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1. Introduction

A period, according to an elementary definition of Kontsevich and Zagier, is
a complex number whose real and imaginary parts are given by an integral
of a rational function over a domain defined by polynomial inequalities [41].

An example is the number

π =

∫
x2+y2≤1

dxdy.

The number π is ubiquitous and clearly deserves a name of its own. In these
notes, we seek to address the problem of how to describe general periods,
and families of periods depending on parameters.

Following Grothendieck, periods can be viewed as the coefficients of a
comparison isomorphism between two cohomology theories. For simplicity,
consider a period I =

∫
σ ω, where σ is a closed cycle representing an element

in the Betti homology Hn(X(C);Q) of a smooth affine algebraic variety X
over Q, and ω is a regular differential form over Q representing an element in
the algebraic de Rham cohomology Hn

dR(X;Q). The de Rham-Grothendieck
comparison isomorphism:

comp : Hn
dR(X;Q)⊗Q C

∼−→ Hn(X(C);Q)⊗Q C

is induced by integration of algebraic differential forms over closed cycles.
This data can be represented in a category T of triples (VB, VdR, c) where VB,
VdR are finite-dimensional vector spaces over Q, and c : VdR ⊗Q C

∼→ VB ⊗Q

C is an isomorphism. The period integral can be encoded by algebraic data:
an object (Hn(X(C);Q), Hn

dR(X;Q), comp) in the category T , together with
a class [σ], an element of the dual of the first vector space, and [ω], an element
of the second. Define a space of periods Pm

T of T to be the Q-vector space
spanned by symbols

(1.1) ((VB, VdR, c), σ, ω) where σ ∈ V ∨
B , ω ∈ VdR

modulo a certain equivalence relation (linearity in σ, ω, and functoriality
with respect to morphisms in T ), which reflects the fact that periods can
have different integral representations. The space Pm

T forms a ring, and is
equipped with a homomorphism called the period map

per : Pm
T −→ C,
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which sends the class of (1.1) to σ(c(ω)). In this way, we obtain an element
Im in the ring Pm

T whose period per(Im) = I is the integral we started off
with.

The crucial point is that T is a Tannakian category, which automatically
endows Pm

T with the action of a group1, whose action on elements such as Im

is a prototype for a ‘Galois group of periods’. In more classical language, Pm
T

is simply the affine ring of the scheme of tensor isomorphisms from the de
Rham to Betti fiber functors on T . The idea of a ‘Galois theory of periods’
has its origins in Grothendieck’s Tannakian philosophy of mixed motives,
and has been developed by Nori, Kontsevich, André, and most recently Ay-
oub, Huber and Müller-Stach. The more common, and most sophisticated,
approach to this subject involves replacing T with a suitable category of
mixed motives. Several different approaches are possible. In this context,
Grothendieck’s period conjecture states that the period map is injective.

The naive category T defined above is the simplest possible framework
in which one can set up a working Galois theory of periods. However, much
is gained by adding just a little more; namely the requirement that VB, VdR

are equipped with filtrations forming a mixed Hodge structure. This leads
to a category H of triples (VB, VdR, c) carrying some extra data (Hodge and
weight filtrations, and a real Frobenius involution, which encodes the action
of complex conjugation). This category was first introduced by Deligne who
proved that it is Tannakian. The upshot is that one obtains a ‘ring of H-
periods’ Pm

H defined entirely in terms of linear algebra which encapsulates
many fundamental features of periods. A ‘motivic’ period, for us, is then
an element of Pm

H that comes from the cohomology of an algebraic variety
in a specific way. We shall use the adjective ‘motivic’ for such a period,
although much of this paper is in fact Hodge-theoretic. The ring Pm

H has
the universal property that the periods of any reasonable category of mixed
motives admitting Betti and de Rham realisations will factor through it.

These notes explore some simple consequences of this general notion of
H-period, and explain how to compute using these objects. For this, one is
obliged to use the language of Hopf algebras and matrix coefficients, since
the fundamental objects are not the (motivic) Galois groups themselves but
their affine rings. This elementary formalism already enables one to attach
a panoply of invariants to an H-period, such as its weight, rank, dimension,
Hodge polynomial, and more elaborate notions such as its single-valued ver-
sions, unipotency filtration and Galois groups. A glossary of non-standard
terms is given in §11. Much of this work is motivated by applications to

1in fact, two groups, one for each fiber functor Betti or de Rham.
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physics, where some of these concepts (such as the notion of ‘transcendental
weight’) have already taken root and have several applications, and we felt
there was a need to place these notions in a rigorous context.

One key point, that must be mentioned from the outset, is that all the
concepts in these notes translate immediately into a suitable Tannakian
subcategory of mixed motives over the rationals MMQ, whenever it is
defined. Any reasonable candidate for such a category has Betti and de
Rham realisations, so we obtain a map of rings of periods (rings Pm

• =
O(Isom⊗

• (ωdR, ωB)), with • =MM(Q),H)

(1.2) Pm
MMQ

−→ Pm
H .

All the constructions in this paper can be pulled back to the ring on the left
without any difficulty. Possible choices of categories include Nori’s category
of motives, or the abelian category of mixed Tate motives over number fields
[42]. If one wants to prove independence of periods, then it is enough to work
in the elementary category H, and defining invariants of Pm

H provides tools
to do precisely that.2

Another important point is that if the Hodge realisation MMQ → H
is fully faithful, as one hopes, then (1.2) is injective and the action of the
motivic Galois group of MMQ is already correctly calculated by the ac-
tion of the ‘elementary’ Galois group of H. This is the case for mixed Tate
motives over number fields, so we can identify motivic periods in Pm

MT (Q),
for example, with their image in Pm

H with impunity. For these reasons, we
choose to work unconditionally in H, whilst waiting for the dust to settle
on the final definition of MMQ.

1.1. Contents

In §2 we gather some properties of Tannakian categories, matrix coefficients
and unipotent algebraic groups needed for the rest of the notes. This section,
which is one of the most technical, can be referred to when needed. If the
reader is only interested in periods over Q, then §2.3 can be simplified by
taking the rings B1, B2, k to be equal to Q. In §3 we attach some basic
invariants to elements of Pm

H . Section 4 defines further concepts including

2the relations should come through the back door as a consequence of bounds
on algebraic K-theory and the Tannakian formalism. The theory of multiple zeta
values provides many examples of relations between periods which can be proved
by analytic methods but for which a proof using algebraic correspondences are not
presently known.
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single-valued versions of de Rham H-periods generalising the single-valued
multiple zeta values of [12], and a certain projection map, which can be used,
for example, to infer results about p-adic periods of mixed Tate motives
from their complex periods. Section 5 offers some basic examples and can
be read in parallel with the previous sections for illustration. In §6, we study
a decomposition map which enables us to break up an arbitrary H-period
into elementary pieces. It takes the form of a canonical isomorphism

Φ : grC• Pm
H

∼−→ Pm
Hss ⊗Q T c(H)

where Pm
Hss is the ring of pure or semi-simple periods; T c is the tensor coalge-

bra (or shuffle algebra) graded by length of tensors; H is a certain explicitly-
defined vector space which is a direct sum of pure Hodge structures; and C
(for coradical) is a certain filtration on H-periods by unipotency degree.

Example 1.1. The map Φ is a generalisation to all periods of the ‘highest
length’ part of the map φ of [15], which assigns to any motivic multiple zeta
value an element of a shuffle algebra on certain symbols. For example,

Φ(ζm(2n+ 1)) = 1⊗ f2n+1 for all n ≥ 1

where f2n+1 ∈ H are certain elements which span a copy of Q(−2n− 1). Let
Lm denote the motivic period corresponding to 2πi. Since it is the period of
a pure object, it satisfies Φ(Lm) = Lm ⊗ 1. From these ingredients, one can
then decompose the H-periods corresponding to multiple zeta values. For
example, one finds

Φ(ζm(2, 3)) = 3(Lm)2 ⊗ f3 and Φ(ζm(3, 2)) = −2(Lm)2 ⊗ f3,

Similarly, ζm(3, 5) ∈ C2Pm
H satisfies Φ(ζm(3, 5)) = −5⊗ (f5 ⊗ f3).

The map Φ may provide a useful model with which to think about the
structure of periods. In Section 7, we very briefly describe how one might
set up similar notions for period integrals depending on parameters. The
notion of ‘families of H-periods’ is very rich, and we barely do it justice.
In Section 9 we associate various notions of symbol associated to a family
of H-periods. For the symbol to exist, the family must underly a (globally)
unipotent vector bundle with integrable connection, which always holds in
the mixed Tate case. The symbol is a tensor product of differential 1-forms
modulo some relations. In the words of one of the referees, this should clar-
ify many clumsy approaches in the recent physics literature. One can think
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of the decomposition map as a kind of analogue of a symbol for constant
periods. We also define single-valued versions of families of H-periods, again
with applications to physics in mind. Finally, in §10 we provide some geo-
metric examples and prove some technical results required for [13]. Lastly,
we discuss some examples in the case of the projective line minus three
points for illustrative purposes.

Further background about periods can be found in the book project
[38], the surveys [41] and [4] and references therein. An obvious omission
from this paper is a discussion of Tannakian ideas relating to limiting mixed
Hodge structures and the regularisation of divergent (motivic) periods.

Since these notes are based on lectures, there is not much in the way
of technical argumentation. In order to keep the length of the paper down,
we provide essential technical arguments only where constructions are new
or absent from the literature, and omit proofs which are straightforward or
well-known.

2. Generalities

2.1. Recap on Tannakian categories

Let k be a field. Following [26] §1.2, a tensor category T over k is a k-linear
rigid abelian tensor category, which is ACU and satisfies k

∼→ End(1) ([26],
§§2.1, 2.7, 2.8). A fiber functor from T to a scheme S over k is an exact k-
linear functor from T to the category of quasi-coherent sheaves on S, which
is compatible with the tensor product and the ACU structures. A Tannakian
category is a tensor category equipped with a fiber functor ω to a non-empty
scheme S. If S = Spec (B) is affine, then due to rigidity, ω necessarily lands
in the category of projective B-modules of finite type.

Theorem 2.1. ([45], corrected in [26]). Let T be a Tannakian category
with a fiber functor to S, a non-empty scheme over k. Then the groupoid
of tensor automorphisms Aut⊗T (ω) is faithfully flat on S × S, and ω defines
an equivalence of categories from T to the category of representations of
Aut⊗T (ω).

In the applications, k = Q and all Tannakian categories we consider will
be neutralised by the Betti realisation. They will possess a fiber functor ωB

to the category of vector spaces over Q, and a second fiber functor ωdR to a
smooth scheme S over Q. The space S(C) will be the domain for a family
of periods.
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2.2. Matrix coefficients.

The following construction is paraphrased from [26] §4.7. Let T be a (small)
category over k, and let B1, B2 be two k-algebras, not necessarily commu-
tative. The following discussion is excessively general for our purposes, but
this actually simplifies the presentation. Let ωi, for i = 1, 2, be a functor
from T to the category of right projective Bi modules of finite type.

Definition 2.2. A matrix coefficient in T is a triple (M, f, v), where M is
an object of T , f ∈ ω1(M)∨ and v ∈ ω2(M). Consider the following k-vector
space

Pω1,ω2

T = 〈(M, f, v)〉k/ ∼
spanned by symbols (M,f, v) modulo the following relations:

(i) (Bimodule structure). For all λ1, λ2 ∈ B2, and μ1, μ2 ∈ B1,

(M, f, v1λ1 + v2λ2) ∼ (M,f, v1)λ1 + (M,f, v2)λ2

(M,μ1f1 + μ2f2, v) ∼ μ1(M, f1, v) + μ2(M, f2, v)

Furthermore, if λ ∈ k, then (M, f, v)λ ∼ λ(M,f, v). Thus Pω1,ω2

T is a
left B1-module and right B2-module, whose induced k-vector space
structures coincide. We shall call such an object a (B1, B2)-bimodule
over k.

(ii) (Morphisms). If φ : M1 →M2 is a morphism in T then

(M1, f1, v1) ∼ (M2, f2, v2)

whenever v2 = ω2(φ)(v1) and f1 = (ω1(φ))
tf2, where t is the transpose.

Denote the equivalence class of (M, f, v) by [M,f, v]ω1,ω2

T , or simply
[M, f, v]ω1,ω2 when there is no ambiguity about the ambient category.

The space Pω1,ω2

T is denoted by Lk(ω1, ω2) in [26]. We use the let-
ter P because we shall eventually think of elements of Pω1,ω2

T as periods.
Condition (i) implies that for all objects M in T , there is a morphism
f ⊗ v 	→ [M,f, v]ω1,ω2

(2.1) ω1(M)∨ ⊗k ω2(M) −→ Pω1,ω2

T

of (B1, B2)-bimodules over k, which is functorial in M by (ii). This is a
universal property satisfied by Pω1,ω2

T : any such collection of functorial maps
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from ω1(M)∨ ⊗k ω2(M) for all M into a (B1, B2)-bimodule over k factors
through Pω1,ω2

T .
There is a natural k-linear map k → ω2(M)⊗B2

ω2(M)∨, which sends 1
to the element corresponding to the identity via the isomorphism

ω2(M)⊗B2
ω2(M)∨

∼−→ HomB2
(ω2(M), ω2(M)).

Writing ω1(M)∨ ⊗k ω2(M) = ω1(M)∨ ⊗k k ⊗k ω2(M) we deduce a map

ω1(M)∨ ⊗k ω2(M) −→ ω1(M)∨ ⊗k ω2(M)⊗B2
ω2(M)∨ ⊗k ω2(M)

which in turn induces a morphism of (B1, B2)-bimodules over k:

(2.2) Δ : Pω1,ω2

T −→ Pω1,ω2

T ⊗B2
Pω2,ω2

T .

One verifies that it defines a right coaction of Pω2,ω2

T on Pω1,ω2

T . Since ω2(M)
is projective of finite type, we can write ω2(M) as a direct summand of Bn

2

for some n and let ei (respectively e∨i ) for 1 ≤ i ≤ n be coordinates of Bn
2 →

ω2(M) (respectively ω2(M)→ Bn
2 ). The element

∑n
i=1 ei ⊗ e∨i represents the

identity on ω2(M). This gives the following formula for (2.2) on the level of
matrix coefficients:

(2.3) Δ[M,f, v]ω1,ω2 =
∑
i

[M, f, ei]
ω1,ω2 ⊗ [M, e∨i , v]

ω2,ω2

In a similar way, the space Pω1,ω1

T naturally coacts on Pω1,ω2

T on the left.

2.3. Tannakian case

Now suppose that B1, B2 are commutative, T is a tensor category and ωi is
a fiber functor to Spec (Bi), for i = 1, 2. The tensor structure on T implies
that Pω1,ω2

T is a commutative k-algebra. In formulae:

[M1, f1, v1]
ω1,ω2 × [M2, f2, v2]

ω1,ω2 = [M1 ⊗M2, f1 ⊗ f2, v1 ⊗ v2]
ω1,ω2 ,

which is well-defined as one easily checks.
Consider the affine scheme over B = B1 ⊗k B2 defined by

Hom⊗
T (ω2, ω1) = Spec Pω1,ω2

T .
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If R is any commutative B-algebra then its R-points are given ([26], Propo-
sition 6.6) by collections of homomorphisms of R-modules

(2.4) φM : R⊗B

(
B1 ⊗k ω2(M)

)
−→

(
ω1(M)⊗k B2

)
⊗B R

which are functorial inM and respect the tensor product. The corresponding
homomorphism φ : Pω1,ω2

T → R is given on matrix coefficients by the formula

φ[M,f, v]ω1,ω2 = f(φM (v)).

It follows from the existence and properties of duals in T that the φM ’s are
automatically isomorphisms and therefore Isom⊗

T (ω2, ω1)
∼→ Hom⊗

T (ω2, ω1)
is an isomorphism and we indeed have Pω1,ω2

T = O(Isom⊗
T (ω2, ω1)).

Applying the above in the case when both fiber functors are equal im-
plies that for i = 1, 2, Pωi,ωi

T is a commutative bialgebra over Bi. It has an
antipode, which on matrix coefficients is the involution S : [M, f, v]ωi,ωi →
[M∨, v, f ]ωi,ωi , unit [1, 1, 1]ωi,ωi and counit ε : [M, f, v]ωi,ωi 	→ f(v), and is
a commutative Hopf algebra with respect to these structures. It therefore
defines an affine group scheme Aut⊗T (ωi) over Bi which we shall denote by

Gωi

T = SpecPωi,ωi

T .

If R is a commutative Bi-algebra, then an R-valued point g ∈ Gωi

T (R) can
be viewed as a functorial collection of isomorphisms

gM : R⊗Bi
ωi(M)

∼−→ ωi(M)⊗Bi
R

for every object M of T , which are compatible with the tensor product. The
homomorphism from Pωi,ωi

T to R is defined by the formula g[M,f, v]ωi,ωi =
f(gMv), and every such homomorphism arises in this way.

We shall use the main theorem 2.1 in the following case:

Theorem 2.3. The functor ωi : T → Rep (Gωi

T ) is an equivalence of cate-
gories.

The scheme Isom⊗
T (ω2, ω1) = SpecPω1,ω2

T is a Gω1

T ×Gω2

T - bitorsor, with
Gω1

T acting on the left, Gω2

T on the right. The action of Gω2

T ×Gω1

T on Pω1,ω2

T
is given as follows. The right coaction (2.2) is equivalent to a left action
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of Gω2

T

(2.5) Gω2

T × Pω1,ω2

T −→ Pω1,ω2

T

via the formula g(ξ) = (id⊗ g)Δ(ξ). We shall call (2.5) the ‘Galois action’
on Pω1,ω2

T . Concretely, if R is a B2-algebra, then a point g ∈ Gω2

T (R) acts by

g[M, f, v]ω1,ω2 = [M,f, gM (v)]ω1,ω2 .

There is correspondingly a right action on Pω1,ω2

T by Gω1

T which acts on the
element f ∈ ω1(M)∨ on the right. Depending on the situation, it can happen
that one or other action of Gωi

T on Pω1,ω2

T plays a more important role than
the other.

2.4. Minimal objects

Return to the situation of §2.2. The following useful lemma will be used to
attach quantities to motivic periods.

Suppose that T is an abelian category such that every object of T has
finite length, and suppose that the functors ω1, ω2 are exact.

Lemma 2.4. Let ξ ∈ Pω1,ω2

T . There exists a smallest object M(ξ) of T ,
unique up to isomorphism, such that ξ is a matrix coefficient of M(ξ), i.e.,
every object of T of which ξ is a matrix coefficient admits a subquotient
isomorphic to M(ξ).

Proof. First observe that if [M1, f1, v1] and [M2, f2, v2] are two matrix coef-
ficients in T , then the relations imply that

[M1, f1, v1] + [M2, f2, v2] = [M1 ⊕M2, (f1, f2), (v1, v2)].

Similarly, every linear combination of elements ξ ∈ Pω1,ω2

T can be represented
by a single matrix coefficient [M,f, v]. In fact, Pω1,ω2

T can alternatively be
defined as the set of equivalence classes (M,f, v) with respect to relation
(ii) of §2.2, equipped with a well-defined bimodule structure (i).

Now let M be an object of T , and f ∈ ω1(M)∨, v ∈ ω2(M). Define Mv

to be the smallest subobject of M such that v is in the image of ω2(Mv). It
exists, because if every subobject N � M satisfies v /∈ Imω2(N), then Mv =
M , otherwise we can replaceM by any subobject N such that v ∈ Imω2(N),
and proceed by induction on the length. It is unique up to isomorphism; if
v ∈ ω2(N1) and v ∈ ω2(N2), where N1, N2 are both minimal subobjects of
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M , then by writing N1 ∩N2 = ker(N → N/N1 ⊕N/N2) and using the ex-
actness of ω2, it follows that v ∈ ω2(N1 ∩N2) ∼= ω2(N1) ∩ ω2(N2) and hence
by minimality N1

∼= N1 ∩N2
∼= N2. Similarly, let fM be the smallest quo-

tient object of M such that f ∈ ω1(fM)∨.
Now consider a morphism φ : M →M ′. We first show that

φ(Mv) ∼= φ(Mv)φ(v) ∼= M ′
φ(v).

The second isomorphism holds since φ(Mv) is a subobject of M ′. Note that
ω2(φ(Mv)) contains φ(v). We show that φ(Mv) is minimal for this property.
For if N ⊂ φ(Mv) is a subobject such that φ(v) ∈ ω2(N), then φ−1(N) :=
ker(Mv → φ(Mv)/N) satisfies v ∈ ω2(φ

−1(N)), and so by definition of Mv

we have φ−1(N) ∼= Mv, and N ∼= φ(Mv). This proves the first isomorphism.
It follows that if φ : M →M ′ is surjective, so too is φ : Mv →M ′

φ(v).

It follows from the definition that if φ is injective, Mv
∼= M ′

φ(v) is an iso-
morphism. The same statement holds for fM with the words injective and
surjective interchanged.

Now apply the first remark to the surjective map Mv →→ f (Mv). Denote
the image of v in ω2(f (Mv)) by v also. We obtain a commutative diagram

(Mv)v →→ (f (Mv))v
↓ ↓
Mv →→ f (Mv)

where the two vertical maps are injective. Since (Mv)v = Mv, it follows that
the vertical map on the right is an isomorphism. On the other hand, applying
the second remark to Mv ↪→M , we obtain an injection f (Mv) ↪→ fM , and
hence an isomorphism (f (Mv))v ∼= (fM)v. We conclude that

f (Mv) ∼= (fM)v

and we shall subsequently denote this object simply by fMv.
We now show that the map which assigns to a matrix coefficient (M,f, v)

the isomorphism class of fMv respects the equivalence relation (ii). Consider
an equivalence [M,f, v] = [N, f ′, v′] arising from a morphism φ : M → N .
In other words, f ′ = φt(f) and v′ = φ(v). If φ is injective, Mv

∼= Nv′ by
definition and hence fMv

∼= f (Mv) ∼= f ′(Nv′) ∼= f ′Nv′ . When φ is surjective,
we again have fMv

∼= f ′Nv′ by a similar argument. Since any morphism can
be expressed as a composition of an injection and surjection, we deduce that
the isomorphism class ofM(ξ) := fMv only depends on the equivalence class
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ξ = [M,f, v]. It follows from the definitions that the morphismsM → fM ←
fMv define an equivalence ξ = [fMv, f, v]. �

Now suppose that T satisfies the more stringent conditions of §2.3, and
is in particular Tannakian. This implies that every object has finite length.

Let ξ ∈ Pω1,ω2

T . The Gω2

T representation it generates is the ω2-image of
an object of T , by the Tannaka theorem. We show that it is isomorphic
to M(ξ).

Corollary 2.5. Consider ξ ∈ Pω1,ω2

T . Let 〈Gω2

T ξ〉B2
(respectively 〈ξ Gω1

T 〉B1
)

denote the representation of Gω2

T (resp. Gω1

T ) it generates. Then

(2.6) ω2(M(ξ)) ∼= 〈Gω2

T ξ〉B2
and ω1(M(ξ)) ∼= 〈ξGω1

T 〉B1
.

Proof. The morphisms (2.1) induce functorial morphisms

ω1(M)∨ ⊗ ω2(M) −→ Pω1,ω2

T

in the (ind)-category of left Gω2

T -representations. By the Tannaka theorem,
there exists an ind-object Pω1,•

T of T whose ω2-image is Pω1,ω2

T , and the above
morphisms are the ω2-image of a family of functorial morphisms

ω1(M)∨ ⊗M −→ Pω1,•
T

of ind-objects of T . Apply ω1 to obtain a family of functorial morphisms

ω1(M)∨ ⊗ ω1(M) −→ ω1(Pω1,•
T ),

and by the universal property we deduce that ω1(Pω1,•
T ) ∼= Pω1,ω1

T .
Now suppose that ξ = [M,f, v]ω1,ω2 . By the previous lemma, we can

assume that M = fMv. Consider the morphism

(2.7) η 	→ [M, f, η]ω1,ω2 : ω2(M) −→ Pω1,ω2

T .

