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We study the limit of Calabi-Yau modular forms, and in particu-
lar, those resulting in classical modular forms. We then study two
parameter families of elliptically fibred Calabi-Yau fourfolds and
describe the modular forms arising from the degeneracy loci. In
the case of elliptically fibred Calabi-Yau threefolds our approach
gives a mathematical proof of many observations about modularity
properties of topological string amplitudes starting with the work
of Candelas, Font, Katz and Morrison. In the case of Calabi-Yau
fourfolds we derive new identities not computed before.
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1. Introduction

Theoretical Physics and in particular string theory has provided mathemati-
cians with many q-expansions which at first glance look like modular forms.
This is actually the case for some examples of such q-expansions, however,
in general they transcend the world of modular and automorphic forms. The
case of the mirror quintic is the most well-known one, and it is argued in
[Mov15b, Mov15a, AMSY14] that there is a parallel modular form theory
in this case. These are called Calabi-Yau modular forms. In this paper we
gather further evidence that Calabi-Yau modular forms are natural gener-
alizations of classical automorphic forms. It is a well-known fact that some
automorphic forms are the limit of others. We would like to study these
phenomena in the context of Calabi-Yau modular forms for the case of el-
liptically fibred Calabi-Yau manifolds. Here, as first observed in [CFKM94],
the corresponding limit for many examples are modular forms for SL(2,Z).
This observation has ultimately led to a reformulation of the topological
string partition function for this class of Calabi-Yau manifolds in terms of
meromorphic Jacobi forms which has culminated in the first all-genus re-
sults for the Gromov-Witten theory of compact versions of these manifolds
[HKK15]. In the case of compact elliptically fibred Calabi-Yau fourfolds,
which are the focus of the present paper, Gromov-Witten invariants have
been computed up to genus one [KP08] which is the highest non-vanishing
genus for fourfolds. However, a reformulation of the generating functions
for these invariants in terms of classical modular forms is still lacking. One
goal of the present paper is to remedy this gap by expressing generating
functions for the genus zero Gromov-Witten invariants in terms of SL(2,Z)
modular forms. In the case of non-rigid Calabi-Yau manifolds of dimension
≥ 3 we do not have an underlying Hermitian symmetric domain and so we
have to rephrase our problem in terms of Picard-Fuchs systems. Below we
describe the general setting together with the main statement of our re-
sults and elaborate on the motivation from Physics and in particular string
theory.

1.1. Main statement

We start with two parameter families of elliptically fibred Calabi-Yau n-folds
Xz, z ∈ (C2, 0). These are constructed in the framework of toric geometry,



Elliptic fibrations 881

see §2.1. For the construction of the field of Calabi-Yau modular forms, one
can skip such geometric considerations, and one can start with the corre-
sponding Picard-Fuchs system:

L1 := −n · θ1θ2 + θ21 − a0z1(θ1 + a1)(θ1 + a2) = 0,(1)

L2 := θn2 − (−1)nz2(n · θ2 − θ1)(n · θ2 − θ1 + 1) · · · (n · θ2 − θ1 + n− 1)(2)

= 0,

where n, a0, a1, a2 are parameters of the system. The relevant cases to String
Theory are the cases n = 3, 4 and (a0, a1, a2) as in the Table 1. If we define
Ln ⊂ [z1, z2, θ1, θ2], with θi = zi∂zi , to be the differential left ideal generated
by the operators L1 and L2, then Ln anihilates the periods of a (n, 0)-forms
ω(n,0) in Xz. The system Ln has one holomorphic solution Π0 = O(1) and
logarithmic solutions Πa = Π0 log(za) +O(1), a = 1, 2. The field Mn of dif-
ferential Calabi-Yau modular forms in these situations is the field extension
Mn of C generated by

z1, z2, θi1θ
j
2Π

0, θi1θ
j
2

(
Π0θaΠ

b −ΠbθaΠ
0
)
,(3)

a, b = 1, 2, . . . , h := h12(Xz) = 2, i, j ∈ N0.

Elements of Mn are by definition rational functions in (3) with coefficients
in C. One talks about the field of Calabi-Yau modular forms because con-
structing a graded algebra in this case, similar to the algebra of modular
forms, demands a more elaborate analysis which is beyond the scope of
this work. We refer for a discussion on these issues for the case of the mir-
ror quintic to [Mov15b, Mov15a]. The field Mn is finitely generated, for
instance, it is shown in [AMSY14] that for n = 3 one actually needs only
3h2+7h+4

2 = 15 elements in the list (3) in order to generate Mn. The modular
expressions of the elements of Mn are obtained after inserting the mirror
map (τ1, τ2) = (Π

1

Π0 ,
Π2

Π0 ) or using the (q1, q2) = (eτ1 , eτ2) coordinates. From
now on we will use the same name for an element f(x) of Mn when working
with different coordinate systems x = (z1, z2), (τ1, τ2) or (q1, q2). The main
result of the present paper is the following

Theorem 1. Let f(q1, q2) ∈ Mn and assume that it is of the form

f = f0(q1) + f1(q1)(q2q
n

2

1 ) + · · ·+ fi(q1)(q2q
n

2

1 )
i + · · ·

where q
n

2

1 = eτ1·
n

2 . Then for arbitrary n and (a0, a1, a2) as in Table 1 all
fi(e

τ1)’s are algebraic over the field of meromorphic quasi-modular forms on
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(a0, a1, a2) Group Modular forms

(432, 5/6, 1/6) SL(2,Z) E4(τ), E6(τ)

(64, 3/4, 1/4) Γ0(2) E2(τ)− 2E2(2τ), E4(τ)

(27, 2/3, 1/3) Γ0(3) E2(τ)− 3E2(3τ), E4(τ), E6(τ)

(16, 1/2, 1/2) Γ(2) θ42, θ
4
3

Table 1: Modular groups

the upper half plane τ1 ∈ H for the subgroup of SL(2,Z) listed in the same
table.

Note that, by definition, an element f ∈ Mn might have poles at many
different points of the z1-plane, and hence, as a function of τ1 it might
have poles at many points on the upper half plane including i∞. Writing
f in terms of q1, Mn becomes a sub-field of the field of convergent Laurent
series in q1 with a finite pole order and with a convergence radius which is
not necessarily equal to one (due to the appearance of other poles). In the
present paper we perform explicit computations for the SL(2,Z) case and
all fi(q1) we encounter in this case for an example of f are of the form

(4) fi(q1) =
P (E2, E4, E6)

η48i
,

where P (E2, E4, E6) is a polynomial in the Eisenstein series E2, E4 and
E6, see §6. This functional form is a subset of the allowed fi appearing in
Theorem 1. It would be possible to analyze the proof of Theorem 1 and
obtain a finer statement but we do not attempt to do this in the current
paper.

