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Calculating multiple zeta values at arguments of any sign in a way
that is compatible with both the quasi-shuffle product as well as
meromorphic continuation, is commonly referred to as the renor-
malisation problem for multiple zeta values. We consider the set
of all solutions to this problem and provide a framework for com-
paring its elements in terms of a free and transitive action of a
particular subgroup of the group of characters of the quasi-shuffle
Hopf algebra. In particular, this provides a transparent way of re-
lating different solutions at non-positive values, which answers an
open question in the recent literature.

1. Introduction

Multiple zeta values (MZVs) are defined for integers k1 ≥ 2, k2, . . . , kn ≥ 1
in terms of nested sums

(1) ζ(k1, . . . , kn) :=
∑

m1>···>mn>0

1

mk1
1 · · ·m

kn
n

of depth n and weight
∑n

i=1 ki. It is well-known that (1) has a representation
in terms of iterated Chen integrals

(2) ζ(k1, . . . , kn) =

∫ 1

0
ωk1−10 ω1 · · ·ωkn−10 ω1,

where ω0 and ω1 stand for the differential 1-forms dt/t and dt/(1− t) respec-
tively. Writing the nested sums (1) in terms of iterated integrals (2) yields
shuffle relations satisfied by MZVs due to integration by parts. On the other
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hand, for integers a, b > 1, Nielsen’s reflexion formula

ζ(a)ζ(b) = ζ(a, b) + ζ(b, a) + ζ(a+ b)

follows from multiplying sums

(3)
∑
m>0

1

ma

∑
n>0

1

nb
=

∑
m>n>0

1

manb
+

∑
n>m>0

1

nbma
+
∑
m>0

1

ma+b
,

and generalises naturally to quasi-shuffle relations for the nested sums (1),
where weight is preserved but not depth. Comparing the two ways of mul-
tiplying MZVs yields intricate relations commonly referred to as double
shuffle relations [17]. The latter are just the tip of an iceberg of rich and
deep mathematical structures [5, 16, 27, 30] displayed by multiple zeta val-
ues, which materialise through profound ramifications into modern develop-
ments in mathematics. Double zeta values have been considered by L. Euler
[11]. MZVs appeared in full generality in a 1981 preprint of J. Écalle, in the
context of resurgence theory in complex analysis [10]. A systematic study
however started only a decade later with the seminal works of D. Zagier
[26] and M. Hoffman [14]. Moreover, MZVs and their generalisations, i.e.,
multiple polylogarithms, appear to play an important role in quantum field
theory [4].

Definition (1) extends to complex arguments (s1, . . . , sn). The multiple
zeta function thus obtained is holomorphic in the domain Re(s1 + · · ·+
sj) > j, j = 1, . . . , n, [19]. In [1, 29] it was shown that this function can be
meromorphically continued to Cn with singularities at

s1 = 1,

s1 + s2 = 2, 1, 0,−2,−4, . . . ,

s1 + · · ·+ sj ∈ Z≤j for j ≥ 3.

We describe in this work the set of solutions of the following problem: Extend
multiple zeta values to arguments in Z such that

• the values at (k1, . . . , kn) with Re(k1 + · · ·+ kj) ≥ j for j = 1, . . . , n is
given by the converging nested series (1),

• the values at non-singular n-tuples outside the domain of convergence
coincide with those given by analytic continuation,

• the quasi-shuffle relations are preserved.
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We show that this set is a torsor on the renormalisation group for MZVs,
a pro-unipotent group which we describe in some detail1. Different answers
to this so-called renormalisation problem for MZVs at integer arguments
appeared in the literature. In [13] L. Guo and B. Zhang considered the
problem for non-positive arguments. For strictly negative arguments, an-
other approach has been proposed in [8], which is based on a one-parameter
family of q-analogs of multiple zeta values. A general solution appeared in
[22], where S. Paycha and the second author found an approach that would
allow for arguments in Z (including mixed signs). Comparing values of the
three solutions, ζGZ, ζEMS and ζMP, at negative arguments, shows that the
approaches provide different answers. For example, for the MZV ζ(−1,−3)
we have the following values:

ζGZ(−1,−3) =
83

64512
, ζEMS(−1,−3) =

121

94080
, ζMP(−1,−3) =

1

840
.

Note that ζEMS(−1,−3) corresponds to the special value t = 1 of the family

ζEMS,t(−1,−3) =
1

8064

166t2 + 166t+ 31

(4t+ 3)(4t+ 1)
,

which is defined for Re(t) > 0 [8].
One should remark that ζGZ(−1,−3) coincides with the limit of

ζEMS,t(−1,−3) for t→ +∞. The same phenomenon occurs with the argu-
ments (−3,−1), namely:

ζGZ(−3,−1) = lim
t→+∞

ζEMS,t(−3,−1) =
−71

35840
.