It respects the action of Gω2

T on both sides. Therefore by the Tannaka theo-
rem it is the ω2-image of a morphism

ef : M −→ Pω1,•
T

of ind-objects of T . Its ω1-image is

p 	→ [M,f, p]ω1,ω1 : ω1(M)
ω1(ef )−→ Pω1,ω1

T .
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Under the dual map, the counit ε : Pω1,ω1

T → k maps to f ∈ ω1(M)∨. Inci-
dentally, this shows that ef defines an equivalence ξ = [Pω1,•

T , ε, ξ]ω1,ω2 .
Let N ⊂ Pω1,•

T be the sub object such that ω2(N) ⊂ Pω1,ω2

T is the Gω2

T -
representation generated by ξ. We obtain a commutative diagram

ω2(M)
(2.7)−→ Pω1,ω2

T
∪ ∪

〈Gω2

T v〉 −→ ω2(N)

By assumption, M = Mv and hence the vertical inclusion on the left is an
equality. The map along the bottom is surjective since ω2(N) contains ξ,
the image of v under (2.7). Therefore ω2(N) is isomorphic to the image of
ω2(M) in Pω1,ω2

T , and the map ef factors as

ef : M −→−→ N ⊂ Pω1,•
T .

On the other hand, the image of the counit ε ∈ Pω1,ω1

T in ω1(N) maps to f ∈
ω1(M)∨. Since M = fM , it has no non-trivial such quotients, and M ∼= N .
This proves that ω2(M(ξ)) = 〈Gω2

T ξ〉B2
. The other statement is similar. �

2.5. Coradical filtration and decomposition

Let U be a pro-unipotent algebraic group over a field k of characteristic 0,
and let M be a left U -module over k, i.e., M is a right O(U)-comodule.
Denote the coaction by Δ : M →M ⊗k O(U), and let O(U)+ be the kernel
of the augmentation ε : O(U)→ k.

Define a filtration CiM on M by C−1M = 0, and

CiM = {x ∈M : Δ(x) = x⊗ 1 (mod Ci−1M)}

Equivalently, CiM is the fastest increasing filtration on M by U -submodules
such that C−1M = 0 and such that U acts trivially on grCM . In particular,
C0M = MU . This filtration is functorial with respect to morphisms of U -
modules. It exhausts M , i.e., M =

⋃
i≥0CiM . This follows from Engel’s

theorem in the case when M is of finite type over k, for then the action
of U on M factors through a unipotent algebraic matrix group, and M
has a non-trivial fixed vector v ∈ C0M . Replacing M with M/C0M and by
induction on the dimension of M , we deduce that M = CnM for some n.
The general case follows from the fact that M is the inductive limit of its
sub O(U)-comodules of finite type.
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Now consider O(U), viewed as a right O(U)-comodule in the natu-
ral way, and denote by Δ : O(U)→ O(U)⊗k O(U) the coproduct dual to
the multiplication in U . The above construction defines an increasing fil-
tration CiO(U). It satisfies C0O(U) = k, because id = (ε⊗ id)Δ in any
Hopf algebra and hence x ∈ C0O(U) satisfies x = ε(x) and is constant, via
O(U) = O(U)+ ⊕ k.

Now let us denote by Δr = Δ− id⊗ 1 : M →M ⊗k O(U), and

Δ′ = Δ− id⊗ 1− 1⊗ id : O(U)→ O(U)⊗k O(U).

Note that x ∈ CnM if and only if (Δr)n+1x = 0. If M = O(U) and n ≥ 1,
x ∈ CnO(U)+ if and only if (Δ′)nx = 0. This follows since

Δrx = Δ′x+ 1⊗ x ≡ Δ′x (mod Ci−1O(U))

for all x ∈ CiO(U), and i ≥ 1. In particular, grC1 O(U) = (C1O(U))+ is the
space of primitive elements in O(U), which we shall occasionally denote by
Prim(O(U)).

Lemma 2.6. The coaction satisfies

ΔCn(M) ⊆
∑

i+j=n

Ci(M)⊗k Cj(O(U)).

Proof. The coassociativity (Δ⊗ id)Δ = (id⊗Δ)Δ implies, by substituting
in the definitions of Δ′ and Δr, the following identity

(2.8) (Δr ⊗ id)Δr = (id⊗Δ′)Δr.

Now let x ∈ Cn(M), and write using a variant of Sweedler’s notation

Δrx =
∑

0≤i≤n

xi ⊗ αi

where the xi are in Ci(M) and are linearly independent modulo Ci−1(M).
Since x ∈ Cn(M), we have (Δr)k+1x ∈ Cn−k−1M . By coassociativity (2.8)

(Δr)k+1x = (id⊗Δ′)kΔrx =
∑

0≤i≤n

xi ⊗ (Δ′)kαi.

By the independence assumption on the xi, we must have (Δ′)kαi = 0 when-
ever i ≥ n− k, and hence αn−k ∈ Ck. �
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It follows from the lemma that

Δr CnM ⊆ Cn−1M ⊗k C1O(U) + Cn−2M ⊗k O(U)

and taking the quotient modulo Cn−2M ⊗k O(U) defines a map

δ : grCnM −→ grCn−1M ⊗k C1O(U)

which is injective by definition of the filtration C. The exact sequence

0 −→ C0O(U) −→ C1O(U) −→ grC1 O(U) −→ 0

splits via the augmentation map ε which sends C1O(U)→ C0O(U) = k.
Thus C1O(U) = grC1 O(U)⊕ k. Since in any Hopf algebra (id⊗ ε)Δr = 0,
the map δ lands in the kernel of id⊗ ε, namely grCn−1M ⊗k gr

C
1 O(U).

Definition 2.7. Iterating δ we deduce an injective map

(2.9) Φ : grCM −→MU ⊗k T
c(grC1 O(U))

where T c(V ) =
⊕

n≥0 V
⊗n denotes the tensor coalgebra on V , graded by the

length of tensors. Recall that MU = grC0 M . The map Φ respects the grading
on both sides. We shall call this map the decomposition into primitives.

In the case M = O(U), MU = k and (2.9) yields an injective graded map

Φ : grCnO(U) −→ T c(grC1 O(U)).

Equip the tensor coalgebra T c(V ) with the deconcatenation coproduct

Δdec : T c(V ) −→ T c(V )⊗k T
c(V )

v1 ⊗ · · · ⊗ vn 	→
n∑

k=0

(v1 ⊗ · · · ⊗ vk)⊗ (vk+1 ⊗ · · · ⊗ vn).

Lemma 2.8. The following diagram commutes

grCM
grCΔ−→ grCM ⊗k gr

CO(U)
↓ ↓

MU ⊗k T
c(grC1 O(U))

id⊗Δdec

−→ MU ⊗k T
c(grC1 O(U))⊗k T

c(grC1 O(U))

where the vertical map on the left is Φ, and that on the right is Φ⊗ Φ.
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Proof. The lemma can be proved directly from the recursive definition of Φ
in terms of δ. It is more instructive to give a conceptual proof by interpreting
Φ in the following way. Consider the sequence

0 −→ grCn−1M −→ CnM/Cn−2M −→ grCnM −→ 0.

Since U acts trivially on grCM , it follows that the action of U on
CnM/Cn−2M factors through Uab. If we write u = Lie U , then we deduce a
map

uab × grCnM −→ grCn−1M

and hence, denoting L(uab) the free Lie algebra on uab, we have

(2.10) L(uab)× grCM −→ grCM.

The affine ring of L(uab) is the tensor coalgebra T c(grC1 O(U)), so the dual
of the previous map is grCM → grCM ⊗k T

c(grC1 O(U)). The map Φ is ob-
tained by projecting onto the component of grCM of degree zero. The fact
that L(uab)× grCM → grCM is a left action can be expressed as a commu-
tative diagram. Dualising it and projecting onto C0M gives precisely the
statement of the lemma. �

2.5.1. Multiplicative structure. Now suppose in addition that M is a
commutative k-algebra, and that the action of U respects the multiplication
μ on M . An induction on the indices i, j shows that μ(CiM × CjM) ⊆
Ci+jM . In particular C0M = MU is a subalgebra of M . Recall that the
tensor coalgebra T c(V ) is equipped with a commutative product x called
the shuffle product.

Lemma 2.9. If M is a commutative k-algebra, then Φ is a homomorphism
of graded commutative k-algebras, where T c(V ) is equipped with the shuffle
product.

Proof. Since Δ is a homomorphism,

Δr(xy) = Δr(x)(y ⊗ 1) + (x⊗ 1)Δr(y) + Δr(x)Δr(y)

for all x, y ∈M . It follows that δ is a derivation

(2.11) δ(xy) = (x⊗ 1)δ(y) + δ(x)(y ⊗ 1)

for x, y ∈ grCM , where multiplication by 1 denotes the identity on O(U)+.
Now denote by ∂ the right deconcatenation map ∂ : T c(V )→ T c(V )⊗ V
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which is given by the formula ∂(v1 ⊗ · · · ⊗ vn) = (v1 ⊗ · · · ⊗ vn−1)⊗ vn. It
follows from the definition of the map Φ as the iteration of δ that

∂Φ = (Φ⊗ id)δ.

Suppose that Φ(ab) = Φ(a)xΦ(b) for all a, b ∈ grCM of total degree < n.
If a or b is in grC0 M then the statement is trivial. Then for x, y ∈ grCM of
total degree n and degree ≥ 1, we have

∂Φ(xy) = (Φ⊗ id)δ(xy) = (Φ⊗ id)
(
(x⊗ 1)δ(y) + δ(x)(y ⊗ 1)

)
.

By induction hypothesis applied to Φ⊗ id, the right hand side is

(Φ⊗ id)(x⊗ 1)x (Φ⊗ id)δ(y) + (Φ⊗ id)(y ⊗ 1)x (Φ⊗ id)δ(x)

which by the previous equation gives ∂Φ(xy)=Φ(x)x ∂Φ(y)+Φ(y)x ∂Φ(x).
This is in fact one of the many equivalent definitions of the shuffle product,
and proves, by the injectivity of ∂, that Φ(xy) = Φ(x)xΦ(y). �

Another way to see this lemma is simply to note that the action (2.10)
respects the multiplication on grCM and to encode this by a commutative
diagram. The dual diagram, after projecting to C0M in the appropriate
place implies the lemma.

Remark 2.10. One can think of CiO(U) as functions of ‘unipotent mon-
odromy’ of degree i in the following way. For any f ∈ O(U), viewed as
a function on groups U(R), for all commutative k-algebras R, define a
new function Muf by (Muf)(x) = f(ux)− f(x). An f ∈ Ci(O(U)) satisfies
Mu1

· · ·Mun
f = 0 for all u1, . . . , un ∈ U(R) whenever n ≥ i+ 1. In particu-

lar, elements of C0O(U) are constant, and elements of C1O(U) are functions
f satisfying f(ab) = f(a) + f(b).

2.5.2. Cohomological interpretation. Let M,U be as above. Consider
the normalised cobar complex, dual to ([49], page 283),

0→M →M ⊗k O(U)→M ⊗k O(U)+ ⊗k O(U)

→M ⊗k O(U)⊗2
+ ⊗k O(U)→ · · ·

where the (n+ 1)th arrow is given by

dn =

n−1∑
i=0

(−i)i id⊗i ⊗Δ⊗ id⊗n−1−i,
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(e.g., d1 = Δ, and d2 = Δ⊗ id− id⊗Δ), followed by projection ontoO(U)+
in the appropriate places. It is a resolution of M in the category of O(U)-
comodules. Derive the functor ⊗O(U)k, where k is viewed as anO(U)-module
via the augmentation map, by applying it to the previous complex with the
first two terms removed. It defines a complex

RM : 0 −→M
Δ−→M ⊗k O(U)+−→M ⊗k O(U)⊗2

+ −→· · · ,

with essentially the same differentials dn as before. Since the category of
O(U)-comodules is equivalent to the category of representations of U of
finite type, we deduce that

Hn(RM ) = ExtnO(U)−comod(k,M) = ExtnRep(U)(k,M) = Hn(U ;M).

Therefore H0(U ;M) = H0(RM ) = C0M , since the image of Δm vanishes in
M ⊗O(U)+ if and only if Δm = m⊗ 1. In the special case M = k, we have

Rk : 0 −→ k
0−→ O(U)+

Δ′
−→ O(U)⊗2

+ −→· · ·

and it follows that H0(U ; k) = k, and

(2.12) H1(U ; k) = grC1 (O(U)).

This is a cohomological interpretation for the terms in the right-hand side of
the decomposition map Φ. The map δ can in fact be viewed as a differential
in a certain spectral sequence, as we shall show below.

Lemma 2.11. Viewing O(U) as a left U -module (right O(U)-comodule)

H0(U ;O(U)) = k and Hn(U ;O(U)) = 0 for all n ≥ 1.

Proof. Take the cobar resolution with M = k and reverse all tensors to give

0→ k → O(U)→ O(U)⊗k O(U)+ → O(U)⊗k O(U)⊗2
+ → · · ·

It is a resolution for the same reasons as the cobar resolution. It agrees with
RO(U) from the second term onwards, and has the same differentials up to
a possible overall sign, so we can read off the cohomology of O(U). �
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Proposition 2.12. Suppose that U has cohomological dimension 1. Then

0 −→ grCnM
δ−→ grCn−1M ⊗k H

1(U ; k) −→ grCn−1H
1(U ;M) −→ 0

is exact for all n ≥ 1.

Proof. Filter the complex RM by F pRM = RC−pM . It defines a spectral

sequence with E0
p,q = grpFR

p+q
M and E1

p,q = Hp+q(U ; grC−pM), and converges

to grpFH
p+q(U ;M). Since grCM is a trivial U -module we have

E1
p,q = grC−pM ⊗k H

p+q(U ; k).

The differential d1 : E1
−p,p → E1

1−p,p is the operator δ defined earlier. Since

Hj(U ; k) vanishes for all j ≥ 2, E1
p,q vanishes unless p+ q ∈ {0, 1} and the

spectral sequence degenerates. Therefore the following sequence is exact:

0→ gr−n
F H0(U ;M)→ grCnM

δ→ grCn−1M ⊗k H
1(U ; k)

→ gr1−n
F H1(U ;M)→ 0.

The result follows since H0(U ;M) = C0M and gr−n
F H0(U ;M) = 0 if

n ≥ 1. �

Corollary 2.13. Suppose that M = T ⊗k O(U), where T is a trivial U -
module, and U has cohomological dimension 1. Then the map Φ is an iso-
morphism

Φ : grCM
∼−→ T ⊗k T

c(H1(U ; k)).

Proof. By the previous lemma and proposition,H1(U ;M)=H1(U ;O(U))⊗k

T = 0, and therefore δ : grCnM → grCn−1M ⊗k H
1(U ; k) is surjective as the

last term in the exact sequence of the previous proposition vanishes. The
iterations of δ are therefore also surjective, hence so is Φ. �

3. Motivic periods over Q

For the rest of this section, we only require the results of §2.2 and §2.3 in
the case k = B1 = B2 = Q.

3.1. Category H of Betti and de Rham realisations

Based on [21] §1.10, consider the category H whose objects are triples
(VB, VdR, c) consisting of the following data:
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1) A finite-dimensionalQ-vector space VB with a finite increasing (weight)
filtration W•VB.

2) A finite-dimensionalQ-vector space VdR with a finite increasing (weight)
filtration W•VdR and a finite decreasing (Hodge) filtration F •VdR.

3) An isomorphism

c : VdR ⊗Q C
∼−→ VB ⊗Q C

which respects the filtrations W• on both sides.

4) A linear involution F∞ : VB
∼→ VB called the real Frobenius.

This data is subject to the conditions:

• if cdR (resp. cB) is the C-antilinear involution on VdR ⊗ C (resp. VB ⊗
C) given by x⊗ λ 	→ x⊗ λ, then the following diagram commutes:

VdR ⊗ C
c−→ VB ⊗ C

↓cdR ↓F∞⊗cB

VdR ⊗ C
c−→ VB ⊗ C

In particular, c cdR c−1 preserves the lattice VB ⊂ VB ⊗ C.

• that VB, equipped with the weight filtration W• and Hodge filtra-
tion cF • on VC = VB ⊗Q C, is a Q-mixed Hodge structure. Writing F
instead of cF , this is equivalent to grWn VC =

⊕
p+q=n F

p ∩ F
q
.

We assume furthermore that this mixed Hodge structure is graded-
polarizable.

The morphisms in the category H are given by morphisms of triples re-
specting the above data. It is shown in [21], 1.10, that H is a Tannakian
category, the essential point being that mixed Hodge structures form an
abelian category [23]. This category could be further enriched by adding
more realisations.

By (3), the weight filtration defines a filtration on (VB, VdR, c) by sub-
objects:

(3.1) Wn(VB, VdR, c) = (WnVB,WnVdR, c
∣∣
Wn

).

Denote the Hodge numbers of an object V = (VB, VdR, c) in H by

(3.2) hp,q(V ) = dimQ(gr
W
p+q ∩ F p)V dR = dimC(F

p ∩ F
q
)VC.



Notes on motivic periods 577

The Tate objects Q(n), where n ∈ Z, are the unique triples (Q,Q, c) such
that c(1) = (2πi)−n, with weight −2n and Hodge filtration on the second
vector space Q defined by F−nQ = Q, F 1−nQ = 0.

3.2. The ring of H-periods

The category H has two fiber functors

ω• : H −→ VecQ • = B or dR

(VB, VdR, c) 	→ V•,

so we can apply §2.2 with T = H, k = Q. Let us write3

m = (ωB, ωdR) and dr = (ωdR, ωdR).

This defines rings Pm
H and Pdr

H as in §2.2 and §2.3, and a canonical element

c ∈ Isom⊗
H(ωdR, ωB)(C)

which is given by the data (3).

Definition 3.1. The ring of H-periods is Pm
H . It is equipped with

• a period homomorphism

per : Pm
H −→ C

which sends [(VB, VdR, c), σ, ω]
m to σc(ω).

• an increasing weight filtration

WnPm
H = 〈[(VB, VdR, c), σ, ω]

m : where ω ∈WnVdR〉Q

Equivalently, this is the subspace spanned by [M,σ, ω]m for objects M
in H satisfying WnM = M where Wn was defined in (3.1).

• a right coaction Δm : Pm
H −→ Pm

H ⊗Q Pdr
H or equivalently, a left action

GdR
H × Pm

H −→ Pm
H .

It respects the weight filtration on Pm
H by (3.1). Likewise, Pm

H admits
a right action of the Betti Galois group GB

H which also preserves W .

3In [12, 16] I wrote m = (ωdR, ωB), and put the coaction on the left, for purely
psychological reasons. The corresponding rings of periods are identical.
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• the real Frobenius involution

F∞ : Pm
H

∼−→ Pm
H

defined by F∞[M,σ, ω]m = [M,σ ◦ F∞, ω]m. It has the property that

per(F∞ξ) = per(ξ),

where the bar denotes complex conjugation. In particular, F∞-invariant
motivic periods have periods in R. The GdR

H -action commutes with F∞.

Note that, since Pm
H admits a GdR

H -action, it is the ωdR image of an
(ind-)object of the category H via Theorem 2.3. Therefore Pm

H also carries,
in addition to the weight filtration, a decreasing Hodge filtration F . The
subspace FnPm

H is spanned by the [M,σ, v]m with v ∈ FnMdR. The Hodge
filtration is not preserved by the group GdR

H , but will nonetheless play a role
later on, and is of course preserved by the (right) action of the Betti Galois
group GB

H = Aut⊗H(ωB).

3.3. Some variants

Denote the subspace Pm,+
H ⊂ Pm

H of effective H-periods to be the subspace
of H-periods of objects with non-negative Hodge numbers

Pm,+
H = 〈[M,σ, ω]m : M ∈ Ob(H) such that hp,q(M) = 0 unless p, q ≥ 0〉Q

It forms a ring and is stable under the action of GdR
H ×GB

H.
Similarly, the ring of mixed Artin-Tate H-periods4 is the subspace

Pm
HT = 〈[M,σ, ω]m : M ∈ Ob(H) such that F pWp+qMdR = 0 if p > q〉Q.

It is again a ring and is stable under the action of GdR
H ×GB

H. The notation
is justified as follows: let HT ⊂ H be the full Tannakian subcategory of H
consisting of triples (VB, VdR, c), whose underlying mixed Hodge structure
has Hodge numbers hp,q = 0 if p �= q. Its ring of motivic periods is Pm

HT .
Suppose that M is any object of H of this type. Then the weight filtration

4the ring of mixed Tate periods corresponds to the H-periods of mixed Tate
objects: those whose associated weight-graded is a direct sum of Tate objects Q(n)
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on its de Rham vector space splits via

grW2nMdR = W2n ∩ FnMdR.

It follows that Pm
HT is also graded by the weight and we can write

Pm
HT =

⊕
n∈Z

grW2nPm
HT .

Note that the weight grading is not preserved by GdR
H , only the weight

filtration. The weight grading is, however, preserved by GB
H since the latter

preserves the Hodge filtration.
Combining the two, we have a ring of effective mixed Artin Tate H-

periods

Pm,+
HT = Pm,+

H ∩ Pm
HT .

One can show that it is the largest subalgebra of Pm
HT which is stable under

the action of GdR
H and has non-negative weights.

The ring of H-de Rham periods Pdr
H has similar properties to Pm

H (weight
filtration, left GdR

H action), except that it does not have a real Frobenius
involution, and the period map is replaced by the evaluation map (counit)

ev : Pdr
H −→ k

[M, e, v]dr 	→ e(v),

which is nothing other than evaluation on the element 1 ∈ GdR
H (k). There

are analogous effective and Artin-Tate versions.

Remark 3.2. The fact that the weight filtration is strict on the category
of mixed Hodge structures [23] implies that the functor

(VB, VdR, c) 	→ grW• (VB, VdR, c) = (grWVB, gr
WVdR, gr

W c)

is exact. Thus, by composing with ωdR or ωB one obtains new fiber functors
we denote by ωdR = ωdR grW and ωB = ωB grW .

3.4. Weight filtrations on Pdr
H

The ring Pdr
H is none other than O(GdR

H ) viewed as a left GdR
H -module (or

right O(GdR
H )-comodule). It could be written P l,dr

H to distinguish from Pr,dr
H

and Pc,dr
H which are the same vector space, but considered with the right
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(respectively conjugation) action of GdR
H . We shall never consider Pr,dr, ex-

cept to remark that the antipode (inversion in GdR
H ) interchanges P l,dr

H and
Pr,dr
H . By the Tannaka theorem, these rings all define ind-objects in H and in

particular are equipped with weight filtrations. It is important to note that,
since the GdR

H -action is different in each case, these structures are distinct.
To avoid ambiguity, one can distinguish the following two coactions:

Δm,l : Pm
H −→ Pm

H ⊗Q P l,dr
H

Δm,c : Pm
H −→ Pm

H ⊗Q Pc,dr
H

They are given by an identical formula, namely (2.2), but differ in that the
interpretation of the right-hand side is slightly different. If G is a group
acting on a set X, the former corresponds to the action of G on G×X
via g(h, x) = (gh, x), where g, h ∈ G and x ∈ X. This is the usual formula
for a left action. It satisfies Δm,l(gξ) = (id⊗ g)Δm,lξ for g ∈ GdR

H and hence

Δm,lWnPm
H ⊂ Pm

H ⊗Q WnP l,dr
H .

The second coaction Δm,c corresponds to the action of G on G×X given
by the formula g(h, x) = (ghg−1, gx). Therefore

Δm,c(gξ) = (g ⊗ cg)Δ
m,cξ for g ∈ GdR

H

where cg is conjugation by g. In this case we have

Δm,cWnPm
H ⊂

∑
i+j=n

WiPm
H ⊗Q WjPc,dr

H .

Note that the ring P l,dr
H has elements in negative weights, but that

(3.3) W−1Pc,dr
H = 0.