There is a tremendous amount of computation in the Physics literature
confirming our main theorem for n = 3 and (a1, a2) = (1/6, 5/6), see §1.2.
It does not seem to us that there is any Physics for n ≥ 5. The case n =
4, (a1, a2) = (1/6, 5/6) is the main motivation for us. In this case we have

a collection of four-point functions C
(1,1,1,1)
abcd ∈ Mn, a, b, c, d = 1, 2 which are

invarinat under index permutations, for definitions see (57) and (64). For
instance, we derive the following identity for the four-point function
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C
(1,1,1,1)
2222 = −q2

(
q21
η48

)[
5

9
E4E6(35E

3
4 + 37E2

6)

]
(5)

− q22

(
q41
η96

)[
5

602208
(12377569E9

4 + 1960000E2E
7
4E6

+ 85433141E6
4E

2
6 + 4144000E2E

4
4E

3
6 + 86392307E3

4E
4
6

+ 2190400E2E4E
5
6 + 11544823E6

6)

]
+O(q32).

There is no enumerative geometry attached to this function. However, if we

write it in terms of three-point functions C
(1,1,2)
abγi

, a, b = 1, i = 1, 2

(6) C
(1,1,1,1)
abcd = −4C

(1,1,2)
abγ1

C
(1,1,2)
cdγ1

+ C
(1,1,2)
abγ2

C
(1,1,2)
cdγ1

+ C
(1,1,2)
abγ1

C
(1,1,2)
cdγ2

,

then from C
(1,1,2)
abγi

we can derive the Gromov-Witten potentials F 0(γi), i =
1, 2:

(7) C
(1,1,2)
abγi

= ∂τa∂τbF
0(γi), a, b, i = 1, 2.

We find that (6) together with (7) allows us to solve for the functions C
(1,1,2)
22γi

at least to low orders in an expansion in q2 which determines the potantials
F 0(γi) in such an expansion as follows1

F 0(γ1) = q2

(
q21
η48

)[
5

18
E4E6(35E

3
4 + 37E2

6)

]
+O(q22),(8)

F 0(γ2) = 1 + q2

(
q21
η48

)[
5

10368
(10321E6

4 + 1680(−24 + E2)E
4
4E6)(9)

+ 59182E3
4E

2
6 + 1776(−24 + E2)E4E

3
6 + 9985E4

6)

]
+O(q22).

We now explain the enumerative geometry of the coefficients of

f1 =
5

18

1

η48
(
E4E6(35E

3
4 + 37E2

6)
)

= −20q−2
1 + 7680q−1

1 − 1800000 + 278394880q1 + · · ·
+N0,d1,1(γ1)q

d1−2
1 + · · ·

1In all following appearances of F 0(γi) we will suppress terms logarithmic in the
qi as these only contain information about classical intersection numbers.
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For further details see [KP08]. The B-model Calabi-Yau fourfold Xz un-
derlying the Picard-Fuchs system Ln, n = 4, is mirror dual to a Calabi-
Yau fourfold X̃ which is the resolution of the degree 24 hypersurface in
P5(1, 1, 1, 1, 8, 12). The resolution is done by blowing-up once at the unique
singular point x1 = x2 = x3 = x4 = 0. Let D̃1

∼= P3 be the corresponding
exceptional divisor. The variety X̃ has the Hodge numbers h0,0 = h4,0 =
1, h11 = 2, h31 = 3878, h22 = 15564 and its elliptic fibration is given by
X̃ → P3 which is a projection to the first four coordinates. Let D2 be the
divisor in X̃ which is a pull-back of a linear P2 ⊂ P3 and D1 = 4D2 + D̃1.
For β ∈ H2(X̃,Z) and γ ∈ H4(X̃,Z) we have the Gromov-Witten invariants

(10) Ng,β(γ) =

∫
[M̄g,1(X̃,β)]virt

ev∗(γ),

where M̄g,1(X̃, β) is the moduli space of genus g, 1-pointed stable maps to

X̃ representing the class β and ev : Mg,1(X̃, β) → X̃ is the evaluation map.

We take a basis [E], [P1] ∈ H2(X̃,Z), where [E] is the homology class of
fibers of X̃ → P3 and [P1] is the homology class of a line P1 inside D̃1. We
write Ng,d1,d2

(γ) := Ng,d1[E]+d2[P1](γ). In our formula (8), γ1 is the Poincaré
dual to D2

2 and γ2 is dual to a linear combination of D2
2 and D1D2. Our

modular expressions for the Gromov-Witten generating functions are proved
by using the B-model side of mirror symmetry, and showing such statements
for the A-model side by using the definition (10) are highly non-trivial open
problems.

1.2. Motivation

Recently, there has been a lot of progress and activity in solving the topo-
logical string on elliptic Calabi-Yau threefolds [KMW12, AS12, HIK+15,
HKLV14, HLV14, KKL+14, CHS15, HKLV15, HKK15, GHK+15, KKL15].
In the case of non-compact Calabi-Yau three-folds these results lead to the
computation of refined stable pair invariants [CKK14] and translate on the
physics side to partition functions of 6d SCFTs. In the compact case the
topological string partition function is the generating function of Gromov-
Witten invariants and on the physics side leads to the computation of the
entropy of black holes [HMVV15]. In all these cases one can observe that
topological string free energies are fully expressible in terms of classical mod-
ular forms. We review these results here where we confine ourselves to the
case of compact Calabi-Yau three-folds X̃ with a complex two-dimensional
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base B and elliptic fibre E2. Here one can define a generating function for
the Gromov-Witten invariants in terms of a genus expansion in a parameter
λ

(11) F (λ, q) =

∞∑
g=0

λ2g−2F (g)(q),

where the upper index g indicates the genus. According to the split of the
cohomologyH2(X̃,Z) into the base and the fibre cohomology, we define qβB =∏b2(B)

k=1 exp(2πi
∫
β iω + b), where β ∈ H2(B,Z), and q = exp(2πi

∫
f iω + b)

with f being the curve representing the fibre3. We now define

(12) F
(g)
β (q) = Coeff(F (g)(q), qβB).

Then one observes [KMW12] that the F
(g)
β (q) have distinguished modular

properties and can be written as

(13) F
(g)
β =

(
q

1

24

η

)12
∑

i ciβ
i

P2g+6
∑

i ciβ
i−2(E2, E4, E6),

where P2g+6
∑

i ciβ
i−2(E2, E4, E6) are (quasi)-modular forms of weight 2g +

6
∑

i ciβ
i − 2 and the ci are integer coefficients depending on the base B.

As was first observed in [HIK+15], the above modularity properties can
be repackaged in the topological string partition function leading to a sum
over meromorphic Jacobi forms:

(14) Z(q, λ) = exp
(
F (λ, q)

)
=

∑
β

qβBZβ(q, λ),

where Zβ are Jacobi forms of weight zero with index a quadratic form on
H2(B,Z). This repackaging has led to the first all-genus solutions of the
topological string on compact Calabi-Yau manifolds [HKK15].

