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Making use of large-order techniques in asymptotics and resurgent
analysis, this work addresses the growth of enumerative Gromov–
Witten invariants — in their dependence upon genus and degree
of the embedded curve — for several different threefold Calabi–
Yau varieties. In particular, while the leading asymptotics of these
invariants at large genus or at large degree is exponential, at com-
bined large genus and degree it turns out to be factorial. This facto-
rial growth has a resurgent nature, originating via mirror symmetry
from the resurgent-transseries description of the B-model free en-
ergy. This implies the existence of nonperturbative sectors control-
ling the asymptotics of the Gromov–Witten invariants, which could
themselves have an enumerative-geometry interpretation. The ex-
amples addressed include: the resolved conifold; the local surfaces
local P2 and local P1 × P1; the local curves and Hurwitz theory;
and the compact quintic. All examples suggest very rich interplays
between resurgent asymptotics and enumerative problems in alge-
braic geometry.
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1. Introduction

Geometrical-counting problems, albeit many times rather natural and simple
to formulate, may lead to remarkably rich and interesting structures. Among
these, enumerative invariants play an important classification role within al-
gebraic geometry. For example, counting pseudo-holomorphic curves inside
symplectic manifolds gives rise to the famous Gromov–Witten (GW) invari-
ants. These are invariants associated to the symplectic manifold X , which
are rational numbers (implying a “virtual” counting) depending on both
genus, g, and degree, d, of the embedded curve. We shall denote them by
Ng,d. The computation of GW invariants is generically hard, becoming sim-
pler when the manifold is Calabi–Yau (CY) where they are generated by the
A-model topological-string free energy. This is a long story which goes back
to the discovery of mirror symmetry; see, e.g., [1–10] for early references,
and, e.g, [11–15] for reviews.

Consider the A-model on a CY X , in the large-radius phase (valid when
the Kähler parameter t is large). The A-model free energy is then given by
an asymptotic, genus expansion

(1.1) F (X ) �
+∞∑
g=0

g2g−2s Fg(t),

where the genus-g contributions to the free energy may be decomposed as
[6]

(1.2) Fg(t) =
∑
d>0

Ng,dQ
d.

The sum over degree d corresponds to a sum over topological sectors as
classified by worldsheet instantons (where Q = e−t in units where α′ = 2π).
While this explicitly shows how the topological-string free energy is a gen-
erating function for the genus g, degree d, enumerative GW invariants of
X , Ng,d, the two expansions above have rather different properties: while
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the fixed-genus (1.2) is a convergent series1, with a non-zero radius of con-
vergence, (1.1) is instead a divergent asymptotic series, with zero radius of
convergence; see, e.g., [18]. The reason for this is the factorial growth of the
genus-g contributions with genus, as Fg ∼ (2g)!.

From the standpoint of defining the string free energy, the asymptotic
nature of the perturbative expansion (1.1) implies that F (X ) cannot be
properly defined by perturbation theory alone. One way to move forward
is to use the theory of resurgence [19]. In this context, the perturbative
expansion gets enlarged into a transseries, an object which fully captures
all information concerning the observable that it represents, including both
perturbative/analytic components (in powers of the string coupling gs) and
nonperturbative/non-analytic components (in powers of the “instanton” fac-
tor e−1/gs). The asymptotic and resurgent nature of the perturbative se-
quence implies the existence of these instanton-type terms, of which there
can be many distinct types and with different strengths. Remarkably, all
these seemingly independent perturbative and nonperturbative sectors in the
transseries turn out to be related to each other via a tight web of asymptotic
resurgence relations. In particular, the leading factorial growth of perturba-
tion theory is a consequence of these asymptotic relations, as is any other
subleading growth correcting that factorial term. As a result, one may in fact
extract, or decode, nonperturbative information from perturbation theory
alone and vice-versa. Moreover, these interrelations have somewhat univer-
sal forms, and should be expected to hold across a wide range of different
problems.

In recent years resurgence has been applied within2 topological string
theory [21–35] and its double-scaled limits at special points in moduli space
[22, 24, 28, 29, 36–38]. In particular, nonperturbative transseries-solutions
to the holomorphic-anomaly equations of the B-model were constructed in
[30, 32, 35]. These references further focused on the example of local P2,
a non-compact CY threefold, where a very rich nonperturbative structure
was uncovered, with diverse instanton actions vying for dominance on the
Borel plane as the moduli changed. In our present paper we wish to turn
our attention to the A-model instead, and in particular to the enumerative
invariants it generates.

1Convergence was proved at planar level in [16, 17], although there is no general
mathematical proof at arbitrary genus. As we shall see later on, our examples in
the present paper also strongly support this convergence property.

2For an introduction to the main ideas of resurgent asymptotics, and a very
complete list of references concerning many other recent applications of resurgence,
we refer the reader to [20].
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From the standpoint of computing enumerative invariants, the conver-
gence properties of their generating functions might not seem terribly im-
portant at first sight. It is nonetheless the case that these convergence prop-
erties will dictate the asymptotic behavior of these invariants, in genus and
in degree, and this is one of the main question we address in the present
work. Furthermore, within the A-model the GW invariants are the internal
ingredients constructing the string free energies, and it seems reasonable to
transfer resurgence questions and properties from the free energies to the
invariants themselves. In particular, one natural question is to ask exactly
how the GW invariants are responsible for the (known) factorial growth of
the free energies they build. For example, the convergence of (1.2) roughly
implies that, at fixed genus, the large-degree asymptotics of the GW invari-
ants3 Ng,d corresponds at most to a leading exponential growth. On the
other hand, the asymptotic nature of (1.1) might seem to imply that, at
fixed degree, the large-genus asymptotics of the GW invariants Ng,d cor-
responds instead to a leading factorial growth, giving rise to the factorial
growth inside the free energy. But this will turn out not to be the case. The
fixed degree, large-genus asymptotics of the GW invariants is not factorial,
and we shall see how the factorial growth of the free energy is more subtly
encoded at the level of GW invariants.

Note that there are some important differences between addressing resur-
gent transseries for the B-model free energy, and investigating resurgent
asymptotics of A-model enumerative invariants. In the former case, one
deals with an asymptotic series, which subsequently gets completed into
a transseries by the addition of new, nonperturbative sectors. In the latter
case, one deals instead with a two-dimensional array of (rational) numbers,
labeled by both genus and degree (which is represented schematically in Fig-
ure 1). The GW invariants in this array are not directly the coefficients of any
series, so the concept of their transseries extension is not well-defined. How-
ever, any asymptotic resurgence relations explaining the different growths of
the Ng,d, in particular along directions with factorial growth, should them-
selves be dictated by nonperturbative content in the free-energy transseries
— possibly also with an enumerative-geometry interpretation. This opens
the door to the existence of nonperturbative analogues of the GW invariants.
With this idea in mind, we wish to make precise the asymptotic growth of
GW invariants along particular directions on this array, as depicted in Fig-
ure 1:

3We shall use the notation where the boldface character specifies which index (if
any) remains fixed.
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Figure 1. Schematic display of the GW invariants Ng,d as a two-dimensional
array, with genus and degree representing row and column, respectively. The
three arrows are the types of growth that we shall address in this paper:
large degree with fixed genus (blue), large genus with fixed degree (red),
and combined large degree and genus, with d = a0 + a1g (green).

→ Fixed-genus, large-degree. Possibly the most “classical” direction
previously addressed in the literature, giving rise to leading exponen-
tial growth.

↓ Large-genus, fixed-degree. Less studied, also giving rise to leading
exponential growth.

↘ Large-genus, large-degree. Not previously addressed in the literature,
finally giving rise to the factorial growth characteristic of the free en-
ergy.

Asymptotics of GW invariants4, with focus on the fixed-genus and large-
degree regime, have been previously addressed in [6, 41–43], where leading
exponential growth was found. A fixed-degree, large-genus analysis was done

4Asymptotics of related enumerative invariants, such as Donaldson–Thomas or
Gopakumar–Vafa invariants, and their relevance towards the computation of M-
theoretic black hole entropies, have been addressed in [39, 40].
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in [44, 45], albeit in a different set-up5, also finding leading exponential be-
havior. To the best of our knowledge, the “enumerative source” of the free-
energy factorial growth has never been addressed previously in the literature,
and we start filling such gap with our present work. We shall investigate these
different asymptotics in several examples, including both compact and non-
compact CY threefolds. In particular, our analysis of the exponential growth
along horizontal and vertical directions both recovers and generalizes some
of the aforementioned previously-known results. The factorial growth is new,
and relates to the B-model transseries with its plethora of nonperturbative
sectors. Along certain diagonal directions we uncover an universal behavior
which is common to geometries in different topological-string universality
classes, and which is controlled by the large-radius instanton action. Asymp-
totic resurgence-like formulae may be written for the “diagonal” growth of
GW invariants, with their growth dictated by nonperturbative information
encoded in the free-energy transseries. In this sense, one should not wonder
about transseries completions of GW invariants, but rather about decoding
possibly new “nonperturbative” enumerative invariants, hidden inside the
nonperturbative completions to the B-model topological-string transseries
[30, 32, 35].

2. Setting the stage and main ideas

Let us formalize the ideas spelled out in our introduction, before address-
ing an exactly-solvable model (the resolved conifold) in Section 3, and then
computationally addressing many different examples in Section 4, including
the cases of local P2, a diagonal slice of local P1 × P1, some local curves,
Hurwitz theory, and the quintic compact CY threefold. We begin with gen-
eral expectations and what sort of structures we wish to unveil, to later
materialize in our examples.

Going back to the topological-string asymptotic-series for the free energy
(1.1), let us describe it in the B-model as F (0)(gs; z, z̄). Here, the string
coupling gs is also the resurgent variable, and the (0) superscript specifies
perturbative. The pair (z, z̄) may be regarded as just external parameters,

5References [44–46] address the asymptotics of Weil–Petersson volumes of moduli
spaces of algebraic curves, with genus g and n marked punctures (which in some
sense corresponds to addressing enumerative invariants of a point). Note that they
find some (extra) factorial growth ∼ n!, but which is associated to the (extra)
number of punctures, n. In our context this number is n = 0, as GW invariants
arise from the free energy.
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or interpreted as complex-structure moduli of the underlying CY threefold.
The free energy is asymptotic, of Gevrey-1 type (see, e.g., [47]),

(2.3) F (0) �
+∞∑
g=0

g2g−2s F (0)
g , F (0)

g ∼ Γ(2g − 1) as g → +∞,

for generic values of (z, z̄). Understanding the resurgent properties of F (0)

and the role played by the moduli (z, z̄) was the main purpose of [30,
32]. There, it was shown how to look for a transseries completion to the
topological-string free energy of the form

(2.4) F =

+∞∑
n=0

σn e−nA(z)/gs F (n)(gs; z, z̄),

where the (multi) instanton sectors F (n)(gs) are also given by asymptotic
series. In particular, it was found — both generically and in examples —
that (2.4) has several nonperturbative sectors, with associated actions Aα,
all of them holomorphic and determined by the CY geometry.

The transseries (2.4) was constructed by combining a nonperturbative
interpretation of the holomorphic anomaly equations of [6] with the resur-
gence relations that transseries generically satisfy, such as, for example,

(2.5) F (0)
g (z, z̄) ∼ Γ(2g − 1)

A(z)2g−1
F

(1)
0 (z, z̄), as g → +∞.

Here F
(1)
0 is the first coefficient of the one-instanton series F (1)(gs) and A(z)

is one of the instanton actions (the smallest one in absolute value, for the par-
ticular value of z). Subleading corrections to (2.5) lead to further multi-loop

coefficients, F
(1)
h with h = 1, 2, . . .. Generalizations of (2.5), now addressing

the large-order behavior of the F
(n)
g sequences, provide new constraints and

relations between higher instanton coefficients.
This route towards the construction of (2.4), further developed in [35],

draws a rather complete picture of what a transseries for F (gs) should look
like. In principle, such a transseries should contain all nonperturbative in-
formation concerning the B-model, but also, via mirror symmetry [10], all
A-model nonperturbative information. It is within this context that we shall
set our attention upon structures of interest in algebraic and enumerative
geometry, arising from the A-model set-up, in particular the case of enumer-
ative GW invariants.
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Let us spell out our strategy. The B-model construction (2.4) depends
upon (z, z̄), the complex-structure moduli. From the standpoint of resur-
gence, these moduli may be regarded as external parameters, without any
resurgent properties by themselves. But upon mirror symmetry, they re-
late the B-model CY threefold X̃ , with complex structure z, to the A-
model mirror-CY threefold X , with Kähler structure t. A functional relation
t = t(z) is then provided by the mirror map. This means that one may in fact

compute the mirror transseries to (2.4), where its F
(0)
g (t) components are

nothing but the GW generating functions as in (1.2). Let us next focus on
these enumerative invariants in greater detail, with the goal of uncovering
which resurgent properties they carry, either intrinsic or merely inherited
from the free energy.

2.1. Enumerative Gromov–Witten invariants

GW invariants count embeddings of Riemann surfaces of a given genus into
a CY threefold X , attending to the homology class of the image of this map.
Thus, GW invariants are labelled by g ∈ N, like the topological-string free
energies, and β ∈ H2(X ,Z),

(2.6) Ng,β ∈ Q.

Akin to (1.2), they show up in the A-model perturbative free-energies through
the expansion

(2.7) F (0)
g =

∑
β∈H2(X ,Z)

Ng,β Q
β .

Here we have used the mirror map to translate from complex structure
moduli, zi, to Kähler moduli, ti =: − logQi (roughly, the mirror map is
Qi = O(zi)). More precisely, if ω is the (complexified) Kähler form in X
and [Si], with i = 1, 2, . . . , b2(X ), is a basis of H2(X ,Z), then one finds
β =

∑
i ni[Si] and ti :=

∫
[Si]

ω, in which case we may denote Qβ =
∏

iQ
ni

i =

exp(−∑i ni ti). In order to simplify things in the following, we shall restrict
to examples where b2(X ) = 1, in which case the sum over homology classes
simplifies to

(2.8) F (0)
g (t) =

+∞∑
d=1

Ng,dQ
d.
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The index d is called the degree of the embedding. See, e.g., [14] for more
details on the relation between the enumerative GW invariants and their
A-model generating functions.

Now (2.8) is a convergent series in Q, which, in particular, implies that
it is not resurgent. Its non-vanishing radius of convergence is generically
finite, due to a nearby singularity located at the so-called conifold locus [8].
This convergence may already suggest that the factorial growth of the free

energies F
(0)
g in genus must somehow arise from a combined contribution of

several different degrees. We shall next try to understand how this might
come about.