It would be interesting to understand, whether every Guo–Zhang renor-
malised multiple zeta value can be obtained as such a limit in general. How-
ever, this rather interesting question lies beyond the scope of this work.

In a nutshell, all three approaches to the renormalisation problem are of
Hopf algebraic nature, and start from Hoffman’s quasi-shuffle Hopf algebra of
words [15] together with the MZV-character. The latter is a particular alge-
bra morphism which maps convergent words to MZVs, i.e., nested sums (1).
Different regularisation methods are employed to deform this MZV-character
to take values in a commutative unital Rota–Baxter algebra. Each regu-
larised MZV-character is then uniquely factorised into a product of two

1The different problem of extending shuffle relations is addressed in [9], where a
proposal is given for non-positive arguments. Extending them to arguments in Z,
in a sense to be precised, is still an open question.
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characters by applying a general theorem due to A. Connes and D. Kreimer
[7]. It turns out that, in the three approaches [8, 13, 22], one of the fac-
tors yields finite values for MZVs at all, non-positive and negative integer
arguments, respectively.

The original factorisation theorem of A. Connes and D. Kreimer cap-
tures the renormalisation problem in perturbative quantum field theory us-
ing a Hopf algebra approach to the so-called BPHZ subtraction method. In
quantum field theory it is known that different regularisation methods may
yield different renormalised values. The concept of finite renormalisation [28]
yields a way to relate those differing renormalised values. This justifies the
term “renormalisation group” introduced above: we start from Hoffman’s
quasi-shuffle Hopf algebra, and outline a framework to compare all possible
renormalisations of the MZV-character, which are compatible with both the
quasi-shuffle product as well as the meromorphic continuation. The renor-
malisation group of MZVs is shown to act freely and transitively on renor-
malised MZV-characters. Elements of the renormalisation group of MZVs
may be considered as finite renormalisations as they permit to relate any
differing values of renormalised MZVs, by showing that they are elements
of a single orbit.

The paper is organised as follows. After a very brief review of the an-
alytic continuation of the multiple zeta functions and its singularities in
Section 2, we define the renormalisation group in Section 3, study its prop-
erties and compare currently known renormalisation schemes in Section 4.
The last section is devoted to the description of the renormalisation group.
It is identified as the character group of a commutative Hopf algebra, which
is obtained as a quotient of Hoffman’s quasi-shuffle Hopf algebra by the
Hopf ideal generated by non-singular words, i.e., words associated to multi-
ple zeta values obtainable by analytic continuation. The Lie algebra of this
pro-unipotent group is infinite-dimensional.

Acknowledgements. DM, JS and JZ would like to thank the ICMAT
for its hospitality and gratefully acknowledge support by the Severo Ochoa
Excellence Program. The second author is partially supported by Agence Na-
tionale de la Recherche (projet CARMA No. NR-12-BS01-0017). We warmly
thank Hidekazu Furusho, Frédéric Patras and Wadim Zudilin for very useful
comments, as well as the referees for careful reading and pertinent remarks.
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2. The meromorphic continuation of multiple zeta function

It is a well-known fact that the classical Riemann zeta function ζ(s) :=∑
m≥1m

−s is convergent for Re(s) > 1 and can be meromorphically contin-
ued to C with a single pole in s = 1. Using the functional equation

ζ(1− s) =
1

(2π)s
cos
(πs

2

)
Γ(s)ζ(s),

where Γ(s) denotes the meromorphic continuation of the Gamma function,
we can deduce the values of the Riemann zeta function at non-positive in-
tegers, that is, for the non-negative integer l

ζ(−l) = −Bl+1

l + 1
,

where the Bernoulli numbers Bm are given by the generating function

tet

et − 1
=
∑
m≥0

Bm
m!

tm.

Therefore the meromorphic continuation provides all values of ζ(k) for k ∈
Z \ {1}.

Next we consider the multiple zeta function ζ(s1, . . . , sn), which is ab-
solutely convergent if

∑k
j=1 Re(sj) > k for k = 1, . . . , n [19]. In this domain

it defines an analytic function in n variables. The precise pole structure of
the multiple zeta function was clarified in [1]:

Theorem 2.1. The function ζ(s1, . . . , sn) admits a meromorphic extension
to Cn. The subvariety Sn of singularities is given by

Sn =

{
(s1, . . . , sn) ∈ Cn :

s1 = 1; s1 + s2 = 2, 1, 0,−2,−4, . . . ;
s1 + · · ·+ sj ∈ Z≤j (j = 3, 4, . . . , n)

}
.

To illustrate the need of renormalisation procedures for MZVs let us
restrict to non-positive integer arguments. As stated above, in the case of
the Riemann zeta function all values at non-positive integers are prescribed
by the meromorphic continuation. In length two we observe for k1 + k2 odd
(k1, k2 ∈ N0) that

ζ2(−k1,−k2) =
1

2

(
1 + δ0(k2)

) Bk1+k2+1

k1 + k2 + 1
,
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where δ0 is the Kronecker delta. When the sum k1 + k2 is even, we do not
have any information due to the existence of poles in the points (−k1,−k2).
In length greater than two there are points of indeterminacy for any non-
positive integer arguments, i.e., (Z≤0)n ⊆ Sn, n ≥ 3. Therefore the mero-
morphic continuation does not prescribe all values.