To see this, observe that the canonical map (2.1)

(3.4) ωdR(M)∨ ⊗Q ωdR(M)→ Pc,dr
H

is compatible with the action of GdR
H , and hence respects the weight filtra-

tion on both sides. The left-hand side can be identified with End(ωdR(M))∨.
Since elements of GdR

H preserve the weight filtration on ωdR(M) the nat-
ural transformation GdR

H → End(ωdR(M)) of functors from commutative
Q-algebras to sets, lands in W0End(ωdR(M)), so dually, the image of
W−1(ωdR(M)∨ ⊗Q ωdR(M)) under (3.4) is zero. Since the direct sum of the
maps (3.4) generates Pc,dr

H , it follows that W−1Pc,dr
H = 0.
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3.5. Some periods which could be called motivic

The period homomorphism per : Pm
H → C is surjective since any complex

number can be obtained as a period of a mixed Hodge structure. A mo-
tivic period will be an element of Pm

H which comes from the cohomology of
an algebraic variety in a precise way. The following family of examples is
sufficient for our purposes and covers many cases considered in [41].

Example 3.3. Let X be a smooth scheme over Q and D ⊂ X a normal
crossing divisor over Q. Consider the triple consisting of

• relative Betti cohomologyHn
B(X,D)=Hn(X(C), D(C);Q). Since com-

plex conjugation on the topological spaces X(C), D(C) is continuous
it defines an involution F∞ : Hn

B(X,D)
∼→ Hn

B(X,D).

• relative algebraic de Rham cohomology Hn
dR(X,D). It is the hyper-

cohomology of the sheaf of Kähler differential forms on a cosimplicial
variety constructed out of the irreducible components of D.

• the comparison isomorphism ([34])

compB,dR : Hn
dR(X,D)⊗Q C

∼−→ Hn
B(X,D)⊗Q C.

It follows from the existence of a natural mixed Hodge structure [23, 24]
that

(3.5) Hn(X,D) := (Hn
B(X,D), Hn

dR(X,D), compB,dR)

is an object in the category H. Given a cohomology class ω ∈ Hn
dR(X,D)

and a relative homology cycle σ ∈ (Hn
B(X,D))∨ we can define the motivic

period associated to this data to be the matrix coefficient

(3.6) [Hn(X,D), σ, ω]m ∈ Pm
H .

Its period σ(compB,dR ω) ∈ C could be written
∫
σ ω and is given by a linear

combination of integrals. The Hodge numbers hp,q of Hn(X,D) are all zero
unless 0 ≤ p, q ≤ 2n, so (3.6) is effective and lies in W2nPm,+

H .

Definition 3.4. The space of effective motivic periods Pm,+ is the subspace
of Pm,+

H spanned by the elements (3.6).

We shall not need to define a ring of motivic periods which are not
effective (we shall never write Pm except in this sentence).
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This working definition of effective motivic periods amply suffices for
many purposes (e.g., the constant cosmic Galois group [13]). By the Künneth
formula, Pm,+ is closed under multiplication and it is immediate from (2.2)
that it is closed under the action of GdR

H and GB
H. Likewise, the ring of

effective de Rham periods Pdr,+ ⊂ Pdr,+
H is the subspace spanned by

[Hn(X,D), v, ω]dr, where v ∈ Hn
dR(X,D)∨.

Now define GdR to be the quotient of GdR
H by the subgroup which acts

trivially on the ring Pm,+ of effective motivic periods. The affine group
scheme GdR acts faithfully on Pm,+, and is an approximation to a motivic
Galois group. Its category of representations RepGdR is a crude version of
a Tannakian category of mixed motives. A key point is that the groups GdR

and GdR
H act in an identical manner on Pm,+.

A folklore version of Grothendieck’s period conjecture states that

Conjecture 1. The period homomorphism per : Pm,+ → C is injective.

Note that this conjecture is weaker than the analoguous conjecture for
the motivic periods of the category of Nori motives, for example.

3.6. Some terminology

We list a sample of possible quantities to describe H periods. For any object
M in H one can make the following definitions.

• Let M+
B ,M−

B denote the ± eigenspaces for F∞, and set rank±M =

dimQM±
B . The comparison MdR ⊗Q C

∼→MB ⊗Q C implies that

rank(M) = rank+(M) + rank−(M) = dimQMdR.

• Define the de Rham Galois group GdR(M) of M to be the largest quo-
tient of GdR

H which acts faithfully on MdR. Equivalently, it is the de
Rham Tannaka group of the full Tannakian subcategory of H gener-
ated by M . Define the Betti Galois group in the same way on replacing
dR by B. The comparison map gives a canonical isomorphism

GB(M)× C
∼−→ GdR(M)× C.

Define the transcendence dimension of M to be

dimtr(M) = dimGdR(M) = dimGB(M).
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Define the component group π•
0(M) to be π0(G

•(M)), where • = B, dR
and π0 is the étale group scheme whose affine ring O(π•

0(M)) is the
largest separable subalgebra of O(G•(M)) (see [48], §6.5-7). Since π0
commutes with change of base field, the comparison isomorphism gives

πB
0 (M)× C

∼→ πdR
0 (M)× C.

• Define the Hodge polynomial of M to be (see (3.2))

h(M)(r, s) =
∑
r,s

hp,q(M) rpsq ∈ Z[r±, s±]

• Define the class of a period matrix of M as follows. Let M =
(MB,MdR, cM ), and r = rank(M). Choose isomorphisms MB

∼= Qr

and MdR
∼= Qr, which are adapted to the weight (resp. Hodge and

weight) filtrations, and write cM in this basis. This gives a well-defined
element

[cM ] ∈ W0GL(MB)\W0GL(Cr)/F 0W0GL(MdR)

where W0GL(MB) denotes the subgroup of GL(MB)(Q) which pre-
serves W , and so on. It is an equivalence class of square d× d matrices
of complex numbers, where d is the rank of M . The matrix cM in fact
lies in the subspace satisfying F∞cM = cM . Thus if we furthermore
choose our Betti basis MB

∼= Qr to be compatible with the decom-
position MB = M+

B ⊕M−
B , then the rows corresponding to M+

B have
entries in R, and those corresponding to M−

B have entries in iR.
The determinant det(M) is defined to be det(cM ) in C/Q×.

Definition 3.5. Now let ξ ∈ Pm
H and denote its minimal object (§2.4) by

M(ξ). This enables us to attach the following invariants to ξ:

1) Define the space of de Rham Galois conjugates of ξ to be the right
O(GdR

H )-subcomodule of Pm
H generated by ξ. It is isomorphic toM(ξ)dR

by Corollary 2.5.
Likewise, define the space of Betti Galois conjugates to be the left

O(GB
H)-subcomodule of Pm

H generated by ξ. It is isomorphic to M(ξ)B
by Corollary 2.5.

Define the space of biconjugates of ξ to be the left O(GB
H) and right

O(GdR
H )-subcomodule of Pm

H generated by ξ. It is the vector space
spanned by the set of all matrix coefficients [M(ξ),M(ξ)∨B,M(ξ)dR]

m.
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Define the algebra of de Rham/Betti/bi-conjugates of ξ to be the
subalgebras of Pm

H generated by the above vector spaces.5

2) Define the rank(ξ) := rankM(ξ) (similarly rank±(ξ) = rank±M(ξ)).

3) Define the de Rham (resp. Betti) Galois group G•
ξ = G•(M(ξ)), where

• ∈ {B, dR}. Define the transcendence dimension of ξ to be

dimtr(ξ) = dimGdR
ξ = dimGB

ξ .

Define the component group to be π•
0(ξ) := π0(G

•
ξ), and the degree (for

want of a better word) of ξ to be deg(ξ) =
∣∣π•

0(ξ)(C)
∣∣ ∈ N.

4) Define the Hodge polynomial of ξ to be h(ξ)(r, s) = h(M(ξ))(r, s).

5) Define the class of a period matrix of ξ to be [cξ] = [cM(ξ)], and define
the determinant to be det(ξ) = det(cξ).

Many of the above definitions go through for an H-de Rham period
ξ ∈ Pdr

H with the obvious changes, which we leave to the reader.
The Hodge polynomial h(ξ) is symmetric in r, s and satisfies rank ξ =

h(ξ)(1, 1). The element ξ is effective if and only if h(ξ) ∈ Z[r, s], and is mixed
Artin-Tate (lies in Pm

HT ) if and only if ξ ∈ Z[(rs)±1].
It follows from the formulae for sums and products of matrix coefficients

that if ξ1, ξ2 ∈ Pm
H then Mξ1+ξ2 is a subquotient of Mξ1 ⊕Mξ2 and Mξ1ξ2 is

a subquotient of Mξ1 ⊗Mξ2 . Therefore the rank satisfies

rank(ξ1 + ξ2) ≤ rank(ξ1) + rank(ξ2)

and rank(ξ1ξ2) ≤ rank(ξ1) rank(ξ2).

More generally, the Hodge polynomial satisfies

h(ξ1 + ξ2) � h(ξ1) + h(ξ2) and h(ξ1ξ2) � h(ξ1)h(ξ2)

where � means that the inequality ≤ holds coefficient by coefficient.

Remark 3.6. The transcendence dimension of ξ is dimGdR
ξ =degtrO(GdR

ξ ).
The latter is the ring generated by the ‘de Rham biconjugates’ [M(ξ), v, w]dr

for all v ∈M(ξ)∨dR and w ∈M(ξ)dR. Applying the comparison map, this is

5One might be tempted, by analogy with algebraic numbers, to define notions of
Betti/de Rham/biconjugates of ξ by considering the orbits of ξ under the group of

R-points of the corresponding groups G
B/dR
H (R), for R a commutative Q-algebra.

We shall not.
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isomorphic to the ring generated by the biconjugates [M(ξ), σ, w]m where
σ ∈M(ξ)∨B and w ∈M(ξ)dR, tensored with C. It follows from this argument
that

(3.7) dimtr(ξ) = degtr(Ring of biconjugates of ξ)

Therefore the period conjecture 1 implies the following (compare [1]):

Conjecture 2. Let ξ ∈ Pm,+ be a motivic period. Let Pξ ⊂ C be the
Q-algebra generated by the images of the Galois biconjugates of ξ under
the period homomorphism. Then the transcendence degree of Pξ satisfies
degtr Pξ = dimtr(ξ).

3.7. Semi-simple and unipotent periods

Let Hss denote the full Tannakian subcategory of H generated by semi-
simple objects. Define the ring of semi-simple (or pure) periods to be Pm

Hss ,
and respectively Pdr

Hss its de Rham version.
Every object of Hss is graded by the weight filtration. It follows that

Pm
Hss is also graded by the weight filtration. The action of the group GdR

H on
Pm
Hss factors through a quotient we denote by SdR

H . It is a projective limit of
reductive affine algebraic groups over Q, and there is an exact sequence

(3.8) 1 −→ UdR
H −→ GdR

H −→ SdR
H −→ 1

where UdR
H is pro-unipotent. Define the ring of unipotent de Rham periods

to be

Pu
H = O(UdR

H ),

equipped with the conjugation action of GdR
H . The left action of UdR

H on
Pm
H is equivalent to a right coaction, which we call the unipotent de Rham

coaction

(3.9) Δu : Pm
H −→ Pm

H ⊗Q Pu
H.

It is given by the same formula as (2.2), where elements on the right hand
side of the tensor product are viewed as functions on UdR

H . This coac-
tion is equivariant with respect to the action of GdR

H , i.e., Δu(gξ) = (g ⊗
cg)Δ

uξ, where cg denotes conjugation by g ∈ GdR
H . In particular, ΔuWn ⊂∑

i+j=nWi ⊗Wj .
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The ring of unipotent periods Pu
H is equipped with an antipode

S : Pu
H → Pu

H,

which is dual to inversion in the group UdR
H . Using notation introduced

earlier, the restriction gives a natural surjective map Pc,dr
H → Pu

H which is
GdR

H equivariant, and it follows from a previous calculation (3.3) that Pu
H

has non-negative weights:

W−1Pu
H = 0.

Remark 3.7. If one replaces the de Rham functor with the graded de
Rham functor ωdR, then the analogous sequence to (3.8) is canonically split,
since grW is a fiber functor from H to Hss which is the identity on Hss.
Thus G

dR
H = UdR

H � SdR
H .

Proposition 3.8. There is a non-canonical isomorphism of algebras

Pm
H ⊗Q Q ∼= Pm

Hss ⊗Q Pu
H ⊗Q Q.

It does not respect the coalgebra structure.

Proof. Choose points in IsomH(ωB, ωdR)(Q) and IsomH(ωdR, ωdR)(Q). They
induce isomorphisms over Q

IsomH(ωdR, ωB)×Q
∼−→ IsomH(ωdR, ωdR)×Q ∼= IsomH(ωdR, ωdR)×Q.

The group in the middle is GdR
H ×Q, and the one on the right is G

dR
H ×Q

which splits canonically since G
dR
H
∼= U

dR
H � SdR

H by Remark 3.7. On the
level of affine rings we deduce isomorphisms of algebras O(GdR

H )⊗Q Q ∼=
O(G

dR
H )⊗Q Q = O(SdR

H )⊗Q O(U
dR
H )⊗Q Q. This gives a non-canonical iso-

morphism of algebras

Pm
H ⊗Q Q ∼= O(SdR

H )⊗Q O(UdR
H )⊗Q Q,

which, on taking UdR
H -invariants, induces Pm

Hss ⊗Q Q ∼= O(SdR
H )⊗Q Q. The

statement follows from the identification Pu
H = O(UdR

H ). �
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3.8. Filtration by unipotency and decomposition

The existence of the weight filtration implies that we can apply the con-
structions of §2.5 to

U = UdR
H and M = Pm

H ,

where Pm
H is equipped with the comodule structure Δu : M →M ⊗Q O(U).

Definition 3.9. We shall say that an element ξ in Pm
H is of unipotency

degree or coradical degree ≤ i if it lies in CiPm
H .

An element ξ ∈ Pm
H is of unipotency degree zero if and only if Δ(ξ) =

ξ ⊗ 1, so it is UdR
H -invariant and hence semi-simple:

C0Pm
H = Pm

Hss .

An element ξ of unipotency degree at most one corresponds to a period of
a simple extension. This is discussed in further detail in §6.

Recall that Δu,r = Δu − id⊗ 1. Then ξ ∈ CiPm
H if and only if

(Δu,r)i+1ξ = 0.

As in §2.5, we deduce the existence of a derivation

δ : CnPm
H −→ Cn−1Pm

H ⊗Q H1(U).

Definition 3.10. The decomposition into primitives map

Φ : grC• Pm
H −→ Pm

Hss ⊗Q T c(H1(U))

is defined by iterating δ.

The map Φ is a homomorphism of SdR
H -modules. To see this, recall that

the coaction Δu is equivariant with respect to the action of GdR
H on the left

on Pm
H , and by conjugation on O(U). Therefore so is Δu,r, and likewise δ.

On the other hand, U acts trivially on both grCPm
H and H1(U), so the action

of GdR
H factors through its quotient SdR

H . Hence δ is SdR
H -equivariant, and by

iteration, so is Φ.
The map Φ, together with the invariants defined above, give the first

steps towards a classification of motivic periods by group theory and provides
a tool for proving linear or algebraic independence of motivic periods (e.g.,
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[16]). This is discussed in §6, where we shall also show that Φ is in fact an
isomorphism. Note that Φ is not to be confused with the notion of symbol
(§9).

4. Further remarks on motivic periods

The paragraphs below are independent from each other and can be skipped.

4.1. Universal period matrix and ‘single-valued’ periods

Let M be an object of H. Then there is a canonical morphism

(4.1) MdR −→MB ⊗Q Pm
H

obtained by composing the natural map

δ∨ ⊗ id : Q⊗Q MdR →MB ⊗Q M∨
B ⊗Q MdR

with the map (2.1) M∨
B ⊗Q MdR → Pm

H . It is given by the formula

v 	→
∑
i

ei ⊗ [M, e∨i , v]
m

where ei (resp. e∨i ) is a basis (resp. dual basis) of MB. Extending scalars
from Q to Pm

H , it defines an isomorphism

cmM : MdR ⊗Q Pm
H

∼−→MB ⊗Q Pm
H

which is functorial in M and which we think of as a universal comparison
map. It is equal to the isomorphism of fiber functors ιM (the notation is
defined in (2.4); set B1 = B2 = k = Q and R = Pm

H), where

ι ∈ Isom⊗
H(ωdR, ωB)(Pm

H)

is the element corresponding to the identity on Pm
H . Since

c ∈ Isom⊗
H(ωdR, ωB)(C)

is, by definition of the period homomorphism, equal to per(ι), it follows
that the comparison map cM : MdR →MB ⊗Q C is obtained from (4.1) by
applying the period homomorphism; i.e., cM = (id⊗ per)cmM .
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As a first application, the universal coaction (4.1) defines a lift of the
period matrix of M to the ring of H-periods:

[cmM ] ∈ W0GL(MB)\W0GL(Pm
H , r)/F 0W0GL(MdR)

where r = rankM . We have [cM ] = per[cmM ] since the period homomorphism
is Q-linear. Applying this to the minimal object M = M(ξ) defines an in-
variant [cmξ ] of any element ξ ∈ Pm

H . Its determinant is an element det(cmξ ) ∈
Pm
H/Q×.
Another application is to construct single-valued versions of H-periods,

inspired by [8]. We only need the fact that the real Frobenius F∞ defines a
Q-linear involution on Pm

H which commutes with the action of GdR
H . Let

f ∈ Isom⊗
H(ωdR, ωB)(Pm

H)

correspond to F∞ : Pm
H

∼→ Pm
H . It satisfies fM =(F∞ ⊗ id)ιM =(id⊗ F∞)ιM .

Since Isom⊗
H(ωdR, ωB) is a right GdR

H -torsor, there is a unique element

(4.2) s ∈ GdR
H (Pm

H) such that f s = ι

which is computed explicitly below. This gives rise to a homomorphism
(single-valued map)

(4.3) sm : Pdr
H −→ Pm

H

which is GdR
H -equivariant if one equips the left-hand side Pdr

H = O(GdR
H ) with

the action of GdR
H by conjugation.

Remark 4.1. In [12] a slightly different single-valued map svm was defined
on the ring of mixed Tate periods, which is graded by weight. It is defined
by a similar formula on replacing F∞ by F∞ twisted by (−1)n in weight 2n.

The situation is summarised by the following commutative diagram

MdR ⊗Q Pm
H

ιM−→ MB ⊗Q Pm
H

↓smM ↑id⊗F∞

MdR ⊗Q Pm
H

ιM−→ MB ⊗Q Pm
H

where all maps are isomorphisms, which is functorial in M .
The single-valued H-period matrix smM : MdR →MdR ⊗Q Pm

H can be com-
puted as follows. Since F−1

∞ = F∞, it follows from the above that smM is given
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by the composite ι−1
M ◦ (id⊗ F∞)−1 ◦ ιM = ι−1

M ◦ (id⊗ F∞) ◦ ιM which is ex-
plicitly

MdR
cmM−→MB ⊗Q Pm

H
id⊗F∞−→ MB ⊗Q Pm

H
(cmM )−1

−→ MdR ⊗Q Pm
H .

Thus if CM is a matrix representing the map cmM with respect to some choice
of bases for MdR,MB, then smM is represented by (F∞CM )−1CM . This is
indeed invariant under change of basis for MB, which amounts to replacing
CM with PCM for some P ∈ GL(MB;Q); the quantity (F∞CM )−1CM is
unchanged since F∞ acts trivially on the coefficients of P because they are
rational.

Finally, the single-valued period matrix sM is obtained by applying the
period map to smM , and is given directly from the usual comparison map by

sM = C
−1
M CM , where cM = perCM denotes the period matrix.

4.2. Motivic philosophy

It is hoped that there exists a neutral Tannakian category MMQ of mixed
motives over Q equipped, in particular, with Betti and de Rham realisations,
and hence a functor MMQ → H and thus a homomorphism

(4.4) Pm
MMQ

−→ Pm
H .

The elements (3.5) should certainly be in its image, and the following dia-
gram

Pm
MMQ

−→ Pm
MMQ

⊗Q Pdr
MMQ

↓ ↓
Pm
H −→ Pm

H ⊗Q Pdr
H ,

where the horizontal maps are given by the coactions (2.2), would commute.
Therefore the action of GdR

H on the de Rham realisation MdR of an object
M ∈MMQ would be motivic, i.e., would factor through GdR

H → GdR
MMQ

.
Grothendieck’s period conjecture states that the period per : Pm

MMQ
→ C

is injective, which motivates many classical conjectures in transcendence
theory [1, 2, 7]. Since per factors through (4.4) this would imply Conjecture 1
and a much weaker conjecture: namely that the homomorphism (4.4) is
injective. In this case, relations between elements of Pm

MMQ
could be detected

in Pm
H , andGdR

H → GdR
MMQ

would have the same image in Aut(MdR) for every
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objectM ∈MMQ (and likewise for Betti). It is for this reason that we allow
ourselves to call the periods (3.6) ‘motivic’.

One important situation in which much of the above certainly works is
the case MT (Q) of mixed Tate (or Artin-Tate) motives over Q6 [27, 42].
One then has a morphism Pm

MT (Q) → Pm
H which is known to be injective

(by the full faithfulness of the Hodge realisation). Borel’s deep results on
the rational algebraic K-theory of Q (see Example 6.6 below) give a precise
upper bound for the size of the ring Pm

MT (Q). Several applications of motives
to number theory rely in an essential way on this upper bound. Note that
even if one has the ‘right’ definition of MMQ, this upper bound is not
available in general.

Remark 4.2. Defining mixed motives as a full subcategory of realisations
(à la Jannsen, Deligne) as opposed to by explicit generators and relations
(à la Nori) would not give the same answer if the realisation functors are
not fully faithful. Furthermore, theorems about the independence of motivic
periods proved in the ring Pm

H will carry over unconditionally to any rea-
sonable definition of a category of mixed motives (irrespective of whether
(4.4) is injective or not). On the other hand, when proving relations between
motivic periods, it is preferable to prove them using morphisms of mixed
Hodge structures which come from geometry, in which case they would also
carry over to any suitably defined Pm

MMQ
.

4.3. Projection map

An inconvenience of working with de Rham periods is the lack of a (complex)
period homomorphism. One way around this is to construct single-valued
periods as we did in §4.1. Another approach is to write de Rham periods as
images of motivic periods. The latter works particularly well in the mixed
Artin-Tate case as we now explain.

Proposition 4.3. Every effective motivic period of weight zero is a motivic
algebraic number. The period map gives an isomorphism

per : W0Pm,+ ∼→ Q.

Proof. See §10.2 below. �

6these exist over any number field, but for the time being we are working only
over Q
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Suppose that M is an object of H which is effective (all Hodge numbers
hp,q(M) vanish unless p, q ≥ 0). Say that M is separated if

W0MdR −→MdR −→MdR/F
1MdR

is an isomorphism. This implies that there is a splitting

(4.5) MdR = W0MdR ⊕ F 1MdR.

Equivalently, hp,q(M) = 0 unless (p, q) = (0, 0) or p, q > 0.
Define a comparison map ct0 : M

∨
B ⊗Q Pm(W0M)→M∨

dR ⊗Q Pm(W0M)
to be the dual of the composition c0 of the maps

MdR −→MdR/F
1MdR

∼= W0MdR
cmM−→W0MB ⊗Q Pm(W0M)

⊂MB ⊗Q Pm(W0M)

where Pm(W0M) is the vector space of motivic periods of W0M . By the
previous proposition, these are algebraic motivic periods (see §5.1) in the
case where M is an object of the form (3.5). In this case, we obtain a linear
map from the motivic periods of M to its de Rham periods:

[M,σ, ω]m 	→ [M, ct0(σ), ω]
dr : Pm(M) −→ Pdr(M)⊗Q Q.

If M is of Artin-Tate type (Hodge numbers equal to (p, p) only) and ef-
fective, then it is necessarily separated. So, writing P•,+

HT = P•,+ ∩ P•
HT for

• ∈ {m, dr}, we obtain a linear map

(4.6) πdr,m+ : Pm,+
HT −→ Pdr,+

HT ⊗Q Q.

Another way to define (4.6) is by the coaction

Pm,+
HT

Δ−→ Pm,+
HT ⊗Q Pdr,+

HT −→ Q⊗Q Pdr,+
HT

where the second map is the projection of Pm,+
HT onto its weight 0 component

(recall that it is graded by the weight and has non-negative degrees). Note
that the projection map, restricted to the subring of motivic periods of mixed
Tate motives, lands in Pdr,+, i.e., without tensoring with Q.

