→ (Y/2, X + p(λ1, λ2;u)) rescales the holomorphic two-form ω = du ∧ dx/y
by a constant factor of two for each fibration, and therefore does not affect
the result. �

3. Period integrals

In [5, 6] Gel’fand, Kapranov and Zelevinsky defined a general class of hyper-
geometric functions, encompassing the classical one-variable hypergeomet-
ric functions, the Appell and Lauricella functions. Today they are known
as GKZ hypergeometric functions and provide an elegant basis for a theory
of hypergeometric functions in several variables. Integral representations for
these functions generalizing the classical integral transform for Gauss’ hyper-
geometric function found by Euler are known as A-hypergeometric functions
and were studied in [7].

3.1. Euler integrals

The classical Euler integral transform for Gauss’ hypergeometric function

2F1 for Re(γ) > Re(β) > 0 is given by

(3.1) 2F1

(
α, β

γ

∣∣∣∣ z) =
Γ(γ)

Γ(β) Γ(γ − β)

ˆ 1

0
(1− x)γ−β−1 (1− z x)−α xβ−1 dx.
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The differential equation satisfied by 2F1 is

(3.2) z(1− z) d
2f

dz2
+
(
γ − (α+ β + 1) z

) df
dz
− αβ f = 0.

Equation (3.2) is a Fuchsian1 equation with three regular singularities at z =
0, z = 1 and z =∞ with local exponent differences equal to 1− γ, γ − α− β,
and α− β, respectively. For α = 1− β = µ and γ = 1, it coincides with the
differential operator L2 in Equation (2.4). The linear differential equation
satisfied by the hypergeometric function 2F1 when written as a first-order
Pfaffian system will be denoted by 2F1 with

(3.3) 2F1

(
α, β

γ

∣∣∣∣ z) : d~fz = Ω( 2F1)
z · ~fz

for the vector-valued function

~fz = 〈f(z), θzf(z)〉t

with θz = z ∂z. The Pfaffian matrix associated with the differential equa-
tion (3.2) is given by

(3.4) Ω( 2F1)
z =

(
0 1

z

− αβ
z−1

(
1−γ
z + γ−α−β−1

z−1

) ) dz.

The outer tensor product of two rank-two Pfaffian systems is constructed
by introducing ~Hz1,z2 = ~fz1 � ~fz2 , i.e.,

~Hz1,z2 = 〈f(z1) f(z2), θz1f(z1) f(z2), f(z1) θz2f(z2), θz1f(z1) θz2f(z2)〉t.

The associated Pfaffian system is the rank-four system

(3.5) 2F1

(
α1, β1

γ1

∣∣∣∣ z1

)
� 2F1

(
α1, β1

γ2

∣∣∣∣ z2

)
: d ~Hz1,z2 = Ω( 2F1� 2F1)

z1,z2 · ~Hz1,z2

with the connection form

(3.6) Ω( 2F1� 2F1)
z1,z2 = Ω( 2F1)

z1 � I + I� Ω( 2F1)
z2 .

1Fuchsian means linear homogeneous and with regular singularities.
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The multivariate Appell’s hypergeometric function F2 has an integral
representation for Re(γ1) > Re(β1) > 0 and Re(γ2) > Re(β2) > 0 given by

F2

(
α; β1, β2

γ1, γ2

∣∣∣∣ z1, z2

)
=

Γ(γ1) Γ(γ2)

Γ(β1) Γ(β2) Γ(γ1 − β1) Γ(γ2 − β2)

(3.7)

×
ˆ 1

0
dt

ˆ 1

0
dx

1

t1−β2 (1− t)1+β2−γ2 x1−β1 (1− x)1+β1−γ1 (1− z1 x− z2 t)α
.

Appell’s function F2 satisfies a Fuchsian system of partial differential equa-
tions analogous to the hypergeometric equation for the function 2F1. The
system of linear partial differential equations satisfied by F2 is given by

z1(1− z1)
∂2F

∂z2
1

− z1z2
∂2F

∂z1∂z2

+ (γ1 − (α+ β1 + 1) z1)
∂F

∂z1
− β1z2

∂F

∂z2
− αβ1F = 0,

z2(1− z2)
∂2F

∂z2
2

− z1z2
∂2F

∂z1∂z2

+ (γ2 − (α+ β2 + 1) z2)
∂F

∂z2
− β2z1

∂F

∂z1
− αβ2F = 0.

(3.8)

This is a holonomic system of rank four whose singular locus on P1 × P1 is
the union of the following lines

(3.9)
z1 = 0, z1 = 1, z1 =∞,
z2 = 0, z2 = 1, z2 =∞, z1 + z2 = 1.

The system (3.8) of differential equations satisfied by the Appell hypergeo-
metric function when written as the Pfaffian system will be denoted by F2

with

(3.10) F2

(
α; β1, β2

γ1, γ2

∣∣∣∣ z1, z2

)
: d~Fz1,z2 = Ω(F2)

z1,z2 · ~Fz1,z2

for the vector-valued function

~Fz1,z2 = 〈F, θz1F, θz2F, θz1θz2F 〉t

with θzi = zi ∂zi for i = 1, 2. The Pfaffian matrix associated with (3.8) has
rank four and its explicit form is found in [17].
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The connection between the hypergeometric function 2F1 and Appell’s
hypergeometric function F2 is given by an integral transform that was proved
in [3]:

Lemma 3.1. For Re(γ1) > Re(β1) > 0 and Re(γ2) > Re(β2) > 0, we have
the following relation between the hypergeometric function and Appell’s hy-
pergeometric function:

1

Aα
F2

(
α; β1, β2

γ1, γ2

∣∣∣∣ 1

A
, 1− B

A

)
(3.11)

= −Γ(γ2) (A−B)1−γ2

Γ(β2) Γ(γ2 − β2)

×
ˆ B

A

dt

(A− t)1−β2 (t−B)1+β2−γ2
1

tα
2F1

(
α, β1

γ1

∣∣∣∣ 1

t

)
.