2.2. Growth of enumerative invariants in degree and in genus

As we introduce most of our main ideas, let us illustrate them with (par-
tial) results from upcoming diverse examples. The simplest such example is
naturally attached to the resolved conifold, for which the free energies can
be computed exactly (see, e.g., [48] for a review)

(2.9) F (0),coni
g (t) = (−1)g−1

B2g

2g (2g − 2)!
Li3−2g

(
e−t
)
, g ≥ 2,

where Lip(x) is the polylogarithm function. This immediately yields all GW
invariants as

(2.10) N coni
g,d = f coni

g d2g−3, f coni
g := (−1)g−1

B2g

2g (2g − 2)!
.

More interesting geometries we shall later address include the (non-compact)
local P2 and the (compact) quintic CY threefolds, for which there are no
such closed-form expressions. Enumerative invariants may, nonetheless, be
generated on the computer to see in more detail how they grow in degree
and genus. An example of the sort of numbers we have to work with is show
in Figure 2, in the instance of local P2 (to be addressed in Section 4.1).

Growth in degree. Let us first consider the growth in degree at fixed
genus. For the resolved conifold the answer is immediate from (2.10): it is
given by the degree d, raised to a linear function of the genus g, namely 2g −
3. For other, more intricate geometries the growth is similar but includes
further parameters, such as a critical exponent γ which captures distinct
topological-string universality classes, i.e., distinct critical behaviors at the
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log |Ng,d| 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

20 111.4 117.1 122.6 128.0 133.2 138.3 143.4 148.3 153.2 157.9 162.6 167.3 171.8 176.3 180.8 185.2 189.5 193.9 198.1 202.3 206.5
21 113.7 119.6 125.3 130.8 136.2 141.4 146.6 151.6 156.6 161.5 166.3 171.0 175.7 180.3 184.8 189.3 193.7 198.1 202.5 206.8 211.1
22 116.0 122.0 127.9 133.5 139.1 144.5 149.7 154.9 160.0 165.0 169.9 174.7 179.5 184.2 188.8 193.4 197.9 202.4 206.8 211.2 215.5
23 118.2 124.4 130.4 136.2 141.9 147.4 152.8 158.1 163.3 168.4 173.4 178.4 183.2 188.0 192.8 197.4 202.0 206.6 211.1 215.6 220.0
24 120.4 126.7 132.9 138.9 144.7 150.3 155.9 161.3 166.6 171.8 177.0 182.0 187.0 191.8 196.7 201.4 206.1 210.7 215.3 219.9 224.4
25 122.5 129.0 135.3 141.5 147.4 153.2 158.9 164.4 169.9 175.2 180.4 185.6 190.6 195.6 200.5 205.4 210.1 214.9 219.5 224.2 228.7
26 124.5 131.2 137.7 144.0 150.1 156.0 161.8 167.5 173.1 178.5 183.9 189.1 194.3 199.3 204.3 209.3 214.1 219.0 223.7 228.4 233.0
27 126.5 133.4 140.0 146.5 152.7 158.8 164.8 170.6 176.2 181.8 187.2 192.6 197.8 203.0 208.1 213.1 218.1 223.0 227.8 232.6 237.3
28 128.5 135.5 142.3 148.9 155.3 161.5 167.6 173.5 179.3 185.0 190.6 196.0 201.4 206.7 211.9 217.0 222.0 227.0 231.9 236.8 241.6
29 130.4 137.6 144.6 151.3 157.9 164.2 170.4 176.5 182.4 188.2 193.9 199.4 204.9 210.3 215.6 220.8 225.9 231.0 236.0 240.9 245.8
30 132.2 139.6 146.7 153.7 160.4 166.9 173.2 179.4 185.4 191.3 197.1 202.8 208.4 213.8 219.2 224.5 229.7 234.9 240.0 245.0 249.9
31 134.0 141.6 148.9 155.9 162.8 169.5 175.9 182.2 188.4 194.4 200.3 206.1 211.8 217.4 222.9 228.2 233.6 238.8 244.0 249.1 254.1
32 135.7 143.5 151.0 158.2 165.2 172.0 178.6 185.1 191.4 197.5 203.5 209.4 215.2 220.9 226.4 231.9 237.3 242.7 247.9 253.1 258.2
33 137.4 145.4 153.0 160.4 167.6 174.5 181.3 187.8 194.3 200.5 206.6 212.7 218.5 224.3 230.0 235.6 241.1 246.5 251.8 257.1 262.3
34 139.0 147.2 155.0 162.6 169.9 177.0 183.9 190.6 197.1 203.5 209.7 215.9 221.9 227.7 233.5 239.2 244.8 250.3 255.7 261.0 266.3
35 140.6 149.0 157.0 164.7 172.2 179.4 186.4 193.3 199.9 206.4 212.8 219.0 225.1 231.1 237.0 242.8 248.4 254.0 259.5 265.0 270.3
36 142.2 150.7 158.9 166.8 174.4 181.8 188.9 195.9 202.7 209.3 215.8 222.2 228.4 234.5 240.4 246.3 252.1 257.7 263.3 268.8 274.3
37 143.7 152.4 160.7 168.8 176.6 184.1 191.4 198.5 205.5 212.2 218.8 225.3 231.6 237.8 243.8 249.8 255.7 261.4 267.1 272.7 278.2
38 145.1 154.0 162.6 170.8 178.7 186.4 193.9 201.1 208.2 215.0 221.8 228.3 234.7 241.0 247.2 253.3 259.2 265.1 270.9 276.5 282.1
39 146.6 155.6 164.3 172.7 180.8 188.7 196.3 203.7 210.8 217.8 224.7 231.4 237.9 244.3 250.6 256.7 262.8 268.7 274.6 280.3 286.0
40 147.9 157.2 166.1 174.6 182.9 190.9 198.6 206.2 213.5 220.6 227.6 234.3 241.0 247.5 253.9 260.1 266.3 272.3 278.3 284.1 289.9
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Figure 2. Sample of GW invariants for the local P2 CY threefold, alongside
a visual representation of their growth with respect to degree d (in blue),
genus g (in red), and a linear combination of the two (in green). Only in
this latter case shall we find a factorial growth.

phase-transition point (see, e.g., [43] for a discussion). In general one finds6

[4, 6, 41]

(2.11) Ng,d ∼ d(γ−2)(1−g)−1 edtc (log d)α+βg , as d → +∞

(further including a possibly g-dependent pre-factor). In this expression,

e−tc = Qc marks the radius of convergence of F
(0)
g on the Q-plane. Expres-

sion (2.11) implies that the resolved conifold has γ = 0, being in the same
universality class as, e.g., the local P2 or the quintic CY threefolds. For
example, for the quintic we have [4, 6]

(2.12) N quint

g,d ∼ d2g−3 edtc (log d)2g−2 ,

where tc = 7.58995 . . .. For local P2 this growth is illustrated in the leftmost
plot of Figure 2, at fixed genus g = 30. For very large degree d, the plotted

6Recall the notation where the boldface character specifies which index (if any)
is the fixed one.
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curve must tend to a straight line of slope |tc|. On the other hand, for
the family of local curves Xp = O(p− 2)⊕O(−p) → P1 (p ≥ 3) the critical
exponent is instead γ = −1/2 [43], implying a distinct universality class and
we shall discuss this example later in Section 4.3.

As mentioned earlier, the radius of convergenceQc signals a singularity of
the (free energy) generating function. Such critical points correspond to the
points in moduli space where the A-model geometric interpretation breaks
down, with a phase transition taking place from the large-radius (geometric)
phase to a non-geometric phase. Near such a singularity,

(2.13) F (0)
g ∼ cg (Qc −Q)(1−g)(2−γ) , g ≥ 2.

Nearby Qc all geometries within the same universality class will resemble
each other, which implies that the coefficients cg are universal. For example,
for γ = 0 there is a double-scaling limit

(2.14) gs → 0, Q → Qc, with κ := gs (Qc −Q)−1 fixed,

such that

(2.15) F (0)(gs; t) → F
(0)
ds (κ) �

+∞∑
g=2

B2g

2g (2g − 2)
κ2g−2,

which matches the c = 1 string at self-dual radius [8]. For other values of γ
the coefficients cg may be more complicated, being solutions to a nonlinear
ODE such as Painlevé I, for example.

Growth in genus. As we turn towards understanding the dependence of
GW invariants on genus, at fixed degree, Ng,d, it becomes useful to introduce
the Gopakumar–Vafa (GV) invariants. These invariants are integer numbers,
roughly counting the number of BPS states inside a CY threefold X , and
resulting from a reorganization of the A-model free energy as introduced in
[49, 50]. The complete result involves a Schwinger-type computation which
rewrites the free energy as an index that counts string-theoretic BPS states
via an M-theory uplift, and which finally yields

+∞∑
g=0

g2g−2s F (0)
g (Q) = g2s c(ti) + 	(ti)(2.16)

+

+∞∑
r=0

∑
β

n(β)
r

+∞∑
m=1

1

m

(
2 sin

mgs
2

)2r−2
Qβm.
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Here, the n
(β)
r ∈ Z are the GV invariants, labeled by the Kähler class β

and a spin index r. The polynomials c(ti) and 	(ti) will play no role in the
following.

It is straightforward to check that, generically, the GW invariants may
be written explicitly in terms of the GV invariants as

Ng,d =

g∑
r=0

cr,g
∑
β|d

n(β)
r

(
d

β

)2g−3
,(2.17)

using
(
2 sin

x

2

)2r−2
=:

+∞∑
h=r

cr,h x
2h−2.

In here we already find the d2g−3 dependence which is characteristic of the
resolved conifold. Now, an important property of the GV invariants, which
will be useful in the following, is that for each degree d there is a specific

genus,G(d), after which all these invariants vanish, i.e., n
(d)
r = 0 for r > G(d)

[50]. This function G(d) is a polynomial in d, and this will simplify the
dependence on g in (2.17) by replacing the upper limit in the r-sum; writing
for all g

(2.18) Ng,d =

G(d)∑
r=0

cr,g
∑
β|d

n(β)
r

(
d

β

)2g−3
.

In this expression the only remaining dependence upon the genus, g, lies in
the coefficients cr,g and in the power of d/β. Since the coefficients cr,g are
independent of the CY geometry, we should expect a generic formula to hold
for the large growth of Ng,d in genus. For example, as we shall discuss later
on, for the case of local P2 and degree d = 4 we find

N P
2

g,d=4 ∼ (−1)g−1
B2g

2g (2g − 2)!
42g−3

(
3− 6

22g−3
− 192

42g−3

)
(2.19)

+
(−1)g−1

(2g − 2)!

22g−2

4

(
120 +

336

22g−2

)
,

This formula, involving Bernoulli numbers and factorials, is actually exact
for g ≥ 2, not just a large-g approximation. The first numbers (3, −6, −192)

can be recognized as the GV invariants n
(1)
0 , n

(2)
0 , and n

(4)
0 for local P2,

whereas the other (120, 336) are more complicated combinations involving
higher-genera invariants. As such, in general, we can expect the following
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formula to hold (see Appendix A for a proof)
(2.20)

Ng,d = f coni
g

⎧⎨⎩∑
n|d

an

(
d

n

)2g−3
+

2g

B2g

1

d

⎛⎝cd δg,1 +

G(d)−1∑
n=1

bd,n n
2g−2

⎞⎠⎫⎬⎭ .

where ad ≡ n
(d)
0 and bd,n, cd ∈ Z. In this expression the dependence on the

genus g is explicit — one could even plug-in non-integer values of the genus
after analytically continuing the Bernoulli numbers. If we fix the degree, as
in Ng,d, it is then simple to see that the leading growth in genus is expo-
nential, d2g−3, with further subleading exponential and inverse-of-factorial
corrections in g. The second plot in Figure 2 illustrates this genus depen-
dence, at fixed degree d = 30, for local P2. The plotted curve is asymptotic
to a straight line of slope 2 logd.

Expression (2.20) shows how the contribution of GW invariants, Ng,d,
to the free energies at a fixed single degree, d, again cannot be responsible
for the factorial growth we need to find. In this way, the only option we have
left to find the ∼ (2g)! factorial growth of the free energies, encoded in the
GW invariants, is to address the combined growth in genus and degree.

Combined growth in genus and degree. Upon a second look at the (al-
ready familiar) characteristic behavior of GW invariants in d2g−3, it should
be straightforward to deduce that when d and g are linearly related, then
the factorial growth is immediately realized. The link is the classical Stirling
approximation,

(2.21) nn ∼ n! en√
2πn

.

Consider one more time the example of the resolved conifold in (2.10), and
assume the dependence d = a0 + a1g for some values of a0 and a1. Then, to
leading order in g, one finds

(2.22) N coni
g,d=a0+a1g ∼ Γ

(
2g − 3

2

)(
4π
e a1

)2g− 3

2

(
2 e
a1

) 3

2

e
2

a0
a1

2π2
.

The factorial in g is now explicit and it comes from the term d2g−3 when
d = a0 + a1g. On the other hand, recall that the leading growth of the free
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energy F
(0),coni
g in this case is [24]

(2.23) F (0),coni
g (Q) ∼ Γ (2g − 1)

(2πt)2g−1
t

π
,

with instanton action A = 2πt. To connect this resurgence relation to the
one in (2.22), one has to recall the definition of GW invariants (2.8)

(2.24) F (0),coni
g =

+∞∑
d=1

N coni
g,d Qd,

and then notice that the largest contribution to this sum, for a fixed value
of Q on the right-hand side, comes from

(2.25)
∂

∂d

(
N coni

g,d Qd
)
= 0 ⇒ d =

2g − 3

t
.

So we should expect that taking a1 = 2/t and a0 = −3/t in (2.22) will re-
produce something resembling (2.23). Indeed, one can easily check that we
obtain the same instanton action as 4π

a1
= 2πt (where we ignore the expo-

nential factor in (2.22) as such terms should be regrouped into the factor of
Qd in (2.24); i.e., exponentials may be ignored when matching with (2.23)).

This strategy of selecting the leading contribution from the Q-expansion

inside F
(0)
g (Q) can be pushed further. One way to do so is to approximate

the sum over the degree by an integration, and then perform a saddle-point
approximation — and this will be a main theme throughout our analyses.
Consider the following saddle-point approximation around x = x0 (where
V ′(x0) = 0),

(2.26) Φ(λ) =

∫ +∞

0
dx eλV (x) ∼ eλV (x0)

√
− 2π

λV ′′(x0)

(
1 +O

(
1

λ

))
.