One possible application of the projection map is to prove identities be-
tween de Rham periods of mixed Tate motives using the complex period
map. One can even deduce identities between p-adic periods using com-
plex analysis. The idea is the following. Take a relation P (ξ1, . . . , ξn) = 0
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between motivic periods in, say Pm,+
MT (Z) for simplicity. Such a relation can

be proved by combining the coaction and complex analysis [15]. By ap-
plying the projection map we deduce a polynomial identity between de

Rham periods. Finally, take the p-adic period to deduce P (ξ
(p)
1 , . . . , ξ

(p)
n ) = 0

where ξ
(p)
i = perpπdr,m+ξi. This answers a question of Yamashita ([50], Re-

mark 3.9): the motivic Drinfeld associator Zm defined in [12] provides a
common source for relations between both the complex and p-adic multiple
zeta values via the period map per for the former, and via perpπdr,m+ for the
latter. The fact that Ldr �= 0 but πdr,m+L

m = 0 explains the confusing fact
that it is sometimes stated in the literature that ‘2πi = 0’ and sometimes
that ‘2πi = 1’ in this context.

Stated differently, let G
m
MT and G

dR
MT be the affine (monoid) schemes

defined by the spectra of Pm,+
MT and Pdr,+

MT ⊂ Pdr
MT . Then the projection is a

morphism

GdR
MT −→ G

dR
MT −→ G

m
MT

and a Frobenius element Fp ∈ GdR
MT (Qp) maps to a Qp-valued point on G

m
MT .

5. Some basic examples of motivic periods

Before proceeding further with the discussion, we list some very simple ex-
amples of motivic periods to illustrate the concepts introduced earlier.

5.1. Algebraic numbers

This is the study of Artin motives ([21], 1.16) which in principle reduces
to Grothendieck’s version of Galois theory. However, the point of view of
motivic periods leads to some interesting twists on this well-known tale.
Let P ∈ Q[x] be an irreducible polynomial, set F = Q[x]/(P ), and apply
Example 3.3 with X = SpecF , D = ∅, and n = 0. The object H0(X) is
(the realization of) an Artin motive. Its de Rham and Betti realizations
are H0

dR(X) = F , and H0
B(X) = H0(X(C);Q)∨ = Hom(F,C)∨. Let Q de-

note the algebraic closure of Q in C. Given α ∈ Q such that P (α) = 0, de-
note by σα : F ↪→ C the unique embedding of F such that σα(x) = α. Define
a motivic algebraic number

αm = [H0(X), σα, x]
m ∈W0Pm,+.

Its period is by definition per(αm) = α. The diagonal X → X ×X gives rise
to a morphism H0(X)⊗H0(X)→ H0(X) in the categoryH. Using this and
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the defining relations between matrix coefficients, we deduce that

f(αm) = [H0(X), σα, f(x)]
m

for f = xn and by additivity, for any polynomial f ∈ Q[x]. By embedding
Q(α),Q(β) into Q(α, β), we deduce that α 	→ αm : Q→ Pm,+ is a homo-
morphism. It follows that the period map is an isomorphism

(5.1) 〈αm : α ∈ Q〉Q
per−→ Q ⊂ C

so we can identify algebraic numbers with their motivic versions. Note that
the minimal object Mαm associated to αm is a strict subquotient of H0(X)
whenever α /∈ Q, since it is a factor of coker(H0(SpecQ)→ H0(SpecF )).
The category of Artin motives AMQ over Q is equivalent to the full tensor
subcategory of H generated by the objects H0(X), and we could take this
as its definition.

It is customary to consider only the Betti Galois group. The absolute
Galois group Gal(Q/Q) acts on the left on Hom(F,C) = Hom(F,Q) via its
action on Q and gives an automorphism of the Betti fiber functor. Indeed, as
is well-known, the Betti Galois group GB

AM(Q) is the constant group scheme

over Q corresponding to Gal(Q/Q). Therefore the (right) action of GB
AMQ

(Q)

on motivic algebraic numbers is equivalent to the (left) action of Gal(Q/Q)
on Q via the isomorphism (5.1). The action of real Frobenius F∞ on the
latter corresponds to complex conjugation on the former. The story usually
ends here.

Now consider, somewhat unconventionally, the case of the de Rham Ga-
lois group. Its action on H0

dR(SpecF ) respects the diagonal map and hence
the multiplication on F . Furthermore, it preserves H0

dR(SpecK) for all sub-
fields K ⊂ F .

Definition 5.1. Consider the functor

AF (R) = {α ∈ AutR(F ⊗Q R)

such that α(K ⊗Q R) ⊂ K ⊗Q R for all K ⊂ F}

from commutative Q-algebras R to groups. Define the group of field auto-
morphisms to be the projective limit over all field extensions F/Q of finite
type

AQ = lim←−
F

AF .
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It follows from the fact that all algebraic relations between αm are induced
by linearity, inclusions of fields K ⊂ F and diagonals SpecF → SpecF ×
SpecF that

GdR
AM(Q)

∼= AQ

(which shows in particular that the right-hand side is representable: its affine
ring is generated by matrix coefficients [H0(SpecF ), f, v]dr, where f ∈ F∨

and v ∈ F ). The comparison isomorphism implies that

GB
AM(Q) × C

∼−→ GdR
AM(Q) × C

so the usual absolute Galois group can be retrieved as the complex points
(or Q-points) of the de Rham Galois group.

Now consider a motivic algebraic number αm, for α ∈ Q. The degree of
α can be retrieved as the number of connected components of G•

αm for • =
B, dR. Its minimal object M(αm) is an object of AMQ. Its periods generate
the Galois closure F ′ of Q(α). Its de Rham group scheme is GdR

αm = AQ(α),
and its Betti group GB

αm is the constant group scheme of Gal(F ′/Q). The
quantity rank(αm) = dimQMB(α

m) is the dimension of the Q-vector space
spanned by the Galois conjugates of α over Q. This is called the conjugate
dimension of α and, surprisingly, was introduced only very recently (see [9]
and references therein).

Note that although the Betti orbit GB(Q)αm of αm corresponds to the
usual notion of Galois conjugates of α, the de Rham orbit GdR(R)αm is
sensitive to R.

5.2. Motivic 2πi (Lefschetz motive)

Let X = P1\{0,∞}, D = ∅. Consider H1(X) = Q(−1) in Example 3.3. Its
de Rham version is H1

dR(X;Q) = Q[dxx ] and its Betti version is H1(X(C)) =
Q[γ0] where γ0 is a small loop winding around 0 in the positive direction.
Define the Lefschetz motivic period7

Lm = [H1(X), [γ0], [dx/x]]
m ∈ W2 P

m,+.

7In [12] the Lefschetz motivic period was viewed as an object in Pm
MT (Z), where

MT (Z) is the category of mixed Tate motives unramified over Z. There is an
injection Pm

MT (Z) → Pm,+ ⊂ Pm
H, and the object Lm defined here is its image. A

similar remark applies for the later examples.
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It satisfies F∞Lm = −Lm. By Cauchy’s theorem, its period is

per(Lm) =

∫
γ0

dx

x
= 2πi.

It is the ‘motivic version’ of 2πi. Since H1
dR(X) is a one-dimensional repre-

sentation of GdR, we obtain a homomorphism of affine group schemes

λ : GdR −→ Gm.

Thus the group GdR(Q) acts upon Lm by multiplication

g(Lm) = λ(g)Lm,

where λ(g) ∈ Q×. The character λg is non-trivial: if H1
dR(X) were the trivial

representation, then by Theorem 2.3, H1(X) would be equivalent to the
trivial object Q(0) = H0(pt) which has rational periods. Since

per(Lm) = 2πi /∈ Q

is irrational, we conclude that λ is non-trivial (this also follows from the fact
that the Hodge structure on H1(X) is Q(−1) which is pure of weight 2). It
follows that Lm is transcendental: if there were a polynomial P ∈ Q[x] such
that P (Lm) = 0, then every conjugate λ(g)Lm would also be a root of P .
Since a non-zero polynomial has only finitely many roots, it would follow
that P = 0.

On the other hand, it is convenient to define the de Rham version of Lm,
denoted Ldr ∈ Pdr

H = O(GdR), to be the matrix coefficient

Ldr = [H1(X), [dx/x]∨, [dx/x]]dr.

The coaction Δ(Lm) = Lm ⊗ Ldr is given by application of (2.2), and it
follows that g(Ldr) = λ(g)Ldr, and ev(g(Ldr)) = λ(g), since ev(Ldr) = 1.

5.3. Motivic logarithms (Kummer motive)

Let X = P1\{0,∞} and D = {1, α} for some 1 < α ∈ Q. Consider the object
in H known as a Kummer motive

Kα = H1(P1\{0,∞}, {1, α}).

It sits in an exact sequence 0→ Q(0)→ Kα → H1(X)→ 0. A basis for the
de Rham cohomology (Kα)dR is given by the relative cohomology classes of
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the forms dx
x and dx

α−1 , which vanish along D. Let γ0 be as in §5.2, and γ1
denote the interval [1, α] ⊂ X(R). Their boundaries are contained in D(C),
and they form a basis for (Kα)

∨
B. The comparison isomorphism is represented

by the matrix

(5.2)

( ∫
γ1

dx
α−1

∫
γ1

dx
x∫

γ0

dx
α−1

∫
γ0

dx
x

)
=

(
1 log(α)
0 2πi

)
with respect to this choice of basis. Define the motivic logarithm to be

logm(α) = [Kα, [γ1], [
dx
x ]]m ∈W2Pm,+.

Its period is per(logm(α)) = log(α), and F∞ logm α = logm α. The group GdR

acts on (Kα)dR, fixing the subspace Q(0)dR and acting on the quotient
H1

dR(X) = Q(−1)dR via λg as in the previous example. Thus we have a
homomorphism

(να, λ) : G
dR −→ Ga �Gm.

Equivalently, the de Rham action is given for g ∈ GdR(Q) by

(5.3) g logm(α) = λ(g) logm(α) + να(g).

For illustration, we can prove the functional equation of the motivic log-
arithm as follows. Let 1 < β ∈ Q, and consider the morphisms of pairs of
spaces

(Gm, {1, α}) ×β−→ (Gm, {β, αβ}) ⊆ (Gm, {1, β, αβ})
(Gm, {1, z}) ⊆ (Gm, {1, β, αβ}) for z ∈ {β, αβ}.

Since dx
x is invariant under multiplication, these give relations

logm(α) = [H1(Gm, {1, β, αβ}), [β, αβ], [dxx ]]m

logm(z) = [H1(Gm, {1, β, αβ}), [1, z], [dxx ]]m for z ∈ {β, αβ}.

Finally use additivity with respect to Betti classes [1, αβ] = [1, β] + [β, αβ]
to obtain the expected relation between the three motivic periods

logm(αβ) = logm(α) + logm(β).

It follows that the motivic logarithms over Q are linear combinations of the
motivic periods logm(p) for p ≥ 2 prime. Since log : R>0 → R has a unique
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zero at x = 1, the functional equation of the logarithm implies that the
numbers log(p) are linearly independent over Q, and a fortiori the logm(p).
By (5.3) we have

Δu logm(p) = logm(p)⊗ 1 + 1⊗ νp

where νp is viewed in O(UdR
H ). We deduce that the decomposition map

satisfies

Φ(logm(p)) = 1⊗ νp ∈ Pm
Hss ⊗Q H1(UdR

H ),

and the νp are independent, since Φ is injective. Since it is a homomorphism,

Φ

(
(Lm)k

∏
i

logm(pi)
ni

)
= (Lm)k ⊗

∏
i

(νpi
)xni

where the products on the right-hand side are with respect to the shuffle
product, pi are a finite set of primes, and ni ≥ 0.

Corollary 5.2. Since Φ is injective, the set of elements {Lm, logm(p) for
p prime} are algebraically independent over Q.

This completes the description of all algebraic relations between the
motivic periods logm(α), for α ∈ Q, and Lm.

5.3.1. Single-valued versions. Define the de Rham version

logdr(α) = [Kα, [
dx
α−1 ]

∨, [dxx ]]dr ∈W2Pdr,

where [ dx
α−1 ]

∨ ∈ (Kα)
∨
dR takes the value 0 on [dxx ] and 1 on [ dx

α−1 ]. For α = p

prime, its image in O(UdR) is precisely νp. The coaction formula 2.2 gives

Δ logm(α) = logm(α)⊗ Ldr + 1m ⊗ logdr(α),

which is equivalent to (5.3). It follows from the computations above that
logdr(p) for p prime are also algebraically independent over Q (use the de
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Rham version of Φ). The motivic period matrix associated to logm α is

(5.4) Cm =

(
1 logm(α)
0 Lm

)
.

The real Frobenius F∞ acts by −1 on the second row. Therefore

(F∞Cm)−1Cm =

(
1 2 logm(α)
0 −1

)
and we deduce that sm(Ldr) = −1 and sm(logdr(α)) = (1+F∞) logm(α) =
2 logm(α).

5.4. Motivic multiple zeta values

Iterated integrals on the punctured projective line provide a class of motivic
periods for which one knows how to compute the motivic coaction. This is
most developed in the case of multiple zeta values. For any n1, . . . , nr−1 ≥ 1
and nr ≥ 2, there are motivic multiple zeta values

(5.5) ζm(n1, . . . , nr) ∈ Pm
HT ∩ Pm,+ ⊂ Pm,+

of weight 2n1 + · · ·+ 2nr (recall Pm,+
HT is graded by W ) whose periods are

per(ζm(n1, . . . , nr)) = ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1

kn1

1 · · · knr
r

.

They are defined as follows. Let X = P1\{0, 1,∞} and set

ζm(n1, . . . , nr) = [O(πm
1 (X,

→
10,−

→
11), dch, w]

m

where πm
1 (X,

→
10,−

→
11) is the motivic torsor of paths on X [27] from the

unit tangent vector at 0 to minus the unit tangent vector at 1, w is the
word w = en1−1

0 e1 · · · enr−1
0 e1 in e0 =

dx
x , and e1 =

dx
1−x , and dch is the Betti

image of the straight line path from 0 to 1. For further details, see [14].
This actually defines the motivic multiple zeta values as motivic periods
of the category MT (Z) of mixed Tate motives over Z. The latter admits
a fully faithful functor to the category H [27], and so the ring of periods
Pm
MT (Z) injects into Pm

H and we can identify it with its image. Furthermore,

Beilinson’s construction of the motivic torsor of path given in [27] can be
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realised in the form of Example 3.3, so we can also view the images of the
ζm(n1, . . . , nr) ∈ Pm

H as elements of Pm,+ as claimed above.
The depth of (5.5) is defined to be r. The fact that the depth filtration

is motivic implies the following bound for the unipotency degree

u. d.(ζm(n1, . . . , nr)) ≤ r.

The unipotency degree has sometimes been referred to as the ‘motivic depth’.
A fascinating feature of multiple zeta values is the existence of a discrepancy
between the unipotency degree and the depth, related to modular forms for
SL2(Z).

The simplest examples are the motivic zeta values, ζm(2n+1)∈C1Pm,+,
for n ≥ 1, which admit a motivic period matrix of the expected form(

1 ζm(2n+ 1)
0 (Lm)2n+1

)

Let us define some symbols f2n+1 ∈ H1(UdR
H ), for n ≥ 1, as the images of

the motivic zeta values under the decomposition map

Φ(ζm(2n+ 1)) = 1⊗ f2n+1

Each f2n+1, for n ≥ 1 spans a copy of Q(−2n− 1) and has weight 4n+ 2.
The interpretation of these elements will be explained in §6 below. Either
from the explicit formula for the coaction on motivic multiple zeta values,
or from the results of §6, the decomposition map gives an injective homo-
morphism

Φ : grCPm,+
MT (Z) −→ Q[Lm]⊗Q Q〈f3, f5, . . .〉

where the right-hand side denotes the shuffle algebra (tensor coalgebra) on
symbols f2n+1 over Q. In this case, it is in fact known that Φ is an isomor-
phism (Theorem 6.3). Now, the main result of [16] is a computation of the
image under Φ of the elements ζm(n1, . . . , nr) where ni ∈ {2, 3}, and a proof
that their images are linearly independent.8 Thus we can use these elements
to split the coradical filtration C on Pm

MT (Z), and deduce the existence of a

8The use of the decomposition map Φ considerably simplifies many of the argu-
ments of [16]
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canonical isomorphism [15]

φ : Pm,+
MT (Z)

∼= grCPm,+
MT (Z)

Φ−→ Q[Lm]⊗Q Q〈f3, f5, . . .〉.

One could use a different splitting of the coradical filtration C, which would
lead to a different choice of isomorphism φ.

It is hard to understand Galois aspects of multiple zeta values with-
out some sort of model of this kind. Indeed, using this model we can eas-
ily write down the invariants defined earlier. If ξ ∈ Pm,+

MT (Z) corresponds to

(Lm)kfa1
fa2
· · · far

under φ, then the representation generated by ξ is the
vector space

M(ξ)dR = 〈�kfa1
· · · fai

: for 0 ≤ i ≤ r〉Q
obtained by slicing off letters from the right. A representative for the period
matrix for ξ = (Lm)kfa1

fa2
is

per

⎛⎝ (Lm)k (Lm)kfa1
(Lm)kfa1

fa2

0 (Lm)k+a1 (Lm)k+a1fa2

0 0 (Lm)k+a1+a2

⎞⎠
which means the top left-hand entry is per((Lm)k) = (2πi)k, and so on. The
general pattern is clear from this example.

Applying the projection map π to motivic multiple zeta values leads to
de Rham multiple zeta values ζdr(n1, . . . , nr) = πdr,m+ζ

m(n1, . . . , nr). It is
proved in [16] that the kernel of πdr,m+ on the ring generated by motivic
multiple zeta values is the ideal generated by ζm(2). Thus de Rham multiple
zeta values are motivic MZV’s modulo ζm(2). The former have single-valued
periods, and a calculation using the period matrix for ζm(2n+ 1) similar to
the one for the logarithm gives the single-valued versions sm(ζdr(2n+ 1)) =
2ζm(2n+ 1). The de Rham versions of multiple zeta values also have p-adic
periods, which can be thought of as follows. There are canonical Frobenius
elements [50]

Fp ∈ GdR
MT (Z)(Qp),

and hence homomorphisms perp : Pdr
MT (Z) = O(GdR

MT (Z))→ Qp. The projec-
tion map enables us to associate p-adic periods to motivic multiple zeta
values, which are a certain kind of p-adic multiple zeta values.9

9This point of view quickly leads to new constructions. For example, one can
consider curious hybrid quantities defined by the convolution of per with perp:

ζR∗p(n1, . . . , nr) := m(per⊗ perpπdr,m+)Δζm(n1, . . . , nr) ∈ R⊗Q Qp,
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5.5. Motivic Euler sums

Euler sums are defined by the nested sums

ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

sign(n1)
k1 · · · sign(nr)

kr

k
|n1|
1 · · · k|nr|

r

where ni ∈ Z\{0} and nr �= 1. Their depth is defined to be the quantity r.
They can be written as iterated integrals on X = P1\{0,±1,∞} from 0 to
1, which leads to a definition of motivic Euler sums

ζm(w) = [O(πm
1 (X,

→
10,−

→
11), dch, w]

m

where w is a certain word in e0 =
dx
x and e±1 =

dx
x±1 , and dch is as above.

These are motivic periods of the categoryMT (Z[12 ]) of mixed Tate motives
ramified at 2. The decomposition map now provides an injective homomor-
phism

Φ : grCPm,+
MT (Z[ 1

2
])
−→ Q[Lm]⊗Q Q〈ν2, f3, f5, . . .〉,

where ν2, corresponding to the logarithm of 2, was defined earlier. It is an
isomorphism by Theorem 6.3. The results of Deligne [22] can be translated
into this setting. He proves that ζm(n1, . . . , nr−1,−nr) where the ni are odd
≥ 1 and form a Lyndon word, are algebraically independent. An important
difference with the case of multiple zeta values, which considerably simplifies
matters, is that the depth filtration in this case coincides with the unipotency
filtration. We can construct a splitting of the coradical filtration using this
basis and hence an isomorphism

φ(2) : Pm,+
MT (Z[ 1

2
])
∼= grCPm,+

MT (Z[ 1
2
])

Φ−→ Q[Lm]⊗Q Q〈ν2, f3, f5, . . .〉.

The periods ofMT (Z) correspond to elements with no ν2 in their φ(2)-image.
Note, however, that the maps φ and φ(2) are not compatible. To remedy this,
one could replace φ with the restriction of φ(2) on Pm,+

MT (Z) ⊂ P
m,+
MT (Z[ 1

2
])
, but

this does not quite lead to an explicit basis for the periods ofMT (Z). These
ideas are studied in Glanois’ thesis [29], who also constructed a new basis
for the motivic periods ofMT (Z) using certain modified Euler sums where
the summation involves non-strict inequalities, weighted with certain powers
of 2.

where m is multiplication, and Δ the coaction (2.2).
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6. Towards a classification of motivic periods

We can use the decomposition into primitives to classify H-periods up to
elements of lower unipotency degree. In this section, we shall drop the su-
perscript dR and subscript H and write S,U,G instead of SdR

H , UdR
H , GdR

H .
The decomposition map involves a space grC1 (O(U)), which is exactly

Prim(O(U)) := {f ∈ O(U) : Δf = f ⊗ 1 + 1⊗ f}

In this paragraph we analyse this space in some detail, which leads to further
invariants of motivic periods, and a first step towards their classification.

6.1. Cohomology of U

The exact sequence (3.8) will now be written

1 −→ U −→ G −→ S −→ 1.

Proposition 6.1. Let n ≥ 0. There is an isomorphism of (right) S-modules

Hn(U) ∼=
⊕

M∈Irr(Hss)

ExtnH(Q,M)⊗End(M) M
∨
dR,

where Irr(Hss) denotes a set of representatives of isomorphism classes of
simple objects in Hss (or equivalently, of irreducible O(S)-comodules).

Proof. First of all, we can write U = lim←−Un as a projective limit of unipotent
affine group schemes Un of finite type (unipotent algebraic matrix groups).
Likewise, a representation V of U is an inductive limit V = lim−→Vn of Un-

representations. Since lim−→H i(Un, Vn)
∼→ H i(U, V ), the arguments which fol-

low can be deduced from well-known results for matrix groups and by taking
limits.

Let M be an irreducible object of Hss. Then MdR is an irreducible O(S)-
comodule. A Hochschild-Serre spectral sequence gives

Hp(S,Hq(U,MdR))⇒ Hp+q(G,MdR)

and one knows that S is of cohomological dimension 0, since it is pro-
reductive. Therefore since U acts trivially on MdR,

H0(S,Hn(U,MdR)) = Hn(U,MdR)
S ∼= (Hn(U)⊗Q MdR)

S ,
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where Hn(U) denotes Hn(U ;Q), and we deduce that(
Hn(U)⊗Q MdR

)S ∼= Hn(G,MdR).

Let M,N be irreducible S-modules. Then (N∨
dR ⊗Q MdR)

S = EndS(MdR) if
N and M are isomorphic, and zero otherwise, by Schur’s lemma. It follows
that

Hn(U) ∼=
⊕

M∈Irr(Hss)

Hn(G,MdR)⊗EndS(MdR) M
∨
dR.

Note that since U acts trivially onMdR, we have EndG(MdR) = EndS(MdR).
Since ωdR : H → Rep(G) is an equivalence, we deduce that

Hn(G,MdR) = ExtnRep(G)(Q,MdR) = ExtnH(Q(0),M),

and EndS(MdR) = End(M). �
It is a well-known fact due to Beilinson that

ExtnH(Q,M) = 0 for n ≥ 2.

Corollary 6.2. The cohomology Hn(U ;M) vanishes for all n ≥ 2.

Recall that

H1(U) ∼= grC1 O(U) ∼= C1O(U)+ ∼= Prim(O(U)).

Theorem 6.3. The decomposition map

Φ : grC• Pm
H −→ Pm

Hss ⊗Q T c(grC1 O(U))

is an isomorphism of S-modules.