This lack of information in the context of the meromorphic continuation
motivated several approaches aiming at obtaining explicit values at points
of indeterminacy. The first approach is due to S. Akiyama et al. [2]. It de-
scribes a limiting process to define MZVs at non-positive integer arguments.
However, it turns out that the values depend on the order of conducting the
limits. Additionally, the quasi-shuffle relations are not verified.

Furthermore let us mention the unpublished work of O. Bouillot [3], in
which the author considers solely the algebraic side of the renormalisation
problem of MZVs. He obtains a family of values called multiple Bernoulli
numbers for MZVs at non-positive arguments, which are all compatible with
the quasi-shuffle relations. However, the problem of meromorphic continua-
tion has not been addressed in a complete way.

H. Furusho et al. proposed in [12] a different approach, called desingu-
larisation of MZVs. They showed that certain finite sums of multiple zeta
functions display non-trivial cancellations of all singularities involved, which
therefore provide entire functions. This yields finite values for any tuple of
integer arguments. Although, questions concerning the algebraic properties
(e.g., compatibility with the quasi-shuffle product) have not been addressed
in [12]. It came therefore as a surprise that a connection has been recently
discovered by N. Komiyama [18] between desingularised MZVs and renor-
malised MZVs given of [9]. Contrarily to the aforementioned renormalisa-
tions of MZVs [8, 13, 22], the approach in [9] gives renormalised MZVs that
are compatible with a certain extension of shuffle product to nonpositive
arguments, but not with the quasi-shuffle product.

In references [8, 13, 22] a rather different approach is explored. It is
based on a fundamental factorisation theorem for algebra morphisms over
connected filtered Hopf algebras, which is due to A. Connes and D. Kreimer
[7]. See [21] for details. As a result renormalised MZVs can be deduced, which
are compatible with the quasi-shuffle product as well as the meromorphic
continuation.

3. The left group action

Let (H,m, u,∆, ε, S) be a connected, filtered Hopf algebra over a field k of
characteristic zero. Therefore the coproduct ∆ is also conilpotent. Further let
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∆̃ denote the reduced coproduct defined by ∆̃(x) := ∆(x)− 1⊗ x− x⊗ 1
for any x ∈ ker(ε). In Sweedler’s notation we have

∆̃(x) =
∑
(x)

x′ ⊗ x′′.

Let N ⊆ H be a left coideal with respect to the reduced coproduct, i.e.,
∆̃(N) ⊆ N ⊗H and ε(N) = {0}. We call it the coideal of non-singular ele-
ments by anticipating Lemma 4.3. Moreover, let (A,mA, uA) be a commu-
tative k-algebra and let L(H,A) be the vector space of linear functions from
H to A. The set GA of unital algebra morphisms from H to A forms a group
with respect to the convolution product ? : L(H,A)⊗ L(H,A)→ L(H,A)
defined by φ⊗ ψ 7→ φ ? ψ := mA ◦ (φ⊗ ψ) ◦∆ and with unit e := uA ◦ ε.
The inverse of φ ∈ GA is given by φ−1 = φ ◦ S. Since H is connected and
filtered we obtain the antipode by

S(x) = −x−
∑
(x)

m
(
x′ ⊗ S(x′′)

)
(4)

for any x ∈ ker(ε).

Lemma 3.1. The set TA :=
{
φ ∈ GA : φ|N

= 0
}

is a subgroup of (GA, ?, e).

Proof. Obviously, e ∈ TA. Let φ, ψ ∈ TA. Since GA is a group φ ? ψ−1 ∈ GA.
Further, for any w ∈ N , we have

(φ ? ψ−1)(w) =
(
φ ? (ψ ◦ S)

)
(w)

= φ(w) + ψ
(
S(w)

)
+
∑
(w)

mA
(
φ(w′)⊗ ψ(S(w′′))

)
= φ(w)− ψ(w)−

∑
(w)

mA
(
ψ(w′)⊗ ψ(S(w′′))

)
+
∑
(w)

mA
(
φ(w′)⊗ ψ(S(w′′))

)
= 0

because of (4) and the fact that N is a left-coideal of ∆̃ by definition. �
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The subgroup TA will be called the renormalisation group and its ele-
ments are called transfer characters. Now let ζ : N → A be a partially de-
fined character on H, i.e., a linear map such that

ζ(m(v ⊗ w)) = mA(ζ(v)⊗ ζ(w))

as long as v and w as well as the product m(v ⊗ w) belong to N . It will
be convenient to extend a partially defined character to the empty word by
setting ζ(1) = 1A. We define the set of all possible renormalisations with
target algebra A by

XA,ζ :=
{
α ∈ GA : α|N

= ζ
}
.