Motivated by these results, our objectives for the present paper are to
give mathematical proofs for modularity properties of topological string am-
plitudes for elliptic Calabi-Yau n-folds with n ≥ 3.

2In general the fibre can degenerate over co-dimension one loci in the base and
lead to more cohomology classes whose intersection matrices are given by ADE
dynkin diagrams as described by Kodaira. Here we limit ourselves to the case where
there is only one such cohomology class.

3iω + b denotes the complexified Kähler form.
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2. Preliminaries

2.1. Toric geometry of elliptically fibred Calabi-Yau varieties

In this paper we confine ourselves to the class of elliptically fibred Calabi-Yau
n-folds over Pn−1. The elliptic fibre can be one of four types depending on the
weighted projective space in which it is realized. Denote by P2(w1, . . . , wr)
a projective bundle over the base B = Pn−1. The four classes are given by
four choices of weights (w1, . . . , wr) = {(1, 2, 3), (1, 1, 2), (1, 1, 1), (1, 1, 1, 1)}
leading to elliptic curves which are hypersurfaces in the first three cases and
a complete intersection in the last case. The Calabi-Yau manifolds corre-
sponding to the first three cases can be realized as hypersurfaces in toric
ambient spaces. The corresponding polyhedron with the Mori cone vectors
is given by [KMW12]:

(15)

l(1) l(2)

D0 1 0 · · · 0 0 0
∑

i ei − 1 0
D1 1 e1 e2 0 1
... 1 ΔB

...
...

...
...

Dn 1 e1 e2 0 1
Dz 1 0 · · · 0 e1 e2 1 −n
Dx 1 0 · · · 0 1 0 −e1 0
Dy 1 0 · · · 0 0 1 −e2 0.

In the above ΔB represents the toric polyhedron of the base which in our
case is Pn−1:

(16)

D1 1 0 · · · 0
D2 0 1 · · · 0
...

... 0
. . . 0

Dn−1 0 · · · 0 1
Dn −1 −1 · · · −1
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Furthermore, e1 and e2 are determined by the three types of elliptic curves
which are realized as hypersurfaces:

(17) {(e1, e2)} = {(−2,−3), (−1,−2), (−1,−1)} .

Using the Mori cone vectors l(1) and l(2) one derives (see [HKTY95]) the
Picard-Fuchs system Ln in (1) and (2). It depends on the Euler number of
the base χ = n. The vector (e1, e2) determines Ln with:

(e1, e2) = (−2,−3) ⇒ (a0, a1, a2) = (432, 5/6, 1/6)

(e1, e2) = (−1,−2) ⇒ (a0, a1, a2) = (64, 3/4, 1/4)

(e1, e2) = (−1,−1) ⇒ (a0, a1, a2) = (27, 2/3, 1/3).(18)

We also include the last case where the fibre elliptic curve is realized as a
complete intersection in P3 [KMW12]:

(19) (a0, a1, a2) = (16, 1/2, 1/2).

3. Non-commutative rings

Let C[z, θ] = C[z1, z2, . . . , zh, θ1, θ2, . . . , θh] be a non-commutative ring with
non-commutative relations

θizi = zi(θi + 1).

Here, the variable θi := zi
∂
∂zi

can be interpreted as the logarithmic deriva-
tion. Let also L be a finitely generated left ideal of C[z, θ]. For a fixed
coordinate z2, the restriction of I to z2 = 0 is defined to be

L |z2=0:=
{
A ∈ C[ẑ, θ̂] | ∃B1, B2 ∈ C[z, θ], A+ z2B1 + θ2B2 ∈ I

}
.

Here, ẑ (resp. θ̂) is z (resp. θ) with z2 (resp. θ2) removed. The computer
algebra Singular, see [GPS01], has two libraries nctools.lib, dmodapp.lib
for dealing with non-commutative ideals and their restrictions. If Π0 is a
holomorphic solution of L then Π0 |z2=0 is a holomorphic solution of L |z2=0.
We are mainly interested in the case where h = 2. In this paper we only need
the following

Proposition 1. Let Ln ⊂ C[z1, z2, θ1, θ2] be the left ideal generated by L1

and L2 in (1) and (2). The restriction Ln |z2=0 is generated by

(20) L := θ21 − a0z(θ1 + a1)(θ1 + a2).
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(1/2, 1/2), (2/3, 1/3), (3/4, 1/4), (5/6, 1/6),
(1/6, 1/6), (1/3, 1/6), (1/2, 1/6), (1/3, 1/3), (2/3, 2/3),
(1/4, 1/4), (1/2, 1/4), (3/4, 1/2), (3/4, 3/4), (1/2, 1/3),
(2/3, 1/6), (2/3, 1/2), (5/6, 1/3), (5/6, 1/2), (5/6, 2/3),
(5/6, 5/6), (3/8, 1/8), (5/8, 1/8), (7/8, 3/8), (7/8, 5/8),
(5/12, 1/12), (7/12, 1/12), (11/12, 5/12), (11/12, 7/12)

Table 2: N -integral hypergeometric mirror maps.

Proof. This follows immediately from the explicit form of L1 and L2. �

From now on we write z, θ etc. instead of z1, θ1 in situations where we have
taken the limit z2 → 0. In Appendix C we have computed more restrictions
of non-commutative ideals.

3.1. Modular forms and Gauss hypergeometric equation

In the literature, we can find many examples of modular forms derived from
the solutions of the Gauss hypergeometric equation (20) and for particular
values of a0, a1, a2, however, a uniform approach for arbitrary parameters
ai has been recently developed in [DGMS13] and [MS14]. In [Mov15a] page
155 we have shown that the mirror map/Schwarz map of (20) has integral
q-coefficients if and only if the pair a1, a2 belongs to the class of 28 elements
in Table 2:

For the proof of Theorem 1 we will need the condition a1 + a2 = 1. This
reduces our table above to the four cases of (a1, a2) shown in Table 1. The
parameter a0 is just a rescaling of z1 and n can be any positive integer. For
all 28 examples in the Table 2 one can determine an arithmetic group Γ,
which is basically the monodromy group of L, and the corresponding algebra
of modular forms. For our purposes we only need the four cases relevant for
this article and gathered in Table 1. In this table Ei’s and θi’s are classical
Eisenstein and theta series, respectively. The quasi-modular forms in each
case is given by the C-algebra generated by E2 and the modular forms in
the third column. In the last row note that θ44 = θ43 − θ42. In the third row
we have a polynomial relation between the three modular forms there, see
for instance the last section of [Mov15c].
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3.2. Hypergeometric functions

In this section we first recall some well-known properties of the hypergeo-
metric function

F (a, b|z) = pFq(a1, a2, . . . , ap, b1, b2, . . . , bq|z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)kk! z

k,

|z| < 1, bi 
= 0,−1,−2, . . .

which satisfies the linear differential equation L(a, b)F (a, b|z) = 0, where

L(a, b) = θ(θ + b1 − 1)(θ + b2 − 1) · · · (θ + bq − 1)(21)

− z(θ + a1)(θ + a2) · · · (θ + ap)

= 0

(ai)k = ai(ai + 1)(ai + 2)...(ai + k − 1), (ai)0 = 1 is the Pochhammer sym-
bol and θ = z d

dz . For simplicity, for a function f and a linear differential op-
erator L when we say that f satisfies L = 0 we mean L(f) = 0. For q = p− 1
and b1 = b2 = · · · = bq = 1, we have also the following logarithmic solution
G(a, 1|z) + F (a, 1|z) log z, where

(22) G(a, 1|z) =
∞∑
k=1

(a1)k · · · (ap)k
(k!)p

⎡⎣ p∑
j=1

k−1∑
i=0

(
1

aj + i
− 1

1 + i
)

⎤⎦ zk.