3.2. Differential systems from fibrations J4, J6, J7, J9

As a reminder, λ1 and λ2 are the modular parameters of the elliptic curves
E1 and E2, respectively. For the fibration J4 we have the following lemma:

Lemma 3.2. The Picard-Fuchs system for the periods of the holomorphic
two-form on the family Kum(E1 × E2) is given by

(3.12) 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ1

)
� 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ2

)
.

Proof. For the Jacobian elliptic fibration J4 on Kum(E1 × E2) the holomor-
phic two-form is given by ω = du ∧ dX/Y . There is a transcendental two-
cycle Σ2 such that the period integral reduces to the iterated integral

(3.13)

‹
Σ2

ω = 2

ˆ ∞
1

dt4√
t4 (t4 − λ1)

˛
Σ1

dx

y
.

where we used Proposition 2.5 to relate the double integral to an integral
for the holomorphic one-form dx/y on the extremal rational elliptic sur-
face X11(λ2) and then reduced the outer integration to an integration along
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the branch cut for the function
√
t4 (t4 − λ1). Using Lemma 2.1 and Equa-

tion (3.1), we evaluate the period integral further to obtain

‹
Σ2

ω = 4π

ˆ ∞
1

dt4√
t4 (t4 − λ1)

1F0

(
1

2

∣∣∣∣ t4) 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ2

)
(3.14)

= −4π2i 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ1

)
2F1

( 1
2 ,

1
2

1

∣∣∣∣λ2

)
.

We can change the two-cycle Σ2 to obtain a second, linearly-independent so-
lution for each of the factors 2F1(λ1) and 2F1(λ2), respectively. This proves
that there are at least four linearly independent period integrals of the holo-
morphic two-form ω that are annihilated by the differential system in (3.12).
As the Picard rank of Kum(E1 × E2) is 18 if the the two elliptic curves are
not mutually isogenous, the rank of the Picard-Fuchs system equals four,
and the lemma follows. �

Next, we look at the fibration J7. Here, we will need to consider a quadratic
field extension of the field K = C(λ1, λ2) of moduli for the pair E1 and E2.
We have the following lemma:

Lemma 3.3. Over K[d7] with d2
7 = λ1λ2, the Picard-Fuchs system for the

periods of the holomorphic two-form on the family Kum(E1 × E2) is given by

(3.15)
1√

λ1 + λ2 + 2 d7
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ v7, w7

)
,

where we have set

(3.16)
(
v7, w7

)
=

(
4 d7

λ1 + λ2 + 2 d7
,−(1− λ1)(1− λ2)

λ1 + λ2 + 2 d7

)
.

Equivalently, the Picard-Fuchs system is given by

(3.17)
1√

1 + λ1λ2 + 2 d7
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ ṽ7, w̃7

)
,

where we have set

(3.18)
(
ṽ7, w̃7

)
=

(
4 d7

1 + λ1λ2 + 2 d7
,
(1− λ1)(1− λ2)

1 + λ1λ2 + 2 d7

)
.

Proof. Using the Jacobian elliptic fibration J7 and the holomorphic two-
form ω = du ∧ dX/Y , there is a transcendental two-cycle Σ′2 such that the
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period integral reduces to the iterated integral

(3.19)

‹
Σ′

2

ω = 2

ˆ ∞
0

du√
T7(u)

˛
Σ′

1

dx

y
,

where we used Proposition 2.5 to relate the double integral to an integral
for the holomorphic one-form dx/y on the extremal rational elliptic surface
X411 and then reduced the outer integration to an integration along a branch
cut. Using Remark 2.4 and Equation (3.11), we evaluate the period integral
further to obtain

‹
Σ′

2

ω = 2π

ˆ B7

A7

dt7√
d7 (t7 −A7) (t7 −B7)

1√
t7

2F1

( 1
2 ,

1
2

1

∣∣∣∣ 1

t7

)
(3.20)

= − 4π2i√
4 d7A7

F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ 1

A7
, 1− B7

A7

)
,

where we have set

(3.21)
(
A7, B7

)
=

(
λ1 + λ2

4 d7
+

1

2
,

1 + λ1λ2

4 d7
+

1

2

)
.

We can change the two-cycle Σ′2 to obtain three more linearly independent
solutions with different characteristic behavior at the lines in (3.9). The
rest of the proof is analogous to the proof of Lemma 3.2. Equation (3.17)
and Equation (3.18) follow from swapping the roles of A7 and B7 in Equa-
tion (3.21). �

The comparison of Lemma 3.2 and Lemma 3.3 proves that the Appell hy-
pergeometric system can be decomposed as an outer tensor product of two
rank-two Fuchsian systems. We have the following corollary:

Corollary 3.4. We have the following equivalence of systems of linear dif-
ferential equations in two variables holonomic of rank four:

2F1

( 1
2 ,

1
2

1

∣∣∣∣λ1

)
� 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ2

)
(3.22)

=
1√

λ1 + λ2 + 2 d7
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ v7, w7

)
.