Theorem 3.2. The left group action TA ×XA,ζ → XA,ζ defined by (φ, α) 7→
φ ? α is free and transitive.

Proof. First, we prove that the group action is well-defined. Let φ ∈ TA and
α ∈ XA,ζ . For any w ∈ N we obtain

(φ ? α)(w) = φ(w) + α(w) +
∑
(w)

mA
(
φ(w′)⊗ α(w′′)

)
= α(w) = ζ(w),

using that φ vanishes on the left-coideal N . The identity and compatibility
relations of the group action are satisfied as XA,ζ ⊂ GA. Freeness is obvious.
In order to prove transitivity, let α, β ∈ XA,ζ . Then for any w ∈ N , we have

(α ? β−1)(w) =
(
α ? (β ◦ S)

)
(w)

= α(w) + β
(
S(w)

)
+
∑
(w)

mA
(
α(w′)⊗ β(S(w′′))

)
= α(w)− β(w)−

∑
(w)

mA
(
β(w′)⊗ β(S(w′′))

)
+
∑
(w)

mA
(
α(w′)⊗ β(S(w′′))

)
= (α− β)(w) +

∑
(w)

mA
(
(α− β)(w′)⊗ β(S(w′′)

)
= 0,

using β ∈ GA and the left-coideal property of N together with α|N
= β|N

=

ζ. Hence, φ := α ? β−1 ∈ TA leads to α = φ ? β, which concludes the proof.
�
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4. Renormalised MZVs and the renormalisation group

In this section we exemplify the left group action described in the pre-
vious section in the context of Hoffman’s quasi-shuffle Hopf algebra. The
left-coideal N is the linear span of non-singular words defined through mero-
morphic continuation of the MZV-function. Finally we compare the different
sets of renormalised MZVs which appeared in the literature.

4.1. Group action in the MZV case

We quickly describe the quasi-shuffle Hopf algebra [15] together with the set
of non-singular words. Let us start with the alphabet Y+ := {zk : k ∈ Z>0}
of positive letters. Further let h := 〈Y+〉Q denote the free non-commutative
Q-algebra generated by Y+, i.e. the linear span of words with letters in Y+.
The empty word is denoted by 1. The length of a word is defined by its
number of letters. We define the quasi-shuffle product ∗ : h⊗ h→ h by

(i) 1 ∗ v := v ∗ 1 := v,

(ii) zmv ∗ znw := zm(v ∗ znw) + zn(zmv ∗ w) + zm+n(v ∗ w),

for any words v, w ∈ h and integers m,n > 0. The unit map u : Q→ h is
defined by u(λ) = λ1. The subspace h+ := Q1⊕

⊕
n>1 znh spanned by con-

vergent words is a subalgebra of h. Next we define the MZV-character
ζ∗ : (h+, ∗)→ (R, ·) by ζ∗(1) := 1 and

ζ∗(zk1 · · · zkn) := ζ(k1, . . . , kn).(5)

The terminology is justified by the following well-known result:

Lemma 4.1. The map ζ∗ : (h+, ∗)→ (R, ·) is a morphism of algebras.

We now complete the alphabet Y+ to Y := Y+ ∪ Y− = {zk : k ∈ Z}, by
adding the non-positive letters Y− := {zk : k ∈ Z≤0}. Let H := 〈Y 〉Q be the
free Q-algebra generated by Y . The quasi-shuffle product is naturally ex-
tended, i.e., ∗ : H⊗H → H, and both h and h+ are subalgebras of (H, ∗).
The subspace H := 〈Y−〉Q ⊂ H forms a subalgebra in H. Furthermore, we
introduce another subspace H− := 〈Ŷ−〉Q ⊂ H, which is defined in terms of
the negative alphabet Ŷ− := {zk : k ∈ Z<0}, and which is also a subalgebra.
Introducing H is motivated by the fact that, in the sense of formal series, we
can extend the definition of the map (5) together with Lemma 4.1 from h+
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to H, since the formal product rule of nested sums leads to the quasi-shuffle
product as defined over H.

The quasi-shuffle algebra (H, ∗) is a connected filtered Hopf algebra (with
respect to the length) with counit ε : H → Q defined by ε(1) = 1, and ε(w) =
0 for any word w 6= 1. The coproduct ∆: H → H⊗H is given for any word
w ∈ H by deconcatenation

∆(w) :=
∑
uv=w

u⊗ v.(6)

The antipode S : H → H is given by the general formula (4). Note that
both subalgebras H− ⊂ H ⊂ H are in fact Hopf subalgebras. Following [15]
the antipode S can be given by a non-recursive description in terms of word
contractions, i.e., for any word w = zk1 · · · zkn ∈ H with n letters

S(w) = (−1)n
∑

I∈P(n)

I[w].

