
i
i

“2-Do” — 2018/4/27 — 18:35 — page 53 — #1 i
i

i
i

i
i

Communications in
Number Theory and Physics
Volume 12, Number 1, 53–73, 2018

Topological recursion on the Bessel curve

Norman Do and Paul Norbury

The Witten–Kontsevich theorem states that a certain generating
function for intersection numbers on the moduli space of stable
curves is a tau-function for the KdV integrable hierarchy. This
generating function can be recovered via the topological recur-
sion applied to the Airy curve x = 1

2y
2. In this paper, we consider

the topological recursion applied to the irregular spectral curve
xy2 = 1

2 , which we call the Bessel curve. We prove that the associ-
ated partition function is also a KdV tau-function, which satisfies
Virasoro constraints, a cut-and-join type recursion, and a quantum
curve equation. Together, the Airy and Bessel curves govern the
local behaviour of all spectral curves with simple branch points.

1. Introduction

The topological recursion of Chekhov, Eynard and Orantin takes as input
the data of a spectral curve, essentially a Riemann surface C equipped with
two meromorphic functions and a bidifferential satisfying some mild assump-
tions [14, 26]. From this information, it produces so-called correlation differ-
entials ωg,n on C for integers g ≥ 0 and n ≥ 1. Although topological recursion
was originally inspired by the loop equations in the theory of matrix models,
it has over the last decade found widespread applications to various prob-
lems across mathematics and physics. For example, it is known to govern the
enumeration of maps on surfaces [3, 19, 20, 22, 23, 32, 37], various flavours
of Hurwitz problems [10, 12, 17, 18, 25], and the Gromov–Witten theory of
P1 [24, 38] and toric Calabi–Yau threefolds [11, 28, 29, 35]. There are also
conjectural relations to quantum invariants of knots [7, 16]. Much of the
power of the topological recursion lies in its universality — in other words,
its wide applicability across broad classes of problems — and its ability to
reveal commonality among such problems.

One common feature of the problems governed by topological recursion
is that their associated correlation differentials often possess the same local
behaviour. In particular, the fact that spectral curves generically resemble
x = 1

2y
2 locally lifts to a statement concerning the associated correlation
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54 N. Do and P. Norbury

differentials. The invariants ωg,n of the Airy curve x = 1
2y

2 are total deriva-
tives of the following generating functions for intersection numbers of Chern
classes of the tautological line bundles Li on the moduli space of stable
curves Mg,n [27].

Kg,n(z1, . . . , zn) =
1

22g−2+n

∑
d1,...,dn

∫
Mg,n

c1(L1)d1 · · · c1(Ln)dn
n∏
i=1

(2di − 1)!!

z2di+1
i

.

The usual assumption on spectral curves is that the zeroes of dx are
simple and away from the zeroes of dy. (Higher order zeros of dx can often
be handled via the global topological recursion of Bouchard and Eynard [8].)
However, an implicit assumption that appears in the literature is that y has
no pole at a zero of dx, in which case we say that the spectral curve is regular.
In previous work [21], the authors consider irregular spectral curves, in which
poles of y may coincide with a zero of dx. If the pole has order greater
than one, then that particular branch point makes no contribution to the
correlation differentials and can be removed from the spectral curve. On the
other hand, when the pole is simple, non-trivial correlation differentials arise.
We note that irregular spectral curves do arise “in nature”, for example in
matrix models with hard edge behaviour [2] and the enumeration of dessins
d’enfant [21, 32].

The previous discussion leads us naturally to consider the Bessel curve,
defined by the meromorphic functions1

x(z) =
1

2
z2 and y(z) =

1

z
.

For 2g − 2 + n > 0, the correlation differentials produced by the topological
recursion have an expansion

ωg,n(z1, . . . , zn) =

∞∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)

n∏
i=1

µi dzi

zµi+1
i

.

From these expansion coefficients, we define the Bessel partition function

Z(p1, p2, . . . ; ~) = exp

 ∞∑
g=0

∞∑
n=1

∑
µ1,...,µn

Ug,n(µ1, . . . , µn)
~2g−2+n

n!
pµ1
· · · pµn


1The name Bessel curve is derived from its quantum curve, which is given by a

modified Bessel equation — see Section 4.
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Topological recursion on the Bessel curve 55

and its associated wave function via the so-called principal specialisation

ψ(z, ~) = Z(p1, p2, . . . ; ~)|pi=z−i .