In particular, there is a gauge transformation G = (Gij)
4
i,j=1 with

G11 =
√
λ1 + λ2 + 2 d7, G1j = 0 for j = 2, 3, 4,
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such that the connection forms satisfy

(3.23) Ω
( 2F1� 2F1)
λ1,λ2

= G−1 · Ω(F2)
v7,w7

·G+G−1 · dG.

Proof. The second statement is a special case of a more general computation
that was carried out in [3] where the explicit form of the gauge transforma-
tion can be found as well. �

Remark 3.5. If a carefully crafted transcendental two-cycles is chosen for
the period integral, one can relate not only the two differential systems,
but also explicit solutions to both systems. One obtains a special case of an
identity by Barnes and Bailey relating Appell’s hypergeometric function to
a product of Gauss’ hypergeometric functions. This stronger identity was
proved in [3] using period integrals on superelliptic curves and generalized
Kummer varieties for general rational parameters (α, β1, β2, γ1, γ2).

Corollary 3.6. We have the following equivalence of systems of linear dif-
ferential equations in two variables holonomic of rank four:

(3.24) F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣w7, v7

)
=

1√
1− w7

F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ w7

w7 − 1
,

v7

1− w7

)
.

Proof. The proof follows from the identity

(3.25) F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣w7, v7

)
=

√
λ1 + λ2 + 2 d7

1 + λ1λ2 + 2 d7
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ w̃7, ṽ7

)
obtained by comparing Equation (3.15) and Equation (3.17) after working
out the linear relation between the variables on the left and right hand
side. �

Remark 3.7. Equation (3.24) can be extended to a relation not only be-
tween differential systems, but between explicit solutions. Equation (3.24)
is then the linear transformation for Appell’s hypergeometric function F2.
This stronger identity was proved in [3] for general rational parameters
(α, β1, β2, γ1, γ2).

Next, we look at the fibration J6. However, this fibration will not provide
us with a new characterization of the Picard-Fuchs system. We have the
following lemma:
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Lemma 3.8. Over K[d6] with d2
6 = λ1λ2, the Picard-Fuchs system for the

periods of the holomorphic two-form on the family Kum(E1 × E2) is given by

(3.26)
1√

λ1 + λ2 + 2 d6
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ v6, w6

)
,

where we have set

(3.27)
(
v6, w6

)
=

(
−(1− λ1)(1− λ2)

λ1 + λ2 + 2 d6
,

4 d6

λ1 + λ2 + 2 d6

)
.

In particular, Equation (3.26) coincides with Equation (3.15) up to swapping
the order of variables.

Proof. Using the Jacobian elliptic fibration J6 on Kum(E1 × E2) and the
holomorphic two-form ω = du ∧ dX/Y , there is a transcendental two-cycle
Σ′2 such that the period integral reduces to the iterated integral

‹
Σ′

2

ω = −4π

ˆ B6

A6

√
(1− λ1)(λ2 − 1) dt6√

p2(t)

1√
t6

2F1

( 1
2 ,

1
2

1

∣∣∣∣ 1

t6

)
,(3.28)

where the polynomial p2(t) is given by

p2(t) = (1− λ1)2(λ2 − 1)2 t2 − 2 (1− λ1)(λ2 − 1)(λ1 + λ2) t+ (λ2 − λ1)2,

and its two roots A6, B6 are

(3.29)
(
A6, B6

)
=

(
λ1 + λ2 ± 2 d6

(1− λ1)(λ2 − 1)
,
λ1 + λ2 ∓ 2 d6

(1− λ1)(λ2 − 1)

)
.

As in the proof of Lemma 3.3 we obtain

‹
Σ′

2

ω = − 4π2i√
(1− λ1)(λ2 − 1)A6

F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ 1

A6
, 1− B6

A6

)
.(3.30)

Notice that swapping the roles of A6 and B6 in the transformation (3.29)
interchanges ±d6. The rest of the proof is analogous to the one of Lemma 3.3.

�

Remark 3.9. There is a beautiful geometric reason why the Picard-Fuchs
systems for fibrations J6 and J7 coincide which generalizes to lower Picard
rank as well. This will be subject of a forthcoming article.
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Next, we look at the fibration J9. We have the following lemma:

Lemma 3.10. Over K[d9] with d2
9 = (λ2

1−λ1+1)(λ2
2−λ2+1), the Picard-

Fuchs system for the periods of the holomorphic two-form on the family
Kum(E1 × E2) is given by

(3.31)
1√

R9 ± S9 + 4 d9
F2

(
1
2 ; 1

6 ,
1
2

1
3 , 1

∣∣∣∣∣ v9, w9

)
,

where we have set

(3.32)
(
v9, w9

)
=

(
8 d9

R9 ± S9 + 4 d9
,

±S9

R9 ± S9 + 4 d9

)
,

and

R9 = 27λ1λ2(λ1 − 1)(λ2 − 1),

S9 = (λ1 + 1)(λ1 − 2)(2λ1 − 1)(λ2 + 1)(λ2 − 2)(2λ2 − 1).
(3.33)

Proof. Using the Jacobian elliptic fibration J9 on Kum(E1 × E2) and the
holomorphic two-form ω = du ∧ dX/Y , there is a transcendental two-cycle
Σ′2 such that the period integral reduces to the following integral:

(3.34)

‹
Σ′

2

ω = 2

ˆ ∞
0

du√
T9(u)

˛
Σ′

1

dx

y
.

where we used Proposition 2.5 to relate the double integral to an integral
for the holomorphic one-form dx/y on the extremal rational elliptic surface
X211 and then reduced the outer integration to an integration along a branch
cut. Using Remark 2.4 we evaluate the period integral further to obtain

‹
Σ′

2

ω = −4
√

3π√
2

ˆ B6

A6

dt9√
d9 (t9 −A9)(t−B9)

1

t
1/6
9

2F1

(
1
6 ,

1
6

1
3

∣∣∣∣∣ 1

t9

)
,(3.35)

where A9, B9 are given by

A9 =
(2λ1λ2 − λ1 − λ2 + 2)(λ1λ2 + λ1 − 2λ2 + 1)(λ1λ2 − 2λ1 + λ2 + 1)

4 d3
9

− 1

2
,

B9 =
(2λ1λ2 − λ1 − λ2 − 1)(λ1λ2 + λ1 + λ2 − 2)(λ1λ2 − 2λ1 − 2λ2 + 1)

4 d3
9

− 1

2
.

(3.36)
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As in the proof of Lemma 3.3 we obtain

‹
Σ′′

2

ω = − 4
√

3π2i

(8 d3
9A9)1/6

F2

(
1
6 ; 1

6 ,
1
2

1
3 , 1

∣∣∣∣∣ 1

A9
, 1− B9

A9

)
.(3.37)

The rest of the proof is analogous to the one of Lemma 3.3. Equation (3.17)
and Equation (3.18) follow from swapping the roles of A9 and B9 in Equa-
tion (3.36). �

Remark 3.11. All Appell hypergeometric systems considered in Lemmas
3.3, 3.8, 3.10 are systems of linear differential equations in two variables
holonomic of rank four. In addition they all satisfy

(3.38) α = β1 + β2 −
1

2
, γ1 = 2β1 γ2 = 2β2,

which implies the so-called quadric property as proved in [16]. The quadric
property for a holonomic differential system states that linearly indepen-
dent solutions are quadratically related. It is obvious that the outer tensor
product in Equation (3.12) satisfies this quadric property as well. From a
geometric point of view, the quadratic property stems from the existence of
a polarization for the variation of Hodge structure defined by the family of
Kummer surfaces.

3.3. Differential systems from fibrations J8, J10, J11

Proposition 2.7 proves that the elliptic fibrations J8,J10,J11 will not give
rise to additional identities relating differential systems beyond the results
obtained for fibrations J7, J9. In fact, the systems derived from fibrations
J8,J11 and J10 coincide with the ones found in Lemma 3.3 and Lemma 3.10,
respectively.

3.4. A particular GKZ system

For the remaining fibrations a reduction of the Picard-Fuchs system to an
Appell hypergeometric system is in general not possible. Instead, we will give
a description of the differential systems by restricting a particular family of
GKZ systems.
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We start with the two subsets A1,A2 ⊂ Z2 given by

(3.39)

A2 =

{(
0
1

)
,

(
0
0

)}
,

A1 = A2 ∪
{(

3
0

)
,

(
2
0

)
,

(
1
0

)
,

(
−1

0

)}
.

To each element n = (n1, n2) ∈ Z2 we associate the Laurent monomial xn =
xn1

1 xn2

2 in the two complex variables x1 and x2. We identify the vector space
CAi for i = 1, 2 with the space of Laurent polynomials of the following form

P1 = v(1|3,0)x
3
1 + v(1|2,0)x

2
1 + v(1|1,0)x1

+ v(1|0,0) + v(1|−1,0)x
−1
1 + v(1|0,1)x2 ,

P2 = v(2|0,1)x2 + v(2|0,0) ,

(3.40)

where we have set

v =
(
v(1|3,0), v(1|2,0), v(1|1,0), v(1|0,0), v(1|−1,0), v(1|0,1), v(2|0,0), v(2|0,1)

)
,

and P = (P1, P2) ∈ CA1 × CA2 . For ~α = (α1, α2) ∈ Q2 and ~β = (β1, β2) ∈
Q2 we study the A-hypergeometric integrals of the form

(3.41) φΣ2

(
~α, ~β

∣∣v) =

‹
Σ2

P1(x1, x2)α1 P2(x2)α2 xβ1

1 xβ2

2 dx1 ∧ dx2.

The domain of integration is contained in U(P) := (C∗)2\ ∪i {Pi = 0} where
we assume that the hypersurfaces Pi = 0 for i = 1, 2 are smooth and intersect
each other transversely. The one-dimensional local system on U(P) defined
by the monodromy exponents αi around {Pi = 0} and βj around {xj = 0}
for i, j = 1, 2 will be denoted by L. Since the integrand is multivalued and can
have singularities, one has to carefully explain the meaning of the integral
in Equation (3.41). These technical points were all addressed in [7, Sec. 2.2].
There, a suitable chain complex with homology H∗(U(P),L) was defined
such that φΣ2

depends only on the homology class of [Σ2] ∈ H2(U(P),L).
In this way, the A-hypergeometric integrals in Equation (3.41) becomes a
multivalued functions in the variables v.
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For v(2|0,1), v(2|0,0), v(1|0,1), v(1|−1,0) 6= 0, we have

φΣ2

(
~α, ~β

∣∣v) =

(
v(2|00)

v(2|01)

)α2+β2−β1
(
v(1|−10)

v(1|01)

)1+β1

vα1

(2|00)v
α2

(1|01)

× φΣ2

(
~α, ~β

∣∣∣∣κ4 v(1|30)

v(1|−10)
, κ3 v(1|20)

v(1|−10)
, κ2 v(1|10)

v(1|−10)
, κ

v(1|00)

v(1|−10)
, 1, 1, 1, 1

)
,

(3.42)

where we have set

(3.43) κ =
v(2|0,1)v(1|−1,0)

v(2|0,0)v(1|0,1)
.

