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0.1 Some motivation for physicists

Scattering amplitudes are ubiquitous in high energy physics and have been
intensively studied from at least three angles:

1) in phenomenology, where amplitudes in quantum field theory are ob-
tained as a sum of Feynman integrals associated to graphs which repre-
sent interactions between fundamental particles. This presents a huge
computational challenge with important applications to collider exper-
iments.

2) in superstring perturbation theory, where amplitudes are expressed as
integrals over moduli spaces of curves with marked points.

3) in various modern approaches, most notably in the planar limit of N =
4 SYM, which avoid the use of Feynman graphs altogether and seek
to construct the amplitude directly, either via the bootstrap method,
or via geometric approaches such as on-shell diagrams or the ampli-
tuhedron.

The goal of these notes is to study a new kind of structure which is poten-
tially satisfied by amplitudes in all three situations. To motivate it, consider
first the case of the dilogarithm function, defined for |z| < 1 by the sum

Li2(z) =
∑
n≥1

zn

n2
.

It is an iterated integral over the projective line minus three points, and
is the universal function describing amplitudes at one loop. Chen’s general
theory of iterated integrals [26] naturally associates to it a coproduct Δit

satisfying

Δit Li2(z) = 1⊗ Li2(z) + Li1(z)⊗ log(z) + Li2(z)⊗ 1 ,

where Li1(z) = − log(1− z). Suitably interpreted, this coproduct encodes
both the differential equation ∂

∂zLi2(z) = Li1(z) d log(z), and also the ac-
tion of monodromy Li2(z) �→ Li2(z) + 2πi log(z) as z winds around the point
z = 1 in the positive direction. It is well-known that Feynman integrals and
amplitudes of different orders can be related both with respect to differen-
tiation, and also with respect to branch cuts, and so it comes as no surprise
that the coproduct Δit has found many uses in high-energy physics via the
so-called method of symbols [36].
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Now consider the much more subtle situation when z = 1. Then Li2(1) =
ζ(2) is simply a number and all the structure described above seems to be
lost. It can, however, be retrieved by replacing ζ(2) with a ‘motivic period’
ζm(2), which as a first approximation, can be simply thought of as a matrix
of numbers with a distinguished entry (in this case, a two by two matrix).
It now satisfies a coaction, rather than a coproduct:

Δζm(2) = ζm(2)⊗ 1 .

The dilogarithm can also be promoted a motivic version Lim2 (z) in a similar
manner, and has a (unipotent) coaction:

ΔLim2 (z) = Lim2 (z)⊗ 1 + Lim1 (z)⊗ logu(z) + 1⊗ Liu2(z)

which is valid viewed as a function of z, and also for any algebraic values of
z, including z = 1 (in which case, Lim2 (1) = ζm(2) and logu(1) = Liu2(1) = 0).
The quantities on the right-hand side of the tensor product are of a different
nature from those on the left, and could be called unipotent de Rham periods.
This coaction is a much deeper structure than the coproduct Δit. Motivic
periods have a natural homomorphism per (called the ‘period map’) to the
complex numbers: for example, per (Lim2 (z)) = Li2(z).

If we imagine that Feynman integrals and scattering amplitudes more
generally have canonical ‘motivic’ versions, as one certainly expects, then
they inherit a coaction, and it is natural to ask how this coaction relates to
the structure of amplitudes. Indeed, any of the three situations described
above should generate a space H of motivic periods, and a corresponding
algebra A of de Rham periods. A general ‘coaction principle’ would be the
equation

(0.1) ΔH ⊂ H ⊗A .

In other words, the class of amplitudes is stable under the coaction. An
equivalent way to phrase this is in terms of group theory. Indeed, A is natu-
rally a Hopf algebra, and defines a pro-algebraic group C, a projective limit
of algebraic matrix groups, whose elements are homomorphisms from A to a
commutative ring. The Equation (0.1) is equivalent to a linear group action
of C on H:

(0.2) C ×H −→ H .
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In other words, the space of amplitudes in the theory are stable under the
action of a group, which could be called a ‘cosmic’ Galois group, to borrow
a phrase from Cartier [24].

What possible evidence is there for such a structure? Taking each of the
three situations in turn, we find the following:

1) In quantum field theory, Panzer and Schnetz computed every known
amplitude in massless φ4 theory, and, assuming the ‘period conjecture’
replaced them with their motivic versions [15], generating an algebra
H. Remarkably, they found that the coaction principle (0.1) holds
in every case. Evidence in [1, 2] suggests that Feynman amplitudes
of small graphs with non-trivial masses and momenta also satisfy a
similar property.

2) In string perturbation theory, Stieberger and Schlotterer [47] replaced
the multiple zeta values in the expansion of the genus zero open string
with their motivic versions [15]. They found that the coaction gives
rise to a spectacular factorisation of the amplitude, which is invisible
on the level of numbers. Similarly, the closed genus zero string can
be expressed in terms of single-valued multiple zeta values [53], whose
motivic versions are also known to be closed under the coaction (0.1).

3) Several features of the hexagon function bootstrap [25] are expressible
in terms of a coaction principle (0.1). Here, H is a subspace of the
space of motivic iterated integrals on the moduli space of curvesM0,6

of genus 0 with six marked points [17] §10.6.2, and Equation (0.1) is
equivalent to ‘first n entries’ constraints on the iterated integrals.

In all these settings, we believe that a version of the coaction princi-
ple (0.1) holds, after possibly enlarging the space of integrals or amplitudes
under consideration. It is also important to note that in the first setting,
the coaction principle holds graph by graph, whereas in the third setting, it
operates on the entire amplitude, i.e., the sum of all graphs (these two state-
ments are by no means equivalent). It would be interesting in (1) to study
the case of gauge theories: the (three) known coefficients of the perturbative
expansion of the anomalous magnetic dipole moment of the electron also
appear to exhibit a coaction principle.

In this paper, we concentrate only on the first setting. Our first goal,
then, is to define canonical motivic Feynman integrals for a large class of
graphs in perturbative quantum field theory in an even number of space-
time dimensions. We then develop tools to prove that, after enlarging the
space of motivic integrals under consideration slightly, the coaction principle
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(0.1) does indeed hold. This is just the first step in a programme to study
amplitudes via the representation theory of groups.

The accompanying paper [17] develops methods for studying motivic
periods including a decomposition map which generalises the f -alphabet
construction used in [47] for multiple zeta values, and general notions of sym-
bols which go beyond the polylogarithmic setting. In particular, it provides
tools to compare amplitudes at different weights via seemingly paradoxi-
cal operations such as ‘differentiation with respect to ζ(3)’, and to extract
the essential information contained in an amplitude in a basis-independent
manner.

0.2 Statement of results

To any Feynman graph G one associates a Feynman integral, which is given
by a possibly divergent projective integral of the general parametric form

(0.3) IG(q,m) =

∫
σG

ωG where ωG =
P (αe)ΩG

ΨA
G ΞG(q,m)B

.

Here ΨG, ΞG(q,m), and P (αe) are certain polynomials in variables αe in-
dexed by the edges of G, ΩG is defined in (1.12), A,B ∈ Z, and σG is the
domain where all αe ≥ 0. These quantities are involved in predictions for
particle collider experiments. The polynomial P allows for the possibility of
numerator polynomials in the loop momentum representation, and there-
fore covers the case of Feynman integrals in gauge theories (before renor-
malisation). It is immediate from the integral representation (0.3), when it
converges, that amplitudes are families of periods, depending on kinematic
data such as particle momenta q = (qi)i and masses m = (me)e. A deep idea,
originating with Grothendieck, is that there should exist a Galois theory of
periods [5, 6], extending the classical Galois theory of algebraic numbers.
We shall apply these ideas to the integrals of the form (0.3).

The first problem, when trying to set up a Galois theory of periods, is
that one immediately runs into difficult conjectures concerning motives. A
simple way around this is to work in a category of systems of realisations1

and the second part of these notes [17] explain how this can be done with-
out difficulty. In brief, the objects in a category of realisations H(S) on a
smooth scheme S over Q are triples V = (VB,VdR, c) where VB is a local
system of Q-vector spaces over S(C); VdR is an algebraic vector bundle with

1We shall abusively use the word ‘motive’ to signify an object in such a category
which is the image of the cohomology of an algebraic variety.
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integrable connection on S and regular singularities at infinity, and c is a
Riemann-Hilbert correspondence between VB and VdR. This data should de-
fine a variation of mixed Hodge structures on S. A further subtlety, which
has nothing to do with questions about motives, is how to interpret any
given family of integrals, such as (0.3), as a period of the cohomology of an
algebraic variety since this can involve choices. It turns out that it can be
done canonically for Feynman amplitudes.

Theorem 0.1. For any Feynman graph G with generic kinematics q,m,
there is a canonical way to associate to a convergent integral (0.3):

(i). an object motG in H(S), where S is a Zariski open in a space of
kinematics,

(ii). a de Rham class [ωG] in the generic fiber of (motG)dR,
(iii). a Betti class [σG] in a certain (Euclidean) fiber of (motG)

∨
B,

such that the integral (0.3) is the period

σG(c(ωG)) = IG(q,m) .

The object motG is defined as a compatible system of cohomology groups
(namely, Betti and de Rham) of a family of pairs of algebraic varieties

(0.4) (PG\YG, D\(D ∩ YG))

where PG is a blow up of projective space along linear subvarieties, YG is
the strict transform of the zero loci of ΨG and ΞG(q,m), and D is a certain
strict normal crossing divisor independent of q,m. This theorem generalises
a result in [10] which treats a family of cases with no kinematic dependence
(B = 0 and S is a point).

This theorem enables us to replace the Feynman integral IG(q,m) with
a canonical ‘motivic version’ ImG (q,m) = [mot(G), σG, ωG]

m which is defined
as a matrix coefficient of the torsor of isomorphisms between two fiber func-
tors on H(S). The integral itself (0.3) can be retrieved from it by applying
the period homomorphism. The motivic integral now carries the action of
an affine group scheme which is the Tannaka group of H(S) with respect to
the de Rham fiber functor at the generic point. This group factors through a
certain quotient which acts faithfully on the motivic periods of motG relative
to σG, where G has at most Q external momenta and M possible non-zero
masses, hereafter called ‘of type (Q,M)’. This quotient is denoted by CQ,M

and could be called a cosmic Galois group, following [24]. In this way, every
convergent integral (0.3) is replaced by a finite-dimensional representation of
CQ,M , and this enables us to assign an array of new invariants to amplitudes.
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Examples include: a weight filtration2, a canonical connection (differential
equation with regular singularities), Hodge polynomials, Galois conjugates,
and various measures of complexity such as the rank, dimension, and unipo-
tency degree. These ideas are explored in the second half of these notes [17].
In particular, we generalise the notion of the ‘f -alphabet’ decomposition of
multiple zeta values, which has various applications in physics, to all pe-
riods. The next step in this programme is to formulate conjectures which
relate topological invariants of graphs to the above-mentioned invariants of
their motivic periods.

We can subsequently define FPm

Q,M to be the vector space spanned by
all motivic periods of motic3 Feynman graphs of type (Q,M) relative to σG.
The group action

(0.5) CQ,M ×FPm

Q,M −→ FPm

Q,M

can be expressed equivalently as a coaction

(0.6) Δ : FPm

Q,M −→ FPm

Q,M ⊗kQ,M
FPdr

Q,M

where FPdr

Q,M is the ring generated by the de Rham periods of motG. Note
that the formula we gave for the motivic dilogarithm in the first paragraph
involved the unipotent coaction and unipotent de Rham periods for simplic-
ity (the full coaction involves powers of Ldr, see [17], last lines of §10). A
key point is that there is a general formula for this coaction in terms of the
cohomology (motG)dR, and this can be computed explicitly in some cases.
The apparently unphysical case of graphs with no masses or momenta plays
a special role in this theory. Indeed, FPm

0,0 is an algebra, and each FPm

Q,M

is a module over it:

FPm

0,0 ×FP
m

Q,M −→ FPm

Q,M .