We would like to find solutions of L(a, b) when some of the bi’s are negative
integers or zero. Let F be any solution of L(a, b). We note that zaF satisfies

(θ − a)(θ + b1 − 1− a)(θ + b2 − 1− a) · · · (θ + bq − 1− a)

− z(θ + a1 − a)(θ + a2 − a) · · · (θ + ap − a) = 0

and so zb1−1F satisfies

L(a1 − b1 + 1, . . . , ap − b1 + 1; 2− b1, b2 − b1 + 1, . . . , bq − b1 + 1) = 0.

We will also need the following

∂

∂z
F (a1, . . . , ap, b1, . . . , bq|z)(23)

=
a1a2 · · · ap
b1b2 · · · bq F (a1 + 1, . . . , ap + 1, b1 + 1, . . . , bq + 1|z).
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Let us proceed to the discussion for the case of the classical Gauss hyperge-
ometric equation with p = q + 1 = 2. We conclude that two solutions of

(θ − n− 1)θ + z(θ + a1)(θ + a2) = 0, n ∈ N0

are given by zn+1F (a1 + n+ 1, a2 + n+ 1, n+ 2|z), where F here refers to
two solutions of L(a1 + n+ 1, a2 + n+ 1, n+ 2). For the holomorphic solu-
tion F this can be also seen using the limit

lim
b1→−n

F (a1, a2, b1 | z)
Γ(b1)

=
(a1)n+1(a2)n+1

(n+ 1)!
zn+1F (a1 + n+ 1, a2 + n+ 1;n+ 2|z).

4. Proof of Theorem 1

The proof of Theorem 1 is given at the level of periods or solutions of linear
differential equations. More precisely, we prove that for f(z1, z2) ∈ Mn of the
form

f = f0(z1) + f1(z1)(q2q
n

2

1 ) + · · ·+ fi(z1)(q2q
n

2

1 )
i + · · · ,

all fi(z) are in the field C(z, F, θF ), where F is the Gauss hypergeometric
function. After inserting the mirror map in fi’s one gets the main result as
it is announced, see §3.1. Note that we further need the modular expression
of each z, F and θF . For instance, for SL(2,Z) we have

F (z) → F (z(τ)) = (E4)
1

4 , z → z(τ) =
1

864
(1−

√
1− 1728/J),(24)

θF (z) → θF (z(τ)) =
E

1/4
4 (E2E4 − E6)

6(E
3

2

4 + E6)
.

Similar expressions for the other three hypergeometric functions in Table 1
can be obtained by using the definition of Eisenstein series for triangle groups
(see pages 706-707 of [DGMS13] together with their modular expressions in
Section 4.2 for Γ(2) and Section 4.3 for Γ(m), m = 2, 3 of the same article).

We will analyze the equality

fi(z1) =
1

i!

(
q

n

2

1

∂

∂q1

)(i)

f.
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4.1. Solutions of Ln

Let us consider the Picard Fuchs system. Let L1 and L2 be as in (1) and
(2) and let L be the Gauss hypergeometric equation (20). It is also usefull
to define

(25) Lm := L−mθ1.

We have L1 = L− nθ1θ2. We have three solutions of Ln of the form:

Π0 = 1 +

∞∑
i=1

Π0
i (z1)z

i
2

Πa = Π0 ln(za) +

∞∑
i=1

Πa
i (z1)z

i
2 a = 1, 2.

We need to analyze the following Wronskians in the limit z2 = 0:

(26) W a,b := det

(
Π0 θaΠ

0

Πb θaΠ
1b

)
, a, b = 1, 2.

All Wa,b’s satisfy Picard-Fuchs differential equations of higher orders. We
will write

(27) W a,b =

∞∑
i=0

W a,b
i (z1)z

i
2.

In what follows we will use the derivation of differential operators with
respect to the differentiation variable, for instance

∂Lm

∂θ
= 2(1− a0z)θ − a0z(a1 + a2)−m.

Proposition 2. We have

Ln·iΠ0
i = 0,(28)

Ln·i(Π0
i log(z1) + Π1

i ) = 0,(29)

Ln·iΠ1
i = −Ln·i

∂θ
Π0

i ,(30)

Ln·iΠ2
i = n · θ1Π0

i .(31)
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Proof. We just apply the operator L− nθ1θ2 to Π0,Π2 and Π1, respectively,
and we arrive at the above equalities. Note that the third one is the refor-
mulation of the second one using the equality

(32) L(f log z) = L(f) log z +
∂L

∂θ
(f).

In general, for two holomorphic functions f and g in z and a differential
operator L of order k in z, θ, we have used

(33) L(fg) = L(f) · g + ∂L

∂θ
(f) · θg + · · ·+ ∂kL

∂θk
(f) · θkg.

We can verify this easily for L = θn by induction on n. �

Proposition 3. The Wronskian of the differential operator Lm in (25) (up
to miltiplication with a constant) is

(1− a0z)
−a1−a2

(
z

1− a0z

)m

.

Proof. We use the differential equation of the Wronskian W

θW =
a0(a1 + a2)z +m

1− a0z
W.

�
Using the properties of hypergeometric functions introduced in §3.2 we get
the following:

Proposition 4. We have

Π0
i = c0i z

n·i ∂n·i

∂zn·i
F (a1, a2, 1|z),(34)

Π0
i log(z1) + Π1

i = c1i z
n·i ∂n·i

∂zn·i
(F (a1, a2, 1|z) ln(z1) +G(a1, a2, 1|z))(35)

+ c̃1iΠ
0
i ,

where c0i , c
1
i , c̃

1
i are constants.

The constants c0i , c
i
1, c̃

1
i can be computed after applying the second op-

erator L2 to Π0,Π1. For the mathematical proof of Theorem 1 we do not
need to compute them, however, for explicit verifications of Theorem 1 one
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must compute them. From (34) it follows that Π0
i is in the field C(z, F, θF ).

Note that

θ2F =
a0(a1 + a2)z

1− a0z
θF +

a0a1a2z1
1− a0z

F.

Proposition 5. The quantities W a,1
i , a = 1, 2 are in the field C(z, F, θF ).