We define an affine version of the A-hypergeometric integral by setting

(3.44) ϕΣ2

(
~α, ~β

∣∣w4, w3, w2, w1

)
:= φΣ2

(
~α, ~β

∣∣w4, w3, w2, w1, 1, 1, 1, 1
)
.

We now construct the differential system satisfied by the A-hypergeometric
integrals in Equation (3.41). Using the Cayley trick we combine the sets A1

and A2 into the finite set A ⊂ Z4 with

A =




1
0

3
0

 ,


1
0

2
0

 ,


1
0

1
0

 ,


1
0

0
0

 ,


1
0

−1
0

 ,


1
0

0
1

 ,


0
1

0
0

 ,


0
1

0
1


.

As the union of A1 and A2 generates Z2 as an Abelian group, and each
Ai contains zero, the set A generates Z4. There is a group homomorphism
h : Z4 → Z such that h(~ρ) = 1 for every ~ρ ∈ A. The homomorphism h is
obtained by taking the sum of the first two components of each vector. This
means that A lies in a three-dimensional affine hyperplane in Z4. Denote
by L(A) ⊂ ZA the lattice of linear relations among the elements of A, i.e.,
the set of integer row vectors (a~ρ t)~ρ∈A such that

∑
~ρ∈A a~ρ t · ~ρ = 0. In our

case, this lattice of relations is L(A) ∼= Z4 and generated by the following
row vectors

L(A) ∼=


a(1|3,0) a(1|2,0) a(1|1,0) a(1|0,0) a(1|−1,0) a(1|0,1) a(2|0,0) a(2|0,1)

0 0 0 −1 0 1 1 −1
0 0 1 −2 1 0 0 0
0 1 −2 1 0 0 0 0
1 −2 1 0 0 0 0 0

.
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It follows from the above construction that the quotient Z8/L(A) is Z4 and
torsion free. The complex torus (C∗)A within CA, i.e., within the space of all
vectors v = (v~ρ t)~ρ∈A that define pairs P = (P1, P2) of Laurent polynomials,
contains a subtorus T4 such that the quotient equals

(C∗)A/T4 = Hom
(
L(A),C∗

)
.

In order to obtain the natural space on which the A-hypergeometric in-
tegrals in Equation (3.41) are defined, Gel’fand, Kapranov and Zelevinsky
developed the theory of the secondary fan, i.e., a complete fan of rational
polyhedral cones in the real vector space Hom(L(A),R). The associated toric
variety in turn determines the domains of convergence for various series ex-
pansions of the solutions as discs about the special points coming from the
maximal cones in the secondary fan. Equation (3.44) then gives an integral
representation in an affine chart.

Using the components of the vectors in A, we define the first-order linear
differential operators

Z1 =

3∑
k=−1

v(1|k,0)
∂

∂v(1|k,0)
+ v(1|0,1)

∂

∂v(1|0,1)
,

Z2 = v(2|0,0)
∂

∂v(2|0,0)
+ v(2|0,1)

∂

∂v(2|0,1)
,

Z3 =

3∑
k=−1

k v(1|k,0)
∂

∂v(1|k,0)
,

Z4 = v(1|0,1)
∂

∂v(1|0,1)
+ v(2|0,1)

∂

∂v(2|0,1)
.

(3.45)

Similarly, using L(A) one defines the second-order linear differential opera-
tors

�1 =
∂2

∂v(2|0,0) ∂v(1|0,1)
− ∂2

∂v(2|0,1) ∂v(1|0,0)
,

�2 =
∂2

∂v(1|−1,0) ∂v(1|1,0)
− ∂2

∂v 2
(1|0,0)

,

�3 =
∂2

∂v(1|0,0) ∂v(1|2,0)
− ∂2

∂v 2
(1|1,0)

,

�4 =
∂2

∂v(1|1,0) ∂v(1|3,0)
− ∂2

∂v 2
(1|2,0)

.

(3.46)
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The following lemma follows by applying [7, Thm. 2.7]:

Lemma 3.12. Under the above assumptions the A-hypergeometric integral
in Equation (3.41) satisfies for every Σ2 ∈ H2(U(P),L) the system Φ of
linear partial differential equations with finite dimensional solution space
given by

(3.47) Φ
(
~α, ~β

∣∣v) :

�i φΣ2

(
~α, ~β

∣∣v) = 0 ,

Zj φΣ2

(
~α, ~β

∣∣v) = γj φΣ2

(
~α, ~β

∣∣v)
for i, j = 1, . . . , 4 and ~γ = 〈α1, α2,−β1 − 1,−β2 − 1〉.