To apply this generic formula to our problem one just has to identify

(2.27) Φ(λ) ↔ F (0)
g (Q), eλV (x) ↔ Ng,xQ

x, x ↔ d, λ ∝ g.

The only subtlety in this identification is that the saddle-point x0 is also
proportional to the coupling λ, as we saw for the resolved conifold (2.25).
In any case, our goal is to solve for eλV (x0) in (2.26). Then, the only ob-
stacle we have in order to do so is knowing the value of V ′′(x0). For the
resolved conifold we had an explicit formula and, as such, we knew that
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it was −t/(a0 + a1g)
2 where x0 = a0 + a1g and λ chosen the same; but in

general there are no such explicit formulae. Nonetheless, let us postulate a
completely similar dependence in g, namely

(2.28) V ′′(x0) ≡ −a2(Q)

λ2
+O

(
1

λ3

)
,

where we have chosen the explicit relation λ = a0 + a1g, and introduced the
function a2(Q). If one makes further use of the leading large-order growth
of the free energies [30],

(2.29) Φ(λ) = F (0)
g (Q) ∼ Γ (2g − β)

A2g−β F
(1)
0 ,

we finally obtain

(2.30) Ng,x0
Qx0 |x0=a0+a1g

∼ Γ
(
2g − β − 1

2

)
A2g−β− 1

2

(
a2

πa1A

) 1

2

F
(1)
0 .

Note that this large-order relation depends on a1 and a2, functions of Q
which define the position and shape of the saddle. For the resolved conifold,
and even for other geometries with actions proportional to a Kähler param-
eter, we find that a1 = 2/t and a2 = t. But for general geometries we do not
know what these functions are or should be, and one has to run computa-
tional experiments in order to judiciously try to fix them. Note that once
one approximates the sum over the degree by an integration, then different
saddles will correspond to different leading actions, which may depend on
the value of Q. For the resolved conifold there is only one leading action
and one saddle. But for general geometries we can expect several of them
— albeit one is always proportional to the Kähler parameter t. This is illus-
trated in Figure 3, where we have plotted saddles for the resolved conifold
and local P2 (we shall discuss these plots in greater detail later on). The
saddles are identified by numerically selecting, at fixed values of g and t but
varying d, the GW invariants which contribute the most to the perturbative
free energy. Both models clearly show a saddle associated to a Kähler action,
with A = 2πt. For local P2 there is one further saddle, related to a conifold
action, to be discussed in Section 4.1.

The main question. Let us finally address the main question motivating
this paper. Are there nonperturbative extensions of the enumerative GW

invariants — denote them by “N
(n)
g,d ”, with n an “instanton label” — just like

there are nonperturbative extensions F
(n)
g of the perturbative free energy?
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Figure 3. Graphical representation of which GW invariants contribute the

most to a free energy F
(0)
g (Q), for fixed values of g and Q = e−t. This contri-

bution is estimated by comparing the value of Ng,dQ
d, at different values of

the degree d, against the total value of the genus-g perturbative free energy

F
(0)
g . The resolved conifold, portrayed on the left, has a single saddle-point

corresponding to the action A = 2πt; whereas for local P2, portrayed on the
right, an extra saddle-point attached to the conifold action is also present.
These saddles may exchange dominance depending on the value of Q, but
the set of leading degrees will always be in correspondence with the set of
leading instanton actions.

And if so, what is their enumerative interpretation, i.e., which counting
problem is associated to these new numbers? An argument in favor of an
affirmative answer arises from considering the A-model mirror to the B-
model resurgent analysis of the free energy, and its associated transseries
constructions [30, 32]. This procedure would certainly lead to an A-model
transseries (and we shall illustrate this in the example of local P2), but the
resulting transseries would not be an adequate generating function. In fact,
while the perturbative Fg(Q) is a natural generating function, collecting the

GW invariants as a Q-expansion, the higher instanton sectors F
(n)
g (t) will

not be regular at Q = 0 and a naive Q-expansion is no longer an option.
Then how do we extract the nonperturbative counterparts?
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Schematically, we want to make sense of the following diagram

(2.31)

F
(0)
g F

(n)
g

“N
(n)
g,d ”?Ng,d

resurgence

expansion?Q-expansion

resurgence + interpretation?

The left and upper arrows are well understood. The left arrow is just the A-
model definition of GW invariants, while the upper arrow was made precise
within the B-model set-up in [30, 32]. In this paper we try to take the first
(exploratory) steps towards the definition of lower and right arrows, but a
complete answer can only come with a geometric/enumerative interpretation

of these conjectured quantities “N
(n)
g,d ”, which is beyond the scope of the

present work.

What could these nonperturbative invariants “N
(n)
g,d ” be counting? With

the nonperturbative sectors in the topological-string transseries naturally
associated to D-brane sectors [22, 24], one possibility is that their counting
is associated to embeddings of Riemann surfaces with boundaries, of certain
genus and degree. These A-brane open-strings end in middle-dimensional
lagrangian submanifolds (see, e.g., [51]) and it is also possible that some
counting associated to the corresponding target-space wrappings would play
a part. But this type of counting is usually associated to the open GW in-
variants (see, e.g., [52]), which means that — should this be the correct
interpretation of the nonperturbative invariants — there may be an inter-
esting link between closed and open GW invariants arising from relating
perturbative and nonperturbative data in the topological-string transseries.
Of course topological-string D-branes also relate to more intricate mathe-
matical constructions, such as Fukaya and derived categories (see, e.g., [53]),

in which case the counting associated to the “N
(n)
g,d invariants” may be much

more complicated.
Further note that, as GW invariants themselves have no transseries com-

pletions, we do not expect the lower arrow to be defined directly but rather
as combination of left, upper, and right arrows (alongside the mirror map).

In this way, one will have to extract the “N
(n)
g,d invariants” directly out of the

nonperturbative sectors F
(n)
g . Now, the Q-expansion of the perturbative sec-

tor arises from a worldsheet-instanton expansion and thus naturally relates
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to a counting problem. But the nonperturbative sectors lack such power-
series expansions in Q (we shall soon illustrate in a couple of examples how
they have singularities at Q = 0), implying that any nonperturbative GW
invariants hidden inside the nonperturbative free-energies might be difficult
to extract and their enumerative interpretation harder to decode (at the
very least they will imply understanding how the aforementioned singular-
ities come about, upon use of the mirror map). Furthermore, even after
performing an asymptotic resurgent analysis of Ng,d, we have to disentangle
the dependence in t, coming from the parameters a0 and a1, in the linear
dependence between degree and genus. At the end of the day, this leaves the
right arrow to be defined. What one has to do is to understand, via mirror
symmetry, how to relate nonperturbative multi-loop multi-instanton coeffi-
cients in the B-model transseries, to the nonperturbative sectors appearing
in the asymptotic resurgence relations for the combined genus/degree growth
of GW invariants.

Our goal in this paper is to initiate this line of research, computation-
ally exploring diverse CY examples. We try to identify the structure of these
new invariants, as they are encoded in the nonperturbative content of the
A-model free energy, but shall leave open their subsequent enumerative in-
terpretation for future research.

3. An exactly-solvable model: the resolved conifold

This section addresses our first example, concerning an exactly solvable
model: the resolved conifold. This toric variety is a non-compact CY three-
fold which is the total space of the bundle O(−1)⊕O(−1) → P1. The per-
turbative free-energy for the resolved conifold can be computed exactly to
all orders in the genus expansion (see, e.g., [48] and references therein). This
of course translates to the fact that one may obtain analytical expressions
for all its (infinite) GW invariants [54]. For any genus g, the results are

F
(0)
0 =

t3

12
− π2t

6
+ ζ(3)− Li3

(
e−t
)
,(3.32)

F
(0)
1 = − t

24
+ ζ ′(−1) +

1

12
Li1
(
e−t
)
,(3.33)

F (0)
g =

B2gB2g−2
2g (2g − 2) (2g − 2)!

(3.34)

+ (−1)g−1
B2g

2g (2g − 2)!
Li3−2g

(
e−t
)
, g ≥ 2,
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where Lip(z) is the polylogarithm of index p. In the following we will drop
the contribution from the constant map [54, 55] and mostly focus on the
large-order contributions g ≥ 2.

Due to the polylogarithm these free energies grow factorially in the genus
and lead to an asymptotic, Gevrey-1 perturbative free-energy [47]. The resur-
gent properties of this series have been studied in detail in [24, 33], with the
result

(3.35) F (0)
g ∼

+∞∑
n=1

∑
m∈Z

{
Γ (2g − 1)

(nAm)2g−1
Am

2π2n
+

Γ (2g − 2)

(nAm)2g−2
1

2π2n2

}
,

where Am(t) = 2π (t+ 2πim) are the instanton actions. For our purposes,
we shall focus on the leading contribution, whose action is A = 2πt, in which
case

(3.36) F (0)
g ∼ Γ (2g − 1)

A2g−1
A

2π2
.

Let us next translate these resurgent properties to the level of GW invariants.
The GW invariants for the resolved conifold can be immediately read

from the free energies, by simply expanding the polylogarithm in power
series. One finds

(3.37) N coni
g,d = f coni

g d2g−3,

where f coni
g includes the Bernoulli dependence and is defined in (2.10). These

invariants have such a simple form, given that they are actually generated
by a single non-vanishing GV invariant

(3.38) n
(1)
0 = 1.

Likewise, the abc-coefficients we introduced in (2.20) vanish except for the

one which equals the GV invariant, a1 = n
(1)
0 = 1. This makes this geometry

considerably simpler than the ones we shall explore later, allowing for an
analytic treatment whose features will also show up later.

As we anticipated in some detail in the previous section, the factorial
growth of the free energy arises from the term d2g−3 when d grows linearly
with g. This is completely precise when the degree is a saddle point, in the
sense explained earlier. This point, d = (2g − 3)/t, was computed in equation
(2.25) and graphically represented in Figure 3 (left plot). One caveat about
the saddle-point approximation is that generically the saddle-point lands
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on non-integer values of the degree. In order to be able to do numerical
analyses with actual GW invariants, we look at nearby (integer) values of
the degree. A practical computational choice, one that we will also use for
other geometries, is to set

(3.39) g =
t

2
d+ q, with −

⌊
t

4
− 3

2

⌋
≤ q ≤

⌊
t

4
+

3

2

⌋
,

and set t to an even integer (and q must consequentially be an integer).
Since in this example there is an analytic expression for all GW invari-

ants, we can use it to obtain the resurgence relation

(3.40) f coni
g d2g−3Qd

∣∣∣
g= t

2
d+q

∼
+∞∑
h=0

Γ
(
2g − 3

2 − h
)

(2πt)2g−
3

2
−h

t
3

2
−h

22h+1 πh+2
Ph(q).

This expression is obtained by making use of the following asymptotic
formulae (for large degree d and genus g):

f coni
g

∣∣
g= t

2
d+q

∼ 2
2g − 1

(2π)2g
ζ(2g),(3.41)

d2g−3
∣∣
g= t

2
d+q

∼ etd√
2π

Γ
(
2g − 5

2

)
t2g−3

+∞∑
n=0

�n(q)

(td)n
,(3.42)

where �n(p) is a polynomial of degree 2n in q. As to the polynomials Ph(q)
in (3.40) above, these are polynomials in q of degree 2h with rational7 coef-
ficients. The first of which are

P0(q) = 1,(3.43)

P1(q) = −71

12
+ 12q − 4q2,(3.44)

P2(q) =
11545

288
− 131q +

419q2

3
− 176q3

3
+ 8q4,(3.45)

P3(q) = −17534803

51840
+

33553q

24
− 157393q2

72
+

15220q3

9
(3.46)

− 2062q4

3
+

416q5

3
− 32q6

3
,

7This depends on the way they are presently written. It is simple to note that the
denominators in the first terms of the polynomials, the numbers (1, 12, 288, 51840),
correspond to the denominators that appear in the asymptotic expansion of the
Gamma-function. In particular, we could rewrite (3.43) through (3.46) by pulling
out these overall factors, in which case we would then find a set of polynomials with
integer coefficients.
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and in general they are such that they make the following asymptotic ex-
pansion hold for any q as x → +∞,

(3.47)
√
2π e2q−x (x− 1) (x− 2q)x−3 ∼

+∞∑
h=0

Γ

(
x− 3

2
− h

)
2−h Ph(q).

Note that expression (3.40) conforms to the usual resurgence relations,
which, for some generic free-energy perturbative expansion, look like (see,
e.g., [20] for an introduction)

F (0)
g ∼

+∞∑
n=1

Γ (2g − nβ)

(nA)2g−nβ
Sn
1

2πi

+∞∑
h=0

Γ (2g − nβ − h)

Γ (2g − nβ)
F

(n)
h (nA)h(3.48)

=
Γ (2g − β)

A2g−β
S1

2πi

(
F

(1)
0 +

A

2g − β − 1
F

(1)
1

+
A2

(2g − β − 1) (2g − β − 2)
F

(1)
2 + · · ·

)
+

Γ (2g − 2β)

(2A)2g−2β
S2
1

2πi

(
F

(2)
0 +

2A

2g − 2β − 1
F

(2)
1 + · · ·

)
+O(3−2g).

Indeed, in (3.40) one immediately identifies the ∼ (2g)! growth, alongside
the instanton action A = 2πt which is the same action that appears in the
free energies. Of course (3.40) also has higher instanton corrections which
improve the asymptotics further as in the above expression. These arise
from including the (exponentially) subleading terms in ζ(2g) =

∑+∞
n=1 n

−2g

in the large-g expansion of the Bernoulli numbers, B2g, in (2.10); and from
computing the complete large-d transseries expansion of dtd+2q−3. The result
is
(3.49)

f coni
g d2g−3Qd

∣∣∣
g= t

2
d+q

∼
+∞∑
n=1

+∞∑
h=0

Γ
(
2g − 3

2 − h
)

(nA)2g−
3

2
−h

t
3

2
−h

22h+1 πh+2 n
3

2
+h

Ph(q).