Proof. In (35) we use

F (a1, a2, 1|z) ln(z) +G(a1, a2, 1|z) = F (a1, a2, 1|z) log(q)

and

(36)
∂ log(q)

∂z
=

(1− a0z)
−a1−a2z−1

F 2

and we write

Π0
i log(z) + Π1

i = Π0
i log(q) +Ai

where A0 = 0. We claim that Ai is in C(z, F, θF ). We can see this in two
different ways. First, by using (35) and (36), second, by applying the second
differential operator L2 on Π0

i log q +Ai which gives a recursion for the Ai’s
fixing them without ambiguity. �

4.2. Nonhomogeneous differential equations

We would like to solve the non-homogeneous equation (31). In general, if we
are given a second order linear differential operator L = θ2 + p(z)θ + q(z)
with two linearly independent solutions y1, y2, then a solution of the non-
homogeneous differential equation L = g(z) is given by u1y1 + u2y2, where

u1 = −
∫

y2g

W (y1, y2)
dz, u2 :=

∫
y1g

W (y1, y2)
dz

and W (y1, y2) = y1θy2 − y2θy1 = e−
∫
p(x) is the Wronskian. We apply this

to the non-homogeneous differential equation (31) and obtain

y1(u1 +
y2
y1

u2) = n ·Π0
i

(
−
∫

Π̃1
i θΠ

0
i (1− a0z)

a1+a2−1

(
z

1− a0z

)−n·i dz
z

+
Π̃1

i

Π0
i

∫
Π0

i θΠ
0
i (1− a0z)

a1+a2−1

(
z

1− a0z

)−n·i dz
z

)
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where Π̃1
i is a second solution of Lni = 0. Note that by (28) a first solution

is given by Π0
i . For

(37) a1 + a2 = 1

and i = 0 we can solve these integrals and we get

Π2
0 = −n

2
Π0

0 log

(
1− a0z

z

)
.

This is defined up to addition of a linear combination of Π0
0 and Π̃1

0. We
know that the original Π2

0 arising from the solution Π2 of Ln is holomorphic
at z1 = 0. Therefore, we add a multiple of Π̃1

0 to the expression above and
arrive at

(38) Π2
0 = −n

2
Π0

0 log

(
q
1− a0z

z

)
,

where q = q1 |z2=0. Note that for i = 0, Π̃0
i is the logarithmic solution of

the Gauss hypergeometric equation. We can add a multiple of Π0 to Π2

and assume that Π2
0 is divisible by z. In this way the formula of Π2

0 in (38)
becomes unique.

Proposition 6. The quantities W a,2
i , a = 1, 2 are in the field C(z, F, θF ).

Proof. Imitating the case of Π1
i ’s, we write

(39) Π0
i log z2 +Π2

i = Π0
i log

(
z2q

−n

2

(
1− a0z1

z1

)−n

2

)
+Bi

After applying the second differential operator L2 on the above expression we
get a recursion for the Bi’s which shows that they are in the field C(z, F, θF ).
If we denote by z̃2 the expression inside the logarithm in (39), then using (36)
we have θ1 log(z̃2) ∈ C(z, F, θF ) and θ2 log(z̃2) = 1. Note that B0 = 0 and
hence it is in C(z, F, θF ). This is the main reason for defining the logarithmic
expression (39). �
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4.3. Differential field

The field Mn of Calabi-Yau modular forms defined in the introduction is by
definition closed under derivations θ1, θ2. We have(

∂z1
∂τ1

∂z1
∂τ2

∂z2
∂τ1

∂z2
∂τ2

)
=

1
∂τ1
∂z1

∂τ2
∂z2

− ∂τ1
∂z2

∂τ2
∂z1

(
∂τ2
∂z2

−∂τ1
∂z2

−∂τ2
∂z1

∂τ1
∂z1

)

and therefore is invariant under

∂

∂τ2
= q2

∂

∂q2
=

(Π0)2

W 11W 22 −W 21W 12

(−W 21θ1 +W 11θ2
)

(40)

∂

∂τ1
= q1

∂

∂q1
=

(Π0)2

W 11W 22 −W 21W 12

(−W 12θ2 +W 22θ1
)

(41)

This is still not enough to prove Theorem 1. Propositions 5 and 6 imply
that the coefficients of the z2-expansion of elements of Mn are in the field
C(z, F, θF ).

Proposition 7. We have

(42)

(
1− a0z1

z1

)n

2 q2q
n

2

1

z2
= 1 +

∞∑
i=1

Ciz
i
2

and Ci ∈ C(z, F, θF ).

Note that the quantity in (42) does not belong to Mn, however, its z2-
expansion is similar to the z2-expansion of the elements of Mn.

Proof. It follows from (38) that the quantity X in (42) starts with 1. We
have

∂2X = X∂2 · log(X) = X ·
(
W 22 + n

2W
21

(Π0)2
− 1

z2

)
Substituting the left hand side of (42) in the X of the above equality we get
a recursion of Ci’s which proves the Proposition. �
Becuase of Proposition 7, it is natural to add the quantities

(43)

(
1− a0z1

z1

)n

2

, and
q2q

n

2

1

z2

in (42) to Mn and define M̌n to be the field generated by the elements of
Mn and (43). Note that for n even, the first element is already in Mn. The
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field M̌n is defined here only for computational reasons, namely as a tool to

extract coefficients of (q2q
n

2

1 )
i in the field Mn.

Proposition 8. The field M̌n is invariant under the derivation q
−n

2

1
∂
∂q2

.

The field Mn is of course not invariant under ∂
∂qi

. It is invariant under the

operator q2
∂
∂q2

, however, this operator cannot be used in order to compute
the q2-coefficients of an element in Mn.

Proof. The proof follows from

q
−n

2

1

∂

∂q2
=

(
q2q

n

2

1

z2

)−1
(Π0)2

z2(W 11W 22 −W 21W 12)

(−W 21θ1 +W 11θ2
)

Note that

(Π0)2W 21

z2(W 11W 22 −W 21W 12)

∣∣∣∣
z2=0

(Π0)2W 11

(W 11W 22 −W 21W 12)

∣∣∣∣
z2=0

are in the field C(z, F, θF ). �

5. Yukawa couplings for elliptically fibred Calabi-Yau
fourfolds

In this section we will focus on the class of elliptically fibred Calabi-Yau
fourfolds. We will review mirror symmetry and proceed to compute 4-point
functions which are also called Yukawa-couplings. Using the results from the
previous sections we can express all Yukawa-couplings in terms of modular
forms. This will provide the first example of a Calabi-Yau fourfold whose A-
model correlation functions are expressed in terms of modular forms. Here
will will review how to compute periods of a Calabi-Yau fourfold X and
relate these to genus 0 Gromov-Witten potentials of the mirror Calabi-Yau
fourfold X̃ where we will follow the references [GMP95, KLRY98, May97,
GHKK10].