3.5. Differential systems from fibrations J1, J2, J3, J5

For the remaining fibrations we will give a description of the Picard-Fuchs
system by restricting the particular GKZ system described in Section 3.4.
We have the following lemma:

Lemma 3.13. For i = 1, 2, 3 over K[di] with d2
i given in Table 2, the

Picard-Fuchs system for the periods of the holomorphic two-form on the
family Kum(E1 × E2) is given by

(3.48)
1

gi
Φ
(
~αi, ~βi

∣∣∣ vi

)
,

where gi, ~αi, ~βi,vi are given in Table 4. In particular, the restrictions define
systems of linear differential equations in two variables holonomic of rank
four.

Proof. We first look at the fibration J2. Using the Jacobian elliptic fibration
J2 on Kum(E1 × E2) and the holomorphic two-form ω = du ∧ dX/Y , there
is a transcendental two-cycle Σ′2 such that the period integral reduces to the
iterated integral

(3.49)

‹
Σ′

2

ω = 2

ˆ ∞
0

du√
T2(u)

˛
Σ′

1

dx

y
,

where we used Proposition 2.5 to relate the double integral to an integral
for the holomorphic one-form dx/y on the extremal rational elliptic surface
X411 and then reduced the outer integration to an integration along a branch
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cut. Using Remark 2.4 and Equation (3.11), we evaluate the period integral
further to obtain

‹
Σ′

2

ω = 2

ˆ ∞
0

du√
T2(u)

1√
t2

2F1

( 1
2 ,

1
2

1

∣∣∣∣ 1

t2

)
.(3.50)

Using the integral representation of 2F1 in Equation (3.1) and Table 2, it fol-
lows that the period integrals are of A-hypergeometric type and annihilated
by the GKZ system

(3.51)
1√
d2

Φ

(
~α =

〈
−1

2
,−1

2

〉
, ~β =

〈
−1

2
,−1

2

〉 ∣∣∣∣ v

)
,

where we have set

(3.52) v =

(
1

16 d2
, 0,

1

2
,
(2λ1λ2 − λ1 − λ2 + 2)

8 d2
,
(λ1 − λ2)2

16 d2
, 1, 1, 1

)
.

We use the torus action given in Equation (3.42) to normalize. For J5 we
applied the transformation (Y,X, u) 7→ (Y/u6, X/u4, 1 + 1/u) in the proof of
Proposition 2.5. The transformation changes only the sign of the holomor-
phic two-from. The result for fibration J5 then follows from the computation
for J2.

For fibration J1 the coordinate transformation u 7→
√
u allows us to show

that the period integrals are of A-hypergeometric type and annihilated by
the GKZ system

(3.53)
1√
d1

Φ

(
~α =

〈
−1

2
,−1

2

〉
, ~β =

〈
−1,−1

2

〉 ∣∣∣∣ v

)
,

where we have set

(3.54) v =

(
0, 0,

(1− λ1)2

16 d1
,
1

2
− (1 + λ1)(1 + λ2)

8 d1
,
(1− λ2)2

16 d1
, 1, 1, 1

)
.

Again we use the torus action given in Equation (3.42) to normalize. The
result for fibration J3 follows closely the computation for J1.

Lastly, we address the claim that the GKZ hypergeometric system for
Equation (3.48) coming from A = {ρ1, . . . , ρ8} is (i) holonomic, (ii) the di-
mension of the solution space is four. Property (i) is assured by making the
group homomorphism h : Z4 → Z such that h(~ρ) = 1 for every ~ρ ∈ A. For
property (ii) we must be cautious that in general the space of the solutions is
bigger than the vector space generated by the branches of the series solution
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(3.48), namely the GKZ system is reducible in general. However, the Picard
number of the families of K3 surfaces Kum(E1 × E2) is 18 and the dimension
of the solution space can be at most four. Thus, it’s equal to four. �

In summary, we have considered various quadratic field extensions of
the field K = C(λ1, λ2) of moduli for the pair of elliptic curves E1 and E2

and derived all representations for the Picard-Fuchs system satisfied by the
periods of the holomorphic two-form that can be derived from the eleven
Jacobian elliptic fibrations on the Kummer surface Kum(E1 × E2) of two
non-isogeneous elliptic curves:

Theorem 3.14. The Picard-Fuchs system for the periods of the holomor-
phic two-form on the family Kum(E1 × E2) of Kummer surfaces for two non-
isogeneous elliptic curves E1 and E2 with modular parameters λ1 and λ2, re-
spectively, has the following equivalent representations as linear differential
systems in two variables holonomic of rank four:

(3.55) 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ1

)
� 2F1

( 1
2 ,

1
2

1

∣∣∣∣λ2

)
.

Over K[d7] with d2
7 = λ1λ2, the system (3.55) is equivalent to the Appell

hypergeometric system

(3.56)
1√

λ1 + λ2 + 2 d7
F2

( 1
2 ; 1

2 ,
1
2

1, 1

∣∣∣∣ 4 d7

λ1 + λ2 + 2 d7
,−(1− λ1)(1− λ2)

λ1 + λ2 + 2 d7

)
.