Proof. By Proposition 3.8, there is a non-canonical isomorphism Pm
H ⊗Q

Q ∼= Pm
Hss ⊗Q O(U)⊗Q Q. The group U is of cohomological dimension 1,

by the previous corollary. Now apply Corollary 2.13 with T = Pm
Hss ⊗Q Q

to conclude that the decomposition map, after extending scalars to Q, is
an isomorphism. Since it was already injective over Q, it follows that it is
surjective over Q. �

Remark 6.4. One can view T c(H1(U)) as the associated graded, for the
length filtration, of H0(B(N)) where N is a DGA which computes the co-
homology of U , and B is the (reduced) bar construction. The decomposition
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map Φ therefore resembles the bar construction of a fibration, and suggests
thinking about elements of Pm

Hss as functions on a ‘base’ corresponding to S,
and T c(H1(U)) as iterated integrals on a ‘fiber’ corresponding to U . From
this point of view, δ can be thought of as a kind of Gauss-Manin connection.
If one wants to copy this setup for mixed Tate motives over number fields
rather than mixed Hodge structures, this suggests replacing N with Bloch’s
cycle complex N and echoes the construction of [11].

6.2. Primitives in O(U)

We analyse the statement of Proposition 6.1 in more detail in the case n = 1.
It gives an isomorphism of S-modules

(6.1) Prim(O(U))
∼−→

⊕
M∈Irr(Hss)

Ext1H(Q(0),M∨)⊗End(M) MdR.

First of all, observe from Remark 2.10 that

Prim(O(Uab))
∼→ Prim(O(U)).

The action of S by conjugation on Uab induces an action of S on O(Uab),
and preserves the space of primitive elements. Since S is the (de Rham) Tan-
naka group of Hss, the S-module generated by any element f ∈ Prim(O(U))
defines a representation of S, and hence an object of Hss by Theorem 2.3.

Definition 6.5. For any f ∈ Prim(O(U)), let Mf denote the associated
object of Hss. Its de Rham vector space is the O(S)-comodule generated by
f . It comes equipped with a distinguished element f ∈ (Mf )dR.

Let f ∈ Prim(O(U)). One associates an extension to f as follows. Con-
sider the short exact sequence of right U -modules

0 −→ C0O(U) −→ C1O(U) −→ Prim(O(U)) −→ 0.

It is not split, although the underlying sequence of Q-vector spaces is split
by the augmentation map. By Remark 2.10, it can be rewritten

0 −→ Q −→ C1O(Uab) −→ Prim(O(Uab)) −→ 0.

It is an exact sequence in the category of right Uab � S-modules. We can pull
back this extension along the inclusion (Mf )dR ⊆ Prim(O(Uab)) to obtain

0 −→ Q −→ EdR −→ (Mf )dR −→ 0.
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Now choose an isomorphism G/[U,U ]→ Uab � S, i.e., a splitting of 1→
Uab → G/[U,U ]→ S → 1. It exists by Levi’s (Mostow’s) theorem. Via this
isomorphism, the previous exact sequence can be viewed in the category of
G-modules, and hence, via the Tannaka theorem, as an exact sequence in H:

(6.2) 0 −→ Q −→ E −→Mf −→ 0.

Another choice of isomorphism G/[U,U ] ∼= Uab � S yields an isomorphic
extension. The dual extension 0→M∨

f → E∨ → Q→ 0, together with the
vector f ∈ (Mf )dR, defines a class

[E∨]⊗ f ∈ Ext1H(Q,M∨
f )⊗Q (Mf )dR

as required. By decomposing Mf into S-isotypical components, we can
project this element into the right-hand side of (6.1).

Definition 6.6. Let us denote the extension class of (6.2) by Ef .

In the other direction, consider an extension in H

0 −→M∨ −→ E −→ Q −→ 0,

and a vector v ∈MdR, where M is a simple object. Choose a lift of the
element 1 ∈ QdR to f ∈ EdR, and a lift of v to ṽ ∈ E∨dR along the map
E∨dR →MdR. The image of the following unipotent matrix coefficient (§3.7)
in O(U)+

ξ = [E , ṽ, f ]u ∈ O(U)+

does not depend on the choices of ṽ, f . For instance, if f ′ is another lift
of 1, then f − f ′ ∈M∨

dR, and [E , ṽ, f − f ′]u is equivalent to [M∨, v, f − f ′]u,
which is constant because U acts trivially on MdR. Similarly, if ṽ′ is a lift
of v then ṽ′ − ṽ ∈ QdR and [E , ṽ′ − ṽ, f ]u is equivalent to a unipotent period
of Q(0), hence constant. By Schur’s lemma, a non-zero endomorphism α :
M →M is an automorphism. If Eα denotes the extension E twisted by α∨,
then the identity map E ∼→ Eα gives an equivalence of matrix coefficients
ξ = [Eα, ṽ, f ]. It is straightforward to check using (2.2) and the formulae
which follow that ξ is a primitive element. This construction provides an
inverse to (6.1).
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6.3. Extensions in H

The contents of this section are standard and well-known. Let M =
(MB,MdR, c) be an object in H. The following complex

W0M
+
B ⊕ F 0W0MdR

id−c−→ (W0MB ⊗Q C)cdR

represents RHomH(Q(0),M). Recall that cdR is complex conjugation on the
right-hand factor of MdR ⊗Q C. Its action on MB ⊗Q C is c cdR c−1 = F∞ ⊗
cB where cB is complex conjugation on the right-hand factor of MB ⊗Q C.

The kernel of the above complex is

HomH(Q(0),M)
∼−→W0M

+
B ∩ c(F 0W0MdR)

and the map is given by the image of 1 ∈ QdR

c∼= QB. The cokernel is [18]

(6.3) Ext1H(Q,M)
∼−→W0M

+
B \(W0MB ⊗Q C)cdR/c(F 0W0MdR).

The map is given as follows. If E is an extension of Q(0) by M in H, it gives
rise, after applying a fiber functor • = B/dR, to two exact sequences

0 −→M• −→ E• −→ Q• −→ 0.

Choose B and dR splittings by choosing a lift of 1B ∈ QB to 1B ∈W0E+B
and of 1dR ∈ QdR to 1dR ∈ F 0W0EdR. Then 1B − c(1dR) gives a well-defined
element in the right-hand side of (6.3). Note that (6.3) is uncountably gen-
erated. Let H(R) denote the category of triples (MB,MdR, c) where now
MB,MdR are vector spaces over R (replace the ground field Q by R). There is
a functor ⊗R : H → H(R), sending (MB,MdR, c) to (MB ⊗ R,MdR ⊗ R, c⊗
id).

Corollary 6.7. Suppose that W−1M = M . Then

(6.4) dimR Ext1H(R)(R(0),M ⊗ R) = dimQM−
B − dimQ F 0MdR

Proof. Since cdR, F∞ act trivially on c(F 0MdR) ∩M+
B , so too must cB, since

by §3.1 we have F∞ ⊗ cB = ccdRc
−1. It follows that c(F 0MdR) ∩M+

B ⊂ F 0 ∩
F

0
= 0, since M has weights ≤ −1. Now (MB ⊗Q C)cdR = (M+

B ⊗ R)⊕
(M−

B ⊗ iR), and conclude using (6.3) together with the fact that W0M =
M . �



608 Francis Brown

The formula (6.3), together with (6.1) and Theorem 6.3 provides a com-
plete description of H-periods, graded for the coradical filtration, in terms of
semi-simple objects in Hss. In practice, we often wish to fix a full Tannakian
subcategory of pure objects in Hss (such as the one generated by Tate ob-
jects Q(n)), and consider all H-periods of objects whose semi-simplifications
are of this type (periods of mixed Tate objects, in this case). The above re-
sults give a precise description for the structure of H-periods of this type.

In order for this to be an accurate reflection of the structure of motivic
periods, we need to know something about the image of the decomposition
map Φ on the subspace Pm,+, which we address presently.

6.4. Speculation and context

Recall that Pm,+ ⊂ Pm
H was the ring of motivic periods, i.e., those which

come from the cohomology of an algebraic variety, and GdR is the quotient
of GdR

H acting faithfully on Pm,+. Let UdR denote its unipotent radical. Let
Pm,+
ss = (Pm,+)U

dR

denote the invariants under UdR, and set

M = C1O(UdR)+ = Prim(O(UdR)).

Via (6.1) we think of M as ‘motivic’ extension classes.

Conjecture 3. The decomposition map induces an isomorphism

Φ : grCPm,+ −→ Pm,+
ss ⊗Q T c(M).

This conjecture is a generalisation of Goncharov’s freeness conjecture
for mixed Tate motives, and states that there should be no relations be-
tween the decompositions of motivic periods. We can now try to describe
the constituent pieces. This is all conjectural, so we shall be brief.

The putative Tannakian category of mixed motives over Q should have
a functor

MMQ
h−→ H

where h = (ωB, ωdR, compB,dR) is fully faithful and hence morphisms

Ext1MMQ
(Q,M) ↪→ Ext1H(Q, h(M))

⊗R−→ Ext1H(R)(R, h(M)⊗ R).

One expects Pm,+
ss to be generated by the cohomology of smooth projective

algebraic varieties X over Q. There is a definition for the group
Ext1MMQ

(Q(0),M), when M = Hp(X)(q), in terms of motivic cohomology
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[43]. Thus we expect M to be generated by the image of Hp+1
M (X,Q(q))⊗

Hp
dR(X)∨(−q) in the right-hand side of (6.1). Here, motivic cohomology

Hp+1
M (X,Q(q)) can be defined either as a piece of the Adams grading of the

algebraic K-theory of X, or via Bloch’s higher Chow groups. Finally, Beilin-
son’s conjectures predict the rank of these groups. In the simplest possible
case when M is pure and of weight ≤ −3, then the image of Ext1MMQ

(Q,M)

in Ext1H(R)(R, h(M)⊗ R) should be a lattice and its rank given by (6.4). See
[44] for further details.

Putting these conjectural pieces together gives a fairly complete but
highly speculative picture for the structure of the ring of motivic periods. In
particular, we obtain a precise prediction for the ‘size’ of the ring of motivic
periods of given types. A strategy that one can pursue is to fix a given tensor
category of pure motives (for example Tate motives), and try to construct
geometrically the iterated extensions (or equivalently, their motivic periods).
The decomposition map is a tool to show, by computing periods, that the
extensions one has are independent (§5.4, §5.5)

Remark 6.8. A more detailed account of this subject would include a
discussion of regulators and special values of L-functions. In the present
framework, one can translate Deligne’s conjecture on critical L-values as
giving a formula for certain motivic periods of unipotency degree 0. Beilin-
son’s conjectures give a formula for certain determinants of motivic periods
of unipotency degree 1. It is tantalising to speculate that this might be the
beginning of a tower of conjectural formulae describing certain periods of all
higher unipotency degrees.

6.5. Representatives for primitive elements

In this section we return to generalH-periods. One would like to represent el-
ements of grC1 O(UdR

H ) as concretely as possible. It follows from Corollary 2.13
that the decomposition in degree one

Φ : grC1 Pm
H −→ Pm

Hss ⊗Q grC1 O(UdR
H )

is surjective. However, there is no canonical map from grC1 O(UdR
H ) to Pm

H ,
nor can we assign a period to an element of grC1 O(UdR

H ) in any obvious way.
In some special cases, one can in fact assign numbers to primitive elements
via the following two constructions:

1) Call f ∈ Prim(O(UdR
H )) stable if F 1Mf = Mf and Mf is effective. This

implies that all its Hodge numbers hp,q vanish for p ≤ 0 or q ≤ 0. In
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this case, a representative for the extension class Ef is separated (§4.3),
and its de Rham realisation splits by (4.5) :

(Ef )dR ∼= Q⊕ (Mf )dR.

Thus we can view f ∈ (Mf )dR = F 1(Ef )dR and 1 ∈ Q∨
dR = F 0E∨dR and

define a canonical de Rham period

ξf = [Ef , 1, f ]dr ∈ Pdr
H .

Its single-valued version sm(ξf ) lies in Pm
H and we can take its period

to obtain a number. The action of GdR
H on sm(ξf ) is compatible with

the conjugation action of GdR
H on ξf .

2) As in (1), but also assume that (Mf )
+
B = 0. Then (E∨f )+B ∼= Q∨

B, and

1 ∈ Q∨
B lifts to 1 ∈ (E∨f )+B. We can directly define a motivic period

[Ef , 1, f ]m ∈ Pm
H . Taking its period assigns a number to such a primitive

element.

6.6. Example: Mixed Tate motives over Q

One of the few situations in which Beilinson’s conjectures are completely
known is the category MT (Q) of mixed Tate motives over Q. Its simple
objects are Tate motives Q(n). The real Frobenius F∞ acts on Q(n)B by
(−1)n. Thus

Ext1MT (Q)(Q(0),Q(n)) −→ Ext1H(Q(0),Q(n))

whose image has rank one if n is odd, and zero if n is even. In this case,
Beilinson’s conjecture is known as a consequence of deep theorems due to
Borel, and we have

(6.5) Ext1MT (Q)(Q(0),Q(n)) ∼= K2n−1(Q)⊗Z Q

which has rank 1 for n ≥ 3 odd and rank 0 for n even. For n = 1,

(6.6) Ext1MT (Q)(Q(0),Q(1)) ∼= K1(Q)⊗Z Q = Q∗ ⊗Z Q

is isomorphic to the infinite dimensional Q-vector space with one generator
for every prime p. Furthermore, all higher Ext groups vanish. It follows that

H1(UdR
MT (Q)) =

⊕
n≥1

(
K2n−1(Q)⊗Z Q(−n)dR

)
.



Notes on motivic periods 611

Let Pm,+
MT (Q) denote the ring of effective periods of MT (Q). The subspace

of semi-simple periods is generated by Lm. The decomposition is an isomor-
phism

(6.7) grC• Pm,+
MT (Q)

∼−→ Q[Lm]⊗ T c

⎛⎝⊕
n≥1

K2n−1(Q)⊗Z Q(−n)

⎞⎠ .

The Tate objects Q(n) satisfy both conditions (1) and (2) of §6.5. A genera-
tor f2n−1 of the image of (6.5) in Ext1H gives a rational multiple of ζm(2n− 1)
under the second prescription. Choose the rational multiple to be one.10 Sim-
ilarly, choose generators νp of (6.6) which correspond under (2) to logm(p)
for p prime.

With this choice of generators, there is an isomorphism

T c(H1(UdR
MT (Q)))

∼= Q〈νp, f3, f5, f7, . . .〉

where the right-hand side denotes the shuffle algebra (tensor coalgebra) on
generators νp, for p prime, which span a copy of Q(−1) of weight 2, and
f2n+1, for n ≥ 1 which span a copy of Q(−1− 2n) of weight 4n+ 2.

Theorem 6.9. The decomposition into primitives (6.7) gives an isomor-
phism

(6.8) grCPm,+
MT (Q)

∼−→ Q[Lm]⊗Q〈νp, f3, f5, f7, . . .〉,

where Lm is the Lefschetz period §5.2.

Since in this case we can associate to each f2n−1 its canonical period (2)
of §6.5 which equals ζ(2n− 1), this gives an elementary way to think about
periods of mixed Tate motives over Q as formal words in tensor products
of odd zeta values ζ(2n− 1) and logarithms of prime numbers. See [15] for
examples.

Remark 6.10. Beilinson’s conjectures hold more generally for mixed Tate
motives over number fields. Since for the time being we are considering only
periods over Q, this discussion is postponed to §10.1.

10Note that prescription (1) applied to f2n−1 gives the single-valued motivic zeta
value which is exactly double that, namely 2ζm(2n− 1).
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7. Families of periods

We now sketch a possible formalism for studying periods varying in a family,
and explain how this generalises several concepts which have been used in
the physics literature in the case of iterated integrals and polylogarithms.

7.1. Vector bundles and local systems

See [21], §10.24-10.52. Let S be a smooth geometrically connected scheme
over a field k ⊂ C. An algebraic vector bundle V on S is a sheaf of locally
free OS-modules of finite type. Denote the corresponding analytic vector
bundle on San by V an = OSan ⊗OS

V . Consider the category

A(S) = Algebraic vector bundles on S equipped with an

integrable connection with regular singularities at infinity.

Let ω denote the functor which to any object of A(S) associates the un-
derlying vector bundle and forgets the connection. The category A(S) is a
Tannakian category over k, and ω is a fiber functor over S.

Definition 7.1. The de Rham algebraic fundamental groupoid is the
groupoid (in the category of schemes over k, acting on S) defined by

πalg,dR
1 (S) = Aut⊗A(S)(ω).

Consider also the category

L(S) = Local systems of finite-dimensional k-vector spaces on S(C).

For any complex point t ∈ S(C), the ‘fiber at t’ defines a functor ωt : L(S)→
Veck, and L(S), equipped with ωt, is a neutral Tannakian category over k.

Definition 7.2. The Betti algebraic fundamental group is the affine group
scheme over k defined by the Tannaka group of L(S)

πalg,B
1 (S, t) = Aut⊗L(S)(ωt).

Given two complex points t, t′ ∈ S(C), the fibers of the Betti algebraic
groupoid over (t, t′) are πalg,B

1 (S, t, t′) = Isom⊗
L(S)(ωt, ωt′).
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Denote the ordinary topological fundamental group of S(C) at a point
t ∈ S(C) by πtop

1 (S(C), t), and recall that there is an equivalence of categories

L(S) ∼−→ Finite-dimensional representations over k of πtop
1 (S(C), t),

which to a local system associates its fiber at t together with its action of the
topological fundamental group. Thus every element of πtop

1 (S(C), t) defines
an automorphism of the fiber functor ωt, giving a natural homomorphism

(7.1) πtop
1 (S(C), t) −→ πalg,B

1 (S, t)(k)

which is Zariski-dense. Similarly there is a natural morphism of groupoids

πtop
1 (S(C), t, t′) −→ πalg,B

1 (S, t, t′)(k)

where πtop
1 (S(C), t, t′) are homotopy classes of paths from t to t′ in S(C).

Recall that the Riemann-Hilbert correspondence [25], [21] 10.32(a), is
an equivalence of categories A(S × C)→ L(S × C) over C ([21] 10.35). To
a complex vector bundle with integrable connection (V,∇) it assigns the
locally constant sheaf of flat sections (V an)∇ of the corresponding analytic
bundle. Thus there is an isomorphism of affine groupoid schemes over C

πalg,B
1 (S × C, a, b)

∼−→ πalg,dR
1 (S × C, a, b),

where πalg,dR
1 (S, a, b) denotes the fiber of πalg,dR

1 (S × C) over (a, b) ∈
(S × S)(C), or equivalently the affine group scheme over C given by
Isom⊗

A(S×C)(ωa, ωb) where ωa, ωb denote the functors ‘fiber at a, b’ respec-
tively.

Remark 7.3. The basepoint s can be replaced by any simply-connected
subset X ⊂ S(C). For any point x ∈ X, the fiber at x defines a fiber functor
ωx : L(S)→ Veck. A path γ from x to x′ defines an isomorphism of fiber
functors ωx

∼→ ωx′ . Since X is simply connected, such a path is unique up
to homotopy, and the isomorphism ωx = ωx′ is canonical. Thus ωx depends
only on x up to unique isomorphism. We shall abusively denote the resulting
fiber functor, for any choice of x ∈ X, by ωX . Likewise, one can define the
fundamental group of S(C) based at X, which we denote by πtop

1 (S(C), X).
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7.2. A category of realizations

Let k = Q and S be as in the previous paragraph. Based on [21] §1.21,
consider the category H(S) consisting of triples

(VB,VdR, c)

given by the following data:

1) A local system VB of finite-dimensional Q-vector spaces over S(C),
equipped with a finite increasing filtration W•VB of local sub-systems.

2) An algebraic vector bundle VdR on S in A(S) equipped with an in-
tegrable connection ∇ : VdR → VdR ⊗OS

Ω1
S with regular singularities

at infinity, a finite increasing filtration W•VdR of VdR by sub-objects
in A(S), and a finite decreasing filtration F • of algebraic sub-bundles
satisfying Griffiths transversality ∇ : F pVdR ⊂ F p−1VdR ⊗OS

Ω1
S .

3) An isomorphism of analytic vector bundles with connexion

c : Van
dR

∼−→ VB ⊗Q OSan ,

which respects the filtrations W , and where the connexion on VB ⊗Q

OSan is the one for which sections of VB are flat. This is equivalent to
an isomorphism (Van

dR)
∇ ∼= VB ⊗Q C of local systems of complex vector

spaces on S(C) which respects the weight filtrations on both sides.

4) The data VB, c is functorial in the choice of algebraic closure C of R.
In particular, there is an isomorphism of local systems

F∞ : VB ∼−→ σ∗VB

where σ : S(C)
∼→ S(C) is induced by complex conjugation.

This data is subject to the following conditions:

• At each point t ∈ S(C), the vector space (VB)t equipped with the fil-
tration W and cF on (VB)t ⊗Q C is a graded-polarisable mixed Hodge
structure.

• We shall not consider taking limits in these notes, but if one wishes
to, one should add further constraints [46] to demand that VB defines
an admissible variation of mixed Hodge structures, has locally quasi-
unipotent monodromy, admits relative weight filtrations, and so on.
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• Let OS
an denote the sheaf of antiholomorphic functions on San. Pulling

back the comparison (3) to S(C) via σ∗ induces an OS
an-linear isomor-

phism c : VdR ⊗OS
OS

an
∼→ σ∗(VB)⊗Q OS

an . The following diagram
commutes:

c : VdR ⊗OS
OSan

∼−→ VB ⊗Q OSan

↓ ↓
c : VdR ⊗OS

OS
an

∼−→ σ∗(VB)⊗Q OS
an

where the vertical map on the left (resp. right) is the identity on
VdR (resp. F∞ : VB → σ∗(VB)) tensored with the map f 	→ f : OSan →
OS

an .

The morphisms in H(S) respect the above data.
The category H(S) is Tannakian and has exact, faithful, tensor functors:

ωdR : H(S) −→ A(S) , ωB : H(S) −→ L(S)
(VB,VdR, c) 	→ VdR (VB,VdR, c) 	→ VB.

One can think of c as an isomorphism of functors (not strictly speaking
fiber functors) from ωRH ◦ ωdR to ωB ⊗ C, where ωRH : A(S)→ L(S)⊗ C

is V 	→ (Van)∇.

7.2.1. Fiber functors. In order to motivate the following definitions,
note that:

• families of periods (such as the dilogarithm Li2(x)) are multivalued
functions, i.e., functions on a universal covering space of S(C). In
applications, we are often given a region X ⊂ S(C) where the func-
tion has a prescribed branch, or, for example, a local Taylor expan-
sion (the dilogarithm has an expansion

∑
n≥1

xn

n2 which converges on
X = {x ∈ C : |x| < 1}). This is the region where the chain of integra-
tion is unambiguous.

• in some applications, including Feynman integrals, we cannot control
the poles of the integrand. However we may be given a region Y ⊂ S(C)
which is guaranteed to be free of poles. In this region, the integrals are
finite and can be evaluated (bearing in mind that the integrals may
also be multi-valued). We shall allow the region Y to be empty.

Having made these preliminary comments, we now define Betti and de
Rham fiber functors relative to some extra data X,Y , as follows. First of all,
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for any simply-connected X ⊂ S(C) we have, by Remark 7.3, a fiber functor

ωX
B = ωXωB : H(S) −→ VecQ

which neutralizes H(S) over Q. On the other hand, the functor

ωdR : H(S) −→ S

which to a triple (VB,VdR, c) associates the vector bundle underlying VdR
and forgets the connection, is a fiber functor according to the definition §2.
For any morphism u : T → S of schemes over Q, the composite of ω followed
by u∗ defines a fiber functor over T . Now consider a region Y ⊂ S(C), and
furthermore assume that Y is contained in some U(C) where U ⊂ S is affine.
Then we can consider the ring OS,Y = lim−→U

OU where the limit is over all
open affine U ⊂ S such that Y ⊂ U(C). It is non-zero by assumption. Define
a fiber functor by pulling back along the morphism uY : Spec (OS,Y )→ S,
which we denote by

ωY
dR = u∗Y ωdR : H(S) −→ Proj(OS,Y )

and takes values in the category of projective modules of finite type over
OS,Y . The fiber functor ωY

dR is simply Γ(OS,Y , •). We shall mainly consider:

1) Y = ∅. Then uY is the generic point of S, and OS,Y = KS , where KS

is the field of fractions of S. Our fiber functor is

ωgen
dR : H(S) −→ VecKS

.