The main theme and motivation behind this paper is that statements
concerning the Airy curve and its relation to the Kontsevich–Witten KdV
tau-function have analogues in the case of the Bessel curve. In particular,
topological recursion applied to the Bessel curve is fundamentally related to
the Brézin–Gross–Witten (BGW) tau-function for the KdV hierarchy. This
is to be expected, since an irregular spectral curve represents so-called hard
edge behaviour in matrix models — see for example the Laguerre model [13],
which is related to the BGW tau-function via matrix model techniques [36].

The modest contribution of this paper is a direct proof of the relation-
ship between the BGW tau-function and topological recursion applied to the
Bessel curve. We make this connection by deriving Virasoro constraints for
the partition function arising from the topological recursion and comparing
these to Virasoro constraints for the BGW tau-function [1, 2, 36]. Alexan-
drov has recently proven Virasoro constraints, a cut-and-join equation and a
quantum curve for the BGW tau-function using matrix model methods and
a beautiful description of the point in the Sato Grassmannian determined
by the tau-function [1]. Once the link between the topological recursion
and the BGW tau-function is established in Theorem 3.2, further properties
of the associated partition function — Virasoro constraints, a cut-and-join
equation and a quantum curve — are equivalent to those of Alexandrov.
The topological recursion viewpoint helps to explain these properties. The
Virasoro constraints are fundamental to the topological recursion particu-
larly via Kazarian’s treatment [32]; the cut-and-join equation is essentially
another way to express the topological recursion, as shown in Theorem 3.3;
and the quantum curve is expected to be related to the topological recursion
via a WKB expansion. Although the topological recursion helps to explain
the aforementioned properties, it does not provide an explanation for the
relationship with KdV integrability.

Acknowledgements. The first author was supported by the Australian
Research Council grant DE130100650. The authors would like to thank
Alexander Alexandrov for numerous discussions, Maksim Karev for com-
ments on an earlier version of the manuscript, and the referees for their
insightful suggestions to improve the paper.
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2. Topological recursion on the Bessel curve

2.1. Topological recursion

We briefly recall the construction of the correlation differentials for a ratio-
nal spectral curve via topological recursion. A statement of the topological
recursion in greater generality — for example, in the case of higher genus
spectral curves, locally-defined spectral curves, or spectral curves with non-
simple branch points — can be found elsewhere in the literature [8, 24, 26].

• Input. A rational spectral curve consists of the data of two meromor-
phic functions x and y on CP1. We assume that each zero of dx is
simple and does not coincide with a zero of dy. The topological recur-
sion defines symmetric meromorphic multidifferentials ωg,n on (CP1)n

for g ≥ 0 and n ≥ 1.2 We refer to these as correlation differentials.

• Base cases. The base cases for the topological recursion are given by

ω0,1(z1) = −y(z1) dx(z1) and ω0,2(z1, z2) =
dz1 ⊗ dz2
(z1 − z2)2

.

• Recursion. The correlation differentials ωg,n for 2g − 2 + n > 0 are
defined recursively via the following equation.

ωg,n(z1, zS) =
∑

dx(α)=0

Res
z=α

K(z1, z)

[
ωg−1,n+1(z, z,zS)

+

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(z,zJ)

]

Here, we use the notation S = {2, 3, . . . , n} and zI = {zi1 , zi2 , . . . , zik}
for I = {i1, i2, . . . , ik}. The outer summation is over the zeroes of dx,
which we refer to as branch points. The function z 7→ z denotes the
meromorphic involution defined locally at the branch point α satisfying
x(z) = x(z) and z 6= z. The symbol ◦ over the inner summation means
that we exclude any term that involves ω0,1. Finally, the recursion

2By a multidifferential on Cn, we mean a meromorphic section of the line
bundle π∗

1(T ∗C)⊗ π∗
2(T ∗C)⊗ · · · ⊗ π∗

n(T ∗C) on the Cartesian product Cn, where
πi : Cn → C denotes projection onto the ith factor. We often drop the symbol ⊗
when writing multidifferentials.
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Topological recursion on the Bessel curve 57

kernel is given by

K(z1, z) = −
∫ z
∞ ω0,2(z1, · )

[y(z)− y(z)] dx(z)
.