0.3 Product structure and stability

There is a priori no reason whatsoever for the action of CQ,M to preserve the
space of motivic amplitudes, which form a small subfamily of integrals (0.3)
with highly specific numerators.4 However, using our formalism of motivic

2This provides a rigorous meaning to many statements in the physics literature
referring to the ‘transcendental weight’ of amplitudes

3This notion is defined in §3 and generalises the notion of one-particle irreducible.
4From now on, we shall loosely call amplitude a Feynman integral of the form

(0.3) with a specific numerator, which arises, for instance, from the Feynman rules
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periods, Panzer and Schnetz computed the Galois action on a huge family of
amplitudes in φ4 theory of type (0, 0) and verified, astonishingly, that they
are preserved by C0,0 in all cases. The motivation for these lectures was to
try to understand this extraordinary fact.

The theory outlined in these notes is best explained by the following
conjecture.

Conjecture 1. The motivic periods of a graph G of type (Q,M) are reg-
ularised versions of motivic integrals of the form (0.3). Those of weight ≤ k
are in the algebra generated by regularised motivic periods of graph minors
of G with at most k + 1 edges.

This conjecture means that the Galois conjugates of a motivic amplitude
of low weight of a graph should be a regularised motivic period of its sub-
quotient graphs of the form (0.3). Since there are few graphs with a bounded
number of edges, this provides a constraint on amplitudes to all orders. We
call this the small graphs principle. The upshot is that the topology of a
graph constrains the Galois theory of its amplitudes. In the case (Q,M) =
(0, 0), this theory partially explains the observations of Panzer and Schnetz.

What is presently lacking for a proof of this conjecture is a suitable no-
tion of regularisation for motivic periods.5 In these notes, we prove a weaker,
but more precise version of this conjecture, in which we replace the word
‘regularised’ with ‘affine’, which has a technical meaning (Theorem 8.11). It
implies the

Theorem 0.2. The vector space WkFP
m

Q,M is finite-dimensional. In par-
ticular, the vector space generated by convergent integrals (0.3) which are of
bounded weight6, for G of any fixed type (Q,M), is finite-dimensional.

This theorem is non-trivial since there are infinitely many graphs, and
therefore implies infinitely many relations between periods of different graphs.

of a given quantum field theory, as opposed to an arbitrary integral with that shape.
In the literature, the word amplitude is often reserved to describe the sum of all
Feynman integrals at a given loop order. We shall call the latter the ‘full amplitude’
in accordance with some authors.

5Unfortunately, when writing the technical background [17] for these notes, I had
not forseen that convergent Feynman integrals might require the theory of limiting
mixed Hodge structures, and a corresponding notion of limiting motivic period, and
so it was not discussed. I do not believe that this, or Conjecture 1, should pose any
major difficulties.

6let us call a period of weight ≤ k if it is the image of a motivic period of weight
≤ k under the period homomorphism.
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We also show that the weight-graded pieces of mot(G) in weight ≤ k
are indeed generated by minors of G with at most ≤ k + 1 edges, and we
completely determineW2FP

m

0,0. These simple facts already imply strong and
concrete constraints on amplitudes to all loop orders — for example, the
last statement gives a non-trivial and rather subtle condition on amplitudes
which has been verified numerically for nine loop scalar graphs by Panzer
and Schnetz.

At the heart of this theory is a set of identities for graph polynomials.
For the usual graph (Kirchhoff) polynomial it takes the form of a partial
factorisation

ΨG = ΨγΨG/γ +RΨ
γ,G

where γ ⊂ G is any subgraph (defined by a subset of edges of G), and RΨ
γ,G

is a remainder term of higher degree in the variables of Ψγ than deg(Ψγ).
This identity has been known for some time and is used in the parametric
theory of renormalisation [21], although only in the special case when γ is a
divergent subgraph. It generalises in two different ways for the graph poly-
nomial ΞG(q,m), which we call the ultraviolet and infra-red factorisations.
This requires some genericity assumptions on the external kinematics. The
infra-red factorisation identities are new.

The geometric incarnation of these identities implies that the open strata
of (0.4)

Di\(YG ∩Di)

are products of varieties of the same type. This was already observed in
[10] in the case (Q,M) = (0, 0) mentioned above. Such a family of varieties
defines a type of operad in the category of schemes over Z. Although we shall
barely mention operads in these notes, the notion of ‘operad in the category
of motives’ imposes strong constraints on its possible periods, and merits
further study.7 A similar theory to the one described here should hold more
generally for any family of varieties with this product-structure.

We are still very far from exploiting all the consequences of this geometric
structure underlying amplitudes. In fact, the product structure on the faces
of (0.4) is such a rigid constraint that it almost completely determines the
polynomials ΨG and ΞG(q,m), as we prove in §4.

7A similar example of such a system of stratified varieties with product structure
are the moduli spaces Mg,n of curves of genus g with n marked points.
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0.4 Contents

In §1 we recall some basic notions relating to Feynman graphs and graph
polynomials. In §2 we prove factorisation theorems for graph polynomials. In
§3 we study the notion of a motic subgraph of a Feynman graph. These are in
one-to-one correspondence with the locus where the domain of integration
σG meets the singularities of the Feynman integrand and subsume both
ultraviolet and infra-red type divergences. In §4 we consider a Hopf algebra
of graphs where the coproduct ranges over motic subgraphs and characterize
graph polynomials by their partial factorisation properties. The motic Hopf
algebra is a generalisation of the Connes-Kreimer coproduct for scalar graphs
since it also takes into account certain infra-red subdivergences. In §5 we
study blow-ups of projective space along linear subspaces, and define some
affine models which generalise the partial compactifications of moduli spaces
Mδ

0,n of the author’s thesis. In §6 we define the graph motive and prove its
recursive product structure. In §7 we define the motivic amplitude of a
Feynman graph, and prove some stability results in §8. In §9 we focus on
the case of graphs with no kinematic dependence and prove some modest
results in the direction of the coaction conjecture of [46]. Although they are
of limited physical significance, this family of graphs plays an important
and central role in the theory. In §10 we discuss applications of the cosmic
Galois group in the case of graphs with general kinematics and state some
conjectures and problems for further study.

The Appendix §12 provides a fully worked example of such a graph using
the methods described here. It requires some technical tools which are set
out in §11.

0.5 Relation to other work

A number of expressions in this paper have appeared in the literature with
possibly different meanings. They are listed below:

• ‘Cosmic Galois group’. The phrase ‘cosmic Galois group’ was invented
by P. Cartier. Later, Connes and Marcolli made a precise definition
of a cosmic Galois group in relation to renormalisation, in the papers
[27, 28]. It is not clear if it is at all related to the groups defined here.

• ‘Motivic amplitude’. This phrase occurs with a different definition in
[34], where it means a certain tensor of elements in a field, and only
makes sense in the mixed Tate case. This notion can be retrieved as a
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very special case of the symbol (defined in [17]) of de Rham motivic
amplitudes.

• ‘Motivic multiple zeta value’. There are two versions of motivic mul-
tiple zeta values in use, an earlier one due to Goncharov, for which
the motivic version of ζ(2) vanishes, and which do not posses a period
map, and another for which ζm(2) is non-zero. Sending ζm(2) to zero
would destroy much of the structure in amplitudes discovered in [46].

It is also important to emphasize that motivic amplitudes do not form a
Hopf algebra. The main coaction formula (0.6) is asymmetric - on one side
we have motivic periods which have a well-defined map to numbers, and
on the other, de Rham periods which do not. However we can associate
symbols to de Rham periods (in the differentially unipotent case), and also
single-valued periods [17].
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1. Scalar Feynman graphs and Symanzik polynomials

We first recall some basic definitions of scalar Feynman graphs, before de-
scribing the corresponding integrals in parametric form. The reader should
be aware that our conventions occasionally differ from the standard ones in
a few minor details.

1.1. Feynman graphs

A Feynman graph is a graph G defined by

(VG, EG, E
ext
G )

where VG is the set of vertices of G, EG is the set of internal edges of G, and
Eext

G is a set of external half-edges (also known as legs). Their endpoints are
encoded by maps ∂ : EG → Sym2 VG and ∂ : Eext

G → VG. We shall assume
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that the vertices with external legs (image of Eext
G in VG) lie in a single

connected component of G.
A Feynman graph additionally comes with kinematic data:

• a particle mass me ∈ R for every internal edge e ∈ EG,

• a momentum qi ∈ Rd for every external half-edge i ∈ Eext
G ,

where d ≥ 0, the dimension of space-time, is fixed. The internal edges of G
are labelled if there is a bijection EG ↔ S with a fixed set S. The external
half-edges will be oriented inwards, so all momenta are incoming and are
subject to momentum conservation

(1.1)
∑

i∈Eext
G

qi = 0 .

Some of the internal masses me will be zero. Let MG ⊂ EG denote the set
of internal edges e of G for which me �= 0. In our figures, the mass-carrying
edges in MG will be drawn with a doubled edge.

In this paper, a subgraph H of G will be a graph defined by a triple
(VH , EH , Eext

H ) where VH ⊂ VG, EH ⊂ EG and either Eext
H = Eext

G or Eext
H =

∅. Note that for H to be a Feynman subgraph, the extra condition that the
vertices Eext

H lie in a single connected component of H must also hold. This
guarantees that momentum conservation holds for every component of H.
The particle masses of a Feynman subgraph H ⊂ G are determined by the
following condition:

either Eext
H = Eext

G and MH = MG

or Eext
H = ∅ and MH = ∅ .

In the former case, H contains all massive edges of G, and inherits the
corresponding masses. In the latter case, H is viewed as a massless diagram
and me = 0 for all e ∈ EH . Thus in these notes, a Feynman subgraph either
meets all external legs in a single connected component, and contains all
massive edges; or is considered to be massless with no external momenta.

Note that all external legs correspond to a potentially non-zero mo-
mentum; external legs which would ordinarily be considered to have zero
incoming momentum will simply be omitted. This forces our graphs G to
have vertices of varying degrees: a graph G is said to be in φn if every vertex
has degree ≤ n.

A tadpole, or self-edge, is a subgraph of G of the form ({v}, {v, v}, ∅).
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We shall use the following notation for the basic combinatorial invariants
of G:

hG = h1(G) the loop number of G

κG = h0(G) the number of connected components of G

NG = |EG| the number of edges of G .

They do not depend on the external legs of G. Euler’s formula states that

(1.2) NG − VG = hG − κG .

We define the following equivalence relation on Feynman graphs. If a vertex
v ∈ VG has several incoming momenta q1, . . . , qn we can replace it with a
single incoming momentum q1 + · · ·+ qn:

q1 q2
· · ·

qn−1 qn

∼

q1 + · · ·+ qn

Our notion of Feynman subgraph respects this equivalence relation. The
graph polynomials defined below will only depend on equivalence classes.

We say that a Feynman graph is of type (Q,M) if it is equivalent to a
graph with at most Q external kinematic parameters, and at most M non-
zero particle masses. We shall call a graph one-particle irreducible, or 1PI,
if every connected component is 2-edge connected (i.e. deleting any internal
edge causes the loop number to drop).

Example 1.1. The following Feynman graph will be our basic example
to illustrate the ideas in this paper. It will be referred to several times
throughout this text.

1

2

3 4q1

q2
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This graph has a single non-zero mass, namely m1, and m2 = m3 = m4 = 0.
Momentum conservation demands that q1 = −q2. The bottom right vertex,
which meets edges 2, 3, 4 has zero incoming external momentum.

1.2. Graph polynomials

Let G be a Feynman graph. Recall that a tree is a connected graph T with
hT = 0. A forest is any graph T with hT = 0.

Definition 1.2. A spanning k-tree of G is a subgraph T = T1 ∪ · · · ∪ Tk ⊂
G which has exactly k components Ti such that Ti is a tree and VT = VG.

A spanning 1-tree is simply called a spanning tree.

Definition 1.3. Let G be a connected Feynman graph. The Kirchhoff poly-
nomial (or 1st Symanzik polynomial) is the polynomial in Z[αe, e ∈ EG] de-
fined by

(1.3) ΨG =
∑
T⊂G

∏
e/∈T

αe ,

where the sum is over all spanning trees T of G. If G has several connected
components G1, . . . , Gn we shall define

(1.4) ΨG =

n∏
i=1

ΨGi
.