5.1. A-side of the Mirror Symmetry

In the case of fourfolds, in order to obtain zero virtual dimension for the
moduli space of holomorphic maps, one needs to intersect the holomorphic
curves with an extra four-cycle γ in the Calabi-Yau X̃. γ can be any ho-
mology class Poincare dual to a cohomology class in the primary vertical
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subspace H2,2
V (X̃). Here for a Calabi-Yau d-fold X̃, Hk,k

V (X̃) consists of ele-
ments of the form

(44) O(k)
a =

∑
i1,...,ik

αi1,...,ik
a Ji1 ∧ · · · ∧ Jik ∈ Hk,k(X̃).

where a = 1, 2 . . . enumerates a class of elements of Hk,k
V (X̃). In the language

of topological string theory the cohomology elements O(k)
a are also called

degree k A model operators. Among their non-zero correlation functions are
the two-point functions

(45) η
(k)
ab = 〈O(k)

a O(d−k)
b 〉 =

∫
X
O(k)

a ∧ O(d−k)
b ,

which do not receive any instanton corrections. In mathematical terms, all
these quantities are still integer valued and no q-expansion is attached. How-
ever, the following three- and four-point functions do receive worldsheet in-
stanton corrections

(46) C
(1,1,2)
abγ = 〈O(1)

a O(1)
b O(2)

γ 〉, C
(1,1,1,1)
abcd = 〈O(1)

a O(1)
b O(1)

c O(1)
d 〉.

and hence depend on the q-parameter. The genus 0 Gromov-Witten potential
is defined by

(47) F 0(γ) =
∑

β∈H2(X,Z)

N0
β(γ)q

β , ∂τa∂τbF
0(γ) = C

(1,1,2)
abγ .

where N0
β(γ) are the Gromov-Witten invariants which are in general rational

and one has qβ =
∏h1,1

i=1 e
2πiτiβi , see [KP08]. The potential (47) also admits

an expansion in terms of integer invariants n0
β(γ) ∈ Z as follows.

(48) F 0(γ) =
1

2
C

0(1,1,2)
abγ τaτb + b0aγτa + a0γ +

∑
β>0

n0
β(γ)Li2(q

β),

where we have

(49) C
0(1,1,2)
abγ =

∫
X̃
O(1)

a ∧ O(1)
b ∧ O(2)

γ ,

and

(50) Lik(q) =

∞∑
d=1

qd

dk
.
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5.2. B-side of the Mirror Symmetry

Let us now come to the B model. Here the operators are elements of the
horizontal subspace of the cohomology of the mirror Calabi-Yau variety X.
Contrary to the three-fold case variations of the (4, 0) form Ω in the fourfold
case do not span the full cohomologyH4(X), but rather a subspace known as
the horizontal subspace H4

H(X). By definition it is perpendicular to H4
V (X).

It has the Hodge decomposition

(51) H4
H(X) = H4,0 ⊕H3,1 ⊕H2,2

H ⊕H1,3 ⊕H0,4,

whereH2,2
H is the subspace ofH2,2 generated solely from the second variation

of Ω with respect to the complex structure of X. Periods are then defined

in terms of a basis γ
(i)
a of HH

4 (X) as follows

(52) Π(i)a =

∫
γ
(i)
a

Ω, i = 0, . . . , 4,

where the cycles γ
(i)
a are chosen such that they are dual to a basis γ̂

(i)
a of

H4−i,i(X) with pairing

(53)

∫
γ
(i)
a

γ̂(i)a = δijδab.

Their z-expansion is of the form

Π(0) = 1 + caza +O(z2),

Π(1)a = da(z) + log(za)Π
(0)(z),

Π(2)γ =
1

2

h1,1(X)∑
a,b=1

C
0(1,1,2)
abγ

(
da(z) log(zb) + db(z) log(za)(54)

+ Π(0)(z) log(za) log(zb)
)
+ dγh1,1(X)+1,

where the da are polynomials of the form

d1 = d11,aza + d12,a,bzazb +O(z3),

...

dh1,1(X) = d
h1,1(X)
1,a za + d

h1,1(X)
2,a,b zazb +O(z3),

dγh1,1(X)+1 = 1 +O(z).(55)
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Furthermore, C
0(1,1,2)
abγ are constants defined in (49). Note that in Section 4.1

we have adopted the notation

Π(0) = Π0, Π1(a) = Πa.

In order to introduce the prepotential (48) on the B model side we then have
to use the following identities

(56) F 0(γ) =
Π(2)γ

Π(0)
, τa =

Π(1)a

Π(0)
, a = 1, . . . , h1,1(X̃).

This justifies the Ansätze (54) for the B model periods.

5.3. Yukawa couplings from Picard-Fuchs equations

Yukawa-couplings are defined through the holomorphic (4, 0)-form Ω as fol-
lows:

(57) C
(1,1,1,1)
abcd =

∫
Xz

Ω ∧ ∂a∂b∂c∂dΩ,

where a, b, c, d ∈ {1, . . . , h3,1(X)} are complex structure moduli. We will uti-
lize Griffiths transversality and the Picard-Fuchs equation to compute these
four-point functions. Griffith transversality amounts to the following con-
straints:

(58)

∫
Xz

Ω ∧ ∂i1
1 ∂i2

2 · · · ∂ih3,1

h3,1 Ω = 0, i1 + · · ·+ ih3,1 < 4

We will now present a formalism to compute four-point functions. In order
to proceed we restrict our attention to Calabi-Yau fourfolds with a maximal
number of 3 complex structure moduli and define the functions

(59) W (i,j,k) =

∫
Xz

Ω∂i
1∂

j
2∂

k
3Ω.

Note that (58) is equivalent to

W (i,j,k) = 0 for i+ j + k < 4,

W (i,j,k) = C
(1,1,1,1)

1 · · · 1︸ ︷︷ ︸
i times

2 · · · 2︸ ︷︷ ︸
j times

3 · · · 3︸ ︷︷ ︸
k times

for i+ j + k = 4.(60)
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Moreover, we arrive at further constraints by rewriting

(61)

3∏
m=1

∂im
m

∫
Ω ∧

3∏
m=1

∂jm
m Ω = 0 for

∑
m

im + jm = 5 and
∑
m

jm < 4,

as first order differential equations in the four-point functions:

W (4,1,0) =
1

2
(∂2W

(4,0,0) + 4∂1W
(3,1,0)),

W (5,0,0) =
5

2
∂1W

(4,0,0),

W (3,2,0) =
1

2
(2∂2W

(3,1,0) + 3∂1W
(2,2,0)),

W (2,2,1) =
1

2
(∂3W

(2,2,0) + 2∂2W
(2,1,1) + 2∂1W

(1,2,1)),

W (3,1,1) =
1

2
(∂3W

(3,1,0) + ∂2W
(3,0,1) + 3∂1W

(2,1,1)),(62)

and all permutations of these. For the differential operator Lk =
∑

j f
(j)
k ∂j

which annihilates Ω we have also

(63)
∑
j

f j
kW

(j) = 0.