In previous work [21], the authors considered the local behaviour of spec-
tral curves and their correlation differentials, and classified branch points
into the following three types.3

• Regular. We say that a branch point is regular if y(z) is analytic there.
In this case, there is a pole of ωg,n of order 6g − 4 + 2n at the branch
point, for 2g − 2 + n > 0. Note that some of the previous literature on
the topological recursion implicitly assumes that the spectral curves
under consideration only have regular branch points.

• Irregular. We say that a branch point is irregular if y(z) has a simple
pole there. In this case, there is a pole of ωg,n of order 2g at the branch
point, for 2g − 2 + n > 0.

• Removable. We say that a branch point is removable if y(z) has a
higher order pole there. In this case, the recursion kernel has a zero
at the branch point and there is no contribution to the correlation
differentials coming from the residue at the branch point.

At a regular branch point, a spectral curve locally resembles the Airy
curve, which is given by

x(z) =
1

2
z2 and y(z) = z.

This property lifts to the fact that the correlation differentials for an arbi-
trary spectral curve expanded at a regular branch point behave asymptoti-
cally like the correlation differentials for the Airy curve [27]. Similarly, the
correlation differentials for an irregular spectral curve expanded at an irreg-
ular branch point behave asymptotically like the correlation differentials for
the Bessel curve, which we examine in detail below [21].

3In light of the recent work of Bouchard and Eynard [9], one may furthermore
require the local behaviour at poles of x(z) of order greater than one. This was not
considered in the classification previously given by the authors [21] and does not
play a role in the study of the Bessel curve here.
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2.2. The Bessel curve

Define the Bessel curve to be the rational spectral curve endowed with the
meromorphic functions

x(z) =
1

2
z2 and y(z) =

1

z
.

The base cases of the topological recursion are given by

ω0,1(z1) = −y(z1) dx(z1) = −dz1 and ω0,2(z1, z2) =
dz1 dz2

(z1 − z2)2
.

The spectral curve has only one branch point, which occurs at z = 0, and
the local involution there is simply z = −z. Thus, the recursion kernel can
be expressed as

K(z1, z) = −
∫ z
∞ ω0,2(z1, · )

[y(z)− y(z)] dx(z)
=

1

2

1

z − z1
dz1
dz

.

For 2g − 2 + n > 0 and positive integers µ1, . . . , µn, define the number
Ug,n(µ1, . . . , µn) via the expansion

ωg,n(z1, . . . , zn) =

∞∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)

n∏
i=1

µi dzi

zµi+1
i

.

Note that such an expansion must exist, since ωg,n is meromorphic with
poles occurring only at the branch point zi = 0, where there is no residue.
By convention, we define U0,1(µ1) = 0 and U0,2(µ1, µ2) = 0.

Proposition 2.1. For 2g − 2 + n > 0 and S = {2, 3, . . . , n},

µ1 Ug,n(µ1,µS) =

n∑
k=2

(µ1 + µk − 1)Ug,n−1(µ1 + µk − 1,µS\{k})

(2.1)

+
∑

α+β=µ1−1
α,β odd

αβ

2

[
Ug−1,n+1(α, β,µS) +

∑
g1+g2=g
ItJ=S

Ug1,|I|+1(α,µI)Ug2,|J |+1(β,µJ)

]
.

Moreover, all numbers Ug,n(µ1, . . . , µn) can be calculated from the base cases
U0,1(µ1) = 0, U0,2(µ1, µ2) = 0 and U1,1(1) = 1

8 .
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Topological recursion on the Bessel curve 59

Proof. Suppose that the numbers Ũg,n(µ1, . . . , µn) are defined from the re-
cursion above and the given base cases. It is straightforward to show that
these numbers are uniquely defined and that Ũg,n(µ1, . . . , µn) = 0 unless
µ1, . . . , µn are positive odd integers that sum to 2g − 2 + n. In particular,
U0,n(µ1, . . . , µn) = 0 and the generating function

Fg,n(z1, . . . , zn) = (−1)n
∞∑

µ1,...,µn=1

Ũg,n(µ1, . . . , µn)

n∏
i=1

z−µi

i

is a homogeneous polynomial in 1
z1
, 1
z2
, . . . , 1

zn
that is odd in each variable.

The proposition will follow directly from the fact that ω̃g,n = ωg,n for 2g −
2 + n > 0, where the ω̃g,n are total derivatives of these generating functions.