Note that one sometimes takes (1.3) as the general definition of graph poly-
nomial. It differs from (1.4) since it vanishes if G has more than one con-
nected component.

The second Symanzik polynomial is defined for connected G by

(1.5) ΦG(q) =
∑

T1∪T2⊂G

(qT1)2
∏

e/∈T1∪T2

αe ,

where the sum is over all spanning 2-trees T = T1 ∪ T2 of G and qT1 =∑
i∈Eext

T1

qi is the total momentum entering T1. It equals −q
T2 by momentum

conservation (1.1). If G has several connected components G0, G1, . . . , Gn,
then by our definition of a Feynman graph, exactly one component, say G0,
contains all external momenta.
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In this case we define

(1.6) ΦG(q) = ΦG0
(q)

∏
i≥1

ΨGi
.

Applying Euler’s formula (1.2) to G and a spanning κT -tree T ⊂ G im-
plies that

(1.7) NG −NT = hG + κT − κG .

Since the right-hand side is independent of T , ΨG and ΦG are homogeneous
with respect to Schwinger parameters and have the following degrees (in the
αe):

deg ΨG = hG(1.8)

deg ΦG(q) = hG + 1

These equations can also be deduced from the contraction-deletion relations
which are stated below. It is a crucial observation for the arithmetic of
Feynman integrals that the coefficients of every monomial in ΨG are only 0
or 1. Furthermore, ΨG and ΦG are of degree at most one in every Schwinger
parameter αe, but these two facts play a minor role in these notes. See [18],
[22] for applications of these facts.

Definition 1.4. Let G be a Feyman graph. Define

(1.9) ΞG(q,m) = ΦG(q) +

( ∑
e∈EG

m2
eαe

)
ΨG .

By (1.8), the polynomial ΞG is homogeneous in the αe of degree hG + 1.

Since the graph polynomials ΨG, ΦG(q), ΞG(q,m) only depend on total
momentum flow, they are well-defined on equivalence classes of graphs.

Example 1.5. Let G be the graph of Example 1.1. Then we have

ΨG = α1α3 + α1α4 + α2α3 + α2α4 + α3α4

ΦG(q) = q21(α1α2α3 + α1α2α4 + α1α3α4)

ΞG(q,m) = q21(α1α2α3 + α1α2α4 + α1α3α4) +m2
1α1ΨG
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Remark 1.6. The reader is warned that in the literature, the polynomial
(1.9) is often written with the opposite sign (or equivalently, all momentum
terms q are replaced by iq). To find one’s bearings, consider the following
familiar bubble diagram with two equal masses m1 = m2 = m:

q −q
1

2

It satisfies

ΞG(q,m) = q2α1α2 +m2(α1 + α2)
2 .

Its discriminant is q2(4m2 + q2), and so its Landau singularity occurs at
q2 = −4m2. With our chosen sign convention, it will lie outside the Eu-
clidean region where q,m are real. This, and other, typical physical infra-red
singularities (where, for example, terms in ΞG(q,m) cancel out altogether)
will be excluded from the present set-up (although certain other types of
infra-red singularities will be allowed). However, they can still be treated in
the present theory on a graph by graph basis after analytic continuation in
the space of kinematics (q,m). That the analytic continuation exists follows
from the fact that the discriminant locus is algebraic of codimension ≥ 1,
and its complement is connected in the analytic topology. Therefore there
exists a path from a point in the Euclidean region to an open subset of the
region q ∈ iR, along which the integral is analytic.

1.3. Feynman integral in projective space

Let d ∈ 2N be an even integer, which denotes the dimension of space-time.
Here it will always be fixed, and will be dropped from the notation. Our
version of the Feynman integral in parametric form differs marginally the
usual presentation. In order to kill two birds (namely, the case with no
kinematics, and the case with non-trivial kinematics) with one stone we
shall take the following definition, after omitting certain pre-factors (see
[21] §3 for a more rigorous derivation from first principles):

(1.10) IG(q,m) =

∫
σ
ωG(q,m)
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where

(1.11) ωG(q,m) =
1

Ψ
d/2
G

( ΨG

ΞG(q,m)

)NG−hGd/2
ΩG

and

(1.12) ΩG =

NG∑
i=1

(−1)iαi dα1 ∧ · · · ∧ d̂αi ∧ · · · ∧ dαNG

where d̂αi means that the term dαi is omitted. Note that the form ωG is
homogeneous of degree 0, which follows from (1.8). Finally, let

σ ⊂ PNG−1(R)

be the coordinate simplex defined in projective coordinates by

(1.13) σ = {(α1 : · · · : αNG
) ∈ PNG−1(R) : αi ≥ 0} .

The integral (1.10) may not necessarily converge. Necessary and sufficient
conditions for its convergence, in a certain kinematic region, will be stated
below. The derivation of the parametric form of the Feynman integral (1.10)
from its momentum space representation using the Schwinger trick is nicely
explained in [44].

Remark 1.7. The integral (1.10) is a drastic simplification in certain situ-
ations. For example, if d = 4 and G is primitive overall log-divergent (NG =
2hG), then the second factor in ωG(q,m) drops out and it has no dependence
on external masses or momenta. For such a graph, we obtain

IG =

∫
σ

ΩG

Ψ2
G

.

In the case of the wheel with three spokes, this equals 6ζ(3) which is its
residue (coefficient of 1/ε in dimensional regularisation). The full vertex
function is ∫

σ

log(ΞG(q,m)/ΞG(q0,m0))

Ψ2
G

ΩG

where q0,m0 is a chosen renormalisation point. Such integrals, and their
derivation, are discussed at length in [21]. They can also be viewed as period
integrals either by writing the log in the numerator as an integral, or by
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differentiating with respect to a renormalisation scale as in [21] to make the
integrand algebraic. It is highly likely that the theory described in this paper
also extends to this situation, but a discussion of renormalisation would have
made the present paper overly lengthy.

1.4. Edge subgraphs and their quotients

Let G = (VG, EG, E
ext
G ) be a Feynman graph. A set of internal edges γ ⊂ EG

defines a subgraph of G as follows. Write Eγ = γ and let Vγ be the set of
endpoints of elements of Eγ .

Definition 1.8. A set of edges γ ⊂ EG is momentum-spanning if ∂Eext
G ⊂

Vγ , and the vertices Eext
G lie in a single connected component of the graph

(Vγ , Eγ).

We define the subgraph associated to γ ⊂ EG by

(1.14) (Vγ , Eγ , E
ext
γ )

where Eext
γ = Eext

G if γ is momentum-spanning, and Eext
γ = ∅ otherwise.

Thus the Feynman graph (1.14) inherits all external momenta of G if it is
momentum-spanning and has no external momenta otherwise. We shall call
(1.14) the edge-subgraph associated to γ, and denote it also by γ when no
confusion arises.

The quotient of G by an edge-subgraph γ is defined by

G/γ = (VG/∼, (EG\γ)/∼, E
ext
G /∼)

where ∼ is the equivalence relation on vertices of G where two vertices are
equivalent if and only if they are vertices of the same connected component
of γ, and the induced equivalence relation on edges (unordered pairs of ver-
tices). It is a Feynman graph. Every connected component of γ corresponds
to a unique vertex in G/γ. Note that γ is momentum-spanning if and only
if G/γ is equivalent to a graph with no external momenta (by momentum
conservation). In this case we can take Eext

G/γ = ∅.

In this way, exactly one of the two Feynman graphs γ and G/γ is equiva-
lent to a Feynman graph with non-zero external momenta: if γ is momentum
spanning it is γ, otherwise it is G/γ.
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1.5. Contraction-deletion

LetG = (VG, EG, E
ext
G ) be a Feynman graph. The deletion of an edge e in EG

is the graph G\e defined by deleting the edge e but retaining its endpoints:

G\e = (VG, EG\{e}, E
ext
G ) .

In general, it is not a union of Feynman graphs since momentum conservation
may not hold on each of its connected components.

One sometimes encounters the following variant of the previous notion
of graph-quotient. It will be denoted by a double slash to distinguish it from
the ordinary quotient. For an edge-subgraph γ, let G//γ be the empty graph
if hγ > 0 and

G//γ = G/γ

if γ is a forest. In the case of a single edge e, G//e is empty whenever e is a
tadpole.

It follows from Euler’s formula (1.2) that

(1.15) hG = hγ + hG/γ

for any edge-subgraph γ ⊂ G (which is not necessarily connected).

Lemma 1.9. (Contraction-deletion) Let G be connected, and e ∈ EG. Then

ΨG = Ψ0
G\eαe +ΨG//e(1.16)

ΦG(q) = Φ0
G\e(q)αe +ΦG//e(q) ,

where Ψ0
G\e is given by the right-hand side of (1.3): it is ΨG\e if G\e is con-

nected and 0 otherwise. Likewise Φ0
G\e(q) is given by the right-hand side of

(1.5): it is equal to ΦG\e(q) if G\e is connected and equal to ΨG1
ΨG2

(qG1)2 =
ΨG1

ΨG2
(qG2)2 if G\e has two connected components G1, G2.

Proof. Let T be a spanning k-tree of G (where k ∈ {1, 2}). The edge e is not
an edge of T if and only if T is a spanning k-tree of G\e. By the definition
of the graph polynomials, this gives rise to the first terms in the right hand
sides of (1.16). Note that if e is a tadpole, this is the only case which can
occur. Now suppose that e is not a tadpole. If e is an edge of T , then T/e is
a spanning k-tree of G/e. Conversely, if T ′ is a spanning k-tree of G/e, then
there is a unique component of T ′ which meets the vertex in G/e defined by
the endpoints of e. It follows that the inverse image of T ′ in G, together with
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the edge e, is a spanning k-tree in G. This establishes a bijection between
the set of spanning k-trees in T which contain e and those of G/e. The rest
follows from Definition 1.3. �

Corollary 1.10. It follows that from (1.16) and (1.9) that

ΨG

∣∣
αe=0

= ΨG//e

ΞG(q,m)
∣∣
αe=0

= ΞG//e(q,m) .

1.6. Generic kinematics and non-vanishing of graph polynomials

We establish some non-vanishing results for graph polynomials which hold
for generic momenta. These will be important for the sequel.

Lemma 1.11. A connected graph G has a spanning tree. Equivalently,
ΨG �= 0.

Proof. Let G be a connected graph with ΨG = 0. Then ΨG//e = 0 for all
e by (1.16). By repeatedly contracting edges with distinct endpoints, we
obtain a graph G′ with a single vertex such that ΨG′ = 0. It has a unique
spanning tree consisting of this vertex, so ΨG′ =

∏
e∈EG′

αe, which is non-
zero, a contradiction. �

Consider the following condition on external momenta

(1.17)

(∑
i∈I

qi

)2

�= 0 for all I � Eext
G .

It respects the equivalence relation of Feynman graphs.

Lemma 1.12. Let G be a Feynman graph with non-trivial external mo-
menta (in other words, there exists a vertex v ∈ ∂Eext

G such that the to-
tal momentum q{v} entering v is non-zero). Then with condition (1.17),
ΦG(q) �= 0 .

Proof. By momentum conservation (1.1), there exist at least two vertices
v1, v2 with non-zero total incoming momenta q1, q2 respectively. Since G is
a Feynman graph, v1, v2 lie in the same connected component G0. By the
previous lemma, there exists a spanning tree T in G0. Since T is connected,
there is a (shortest) path from v1 to v2 contained in T . Delete any edge e′

in this path to obtain a spanning 2-tree T\e′ = T1 ∪ T2 such that v1 ∈ VT1
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and v2 ∈ VT2
. It contributes a non-zero monomial (qT1)2

∏
e/∈T1∪T2

αe to the
second Symanzik polynomial ΦG0

(q) by (1.17). It cannot cancel out since
all signs in the definition of ΦG0

(q) are positive. Now apply (1.6) and the
previous lemma to deduce that ΦG(q) �= 0. �

Now consider the following condition on momenta and masses:

(1.18)

(∑
i∈I

qi

)2

+m2
e �= 0 for all I � Eext

G and e ∈ EG .