This is obtained after taking the wedge product of the original equation with
Ω and then integrating it over X. These equations can be supplemented fur-
ther by applying more derivatives on the Picard-Fuchs operators so that one
obtains algebraic equations relating the four-point functions. Acting with yet
another derivative and using (62) it is possible to obtain first order differen-
tial equations for the four-point functions which together with the algebraic
constraints are enough to fix those up to a constant. The constant can then
be fixed in terms of the classical intersection numbers of the mirror geom-
etry as follows. Consider transforming the Yukawa-coupling to the mirror
coordinates τ :

C
(1,1,1,1)
abcd (τ) =

∑
e,f,g,h

1(
Π(0)

)2C(1,1,1,1)
efgh (z)

∂ze(τi)

∂τa

∂zf (τi)

∂τb

∂zg(τi)

∂τc

∂zh(τi)

∂τd
(64)

= C
0(1,1,1,1)
abcd +O(τi),
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where the C
0(1,1,1,1)
abcd are the classical intersection numbers of the mirror

Calabi-Yau manifold. Using (40) and (41), we can see that the Yukawa-

couplings C
(1,1,1,1)
abcd (τ) are elements of the ring Mn. These couplings are re-

lated to the three-point functions through the identities:

(65) C
(1,1,1,1)
abcd (τ) = C

(1,1,2)
abγ (τ)

(
η(2)

−1
)γδ

C
(2,1,1)
δcd (τ).

In the next section we will provide explicit examples for a particular
family of Calabi-Yau fourfolds.

6. Main example

In this section we focus on the particular example of an elliptic fibration
over P3 as also studied in [KP08].

6.1. Toric data

The Mori cone vectors are given by

l(1) = (−6, 0, 0, 0, 0, 2, 3, 1)

l(2) = (0, 1, 1, 1, 1, 0, 0,−4).(66)

From these we deduce the Picard-Fuchs operators (1) and (2) with n =
4, a0 = 432, a1 =

1
6 , a2 =

5
6 . In this example H1,1(X̃) is generated by two

elements J1 and J2 which are Poincaré dual to D1 and D2 introduced in the
Introduction. We take the following linearly independent elements of H2,2

V :

γ1 := J2
2 , γ2 :=

1

17
(4J2

1 + J1J2)

(In [KP08] we have also the notation D1 = E and D2 = B, E standing for
the elliptic fibre and B standing for base). The A-model notation for these

objects that we used in §5.1 is γi := O(2)
i , i = 1, 2. The inverse of the inter-

section matrix in this basis is

[γi · γj ] = (η(2))−1 =

(−4 1
1 0

)
Furthermore, we have∫

X̃
J4
1 = 64,

∫
X̃
J3
1J2 = 16,

∫
X̃
J2
1J

2
2 = 4,

∫
X̃
J1J

3
2 = 1
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All other integrations of combniations of Ji’s over X̃ is zero, see [KP08]
for the details of this computation. The BPS numbers for this particular
Calabi-Yau manifold can be found in [KP08] and we also include them in
the appendix of this paper.

6.2. Period expansions

Next, we want to use the results of Proposition 1–8 to express the periods
and Yukawa-couplings in terms of SL(2,Z) modular forms. In this case we
have (24). As a first step we solve for the constants of Proposition 4, we find:

c00 = c10 = 1

c01 = c11 = 1

c02 = c12 =
1

16

c03 = c13 =
1

1296

c04 = c14 =
1

331776

c05 = c15 =
1

207360000
(67)

Regarding the constants c̃1i we find that all of these are zero. Next, we com-
pute the logarithmic periods and find that the quantities Ai in Proposition 5
are given by:

A0 = 0,

A1 = −6(1− 1688z + 1067904z2 − 307556352z3)

(1− 432z)4F (z)
,

...(68)

In particular, all Ai ∈ Q(z, F, θF ) and have the form

(69) Ai =
Pi(z)

(1− 432z)4iF (z)
,

where Pi(z) are polynomials in z. For the Bi which appear in Proposition 6
we find

(70) Bi =
Qi(z, F, θF )

(1− 432z)4iF (z)
,



Elliptic fibrations 903

with polynomials Qi. For example, we have

B1(z) =
1

F (z)(1− 432z)4
× 4

(
3− 5064z + 3203712z2 − 922669056z3(71)

+ 3F (z)2(1− 1708z + 1075344z2

− 291589632z3 + 62983360512z4)

− 5F (z)θF (z)(1− 2184z + 1907712z2 − 828610560z3

+ 143183904768z4)
)
.

Regarding Proposition 7, we have

(72) Ci(z) =
Ri(z, F, θF )

(1− 432z)4iF
.

The Ri are polynomials, the first of which is given by:

R1(z) = 4(3F (z)(1− 1708z + 1075344z2 − 2915896332z3(73)

+ 62983360512z4)

− 5θF (1− 2184z + 1907712z2 − 828610560z3

+ 143183904768z4)).

In order to be able to apply the derivation defined in Proposition 8 we
further need to compute (

Π0
)2

W 21

z2(W 11W 22 −W 21W 12)

∣∣∣∣∣
z2=0

(74)

= −6(−1 + 1688z − 1067904z2 + 3075563z3)

(−1 + 432z)3
,(

Π0
)2

W 11

(W 11W 22 −W 21W 12)

∣∣∣∣∣
z2=0

= 1.(75)

6.3. Yukawa couplings and modularity

Using the above results together with Propositions 1–8 we can now express
all 4-point functions defined in (64) in terms of modular forms. In order to
proceed we first write down the Yukawa-couplings on the B-model side as
rational functions in the complex structure moduli:
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W (4,0) = − 64

z(1)4Δ1

W (3,1) =
16(−1 + 432z1)

z31z2Δ1

W (2,2) = −4(1− 432z1)
2

z21z
2
2Δ1

W (1,3) =
(−1 + 432z1)

3

z1z22Δ1

W (0,4) =
64

(−1 + 1728z1 − 1119744z21 + 322486272z31
)

z32Δ1Δ2
,(76)

where Δ1, Δ2 are given by

Δ1 = −1 + 1728z1 − 1119744z21 + 322486272z31

+ 34828517376z41(−1 + 256z2),

Δ2 = −1 + 256z2.(77)

We now want to compute C
(1,1,1,1)
abcd (τ) as an expansion in q2 = e−τ2 . Apply-

ing the derivation of Proposition 8 to (64) we find after using (24):

C
(1,1,1,1)
2222 = −q2

(
q21
η48

)[
5

9
E4E6(35E

3
4 + 37E2

6)

]
(78)

− q22

(
q41
η96

)[
5

602208
(12377569E9

4 + 1960000E2E
7
4E6

+ 85433141E6
4E

2
6 + 4144000E2E

4
4E

3
6 + 86392307E3

4E
4
6

+ 2190400E2E4E
5
6 + 11544823E6

6)

]
+O(q32).