Here w := zkn · · · zk1 , and P(n) is the set of compositions of the integer
n, i.e., the set of sequences I := (i1, . . . , im) of positive integers such that
i1 + · · ·+ im = n. Then for any word w = zk1 · · · zkn and any composition
I = (i1, . . . , im) of n we define the contracted word by

I[w] := zk1+···+ki1zki1+1+···+ki1+i2
· · · zkn−im+1+···+kn .

The notion of contracting words underlies also Hoffman’s exponential [15]:

expH(u) :=
∑

I=(i1,...,ik)∈P(n)

1

i1! · · · ik!
I[u].(7)

It defines a Hopf algebra isomorphism from the shuffle Hopf algebra H�
onto the quasi-shuffle Hopf algebra H. The former is defined as the free
Q-algebra 〈Y 〉Q generated by Y and equipped with the shuffle product

(i) 1� v := v� 1 := v,

(ii) zmv� znw := zm(v� znw) + zn(zmv� w),

for any v, w ∈ 〈Y 〉Q and m,n ∈ Z. The inverse logH of expH is given by ([15,
Lemma 2.4]):

logH(u) =
∑

I=(i1,...,ik)∈P(n)

(−1)n−k

i1 · · · ik
I[u].
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For example for zk1 , zk2 ∈ Y we have that at length one expH zk1 = zk1 and
logH zk1 = zk1 . For words of length two

expH(zk1zk2) = zk1zk2 +
1

2
zk1+k2 , logH(zk1zk2) = zk1zk2 −

1

2
zk1+k2 .

The group of C-valued characters over H is denoted by GC. Its corre-
sponding Lie algebra of infinitesimal C-valued characters is denoted by gC.
The group of C-valued characters over the Hopf algebra H− is denoted by
G−C and its Lie algebra of infinitesimal C-valued characters is g−C .

Definition 4.2 (Non-singular words).

a) A non-empty word w := zk1 · · · zkn with letters from the alphabet Y will
be called non-singular if all of the following conditions are verified:
• k1 6= 1,
• k1 + k2 /∈ {2, 1, 0,−2,−4, . . .},
• k1 + · · ·+ kj /∈ Z≤j for j ≥ 3.

b) The vector subspace spanned by non-singular words is denoted by N ⊆ H.

The vector space N is naturally graded by length, i.e., N =
⊕

l≥1Nl,
where Nn denotes the space of Q-linear combinations of non-singular words
of length n. Note that N includes the set of convergent words.
The partially defined character ζ∗ : N → C for any word w = zk1 · · · zkn ∈ N
is given by

ζ∗(w) := ζ(k1, . . . , kn),

which is either convergent or can be defined by analytic continuation (see
Section 2), and linearly extended to N .

Lemma 4.3. The vector space N is a left-coideal for the reduced decon-
catenation coproduct ∆̃. Moreover, N is invariant under contractions, i.e.,
for any word w ∈ N we have I[w] ∈ N .

Proof. Let w := zk1 · · · zkn be a word in N . Then it satisfies the conditions
of Definition 4.2 a) in the length n case. For any m ∈ {1, . . . , n} the subword
w′ := zk1 · · · zkm by construction satisfies the conditions of Definition 4.2 a)
in the case of length m as well. Hence, ∆̃(N) ⊆ N ⊗H. The stability of N
under contractions is immediate from Definition 4.2. �

Corollary 4.4. The vector space N is a two-sided coideal for the decon-
catenation coproduct ∆ defined in (6).
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A well-defined renormalised MZV-character must be both compatible
with the quasi-shuffle product as well as the meromorphic continuation of
MZVs (whenever the latter is defined).

Definition 4.5 (Renormalised MZVs). The set of all possible renor-
malisations of MZVs is defined by

XC,ζ∗ :=
{
α ∈ GC : α|N

= ζ∗
}
.(8)

Proposition 4.6. The set XC,ζ∗ is not empty.

Proof. Indeed, the renormalised MZV-character of [22, Theorem 8] lies in
XC,ζ∗ . �

Further, we will show below that XC,ζ∗ in fact contains infinitely many
elements. Following Theorem 3.2 the renormalisation group

TC :=
{
φ ∈ GC : φ|N

= 0
}

acts transitively and freely from the left on the set XC,ζ∗ of renormalised
MZV-characters. Let N− := N ∩ H− and let G−C be the set of unital algebra
morphisms from H− → C. Then the set

X−C,ζ∗ :=
{
α ∈ G−C : α|N−

= ζ∗
}

(9)

contains, for instance, the renormalised MZV-characters constructed in [8],
but also the renormalised MZV-characters of [13, 22] when appropriately
restricted to H−. Its renormalisation group T−C :=

{
φ ∈ G−C : φ|N−

= 0
}

acts

transitively and freely on X−C,ζ∗ .