ω̃g,n(z1, . . . , zn) = dz1 · · · dznFg,n(z1, . . . , zn).

It is straightforward to verify that ω̃1,1 = ω1,1 and ω̃0,3 = ω0,3 by direct com-
putation. We will now proceed to show that ω̃g,n = ωg,n by induction on
2g − 2 + n.

Start by multiplying both sides of the recursion by z−µ1−1
1 z−µ2

2 · · · z−µn
n

and sum over all positive integers µ1, . . . , µn to obtain the following.

∂

∂z1
Fg,n(z1, zS) =

n∑
k=2

zk
z21 − z2k

[
∂

∂z1
Fg,n−1(z1, zS\{k})−

∂

∂zk
Fg,n−1(zS)

]
+

1

2

[
∂2

∂t1∂t2
Fg−1,n+1(t1, t2, zS)

]
t1=z1
t2=z1

+
1

2

∑
g1+g2=g
ItJ=S

[
∂

∂z1
Fg1,|I|+1(z1, zI)

] [
∂

∂z1
Fg2,|J |+1(z1, zJ)

]
.

Now apply the operator ∂
∂z2
· · · ∂

∂zn
to both sides and introduce the no-

tation Wg,n(z1, . . . , zn) = ∂
∂z1
· · · ∂

∂zn
Fg,n(z1, . . . , zn).

Wg,n(z1, zS) =

n∑
k=2

∂

∂zk

zk
z21 − z2k

[
Wg,n−1(z1, zS\{k})−Wg,n−1(zS)

]
+

1

2
Wg−1,n+1(z1, z1, zS)

+
1

2

∑
g1+g2=g
ItJ=S

Wg1,|I|+1(z1, zI)Wg2,|J |+1(z1, zJ).
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The fact that Fg,n is odd in each variable implies that ω̃g,n is as well.
So after multiplying both sides of the previous equation by dz1 · · · dzn, we
obtain the following.

ω̃g,n(z1, zS)

=

n∑
k=2

[
dzk

z21 + z2k
(z21 − z2k)2

ω̃g,n−1(z1, zS\{k})− dz1
∂

∂zk

zk
z21 − z2k

ω̃g,n−1(zS)

]
− 1

2 dz1
ω̃g−1,n+1(z1, z1, zS)

− 1

2 dz1

∑
g1+g2=g
ItJ=S

ω̃g1,|I|+1(z1, zI) ω̃g2,|J |+1(z1, zJ).

Note that a meromorphic 1-form on CP1 is equal to the sum of its
principal parts, which may be stated as

ω̃(z1) =
∑
α

Res
z=α

dz1
z1 − z

ω̃(z),

where the sum is over the poles of ω̃(z). Applying this to our situation yields
the following, where we have removed terms from the right hand side that
do not contribute to the residue at z = 0.

ω̃g,n(z1, zS) = Res
z=0

1

2

1

z − z1
dz1
dz

[
− 2

n∑
k=2

dz dzk
z2 + z2k

(z2 − z2k)2
ω̃g,n−1(z,zS\{k})

+ ω̃g−1,n+1(z, z, zS) +
∑

g1+g2=g
ItJ=S

ω̃g1,|I|+1(z,zI) ω̃g2,|J |+1(z, zJ)

]
.

We may rewrite this in the following way, using ω0,2(z1, z2) = dz1 dz2
(z1−z2)2 .

ω̃g,n(z1, zS)

= Res
z=0

1

2

1

z − z1
dz1
dz

[
ω̃g−1,n+1(z, z,zS) +

∑
g1+g2=g
ItJ=S

ω̃g1,|I|+1(z, zI) ω̃g2,|J |+1(z,zJ)

+

n∑
k=2

(
ω0,2(z, zk) ω̃g,n−1(z,zS\{k}) + ω0,2(z, zk) ω̃g,n−1(z, zS\{k})

) ]
.
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By the inductive hypothesis, we may replace each occurrence of ω̃ on
the right hand side of the equation with the corresponding ω. We may also
absorb the first summation into the second to obtain the following.

ω̃g,n(z1, zS) = Res
z=0

1

2

1

z − z1
dz1
dz

[
ωg−1,n+1(z, z, zS)

+

◦∑
g1+g2=g
ItJ=S

ωg1,|I|+1(z, zI)ωg2,|J |+1(z,zJ)

]
.