Over K[d9] with d2
9 = (λ2

1 − λ1 + 1)(λ2
2 − λ2 + 1), the system (3.55) is equiv-

alent to the Appell hypergeometric system

(3.57)
1√

R9 + S9 + 4 d9
F2

(
1
2 ; 1

6 ,
1
2

1
3 , 1

∣∣∣∣∣ 8 d9

R9 + S9 + 4 d9
,

S9

R9 + S9 + 4 d9

)
,

with

R9 = 27λ1(λ1 − 1)λ2(λ2 − 1),

S9 = (λ1 + 1)(λ1 − 2)(2λ1 − 1)(λ2 + 1)(λ2 − 2)(2λ2 − 1).
(3.58)

Over K[di] for i = 1, 2, 3 with d2
i given in Table 2, the system (3.55) is

equivalent to the restrictions of the GKZ system introduced in Section 3.4
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given by

(3.59)
1

gi
Φ
(
~αi, ~βi

∣∣∣ vi

)
where ~αi, ~βi, gi,vi are given in Table 4.

Proof. The comparison Lemma 3.2 , Lemma 3.3, Lemma 3.10, and Lemma
3.13 gives the desired result. �

Remark 3.15. In 1933 Bailey derived a reduction formula for the Appell
series F4 as product of two Gauss’ hypergeometric functions. Later Bailey
himself — when studying unpublished manuscripts left by Barnes after his
death — realized that Barnes had already obtained this reduction of F4 in
1907 [2]. When this reduction formula is combined with another result of
Bailey’s relating the Appell series F4 to F2 [1, Eq. (3.1)], a corresponding
reduction formula for the Appell series F2 is obtained. A detailed account of
the story including Bailey’s letters to Freeman Dyson can be found in [20,
Sec. 3, Eqns. (12), (13)]. This reduction formula is recovered by comparing
Equation (3.55) and Equation (3.56).

Remark 3.16. In particular, the comparison of Equation (3.55) and Equa-
tion (3.57) proves that the Appell hypergeometric system can also be de-
composed as an outer tensor product of two rank-two systems using a cubic
transformation.
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# g2, g3,∆, J ramification of J and singular fibers

MW(π) sections t J m(J) fiber

X11(λ) g2 = 16
3 (λ2 − λ+ 1)(t− 1)2 1 J(λ) - I∗0 (D4)

µ = 0 g3 = 32
27(λ− 2)(λ+ 1)(2λ− 1)(t− 1)3 ∞ J(λ) - I∗0 (D4)

∆ = 16λ2(λ− 1)2 (t− 1)6

J = J(λ) = 4 (λ2−λ+1)3

27λ2(λ−1)2

(Z/2Z)2 (X,Y )1 = (−2
3(λ+ 1)(t− 1), 0)

(X,Y )2 = (−2
3(λ− 2)(t− 1), 0)

(X,Y )3 = (2
3(2λ− 1)(t− 1), 0)

X411 g2 = 1
3(64t2 − 64t+ 4) 1

4

(
2±
√

3
)

0 3 smooth

µ = 1
2 g3 = 8

27(2t− 1)(32t2 − 32t− 1) 1
8

(
4± 3

√
2
)
, 1

2 1 2 smooth

∆ = 256 t (t− 1) 0 ∞ 1 I1

J = (16t2−16t+1)3

108t(t−1) 1 ∞ 1 I1

Z/2Z (X,Y )1 = (−4
3 t+ 2

3 , 0) ∞ ∞ 4 I∗4 (D8)

X222 g2 = 16
3 (t2 − t+ 1) 1

2

(
1± i

√
3
)

0 3 smooth

µ = 1
2 g3 = 32

27(t− 2)(t+ 1)(2t− 1) −1, 1
2 , 2 1 2 smooth

∆ = 1024 t2 (t− 1)2 0 ∞ 2 I2

J = 4 (t2−t+1)3

27t2(t−1)2 1 ∞ 2 I2

(Z/2Z)2 (X,Y )1 = (−2
3(t+ 1), 0) ∞ ∞ 2 I∗2 (D6)

(X,Y )2 = (−2
3(t− 2), 0)

(X,Y )3 = (2
3(2t− 1), 0)

X211 g2 = 3 ∞ 0 2 II∗ (E8)

µ = 1
6 g3 = −1 + 2 t 1

2 1 2 smooth

∆ = −108 t (t− 1) 0 ∞ 1 I1

{0} J = − 1
4 t (t−1) 1 ∞ 1 I1

Table 1: Extremal rational elliptic surfaces
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# singular fibers rational rational base transformation
MW(π) surface quadratic twist, d2

J1 2I8 + 8I1 X411 t1 =
(1− λ1)2 u4 − 2(1 + λ1)(1 + λ2)u2 + (1− λ2)2

16 d1 u2
+

1

2
Z2 ⊕ Z/2Z T1 = − 4 d1 u

2, d2
1 = λ1λ2

J2 I4 + I12 + 8I1 X411 t2 =
u4 + 2 (2λ1λ2 − λ1 − λ2 + 2)u2 + (λ1 − λ2)2

16 d2 u
+

1

2
A∗2[2]⊕ Z/2Z T2 = − 4 d2 u, d2

2 = −λ1λ2(1− λ1)(1− λ2)

J3 2IV ∗ + 8I1 X211 t3 =
27λ2

1(λ1 − 1)2 u4 + 2(λ1 + 1)(λ1 − 2)(2λ1 − 1)(λ2 + 1)(λ2 − 2)(2λ2 − 1)u2 + 27λ2
2(λ2 − 1)2

16 d3
3 u

2
+

1

2(
A∗2[2]

)2
T3 = −8

3 d3 u
2, d2

3 = (λ2
1 − λ1 + 1)(λ2

2 − λ2 + 1)