Lemma 1.13. If (1.17) and (1.18) hold then ΞG(q,m) = 0 if and only if
G has no massive edges, and no incoming momenta (i.e., q{v} = 0 for all
v ∈ ∂Eext

G ).

Proof. Let e ∈ EG such that me �= 0. Note that ΦG(q) is of degree at most
one in αe. If G\e is connected, then by (1.16), the coefficient of α2

e in ΞG is
m2

eΨG\e which is non-zero by Lemma 1.11. In particular, ΞG(q,m) �= 0. In
the opposite case, e is a bridge in G, and G\e has two connected components
G1, G2. Then ΨG = ΨG1

ΨG2
and by (1.16) the coefficient of αe in ΞG(q,m)

is ((qG1)2 +m2
e)ΨG1

ΨG2
. This is non-zero by (1.18) and so ΞG(q,m) �= 0.

Finally, if all edges of G are massless, then ΞG(q,m) = ΦG(q) and we can
appeal to the previous lemma. �

Example 1.14. Consider the following Feynman graph

qi
... qj

...
1

where the momenta entering on the left are qi, for i ∈ I, and those on the
right qj , for j ∈ J . Then ΞG(q,m) =

(
(
∑

i∈I qi)
2 +m2

)
α1 is identically zero

if (
∑

i∈I qi)
2 +m2 = 0, where m = m1. These examples imply, by contrac-

tion and deletion, that the conditions (1.17) and (1.18) are optimal.

1.7. Space of generic kinematics

The previous discussion motivates the following definition. In order to allow
the possibility of masses and momenta taking values in different fields, we
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work with affine spaces. Suppose that we wish to consider processes in d ∈
2N spacetime dimensions with Q external momenta q = (q1, . . . , qQ) ∈ AQd,
which are subject to momentum conservation

(1.19) q1 + · · ·+ qQ = 0 ,

in a theory with M possible non-zero particle masses m = (m1, . . . ,mM ) ∈
GM

m , where Gm = A1\{0}. The graph polynomials and hence the integral
(1.10) are invariant under the action of the orthogonal group in d dimensions.
Therefore set

si,j = sj,i = qi.qj for 1 ≤ i ≤ j ≤ Q

to be the Euclidean inner product of the momenta qi, qj , and write

sI =
∑
i,j∈I

si,j =

(∑
i∈I

qi

)2

for I ⊂ {1, . . . , Q} .

Condition (1.19) implies that the si,j ∈ A(
Q+1

2 ) lie in a subspace isomorphic

to A(
Q

2) since we can solve for qQ. It is parameterised, for example, by the
si,j for 1 ≤ i ≤ j ≤ Q− 1. The Feynman amplitude is a function only of the
si,j and mk.

Definition 1.15. Define a space of generic kinematics

(1.20) Kgen
Q,M ⊂ KQ,M = A(

Q

2) ×GM
m

with coordinates (s,m), to be the open complement of the union of the
spaces

(1.21) sI +m2
j = 0

for all I � {1, . . . , Q} and j ∈ {0, 1, . . . ,M}, where we set m0 = 0. Compare
(1.17). It is an affine scheme defined over Z of dimension M +

(
Q
2

)
. Define

the Euclidean region to be its set of real points Kgen
Q,M (R). Define a subspace

Ugen
Q,M ⊂ Kgen

Q,M (C)

to be the open region (in the usual topology) of Kgen
Q,M (C) defined by

Ugen
Q,M = {(s,m) ∈ Kgen

Q,M (C) : Re sI > 0 for all I � {1, . . . , Q} ,(1.22)

and Rem2
j > 0 for all j ∈ {1, . . . ,M}} .
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The region Ugen
Q,M contains the Euclidean region Kgen

Q,M (R).

Note that Kgen
1,M =Kgen

0,M =GM
m , and in particular Kgen

1,0 =Kgen
0,0 =Spec (Z).

Definition 1.16. Let kQ,M denote the field of fractions of O(KQ,M ). It is
isomorphic to Q((si,j)1≤i≤j<Q, (mk)1≤k≤M ). In particular, k0,0 = Q.

2. Partial factorization theorems

The factorization theorems presented below are crucial to the construction
of the cosmic Galois group. The so-called ultraviolet factorisations are used
in the theory of renormalisation, the infra-red factorisations below are ap-
parently new.

2.1. UV factorizations

Let G be a connected Feynman graph, and let γ ⊂ EG be an edge-subgraph
with connected components γ1, . . . , γn.

Lemma 2.1. The map T �→ (T/(T ∩ γ), T ∩ γ1, . . . , T ∩ γn) is a bijection
from:

{Spanning k-trees T such that γi ∩ T is connected for all i = 1, . . . , n}

to

{Spanning k-trees in G/γ} ×
n∏

i=1

{Spanning trees in γi}

Proof. Let T be any subgraph of G such that T ∩ γ is a union of trees. Then

(2.1) hT/(T∩γ) = hT and κT/(T∩γ) = κT .

The first formula follows from (1.15), the second is clear. If T is a spanning
k-tree such that each T ∩ γi is connected, then each T ∩ γi is a spanning
tree in γi and T/(T ∩ γ) is a spanning k-tree in G/γ by (2.1).

In the other direction, suppose that S ⊂ G/γ is a spanning k-tree, and
let Ti ⊂ γi be spanning trees. There is a unique subgraph T of G such that
T ∩ γi = Ti and T/(T ∩ γ) = S. By (2.1), hT = hS = 0 and κT = κS = k,
and since T meets every vertex of G it follows that T is a spanning k-
tree. �
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The following factorisation formulae are essentially well-known [21].

Proposition 2.2. Let G be connected, γ ⊂ EG as above. Then

ΨG = ΨγΨG/γ +RΨ
γ,G(2.2)

ΦG(q) = ΨγΦG/γ(q) +RΦ,UV
γ,G (q)

where the degree of RΨ
γ,G and RΦ,UV

γ,G (q) in the variables αe, e ∈ Eγ is strictly
greater than

degΨγ = deg

n∏
i=1

Ψγi
= hγ .

Proof. We shall prove both formulae simultaneously. Let k = 0 (resp. 1).
By (1.3) and (1.5), the set of monomials in ΨG (resp. ΦG(q)) are in one-
to-one correspondence with the set of spanning k-trees T ⊂ G. The latter
can be partitioned into two subsets: those for which T ∩ γi is connected for
all i, and those for which T ∩ γi is not connected for some i. The former
class is in one-to-one correspondence, by Lemma 2.1, with the monomials
in Ψγ1

· · ·Ψγn
×ΨG/γ (resp. Ψγ1

· · ·Ψγn
× ΦG/γ(q)). The latter class corre-

spond to monomials in the remainder terms RΨ
γ,G (resp. RΦ,UV

γ,G (q)). To see
this, observe by (1.7) applied to γi ∩ T ⊂ γi that for each i,

Nγi
−NT∩γi

= hγi
+ κT∩γi

− 1 .

Thus the degree of the monomial
∏

e/∈T αe in the variables αe for e ∈ Eγ is

n∑
i=1

(Nγi
−NT∩γi

) = hγ +

n∑
i=1

(κT∩γi
− 1) .

This is strictly greater than hγ whenever some T ∩ γi is not connected. �

Equivalently, setting α′
e = λαe for e ∈ Eγ and α′

e = αe otherwise, we
have

ΨG(α
′
e) ≡ λhγΨγ(α

′
e)ΨG/γ(α

′
e) (mod λhγ+1)

ΦG(α
′
e)(q) ≡ λhγΨγ(α

′
e)ΦG/γ(q)(α

′
e) (mod λhγ+1)

Remark 2.3. One can show [21] that the formulae (2.2), in the special
case when γ is a divergent subgraph, are sufficient to recover some of the
main theorems of the theory of renormalization. The full strength of the
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factorisation formulae (2.2), for γ an arbitrary subgraph, will only manifest
itself in the motivic period.

2.2. IR factorizations

Let G be a connected Feynman graph.
With generic momenta (1.17), γ ⊂ EG is momentum-spanning8 if and

only if

(2.3) ΦG/γ(q) = 0 .

This follows immediately from Lemma 1.12. In this situation, the second
factorization formula (2.2) is degenerate. It turns out that the remainder
term RΦ,UV

γ,G can be further factorized via the following formula, which is
apparently new.

Proposition 2.4. Let γ ⊂ EG be a momentum spanning edge-subgraph.
Then

(2.4) ΦG(q) = Φγ(q)ΨG/γ +RΦ,IR
γ,G (q)

where the degree of RΦ,IR
γ,G (q) in the variables αe, e ∈ Eγ is strictly greater

than

degΦγ(q) = hγ + 1 .

Proof. Suppose that γ has connected components γ′, γ1, . . . , γn such that γ′

is momentum spanning. Monomials in ΦG(q) are in one-to-one correspon-
dence with spanning 2-trees T = T1 ∪ T2 such that (qT1)2 �= 0. For such a
2-tree, T ∩ γ′ cannot be connected because each component Ti intersects γ

′

non-trivially (otherwise, Vγ′ ∩ VTi
= ∅ for some i, which implies that qTi = 0

because γ′ is momentum-spanning).
Partition the set of spanning 2-trees such that (qT1 )

2 �= 0 into two classes:
those such that T ∩ γ′ has 2 components and T ∩ γi is connected for all i
(call this class C1), and those for which T ∩ γ′ or some T ∩ γi has strictly
more components (C2).

8If wants to consider non-generic momentum configurations, one could take (2.3)
as the definition of momentum-spanning. But in this case the factorisation theo-
rems stated below will fail without some additional assumptions on momenta. See
Example 2.5.
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There is a bijection from the first set C1 to

{Spanning 2-trees in γ′} × {Spanning trees in G/γ}

×
∏
i

{Spanning trees in γi} .

It is given by the map

T �→ (T ∩ γ′ , (T ∪ γ)/γ , T ∩ γ1, . . . , T ∩ γn) .

The proof is similar to Lemma 2.1, on noting that (T ∪ γ)/γ is the one-
vertex join of T1/(T1 ∩ γ) and T2/(T2 ∩ γ) along the vertex given by the
image of γ, and has exactly one connected component. One checks that
given a spanning 2-tree T ′ ⊂ γ′, and spanning trees S ⊂ G/γ and Ti ⊂ γi,
there is a unique graph T ⊂ G such that T ∩ γ′ = T ′, (T ∪ γ)/γ = S and
Ti = T ∩ γi, and that it has exactly two connected components.

This gives a one-to-one correspondence between the set C1 and mono-
mials in

Φγ(q)ΨG/γ =

(
Φγ′(q)

n∏
i=1

Ψγi

)
ΨG/γ .

Spanning 2-trees T in the set C2 are such that T ∩ γ′ has at least 3 compo-
nents, or some T ∩ γi has at least 2 components. In this case, the degree of
the monomial

∏
e/∈T αe in the variables αe for e ∈ Eγ is, by Equation (1.7)

applied to T ∩ γ′ ⊂ γ′ and T ∩ γi ⊂ γi

Nγ′ −NT∩γ′ +

n∑
i=1

(Nγi
−NT∩γi

) = hγ + (κT∩γ′ − 1) +

n∑
i=1

(κT∩γi
− 1) ,

which is strictly greater than hγ + 1, and contributes to RΦ,IR
γ,G (q). �

One can derive the contraction-deletion relations (1.16) from the factor-
izations (2.2) and (2.4) by setting γ = e in the former and γ = G\e in the
former and latter.