Since this precisely agrees with the topological recursion, we have shown by
induction that ω̃g,n = ωg,n for all 2g − 2 + n > 0. Hence, Ũg,n(µ1, . . . , µn) =
Ug,n(µ1, . . . , µn) and the proposition follows. �

The correlation differentials produced by the topological recursion satisfy
string and dilaton equations, which relate ωg,n+1 and ωg,n [26].

Corollary 2.1. In the case of the Bessel curve, the string and dilaton equa-
tions both reduce to the equation

Ug,n+1(1, µ1, . . . , µn) = (2g − 2 + n)Ug,n(µ1, . . . , µn).

Proposition 2.1 provides an effective way to calculate all of the numbers
Ug,n(µ1, . . . , µn). The only non-zero Ug,n(µ1, . . . , µn) in genus up to 4 are
given by the following formulas. Observe that the appearance of factorials
in each case is due to Corollary 2.1.

U1,n(1, 1, 1, . . . , 1) =
1

23
(n− 1)! U4,n(7, 1, 1, . . . , 1) =

175

219
(n+ 5)!

U2,n(3, 1, 1, . . . , 1) =
3

28
(n+ 1)! U4,n(5, 3, 1, . . . , 1) =

575

7 · 219
(n+ 5)!

U3,n(5, 1, 1, . . . , 1) =
15

213
(n+ 3)! U4,n(3, 3, 3, . . . , 1) =

2407

105 · 218
(n+ 5)!

U3,n(3, 3, 1, . . . , 1) =
21

5 · 212
(n+ 3)!

3. Integrability for the Bessel partition function

3.1. Virasoro constraints

A wide variety of enumerative problems that are governed by the topological
recursion have an associated partition function Z that satisfies
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• Virasoro constraints, in the sense that Z is annihilated by a sequence
of differential operators that obey the Virasoro commutation relation;

• an integrable hierarchy, such as the Korteweg–de Vries (KdV), the
Kadomtsev–Petviashvili (KP), or the Toda hierarchies; and

• an evolution equation of the form ∂Z
∂s = MZ for some operator M

independent of s.

In particular, this theme has been enunciated by Kazarian and Zograf in the
context of enumeration of dessins d’enfant and ribbon graphs [32].

Define the Bessel partition function

Z(p1, p2, . . . ; ~) = exp

 ∞∑
g=0

∞∑
n=1

∑
µ1,...,µn

Ug,n(µ1, . . . , µn)
~2g−2+n

n!
pµ1
· · · pµn

,
which is an element of Q[[~, p1, p2, . . .]]. Note that negative powers of ~ do
not arise. For each non-negative integer m, define the differential operator

Lm = −
m+ 1

2

~
∂

∂p2m+1
+
∑
i odd

(m+ i
2)pi

∂

∂p2m+i
(3.1)

+
∑

i+j=2m

i,j odd

ij

4

∂2

∂pi∂pj
+

1

16
δm,0.

It is straightforward to verify that the operators L0, L1, L2, . . . form a
representation of half of the Witt algebra, or equivalently, half of the Vira-
soro algebra with central charge 0. In other words, they obey the Virasoro
commutation relations

[Lm, Ln] = (m− n)Lm+n, for m,n ≥ 0.

Theorem 3.1. For each non-negative integer m, we have LmZ = 0.

Proof. Write Z = exp(F ) so that 2LmZ = 0 is equivalent to

−2m+ 1

~
∂F

∂p2m+1
+
∑
i odd

(2m+ i)pi
∂F

∂p2m+i

+
1

2

∑
i+j=2m

i,j odd

ij

[
∂2F

∂pi∂pj
+
∂F

∂pi

∂F

∂pj

]
+

1

8
δm,0 = 0.
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Topological recursion on the Bessel curve 63

Extracting the coefficient of ~2g−3+n

n! pµ2
· · · pµn

from both sides yields the
equation

(2m+ 1)Ug,n(2m+ 1,µS) =

n∑
k=2

(2m+ µk)Ug,n−1(2m+ µk,µS\{k})

+
∑

α+β=2m

α,β odd

αβ

2

[
Ug−1,n+1(α, β,µS) +

∑
g1+g2=g
ItJ=S

Ug1,|I|+1(α,µI)Ug2,|J |+1(β,µJ)

]
.