4.2. Comparison of different renormalisations of MZVs

The central aim of our work is to understand the relation between different
solutions of the renormalisation problem for MZVs, including those given in
[8, 13, 22]. Recall that the set XC,ζ∗ comprises all solutions to this problem,
and contains – among others – the renormalised MZV-character given in
[22]. It is also clear that the set X−C,ζ∗ contains the solutions in [8] as well as

appropriate restrictions to H− of solutions presented in [13, 22]. The relation
between the aforementioned renormalised MZV-characters is immediately
provided by the transitive and free left action of the renormalisation group
T−C , that is, they all lie on a single orbit.
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To see the origin of the different values, we briefly recall the essential
steps leading to the solutions of the renormalisation problem for MZVs in
[8, 13, 22]. All three approaches apply a key theorem from [7] in the context
of Hoffman’s quasi-shuffle Hopf algebra.

Theorem 4.7 ([7]). Let H be a graded or filtered Hopf algebra over a
ground field k, and let A a commutative unital k-algebra equipped with a
renormalisation scheme A = A− ⊕A+ and the corresponding idempotent
Rota–Baxter operator π, where A− = π(A) and A+ = (Id−π)(A). The char-
acter ψ : H → A admits a unique Birkhoff decomposition

ψ− ? ψ = ψ+,(10)

where ψ− : H → k1⊕A− and ψ+ : H → A+ are characters.

In the context of MZVs the starting point is the C-valued MZV-character
(5), which a priori is well-defined on the subalgebra h+ of convergent words.
It is then extended to N by meromorphic continuation, which makes it a
partially defined character. To see this, take two words v, w ∈ N such that
their quasi-shuffle product v ∗ w also belongs to N . Define for any word u
and for any z ∈ C the word u(z), with letters is C, by subtracting z to each
letter of the word. The map

z 7→ φ(z) := ζ∗
(
v(z)

)
ζ∗
(
w(z)

)
− ζ∗

(
v(z) ∗ w(z)

)
is meromorphic identically equal to zero for any z with big enough real
part2, hence it also vanishes at z = 0. The critical step in this approach is
the method of regularising the partially defined MZV-character in such a
way that the resulting map is compatible with the quasi-shuffle product.
This then defines a new algebra morphism on all of H with values in a
commutative unital Rota–Baxter algebra. In [8, 13, 22] these new characters
are constructed by introducing a so-called regularisation parameter λ such
that the regularised MZV-character ζ∗λ maps H into the Laurent series A :=
C[λ−1, λ]]. The latter is a commutative Rota–Baxter algebra, where A− :=
λ−1C[λ−1] and A+ := C[[λ]]. On A the corresponding projector π : A → A−

2Remark that v(z) ∗ w(z) differs in general from (v ∗ w)(z), due to the presence
of contraction terms in the quasi-shuffle product: see [22] for details.
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is defined by minimal subtraction

π

( ∞∑
n=−l

anλ
n

)
:=

−1∑
n=−l

anλ
n

with the common convention that the sum over the empty set is zero. Note
that applying (10) in this setting, the factor ζ∗λ,+ in the Birkhoff decom-

position of ζ∗λ = ζ∗−1λ,− ? ζ∗λ,+ is well-defined when putting the regularisation
parameter λ to zero, and provides a solution to the renormalisation prob-
lem for MZVs. In the case of convergent words, the basic building block
is the map that associates with each letter zl the function fl : x 7→ x−l for
x ∈ [1,+∞). A regularisation process consists of a map R, that deforms
fl(x) appropriately. The three regularised characters in [8, 13, 22] are given
by deforming this map as follows

• GZ[13]: zl 7→ fλ,l(x) := exp(−lxλ)
xl

• EMS[8]: zl 7→ fλ,l(x) := (− log q)lq|l|x

(1−qx)l , λ = log(q)

• MP[22]: zl 7→ fλ,l(x) := 1
xl−λ

The nested sum (1) changes accordingly in each case

(11) ζλ(k1, . . . , kn) :=
∑

m1>···>mn>0

fλ,k1(m1) · · · fλ,kn(mn) ∈ A.

The finite characters are then defined in terms of the following C-valued
maps

ζ+GZ|λ=0
= ζGZ, ζ+EMS|λ=0

= ζEMS, ζ+MP|λ=0
= ζMP,

such that for words from Y−, Ŷ−, and Y , respectively, the resulting maps are
compatible with the meromorphic continuation. Note that the regularisation

EMSt[8] is given by zl 7→ fλ,l,t(x) := (− log q)lq|l|xt

(1−qx)l . We remark that the most

general approach is that presented in [22] which provides us with the key
example of an element in XC,ζ∗ .

5. The renormalisation group of MZVs in the
mixed-sign case

In this section we show that the renormalisation group TC is a pro-unipotent
group with infinite-dimensional Lie algebra. Since XC,ζ∗ is not empty (due to
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[22, Theorem 8]) and the group action is transitive and free, the choice of any
particular element in XC,ζ∗ yields a bijection from the renormalisation group
onto the latter. In particular, XC,ζ∗ is of infinite uncountable cardinality.