Some computational tests on the validity of (3.40) are shown in Figures 4
and 5. Figure 4 presents a test of the instanton action. We plot the analyt-
ical AK = 2πt against numerical tests of this action. We use the standard
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Figure 4. Test of the instanton action AK = 2πt, from the Kähler saddle-
point, for the resolved conifold. The inclosed plots show the convergence for
a couple of values of t and q.

techniques of Richardson extrapolation/Richardson transforms8 to acceler-
ate convergence (similar to tests done in, e.g., [22]). An illustration of these
transforms for different values of t and q is shown in the inclosed figures,
where the original sequence is shown in blue together with its first (green),
second (yellow) and third (red) Richardson transforms. We do this for vary-
ing t (the horizontal axis) but also varying q, i.e., each black dot is actually
several overlapping black dots, each one the third Richardson transform of
the numerical sequence for the instanton action, for that particular value of
t and for a range of different values of q. Then Figure 5 tests the validity
of (3.43) through (3.46) (in fact up to h = 5), this time around for fixed q.
Each inverted triangle in the plot is again the third Richardson transform
of the tested sequence. All these plots very cleanly illustrate the validity
of (3.40).

In Section 2 we showed how to relate GW asymptotics to free-energy
instanton sectors, in particular relating the first term in the right-hand side

of (3.40) with the one-loop one-instanton free energy F
(1)
0 ; see (2.30) and

the discussion which follows. Ideally, one would now like to do the same

8Given a k-sequence S(k) � s0 +
s1
k + s2

k2 + · · · , its n-th Richardson transform is
defined as

(3.50) RTS(k, n) =

n∑
m=0

(−1)m+n (k +m)n

m!(n−m)!
S(k +m).

Convergence is accelerated by cancellation of subleading terms in the original se-
quence up to k−n order.
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Figure 5. Numerical check of the loop-corrections f
(1)
h := n

(1)
0 t

3
2
−h

22h+1πh+2 Ph(q), for
h = 0, . . . , 5 and q = 1, for the resolved conifold. We plot the logarithm of

the ratio f
(1)
0 /n

(1)
0 so that all curves fit within the same graph (and where

the GV invariant is n
(1)
0 = 1).

for the multi-loop (eventually multi-instanton) one-instanton free energies
and their relation to higher terms in (3.40). Unfortunately, already finding

a direct relation at two-loops, between F
(1)
1 and any higher term in (3.40),

turns out not to be possible using the saddle-point approximation from
Section 2. In fact, our saddle-point approach is non-standard, in the sense
that the saddle-point itself grows with d (or g), which essentially obscures
a clear-cut relation between free-energy asymptotics and GW asymptotics
beyond the first term. For the present example of the resolved conifold we
can bypass this problem, working directly with the explicit form of the GW
invariants, but this will not be possible for more complicated examples.

Let us end our discussion of the resolved conifold by going back to our
diagram (2.31). As we mentioned earlier, one cannot find nonperturbative
GW invariants via a Q-expansion of the resurgent asymptotic expansion for

the perturbative free energy F
(0)
g . This is already clear in equation (3.36),

where, although the left-hand side does have a regular expansion around
Q = 0 from which one reads the GW invariants (this is just the statement
that the left-hand side is a regular generating function), the same does not
hold true for the right-hand side, where one finds a logarithmic singularity
at that same point (recall that the instanton action is proportional to t).
In other words, the “resurgence rewriting” of the perturbative free energies,

F
(0)
g (Q), as an asymptotic series in 1/g does not respect, term by term,

a regular Q-expansion. Only when we consider all corrections in 1/g and
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perform their resummation (yielding the polylogarithm, in this case of the
resolved conifold) can we recover regularity at Q = 0. Looking directly at the
resurgent GW expansion (3.40), one also sees how the right-hand side has
a non-regular Q-dependence through t = − logQ. Although the possibility
remains that there might be a better variable than Q or t to establish the
match against nonperturbative GW invariants, it may also be the case that
there is no such variable and reading nonperturbative GW invariants (nat-
urally formulated using a Q-expansion) from resurgence expressions (natu-
rally written using the t variable) is in fact a nontrivial problem which might
require some a priori enumerative interpretation to know what to look for.
Perhaps the fact that the polynomials (3.43) through (3.46), appearing in
the resurgence relation (3.40), have rational coefficients much like the GW
invariants themselves, is a clue in that direction.

4. Computational explorations in Calabi–Yau threefolds

We shall now move on towards non-trivial geometries, for which there are
no closed-form expressions for enumerative GW invariants. We shall instead
resort to computational methods in order to explore their asymptotics and
resurgent structures.

4.1. The example of local P2

Our first non-trivial example will be a local-surface toric-variety. We start
with the non-compact CY threefold known as local P2, which is the total
space of the line bundle O(−3) → P2. This example of local P2 has a single
complex modulus z, and a mirror map of the schematic form Q = e−t =
O(z), which eventually allows for a calculation of GW invariants [41, 56] (the
resulting Kähler modulus being the size of the P2). In fact, the large-order
data for the resurgence analysis first arises in the B-model and will thus
require translation into A-model expressions. Specifically, the high genus
GW invariants for local P2 will come out of B-model calculations, both
perturbative [57] and nonperturbative [30, 32], followed by mirror symmetry
[10].

Free energies and Gromov–Witten invariants. The perturbative free
energies are best computed within the B-model using the holomorphic
anomaly equations, which are recurrence relations in the genus [6, 58]. The
GW invariants are then extracted using the mirror map back to the A-model,
and removing the anti-holomorphic dependence (in z̄) which is introduced
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by this computation. We shall not get into any details, which may be found
in [57], but it is perhaps worth mentioning the Picard–Fuchs equation. Its
solutions, the periods, are the source to the genus-zero free energy, the mir-
ror map, and also the instanton actions [27]. For local P2, the Picard–Fuchs
equation is

(4.51)
{
(z∂z)

3 + 3z2 ∂z (3z∂z + 1) (3z∂z + 2)
}
f(z) = 0.

One of its three independent solutions is a constant. Another one, having a
log z singularity, can be identified as the mirror map,

(4.52) logQ = −t = log z − 6z + 45z2 − 560z3 + · · · .

The last solution, having a log2 z singularity, can be associated to ∂tF
(0)
0 .

Upon integration of this last solution, and use of the mirror map, one finds
the genus-zero free energy as

(4.53) F
(0)
0 = c3t

3 + c2t
2 + c1t+ 3Q− 45

8
Q2 +

244

9
Q3 + · · · .

One can ignore the coefficients ci and then read the GW invariants, N0,d,
from this Q-series.

Within the B-model, the higher-genus free energies9, F
(0)
g , may be com-

pactly written as polynomials in z and Szz(z, z̄), an auxiliary variable called
the propagator [59]. To extract higher-genus GW invariants one has to use
the holomorphic limit of the propagator Szz (in the large-radius frame),

(4.54) Szz
hol,[LR] =

1

2
Q2 + 15Q3 + 135Q4 + · · · .

Consider for example F
(0)
2 (z, Szz), which follows from the holomorphic

anomaly equations as

F
(0)
2 =

(
− 1

3z3 (1 + 27z)

)2
(

5

24
(Szz)3 − 3z2

16
(Szz)2 +

z4

16
Szz(4.55)

−
(
11− 162z − 729z2

)
z6

1920

)
− 1

1920
.

9Note that the genus-one free energy is calculated separately (see [58] for details),

and further has a direct relation to the propagator; namely ∂zF
(1)
0 = 1

2CzzzS
zz,

where Czzz =
(−3z3 (1 + 27z)

)−1
is the Yukawa coupling computed out of the

Picard–Fuchs equation.
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g�114

g�5

d�114 d�325

Figure 6. Maximum degree and genus of the GW invariants we computed
for local P2.

Taking the holomorphic limit and using the mirror map, z = z(Q), one then
obtains the A-model result

(4.56) F
(0)
2 =

1

80
Q+

3

20
Q3 − 514

5
Q4 + · · · .

Here, the coefficients of the Q-expansion are the N2,d GW invariants. In this

way, the holomorphic anomaly equations systematically compute F
(0)
g , out of

F
(0)
h with h = 1, . . . , g − 1, and from them one extracts the Ng,d GW invari-

ants as described above. An illustrative (i.e., partial) table of GW invariants
for local P2 may be found in Appendix B.1. In Figure 6 we schematically
represent all the GW invariants we have computed and work with in the
present paper.

As studied in great detail in [30, 32] the free energies for local P2, F
(0)
g ,

grow factorially fast and render the free-energy expansion asymptotic. The
resurgent structure which was uncovered in those references may be sum-
marized as follows. There are several instanton actions, labelled by A1, A2,
A3 and AK, which give rise to corresponding nonperturbative sectors within
the total free-energy transseries. Out of these, two actions are leading at
large-order, these are A1 and AK, meaning that for some values of the
complex-structure modulus z they are the actions controlling the leading

growth of the F
(0)
g . Around the large-radius point in moduli space, z = 0,

it is AK = 2πt(z) which is leading, and elsewhere it is A1 =
2πi√
3
Tc(z), where
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Tc(z) = 12
√
3π2i ∂tF

(0)
0 is the flat coordinate10 around the conifold point

z = −1/27. For obvious reasons, we name AK as the Kähler action and A1

as the conifold action (in fact also A2 and A3 are related to the conifold
point, but they will not play any role in the present paper).

In this case, the large-order growth of the free energies may be either

(4.57) F (0)
g ∼ Γ (2g − 1)

A2g−1
1

F
(1)[c]
0 or F (0)

g ∼ Γ (2g − 1)

A2g−1
K

F
(1)[K]
0 ,

depending on the value of Q. The one-loop one-instanton coefficients are
computed from an extension of the holomorphic anomaly equations, along-
side the above resurgent relations (which were needed in order to fix the
holomorphic anomaly). They are part of the B-model transseries, and one
finds [32]

(4.58) F
(1)[c]
0 =

A1

2π
e

1

2
(∂zA1)

2(Szz
hol,[LR]−Szz

hol,[c]) and F
(1)[K]
0 =

3AK

2π2
.

The left expression involves Szz
hol,[LR], whose Q-expansion was written in

(4.54), but it also involves the holomorphic limit of the propagator in the
conifold frame, Szz

hol,[c] (see [32]). It is interesting to note how the expression

on the right of (4.58) is actually equivalent, up to a factor of 3 = n
(1)
0 , to

the one we computed earlier for the resolved conifold.
Being part of the B-model transseries, one may feel tempted to use the

mirror map and write these nonperturbative expressions in the A-model,
hoping for regular generating functions of our would-be nonperturbative
invariants. Unfortunately, as already explained earlier, their Q-expansions
are explicitly non-regular

F
(1)[c]
0 =

i (−Q)
3

2

4π

(
(log(Q)− iπ)2 − π2 − 18Q+

135

2
Q2 + · · ·

)
(4.59)

×
(
1− 27

2
Q+

1539

8
Q2 + · · ·

)
,

F
(1)[K]
0 = − 3

π
logQ.

This implies that the A-model transseries, obtained via mirror map from
the B-model transseries, is not a regular generating function and one has to

10References [30, 32] used the notation tc for this flat coordinate. Herein we use
Tc instead so as not to clash with our conifold critical point.
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dig deeper in order to try to understand the counting problem associated to

the conjectured quantities “N
(n)
g,d ”.

Analysis of large-degree growth. At fixed genus, the GW invariants
grow exponentially in the degree as

(4.60) Ng,d ∼ cg d
2g−3 edtc (log d)δ ,

where tc := t(z = −1/27) = 2.90759 . . .− iπ [41, 60]. Figure 7 shows a nu-
merical verification of this value for tc. The exponent 2g − 3 of the degree d
may be verified numerically from the following large-d sequence

(4.61) fd − 2fd2 ∼ 2g − 3, where fd := d

(
etc

Ng,d+1

Ng,d
− 1

)
.

Due to the presence of the d2 factor, and the limit upon available data,
the results are not as good as those for tc. Nonetheless, this exponent may
also be cleanly verified numerically, as it is shown in Figure 8. Finally, in
similar fashion, we can determine the power of the logarithm log d from the
sequence

(4.62) 2δ ∼ ed(d−1)tc

d2g−3
Ng,d2

Ng,d
.

This is done in Figure 9, where it is shown that this exponent may be well
fitted to the expected δ = 2g − 2. Unfortunately, our available data does
not allow us to numerically compute the genus-dependent pre-factor cg with
enough accuracy as to present it here.

Analysis of large-genus growth. As explained in Section 2, the large-
genus expansion is best expressed in terms of the coefficients ad, bd,n, and
cd, as in (2.20), which we reproduce in here
(4.63)

N P
2

g,d = f coni
g

⎧⎨⎩∑
n|d

aP
2

n

(
d

n

)2g−3
+

2g

B2g

1

d

⎛⎝cP
2

d δg,1 +

G
P
2 (d)−1∑
n=1

bP
2

d,n n
2g−2

⎞⎠⎫⎬⎭ ,

and where, for this example, one explicitly has GP
2(d) = (d− 1)(d− 2)/2. A

table with these first few coefficients is shown in Appendix B.1. Recall that
these are just convenient integer numbers which essentially capture the very
same information as either GW or GV invariants.
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Figure 7. Local P2: The exponent tc in the growth of Ng,d is captured from
the ratio of two consecutive GW invariants, when the degree is large. We
plot that ratio alongside three Richardson extrapolations, which are clearly
converging faster towards the expected result (up to a numerical relative
error of about 0.06%).
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Figure 8. Local P2: The exponent 2g − 3 is the leading large-order term in
fd − 2fd2 . We have data up to d = 325 so that the horizontal axis can only
reach d = 17. The plots illustrate the first few Richardson transforms for
g = 3 (left) and g = 5 (right), converging faster towards the expected result
(up to numerical relative errors of about 2% in both cases). Notice how
the presence of logarithms in (4.60) makes the convergence of Richardson
transforms much slower.

Some of these coefficients, bd,n with n close to GP
2(d)− 1, can be iden-

tified in closed form as

bP
2

d,G
P
2 (d)−1−k = p−3(k) (−1)d d ((d+ 1) (d+ 2)− 2k) ,(4.64)

0 ≤ k ≤ d− 2,
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4 6 8 10 12 14 16

3.0

3.5

4.0

4.5

5.0

5.5

6.0

d

lo
g 2
	d
�d
�

1�
t c

d2g
�

3

N g
,d

2

N g
,d

4 6 8 10 12 14 16

5

6

7

8

9

10

11

12

d

lo
g 2
	d
�d
�

1�
t c

d2g
�

3

N g
,d

2

N g
,d

Figure 9. Local P2: The exponent δ of the logarithm log d is the leading term
in the sequence (4.62). Having data up to d = 325 implies the horizontal axis
only reaches d = 17. We plot the first few Richardson transforms for g = 3
(left) and g = 5 (right), converging faster towards the expected result (up
to small numerical relative errors of about 3% and 4%, respectively).

where the p−3(k) are given by the generating function

(4.65)

+∞∑
k=0

p−3(k) qk =

+∞∏
m=1

1

(1− qm)3
.