Thus, the fact that Lm annihilates the Bessel partition function Z is equiv-
alent to the recursion of Proposition 2.1 with µ1 = 2m+ 1. The appear-
ance of the term 1

8δm,0 in the equation above simply encodes the base case
U1,1(1) = 1

8 . �

3.2. KdV integrability

Theorem 3.2. The partition function Z is a tau-function for the KdV
hierarchy. In particular, u = Fp1p1 satisfies the KdV equation

ut = u · ux +
~2

12
uxxx,

for x = p1 and t = p3. Furthermore, the solution satisfies u(x, 0, 0, . . .) =
~2

8(1−x)2 and has trivial dispersionless limit lim
~→0

u = 0.

Proof. We will show that the Bessel partition function is in fact equal to
the Brézin–Gross–Witten partition function. Indeed, the Bessel partition
function is uniquely defined by the fact that it is annihilated by the Virasoro
operators of equation (3.1) and the normalisation Z(0) = 1. On the other
hand, the BGW partition function is uniquely defined by the fact that it is
annihilated by the Virasoro operators appearing in the work of Alexandrov,
Mironov, Morozov and Semenoff [1, 2, 36]. Comparing the two sequences
of Virasoro operators, we see that they are equal upon setting tk = 1

kpk.
Now we simply use the fact that the BGW partition function is a known
tau-function for the KdV integrable hierarchy. The absence of genus zero
contributions to Z leads to the property lim

~→0
u = 0. �
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3.3. A cut-and-join evolution equation

The following result shows that the Bessel partition function satisfies an
evolution equation. The operator M that appears in the statement resembles
the cut-and-join operator for Hurwitz numbers [30]. This operator was also
found by Alexandrov [1].

Theorem 3.3. The Bessel partition function Z satisfies the equation ∂Z
∂~ =

MZ, where

M =
1

8
p1 +

1

2

∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+
∑
i,j odd

(i+ j − 1)pipj
∂

∂pi+j−1
.

We give two proofs since one follows methods of Kazarian-Zograf [32]
using Virasoro operators and is rather independent of the topological re-
cursion, while the other shows that the cut-and-join equation is directly
equivalent to the topological recursion.

First proof. Since the differential operators L0, L1, L2, . . . of equation (3.1)
annihilate the Bessel partition function, so does the following infinite linear
combination.

∞∑
m=0

2p2m+1Lm

= −
∞∑
m=0

p2m+1
2m+ 1

~
∂

∂p2m+1
+

∞∑
m=0

p2m+1

∑
i odd

(i+ 2m)pi
∂

∂pi+2m

+
1

2

∞∑
m=0

p2m+1

∑
i+j=2m

i,j odd

ij
∂2

∂pi∂pj
+

1

8

∞∑
m=0

p2m+1δm,0

= −
∞∑
m=0

p2m+1
2m+ 1

~
∂

∂p2m+1
+M.

Now we simply use the fact that for each monomial appearing in Z, the
exponent of ~ records the weighted degree in p1, p2, . . ., where pi has weight i.
This follows from the observation that Ug,n(µ1, . . . , µn) is non-zero only when
µ1 + · · ·+ µn = 2g − 2 + n, stated in the proof of Proposition 2.1. Therefore,
we have

∞∑
m=0

p2m+1
2m+ 1

~
∂Z

∂p2m+1
=
∂Z

∂~
.

�
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Second proof. For Z = exp(F ) the cut-and-join equation ∂Z
∂~ = MZ is equiv-

alent to the equation

∂F

∂~
=

1

8
p1F +

1

2

∑
i,j odd

ijpi+j+1

[
∂2F

∂pi∂pj
+
∂F

∂pi

∂F

∂pj

]
+
∑
i,j odd

(i+ j − 1)pipj
∂F

∂pi+j−1
.

By collecting coefficients on both sides of this equation, we see that it is
equivalent to the topological recursion via equation (2.1). �

Corollary 3.1. The Bessel partition function can be expressed as

Z(p1, p2, . . . ; ~) = exp(~M) · 1 =

∞∑
k=0

~k

k!
Mk · 1.

This gives an effective way to calculate Z. We present here the Bessel
partition function Z and corresponding free energy F = log(Z) up to terms
of order ~6.