Example 2.5. (Degenerate momenta). Consider the following Feynman
graph
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q1 q2

q3q4

1

24

3

which satisfies

ΦG(q) = (q2 + q3)
2α1α3 + (q1 + q2)

2α2α4

+ q21α1α4 + q22α1α2 + q23α2α3 + q24α3α4

and impose the condition (q2 + q3)
2 = (q1 + q4)

2 = 0. In this case the sub-
graph γ defined by the two edges 2 and 4 satisfies φG/γ(q) = 0, but is not
momentum spanning according to our stricter definition, because the incom-
ing momenta do not all lie in the same connected component. To leading
order in the subgraph variables α2, α4 we have

ΦG(q) = α2(q
2
3α3 + q22α1) + α4(q

2
1α1 + q24α3) +R

where R = (q1 + q2)
2α2α4, and the leading terms do not factorize. If how-

ever, one further imposes the conditions q2 + q3 = 0 and q1 + q4 = 0 (so that
the subgraph γ now satisfies momentum conservation in each connected com-
ponent), we obtain

ΦG(q) = (q22α2 + q24α4)(α1 + α3) +R

and a factorization formula for the leading term is restored. These types
of phenomena suggest our results generalise, but will not be considered in
these notes.

2.3. Factorization formulae for Ξ

A UV-factorization formula for ΞG(q,m) follows immediately from (2.2).
The IR-factorization formula requires a further constraint on the distribution
of masses.

Definition 2.6. A subgraph γ ⊂ G is mass-spanning if it contains all mas-
sive edges of G: for every edge e ∈ EG such that me �= 0, e ∈ Eγ .
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We shall say that a subgraph γ is mass-momentum spanning (or simply
m.m. for short) if it is both mass and momentum-spanning.

For generic kinematics (1.18), a subgraph γ ⊂ EG satisfies

(2.5) γ is m.m. ⇐⇒ ΞG/γ(q,m) = 0 .

This is a direct consequence of Lemma 1.13.

Theorem 2.7. Let G be a connected Feynman graph, and let γ ⊂ EG be
an edge-subgraph with any number of connected components. Then

(2.6) ΞG(q,m) = Ψγ ΞG/γ(q,m) +RΞ,UV
γ,G (q,m)

where RΞ,UV
γ,G (q,m) has degree > hγ in the αe, e ∈ Eγ. Now suppose that γ

is a mass-momentum subgraph. In this case,

(2.7) ΞG(q,m) = Ξγ(q,m)ΨG/γ +RΞ,IR
γ,G (q,m)

where RΞ,IR
γ,G (q,m) has degree > hγ + 1 in the αe, e ∈ Eγ.

Proof. For the proof of (2.6) combine (2.2) with the Definition (1.9) and set

RΞ,UV
γ,G (q,m) = RΦ,UV

γ,G (q) +

⎛⎝∑
e∈Eγ

m2
eαe

⎞⎠ΨγΨG/γ +

( ∑
e∈EG

m2
eαe

)
RΨ

γ,G

For (2.7), combine the factorization formula for Ψ with the IR-factorization
formula (2.4), use the condition me �= 0⇒ e ∈ Eγ , and set

RΞ,IR
γ,G (q,m) = RΦ,IR

γ,G (q) +

( ∑
e∈EG

m2
eαe

)
RΨ

γ,G .

The degree of RΞ,IR
γ,G is indeed of degree > hγ + 1 in the variables αe, for

e ∈ Eγ . �

Note that the factorisation formula for ΨG, which is symmetric with
respect to γ and G/γ, occurs in both the UV and IR-factorizations of ΞG.
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3. Motic subgraphs

For want of a better adjective, the invented word motic will be used to
define a class of subgraphs of a Feynman graph. It pertains to the word
mote, meaning a speck or particle (leading to notions of indivisibility), and
the fact that its letters stand for ‘members of the inner circle’, leading to
the idea of connectedness. The motive of a graph will be constructed out of
its motic subquotients.

3.1. Definition of motic subgraphs

Let G be a Feynman graph. Recall that at most one component of G carries
non-trivial kinematics.

Definition 3.1. An edge-subgraph Γ ⊂ G is motic if, for every edge-
subgraph γ � Γ which is mass-momentum spanning in Γ, one has hγ < hΓ.

Recall from §1.1 that any edge subgraph Γ ⊂ G which is mass-momentum
spanning inherits all masses and external momenta from G. When it is not
mass-momentum spanning then it is considered to be a Feynman graph with
zero internal masses and no external momenta. Every subgraph of such a
graph is trivially mass-momentum spanning. In particular, if G has no kine-
matics

Γ ⊂ G motic ⇐⇒ Γ is 1-particle irreducible .

Another example of a motic subgraph is a minimal mass-momentum span-
ning subgraph Γ ⊂ G (related to the notion of ‘infra-red’ graph in [51]).

Remark 3.2. An edge subgraph Γ ⊂ G is motic if (and only if) every mass-
momentum spanning edge subgraph of Γ of the form Γ\e, where e ∈ EΓ,
satisfies hΓ\e < hΓ. To see that a subgraph with this property is indeed
motic, let γ ⊂ Γ be any edge subgraph which is mass-momentum spanning
in Γ, and choose e ∈ EΓ\Eγ . Then Γ\e is also mass-momentum spanning in
Γ and contains γ, so we have hγ ≤ hΓ\e < hΓ. Thus a graph is motic when
cutting an edge either causes the loop number to drop, or breaks the property
of being mass-momentum spanning.

It follows from the definition that a subgraph Γ ⊂ G is motic if and only
if every connected component of Γ is a motic subgraph of G.

Example 3.3. Below are the six motic subgraphs of example of 1.1. All
subgraphs are mass-momentum spanning and give rise to an infra-red (and
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possibly also ultra-violet) sub-divergence, except for the final subgraph given
by the edges 3, 4, which corresponds to a purely ultra-violet sub-divergence.

1

2

3 4

1

2

3

1

2

4

1

3 4

1

3 4

For motivation, the reader may like to check that the graph polynomial
ΞG(q,m) vanishes on setting αe = 0 for all e ∈ Eγ , for these motic subgraphs
γ ⊂ G.

3.2. Properties of motic subgraphs

Throughout this section, we use the abbreviation m.m. to stand for mass-
momentum spanning.

Lemma 3.4. Let α ⊂ β ⊂ G be edge subgraphs.
(i). α is m.m. in β, and β is m.m. in G⇐⇒ α is m.m. in G.
(ii). β is m.m. in G⇐⇒ β/α is m.m. in G/α.

Proof. Part (i) is clear. For (ii), observe that (G/α)/(β/α) ∼= G/β and hence
ΞG/β = Ξ(G/α)/(β/α). Now apply (2.5). �

Note that the intersection of two m.m. subgraphs is not necessarily m.m.
(in Example 2.5, consider the edge subgraphs spanned by edges 1, 2, 3 and
2, 3, 4.)
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Remark 3.5. The definition of a motic subgraph is intrinsic in the follow-
ing sense. If H ⊂ G is an edge subgraph, and γ ⊂ H, then γ is motic in G if
and only if it is motic in H. This follows immediately from the definition if
H is m.m. in G, by Lemma 3.4 (i), since α ⊂ γ is m.m. in H if and only if it
is m.m. in G. In the case when H is not m.m. in G, then neither is γ ⊂ H by
the same lemma. It is motic if and only if it is 1-particle irreducible, which
is an intrinsic property.

The main properties of motic subgraphs are summarised below.

Theorem 3.6. Motic graphs have the following properties. Let G be a Feyn-
man graph and let α, β ⊂ G be edge subgraphs.

(i). (Quotients) If β is motic in G, then (β ∪ α)/α is motic in G/α.
(ii). (Extensions) Let α ⊂ β. If α is motic in G and β/α is motic in

G/α, then β is motic in G.

(iii). (Unions) If α, β ⊂ G are motic subgraphs then α ∪ β ⊂ G is motic.

(iv). (Contraction of edges) Let e ∈ EG. If (α ∪ e)/e is motic in G/e,
then at least one of α or α ∪ e is motic in G. Thus there is a surjective map

α �→ (α ∪ e)/e : {motic subgraphs of G} −→ {motic subgraphs of G/e} .

It is not injective: it can happen that both α and α ∪ e are motic.

Proof. (i). First consider the case when α ⊂ β, and let β be motic in G.
There is a one-to-one correspondence

{Edge subgraphs γ s.t. α ⊂ γ ⊂ β} ↔ {Edge subgraphs of β/α}

γ �→ γ/α

By Lemma 3.4 (ii), this bijection preserves the subset of m.m. subgraphs.
Now by (1.15), we have hβ = hα + hβ/α and hγ = hα + hγ/α, whence

hβ − hγ = hβ/α − hγ/α .

Thus γ/α ⊂ β/α is strict and m.m. if and only if γ ⊂ β is. In this case the
left-hand side is strictly positive and hβ/α > hγ/α. This proves that β/α is
motic in G/α.

Now consider the general case when β ⊂ G is motic but does not neces-
sarily contain α. The quotient G/α is obtained by successively contracting
edges in e ∈ Eα. For every such edge which is an edge of β, we can invoke the
case proved above. If e has no common vertices with β, or a single vertex in
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common with β, then the image β = (β ∪ e)/e of β in G/e is isomorphic to
β, and the proof is straightforward. It remains to consider the case when e
meets β in two vertices v1, v2 ∈ Vβ, and hence β is obtained from β by iden-
tifying v1 and v2. We wish to show that β is motic. Since Eβ = Eβ there is
a one-to-one correspondence γ ↔ γ between edge subgraphs of β and those
of β. First of all, suppose that v1, v2 lie in two distinct connected compo-
nents of β. Euler’s formula (1.2) implies that hβ = hβ . Since β is motic, all
momentum-bearing vertices lie in a single connected component of β. Thus
a strict subgraph γ � β is m.m. if and only if γ � β is m.m. and we have

hγ = hγ < hβ = hβ

using the fact that β is motic. This proves that β is motic also. Now suppose
that v1, v2 lie in the same connected component of β, and hence hβ = hβ + 1

by (1.2). Let γ � β be an m.m. edge-subgraph. If γ is m.m. in β, we deduce
that

hγ
(1.2)
≤ hγ + 1 < hβ + 1 = hβ ,

since the middle inequality follows from the fact that β is motic. Now suppose
that γ is not m.m. in β. Since γ is mass-spanning, the set of momentum
bearing vertices of β do not all lie in the same connected component of γ.
Since γ is m.m., their images in γ lie in the same connected component, and
we have κγ > κγ and hence hγ = hγ by (1.2). But then hγ = hγ ≤ hβ < hβ
since hβ = hβ + 1. In both cases we have shown that hγ < hβ , which proves

that β is motic.
(ii). Let α ⊂ β be motic and β/α ⊂ G/α be motic also. Let γ � β be a

strict m.m. edge subgraph. Denote its image in β/α by

γ = (γ ∪ α)/α .

By Lemma 3.4 (i), γ and γ ∪ α are m.m. in β and hence by Lemma 3.4 (ii),
γ is m.m. in β/α. By (1.15), we have

hγ = hγ∩α + hγ/(γ∩α) ≤ hγ∩α + hγ ≤ hα + hβ/α = hβ

The first inequality holds because γ is obtained from γ/(γ ∩ α) by identifying
vertices and therefore hγ/(γ∩α) ≤ hγ . Suppose by contradiction that hγ = hβ .
Then

hγ = hβ/α , hγ∩α = hα , hγ/(γ∩α) = hγ .

Since β/α is motic and γ ⊂ β/α is m.m., the first equality implies that
γ = β/α. Suppose that α ∩ γ is m.m. in α. Then the second equality would
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imply that α ∩ γ = α, since α is motic, and this, together with γ = β/α,
contradicts the fact that γ is a strict subgraph of β.

Now consider the case when α ∩ γ is m.m. in α. If α is not m.m. in G,
then every subgraph of α is automatically m.m. in α and there is nothing
to prove. Therefore suppose that α is m.m. in G, and hence in β. Consider
the set Q of momentum-bearing vertices in β, and suppose that they lie
in k ≥ 1 different connected components of α ∩ γ. It suffices to show that
k = 1, since in that case α ∩ γ is m.m. from the definition (as both γ and α
are m.m. in β). Since γ is momentum-spanning, the image of Q in γ/(γ ∩ α)
consists of exactly k vertices lying in a single connected component. On the
other hand, since α is momentum-spanning, the image of Q in γ reduces
to a single vertex. So γ is obtained from γ/(γ ∩ α) by identifying these
k connected vertices, and possibly identifying further vertices. If k > 1 we
would have hγ/(γ∩α) < hγ by (1.2) contradicting the third equality above.
Hence k = 1, as required.