2) Let Y = {s} where s ∈ S(Q) ⊂ S(C) is a rational point of S. Then
OY,S = Os is the local ring of S at s. The fiber functor

ωs
dR : H(S) −→ Proj(Os),

takes values in projective (hence free) modules over Os of finite type.

3) S = SpecB is affine, and Y = S(C). Then OS,Y = OS = B, and the
fiber functor ωS

dR : H(S)→ Proj(B) is the global sections functor
Γ(S, ω(VdR)).
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Denote the corresponding Tannaka groups by GB
H(S),X = Aut⊗H(S)(ω

X
B ),

and GdR
H(S),Y = Aut⊗H(S)(ω

Y
dR). The functor ωdR gives a morphism

(7.2) πalg,dR
1 (S, ωY

dR) −→ GdR
H(S),Y

of affine group schemes over OS,Y , where πalg,dR
1 (S, ωY

dR) = Aut⊗A(S)(ω
Y
dR).

Similarly, the functor ωX
B defines a morphism πalg,B

1 (S,X)→ GB
H(S),X of

affine group schemes over Q, and in particular amonodromy homomorphism:

πtop
1 (S(C), X) −→ GB

H(S),X(Q).

7.3. Ring of H(S)-periods.

Let X,Y ⊂ S(C) be as above, and let ωX
B , ωY

dR be the corresponding fiber
functors on H(S). Define a ring

Pm,X,Y
H(S) = O(Isom⊗

H(S)(ω
Y
dR, ω

X
B ))

of matrix coefficients (denoted PωX
B ,ωY

dR

H(S) as in §2.2), where B1 = Q, B2 =
OS,Y , and k = Q. It is a Q⊗Q OS,Y -bimodule, and generated by matrix
coefficients

(7.3) [(VB,VdR, c), σ, ω]m

where σ ∈ ωX
B V∨

B, ω ∈ ωY
dRVdR. Similarly, define a ring of ‘de Rham periods’

to be Pdr,Y
H(S) = Aut⊗H(S)(ω

Y
dR). It is an OS,Y ⊗Q OS,Y -bimodule. It is gen-

erated by matrix coefficients [(VB,VdR, c), v, ω]m where ω is as above and
v ∈ ωY

dRV∨
dR.

These rings are functorial in the following way. Let S′ be a smooth geo-
metrically connected scheme overQ, and f : S → S′ a smooth morphism. Let
X ⊂ S′(C) be simply-connected such that f(X) ⊆ X ′, and let Y ′ ⊂ S′(C)
such that f(Y ) ⊆ Y ′. The pull-back defines a functor f∗ : H(S′)→ H(S)
and hence a morphism

(7.4) f∗ : Pm,X′,Y ′

H(S′) → Pm,X,Y
H(S)

and a similar map on replacing m by dr and making the obvious changes.
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7.3.1. Constants. Now apply this to S′ = Spec Q, X ′ = Y ′ = S′(C) (ex-
ample (3) of the previous section) and f : S → Spec (Q) the structural map.
One checks that the category H(S′) is equivalent to H, and that the Betti
and de Rham fiber functors on H and H(S′) coincide. Therefore

Pm,pt,pt
H(Spec (Q)) = P

m
H ,

and we obtain canonical homomorphisms (‘constant’ maps)

(7.5) Pm
H −→ Pm,X,Y

H(S) and Pdr
H −→ Pdr,Y

H(S)

In this way, H-periods can be viewed as ‘constant’ H(S)-periods, since the
functor f∗ : H → H(S) associates to (VB, VdR, c) a triple (VB,VdR, c) where
VdR = VdR ⊗Q OS with ∇ = id⊗ d, and VB is the constant local system with
fibres VB.

7.3.2. Evaluation. Now suppose that there is a rational point

(7.6) t ∈ S(Q) such that t ∈ X ∩ Y.

There are evaluation maps at the point t

(7.7) evt : Pm,X,Y
H(S) −→ Pm

H and evt : Pdr,Y
H(S) −→ Pdr

H ,

which are induced by the functor ‘fiber at t’ from H(S)→ H via t : OS,Y →
Q. The constant maps (7.5) are sections of the evaluation maps (7.7). Note
that one may wish to weaken the condition (7.6) if one bears in mind that
for t /∈ X the evaluation map is not well-defined (it is ambiguous up to the
action of monodromy), and for t /∈ Y the evaluation may be infinite due to
the presence of poles.

7.4. Some properties of H(S)-periods

The ring Pm,X,Y
H(S) has a left Galois action by the group GdR,Y

H(S) , or equivalently,
a right coaction

(7.8) Δm : Pm,X,Y
H(S) −→ Pm,X,Y

H(S) ⊗OS,Y
Pdr,Y
H(S),

given by the same formula as (2.2). Since the fiber functor ωY
dR factors

through ωdR, the action of GdR,Y
H(S) restricts to an action of the algebraic de
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Rham fundamental group πdR,alg
1 (S, ωY

dR) via the map (7.2). More generally,
there is an action of the de Rham algebraic fundamental groupoid:

πdR,alg
1 (S, ωY1

dR, ω
Y2

dR)× P
m,X,Y1

H(S) −→ Pm,X,Y2

H(S)

for any Y1, Y2⊂S(C) as above, where the left-hand side is Isom⊗
A(S)(ω

Y1

dR, ω
Y2

dR).

The ring Pm,X,Y
H(S) has an increasing weight filtration W• which is inher-

ited from the weight filtration on the category H(S) (specifically, Wn is
generated by matrix coefficients (7.3) such that the de Rham class satisfies
ω ∈ ωY

dRWnVdR), and is preserved by GdR,Y
H(S) . The morphisms (7.5) and (7.7)

preserve the weight filtrations. The same comments apply to the rings of de
Rham periods Pdr,Y

H(S). This notion, applied in the setting [13] gives a rigorous
meaning to intuitive notions of ‘transcendental weight’ of functions in the
physics literature.

The ring Pm,X,Y
H(S) also has a right action by πalg,B

1 (S,X), and in particular,
a right action by the topological fundamental group or monodromy action:

(7.9) Pm,X,Y
H(S) × πtop

1 (S(C), X) −→ Pm,X,Y
H(S) .

It commutes with the action of GdR,Y
H(S) and also respects W . The monodromy

action can be read off matrix coefficients (7.3) by its action on the Betti class
σ, since the Q-vector space (VB)X naturally carries a right πtop

1 (S(C), X)-
action. More generally, for any X1, X2 ⊂ S(C) simply connected we have an
action of the topological fundamental groupoid or continuation along paths

(7.10) Pm,X1,Y
H(S) × πtop

1 (S(C), X1, X2) −→ Pm,X2,Y
H(S) .

These actions commute with the action of GdR,Y
H(S) and respect the weight

filtration, since the latter are defined entirely in terms of the de Rham class.

The following structures on Pm,X,Y
H(S) are not preserved by the action of

GdR,Y
H(S) . By the Tannaka theorem 2.3, Pm,X,Y

H(S) is the ωY
dR-image of an ind-

object in H(S). Denote its image under ωdR by P̃m,X,Y
H(S) . It is an (infinite-

dimensional) algebraic vector bundle on S, or ind-object of A(S), whose
image under u∗Y , the restriction to Spec (OS,Y ), is Pm,X,Y

H(S) . Furthermore, it is
equipped with an increasing weight filtration W , decreasing Hodge filtration
F , and an integrable connection

∇ : P̃m,X,Y
H(S) −→ P̃m,X,Y

H(S) ⊗OS
Ω1
S
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which satisfies Griffiths transversality. Restricting to Spec (OS,Y ), we deduce

the existence of a Hodge filtration F •Pm,X,Y
H(S) and connection

(7.11) ∇ : Pm,X,Y
H(S) −→ Pm,X,Y

H(S) ⊗OS,Y
Ω1
OS,Y

,

where Ω1
OS,Y

is the ring of Kähler differentials on OS,Y . The connection
(7.11) is integrable, respects W , and satisfies Griffiths transversality with
respect to F . On matrix coefficients the connection (7.11) is given by

∇[(VB,VdR, c), σ, ω]m = [(VB,VdR, c), σ,∇ω]m,

where ∇ : u∗Y (VdR)→ u∗Y (VdR)⊗OS,Y
Ω1
S,Y is the connection on VdR

restricted to uY : Spec (OS,Y )→ S. The space FnPm
H(S),X,Y is generated by

matrix coefficients [(VB,VdR, c), σ, ω]m where ω ∈ ωY
dRF

nVdR. There is an
analogous connection on the ring of left de Rham periods PdR

H(S), where the

connection acts on [(VB,VdR, c), v, ω]dr through its action on ω. From for-
mula (2.2), namely

Δ[V, σ, ω]m =
∑
i

[V, σ, ei]
m ⊗ [V, e∨i , ω]

dr

one can check that the following diagram commutes

Pm,X,Y
H(S)

Δ−→ Pm,X,Y
H(S) ⊗OS,Y

Pdr,Y
H(S)

↓ ↓
Pm,X,Y
H(S) ⊗OS,Y

Ω1
OS,Y

Δ⊗id−→ Pm,X,Y
H(S) ⊗OS,Y

Pdr,Y
H(S) ⊗OS,Y

Ω1
S,Y

where the vertical map on the left is ∇, and on the right is id⊗∇. Hence

(7.12) (Δ⊗ id)∇ = (id⊗∇)Δ,

which relates the Galois coaction to the connection. Since the connection
(7.11) only invokes the de Rham framing, it commutes with the monodromy
action (7.9).

Remark 7.4. The previous remarks give a proof of two formulae (5.23)
conjectured in [28] in the case of the multiple polylogarithms (iterated inte-
grals on the moduli space of curves of genus 0 with n marked points), and a
generalisation to all families of motivic periods (and in particular, motivic
Feynman amplitudes).
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Finally, let us suppose that X,Y are preserved by a subgroup A of the
group of automorphisms of S. Then the functoriality (7.4) gives rise to an
action

(7.13) A× Pm,X,Y
H(S) −→ Pm,X,Y

H(S)

of A onH(S)-periods, and similarly on Pdr
H(S),Y under the weaker assumption

that only Y is stable under A.

7.5. The period homomorphism

Let X,Y ⊂ S(C) with X simply-connected. The period is defined by pair-
ing the Betti and de Rham classes of a matrix coefficient (7.3) using the
comparison c. In order to obtain a multi-valued function on the whole of
S(C), and not just on X, these classes must be suitably extended as fol-
lows. Let π : S̃(C)X → S(C) denote the universal covering space of S(C)
based at X, and let MX,Y (S(C)) denote the ring of meromorphic functions

on S̃(C)X which have no poles on π−1(Y ). By this we mean that for every
f ∈MX,Y (S(C)), and any x ∈ S̃(C)X , there exists a g, an element in the
fraction field of S, such that f × π−1(g) is analytic in some open neighbour-
hood of x. If x ∈ π−1(Y ) then we can take g = 1, and f is already analytic
in some neighbourhood of x. Elements of MX,Y (S(C)) can be thought of as
multivalued meromorphic functions on S(C) with a prescribed branch on
the set X, and poles outside Y .

Suppose that Y is contained in the complex points of some open affine
subset of S, as earlier. The period map is then a homomorphism

per : Pm,X,Y
H(S) −→MX,Y (S(C)),

and is defined on matrix coefficients [(VB,VdR, c), σ, v]m as follows. The local
system π∗(V∨

B) is trivial on the simply connected space S̃(C)X and σ extends

to a unique global section σ ∈ Γ(S̃(C)X , π∗(V∨
B)). Let x ∈ S̃(C)X , and let Nx

be a sufficiently small neighbourhood of x such that the restriction of π to
Nx is an isomorphism. We obtain a local section σx ∈ Γ(π(Nx),V∨

B), defined
by σx = (π|−1

Nx
)∗σ.

On the other hand, by assumption on Y , there exists an open affine
U ⊂ S with Y ⊂ U(C) such that v ∈ Γ(U,VdR). Let W ⊂ S be an open
affine such that π(x) ∈W (C) and the restriction of VdR to W is trivial
as a vector bundle. Since S is irreducible, U ∩W �= ∅ and we have v|U∩W ∈
Γ(U ∩W,VdR) = Γ(W,VdR)⊗OW

OU∩W . It can have poles on W\U . We can
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‘clear its denominator’, since VdR is of finite type: there exists an α ∈ OW

such that αv ∈ Γ(W,VdR). By making Nx smaller, we can assume that W (C)
contains π(Nx), and we can view αv, by restriction and passing to the as-
sociated analytic vector bundle, as an element in Γ(π(Nx),Van

dR). We have
defined

σx ∈ Γ(π(Nx),V∨
B) and αv ∈ Γ(π(Nx),Van

dR).

The comparison map c : Van
dR → VB ⊗Q Oan

S yields an element

σx(c(αv)) ∈ Γ(π(Nx),Oan
S )

which can be viewed as a locally analytic function on Nx. The period ho-
momorphism is defined on the following matrix coefficient by

per([(VB,VdR, c), σ, αv]m) = σx(c(αv)),

and the period of [(VB,VdR, c), σ, v]m is obtained by dividing by the rational
function α. It is well-defined (does not depend on the representative for
the matrix coefficient) because morphisms in H(S) respect the comparison
c. Note that it locally has poles along the zeros of α. In the case when
π(x) ∈ Y ⊂ U(C), we may assume W = U in the above and hence α = 1,
and the period has no poles. The period homomorphism therefore takes
values in MX,Y (S(C)) as claimed.

The period map satisfies the following properties, which follow from
the definitions. First of all, the period is functorial with respect to smooth
morphisms, and in particular is compatible with the constant map (7.5).
This means that the following diagram commutes:

Pm
H

(7.5)−→ Pm,X,Y
H(S)

↓per ↓per
C ⊂ MX,Y (S(C))

where the inclusion on the bottom line is the inclusion of constant functions.
The period is also compatible with monodromy; there is a commutative
diagram

Pm,X,Y
H(S) × πtop

1 (S(C), X) −→ Pm,X,Y
H(S)

↓per×id ↓per
MX,Y (S(C))× πtop

1 (S(C), X) −→ MX,Y (S(C))

where the action of the topological fundamental group on MX,Y (S(C)) is

induced by the action of the group of deck transformations on S̃(C)X . If
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one thinks of elements of MX,Y (S(C)) as multivalued functions on an open
subset of S(C), this is just analytic continuation along loops. More generally,
given two simply-connected subsets X1, X2 of S(C), we have a compatibility
of groupoid actions

Pm,X1,Y
H(S) × πtop

1 (S(C), X1, X2) −→ Pm,X2,Y
H(S)

↓per×id ↓per
MX1,Y (S(C))× πtop

1 (S(C), X1, X2) −→ MX2,Y (S(C))

where the map along the bottom is defined by analytic continuation.
Now let x ∈ DerQ(OS,Y ) be a Q-linear derivation of OS,Y . It defines

a map Ω1
S,Y → OS,Y . Let ∂x = (id⊗ x)∇, where ∇ is (7.11). We have a

commutative diagram

Pm,X,Y
H(S)

∂x−→ Pm,X,Y
H(S)

↓per ↓per
MX,Y (S(C)) −→ MX,Y (S(C))

where the map along the bottom is differentiation of locally analytic func-
tions along the vector field defined by x on some open subset of S(C) con-
taining Y . Thus the connexion on the ring of periods corresponds to differ-
entiation of functions.

The period map is functorial. Suppose we are in the situation described
in the lines preceeding (7.4). Then there is a commutative diagram

Pm,X′,Y ′

H(S′)
f∗−→ Pm,X,Y

H(S)

↓per ↓per
MX′,Y ′(S′(C))

f∗−→ MX,Y (S(C))

where the map along the bottom is composition φ 	→ φ ◦ f .
Suppose that t ∈ S(Q) is a rational point and the image of t in S(C)

lies in X ∩ Y . Then the period map is well-defined at t, and we have a
commutative diagram

Pm,X,Y
H(S)

evt−→ Pm
H

↓pert ↓per
C = C

where pert is evaluation of elements of MX,Y (S(C)) at t. Thus (7.7) corre-
sponds to taking the value of a function at a point. In this manner many
classical notions for multivalued functions have analogues on the ring of



624 Francis Brown

motivic periods. Nonetheless, the ring of motivic periods has extra features
such as the weight and Galois group which are invisible on functions.

7.6. Complex conjugation

Consider the category H(S) consisting of triples (VB,VdR, c) defined in an
identical manner as above, except that

c : VdR ⊗OS
OS

an
∼−→ VB ⊗Q OS

an

is antiholomorphic (and respects W , etc). The real Frobenius defines an
equivalence F∞ : H(S)→ H(S) which maps (VB,VdR, c) to (σ∗VB,VdR, c).
We can form a ring of periods Pm,X,Y

H(S)
as before, and we have an isomorphism

F∞ : Pm,X,Y
H(S)

∼−→ Pm,X,Y

H(S)
.

Composing with the map σ∗ : Pm,X,Y

H(S)
→ Pm,X,Y

H(S)
, which sends (VB,VdR, c)

to (σ∗VB,VdR, cσ∗), gives an isomorphism σ∗F∞ : Pm,X,Y
H(S)

∼→ Pm,X,Y

H(S)
. The

period map on Pm,X,Y

H(S)
takes values in the ring MX,Y (S(C)) of antiholomor-

phic functions on S(C) with prescribed branch on X. The following diagram
commutes

F∞σ∗ : Pm,X,Y
H(S)

∼−→ Pm,X,Y

H(S)

↓per ↓per
MX,Y (S(C))

∼−→ MX,Y (S(C))

where the map along the bottom is complex conjugation f 	→ f .

8. Further remarks

There are many constructions that can be made involving families of periods.
I shall only mention the minimum required for applications to [13], as well
as single-valued functions and symbols which have independent applications
to physics.

8.1. Some jargon

Most of the definitions of earlier paragraphs generalise in an evident way to
the case of families of periods. I will not repeat all of them here except to
mention that an element ξ ∈ Pm

H(S),X,Y generates a representation of GdR
H(S),Y
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which, by the Tannaka theorem, defines a (minimal) object M(ξ) of H(S)
(see §2.4). The Hodge numbers and Hodge polynomial of ξ are defined as
the Hodge numbers and polynomial of the fiber of M(ξ) at any point t ∈ X.
Define the local system associated to ξ to be M(ξ)B. It is equivalent to
the monodromy representation of ξ which is the vector space ωX

B (M(ξ)) ∈
VecQ together with its left πtop

1 (S(C), X)-action. Likewise, define the vector
bundle with connexion associated to M(ξ) to be M(ξ)dR, equipped with its
integrable connexion ∇. The vector bundle and local system associated to
ξ are equivalent under the Riemann-Hilbert correspondence after tensoring
with C.

8.2. Variant: families of periods with single-valued branch

For applications such as [13], we are often faced with the situation where
we have a family of periods on some open subvariety S of a given variety
Z, without knowing what S is. This is in fact the typical situation; S will
be the complement of a discriminant locus which is complicated and not
computable in practice. We often have some further information, namely
that the periods are well-defined on some connected open subset U ∩ S(C) ⊂
S(C) for the analytic topology. This motivates the following definition.

Let Z be a smooth, geometrically connected algebraic variety overQ, and
let U ⊂ Z(C) be a connected open analytic subset. For any geometrically

connected S ⊂ Z, consider the ring of periods Pm,s,∅
H(S) for any s ∈ S(C) ∩ U .

For any two points s1, s2 ∈ U ∩ S(C), analytic continuation along paths gives

Pm,s1,∅
H(S) × πtop

1 (U ∩ S(C), s1, s2)
∼−→ Pm,s2,∅

H(S)

and in particular, since U ∩ S(C) is connected, a canonical isomorphism(
Pm,s1,∅
H(S)

)π1(U∩S(C),s1) =
(
Pm,s2,∅
H(S)

)π1(U∩S(C),s2).

Thus, by moving the base-point s if necessary, we can define

Pm,U
H(Z) = lim−→

S

(
Pm,s,∅
H(S)

)π1(U∩S(C),s)

where the limit is over all such S ⊂ Z, since any two such opens S1, S2 ⊂ Z
have a non-empty intersection U ∩ S1 ∩ S2(C). The periods of elements of
Pm,U
H(Z) restrict to single-valued meromorphic functions on U . The ring Pm,U

H(Z)
has similar properties to the rings of periods discussed earlier, except for the
monodromy action.
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8.3. Single-valued versions

We can define single-valued versions of families of motivic periods in a sim-
ilar way to §4.1, except that there are some slight differences. Let M =
(VB,VdR, c) be an object of H(S). As in §4.1, there is a universal compari-
son homomorphism

cmM : ωY (VdR) −→ ωX(VB)⊗Q Pm,X,Y
H(S) .

Applying F∞σ∗ to the right-hand factor gives a homomorphism

cM
m := F∞σ∗cmM : ωY (VdR) −→ ωX(VB)⊗Q Pm,X,Y

H(S)
.

Define a ring

P = Pm,X,Y

H(S)
⊗Q Pm,X,Y

H(S) .

Embed Pm,X,Y
H(S) into P via x 	→ 1⊗ x, and Pm,X,Y

H(S)
via x 	→ x⊗ 1. Thus

cmM , cM
m ∈ Hom(ωY (VdR), ωX(VB))⊗Q P

Finally, since det cmM is invertible in P, define

smM = (cM
m)−1cmM ∈ End(ωY (VdR))⊗Q P.

We leave it to the reader to replace the above argument with universal
arguments on torsors, exactly as in §4.1, to define a canonical element

sm ∈ GdR
H(S),Y (P)

or equivalently, a homomorphism

(8.1) sm : Pdr,Y
H(S) −→ Pm,X,Y

H(S)
⊗Q Pm,X,Y

H(S) ,

where the left (resp. right) action of GdR
H(S),Y on Pdr,Y

H(S) corresponds to the

left action of GdR
H(S),Y on Pm,X,Y

H(S) (resp. Pm,X,Y

H(S)
). It follows from the def-

inition that the single-valued homomorphism (8.1) is compatible with the
connexion:

(8.2) (sm ⊗ id)∇(ξ) = (id⊗∇)sm(ξ).

This means that, after taking the period homomorphism, the single-valued
map respects the holomorphic (and only the holomorphic) differential.
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Remark 8.1. When S = Spec (Q) is a point, Pm,X,Y

H(S)
∼= Pm,X,Y

H(S)
∼= Pm

H and

the earlier definition (4.3) is obtained as the composition

Pdr
H

sm−→ Pm
H ⊗Q Pm

H −→ Pm
H

where the second map is multiplication.

Examples 8.2. Consider the dilogarithm motivic period on S =
P1\{0, 1,∞}, defined in (10.10) below. Here X ⊂ S(C) is the open inter-
val (0, 1). Its universal period matrix over a point x ∈ X ⊂ S(C) is

cmM =

⎛⎝ 1 Lim1 (x) Lim2 (x)
0 Lm Lm logm(x)
0 0 (Lm)2

⎞⎠ .

Let γ0 (resp. γ1) denote a small path around 0 (resp. 1) based at X. Under
the monodromy homomorphism they act by left multiplication by

ρ(γ0) =

⎛⎝ 1 1 0
0 1 0
0 0 1

⎞⎠ and ρ(γ1) =

⎛⎝ 1 0 0
0 1 1
0 0 1

⎞⎠ .

Denoting the image of Limk (x) under F∞σ∗ by Li
m
k (x) and similarly for

logm(x), the matrix cM
m is given by

cM
m =

⎛⎝ 1 Lim1 (x) Lim2 (x)

0 −Lm −Lmlogm(x)
0 0 (Lm)2

⎞⎠ .

By computing (cM
m)−1cmM we find that sm(Ldr) = (−1) (yet again),

sm(logdr(x)) = logm(x) + logm(x),

and similarly for Lidr1 (x) = − logdr(1− x). The top-right corner gives

sm(Lidr2 (x)) = Lim2 (x)− Lim2 (x) + (logm(x) + logm(x))Lim1 (x) ∈ P

whose period is 2i times the Bloch-Wigner dilogarithm. Equivalent calcula-
tions for the associated period matrices were first carried out in [8] for the
classical polylogarithms. For multiple polylogarithms, the computations are
made much simpler using the language of non-commutative formal power
series [12].
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9. Symbols

We briefly indicate how a certain class of motivic periods give rise to in-
variants involving differential forms. There are several possible variations on
this theme which all specialise (in the mixed Tate case) to the notion of
‘symbol of differential forms’ as currently used in the physics literature.