For larger values of k one can try to extend the above formula, at the cost of
identifying similar coefficients to p−3(k). A conjectural partial formula for
bP

2

d,n is

bP
2

d,G
P
2 (d)−1−k

?
= (−1)d d

+∞∑
s=0

(
αs,k−msd+ns

(d+ 1− s) (d+ 2− s)(4.66)

− βs,k−msd+ns

)
,

where

m0 = 0, n0 = 0, α0,n = p−3(n), β0,n = 2np−3(n),(4.67)

m1 = 1, n1 = 1,

+∞∑
n=0

α1,n q
n = −3

1 + q + q2

1− q

+∞∏
m=1

1

(1− qm)3
,

− β1,n = 0, 18, 144, 684, 2484, 7578, 20628, 51390, 119736,(4.68)

263970, 556308, 1127880, 2212704, ?,

m2 = 2, n2 = 4, −α2,n = 6, 24, 72, 162, 315, ?,(4.69)

− β2,n = 0, 36, 252, 1008, 3042, ?.
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This is as far as we were able to reach with the data we have available for
local P2.

Combined/diagonal large-growth in genus and degree. As discussed
earlier in Section 2, and illustrated in Figure 3, local P2 has two (different)
growths of combined genus and degree. They are associated to the Kähler
(AK = 2πt) and conifold (Ac) instanton actions, and they are, respectively,

(4.70) d =
2g − 3

t
and d = a0(Q) + a1(Q) g.

Note that, as one varies t, the large-order growth of the free energies will
be dominated by either AK or Ac, or a competition between both (see the
analysis in [32]). The situation is slightly different with the GW large-order.
Here, along any diagonal one will find a factorial growth. However, from a
resurgence standpoint, perhaps the most interesting diagonals are the ones
which connect back to the resurgent structure of the free energies [30, 32].
For any chosen diagonal, this connection will exist every time there is a value
of t which realizes that chosen diagonal as one of the above (specific) slices.
If such a value of t exists, then the large-order growth of the enumerative
invariants will be dominated by either AK or Ac and the connection to the
free energies is rather clean. If not, one will instead be upon a “mixed”
diagonal with both AK and Ac vying for dominance. Below we shall focus
only upon the leading diagonals.

The first leading degree above was explored and justified analytically
for the resolved conifold, and the main features which were found in that
example remain in the present one. The second leading degree above depends
on t (or Q) through two unknown functions, a0(Q) and a1(Q). At this stage,
these functions may only be accessed via numerical computations; and given
limited data, with some significant limitations. In the following we shall
summarize the resulting factorial growth of the GW invariants, along the
leading diagonals of their (g, d)-table, and the relation of this growth with
the resurgent structure of the topological-string free energy.

Kähler leading degree. In this case, the only difference with respect to
the resolved conifold turns out to be a simple multiplying factor, the GV

invariant n
(1)
0 = 3 of local P2, in which case the analog of (3.40) is now

(4.71) N P
2

g,dQ
d
∣∣∣
g= t

2
d+q

∼
+∞∑
h=0

Γ
(
2g − 3

2 − h
)

A
2g− 3

2
−h

K

n
(1)
0 t

3

2
−h

22h+1 πh+2
Ph(q).
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Figure 10. Tests of the instanton action AK = 2πt, from the Kähler saddle-
point, for local P2, ABJM, the quintic, and the local curve X3 (from left
to right and top to bottom). The inclosed plots show the convergence for a
couple of values of t and q. Note that for the quintic we do not have enough
data to guarantee reaching a limit where all black dots overlap.

The polynomials Ph(q) are precisely the same as in (3.47), and the integer
q is introduced to make both g and d integer; see the discussion around
equation (3.39).

Computational tests on the validity of (4.71) are shown in Figures 10
and 11; with Figure 10 testing the Kähler instanton action and Figure 11
testing the (universal) validity of the polynomials Ph(q) for h = 0 through
5. The precise nature of these computational tests is exactly the same as
we did earlier for the resolved conifold, and we refer to that discussion for
further details.

This formula (4.71), when restricted to the first approximation h = 0,
reproduces the prediction from the saddle-point approximation which was
explained around equation (2.30) (and leading up to it). Indeed, for the

case of Kähler leading degree, a0 = −3/t, a1 = 2/t, a2 = t, and F
(1)
0 = 3AK

2π2 .
Using these values in equation (2.30) (with β = 1) we precisely reproduce
(4.71) truncated to h = 0. A numerical check of the values of a0 and a1 is
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Figure 11. Numerical checks of the loop-corrections f
(1)
h = n

(1)
0 t

3
2
−h

22h+1πh+2 Ph(q),
for h = 0, . . . , 5 and q = 1, for our several examples. We plot the logarithm

of the ratio f
(1)
0 /n

(1)
0 to have universal quantities which all fit within the

same graph.

shown in the upper plots of Figure 12, for which we can nicely fit

a0(Q)−1 = (−0.65± 0.09) + (−0.274± 0.008) t, r2 = 0.945,(4.72)

a1(Q)−1 = (0.038± 0.005) + (0.4967± 0.0004) t, r2 = 0.99995.(4.73)

The shift in a0(Q) is not very reliable, but the slope in a1 is quite close to
the expected value.

This asymptotics arises from the ad=1 contribution in the abc-expansion

of the GW invariants in (2.20). Since ad=1 = n
(1)
0 one will always find the

resolved-conifold asymptotics multiplied by this factor.

Conifold leading degree. The second dominant degree, d = a0(Q) +
a1(Q) g, is harder to analyze as everything must now be approached nu-
merically; from the computation of a0(Q) and a1(Q) to the asymptotics.

The numerical fit to 1/a1(Q) is shown in the lower-right plot of Figure 12.
It is obtained from first fitting straight lines d = α g + β for different (fixed)
values of t. Then fitting these results against a linear dependence in t we
have obtained

(4.74) a1(Q)−1 = (−0.466± 0.005) + (0.2728± 0.0005) t, r2 = 0.9998.

On what concerns a0(Q), its numerical calculation is shown in the lower-
left plot of Figure 12, but there is no obvious fit to do here (numerically,
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Figure 12. Local P2: Numerical calculation of a0(Q) and a1(Q) associated
to the Kähler instanton action (the two upper plots) and to the conifold
instanton action (the two lower plots). We are showing tests for their inverses
whenever the dependence seems linear, although we were not able to confirm
this analytically in the case of the conifold action. (We are only plotting
reasonably trustworthy fits, thus the apparent holes in the plots.)

the dependence of 1/a0(Q) does not seem to be linear in t, yielding a poor
r2 = 0.849, and this will become even more evident in following examples).
At this moment we cannot provide an analytical interpretation for these
numbers, or even guarantee that the fit to a straight line is justified since
the interval in t we have considered might be too small to be significant.
Nonetheless, we do report the results.

Because we now lack the precision we had along the Kähler leading de-
gree, we cannot provide a systematic exploration of the GW asymptotics
with conifold leading degree. We can, however, identify particular values of
t for which the exploration becomes simpler. One such point is found when
a1(Q) = 1, or t ≈ 5.6993 . . .. In this case we explore the growth of Ng,g+Δ

for some integer Δ ∈ Z (implicitly associated to a0(Q)). The numerical ex-
ploration of this diagonal slice in the GW-table yields the result

(4.75) N P
2

g,g+Δ ∼ Γ
(
2g − 3

2

)
A

2g− 3

2

0

eα0+α1 Δ (−1)Δ+1 ,
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where A0 ≈ 0.655995 . . ., and α0 and α1 are pure numbers which cannot be
computed with much precision. The interesting point is that the value of A0

can be matched to the saddle-point prediction involving the conifold action,

(4.76) A1(Q)
√

Q = 0.655995043 . . . ,

where the
√
Q comes from including the factor Qd that multiplies N P

2

g,g+Δ

in the saddle-point expression. On the other hand, the one-loop coefficient
in (4.75) should correspond to

(4.77)

(
a2

πa1A1

)1/2

F
(1)[c]
0 ,

but a2(Q) is directly related to the second derivative at the saddle point and
thus it cannot be computed from first principles.

4.2. The example of local P1 × P1

Let us next address another (toric) local surface, the non-compact CY three-
fold known as local P1 × P1, which is the total space of the line bundle
O(−2,−2) → P1 × P1. Generically, local P1 × P1 has two complex structure
moduli, z1 and z2, implying that the mirror map is similarly twofold, Q1 =
e−t1 = O(z1) and Q2 = e−t2 = O(z2). In order to have reasonable large-order
data for the resurgence analysis, in what follows we shall restrict to a slice
of this variety where z1 = z2.

Free energies and Gromov–Witten invariants. Instead of working in
the full two-dimensional moduli space, we shall restrict to the (simpler) one-
dimensional diagonal slice where the sizes of both P1’s in the local P1 × P1

geometry are set to be equal. One is thus left with a single modulus. The
resulting such theory is closely related to a rather well-known gauge theory,
called ABJM gauge theory [61] (see also [62]), and we shall use this name
in the following to denote this diagonal slice of local P1 × P1.

Of course the general local P1 × P1 geometry has two Picard–Fuchs op-
erators; annihilating periods. One immediate simplification of the diagonal
slice is to reduce this number to just one,

(4.78)
{
(z∂z)

4 − 4z
(
4 (z∂z)

3 + 4 (z∂z)
2 + z∂z

)}
f(z) = 0.
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From its solutions, we can identify the mirror map and the genus-zero free
energy,

−t = log z + 4z + 18z2 +
400

3
z3 + · · · = logQ,(4.79)

F
(0)
0 = c3t

3 + c2t
2 + c1t− 4Q− 9

2
Q2 − 328

27
Q3 + · · · .(4.80)

After dealing with the genus-one free energy, F
(0)
1 , one can proceed and use

the holomorphic anomaly equations to compute higher-genus free energies11,
from which the GW invariants are eventually read. For example, in the
language of modular forms,

F
(0)
2 =

5E3
2

5184cd2
− E2

2

576d2
+

E2

(
c2 − cd+ d2

)
864cd2

(4.81)

+
−16c3 + 15c2d− 21cd2 + 2d3

51840cd2

= −Q

60
− Q2

20
− Q3

10
+ · · · ,

where E2(τ) is the second Eisenstein series, c = ϑ4
3(τ) and d = ϑ4

4(τ) are
powers of theta functions, and the modular parameter τ is a function of z;

see [63] for full details. Also, in this language F
(0)
1 = log η(τ) with η(τ) the

Dedekind eta-function. In Appendix B.2 we list the first few GW invariants,
and Figure 13 schematically represents the ones we have computed and will
work with.

The instanton actions for ABJM were extensively discussed in [27] and
are associated to special points in moduli space: large Kähler structure
(z = ∞) yielding AK = 2πt, conifold point (z = zc) yielding Ac, and orb-
ifold point (z = 0) yielding Ao. These three actions are actually linearly
dependent with integer coefficients. This implies that the ABJM transseries
(whose construction is still an open problem for future research) might either
involve only two of these actions (selected upon some criteria of relevance),
or it might involve all three of them (in which case one would obtain a
resonant transseries as in, e.g., [28, 29, 38]).

11This was done in [57] using the language of propagators, and addressing the
full local P1 × P1 geometry; and in [63] using modular forms, and while restricting
to the ABJM diagonal slice.
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Figure 13. Maximum degree and genus of the GW invariants we computed
for ABJM.

Analysis of large-degree growth. The large degree, fixed genus, growth
is completely analogous to that of local P2,

(4.82) Ng,d ∼ cg d
2g−3 edtc (log d)δ .

The value of the Kähler parameter at the conifold point is now tc := t(z =
1/16) = 8K/π = 2.33248723 . . . [63], where K =

∑+∞
n=0(−1)n (2n+ 1)−2 is

the Catalan constant. The exponent δ numerically matches to the expected
2g − 2. This g-dependence of the exponents may be tested using the same
large-d sequences as for local P2, i.e., the combinations (4.61) and (4.62).
These numerical results are illustrated in Figures 14, 15 and 16.

Analysis of large-genus growth. Again, the strategy is essentially the
same as for the example of local P2. As before, the GW invariants can be
expanded in terms of abc-coefficients according to equation (2.20), but where
in the present example one explicitly has GABJM(d) = �d(d− 4)/4�+ 1. A
table with these first few coefficients is shown in Appendix B.2.

The first few coefficients seem to answer to the closed-form formula

(4.83) bABJM

d,� d(d−4)

4 �−k = pd,−4(k) 4d

(⌊
(d+ 2)2

4

⌋
− k

)
,

where

(4.84) pd,−4(k) =

{
pe,−4(k)/2 even d,

po,−4(k) odd d,
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Figure 14. ABJM: The exponent tc in the growth of Ng,d is captured from
the ratio of two consecutive GW invariants, when the degree is large. We
plot that ratio alongside six Richardson extrapolations, which are clearly
converging faster towards the expected result (up to a numerical relative
error of about 0.3%).
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Figure 15. ABJM: The exponent 2g − 3 is the leading large-order term in
fd − 2fd2 . We have data up to d = 200 so that the horizontal axis can only
reach d = 14. The plots illustrate the first few Richardson transforms for
g = 3 (left) and g = 5 (right), converging faster towards the expected result
(up to numerical relative errors of about 3% in both cases).

and

+∞∑
k=0

pe,−4(k) qk
?
=
(
1 + 2q + 2q4

) +∞∏
m=1

1

(1− qm)4
,(4.85)

+∞∑
k=0

po,−4(k) qk
?
=
(
1 + q2 + q6

) +∞∏
m=1

1

(1− qm)4
.(4.86)
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Figure 16. ABJM: The exponent δ of the logarithm log d is the leading term
in the sequence (4.62). Having data up to d = 200 implies the horizontal axis
only reaches d = 14. We plot the first few Richardson transforms for g = 3
(left) and g = 5 (right), converging faster towards the expected result (up
to small numerical relative errors of about 8% and 3%, respectively).

But with the (limited) available data we cannot confirm that these formulae
are complete.