(iii). By (i), the graph β = (α ∪ β)/α is motic in G/α. Since α ⊂ α ∪ β,
it follows from the extension property (ii) that α ∪ β is motic in G.

(iv). Let α ⊂ G be an edge subgraph, and e ∈ EG. Let Γ = α ∪ e and
suppose that Γ/e is motic in G/e. Suppose that e is not a tadpole. By
the proof of (i) above, there is a one-to-one correspondence between m.m.
subgraphs γ ⊂ Γ which contain the edge e and m.m. subgraphs γ/e of Γ/e.
If γ � Γ is strict and contains the edge e, then hγ = hγ/e < hΓ/e = hΓ by
(1.15). The strict inequality in the middle follows since Γ/e is motic. By
remark 3.2, Γ will be motic if Γ\e is not m.m., or if it is m.m. and hΓ\e < hΓ.

Therefore let us suppose that Γ\e is m.m. and hΓ\e = hΓ. The latter
equality implies that e is a bridge in Γ, so we can write Γ\e = Γ1 ∪ Γ2,
where Γ1,Γ2 are disjoint. The quotient Γ/e is the one-vertex join Γ1.Γ2.
Now there is a bijection between the subgraphs γ1 ∪ γ2 of Γ1 ∪ Γ2 and γ1.γ2
of Γ1.Γ2. This bijection preserves the number of loops and the property of
being m.m.. The momentum spanning property follows from the fact that
Γ\e is momentum-spanning by assumption, so all momenta flow into only
one of the parts Γi. Thus Γ1.Γ2 is motic if and only if Γ1 ∪ Γ2 is. Since Γ/e
is motic we deduce that Γ\e is. It remains to consider the case when e is a
tadpole. Then Γ\e = Γ/e is motic (so too is Γ). �

4. The motic Hopf algebra of graphs

The notion of motic subgraph gives rise to a Hopf algebra which encapsulates
both infra-red and ultra-violet divergences of Feynman graphs.
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Definition 4.1. Let F denote the free Z-module generated by disjoint
unions of motic9 Feynman graphs, modulo the equivalence relation G ∼
G ∪ {v} where v is an isolated vertex. It is bigraded by

(number of edges, number of loops) .

The disjoint union of graphs defines a commutative ring structure on F ,
whose unit is the empty graph 1. Define a coproduct on F by the formula:

Δ : F −→ F ⊗Z F(4.1)

G �→
∑
γ⊂EG

γ ⊗G/γ

where G is a connected graph and the sum is over all motic subgraphs γ
of G. This is a generalisation of the Connes-Kreimer coproduct for scalar
graphs. The map Δ extends to a unique homomorphism on F .

Theorem 4.2. F is a connected bigraded Hopf algebra.

Proof. The coassociativity of Δ is a consequence of properties (i) and (ii)
of Theorem 3.6 by a standard argument (see, for example, [11]). The aug-
mentation map ε is the projection F → F0

∼= Z. Denote its kernel by I.
A generator G is motic, so Δ(G) = 1⊗G+G⊗ 1 (mod I ⊗F + F ⊗ I).
From this follows the equations (ε⊗ id)Δ = id and (id⊗ ε)Δ = id. The an-
tipode S is constructed by the usual recursive formula for the antipode in
a connected graded commutative Hopf algebra, and is defined over Z. The
fact that the loop number and edge number are gradings follows from (1.15)
and Nγ +NG/γ = NG. �

The grading by loop number is of importance when considering the geometry
of graphs in momentum space and the perturbative expansion, but the edge
number grading will be more relevant in these notes, since we shall focus on
the geometry of graphs in parametric space and their corresponding motives.

Let us denote by FQ,M the free submodule of F generated by motic
Feynman graphs of type (Q,M), i.e., with Q external momenta and M

9G is motic if it is motic as a subgraph of itself.
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possible non-zero masses. Then FQ,M is a module over F0,0, where multipli-
cation is that of F :

(4.2) F0,0 ⊗Z FQ,M −→ FQ,M .

In particular, F0,0 is a commutative ring. An important feature of the
motic coproduct is the ‘all or nothing’ property of masses and momenta:

(4.3) ΔFQ,M ⊂
(
FQ,M ⊗Z F0,0

)
+
(
F0,0 ⊗Z FQ,M

)
.

The terms landing in the first factor correspond to subgraphs which are
m.m., and the terms in the second factor are those which are not m.m.. In
particular, F0,0 ⊂ F is a Hopf subalgebra. It was defined in [11] and called
the core Hopf algebra.

There is a variant of this construction in which one considers graphs
whose edges have distinct labels. We leave the details to the reader.

Remark 4.3. Amore fundamental structure underlying the space of graphs
should be the structure of an operad. For graphs of type (0, 0) it is clear how
to define this by insertion into vertices of graphs, but is more delicate for
graphs with masses and momenta. See [38] for some related categorical no-
tions.

4.1. Coradical filtration

The coradical filtration CiF is defined as follows. Let

Δ′ = Δ− 1⊗ id− id⊗ 1

denote the reduced coproduct. Then C0F = Z and x ∈ CnF , for n ≥ 1, if and
only if (Δ′)nx = 0. The space C1F consists of primitive linear combinations
of (unions of) graphs.

Lemma 4.4. The coradical filtration of a motic Feynman graph G is ≤ hG
if G is of type (0, 0) and ≤ hG + 1 otherwise.

Proof. A non-empty motic graph of type (0, 0) is 1PI and hence satisfies
hγ ≥ 1 (for every edge e of γ we have 0 ≤ hγ\e < hγ). Let G be a generator

of F0,0. Then (Δ′)nG ⊂ F⊗n+1
0,0 and each component is motic so has loop

number ≥ 1. Since the loop number is a grading, this forces (Δ′)n to vanish
if n ≥ hG.
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In the general case, let G be of type (Q,M). Then by (4.3)

(Δ′G)n ⊂ F⊗n
0,0 ⊗Z FP,Q

and the same argument shows that (Δ′G)n vanishes if n ≥ hG + 1, the only
difference being that the component in FP,Q can satisfy hγ = 0. �

4.2. Motic descendents of graphs

If G is a motic graph, define

de(G) = G/e if e ∈ EG(4.4)

dγ(G) = γ ⊗G/γ if γ � EG is motic .

Iterating these operations generates a cascade of tensor products of motic
graphs.

Definition 4.5. Let T (F) =
⊕

m≥0F
⊗m denote the tensor algebra on F .

The grading by edge numbers induces a grading we shall call the degree:

(4.5) deg(γ1 ⊗ · · · ⊗ γn) =

n∑
i=1

(Nγi
− 1) = N∪γi

− n .

Given a motic graph G, define the set of motic descendants D(G) of G to
be the set of tensor products of graphs (generators in T (F)) obtained by
repeatedly applying operators of the form id⊗r ⊗ d• ⊗ id⊗s to G, where d•
is one of the two operations (4.4) above. Since these strictly decrease the
degree, the set D(G) is finite.

The degree (4.5) is the usual grading in the literature on the bar con-
struction. It will correspond to the dimension of facets in the Feynman
polytope and also to the cohomological degree of our graph motives (to be
defined below).

Remark 4.6. The operator de is not to be confused with the contraction
of e, defined by ceG = G//e. Then the equation

(4.6) Δce = (ce ⊗ id + id⊗ ce)Δ

is not always satisfied, so F is not a differential Hopf algebra in general. The
reason is the failure of the map in Theorem 3.6 (iv) to be injective. More
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precisely, if G is a Feynman graph, and Γ an edge subgraph such that Γ and
Γ\e are both motic in G with hΓ = hΓ\e, then ce is not necessarily zero on
(Γ\e)/Γ, and (4.6) fails. This can only occur if Γ is m.m. and Γ\e is not (for
example, let Γ be the subgraph spanned by edges 1, 3, 4 in Example 1.1, and
e = 1). For G of type (0, 0) Equation (4.6) is satisfied and F0,0 can be made
into a differential graded Hopf algebra [11].

4.3. Uniqueness of graph polynomials

This section is not essential and can be skipped. It shows that the graph
polynomials ΨG and ΞG are nearly uniquely determined by the factorization
and edge-contraction formulae.

Lemma 4.7. Let Γ ⊂ G be an edge-subgraph. Then there exists a 1PI and
hence motic subgraph γ ⊆ Γ such that hγ = hΓ.

Proof. Let e be an edge of Γ. If hΓ\e = hΓ then replace Γ with Γ\e. Repeat
until we obtain a graph γ whose loop number drops whenever any edge is
cut. �

Proposition 4.8. For every labelled motic Feynman graph G, let

PG, CG ∈ Q[αe, e ∈ EG]

be homogeneous polynomials of degrees hG, hG + 1 respectively, which respect
the equivalence relation of §1.1 and take the same values on G and G ∪ {v}
where v is an isolated vertex, and satisfy the following properties:

1) Partial factorisations:

PG ≡γ PγPG/γ

CG ≡γ PγCG/γ if γ not m.m.

CG ≡γ CγPG/γ if γ is m.m.

where AG ≡γ BγDG/γ for homogeneous polynomials A,B,D means
that AG −BγDG/γ is of degree > degBγ in the variables αe, for e ∈
Eγ.

2) Edge contraction:

PG

∣∣
αe=0

= PG//e

CG

∣∣
αe=0

= CG//e
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3) Initial conditions: if G has a single edge then PG = ΨG and CG =
ΞG(q,m). If G is a banana graph (a connected graph with 2 vertices)
with all edges massive, then the coefficient of

∏
e∈EG

αe in CG is

q2 +
∑
e∈EG

m2
e .

With these assumptions, PG = ΨG and CG = ΞG(q,m).

Proof. The proof proceeds by induction on the number of edges. Assume for
now that the theorem is true for all motic graphs G such that hG ≤ 1. For
the induction step, suppose that G is motic and satisfies hG ≥ 2. For any
edge e0 ∈ EG, there exists a non-trivial motic subgraph γ ⊂ G such that
e0 /∈ Eγ and hγ = hG − 1, by Lemma 4.7. It may or may not be m.m.. We
obtain by induction hypothesis

PG = ΨγΨG/γ +RP
γ,G/γ

on application of (1), where the degree of RP
γ,G/γ in the variables αe, for

e ∈ γ is ≥ hγ + 1 and hence equal to hG. Thus RP
γ,G/γ does not depend on

the variables αe, for e ∈ G/γ. We deduce that PG is of degree ≤ 1 in αe0

and the coefficient of αe0 is ΨγΨ
e0
G/γ . The constant term in αe0 is uniquely

determined from (2) and induction hypothesis since G//e0 has fewer edges.
This proves that PG = ΨG for all G. For the polynomial CG, an application
of (1) and the induction hypothesis gives either

CG = Ξγ(q,m)ΨG/γ +RC,IR
γ,G/γ

or CG = Ψγ ΞG/γ(q,m) +RC,UV
γ,G/γ

depending on whether γ is m.m. or not. The former case proceeds as for PG.
In the latter case, the term RC,UV

γ,G/γ is of degree at most one in αe0 , and hence

the coefficients of (αe0)
k for k ≥ 2 are uniquely determined by induction. The

coefficients of (αe0)
0 are determined by contracting the edge e0 via (2). Thus

the only undetermined term in CG is the unique monomial
∏

e αe of degree
exactly one in every αe for e ∈ EG. It can only occur in CG if hG + 1 =
degCG = NG. If G has more than one component, it necessarily contains a
self-edge, say e′, which is a motic subgraph and not m.m.. Applying (1) to
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this subgraph gives

CG = αe′CG/e′(q,m) +O(α2
e′)

and so the term linear in αe′ is again determined by induction. The only
remaining case is whenG is connected. ThenNG = hG + 1 implies that it has
two vertices by Euler’s formula (1.2), so it is a banana graph. Furthermore,
every edge is massive otherwise we could construct a non-trivial motic m.m.
subgraph γ, and determine CG using the third formula of (1). Thus we are
reduced to the case of (3).