9.1. Some pitfalls

The symbol is commonly understood by physicists to be a tensor product
of differential forms obtained by differentiating a family of period integrals
with respect to a parameter. Consider the following examples:

1) The classical polylogarithm Lik(x) =
∑

n≥1
xn

nk , where k ≥ 1, satisfies
the following differential equation for all k ≥ 2:

dLik(x) = Lik−1(x)
dx

x
.

Furthermore dLi1(x) =
dx
1−x . The recipe in the physics literature for

constructing the symbol is recursive by repeated differentiation. For
example,

symbol(Li1(x)) =
dx

1− x
and

symbol(Lik(x)) = symbol(Lik−1(x))⊗
dx

x
,

e.g.,

symbol(Li2(x)) =
dx

1− x
⊗ dx

x
.

Occasionally, the arguments d log f in the right-hand side are rep-
resented by their arguments f , and the symbol of Li2(x) is written
(1− x)⊗ x. This notion is already very useful for encoding functional
relations between polylogarithms and is ubiquitous in the literature.
Note that the symbol captures the information that Li2(x) is an iter-
ated integral of two one-forms on the punctured projective line, but
some information is lost: one requires a path of integration to recon-
struct the function Li2(x) from its symbol. The symbol is sometimes
used to infer notions such as ‘transcendental weight’ and monodromy
data about functions.
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2) Simply differentiating functions is too naive, as one sees by considering
examples such as f(x)Li2(x) + g(x)Li1(x) log(x), where f, g are ratio-
nal functions. Repeated differentiation leads to an infinite sequence
of more complicated functions. To make sense of the definition (1),
one must find differential operators whose application successively de-
creases some quantity called the ‘length’ (in the examples in (1), this
happens to coincide with the ‘transcendental weight’, although this
will not necessarily be true in more general settings). This will de-
pend on choices, and shows that the symbol should in fact be defined
as a tensor product modulo certain equivalence relations. These are
described in §9.3.1. This recursive structure will be encoded by the
notion of a unipotent connection.

3) The symbol of a constant family of periods is necessarily zero since it
is defined in terms of differentiation. However, the notion of symbol in
the physics literature has somehow morphed into a version in which
the arguments are formally allowed to be constants. This is the basis
for the definition of ‘motivic amplitudes’ in [20]. One finds equations
such as

symbol(Li2(3)) = −2⊗ 3,

which are obtained by specialising the earlier example to x = 3, and
possibly based on Goncharov’s notion of symbol (Remark 10.2). This
notion does not go very far to capture constants, since most are zero
under this map: for example, the corresponding notion of symbol for
the quantity ζ(3)Li1(x) is zero.

4) A further problem with the formalism mentioned in (3), which is only
defined in terms of de Rham classes and with no mention of Betti
classes, is that the de Rham analogue of ζ(2), or 2πi, is irretrievably
zero, and so attempting to take the period leads to contradictions.
This problem is fixed by replacing ‘coproduct’ with ‘coaction’, which
is part of the structure of our definition of families of H-periods.

5) There have been attempts to incorporate constants into a common
‘symbolic’ framework such as [28], which contains both the coaction
for motivic multiple zeta values, and the symbols of polylogarithms.
The main properties of this framework were mostly conjectural and
shown to be equivalent to complicated combinatorial identities. We
shall show how these problems can be easily overcome in our setting
using the notion of ‘symbol based at a point t’, which has all the
properties conjectured in [28].
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Our notion of families of motivic periods fixes these problems and sub-
sumes all of the above notions. It also generalises these concepts to situa-
tions which are non-polylogarithmic. More precisely, the notions of symbol
presently found in the physics literature are derived from the coaction on
families of motivic periods and discarding more or less information. One
must bear in mind, however, that one side of the motivic coproduct involves
de Rham periods, not H-periods, and the former do not have canonical
periods. They do, however, possess single-valued periods.

9.2. Abstract definition of the symbol

The symbol will be defined for a certain class of motivic periods. Recall that
an algebraic vector bundle with connection (VdR,∇) on S is unipotent of
length n if there exists a filtration

(9.1) 0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vn = V

by algebraic sub-bundles, with ∇ : Vk → Vk ⊗OS
Ω1
S , such that each graded

quotient Vk/Vk−1 is isomorphic to a direct sum of trivial vector bundles
(OS , d). Such a vector bundle automatically has regular singularities at in-
finity. The category of unipotent algebraic vector bundles with connection
forms a full Tannakian subcategory Aun(S) of A(S).

A local system V on S is unipotent if it admits a finite increasing filtra-
tion

(9.2) 0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vn = V

of local sub-systems, such that each graded quotient Vk/Vk−1 is trivial, i.e.,
constant. Equivalently, for any basepoint s ∈ S(C), the representation ωs(V )
of π1(S(C), s) associated to V is unipotent, i.e., admits a finite increasing fil-
tration such that the associated graded quotients are trivial representations.
The category of unipotent local systems forms a full Tannakian subcategory
Lun(S) of L(S). Since the category of unipotent vector bundles with connec-
tion (resp. local systems) behaves well with respect to extensions of scalars,
the Riemann-Hilbert correspondence induces an equivalence

Aun(S)⊗ C ∼ Lun(S)⊗ C.

Definition 9.1. A family of motivic periods ξ ∈ Pm,X,Y
H(S) is differentially

unipotent, or has unipotent monodromy, if the associated vector bundle
with connection (§8.1) M(ξ)dR is unipotent. Equivalently, ξ is differentially
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unipotent if the associated local system on M(ξ)B is unipotent. This means
that ξ can be represented as a matrix coefficient (7.3) where one of VB,VdR
(and hence both) are unipotent.

We define a family of de Rham motivic periods ξ ∈ Pdr,Y
H(S) to be differ-

entially unipotent in an identical manner. It follows immediately from the
definition that the motivic coaction (7.8) preserves the quality of unipotency.

Note that the filtration involved in the definition of differential unipo-
tency will not in general be the weight filtration.

The above categories give rise to Tannaka group schemes over Q:

πun
1 (S(C), s) = Aut⊗Lun(S)(ωs) for s ∈ S(C),

πdR
1 (S, s) = Aut⊗Aun(S)(ωs) for s ∈ S(Q).

The first group is the unipotent or Malčev completion of the topological
fundamental group, the second is the de Rham fundamental group. They
are naturally quotients of the Betti algebraic and de Rham algebraic funda-
mental groups.

A family of motivic or de Rham periods is differentially unipotent if
and only if the natural actions by the Betti algebraic fundamental group,
de Rham algebraic fundamental group, or topological fundamental group
factor through their unipotent quotients. It follows that for a differentially
unipotent de Rham period, its image under the dual of the natural map
(7.2):

Pdr,Y
H(S) = O(GdR

H(S),Y ) −→ O(πalg,dR
1 (S, ωY

dR)),

[(VB,VdR, c), v, ω]dr 	→ (α 	→ v(α(ω))),

where α ∈ πalg,dR
1 (S, ωY

dR), actually lands in the unipotent subspace

O(πdR
1 (S, ωY

dR)) ⊂ O(πalg,dR
1 (S, ωY

dR)).

Next restrict to the affine open Spec (OS,Y ) of S, which gives a map on affine
rings

O(πdR
1 (S, ωY

dR)) −→ O(πdR
1 (SpecOS,Y , ω

Y
dR)).

Finally it follows either from Chen’s π1-de Rham theorem (over the complex
numbers), or from the universal properties of the reduced bar construction
B (whose zero’th cohomology is the universal unipotent extension of OS,Y ),
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that the affine ring of the de Rham fundamental group on SpecOS,Y is
described explicitly:

O(πdR
1 (SpecOS,Y , ω

Y
dR))

∼= H0(B(ΩS,Y )).

We shall recall the relevant definitions below.

Definition 9.2. We shall define the symbol of a differentially unipotent
family of de Rham periods ξ ∈ Pdr,Y

H(S) to be its image:

(9.3) smb(ξ) ∈ H0(B(ΩS,Y )).

There is a natural length filtration on H0(B(ΩS,Y )). The length of ξ is
bounded above by the length n in the filtration (9.2).

This is a generalisation of the notion of symbol as used by physicists.
Our abstract definition of the symbol could be generalised further still. For
example, one could also consider relative unipotent completion instead of
unipotent completion.

9.3. Computing the symbol

We now explain how to compute the symbol in the spirit of the recursive dif-
ferentiation procedure described in §9.1 (1). Consider a differentially unipo-
tent de Rham period ξ = [(VB,VdR, c), f, ω]dr in Pdr,Y

H(S), where f ∈ ωY (VdR)∨
and ω ∈ ωY (VdR), and let V denote the pull-back of VdR to SpecOS,Y . We
shall assume that H0

dR(OS,Y ) = Q. Since ξ is differentially unipotent, we
can assume by equivalence of matrix coefficients that VdR and hence V is
unipotent. There is a filtration

(9.4) 0 = V−1 ⊂ V0 ⊂ · · · ⊂ Vn = V

by algebraic sub-bundles such that ∇ : Vk → Vk ⊗OS,Y
Ω1
S,Y , and with re-

spect to which ∇ is unipotent. It splits because H1(SpecOS,Y ,OS,Y ) = 0
since SpecOS,Y is affine and OS,Y coherent. Choose a splitting of this filtra-
tion:

(9.5) V ∼= grV.

The associated graded (grV, gr∇) is a direct sum of trivial vector bundles
(OS,Y , d), and grV ∼= OS,Y ⊗Q H0(grV, gr∇) has a Q-structure given by flat
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sections. With respect to this choice of splitting, the connection map

N = ∇− d ∈ HomOS,Y
(V,V ⊗Q Ω1

S,Y )

satisfies the integrability condition

dN +N ∧N = 0,

which is equivalent to ∇2 = 0, and also satisfies Nm = 0 for some m by the
assumption of unipotency. It is an OS,Y -linear operator, where V and V ⊗Q

Ω1
S,Y are leftOS,Y -modules. For computations, let us write Vk = Γ(OS,Y ,Vk).

Then Vk/Vk−1 is a free OS,Y -module and it follows by induction that the Vk

are free OS,Y -modules too. We can choose a basis of Vn which is adapted
to the filtration Vk, and is flat on the graded quotients grV , i.e., a basis
element e of Vk satisfies ∇(e) ⊂ Vk−1. Write the connection as ∇ = d+N in
this basis. Thus N is represented as an upper-triangular matrix of one-forms.
Consider the element

smbN (ξ) =
∑
k≥0

〈f,Nkω〉 ∈ OS,Y ⊗Q T c(Ω1
S,Y ),

where we recall that the tensor coalgebra T c(Ω1
S,Y ) =

⊕
k≥0(Ω

1
S,Y )

⊗k, and
tensors are over Q. It depends on the choice of splitting (9.5) (resp. choice
of basis of V ).

One can think of the symbol in the following way. View N as an n× n
matrix with coefficients in T c(Ω1

S,U ), since its entries can be considered as
tensors of length one. Consider the following matrix

(9.6) 1 +N +N2 +N3 + · · · ∈ Mn×n(T
c(Ω1

S,T )),

where the multiplication of matrix entries is given by the (non-commutative)
concatenation product in T c(Ω1

S,U ). The series is finite by the nilpotence of
N . The vector ω and covector f define an entry of this matrix, which is
exactly smbN (ξ).

9.3.1. Reduced bar construction. Define an internal differential

dI : T c(Ω•
S,Y )→ T c(Ω•

S,Y )
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by

dI [ω1| · · · |ωn] =

n∑
i=1

(−1)i[jω1| · · · |jωi−1|dωi|ωi+1| · · · |ωn]

+

n−1∑
i=1

(−1)i+1[jω1| · · · |jωi−1|jωi ∧ ωi+1|ωi+2| · · · |ωn],

where j acts on Ωn
S,Y by (−1)n. Define a grading on T c(Ω•

S,Y ) by

deg [ω1| · · · |ωn] =

n∑
i=1

(deg(ωi)− 1) .

Consider the linear map dC : T c(Ω•
S,Y )→ OS ⊗Q T c(Ω•

S,Y ) defined by

dC [ω1| · · · |ωn] = −ε(ω1)[ω2| · · · |ωn] + (−1)νε(ωn)[ω1| · · · |ωn−1]

where ε : Ω•
S,Y → OS,Y is projection onto degree 0 and ν is given by

(deg(ωn)− 1) deg[ω1| · · · |ωn−1].

One verifies that

d = id⊗ dI + id⊗ dC

satisfies d2 = 0. See, for example, the presentation in [37] (3.4). Note that
the signs simplify drastically when all ωi are of degree one, which is the case
we are mainly interested in. Consider the smallest subspace R in OS ⊗Q

T c(ΩS,Y ) generated by

R : [ω1| · · · |ωi|f |ωi+1| · · · |ωn]

where f ∈ OS,Y , and stable under the differential d. The quotient of OS,Y ⊗Q

T c(ΩS,Y ) byR is a complex which we denote by B(Ω•
S,Y ). It is a close relative

of Chen’s reduced circular bar complex11 on ΩS,Y .

11In the usual formulation, due to Chen [19], one considers the tensor algebra
T c(Ω≥1

S,Y ) and quotients out by a certain family of relations. The reader may like
to check that Chen’s relations are boundaries in the complex we have defined here
and are therefore incorporated automatically.
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Example 9.3. If f ∈ OS,Y and ω ∈ Ω1
S,Y is closed we have:

d[f |ω] = −[df |ω] + [fω]− f [ω]

d[ω|f ] = −[ω|df ]− [fω] + f [ω].

The expressions on the right-hand side are therefore in R.

9.3.2. The symbol. The integrability of N implies that the element
smbN (ξ) is integrable, i.e., is in the kernel of the differential d in B(Ω•

S,Y ).
Furthermore, it is of degree zero. Its cohomology class

smb(ξ) ∈ H0(B(ΩS,Y )),

is exactly the symbol as defined in (9.3). It is true, but not obvious from
the computational procedure defined above, that the cohomology class of
smb(ξ) is well-defined, i.e., independent of the choice of N . The integrability
of smb(ξ) can be seen directly by writing the matrix (9.6) in the form

[1] + [N ] + [N |N ] + · · · .

The equation dN +N ∧N = 0 implies that it lies in the kernel of the dif-
ferential d applied formally to the previous expression in the obvious way.

Remark 9.4. The bar complex is equipped with a shuffle product (with
signs) which is compatible with d, and this induces a commutative algebra
structure on its cohomology. It follows from the definition (9.3) that the
symbol is a homomorphism:

smb(ξ1ξ2) = smb(ξ1)x smb(ξ2).

The shuffle product restricted to H0(B(ΩS,Y )) has no signs.

Example 9.5. Suppose that grV has length two (n = 2), so

0 = V−1 ⊂ V0 ⊂ V1 ⊂ V2 = V

and that each graded quotient Vk/Vk−1 for k = 0, 1, 2 is a rank one OS,Y -
module. Choose a basis e0, e1, e2 of V = Γ(OS,Y ,V) such that ∇e0 = 0,
∇e1 = e0 ⊗ ω1 and ∇e2 = e1 ⊗ ω2 + e0 ⊗ ω12. In this basis, the matrix N
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is

N =

⎛⎝ 0 ω1 ω12

0 0 ω2

0 0 0

⎞⎠ .

For this to define a connection (or equivalently, dN +N ∧N = 0), we must
assume that ω1, ω2 are closed, and dω12 + ω1 ∧ ω2 = 0. If ξ = [V, e∨0 , e2]dr,
then

smbN (ξ) = 〈e∨0 , e2〉+ 〈e∨0 , Ne2〉+ 〈e∨0 , N2e2〉
= 0 + ω12 + 〈e∨0 , Ne1〉 ⊗ ω2 + 〈e∨0 , Ne0〉 ⊗ ω12

= 0 + ω12 + ω1 ⊗ ω2 + 0.

In bar notation, this is denoted by:

smbN (ξ) = [ω1|ω2] + [ω12].

Now change basis to e′0, e
′
1, e

′
2 where e′0 = e0, e′1 = e1 and e′2 = e2 + fe1,

where f ∈ OS,Y . In the new basis, the matrix N is replaced by

N ′ =

⎛⎝ 0 ω1 ω12 + fω1

0 0 ω2 + df
0 0 0

⎞⎠ ,

and since e2 = e′2 − fe1 one checks by a similar computation that

smbN ′(ξ) = [ω1|ω2 + df ] + [ω12 + fω1]− f [ω1].

The difference between the two elements

smbN ′(ξ)− smbN (ξ) = [ω1|df ] + [fω1]− f [ω1]

which is exactly a boundary −d([ω1|f ]), by Example 9.3.

9.3.3. Variants. The above construction was defined for de Rham pe-
riods but can be embellished in any number of ways. Let ξ ∈ Pm,X,Y

H(S) be

differentially unipotent. Then using the coaction (7.8) we can define

(id⊗ smb)Δ(ξ) ∈ Pm,X,Y
H(S) ⊗OS,Y

H0(B(ΩS,Y )).

A further possibility is to introduce a base point as follows. Suppose that
t ∈ S(Q), whose image in S(C) lies in X ∩ Y so that the evaluation (7.7) is
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defined. Let ξ ∈ Pm,X,Y
H(S) be differentially unipotent, and define the symbol

‘based at t’ by

smbt(ξ) = (evt ⊗ smb)Δ(ξ) ∈ Pm
H ⊗Q H0(B(ΩS,Y )).

This notion captures constants and satisfies similar properties to the symbol
defined above. See for [28] for applications of such a construction.

Remark 9.6. Suppose that ξ is a period of a mixed Tate variation. By this
we mean that we can write ξ = [(VB,VdR, c), σ, ω]m, where grWn (VB,VdR, c)
is zero if n is odd, and isomorphic to a direct sum of constant Tate elements
Q(−k)/S if n = 2k is even (images of the pull-back of the Tate objects Q(−k)
inH along the structural map π : S → Spec (Q)). The connection underlying
Q(−k)/S is isomorphic to (OS , d) and is trivial. It follows that the element ξ
is automatically differentially unipotent with respect to the weight filtration
Vn = W2nVdR. If, furthermore, ξ is effective then we can apply a version of
the projection map of §4.3 to associate to ξ a de Rham period ξdr, which is
necessarily unipotent, and take its symbol smb(ξdr).

Thus we have shown that de Rham, and effective mixed Tate periods,
always have symbols. All the examples used in physics so far seem to be of
this special type.

9.4. Cohomological symbol

The bar complex is somewhat cumbersome. We can define a coarser version
of a symbol of length n by passing to the associated length-graded of the
bar complex.

Definition 9.7. Let ξ ∈ Pdr,Y
H(S) be a differentially unipotent de Rham period

of length ≤ n. Recall that this means the filtration (9.2) satisfies Vn = V.
Define its cohomological symbol in length n to be its class

cmbn(ξ) = [smb(ξ)] ∈ gr�nH
0(B(ΩS,Y )),

where � denotes the length filtration.

An Eilenberg-Moore spectral sequence implies that the associated graded
for the length filtration gr�H0(B(ΩS,Y )) ∼= H0(B(H(ΩS,Y ))) is the bar com-
plex on the cohomology of ΩS,Y , equipped with the trivial differential. There-
fore

cmbn(ξ) ∈ OS,Y ⊗Q H1(ΩS,Y )
⊗n,
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and lies in the kernel of the map

(9.7)

H1(ΩS,Y )
⊗n −→

⊕
k

H1(ΩS,Y )
⊗k−1 ⊗Q H2(ΩS,Y )⊗Q H1(ΩS,Y )

⊗n−k−1

[ω1| · · · |ωn] 	→
∑
k

[ω1| · · · |ωk−1|ωk ∧ ωk+1|ωk+2| · · · |ωn].

Example 9.8. The cohomological symbol is the length n part of the sym-
bol, after replacing forms with their cohomology classes. In our Example 9.5
it gives

cmb2(ξ) =
[
[ω1]

∣∣[ω2]
]
.

This lies in the kernel of (9.7) since [ω1] ∧ [ω2] = [ω1 ∧ ω2] = [−dω12] = 0.

This invariant can be computed directly and more simply in the following
way. With the previous notations, consider the operator

N = gr• (∇− d) : gr• V −→ gr•−1V ⊗Q Ω1
S,Y .

Iterating it defines an operator

(N)⊗n : grnV −→ gr0V ⊗Q (Ω1
S,Y )

⊗n.

The vector ω defines a section in the associated graded via the map V →
grnV. Similarly, since V−1 = 0, we have gr0V = V0 ⊂ V, and we can consider
the image of the covector f along the dual map V∨ → gr0V∨. Now consider

(9.8) 〈f, (N)⊗nω〉 ∈ OS,Y ⊗Q (Ω1
S,Y )

⊗n.

Because dN +N ∧N = 0, it follows that dN = 0 and N ∧N = 0.

Examples 9.9. Let S = Pn\D where D = ∪m
i=0Di is a union of m+ 1 ≥ 1

distinct hyperplanes over Q and Y = S(C). Let fi = 0 be an equation of Di,
where fi ∈ Q[x0, . . . , xn] is homogeneous of degree one. A basis for H1

dR(S)
is given by the cohomology classes of forms

ωi = d log
( fi
f0

)
for 1 ≤ i ≤ m.

A (cohomological) symbol is simply a linear combination of tensor prod-
ucts of ωi which satisfies the integrability condition (9.7). Since this case
is mixed Tate, the length filtration on the bar construction coincides with



Notes on motivic periods 639

(one half of) the weight filtration, and is canonically split by the Hodge
filtration. It follows either from this, or from formality of the cohomology
of a hypersurface complement [17] §3.2, that H0(B(Ω•

S))
∼= H0(B(H•(ΩS))

and so there is no significant difference between symbols smb and their co-
homological versions cmbn. They are integrable words in the one-forms ωi

(resp. their cohomology classes [ωi]).
12 In the case n = 1, the integrability

condition (9.7) is trivially satisfied. Example:

smb(Lidrn (x)) = [d log(1− x)|d log x| · · · |d log x].

This setting covers much of the recent work of physicists on symbols.

Remark 9.10. The theory of iterated integrals enables us to construct a
map in the opposite direction and associate a family of motivic periods to a
symbol together with some extra data. This discussion would take us too far
afield. A full treatment should also incorporate the mixed Hodge structure
on the reduced bar construction [36] and a discussion of admissible variations
and tangential base points.

It is important to remark that symbols do not have periods in their own
right: to define periods one requires a path of integration, or at the very
least a base-point (if one only wishes to define the associated single-valued
periods).

10. Some geometric examples

Let S be as in §7 and let π : S → Spec (Q) be the structural map. Denote the
Tate variation on S by Q(−n)/S . It is the object of H(S) which is defined by
π∗Q(−n). Concretely, it is the triple (VB,VdR, c) where VdR = (OS , d) is the
trivial vector bundle with trivial connection; VB is the constant local system
Q; and c : C = (Van

dR)
∇ ∼→ VB ⊗ C = C is multiplication by (2πi)n. It has

weight 2n, and the Hodge filtration satisfies FnVdR = VdR, Fn+1VdR = 0.

10.1. Mixed Tate motives over number fields

In the following example, let S = Spec (F ) for F a number field. Since
S(C) = Hom(F,C), it is not geometrically connected and therefore does not

12Furthermore,H1(Pn;O) = 0, so the canonical extension V of a unipotent vector
bundle V is trivial, and we can take as de Rham fiber functor the global sections
functor V 	→ Γ(Pn,V) ∈ VecQ.
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immediately fit into the framework of the previous paragraphs. However, one
can define a category H(S) of realisations without difficulty. An element of
H(S) consists of: VdR ∈ VecF a vector space with the zero connexion; VB
a collection of vector spaces Vσ ∈ VecQ for every σ ∈ S(C); and a compari-
son c = (cσ)σ, where cσ : VdR ⊗F,σ C ∼= Vσ ⊗Q C for every σ ∈ S(C), together
with filtrations W,F defined as before. There are Frobenius isomorphisms
F∞ : Vσ

∼= Vσ which are compatible with the comparison isomorphisms via
the action of complex conjugation. For example, the object Q(0)/S is the
triple ({Vσ}, VdR, c) where VdR = F , and Vσ = Q for each σ, and the iso-
morphisms cσ are the canonical ones. Taking α ∈ F , and τ : F ↪→ C, we can
view algebraic numbers as H(S)-periods

αm,τ = [Q(0)/S , τ, α]
m ∈ Pm,τ,Spec F

H(S) .