Z(p; ~) = 1 +
1

23
p1~ +

9

27
p21~2 +

[
3

27
p3 +

51

210
p31

]
~3

+

[
75

210
p3p1 +

1275

215
p41

]
~4 +

[
45

210
p5 +

2475

214
p3p

2
1 +

8415

218
p51

]
~5

+

[
1845

213
p5p1 +

2025

215
p23 +

33825

217
p3p

3
1 +

115005

222
p61

]
~6 + · · ·

F (p; ~) =
1

8
p1~ +

1

16
p21~2 +

[
3

128
p3 +

1

24
p31

]
~3

+

[
9

128
p3p1 +

1

32
p41

]
~4 +

[
45

1024
p5 +

9

64
p3p

2
1 +

1

40
p51

]
~5

+

[
1

48
p61 +

15

64
p3p

3
1 +

63

1024
p23 +

225

1024
p5p1

]
~6 + · · ·

Remark. The operator

M =
1

8
p1 +

1

2

∑
i,j odd

ijpi+j+1
∂2

∂pi∂pj
+
∑
i,j odd

(i+ j − 1)pipj
∂

∂pi+j−1



i
i

“2-Do” — 2018/4/27 — 18:35 — page 66 — #14 i
i

i
i

i
i

66 N. Do and P. Norbury

is not an element of the Lie algebra ĝl(∞). If it were, then since 1 is a

tau-function of the KP hierarchy and the action of ĜL(∞) maps KP tau-
functions to KP tau-functions, then Corollary 3.1 could be used to give
another proof that Z is a KP tau-function. Since Z depends on pi only for
i odd, one could then deduce that it is a KdV tau-function. However, one

can prove that M /∈ ĝl(∞) using the fact that exp(p1) is a KP tau-function
while exp(~M) · exp(p1) is not a KP tau-function, which can be observed
from its expansion in ~.

4. The quantum curve

Consider the wave function ψ(z, ~) formed from the following so-called prin-
cipal specialisation of the partition function.

ψ(z, ~) = Z(p1, p2, . . . ; ~)|pi=z−i

= exp

 ∞∑
g=0

∞∑
n=1

∞∑
µ1,...,µn=1

Ug,n(µ1, . . . , µn)
~2g−2+n

n!
z−(µ1+···+µn)


= 1 +

1

8

~
z

+
9

128

~2

z2
+

75

1024

~3

z3
+

3675

3268

~4

z4
+

59535

262144

~5

z5
+ · · ·

Theorem 4.1. The wave function ψ(z, ~) satisfies the differential equation

1

2
z2

d2

dz2
ψ + ~−1z2

d

dz
ψ +

1

8
ψ = 0.

Proof. Start with the evolution equation

[
M − ∂

∂~

]
Z(p1, p2, . . . ; ~) = 0.

The action of the operator on a monomial

[
M − ∂

∂~

]
pµ1
· · · pµn

~|µ|
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has the following principal specialisation, obtained by substituting pi = z−i

for i = 1, 2, 3, . . ..1

8
z−1 +

1

2

∑
k 6=`

µkµ`z
−1 +

1

2

n∑
k=1

(µ2k + µk)z
−1 − |µ|~−1

 z−|µ|~|µ|
=

[
1

8
z−1 +

1

2
|µ|2z−1 +

1

2
|µ|z−1 − |µ|~−1

]
z−|µ|~|µ|

=

[
1

8
z−1 +

1

2

d

dz
z

d

dz
− 1

2

d

dz
+ ~−1z

d

dz

]
z−|µ|~|µ|

=

[
1

8
z−1 +

1

2
z

d2

dz2
+ ~−1z

d

dz

]
z−|µ|~|µ|.

Combine this calculation with the observation that Ug,n(µ1, . . . , µn) is
non-zero only when µ1 + · · ·+ µn = 2g − 2 + n to obtain[

1

2
z2

d2

dz2
+ ~−1z2

d

dz
+

1

8

]
ψ(z, h) = 0.

�

Corollary 4.1. We have the following explicit expression for the wave func-
tion.

ψ(z, ~) =

∞∑
d=0

(2d− 1)!!2

8dd!

(
~
z

)d
.