It remains to check the cases when G does not have a non-trivial motic
subgraph, i.e., hG ≤ 1. First suppose that G is a forest (hG = 0). Then PG

is constant (of degree 0), and by contracting edges we deduce that PG =
P{v} = 1, where v is an isolated vertex. The polynomial CG is homogeneous
of degree one, i.e., CG =

∑
e λeαe. The coefficient λe is uniquely determined

by contracting all edges except e, and we are reduced to the case of a graph
with a single edge (3). Now suppose that hG = 1. The same argument proves
the statement for PG. The polynomial CG is homogeneous of degree two
and hence of the form CG =

∑
e,f λe,fαeαf . By contracting all edges except

e, f we reduce to a two-edge graph. By edge contraction, λe,e and λf,f are
determined via (3). If e, f form a massive 2-edge banana, the coefficient λe,f

is determined by the second part of (3). In all other cases, G has a non-trivial
motic m.m. subgraph and we can reduce to a graph with fewer edges by the
partial factorization formulae as above. �

Remark 4.9. Properties (1) and (2) are essential requirements for the
product-structure on graph hypersurfaces and hence for our results on the
action of the cosmic Galois group. Thinking of the data of P and C as
Feynman rules, the proposition tells us how restrictive these requirements
are. The polynomial PG is essentially uniquely determined, but there is
nonetheless a small amount of freedom to modify the polynomial CG by
adding a term

sn
∏
e∈EG

αe

to every massive banana graph G with n loops, where sn is a new parame-
ter. By properties (1) and (2), the coefficients sn will infiltrate the CG for
all other Feynman graphs. In this way one could, suprisingly, modify the
Feynman integrands by essentially a single quantity sn (which could depend
on the labelling of the edges EG) at every loop order without affecting the
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mathematical structures studied in this paper.10 Observe also that the con-
cept of mass and momenta only enter via the initial conditions (3). One could
allow for more diverse families of polynomials PG, CG either by restricting
the set of graphs under consideration, or by allowing the polynomials PG,
CG to have higher degrees.

An interesting question would be to study similar partial factorisation
properties of Feynman integrands for gauge theories and see what restric-
tions this imposes on the set of possible Feynman rules.

5. Linear blow-ups in projective space

We study blow-ups of coordinate linear subspaces of projective space. The
role of local coordinates is emphasised owing to their close relation to sector
decompositions in the physics literature.

5.1. Iterated blow-ups

Let S be a finite set, and let PS = P(QS) denote projective space over Q of
dimension |S| − 1 with projective coordinates αs, s ∈ S. Every subset I ⊂ S
defines a linear subspace

LI
∼= PIc

⊂ PS

defined by the vanishing of coordinates αi, i ∈ I. The notation Ic denotes
the complement S\I when the set S is unambiguous. We have

LI1 ∩ LI2 = LI1∪I2 .

Now let B ⊂ 2S be a set of subsets of S with the property that

(5.1) I1, I2 ∈ B =⇒ I1 ∪ I2 ∈ B

and satisfying S ∈ B. Define the iterated blow-up PB of PS along B

πB : PB −→ PS

by the following standard procedure:

10This provides Feynman integrals with a new and natural parametrisation, dis-
tinct from the kinematic parameters, which may be useful for setting up differential
equations.
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(0) First blow up all subspaces LI , for I ∈ B, such that dim(LI) = 0, in
any order, to obtain a space P0 → PS .

(1) Blow up all strict transforms of LI in P0, for I ∈ B, such that
dim(LI) = 1, in any order, to obtain a space P1 → P0.

(k) At the kth stage, blow up the strict transforms of LI in Pk−1, for
I ∈ B such that dim(LI) = k, to obtain Pk → Pk−1.

Finally, define PB = P|S|−1. The key point is that since B is closed under
unions (5.1), the strict transforms of LI in Pk−1 for I ∈ B are disjoint and
can be blown up in any order, and thus PB is well-defined. The scheme PB

has a divisor

(5.2) D = π−1

(⋃
i∈S

Li

)

given by the total transform of the coordinate hyperplanes Li. If UI ⊂ LI

denotes the open where αj �= 0 for all j /∈ I, the irreducible components of
D are

Di = π−1(Ui) , for all i ∈ S .(5.3)

DI = π−1(UI) , for all I ∈ B, where 2 ≤ |I| ≤ |S| − 1 ,

where the closure is with respect to the Zariski topology. By taking repeated
intersections, D defines a stratification on PB. For every I ∈ B define

BI = {J ∈ B such that J ⊆ I}

BI = {J\I where J ∈ B and J ⊇ I} ,

and for every i ∈ S, set

Bi = {J\(J ∩ {i}) for J ∈ B} .(5.4)

Theorem 5.1. The space PB is a smooth scheme over Z and is well-defined
(it does not depend on the order of blow-ups at each stage of the above
procedure).

The divisor D is strict normal crossing, and there are canonical isomor-
phisms

DI = PBI

× PBI where I ∈ B(5.5)

Di = Spec Z× PBi .
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Consider any two components DI , DJ (of either type (5.3)), where I, J ∈ B
or a singleton in S. Then DI ∩DJ is non-empty if and only if either

I ⊂ J or J ⊂ I

or

I ∩ J = ∅ and I ∪ J /∈ B .

The latter case only arises when at least one of I, J is a singleton in S, by
(5.1).

A proof is outlined below.

5.2. B-polytope

Define a compact real manifold with corners

σ̃B ⊂ PB(R)

to be the closure, in the analytic topology, of π−1
B (

◦
σ), where

◦
σ ⊂ PS(R) is the

open coordinate simplex defined by αi > 0, for all i ∈ S. Its facets inherit
the following product structure from the isomorphisms (5.5) of Theorem 5.1.

Corollary 5.2. The facets of σ̃B satisfy

σ̃B ∩Di(C) = {pt} × σ̃Bi
for i ∈ S

σ̃B ∩DI(C) = σ̃BI × σ̃BI
for I ∈ B, 2 ≤ |I| ≤ |S| − 1 .

The poset structure on the faces of σ̃B, with respect to inclusion, is identical
to the poset structure on the stratification of PB generated by the divisor D.

5.3. Local coordinates and theorem 5.1

The space PB will be covered by explicit coordinate charts of the form

An = SpecZ[β1, . . . , βn] .

These charts are obtained by iterating the following basic example.
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Example 5.3. Consider a single blow-up in affine space. If J ⊂ {1, . . . , n}
let LJ denote the zero locus of αj , j ∈ J . Let I = {1, . . . ,m} ⊂ {1, . . . , n}.
The blow-up A→ An of An along LI has local coordinates

β1 =
α1

αm
, β2 =

α2

αm
, . . . , βm−1 =

αm−1

αm
,

βm = αm, βm+1 = αm+1, . . . , βn = αn .

This means that there is an affine chart An ⊂ A with a morphism

π : SpecZ[β1, . . . , βn] −→ SpecZ[α1, . . . , αn]

defined by π∗(αi) = βiβm for 1 ≤ i < m and π∗(αi) = βi for i ≥ m. It is an
isomorphism on the opens defined by βm �= 0 and αm �= 0 respectively. The
exceptional divisor in these coordinates is given by the equation βm = 0,
and the strict transform of Li is given by βi = 0 for all i �= m. The strict
transform of Lm in A does not meet this coordinate chart, and hence neither
does the strict transform of any LJ , for m ∈ J � I.

More generally, for any choice of element j ∈ I, we have local coordinates

βi =
αi

αj
for i ∈ I\{j}, βj = αj , βi = αi for i /∈ I

and hence a local chart SpecZ[β1, . . . , βn] on A as above. These form an
affine covering of A. Note that if J1, J2 ⊂ I and J1 ∪ J2 = I, then the strict
transforms of LJ1

and LJ2
do not intersect in A, since this is true in every

coordinate chart.

We now define a scheme, denoted PB, explicitly using such affine charts.
It will turn out to be isomorphic to the space defined in the previous section.

For every nested sequence (or flag)

(5.6) F : ∅ = I0 � I1 � I2 � · · · � Ik � Ik+1 = S

where each Ir ∈ B, and every choice of elements

(5.7) c : jn ∈ In\In−1 for 1 ≤ n ≤ k + 1 ,

which are maximal in the sense that F , c cannot be made larger (i.e., there
exists no I ∈ B and 0 ≤ i ≤ k such that Ii � I � Ii+1 and ji+1 /∈ I), define
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an affine space

AF ,c = SpecZ[βF ,c
i , i �= jk+1]

and a morphism π : AF ,c → SpecZ[αi, i �= jk+1] where the right-hand side is
the open subset αjk+1

= 1 in PS . The morphism π is defined as follows. Its
inverse (π−1)∗ on the open αjn �= 0 for all 1 ≤ n ≤ k is given by

βF ,c
i =

αi

αjn

for i ∈ In\({jn} ∪ In−1) , 1 ≤ n ≤ k + 1 ,(5.8)

and βF ,c
jn

=
αjn

αjn+1

for 1 ≤ n ≤ k + 1 ,

where we set αjk+2
= 1; the map π∗ is obtained by writing the α’s in terms

of the βF ,c’s in the previous equations, i.e.,

π∗(αjn) = βF ,c
jn

βF ,c
jn+1

· · ·βF ,c
jk+1

(5.9)

π∗(αi) = βF ,c
i βF ,c

jn
βF ,c
jn+1

· · ·βF ,c
jk+1

for i ∈ In\({jn} ∪ In−1) .

The morphism π restricts to an isomorphism between the open subsets de-
fined by βF ,c

jn
�= 0 and αjn �= 0 for all 1 ≤ n ≤ k. A simple example is given

in §12.0.2.
By (5.8), the coordinate rings of the AF ,c are contained in the fraction

field of PS , and glue together to form a scheme PB with a morphism π :
PB → PS over SpecZ. We claim that PB is indeed the space defined by
blow-ups in the first paragraph, and that the βF ,c

j are local coordinates in
the neighbourhood of a ‘corner’

(F , c) :
⋂

i∈S\{j1,...,jk}

Di ∩
⋂

1≤n≤k

DIn

where the trace of DIn on the chart AF ,c is given by βF ,c
jn

= 0 and Di by

βF ,c
i = 0. These divisors are clearly normal crossing, and meet according to

the rules described in the second half of Theorem 5.1. For example, divisors
of the form DI and DJ with I, J ∈ B only meet on such a chart if the sets
I, J fit into a flag F , in which case I ⊂ J or J ⊂ I; the remaining cases are
left to the reader.

Next observe that the product structure of these divisors is clear from
the structure of the coordinates (5.8) which give a canonical isomorphism:

(5.10) DIr ∩ AF ,c = V (βF ,c
jr

)
∼
−→ AFIr ,cIr × AFIr ,cIr
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where FIr ,FIr are the flags in Ir and S\Ir defined by

FIr : ∅ = I0 � I1 � I2 · · · � Ir

FIr : ∅ � Ir+1\Ir � · · · � Ik\Ir � S\Ir

and cIr , cIr are the obvious restrictions of c to FIk ,FIk respectively. Gluing
the morphisms (5.10) together for all F , c proves the first equation of (5.5)
since every pair of flags in BIr , BIr is obtained from a flag in B in this way.
Similarly,

AF ,c ⊃ V (βF ,c
i )

∼
−→ AFi,ci

where i ∈ Ir\(Ir−1 ∪ {jr}) and Fi is the flag in S\{i} defined by

Fi : ∅ = I0 � I1 � · · · � Ir−1 � Ir\{i} � · · · � Ik\{i} � Ik+1 = S\{i} ,

which proves the second equation of (5.5). It remains to show that the spaces
PB as defined above are indeed given by the blow-up procedure. This can be
proved by induction. First of all, if B is empty, then PB is simply PS and the
coordinate charts AF ,c are the usual affine covering of PS . Let P−1 = PS , and
suppose by induction that Pn−1 is isomorphic to PB(n−1) where B(n− 1) is
the subset of B consisting of all I ∈ B such that |I| ≥ |S| − n, where n ≥ 0.
It is stable under unions. Let I ∈ B of cardinality |I| = |S| − n− 1.