Proposition 5.1. We have:

a) The two-sided ideal N generated by N is a Hopf ideal of H.

b) For any commutative unital algebra A, the renormalisation group TA is
isomorphic to the group of characters of the Hopf algebra H/N .

Proof. Since N is a two-sided coideal for the deconcatenation coproduct ∆,
the claim in a) is clear. To prove b), we consider the map

Φ: TA → Char(H/N ), ψ 7→
(
Φ(ψ) : [x] 7→ ψ(x)

)
.

The map Φ is well defined and it is an algebra morphism. Furthermore Φ is
surjective since any character ψ of H/N gives rise to a character ψ̃ := ψ ◦ pr
of H using the canonical projection pr : H → H/N , x 7→ [x], which vanishes
on N . Injectivity of Φ is clear. �

Theorem 5.2. The renormalisation group TA is pro-unipotent and can be
identified with the space L(W,A) of linear maps from W to A, where W is
some vector subspace of H/N .

Proof. The deconcatenation coproduct (6) is conilpotent, i.e., for any word
w we have ∆̃k(w) = 0 for sufficiently large k, where ∆̃k := (Id⊗∆̃k−1) ◦ ∆̃
is the k-th iterated reduced coproduct. The same property holds for the
reduced coproduct of H/N . Hence, by a theorem of D. Quillen [24] (see [6,
Theorem 3.9.1]) the Hopf algebra H, respectively H/N , is isomorphic, as
an algebra, to the free commutative algebra on the vector subspace W :=
π1(H), respectively W = π̃1(H/N ), where π1 := log? Id denotes the Eulerian
idempotent with respect to the convolution product of the Hopf algebra H
and π̃1 := log?̃ Id is defined with respect to the convolution product of the
quotient Hopf algebra H/N ([23], see also [20]). By definition the following
diagram commutes:

H π1 //

pr
����

W

pr |W����
H/N π̃1 //W
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We haveW = W/π1(N ). Indeed, for any x ∈ H we have that pr(π1(x)) =
0 implies π1(x) ∈ N and therefore π1(x) ∈ π1(N ) since π1 is a projector.
Hence, ker(pr |W

) = π1(N ) and the claim follows from the fundamental the-

orem on homomorphisms. Now any A-valued character of H/N is uniquely
determined, through multiplicative extension, by a linear map from W to A.

�

The pro-nilpotent Lie algebra tA of the pro-unipotent renormalisation
group TA is the space of A-valued infinitesimal characters of H/N , which
identifies itself with L(W,A).

Theorem 5.3. The Lie algebra tA of the renormalisation group is infinite-
dimensional.

Proof. It will be convenient to use the shuffle instead of the quasi-shuffle
product. Therefore let H� be the Hopf algebra 〈Y 〉Q endowed with the
shuffle product� introduced in Paragraph 4.1. By Hoffman’s logarithm logH
– which sends any word to a suitable linear combination of shorter words
obtained by contractions – the Hopf algebras H and H� are isomorphic.
The algebra H� is the free commutative algebra over the free Lie algebra
Lie(Y ) generated by the alphabet Y . Hence, Lie(Y ) is linearly isomorphic
to W ′ = π1(H�), where π1 now stands for the Eulerian idempotent of H�.

The pairing 〈−,−〉 : 〈Y 〉Q ⊗ 〈Y 〉Q → Q defined by 〈w,w′〉 = δw
′

w for
any w,w′ ∈ Y ∗ realises a non-degenerated Hopf pairing between H� =
(〈Y 〉Q,�,∆) and H∨ := (〈Y 〉Q, .,∆�), where δw

′

w is the Kronecker symbol.
Here . denotes the concatenation product and ∆� is the cocommutative
deshuffle coproduct, i.e., the only coproduct compatible with concatenation,
and such that the letters are primitive. By looking at the two convolution
products in End(H�) and End(H∨), it is easily seen that the Eulerian idem-
potent of H∨ is the transpose π∨1 of the Eulerian idempotent π1 of H�. The
map π∨1 takes values in the free Lie algebra Lie(Y ), and we have

(12) π∨1 (z1 · · · zn) =
∑
σ∈Sn

c(σ)zσ(1) · · · zσ(n),

where Sn is the group of permutations of n letters and the coefficients c(σ)
are explicitly given by

(13) c(σ) =
(−1)d(σ)

n

(
n− 1

d(σ)

)−1
,
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where d(σ) ∈ {0, . . . , n− 1} is the number of descents of σ, i.e., the car-
dinality of D(σ) :=

{
j ∈ {1, . . . , n− 1} : σ(j + 1) < σ(j)

}
[25]. The duality

formula 〈π1(w), w′〉 = 〈w, π∨1 (w′)〉 immediately yields

(14) π1(z1 · · · zn) =
∑
σ∈Sn

c(σ−1)zσ(1) · · · zσ(n).