Combined/diagonal large-growth in genus and degree. The com-
bined growth in genus and degree is similar to the one for local P2. The
two leading combinations, again arising from Kähler and conifold instan-
ton actions, will allow us to connect the factorial growth of the perturba-
tive free energies with the factorial growth of GW invariants. This is il-
lustrated in Figure 17. As already happened before, the growth associated
to the Kähler action, d = (2g − 3)/t, is well understood since the example
of the resolved conifold, whereas the one associated to the conifold action,
d = a0(Q) + a1(Q) g, can only be probed numerically.

Kähler leading degree. This growth is completely determined, at least
up to the first exponentially-subleading instanton corrections, by the first

GV invariant of ABJM which in this case is n
(1)
0 = −4. Thus we have

(4.87) NABJM
g,d Qd

∣∣∣
g= t

2
d+q

∼
+∞∑
h=0

Γ
(
2g − 3

2 − h
)

A
2g− 3

2
−h

K

n
(1)
0 t

3

2
−h

22h+1 πh+2
Ph(q),

where AK = 2πt and the definition of Ph(q) is given in (3.47), i.e., they are
precisely the same polynomials which have already appeared for resolved
conifold and local P2. Computational tests on the validity of (4.87) are
shown in Figures 10 and 11, with the exact same discussion as for resolved
conifold and local P2. In fact, all the very same comments we made for
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Figure 17. ABJM: Graphical representation of which GW invariants con-

tribute the most to a free energy F
(0)
g (Q), for fixed values of g and Q = e−t.

As for local P2 in Figure 3, ABJM has saddle points corresponding to both
Kähler and conifold actions. The values of g and t in the plot were chosen
as to clearly see both saddles in the same figure.

local P2 in Section 4.1 also apply now. In particular, the numerical check of
a0 = −3/t and a1 = 2/t is indeed confirmed as

a0(Q)−1 = (0.01± 0.07) + (−0.33± 0.01) t, r2 = 0.970,(4.88)

a1(Q)−1 = (−0.003± 0.005) + (0.5000± 0.0009) t, r2 = 0.99992.(4.89)

This check is shown in the upper plots of Figure 18.

Conifold leading degree. In this case, the analysis can only be carried
out numerically, due to lack of theoretical knowledge of where a0(Q) and
a1(Q) come from. The strategy is essentially the one already started with
local P2, and we find

(4.90) a1(Q)−1 = (−0.595± 0.009) + (0.307± 0.002) t, r2 = 0.9993.

This fit is shown in the lower-right plot of Figure 18. The lower-left plot of
this figure shows the numerical calculation of a0(Q), again with no obvious
fit to do here.

4.3. The example of the local curve Xp

Our next example deals with local curves. The non-compact CY threefolds
to be considered are the total spaces of the rank-two holomorphic vector
bundles Xp � O(p− 2)⊕O(−p) → P1, with p an integer (but due to the
invariance p− 2 ↔ −p, one may choose p ∈ N). When p = 1 one finds the
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Figure 18. ABJM: Numerical calculation of a0(Q) and a1(Q) associated to
the Kähler instanton action (the two upper plots) and to the conifold in-
stanton action (the two lower plots). We are showing test for their inverses
whenever the dependence seems linear, although we were not able to confirm
this analytically in the case of the conifold action.

resolved conifold, O(−1)⊕O(−1) → P1 (addressed earlier), and when p =
2 one finds the Dijkgraaf–Vafa geometries O(0)⊕O(−2) → P1 relating to
hermitian matrix models [64].

By making use of the topological vertex machinery [65] one may actually
compute high genus GW invariants for the local curve directly in the A-
model. We shall nonetheless begin with some comments pertaining to the
B-model free energy, following [43].

Free energies and Gromov–Witten invariants. The B-model free en-
ergy has the general structure [43]

(4.91) FXp
g (w) =

1

(w − wc)
5(g−1)

5(g−1)∑
n=1

ag,n(p) (w − 1)n ,

where the coefficients ag,n are of the form

(4.92) ag,n =
bg,n(p)

(p− 1)k
,
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with k a positive integer and bg,n(p) a polynomial in p. They are not known
in general and have to be fixed with GW invariants up to degree d = 5(g − 1)
(we present some of these coefficients in Appendix B.3). The modulus w is
related to the Kähler parameter t through the mirror map

(4.93) Q ≡ e−t = w(p−1)2−1 − w(p−1)2 ,

where the critical point is at

(4.94) wc =
p(p− 2)

(p− 1)2
,

which translates to

(4.95) tc = log
(
(p (p− 2))p(2−p) (p− 1)2(p−1)

2
)
.

It is interesting to notice that, unlike the previous geometries, all these
formulae are now exact. Further notice that the double-scaled theory at the
critical point is now in the universality class of 2d gravity (the free energy
being related to the Painlevé I equation) which is a distinct universality
class from the previous c = 1 examples [43].

As mentioned earlier, one can compute the partition function, and thus
the free energy, as a sum over integer partitions directly in the A-model
using the topological vertex [65]. We shall not get into any details, which
may be found in [43], and simply quote the end results. We have computed12

GW invariants N
Xp

g,d with fixed p = 3, 4, 5 and in Appendix B.3 we list a few
such invariants. Figure 19 schematically represents all the invariants we did
compute and will work with herein. In the rest of this section we will mostly
omit the p-dependence of the GW invariants for shortness, but our results
for the different types of growth will always be for general p unless explicitly
stated otherwise. We should also point out that we are including an extra

12On a technical aside, let us mention that the main obstacle in such A-model
computations is the growth in degree, since it implies considering an exponentially-
growing number of partitions and ever larger expressions to put together. The
expansion of the free energy in powers of gs is also time and resource-consuming,
but this computation can be improved if we compute the GW invariants numerically.
The only requisite is that the numerical precision should be high enough in order
to extract rational numbers out of decimal expansions.
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Figure 19. Maximum degree and genus of the GW invariants we computed
for the local curves Xp with p = 3, 4, 5. For g ≤ 9 we have all the required
data to fix (4.91) and thus can compute GW invariants for any degree.

sign in our GW invariants [49, 50]

(4.96) N
Xp

g,d → (−1)g−1NXp

g,d.

This is essentially required in order to produce integer GV invariants.
For g ≤ 9 we have enough data to completely fix the coefficients in (4.91),

which means the GW invariants can then be computed to arbitrarily high
degree. It is also worth mentioning that for g = 0, 1 there are explicit for-
mulae for the GW invariants [43]

N
Xp

0,d(p) = − (d f − 1)!

d! d2 (d (f − 1))!
,(4.97)

N
Xp

1,d(p) =
1

24d

d−1∑
n=0

fd−n

n!

n∏
k=1

(d (f − 1) + k − 1)(4.98)

− 1

24

(d f − 1)!

d! (d (f − 1))!
(f + 2) ,

where we have set f ≡ (p− 1)2, and where higher-genus closed-form gener-
alizations are not known. One general thing which is known [43] is that if
written for arbitrary p, as N

Xp

g,d(p), the GW invariants are polynomials of
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degree 2g + 2d− 2 in p, with rational coefficients,

(4.99) N
Xp

g,d(p) =

2g+2d−2∑
n=0

Ng,d,n p
n.

Analysis of large-degree growth. The analysis of the fixed-genus, large-
degree growth of GW invariants in this example is best achieved within the
B-model formulation (4.91). The A-model (topological vertex) calculation
is only efficient up to about degree d = 40 and, as we shall see, the large-
degree convergence of the GW invariants is very slow. Using data up to
genus g = 40 (for p = 3, 4) we have fixed the coefficients ag,n up to g = 9
and then can compute Ng≤9,d up to very high degree.

To see how this works, rewrite (4.91) as

FXp
g (t) =

5(g−1)∑
k=0

αg,k (w − wc)
k−5(g−1)(4.100)

with αg,k =

5(g−1)∑
n=1

(
n

k

)
ag,n (wc − 1)n−k .

A Lagrange inversion turns (4.100) into a Q-expansion (related to w via
the mirror map (4.93)), from where GW invariants are easily extracted. We
will skip these details and refer the reader to Appendix A of [43] for the
definition of Lagrange inversion as well as instructive examples. In the end,
one finds the explicit result
(4.101)

N
Xp

g,d =
(−1)d−1

d

5(g−1)∑
k=0

αg,k (5 (g − 1)− k) fd+5(g−1)−k P (u,v)
d−1

(
f − 2

f

)
,

where

(4.102) u = k − d− 5 (g − 1) , v = d (f − 1) + 5 (g − 1)− k,

and where the P
(a,b)
n (z) are Jacobi polynomials. Finding the large-degree be-

havior of the GW invariants now reduces to the corresponding large-degree
behavior of the Jacobi polynomials. We still had to approach this behav-
ior numerically, essentially because the degree d appears in three different
places. Furthermore, the aforementioned slow convergence of the GW in-
variants will be made clear in the following, as the large-degree expansion
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turns out to be a power-series expansion in
√
d for which our standard tech-

niques of Richardson extrapolation are not very useful. However, restricting
the study to a grid of perfect squares, i.e., d = 	2, we then get back the
very fast convergence via Richardson transforms, from where one can then
comfortably find rational numbers out of decimal expansions.

Consider the following combination

(4.103) Pd,g,k(f) ≡ fd+5(g−1)−k (5 (g − 1)− k) P
(u,v)
d−1

(
f − 2

f

)
,

for which we find a large-degree expansion of the form

Pd,g,k(f) = (−1)d−1 edtc d
5

2
(g−1)− k

2

+∞∑
n=0

c
(n)
g,k d

−n

2(4.104)

� (−1)d−1 edtc d
5

2
(g−1)− k

2

⎛⎝c
(0)
g,k +

c
(1)
g,k√
d
+ · · ·

⎞⎠ .

Using ĝ ≡ 5(g − 1) for shortness, the first coefficients are

(4.105)

c
(0)
g,k =

e
1

2
(ĝ−k)tc Ak−ĝ

Γ
(
1
2 (ĝ − k)

) ,

c
(1)
g,k =

√
2

3

e
1

2
(ĝ−k)tc Ak−ĝ

Γ
(
1
2 (ĝ − k − 1)

) f − 2√
f (f − 1)

(ĝ − k) ,

where we have defined

(4.106) A =
√
2
w

1−(p−1)2/2
c

p− 1
.

In general, they will have the structure

(4.107) c
(j)
g,k =

e
1

2
(ĝ−k)tc Ak−ĝ

Γ
(
1
2 (ĝ − k − j)

) 1

(f (f − 1))
j

2

j∑
j0=1

ĉ
(j)
j0

(f) (ĝ − k)j0 ,

with ĉ
(j)
j0

(f) a polynomial in f of degree j. We refer to Appendix B.3 for a
few such explicit results at the lowest orders. From these results it immedi-
ately follows that the leading term in Pd,g,0 reproduces the known behavior
of the GW invariants (2.11) (with α = β = 0 and γ = −1/2), and the coeffi-
cients can be shown to match the solution of Painlevé I, in the appropriate
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double-scaling limit. This leading behavior then has corrections, suppressed
by powers of d−1/2.

The GW invariants for arbitrary p (or f) thus have the following large-
degree expansion13

Ng,d ∼ edtc d
5

2
(g−1)−1

(
c
(0)
g,0 αg,0 +

c
(0)
g,1 αg,1 + c

(1)
g,0 αg,0√

d
+ · · ·

)
(4.108)

= edtc d
5

2
(g−1)−1

+∞∑
j=0

Min(j, 5(g−1))∑
j′=0

c
(j−j′)
g,j′ αg,j′ d

− j

2 .

This result is illustrated and tested in Figure 20. On its left plot we consider

the ratio N
(pred)
g,d /Ng,d, where the asymptotic prediction in the numerator

consists of using the expansion (4.108) up to the subleading correction j = 0
(blue), j = 2 (green), j = 4 (yellow) and j = 6 (red), up to degree d = 100
and fixed genus g = 3. At degree d = 100 the leading-order term is of the
right order of magnitude, but it is still off by about ∼ 75%. Upon inclusion
of subleading terms, the ratio then starts approaching 1, faster and faster.
On the right plot of Figure 20 we show the number of decimal places of
agreement between the GW invariants and their large-degree expansion,
with the same color coding. This time we move only along perfect squares
and work with fixed genus g = 6. At d = 10000 the leading term is still only
good enough for the first decimal place, but then the agreement improves
significantly once we start adding subleading corrections.

Analysis of large-genus growth. As discussed earlier, the large-genus
fixed-degree growth of the GW invariants may be read directly from the
abc-formula (2.20). In the case of the local curve, it simply reads
(4.109)

N
Xp

g,d = f coni
g

⎧⎨⎩∑
n|d

aXp
n

(
d

n

)2g−3
+

2g

B2g

1

d

⎛⎝c
Xp

d δg,1 +

GXp (d)−1∑
n=1

b
Xp

d,n n
2g−2

⎞⎠⎫⎬⎭ ,

where now GXp
(d) = (d− 1) ((p− 2) d− 2) /2. A table with the first few abc-

coefficients may be found in Appendix B.3. To show an example, let us write

13Note that one interesting feature of this γ = −1/2 universality class, and as
compared to the general structure in (2.11), is that there are no logarithmic con-
tributions to the large-degree asymptotics.
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Figure 20. Local curve: Left: Comparison between p = 3 GW invariants
and their asymptotic prediction in (4.108), at fixed genus g = 3 and degree
d ≤ 100, and up to subleading correction j = 0 (blue), j = 2 (green), j = 4
(yellow) and j = 6 (red). Right: Number of decimal places of agreement be-
tween the analytical p = 3 GW invariants and their asymptotic prediction,
for fixed genus g = 6 (and using the same color code).

down the first couple of terms for p = 3

NX3

g,d ∼ 2 (2g − 1)

d3

(
d

2π

)2g {
1 + (−1)d−1 7

1+(−1)d

2
1

22g
(4.110)

+ 55(1+2d2) mod 3 1

32g
+O(4−2g)

}
.

This expression is valid for any degree, unlike in previous examples.

Combined/diagonal large-growth in genus and degree. The com-
bined “diagonal” growth will turn out to be similar to the previous local-
surface examples (and in fact will lead to some sort of large-order univer-
sality for topological strings in different double-scaled universality classes).
In fact, also in the local-curve case we cannot (analytically) pinpoint the
nonperturbative structure of the GW invariants in a general situation where
d = a0(Q) + a1(Q) g. As usual, the one exception happens at large-radius
t → +∞, where the contribution of the GW invariants to the free energy
is strongly peaked around d = (2g − 3)/t. These Kähler and critical-point
peaks are illustrated in Figure 21.