J4 4I∗0 X11(λ2) t4 = u(
Z/2Z

)2
T4 = 1

2 u (u− λ1)

J5 I∗6 + 6I2 X222 t5 =
−λ2

1(λ2 − 1)2u3 + λ1(λ2 − 1)(1 + λ1 + λ2 − 2λ1λ2)u2 − (1− λ1λ2)(λ1 + λ2 − λ1λ2)u

λ2(λ1 − 1)
+ 1(

Z/2Z
)2

T5 = −1
2 λ1λ2(λ1 − 1)(λ2 − 1)

J6 2I∗2 + 4I2 X222 t6 =
λ2 u

2 + (λ2 − λ1)u+ λ1

(1− λ1)(1− λ2)u(
Z/2Z

)2
T6 = −1

2 (λ1 − 1) (λ2 − 1)u2

J7 I∗4 + 2I∗0 + 2I1 X411 t7 =
(λ1λ2 + 1)u− λ1 − λ2

4 d7 (u− 1)
+

1

2
Z/2Z T7 = d7 u (u− 1)2, d2

7 = λ1λ2

J9 II∗ + 2I∗0 + 2I1 X211 t9 =
B9 u−A9

u− 1
, T = −2

3d9 u (u− 1)2, d2
9 = (λ2

1 − λ1 + 1)(λ2
2 − λ2 + 1)

{0} A9 =
(2λ1λ2 − λ1 − λ2 + 2)(λ1λ2 + λ1 − 2λ2 + 1)(λ1λ2 − 2λ1 + λ2 + 1)

4 d3
9

− 1

2

B9 =
(2λ1λ2 − λ1 − λ2 − 1)(λ1λ2 + λ1 + λ2 − 2)(λ1λ2 − 2λ1 − 2λ2 + 1)

4 d3
9

− 1

2

Table 2: Fibrations on Kum(E1 × E2) by rational base transformations and quadratic twists
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# singular fibers related rational transformation
MW(π) fibration

J8 III∗ + I∗2 + 3I2 + I1 J7 u8 =
u2

7 (u7 − 1)

x7

x8 =

(
x7 − (λ1 − 1)(λ2 − 1)u2

7(u7 − 1)
)
u2

7

x2
7

Z/2Z y8 = −
(
x7 − (λ1 − 1)(λ2 − 1)u2

7(u7 − 1)
)
u4

7 y7

x4
7

J10 I∗8 + I∗0 + 4I1 J9 u10 =
x9

(u9 − 1)2

x10 = −λ1λ2(λ1 − 1)(λ2 − 1)u9

u9 − 1

{0} y10 = −λ1λ2(λ1 − 1)(λ2 − 1)y9

(u9 − 1)4

J11 2I∗4 + 4I1 J7 u11 =
λ2u

2
7(u7 − 1)2

x7

x11 = −λ
2
2(λ1 − 1)(λ2 − 1)u4

7 (u7 − 1)3

x2
7

{0} y11 =
λ3

2(λ1 − 1)(λ2 − 1)u6
7 (u7 − 1)4 y7

x4
7

Table 3: Related elliptic fibrations on Kum(E1 × E2)

# ~α, ~β g v

J1 ~α =
〈
−1

2 ,−
1
2

〉
g1 =

√
d1 v1 =

(
0, 0, v(1|1,0), v(1|0,0), 1, 1, 1, 1

)
~β =

〈
−1,−1

2

〉
v(1|1,0) = (1−λ1)2(1−λ2)2

28 d21
, v(1|0,0) = 1

2 −
(1+λ1)(1+λ2)

8 d1

J2 ~α =
〈
−1

2 ,−
1
2

〉
g2 = d2

λ1−λ2
v2 =

(
v(1|3,0), 0, v(1|1,0),

1
2 , 1, 1, 1, 1

)
~β =

〈
−1

2 ,−
1
2

〉
v(1|3,0) = (λ1−λ2)6

216 d42
, v(1|1,0) = (2λ1λ2−λ1−λ2+2)(λ1−λ2)2

27 d22

J3 ~α =
〈
−1

6 ,−
5
6

〉
g2 =

√
d3 v3 =

(
0, 0, v(1|1,0), v(1|0,0), 1, 1, 1, 1

)
~β =

〈
−1,−5

6

〉
v(1|1,0) = 36λ2

1λ
2
2(1−λ1)2(1−λ2)2

28 d63
, v(1|0,0) = 1

2 + (λ1+1)(λ1−2)(2λ1−1)(λ2+1)(λ2−2)(2λ2−1)
8 d33

J5 ~α =
〈
−1

2 ,−
1
2

〉
g5 =

√
λ1(λ2−1)
λ2(λ1−1)(1− λ1λ2)(λ1 + λ2 − λ1λ2) v5 =

(
v(1|3,0), v(1|2,0), 1, 0, 0, 1, 1, 1

)
~β =

〈
0,−1

2

〉
v(1|3,0) = − λ2

1λ
2
2(λ1−1)2(λ2−1)2

(1−λ1λ2)3(λ1+λ2−λ1λ2)3 , v(1|2,0) = −λ1λ2(λ1−1)(λ2−1)(1+λ1+λ2−2λ1λ2)
(1−λ1λ2)2(λ1+λ2−λ1λ2)2

Table 4: Restrictions of the GKZ system from Section 3.4
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