Both maps π1 and π∨1 coincide on words of lengths 1, 2 and 3, due to the
fact that c(σ) = c(σ−1) for any σ ∈ Sn for n ∈ {1, 2, 3}. However, note that
this is no longer true in length 4, and that π1(H�) is not included in Lie(Y )
(see Remark 5.5).

Our Hopf algebra H/N is isomorphic to H�/N�, where N� = logH(N )
is the ideal generated by N� = logH(N). Note that the second assertion of
Lemma 4.3 leads to N� = N since logH(N) = N . Similar as in the proof of
Theorem 5.2 we have that H�/N� is the free commutative unital algebra
generated by W ′ where

W ′ = W ′/π1(N).(15)

Therefore the following diagram commutes

H�
π1 //

����

W ′

����
H�/N�

π̃1 //W ′

where π̃1 is the Eulerian idempotent of H�/N�.

The natural grading onH� by length generates a grading on W ′, namely

W ′ =
⊕
k≥1

W ′k.

The following proposition shows that W ′ is an infinite dimensional vector
space, which concludes the proof of the theorem. �

Proposition 5.4. We have:

(i) W ′1 is one-dimensional, spanned by z1.

(ii) A basis of W ′2 can be identified with

{zazb : a > b, a+ b ∈ {2, 1, 0,−2,−4,−6, . . . }},
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(iii) A basis of W ′3 can be identified with B :=
⋃3
j=1Bj, where

B1 := {zazbzc, zazczb : a > b > c, all permutations of (a, b, c) are in S3},
B2 := {zazazb : a > b, (a, a, b) ∈ S3},
B3 := {zazbzb : a > b, (a, b, b) ∈ S3}.

Proof. Part (i) and Part (ii) are clear. We now turn to Part (iii). Let a, b, c
be any three integers. Direct computation yields

6π1(zazbzc) = 6π1(zczbza) = [za, zb, zc]− [zb, zc, za]

= [za, zc, zb]− 2[zb, zc, za],

6π1(zazczb) = 6π1(zbzcza) = [za, zc, zb]− [zc, zb, za]

= [za, zc, zb] + [zb, zc, za],

6π1(zbzazc) = 6π1(zczazb) = [zb, za, zc]− [za, zc, zb]

= −2[za, zc, zb] + [zb, zc, za],

(16)

where [za, zb, zc] :=
[
[za, zb], zc

]
. By (16) the dimension of the space gener-

ated by π1(σ(zazbzc)) for all permutations σ of the three letters za, zb and
zc is at most two.

Let N3 := Z3 \ S3 be the set of non-singular points for the triple zeta
function. If a, b and c are distinct and (a, b, c) ∈ N3 then we have a 6= 1,
a+ b 6= 2, 1, 0,−2,−4, . . . , and a+ b+ c ≥ 4. Hence

• b 6= 1 =⇒ (b, a, c) ∈ N3;

• b = 1 =⇒ a+ c ≥ 3 =⇒ (a, c, b) ∈ N3.

So by (16) we always have π1
(
σ(zazbzc)

)
∈ π1(N) for every permutation σ.

Thus π1(zazbzc) 6∈ π1(N) can only happen if all six permutations of (a, b, c)
are singular. This leads to the generator set B1.

If two of the three letters a, b and c are the same, then (16) implies that
the images of all the permutations π1

(
σ(zazbzc)

)
generate linearly depen-

dent images, and therefore we can choose generators as in B2 and B3. This
completes the proof of the proposition. �

Remark 5.5. In length n ≥ 4 it is no longer true that π1 = π∨1 . Considering
σ = (2413) together with its inverse σ−1 = (3142), we have d(σ) = 1 and
d(σ−1) = 2, hence, c(σ) = −1/12 and c(σ−1) = 1/12. Any permutation τ ∈
S4 different from σ and σ−1 verifies c(τ) = c(τ−1). Hence, we get for any
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z1, z2, z3, z4 ∈ Y :

π1(z1z2z3z4) = π∨1 (z1z2z3z4) +
1

6
(z2z4z1z3 − z3z1z4z2).

This clearly shows that π1(z1z2z3z4) does not belong to Lie(Y ).

Solutions to the renormalisation problem of MZVs are compatible with
both the quasi-shuffle relations as well as the meromorphic continuation
of MZVs. However, these two requirements are not sufficient to obtain a
unique solution. We have shown that all solutions are comparable in terms
of a free and transitive group action. The vector space W ′ introduced in
(15) permits a precise characterisation of the degrees of freedom, which are
left unspecified by the renormalisation of MZVs. Therefore it is natural to
ask for an explicit description of W ′ via a basis. In the final part of our
paper we have calculated a basis up to degree three. Remark 5.5 indicates
that going beyond this order in the construction of a basis of W ′ is a rather
complicated combinatorial problem involving methods from free Lie algebra
theory.
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