The nonperturbative structure of the local-curve free-energy was ad-
dressed in [21, 22, 43], where instantons associated to spectral-curve B-cycles
were found to control the large-order behavior of the free energy. But, as
we shall see, as one moves towards larger and larger values of t this picture
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Figure 21. Local curve: Graphical representation of which GW invariants

contribute the most to a free energy F
(0)
g (Q), for fixed values of g and Q =

e−t, and with p = 3. As for the earlier examples of local P2 in Figure 3 and
ABJM in Figure 17, also the local curve has saddle points corresponding
to both Kähler and critical-point actions. The values of g and t in the plot
were chosen as to clearly see both saddles in the same figure.

changes. Let us first address this question within the free energy itself, be-
fore translating to the GW invariants. For the remainder of this section we
work with an approximated free energy

(4.111) FXp
g (t) ≈ (FXp)	g(t) :=

dmax(g)∑
d=1

N
Xp

g,d e
−dt,

where dmax(g) is the highest degree for which we have computed N
Xp

g,d (our
data is represented in Figure 19). We should stress that, with the leading
contributions arising from near d = 2g−3

t , we can always be sure that no
significant contributions were left unaccounted for, and, in the end, the high
accuracy of the large-order predictions will confirm that there are no issues
with our approximation (4.111). What we find at large-order resembles the
resolved conifold (3.35), in that the leading factorial growth is governed by
a Gaussian-like action A = 2πt with a one-instanton sector that truncates
at two-loops14. In addition, there is a tower of other contributions that
amounts to replacing the Kähler modulus t with tn = t+ 2πin, n ∈ Z �=0, or,

14This is also true for all higher instanton sectors.
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equivalently, with shifted instanton actions An = A+ 4π2in. The result is

FXp
g (t) ∼ Γ (2g − 1)

π (2πt)2g−1

(
t+

t

2g − 2

)
(4.112)

+

+∞∑
m=1

Γ (2g − 1)

π |Am|2g−1
{
2 |tm| cos ((2g − 2) θm)

+
2 |tm|
2g − 2

cos ((2g − 2) θm)

}
,

where we have also defined θm := argAm = arctan 2πn
t . It may be instruc-

tive to rewrite the above large-order relation in a more standard resurgence
language, similar to (2.5). The difference is that now we have infinitely-many
instanton actions Am, where expansions around each sector truncate at two
loops. In this way we rewrite (4.112) as

FXp,(0)
g (t) ∼ S1

2πi

∑
m∈Z

Γ (2g − 1)

A2g−1
m

{
F

Xp,(1)
m,1 (tm) +

F
Xp,(1)
m,2 (tm)Am

2g − 2

}
(4.113)

+ 2-instanton corrections.

One immediately identifies the Stokes constant S1 = 2i, and the one-
instanton, one- and two-loop coefficients

(4.114) F
Xp,(1)
m,1 (tm) = tm, F

Xp,(1)
m,2 (tm) =

1

2π
.

Tests of the large-order prediction (4.112) are shown in Figure 22, where
it proves convenient to normalize the local-curve free energy against the
Gaussian contribution, i.e., we use Fg ≡ Fg − FG

g . The large-order growth of
this normalized free-energy then corresponds to the second line in (4.112). In
the left plot we show the normalized free energies for t = 100 (multiplied by
an appropriate factor to make all numbers of O(1); the gray dots), alongside
the sum in (4.112) up tom = 2 (green),m = 4 (yellow) andm = 6 (red). One
can clearly see that the agreement with the data gets better and better by
including more terms in the tower of corrections in (4.112). In the right plot
we further illustrate this by showing how small the error is for t = 24. We

use the normalized free-energy and define the error as
∣∣∣1−Fpred,m

g /F (0)
g

∣∣∣,
where Fpred,m

g just corresponds to taking the second line of (4.112) up to a
given maximum (the colors are the same as the ones used on the left). We
see that for m = 6, at g = 100, the error is of the order 10−58%.
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Figure 22. Local curve: Left: Comparison between the p = 3 free energy,
with an appropriate pre-factor (the gray dots), and the predictions coming
from (4.112) up to m = 2 (green), m = 4 (yellow) and m = 6 (red); showing
a quicker convergence the more terms are included. Right: Logarithm of
the error in the predictions (with the same colors), this time against the
normalized free energy. For m = 6, at genus g = 100, the error is roughly of
the order of one part in 1060.

Let us comment on the relation to the large-order behavior found in
[21, 22]. There should be a value of the Kähler parameter for which there is
an effective competition between the B-cycle action found in [21, 22] and the
Gaussian-like tower described above. Unfortunately, our data does not allow
us to directly look at this interplay, for as one moves towards smaller t the
contribution to the free energies is no longer dominated just by the invariants
close to d = 2g−3

t . There will also be other relevant contributions at higher
degree, which we do not have enough data to account for. Nonetheless, do
notice that an exchange in large-order dominance should be precisely related
to this emergence of relevant contributions beyond the large-radius “peak”.

Given the above large-order behavior of the free energy, we may next
deduce its consequences towards the “diagonal” growth of GW invariants.
After accounting for the appropriate Gaussian correction, it turns out that
the GW large-order is of the exact same type as in earlier examples (in this

case, n
(1)
0 = (−1)p−1),

(4.115) N
Xp

g,d Q
d
∣∣∣
g= t

2
d+q

∼
+∞∑
h=0

Γ
(
2g − 3

2 − h
)

(2πt)2g−
3

2
−h

n
(1)
0 t

3

2
−h

22h+1 πh+2
Ph(q),

where the Ph(q) are precisely the polynomials which were introduced in
(3.40), and which also appeared in the similar large-order results for local
P2 and local P1 × P1. Computational tests on the validity of this expression
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are shown in Figures 10 and 11, with their details and discussion being the
same as before. One thus finds that even for theories in different (critical)
universality classes, there is some sort of universal large-order behavior tak-
ing place at large radius15. This is also very clear in the plots in Figures 10
and 11. Furthermore, in the case of the local curve Xp, this large-order
behavior turns out to be independent of p (up to a sign).

4.4. The example of Hurwitz theory

Let us now address a slightly more algebraic example, that of Hurwitz theory.
Generically, it addresses branched covers of algebraic curves, but herein we
restrict to so-called simple Hurwitz numbers, denoted by HP

1

g,d

(
1d
)
, which

count the number of degree-d disconnected coverings of P1 by a genus-g
Riemann surface. These numbers have a combinatorial definition in terms
of Young tableaux, but — in line with what we have been doing — they
also have a string-theoretic origin. Indeed, Hurwitz theory may be thought
of as a topological string theory, as it can be obtained by a particular limit
of the A-model on the local curve Xp [43]. This limit consists in taking

(4.116) p → +∞, t → +∞, gs → 0,

while the combinations

(4.117) gH ≡ p gs, e−tH ≡ (−1)p p2e−t,

are held fixed. A number of results can then be straightforwardly obtained
by applying this limit to our results in the previous section.

Free energies and Gromov–Witten invariants. The Hurwitz free-
energy was shown to satisfy a Toda-like equation in [67],

(4.118) exp
{
FH(tH − gH) + FH(tH) + FH(tH + gH)

}
= g2H etH ∂2

tH
FH(tH).

However, regarding Hurwitz theory as a limiting local-curve in the sense
explained above, implies one may compute the genus-g free energy directly

15It would be interesting to compare this to the B-model large-radius universality
recently uncovered in [35, 66].
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in the B-model as

(4.119) FH
g =

1

(1− χ)5(g−1)

3g−3∑
n=1

aH
g,n χ

n.

Here, the new variable χ is related to the local-curve B-model modulus w
as

(4.120) w − 1 = − χ

p2
,

and in the Hurwitz limit the mirror map becomes

(4.121) e−tH = χ e−χ.

In (4.119) one needs to use the appropriate limit of the ag,n(p) coefficients
from (4.91), defined as

(4.122) aH
g,n = lim

p→+∞ p8(g−1)−2n (−1)n ag,n.

From explicit results in Appendix B.3 one can see that only some of the
coefficients contribute in the limit. The coefficients aH

g,n also turn out to be
related to the perturbative free energies of 2d gravity as, under the appro-
priate double-scaling limit, the difference equation (4.118) reduces to the
Painlevé I equation. A large-order analysis of the Hurwitz free energy was
performed in [22] finding that large-order effects were, as expected, gov-
erned by the p → +∞ limit of the B-cycle instanton-action that controlled
the large-order effects of the local curve.

In the A-model formulation, GW invariants are defined as usual. Fur-
thermore, without surprise, they may also be obtained from the limit

(4.123) NH
g,d =

HP
1

g,d

(
1d
)•

(2g + 2d− 2)!
= lim

p→+∞ p2−2g−2dNXp

g,d.

Here we have written the GW invariants in terms of connected, simple Hur-
witz numbers HP

1

g,d

(
1d
)•
. In practice, we computed the NH

g,d along the same

lines as we computed the N
Xp

g,d, i.e., starting from the partition function, then
computing the free energy at fixed degree, and finally expanding in powers
of gH. We have computed (4.123) up to the totals schematically shown in
Figure 23 (also see Appendix B.4). For g ≤ 17, data up to d = 50 is enough
to fix all the coefficients in (4.119), and we may thus compute GW invariants
for any degree. This data will not be crucial in the following, since several
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Figure 23. Maximum degree and genus of the GW invariants we computed
for Hurwitz theory. These are related to simple Hurwitz numbers via (4.123).
For g ≤ 17 we have all the required data to fix (4.119) and thus can compute
GW invariants for any degree.

results just follow from the “finite p” case addressed before. Nonetheless, the
ability to generate more data also allows us to make predictions to higher
orders.

Analysis of large-degree growth. The asymptotic16 growth of Hurwitz
numbers at large degree d, with fixed genus, may be extracted from what
we found earlier for the local curve. In particular, one can apply the limit
(4.123) directly to (4.108), so that after introducing17

(4.124)

c̃
(j)
g,k =

2
1

2
(k−5(g−1))

Γ
(
1
2 (5 (g − 1)− k − j)

) j∑
j0=1

ĉ
H,(j)
j0

(5 (g − 1)− k)j0 ,

ĉ
H,(j)
j0

= lim
f→+∞

ĉ
(j)
j0

(f)

(f (f − 1))
j

2

, αH
g,k = lim

f→+∞
f4(g−1)−k αg,k(f),

16Reference [68] also studies asymptotics of Hurwitz numbers Hg,μ, with μ a
partition with 	 parts μ1, . . . , μ�. However, the asymptotics considered in [68] are
in the limit limN→+∞Hg,Nμ. This is conceptually different from our large-degree
expansion of simple Hurwitz numbers: our case corresponds to a partition (1, . . . , 1)
with d entries (the number which is growing), while in the results of [68] the length
of the partition is always kept fixed.

17In this limit we can equally take f ∼ p2 → +∞.
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we immediately arrive at

(4.125) NH
g,d ∼ ed d

5

2
(g−1)−1

+∞∑
j=0

Min(j, 3(g−1))∑
j′=0

c̃
(j−j′)
g,j′ αH

g,j′ d
− j

2 .

Another route to this result would be to directly write GW invariants
for Hurwitz theory, as we did in (4.101) for the local curve (one would now
have to use the Hurwitz mirror map (4.121)). In this case, one obtains the
GW invariants as18

(4.126) NH
g,d =

(−1)d

d

3g−3∑
k=0

αH
g,k (5 (g − 1)− k)L

k−d−5(g−1)
d−1 (d),

where the La
m(z) are the associated Laguerre polynomials. Since the sum in

(4.126) now runs over fewer values, it becomes easier to fix the necessary co-
efficients and generate GW invariants to arbitrarily large degree. Associated

to the fact that the coefficients c̃
(j)
g,k no longer depend on an extra parameter,

we can find the large-degree expansion (4.125) to very high order with little
effort. We present some of these results in Appendix B.4.

Analysis of large-genus growth. Hurwitz theory does not have an
abc-formula, because the would-be GV invariants are no longer integers.
Nonetheless, one can proceed empirically, using numerics and Richardson
extrapolation, in order to find the growth of Hurwitz numbers for large
genus, while at fixed degree. At low degree, the large-genus expansions ac-
tually truncate. For instance, for d = 2, 3, 4 we find

HP
1

g,2

(
1d
)•

=
1

2
,(4.127)

HP
1

g,3

(
1d
)•

=
32g−2

2
,(4.128)

HP
1

g,4

(
1d
)•

=
1

2

(
22g+2 − 1

) (
32g+4 − 1

)
.(4.129)

18We use the αH
g,k coefficients for convenience; they are related to the aH

g,i in

(4.122) via (−1)kαH
g,k =

∑3g−3
i=1

(
i
k

)
aH
g,i. They could just as well be fixed by using

the mirror map and the Toda equation (4.118).
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That is no longer the case for degree d ≥ 5, where we now find

HP
1

g,d

(
1d
)•

=
2

(d!)2

(
d (d− 1)

2

)2d+2g−2
(4.130)

− 2

((d− 1)!)2

(
(d− 1) (d− 2)

2

)2d+2g−2

+
2

d2 ((d− 2)!)2

(
d (d− 3)

2

)2d+2g−2

− 1

2 ((d− 2)!)2

((
d2 − 5d+ 8

)
2

)2d+2g−2
+ · · · .

These results can also be easily derived by computing the free energy directly
for low degree. For the purpose of illustration, let us show how the agreement
between the exact HP

1

g,d

(
1d
)•

(for d = 6 and g = 100) and its prediction from
(4.130) improves, as we include more terms. Note that this is an integer
number with 241 digits, but we only display the first 82. One has:

HP
1

100,6

(
1d
)•

= 36773029021136586120108822348086934417891861531447353197011119061184878815704795302 . . .

1-term = 36773029021136586120108822348086934556780750396609834115336352765962460171085765176 . . .
2-terms = 36773029021136586120108822348086934417891861507720945226447463877073571282196876287 . . .
3-terms = 36773029021136586120108822348086934417891861531447353197011119061187444102489809778 . . .
4-terms = 36773029021136586120108822348086934417891861531447353197011119061184878815704795232 . . .