Notice that C
(1,1,1,1)
2222 is of modular weight −24 and if we define

(79) Y (1) = −
(

q21
η48

)
5

9
E4E6(35E

3
4 + 37E2

6),

4We assign weight 0 to the combination q2q
2
1 .
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then equation (78) can be written as

C
(1,1,1,1)
2222 = q2Y

(1) + q22

[(
q41
η96

)(
− 5

602208
(12377569E9

4(80)

+ 85433141E6
4E

2
6 + 86392307E3

4E
4
6)

)
+

5

12
E2

(
Y (1)

)2
]
+O(q32)

This structure is reminiscent to the “holomorphic anomaly” observed in
[HST99] in the case of elliptic Calabi-Yau threefolds and it would be very
interesting to explore the significance of such an anomaly equation for the
case of elliptic Calabi-Yau fourfolds further. In this paper we find evidence
for such an anomaly structure also for the Gromov-Witten potential F 0(γ1)
which derive in the following. Using the identity

(81) C
(1,1,1,1)
2222 = −4C

(1,1,2)
22γ1

C
(1,1,2)
22γ1

+ C
(1,1,2)
22γ2

C
(1,1,2)
22γ1

+ C
(1,1,2)
22γ1

C
(1,1,2)
22γ2

and the expansions

(82) C
(1,1,2)
22γ1

= 0 +O(q2), C
(1,1,2)
22γ2

= 1 +O(q2),

we derive

(83) F 0(γ1) = q2

(
q21
η48

)[
5

18
E4E6(35E

3
4 + 37E2

6)

]
+O(q22).

We observe that F 0(γ1) has modular weight −2. In order to derive the second
order term q2 we now impose an anomaly structure of the form

(84) F 0(γ1) = −q2Y
(1) + q22

[(
q41
η96

)
P46(E4, E6) + kE2

(
Y (1)

)2
]
+O(q23),

where P46(E4, E6) is a polynomial of weight 46 in E4 and E6 and k is a
constant. We find

k = −1

6
,

P46(E4, E6) = − 5

373248
E4E6(29908E

9
4 + 207234483E6

4E
2
6(85)

+ 208392741E3
4E

4
6 + 27245569E6

6).
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Using these results together with the identity (81) we can solve for F (γ2) to
first order in q2:

F 0(γ2) = 1 + q2

(
q21
η48

)[
5

10368
(10321E6

4 + 1680(−24 + E2)E
4
4E6)(86)

+ 59182E3
4E

2
6 + 1776(−24 + E2)E4E

3
6 + 9985E4

6)

]
+O(q22)

Note that F 0(γ2) is not a modular form of a definite weight but rather
consists of pieces with weights −2 and 0.

Appendix A. Table of BPS numbers for the main example

d1\d2 0 1 2 3 4

0 0 -20 -820 -68060 -7486440
1 0 7680 491520 56256000 7943424000
2 0 -1800000 -159801600 -24602371200 -4394584496640
3 0 278394880 35703398400 7380433205760 1662353371955200
4 0 623056099920 -6039828417600 -1683081588149760 -478655396625235200
5 0 97531011394560 2356890607411200 388243145737128960 119544387620870983680

Table A1: n0
d1,d2

(γ1).

d1\d2 0 1 2 3 4

0 0 0 0 0 0
1 960 5760 181440 13791360 1458000000
2 1920 -1817280 -98640000 -10715760000 -1476352644480
3 2880 421685760 29972448000 4447212981120 783432258136320
4 3840 2555202430080 -6353500619520 -1273702762398720 -285239128072550400
5 4800 506461104057600 4042353816604800 373520266906348800 86478430090747622400

Table A2: n0
d1,d2

(γ2)

.

Appendix B. More on Mirror Symmetry

In this section we want to elaborate on details of period constructions on the
B-side of the Mirror Symmetry and construct a more complete map between
A-model and B-model quantities. We refer to the original references for a
more thorough review.
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We start by recalling that we can choose a dual basis γ̂
(i)
a of H4−i,i

H (X)
(where i = 0, . . . , 4 is the grading) with pairing

(B.1)

∫
γ
(i)
a

γ̂
(j)
b = δijδab.

The holomorphic four-form is then expanded as Ω =
∑

iΠ
(i)aγ̂

(i)
a . Denoting

the complex structure moduli space of X by M we find that for z ∈ M the
horizontal parts of F k = ⊕k

p=0H
4−p,p(Xz) form holomorphic vector bundles

for which one can introduce frames β
(k)
a with the basis expansion

(B.2) β(k)
a = γ̂(k)a +

∑
p>k

Π(p,k) c
a (z)γ̂(p)c .

These β
(k)
a are the basic operators of the B model and under mirror symme-

try we have the exchange

(B.3) O(k)
a �→ β(k)

a

∣∣∣
z=0

.

The depence of the Π
(p,k)
a on z is captured by the Picard-Fuchs operators

La(θ, z). These are written in terms of the logarithmic derivatives θa = za
∂

∂za
with respect to the canonical complex variables za defined at the large com-
plex structure point. Define the formal limits

(B.4) Llim
i (θ) = limzi→0Li(θ, z), i = 1, . . . , r,

and consider the algebraic ring

(B.5) R = C[θ]/
(
J =

{
Llim
1 , . . . , Llim

r

})
.

One can define a grading for this ring by taking the ring at grade k, R(k)

to be generated by a basis of degree k polynomials whose number is given
by hH4−k,k(X) = hVk,k(X̃) for k = 0, . . . , 4. There is a one-to-one map between

the ring R(k) and solutions of the Picard-Fuchs equations at large radius. A
given ring element of the form R(k)a =

∑
|α|=k

1
(2πi)km

a
αθ

α1

1 · · · θαh

h is mapped
to a solution of the form

(B.6) Π̃(k)a = X0(z)
[
L(k)a +O(log(z)|α|−1

]
,
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where

(B.7) L(k) a =
∑
|α|=k

1

(2πi)k
m̃a

α log
α1(z1) · · · logαh(zh),

and m̃a
α(
∏

i αi!) = ma
α. Using the metric (45) to move indices down we fur-

thermore demand

(B.8) R(k)
a L(k)b = δba.

With these definitions mirror symmetry, i.e. exchange of A and B model, is
triggered by the identifications

(B.9) θi ↔ Ji, β(k)
a

∣∣∣
z=0

= R(k)
a Ω

∣∣∣
z=0

.

Appendix C. Other families of elliptically fibred Calabi-Yau
varieties

In our way to reformulate our main results for the Calabi-Yau n-folds with
the Picard-Fuchs system (1) and (2), we studied also many other elliptically
fibred Calabi-Yau varieties and computed the corresponding Picard-Fuchs
systems. For future investigation we have collected our computations in the
table bellow. In this table Fi’s are Hirzebruch surfaces. The limit Picard-
Fuchs equation in the variable z1 means that the limit is taken with respect
to all other variables except z1.
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