Proof. Put ψ(z, ~) =
∑
ad

~d

zd , so we have

0 =

[
1

2
z2

d2

dz2
+ ~−1z2

d

dz
+

1

8

] ∞∑
d=0

ad
~d

zd

=

∞∑
d=0

[
1

2
d(d+ 1)ad − (d+ 1)ad+1 +

1

8
ad

]
~d

zd
.

Thus,

1

2
d(d+ 1)ad − (d+ 1)ad+1 +

1

8
ad = 0

⇒ ad+1 =
1
2d(d+ 1) + 1

8

d+ 1
ad =

1

8

(2d+ 1)2

d+ 1
ad,
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from which one obtains

ad =

d∏
i=1

ai
ai−1

=

d∏
i=1

1

8

(2i− 1)2

i
=

1

8d
(2d− 1)!!2

d!
.

�

Define the modified wave function in general via the equation

ψ0(z, ~) = exp
[
~−1S0(z) + S1(z) + ~S2(z) + ~2S3(z) + · · ·

]
,

where

S0(z) =

∫
y(z) dx(z),

S1(z) = −1

2
log

dx

dz
,

Sk(z) =
∑

2g−1+n=k

(−1)n

n!

∫ z

∞
· · ·
∫ z

∞
ωg,n(z1, . . . , zn), for k ≥ 2.

The definition of Sk(z) here deserves some remarks. First, note that the
definition appears throughout the literature [6, 26, 31], although we adopt
a sign convention that forces the appearance of the (−1)n factor. Next, the
choice of base point for the integration is a subtle but important issue that
is discussed in the literature [6, 9, 26]. One usually chooses the base point to
be a pole of x, which in this case, forces us to integrate from z =∞. In other
cases, choosing different base points may result in different expressions for
the quantum curve. Finally, the definition of a wave function for spectral
curves of genus greater than zero may require non-perturbative corrections,
which enter in the form of theta functions [6, 7].

Whereas the geometry of the spectral curve emerges from the semi-
classical limit ~→ 0, non-commutative quantum behaviour arises away from
this limit. Thus, one expects that the modified wave function is annihilated
by a differential operator that is a quantization of the spectral curve, as long
as the spectral curve satisfies a particular “quantizability condition”. This
conjecture was studied by Gukov and Su lkowski [31], who demonstrate how
to derive the first terms of the ~-expansion of this quantum curve operator
using the calculation of ωg,n via topological recursion.

In the case of the Bessel spectral curve, we may verify the conjecture to
all orders by computing explicitly S0(z) = z, S1(z) = −1

2 log z, and



i
i

“2-Do” — 2018/4/27 — 18:35 — page 69 — #17 i
i

i
i

i
i

Topological recursion on the Bessel curve 69

∫ z

∞
· · ·
∫ z

∞
ωg,n(z1, . . . , zn) =

∞∑
µ1,...,µn=1

(−1)n Ug,n(µ1, . . . , µn)

n∏
i=1

z−µi

i

∣∣∣
zi=z

=

∞∑
µ1,...,µn=1

(−1)n Ug,n(µ1, . . . , µn) z2−2g−n.

The second equality follows since non-zero contributions arise only when∑
µi = 2g − 2 + n. Therefore, we have the relation

(4.1) ψ0(z, ~) = exp(z/~) z−1/2 ψ(z, ~).

Now at the level of the modified wave function, Theorem 4.1 can be
expressed equivalently as[

~2z2
d2

dz2
+ ~2z

d

dz
− z2

]
ψ0(z, ~) = 0.

And in terms of the operators x̂ = x = 1
2z

2 and ŷ = ~ d
dx = ~

z
d
dz , we can write

this as

[2ŷx̂ŷ − 1]ψ0(z, ~) = 0.

This is the quantum curve equation and its semi-classical limit is 2xy2 − 1 =
0, from which we recover the original spectral curve. This quantum curve
was obtained by Alexandrov [1] and also by Bouchard and Eynard [9], where
its relation to the topological recursion was proven as a consequence of a
much more general theorem for a large class of rational spectral curves.
As mentioned previously, the name Bessel curve derives from the fact that
the differential equation above is the modified Bessel equation (after set-
ting ~ = 1) with parameter 0. Hence, ψ0(z, ~) = K0(z/~), where K0 denotes
the modified Bessel function. In fact, combining Corollary 4.1 and equa-
tion (4.1) gives precisely the known asymptotic expansion of the modified
Bessel function.
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