Combined/diagonal large-growth in genus and degree. Uncovering
the combined growth in genus and degree for Hurwitz theory is a harder
problem than in previous examples. The main reason being that in this ex-
ample the “large-radius peak”, where GW invariants near d = (2g − 3)/t
give the main contribution to the free energy, no longer seems to exist. We
did still numerically find another “critical-point peak”, as shown in Fig-
ure 24, but with the data we have available we were not able to find a linear
relation, nor to uncover what the large-order behavior should be, analyti-
cally.

4.5. The example of the compact quintic

For our final example, we shall consider a compact geometry, in comparison
to the non-compact local geometries we have been addressing up to now.
This is actually the first example in which mirror symmetry was explicitly
worked out and GW invariants systematically computed [4], the quintic CY
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Figure 24. Hurwitz: Graphical representation of which GW invariants con-

tribute the most to a free energy F
(0)
g (Q), for fixed values of g and Q = e−tH .

This time around we find a single saddle-point seemingly corresponding to
the critical-point action.

threefold. The mirror of the quintic is described by the equation

(4.131)

5∑
i=1

x5i −
1

z

5∏
i=1

xi = 0,

where z captures the complex structure of the CY manifold. We will follow
the notation in [69].

Free energies and Gromov–Witten invariants. As there is a single
modulus, there is also a single Picard–Fuchs equation for the periods of this
geometry, namely

(4.132)
{
(z∂z)

4 − 5z (5z∂z + 1) (5z∂z + 2) (5z∂z + 3) (5z∂z + 4)
}
f(z) = 0.

From its solutions, we find the mirror map and the genus-zero free energy,

−t = log z + 770z + 717825z2 +
3225308000

3
z3 + · · · ≡ logQ,(4.133)

F
(0)
0 = c3t

3 + c2t
2 + c1t+ 2875Q+

4876875

8
Q2(4.134)

+
8564575000

27
Q3 + · · · .

Akin to what happened for the local geometries, here the higher-genus free
energies can also be described in compact form in terms of a few generators
(or propagators). Each of them has a holomorphic expansion around the
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Figure 25. Maximum degree and genus of the GW invariants computed for
the quintic.

large-radius point (Q = 0), from which one can read the GW invariants. For
example,

(4.135) F
(0)
2 =

575

48
Q+

5125

2
Q2 +

7930375

6
Q3 + · · · .

In this work we use the free energies which were computed in [69], and
which are available online19. In Appendix B.5 we list a sample of the first
GW invariants, and Figure 25 schematically represents the ones we used in
our upcoming analysis. Note that we now have significantly less data than
for the earlier non-compact examples, implying we will not have as many
results.

Another important point is that there are essentially no studies of non-
perturbative sectors for the quintic, mainly due to a lack of data to drive
the analysis. However, it is natural to guess that there is an instanton action
associated to the conifold point (located at z = 5−5), Ac = 2πTc, which is
proportional to the flat coordinate Tc and vanishing at the conifold point. A
test of this instanton action is shown in Figure 26, precisely confirming that
this is indeed the case. We should also expect a Kähler instanton action, but
we do not have enough free energies available to report definite results.

Analysis of large-degree growth. The large-degree growth at fixed
genus was already considered in [6], being in the same universality class

19http://uw.physics.wisc.edu/∼strings/aklemm/highergenusdata/
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Figure 26. Quintic: Near the conifold point, the instanton action Ac = 2πTc

controls the factorial growth of the free energies. In the figure we plot the
analytic dependence of Ac against its numerical values computed from the

large-genus growth of F
(0)
g , with a very clean match.

as local P2 or local P1 × P1. In this case, the familiar asymptotic formula
holds,

(4.136) N quint

g,d ∼ cg d
2g−3 edtc (log d)2g−2 ,

where now tc := t(z = 5−5) = 7.58995 . . .. One can numerically check the
value of this critical exponent, tc, as well as the powers in d2g−3 and
(log d)2g−2, using the same asymptotic techniques described for local P2

and ABJM. We show these numerical results in Figures 27 and 28.

Analysis of large-genus growth. The fixed-degree, large-genus expan-
sion of the GW invariants determines the abc-coefficients for the quintic in
the same way it did for other geometries. In Appendix B.5 we present a
sample of other such coefficients. Unfortunately, the scarce data available
limits the analysis of the b-coefficients, and we have no other large-genus
results to present for this example.

Combined/diagonal large-growth in genus and degree. As in pre-
vious examples, also for the quintic we find two saddle-points which are
illustrated in Figure 29. They are associated to the Kähler instanton action,
located at d = (2g − 3)/t, and to the conifold instanton action, located at
d = a0(Q) + a1(Q) g, just like before.

Kähler leading degree. The scarce amount of available data does not let
us check that the leading degree is d = (2g − 3)/t in the same way as we did
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Figure 27. Quintic: The exponent tc in the growth of Ng,d is captured from
the ratio of two consecutive GW invariants, when the degree is large. We
plot that ratio alongside three Richardson extrapolations, which are clearly
converging faster towards the expected result (up to a numerical relative
error of about 0.2%).
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Figure 28. Quintic: On the left we address the exponent 2g − 3, which is
the leading large-order term in fd − 2fd2 . We have data up to d = 325 so
that the horizontal axis can only reach d = 17. The plot illustrates the first
few Richardson transforms for g = 3, converging faster towards the expected
result (up to a numerical relative error of about 3%). On the right we address
the exponent 2g − 2 of the logarithm log d, which is the leading term in
the sequence (4.62). We plot the first few Richardson transforms for g = 3,
converging faster towards the expected result (up to a numerical relative
error of about 15%).

for local P2 or ABJM. Nevertheless, we can assume that this indeed holds,

and then explore the asymptotics of N quint

g,d Qd
∣∣∣
g= t

2
d+q

, just as we did in

(4.71). We find that the same formula applies, but with the appropriate GV
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Figure 29. Quintic: Graphical representation of which GW invariants con-

tribute the most to a free energy F
(0)
g (Q), for fixed values of g and Q = e−t.

The values of g and t are carefully chosen so that both saddles are clearly
visible in the same plot.

invariant n
(1)
0 = 2875. Computational tests on the validity of such expression

are shown in Figures 10 and 11, with their details and discussion being the
exact same as before.

Conifold leading degree. For the conifold leading degree we can do
better. Figure 30 shows the dependence of a0 and a1 upon the modulus t.
The inverse of the slope, a−11 , resembles a straight line

(4.137) a1(Q)−1 = (−2.46± 0.01) + (0.328± 0.002) t, r2 = 0.9995.
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Figure 30. Quintic: Numerical calculation of a0(Q) and a1(Q) associated to
the conifold instanton action. We show the inverse of a1 because the depen-
dence seems linear, although we are not able to confirm this analytically.
The plot for a0 does not seem to lead to any linear dependence.
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Appendix A. Analysis of the abc-coefficients

When the GW invariants, Ng,d, may be written in terms of GV invariants,

n
(d)
g , then there is a third representation in terms of some other integers

we denoted by ad, bd,n, cd. They appear naturally when considering the
large-genus expansion of Ng,d.

Proposition A.1. The relation between GW and GV invariants, and abc-
coefficients is

Ng,d = f coni
g

{∑
m|d

am

(
d

m

)2g−3
(A.1)

+
2g

B2g

1

d

(
cd δg,1 +

G(d)−1∑
m=1

bd,mm2g−2
)}

,

ad = n
(d)
0 ,(A.2)

bd,m =
∑
k|d,m

(−1)
m

k
2d

k

G( d

k
)∑

h=m

k
+1

n
( d

k
)

h

(
2h− 2

h− 1 + m
k

)
,(A.3)

cd =
∑
m|d

m

⎧⎨⎩n
(m)
1 + 2

G(m)∑
h=2

n
(m)
h

h

(
2h− 3

h− 2

)⎫⎬⎭ .(A.4)

Here f coni
0 = 1, f coni

g = (−1)g−1 B2g

2g(2g−2)! for g ≥ 1, and B2g are the Bernoulli

numbers. G(d) satisfies n
(d)
g = 0 for g > G(d). Since the GV invariants are

integers, so are the abc-coefficients.
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Proof. We start from the definition of GV invariants,

(A.5) Ng,d =

g∑
h=0

ch,g
∑
m|d

n
(m)
h

(
d

m

)2g−3
=
∑
m|d

G(m)∑
h=0

ch,g n
(m)
h

(
d

m

)2g−3
,

where in the second equality we have noticed that n
(m)
h = 0 for h > G(m).

The coefficients ch,g generate
(
2 sin x

2

)2h−2
=
∑+∞

h=g ch,g x
2g−2, and they are

explicitly given by

(A.6)

c0,g = f coni
g , c1,g = δg,1,

ch,g = (−1)g−1
2

(2g − 2)!

h−1∑
k=1

(
2h− 2

h− 1 + k

)
(−1)k k2g−2.

Next, we organize the terms in (A.5) from more to less important as g grows,
using (A.6). In order to do this, we split the h-sum in (A.5) into h = 0, h = 1,
and h ≥ 2. For h ≥ 2 we can assume that also g ≥ 2 and manipulate to arrive
at (A.1). The steps are straightforward once one knows the goal, and they

simply require the exchange of double sums, such as, e.g.,
∑G(m)

h=2

∑h−1
k=1 =∑G(m)−1

k=1

∑G(m)
h=k+1; or relabelings, such as, e.g.,

∑
m|d f(m) =

∑
m|d f(d/m).

The end result, after four of these manipulations, is

Ng,d = f coni
g

⎧⎨⎩∑
m|d

n
(m)
0

(
d

m

)2g−3
+

2g

B2g

1

d

⎛⎝δg,1
∑
m|d

n
(m)
1 m+

(A.7)

+δg≥2
G(d)−1∑
m=1

∑
k|d,m

G( d

k
)∑

h=m

k
+1

n
( d

k
)

h

2d

k

(
2h− 2

h− 1 + m
k

)
(−1)

m

k m2g−2

⎞⎠⎫⎬⎭ ,

from where one immediately can read the abc-coefficients. �
We finish this appendix with a short note on how the GV and GW

invariants, and the abc-coefficients, may be laid out in Dirichlet series for
each genus g, in contrast to the usual Taylor-series expansion in the form of
free energies. If we define the generating functions

(A.8)

GVg(s) :=

+∞∑
d=1

n
(d)
g

ds
, GWg(s) :=

+∞∑
d=1

Ng,d

ds
,

G̃Wg(s) :=
GWg(s)

ζ (s− (2g − 3))
,
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then it follows from (A.5) the linear transformations

(A.9) G̃Wg(s) =

g∑
h=0

ch,g GVh(s) and GVg(s) =

g∑
h=0

αg,h G̃Wh(s).

Here, the α-coefficients arise from the generating function defined in [70],

(A.10)

(
arcsin(

√
r/2)√

r/2

)2g−2
=:

+∞∑
h=0

αg+h,g r
h.

We can also define Dirichlet series for the abc-coefficients, as
(A.11)

A(s) :=

+∞∑
d=1

ad
ds

, B̂2g−2(s) :=
(−1)g−1

(2g − 2)!

1

ζ (s− (2g − 3))

+∞∑
d=1

b2g−2(d)
ds

,

where

(A.12) b2g−2(d) :=
1

d

⎛⎝cd δg,1 +

G(d)−1∑
n=1

bd,n n
2g−2

⎞⎠ .

They are linearly related to the previous Dirichlet series as

(A.13)

G̃Wg(s) = f coni
g A(s) + B̂2g−2(s), GV0(s) = A(s),

GVg(s) =

g∑
h=1

αg,h B̂2h−2(s).

The last expression can be inverted to define B̂2g−2(s) =
∑g

h=1 ch,g GVh(s).
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Large-degree expansion coefficients ĉ
(j)
j0

j0�
��j 1 2 3 4

1
√
2
3 (f − 2)

2 f2+5f+5
18 (f − 2)2

3 −
√
2(f−2)(f2+23f−23)

810

√
2(f2+5f−5)(f−2)

54

√
2(f−2)3
81

4 −7f4+2f3−33f2+62f−31
1620

7f4−2f3+1113f2−2222f+1111
9720

(f−2)2(f2+5f−5)
162

(f−2)4
486

Free energy coefficients ag,i(p)

i a2,i(p)

1 − 1
240f5

2 −−2f3+25f2+f+12
2880f5

3 −12f3+9f2−35f+2
2880f4

4 − 7f+5
2880f2

5 f−1
2880f

i a3,i(p)

1 1
6048f10

2 3f4−70f3+497f2−630f+280
241920f10

3 −137f5+1278f4−3045f3+3187f2−1883f+360
181440f10

4 1741f6−8517f5+17136f4−21039f3+13013f2−4734f+360
362880f10

5 −636f6−3031f5+7693f4−9638f3+7735f2−3031f+636
120960f9

6 360f6−4734f5+13118f4−21039f3+17031f2−8517f+1741
362880f8

7 360f5−1853f4+3187f3−3075f2+1278f−137
181440f7

8 295f4−630f3+482f2−70f+3
241920f6

9 f2+12f−1
72576f3

10 f2−1
725760f2

If we define the following quantity (recall that f ≡ (p− 1)2)

(B.14) āg,i(f) = Cg f
6(g−1) ag,i(f) +

(
5(g − 1)

i

)(
f i − f i+g−1) ,

we find that it has the following “reflection” property

(B.15) āg,i(f) = f6(g−1) āg,5(g−1)−i

(
1

f

)
.

This would, in general, reduce the number of GW invariants needed to com-
pletely fix (4.91), from 5(g − 1) down to �5(g−1)2 �. The available amount of
data is unfortunately not enough to completely pinpoint a general expression
for the constant Cg.
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3
1
2
6
1
6
0
7
2
8
4
1
5
1
2
5
0

8
0

0
0

0
−

9
7
4
8
0
0
0
0

−
2
2
3
1
4
5
7
4
6
6
3
6
5
0
0

9
0

0
0

0
0

−
3
3
9
9
7
2
6
6
0
0
0
0

1
0

0
0

0
0

0
1
2
2
9
5
8
0
0
0

1
1

0
0

0
0

0
−

1
0
8
6
7
5
0
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Instituto Superior Técnico, Universidade de Lisboa

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

E-mail address: santamaria@math.tecnico.ulisboa.pt

CAMGSD, Departamento de Matemática
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Instituto Superior Técnico, Universidade de Lisboa

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

and DESY Theory Group, DESY Hamburg

Notkestrasse 85, D-22603 Hamburg, Germany

E-mail address: ricardo.carmo.vaz@tecnico.ulisboa.pt

Received May 31, 2016

Accepted March 17, 2017