Its period per(αm,τ ) = τ(α) ∈ C. Note that the motivic Galois action is triv-
ial on αm,τ , since αm is viewed as a family of periods over F (but observe
that if F is Galois, the Galois action on algebraic numbers could be retrieved
by considering the action of the automorphism group of Spec (F )).

Now consider the category MT (O) of mixed Tate motives over a ring
of integers O in F defined in [27]. The de Rham fiber functor is ωdR :
MT (O)→ VecF , and there is a Betti fiber functor ωσ :MT (O)→ VecQ for
every σ ∈ S(C). Hence there is a functor MT (O)→ H(S), which is known
to be fully faithful [27]. In this manner, we can view the periods ofMT (O)
as families of periods over Spec (F ).13

However, in this, mixed Tate, situation, the de Rham functor is in fact
obtained from a canonical fiber functor ω :MT (O)→ VecQ by extension of
scalars ωdR = ω ⊗Q F . This leads to a slightly different point of view. Define,
for every σ ∈ S(C), a ring of motivic periods Pmσ

MT (O) over Q where mσ is the

pair of fiber functors (ωσ, ω) in the manner of §2.3. It is spanned by matrix
coefficients [M,x, v]m where M ∈MT (O), x ∈M∨

σ and v ∈ ω(M). Every
automorphism α ∈ Gal(Q/Q) defines an isomorphism Pmσ

MT (O)
∼= Pmσα

MT (O)
via its action on the Betti class.

Following an identical argument to Theorem 6.3, we deduce the following

Theorem 10.1. The decomposition map gives a canonical isomorphism

(10.1) Φ : grCPmσ,+
MT (O)

∼−→ Q[Lm]⊗Q T c(
⊕
n

K2n−1(O)⊗Z Q(−n)dR)

13In order to capture better the idea of a family of periods ramified over certain
primes, then the current set-up in which we only consider Betti and de Rham
information is inadequate. One could proceed along the lines of [21], §1.18.
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in an identical manner to §6.6, which describes the structure of its motivic
periods. There is a de Rham version of the previous isomorphism:

(10.2) grCPdr
MT (O)

∼−→ Q[Ldr, (Ldr)−1]⊗Q T c(
⊕
n

K2n−1(O)⊗Z Q(−n)dR)

where dr means (ω, ω), for ω the canonical fiber functor. The projection map
Pmσ,+
MT (O) → Pdr

MT (O) corresponds to the homomorphism Lm → 0.

Remark 10.2. Goncharov considered the image (of what, in our language
would be a UdR

MT (O)-period) in the de Rham version of (10.2) in the quotient

T c(K1(F )⊗Z Q(−1)) ∼=
⊕
n≥0

(K1(F )⊗Z Q)⊗n =
⊕
n≥0

(F× ⊗Z Q)⊗n,

(see discussion preceding Lemma 3.7 in [31]). One can ignore the coradical
grading in this case, since in this particular quotient it is equivalent to the
weight-grading (this is false in general). Thus Goncharov’s notion of symbol
is the homomorphism

O(UdR
MT (O)) −→

⊕
n≥0

(F× ⊗Z Q)⊗n.

This map has a huge kernel and loses most of the information about periods.
For example, if O = Z, then this homomorphism is identically zero and all
(unipotent de Rham) multiple zeta values map to zero.

A version of this notion of symbol for variations, defined in [32], §1.3, is
used in the physics literature, and the ‘motivic amplitude’ considered in [20]
is defined by extrapolation as an element of (F× ⊗Z Q)⊗n for F a certain
field. For the reasons above, this notion loses information about periods and
does not apply in the non-mixed Tate case. It is not to be confused with the
notion of motivic periods defined here.

10.2. A family of examples

The following family of examples is sufficient for the purposes of [13]. Let
D ⊂ X be a family of simple normal crossing divisors relative to a smooth
morphism π : X → S, where S smooth over Q and geometrically connected.
Furthermore, we assume that π is topologically trivial on the underlying an-
alytic varieties (it is a locally trivial fibration of stratified varieties, according
to [33]). Let j : X\D ↪→ X be the inclusion. Define an object Hn(X,D)/S
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in the category H(S) as follows. Its Betti realisation is

Hn
B(X,D)/S = Rnπ∗j!Q

where Q is the constant sheaf on (X\D)(C). Since π is topologically trivial,
this is a local system, and its fibres at a point s ∈ S(C) are Hn

B(Xs, Ds),
where Xs, Ds denote the fibres of X,D. For de Rham, denote the irreducible
components of D by Di, for i ∈ I, where I is an ordered set, and write
DJ = ∩j∈JDj for any ∅ �= J ⊂ I. Consider the double complex of sheaves of
relative differential forms on X

Ω•
D•/S : Ω•

X/S −→
⊕
|J |=1

Ω•
DJ/S

−→ · · · −→
⊕
|J |=n

Ω•
DJ/S

where the horizontal maps are determined by the usual rule: if ij denotes
the inclusion of DJ\{ij} ↪→ DJ , where ij is the kth element of J then i∗j
occurs with the sign (−1)k. The Ω•

DJ/S
denote the direct images of the

corresponding sheaves on DJ , and vanish outside DJ .
Define the de Rham realisation by

Hn
dR(X,D)/S = Rnπ∗(Ω

•
D•/S).

It is the sheaf associated to the presheaf whose sections over an affine open
U ⊂ S are the hypercohomology of Ω•

D•/S
(π−1(U)). It is a locally free sheaf

of OS-modules and its fibres at the point s are the relative de Rham coho-
mology groups:

(Hn
dR(X,D)/S)(s) = Hn

dR(Xs, Ds).

It admits an integrable connection ∇ by a relative version of [40]. To check
the comparison isomorphism, denote by QJ the constant sheaf Q on DJ(C),
extended by zero to the whole of X(C). The complex of sheaves

QD•/S : Q −→
⊕
|J |=1

QJ −→
⊕
|J |=2

QJ −→ · · · −→
⊕
|J |=n

QJ

where the sign conventions are exactly as defined for the complex Ω•
D•/S

,

defines a resolution of j!Q. The analytification Ω•,an
D•/S

of Ω•
D•/S

is a resolution

of QD•/S ⊗ C over San(C). Using the triviality of π, and arguing as in [25],
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Proposition 2.28, there is a natural isomorphism

c−1 : Hn
B(X,D)/S⊗QOan

S
∼−→ (Hn

dR(X,D)/S)
an.

It is known that Hn
B(X,D)/S , equipped with its weight filtration and Hodge

filtration from cHn
dR(X,D)/S , is a variation of mixed Hodge structure. It is

effective: the Hodge numbers on every fiber satisfy hp,q = 0 if p or q are < 0.

10.3. Face maps

With the above notations, let DI = ∩i∈IDi denote an intersection of ire-
ducible components of D of codimension k, and let DI =

⋃
j /∈I Dj denote

the union of all remaining irreducible components. The pair DI ⊃ DI ∩DI

satisfies the conditions of the previous paragraph.
There are natural morphisms, that we shall call face maps, in the cate-

gory H(S)

(10.3) Hn−k(DI , DI ∩DI)/S −→ Hn(X,D)/S .

For the de Rham (respectively Betti) realisation, this is given by the inclu-
sion of complexes Ω•

DI•/S
→ Ω•

D•/S
(respectively QDI•/S → QD•/S).

On the other hand, let 0 ≤ k ≤ n− 1 and let D(k) =
⋃

|I|=n−k DI denote

the k-dimensional skeleton of D. Then Hk(D(k))/S defines an object of H(S)
given by truncating the complexes Ω•

D•/S
and QD•/S on the left so that

the non-zero components are |J | ≥ n− k. The inclusion of these complexes
similarly defines

(10.4) Hk(D(k))/S −→ Hn(X,D)/S .

The case k = n− 1 is the boundary map in the relative cohomology sequence

· · · −→ Hn−1(X)/S −→ Hn−1(D(n−1))/S

−→ Hn(X,D)/S −→ Hn(X)/S −→ · · ·

The face maps (10.3) factor through (10.4).
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10.4. Weight filtration

By strictness, apply the weight functor to the previous long exact cohomol-
ogy sequence to obtain an exact sequence

· · · →WkH
n−1(X)/S →WkH

n−1(D(n−1))/S

→WkH
n(X,D)/S →WkH

n(X)/S → · · ·

Since Hn(X) has smooth fibers, it has weights concentrated in degrees be-
tween n and 2n (by [23] 8.2.4). It follows that

WkH
n−1(D(n−1))/S −→WkH

n(X,D)/S

is surjective if k = n− 1, and an isomorphism if k < n− 1. The following
proposition generalises the previous fact, and is presumably well-known. We
include a quick proof for completeness. It requires the following lemma.

Lemma 10.3. Let φ : C → C ′ be a morphism of cochain complexes such
that φi : Ci → C ′

i is surjective, and φj : Cj → C ′
j are isomorphisms for all

j > i. Then the induced maps on cohomology have the same properties:
H i(C)→ H i(C ′) is surjective, and Hj(C)

∼→ Hj(C ′) is an isomorphism for
all j > i.

Proof. Exercise. �

Proposition 10.4. Let m < n. The map

WkH
m(D(m))/S −→WkH

n(X,D)/S

is surjective if m = k and is an isomorphism if k < m.

Proof. Since the comparison isomorphism respects the weight filtration, it
suffices to verify the statement in the Betti realisation. For this it is enough
to check the statement on every fiber: for every t ∈ S(C),

WkH
m
B (D(m))t −→WkH

n
B(X,D)t

is an isomorphism for k < m and surjective for k = m. To alleviate the no-
tation, write BI = (DI)t(C) and Y = Xt(C). Consider

(10.5) Hm(B(m)) −→ Hn(Y,B).
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There are relative cohomology spectral sequences

(10.6) Ep,q
1 (Y ) =

⊕
|J |=p

Hq(BJ) =⇒ Hp+q(Y,B)

and

Ep,q
1 (B(m)) =

⊕
|J |=p+n−m

Hq(BJ) =⇒ Hp+q(B(m))

The morphism (10.5) induces a map of spectral sequences

Ep,q
1 (B(m)) −→ Ep+n−m,q

1 (Y )

which is the identity on each summand Hq(BJ). Let j ≤ k and apply the
functor grWj . It is exact, giving a morphism of spectral sequences

(10.7) grWj Ep,q
r (B(m)) −→ grWj Ep+n−m,q

r (Y ).

Since BJ is smooth, Hq(BJ) has weights in the interval [q, 2q] by [23] 8.2.4,
and therefore both sides of (10.7) vanish for all q > j. The entries of (10.7)
for r = 1 are identical in the range p ≥ 0. By running the spectral sequence,
and applying the previous lemma, one verifies by induction on r that (10.7)
is an isomorphism for p ≥ r − 1 or p+ q ≥ j + 1 and surjective for other
values of p ≥ 0. �

The spectral sequence (10.6) implies the

Corollary 10.5. Let 0 ≤ k ≤ n. Then grWk Hn(X,D)/S is isomorphic to a

subquotient of
⊕

|I|≥n−k gr
W
k Hn−|I|(DI)/S.

Putting k = 0, m = 0 or m = 1 in the previous proposition gives the
following corollary.

Corollary 10.6. We have

(10.8) W0H
n(X,D)/S ∼= Q(0)⊕m

/S

where m = dimQ H̃n−1(Dt(C)) for any t ∈ S(C). In particular, the motivic
periods of Hn(X,D)/S of weight zero are constant and rational.

Proof. Note that if |I| = n then DI
∼= Spec S and H0(DI)/S = Q(0)/S , so

(10.8) holds for some m. To determine m, pass to the Betti realisation at
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the fiber s. With the notations of the previous proposition, we have

grW0 Hn(Y,B) ∼= En,0
2 (Y ) = coker

⎛⎝ ⊕
|I|=n−1

H0(BI) −→
⊕
|I|=n

H0(BI)

⎞⎠
Since the BI are connected, the dimension of this cokernel is the dimension
of the reduced cohomology dim H̃n−1(B). �

We considered earlier the case S = SpecQ, and D normal crossing,
rather than simple normal crossing. Then a similar argument proves that
the weight zero part of Hn(X,D)/S is the (realisation of a) constant Artin

motive. The action of Gal(Q/Q) upon its Betti realisation is induced by the
Galois action on the points

⋃
|I|=nDI(C).

Under some further assumptions, the face maps provide information
about the mixed Hodge structure on Hn(X,D)/S in low weights.

Proposition 10.7. Suppose that Hk((DI)s) = 0 for all k > n− |I| (for
example, if the strata DI have affine fibres of dimension n− |I|).

Let m < n. Then for any k ≤ m, the sum of face maps⊕
|I|=n−m

WkH
m(DI , DI ∩DI)/S −→WkH

n(X,D)/S .

is surjective.

Proof. A similar spectral sequence argument as in the previous proposition.
The assumption implies that Ep,q

1 vanishes above the diagonal, i.e., for all
p+ q > n. Now consider the map of spectral sequences induced by the sum
of face maps. Take their fibers as in the previous proposition and apply grWj
for j ≤ k. On Ep,q

1 terms we obtain the natural map

(10.9) grWj
⊕

|I|=n−m

⊕
J⊃I,|J |=p

Hq(BJ) −→ grWj
⊕
|J |=p

Hq(BJ).

This is an isomorphism above the diagonal (p+ q > n) since both sides are
identically zero in that region by assumption. Furthermore, both sides of
(10.9) vanish in the region q > j (since the BJ are smooth and Hq(BJ)
has weights in the interval [q, 2q]) and therefore in particular in the region
q > m. It follows that (10.9) is also surjective along the diagonal p+ q = n.
By induction on r and Lemma 10.3, the induced map is surjective on the
diagonal for all r. �
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10.5. The periods

In the situation of §10.2, let s ∈ S(C) and let σs ⊂ Xs(C) be a topological n-
chain whose boundary is contained in Ds(C). It defines a relative homology
class [σs] ∈ Hn

B(Xs(C), Ds(C))
∨ = (Hn

B(X,D)/S)
∨
s . By local triviality, there

exists a small neighbourhood N ⊂ S(C) of s, and an isomorphism

(X(C), D(C)) ∩ π−1(N) ∼= N × (Xs(C), Ds(C)).

Via this isomorphism, the chain σs uniquely extends to a family of topolog-
ical n-chains σt ⊂ Xt(C) whose boundaries are contained in Dt(C) for all
t ∈ N .

For simplicity, let us consider the particular case when we are given a
global form ω ∈ Ωn

π−1(U)/U for some Zariski open U ⊂ S and suppose that
the fibres of X are of dimension n. Since the restrictions of ω to com-
ponents of D vanish for reasons of dimension, it defines a relative class
[ω] ∈ Γ(U,Hn

dR(X,D)/S), and

ξ = [Hn(X,D)|S , [σs], [ω]]
m ∈ Pm,{s},Y

H(S)

for any Y ⊂ U(C). For any t ∈ U(C), let ωt denote the restriction of the
form ω to a fiber t. The period is then

per(ξ)(t) =

∫
σt

ωt

for all t in the open set U(C) ∩N , and is extended by analytic continuation
to a meromorphic function on the universal covering of S(C) based at s.

10.6. Example: iterated integrals on the projective line minus 3
points

Let S = P1\{0, 1,∞} throughout this section.

10.6.1. Motivic logarithm. Let Z = S ×Gm and π : Z → S the projec-
tion onto the first factor. If x is the coordinate on S, and y the coordinate
on Gm, let D = {y = 1} ∪ {y = x}. Let X ⊂ S(C) denote the real interval
(0, 1), and for all x ∈ X, let σx ⊂ Gm(C) denote the straight path from 1 to
x in the fiber over x. Its image is {x} × [1, x]. Define the motivic logarithm
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by

logm(x) = [H1(Z,D)|S , [σx], [
dy
y ]]m ∈ Pm,X,Y

H(S)

where Y = S(C). Note that OS,Y = OS = Q[x, x−1, (1− x)−1] (this was ex-
ample (3) in §7.2.1). Its period is the logarithm as expected:

per(logm(x)) = log(x) =

∫
σx

dy

y
for x ∈ X.

A long exact relative cohomology sequence reduces to

0 −→ Q(0)|S −→ H1(Z,D)|S −→ Q(−1)|S −→ 0,

and with respect to the de Rham basis [dyy ], [ dy
x−1 ] and Betti basis [σx], [γ],

where γ is a small loop around 0 in the fiber, the period matrix is given by
the identical formula to (5.4), where Lm is now viewed as a constant family
of periods over S and α = x. The coaction satisfies Δ logm(x) = logm(x)⊗
Ldr + 1⊗ logdr(x), and the Galois group is Ga �Gm, and is in fact defined
over Q in this case. Recall that logdr(x) does not have a period, but has a
single-valued period 2 log |x|.
10.6.2. Motivic fundamental groupoid. Now consider the ind-object
of H(S)

O(πH
1 (S,

→
10, •)) := (O(πun

1 (S,
→
10, •)),O(πdR

1 (S))⊗Q OS , comp)

where
→
10 is the tangential base-point at 0 with unit length. The first entry

(Betti local system) is the affine ring of the unipotent completion of the tor-

sor of paths beginning at
→
10 on S(C) and defines a local system on S(C): its

fiber at a point x ∈ S(C) is O(πun
1 (S,

→
10, x)) with the action of πtop(S(C), x).

The second entry does not in fact depend on basepoints and is the affine
ring of the (unipotent) de Rham fundamental group. It is a shuffle algebra
on two generators

O(πdR
1 (S)) ∼= T c(Qe0 ⊕Qe1)

where e0, e1 correspond to the one-forms dx
x and dx

1−x . It defines a trivial
vector bundle on S, and is equipped with the Kniznhik-Zamolodchikov con-
nection

∇ei1 · · · ein =

{
ei1 · · · ein−1

⊗ dx
x if in = 0

ei1 · · · ein−1
⊗ dx

1−x if in = 1.

It is clearly unipotent with respect to the weight filtration. The weight fil-
tration on O(πdR

1 (S)) is in fact a grading in this case (it is split by the
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Hodge filtration since it is mixed Tate), and the grading assigns degree two
to e0, e1.

We take X = (0, 1) and Y = S(C) as before. Define the motivic multiple
polylogarithm to be the family of motivic periods:

(10.10) Limw(x) = [O(πH
1 (S,

→
10, •)), σx, w]m ∈ Pm,X,Y

H(S)

where w is a word in e0, e1 and σx is the straight line path from
→
10 to x ∈ X.

The path σx is viewed as an element of O(πun
1 (S,

→
10, x))

∨ via the natural
map

(10.11) πtop
1 (S(C),

→
10, x) −→ πun

1 (S,
→
10, x)(Q).

The period of Limw(x) is Liw(x), which is the iterated integral
∫
σx

w, and we
have Lime0(x) = logm(x). More generally we write Limn (x) for Li

m
e1e

n−1
0

(x), and

call it the motivic classical polylogarithm. The connection satisfies

∇Limwes(x) = (−1)sLimw(x)⊗
dx

x− s
where s ∈ {0, 1}, w ∈ {e0, e1}×

and Lim∅ (x) is the constant motivic period 1. The de Rham motivic multiple
polylogarithms are defined by

Lidrw (x) = [O(πH
1 (S,

→
10, •)), ε, w]m ∈ Pdr,Y

H(S)

where ε : O(πdR
1 (S))→ Q is the augmentation map (it sends every non-

trivial word w to zero). The de Rham versions are the images of Limw(x)
under the projection map §4.3. Our definition of the symbol satisfies, as
expected,

smb(Lidrw (x)) = w ∈ T c(Ω1(S)) ∼= H0(B(Ω1(S))).

The single-valued versions of Lidrw (x) are obtained in an identical way to [12],
by simply writing a superscript m everywhere (with a possible sign difference
of (−1)|w|).

Recall that for every word w we defined the (image in the ring of H-
periods) of the shuffle-regularised motivic multiple zeta values:

ζm(w) = [O(πH
1 (S,

→
10,−

→
11)), ε, w]

m ∈ Pm
H ,
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where −
→
11 is the tangent vector −1 at the point 1. Denote their pull-backs

to Pm,X,Y
H(S) via the structural map π : S → SpecQ by the same symbol. Let

Pm,+
M0,4

⊂ Pm,X,Y
H(S)

denote the OS-module generated by the ζm(w),Limw(x) and Lm. Then Pm,+
M0,4

is a ring of motivic periods which is stable under the monodromy action

of the fundamental group of S(C) at the base-point
→
10. More generally,

one can consider in a similar manner the motivic periods given by iterated
integrals on the moduli spaces of curves M0,n whose periods are multiple
polylogarithms in several variables. For example, the space of functions H
used in the analytic bootstrap for the 6-point function in the planar limit of
N = 4 SYM theory described in the introduction of [13] is contained in the
space Pm,+

M0,6
.

Remark 10.8. These examples can be expressed geometrically in the spirit
of §10.2 using Beilinson’s construction for the unipotent fundamental group,
and indeed defines a variation of mixed Tate motives in the sense of [27] 4.12.

If t is a rational point on S (or even a tangential base point), we can
define the evaluation evt at the point t. In this situation, the de Rham
coaction (7.8) commutes with evaluation at t:

Δevt(Li
m) = (evt ⊗ evt)ΔLim(x).

The follows from the triviality of the de Rham vector bundle O(πdR
1 (S)) and

equation (2.2). The unipotent coaction can be computed by transposing a
formula due to Goncharov [30] to this setting. By way of example, the de
Rham coaction on the motivic dilogarithm satisfies

ΔLim2 (x) = Lim2 (x)⊗ (Ldr)2 + Lim1 (x)⊗ Ldr logdr(x) + 1⊗ Lidr2 (x)

and was discussed in further detail in Example 8.2. The unipotent coaction
is obtained by replacing dr in the right-hand terms by u, and noting that
Lu = 1.

In conclusion, the notion of families of motivic periods provides a frame-
work for motivic multiple polylogarithms which includes constants and is
sufficient for many applications to high-energy physics. It satisfies the prop-
erties conjectured in [28].
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11. Glossary of non-standard terms

Types of periods:

H-periods : page 577, §3.2 H-de Rham : page 579, §3.3
motivic : page 581, §3.5 effective : page 578, §3.3
mixed Tate : page 578, §3.3 single-valued : page 589, §4.1
semi-simple: page 585, §3.7 unipotent : page 585, §3.7
primitive, stable: page 609, §1

Invariants of periods and auxiliary constructions:

conjugates : page 583, 1) rank : page 584, §2
Hodge numbers : page 576 , (3.2) (polynomial : page 583, §3.6 )
period matrix : page 583, §3.6 (single-valued : page 589, §4.1)
determinant : page 583, §3.6 unipotency degree: page 587, §3.8
Transcendence dimension: page 582, §3.6 Galois group: page 582 , §3.6
Decomposition into primitives : page 571, 2.7; page 587, 3.10

Operations on periods

antipode: page 586, §3.7 projection map: page 591, §4.3
Families of periods

monodromy homomorphism/action: page 617, §7.2.1 , (7.9), page 619
constant map: page 618, §7.3.1 evaluation map: page 618, §7.3.2
Weight/Hodge filtration: page 619, §7.4 connection: page 620,
period homomorphism: page 621, §7.5

Symbols

symbol : page 632, §9.2 symbol at a point : page 637, §9.3.3
cohomological symbol : page 637, 9.7 length: page 632, §9.2
differentially unipotent/unipotent monondromy : page 630, 9.1
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Tate mixte, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 1–56.

[28] C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs
boson amplitudes, J. High Energy Phys. (2012), no. 8, 45pp.

[29] C. Glanois, Periods of the motivic fundamental groupoid of P1\{0,
μN ,∞}, Ph.D thesis, Université Pierre et Marie Curie, (2016).
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