Lemma 5.4. Let F , c be a maximal flag in B(n− 1) given by (5.6) and
(5.7) where I1, . . . , Ik ∈ B(n− 1). Let I ∈ B(n) as above. The strict trans-
form of LI in PB(n−1) meets the chart AF ,c if and only if I ⊂ I1\{j1}.

Proof. If jr ∈ I for any 1 ≤ r ≤ k + 1 then the strict transform of LI is con-
tained in the strict transform of Ljr , which does not meet AF ,c by inspection
of the first equation of (5.9) (its total transform is contained in the union of
the vanishing locus of the βF ,c

jk
, which are all exceptional divisors). On the

other hand, suppose that I does not contain any jr, and is not contained in
I1. Let m be the smallest integer such that I ⊂ Im+1. Then I � Im so

Im � I ∪ Im � Im+1 .

Since B is closed under unions, I ∪ Im is an element of B(n− 1) which con-
tradicts the maximality of F , c (as jm+1 /∈ I). Thus for the strict transform
of LI to meet AF ,c, we must have I ⊂ I1 and j1 /∈ I. Conversely, when this
holds, the intersection of the strict transform of LI with AF ,c is given by
the equations βF ,c

i = 0 for i ∈ I. �



498 Francis Brown

Now, in the situation of the previous lemma, we can blow up the strict
transform LI explicitly in the affine chart AF ,c using Example 5.3. It is
covered by the affine charts AF ′,c′ where F ′, c′ extends F , c to the left:

F ′ : ∅ � I � I1 ⊆ · · · � Ik � S

and the restriction of c′ to F is c. Proceeding in this way, we can blow
up the strict transforms of LI , for I ∈ B of cardinality |I| = |S| − n− 1 in
any order, to give exactly the space PB(n) together with its affine covering
AF ′,c. This proves by induction that the two descriptions of PB, by explicit
coordinates and also by iterated blow-ups, are one and the same.

5.4. An affine model

Given B satisfying (5.1) with S ∈ B, we shall construct an affine subspace
AB ⊂ PB by removing strict transforms of certain linear hyperplanes, in
such a way that the product-structure of PB is also satisfied by AB.

We can assume that for every I ∈ B, |I| ≥ 2. For any subset J ⊂ S,
denote by

αJ =
∑
j∈J

αj .

Let HJ = V (αJ) ⊂ PS denote the corresponding hyperplane. Write AS =
PS\HS , and consider the hyperplane complement AS\ ∪I∈B HI . We shall
directly define a partial compactification of this space as follows. Write B+ =
B ∪ {{i}, i ∈ S}.

Definition 5.5. Let RB = Z[bI/J : I ⊂ S, J ∈ B such that ∅ �= I ⊆ J ]/I,
where I is the ideal generated by the following relations:

bI/J =
∑
i∈I

b{i}/J(5.11)

bJ/J = 1

bI/JbJ/K = bI/K if J,K ∈ B

For every I ∈ B+\{S}, let DI = V (bI/J for all I � J ∈ B) ⊂ Spec (RB).

There is a homomorphism

RB −→ Z[αi for i ∈ S, α−1
J for J ∈ B, |J | ≥ 2](5.12)

bI/J �→
αI

αJ
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which respects the relations (5.11), and hence a morphism

(5.13) AS\ ∪I∈B HI −→ Spec (RB) .

Let π : PB → PS denote the blow-up defined in the previous paragraphs.
Let H̃I denote the strict transform of HI , for I ∈ B+.

Definition 5.6. Let AB = PB\ ∪I∈B H̃I . For every I ∈ B+\{S}, let DI ⊂
PB denote the divisor defined in §5.3, and, by abuse of notation, let us also
denote by DI its intersection with AB. Let D denote their union.

Observe that AS\ ∪I∈B HI is an open subspace of AB, since the image in
PS of every exceptional divisor in PB is contained in some such hyperplane
HI . More precisely, AS\ ∪I∈B+ HI

∼= PB\(D ∪ ∪I∈BH̃I).

Theorem 5.7. The morphism (5.13) extends to a canonical isomorphism

AB ∼
−→ SpecRB .

In particular, (5.13) has Zariski-dense image, and furthermore, AB is affine
and SpecRB is smooth over Z. The divisors denoted DI in AB and SpecRB

are mapped isomorphically to each other, and there are canonical isomor-
phisms

Di = SpecZ×ABi and DI = ABI

×ABI .

If the set S = {1, . . . , n} is ordered, and B consists of all consecutive sets
{k, k + 1, . . . , k + �}, for 1 ≤ k ≤ n− � and � ≥ 2, then AB is isomorphic to
the affine space Mδ

0,n+2 defined in the author’s thesis11. The strategy of §5.5
gives a new proof of its main properties. On the other hand, if we take B to
be all subsets of S of cardinality ≥ 2, we obtain an affine algebraic model of
a permutohedron.

Example 5.8. Let S = {1, 2}, and let B = S. Then there is nothing to
blow up and PB = P1. Its affine version is AB = P1\{α1 + α2 = 0} ∼= A1. In
the explicit coordinates above, RB = Z[b1/12, b2/12]/I where I is the ideal

11To write down the isomorphism, it suffices to observe that the simplicial
coordinates ti for 1 ≤ i ≤ n− 3 correspond to bI/S where I = {1, 2, . . . , i} and
S = {1, 2, . . . , n− 2}.
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generated by the relation b1/12 + b2/12 = 1, and the composition with inclu-
sion into A2

AB ∼
−→ SpecRB ⊂ A2

is given in projective coordinates by (α1 : α2) �→ (α1/(α1 + α2), α2/(α1 +
α2)).

5.5. Outline of proof of Theorem 5.7

Let (F , c) denote a maximal pair (5.6) and AF ,c the corresponding chart of
PB. Let us denote by UF ,c the open AF ,c ∩AB. We must first show that
the morphism (5.13) canonically extends to a morphism

UF ,c −→ SpecRB .

To see this, compute the strict transform of HJ , for J ∈ B in the coordinates
βF ,c
i . It follows from the definition of the coordinates βF ,c in (5.8) that

π∗αJ = PJ ×
k∏

r≥�

βF ,c
jr

where PJ is an irreducible polynomial in the βF ,c
i , and � is the smallest

integer such that J ⊆ I�. We have P{jn} = 1. The strict transform H̃J of
HJ is given locally on AF ,c by the zero locus of PJ . It follows from this
calculation that

O(UF ,c) = Spec
(
Z[βF ,c][P−1

J , for J ∈ B, |J | ≥ 2]
)

and that we have explicitly

RB −→ O(UF ,c)(5.14)

bI/J �→
PI

PJ
×

�2−1∏
r=�1

βF ,c
jr

where �1 ≤ �2 are minimal such that I ⊂ I�1 , J ⊂ I�2 . The point is that
there are no terms βF ,c

jr
in the denominator. One can check that (5.14) is

well-defined (respects the relations in the defining ideal of RB), since it is
compatible with π∗ and (5.13). Gluing the resulting maps UF ,c → SpecRB
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together, we deduce that (5.13) extends to a morphism

AB =
⋃
F ,c

UF ,c −→ SpecRB .

For the next step, observe that if jr ∈ J ⊂ Ir then by the maximality of
(F , c) there is no smaller � < r such that J ⊂ I� and therefore under (5.14)

bJ/Ir �→
PJ

PIr

.

Setting J = {jr}, we have bjr/Ir �→ P−1
Ir

, which is invertible in O(UF ,c). It
follows that (5.14) factorizes through the ring

(5.15) RB[b
−1
j1/I1

, . . . , b−1
jk+1/Ik+1

] −→ O(UF ,c) ,

where Ik+1 = S. Note that the defining relation bjr/Ir = bjr/JbJ/Ir implies
that inverting bjr/Ir also inverts bJ/Ir and bjr/J for J ∈ B. We claim that
(5.15) is an isomorphism. To see this, we can write down a map in the
opposite direction

βF ,c
i �→ bi/Inb

−1
jn/In

if i ∈ In\({jn} ∪ In−1) , 1 ≤ n ≤ k + 1,

and βF ,c
jn

�→ bjn/In+1
b−1
jn+1/In+1

for 1 ≤ n ≤ k + 1 ,

consistent with (5.8). It clearly lands in RB[b
−1
j1/I1

, . . . , b−1
jk+1/Ik+1

], and one

checks that it is indeed the inverse of (5.14). We omit the details.
For the final step, define open affine subspaces V F ,c ⊂ SpecRB by

V F ,c = SpecRB[b
−1
j1/I1

, . . . , b−1
jk+1/Ik+1

] .

We have shown that UF ,c ∼= V F ,c are canonically isomorphic. It suffices to
check that the opens V F ,c form a covering of SpecRB. To see this, observe
that⋃

i∈I1

SpecRB[b
−1
i/I1

, b−1
j2/I2

, . . . , b−1
jk+1/Ik+1

] ⊆ SpecRB[b
−1
j2/I2

, . . . , b−1
jk+1/Ik+1

]

is an equality, which follows from the partition of unity relation
∑

i∈I1
bi/I1 =

1 in RB. By varying c in (F , c), and eliminating the b−1
jr/Ir

in turn, we deduce
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that ⋃
(F ,c)

V F ,c = SpecRB .

This proves that AB ∼
→ SpecRB is an isomorphism. The next statements

follow by transferring information along this isomorphism: SpecRB is clearly
affine, and AB, defined by the complement of divisors in a blow-up, is smooth
over Z.

For the last statement concerning the product structure of the divisors
DI , we refer to Theorem 6.5. Note that AB = PB\Y , where Y is the strict
transform of the zero locus of the polynomials φB(n) =

∏
J∈B αnJ

J , where
n = (nJ)J∈B are integers nJ ≥ 0. They satisfy the same factorisation prop-
erties as graph polynomials which are used in the proof of Theorem 6.5,
namely

φB(n) = φBI (n′)φBI
(n′′) +R

for every I ∈ B, and some n′, n′′ where R is of higher degree in the variables
αi, i ∈ I than φBI .

6. Motives of graphs with kinematics

We define the motive (or rather, its image in a category of realisations) of a
Feynman graph by applying the linear blow-up construction of the previous
section to the set of motic subgraphs of a Feynman graph. In the case where
the graph has no kinematic dependence, and is primitive log-divergent, this
retrieves the definition of graph motive due to Bloch-Esnault-Kreimer [10].

6.1. Orders of vanishing

Let G be a Feynman graph, and consider the projective space PEG . There
is a bijection between coordinate linear subspaces

PEG ⊃ LI for I � EG ←→ edge subgraphs I � G .

Given a homogenous polynomial P in Z[αe, e ∈ EG], let

vI(P ) = order of vanishing of P along LI .
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Lemma 6.1. Assume generic kinematics (1.17) and (1.18). Let γ ⊂ EG.
Then

vγ(ΨG) = hγ ,(6.1)

vγ(ΞG) =

{
hγ + 1 if γ is m.m.

hγ if γ is not m.m.
(6.2)

Proof. This follows from the factorisations (2.6) and (2.7), the degree for-
mulae for graph polynomials (1.8), and Lemmas 1.11 and 1.13 which assert
that ΨG/γ and ΞG/γ(m, q) are non-zero, via Equation (2.5). �

The principle motivation for the definition of motic subgraphs comes
from the following proposition. We again assume generic kinematics (1.17),
(1.18).

Proposition 6.2. An edge subgraph Γ ⊂ EG is motic if and only if

vγ(ΞG) < vΓ(ΞG)

for all strict edge subgraphs γ � Γ. In particular, vΓ(ΞG) > 0 if Γ is motic.

Proof. Let γ � Γ be a strict edge subgraph. Let Iγ,G equal 1 if γ is mass-
momentum spanning in G and 0 otherwise. We have hΓ ≥ hγ .

Equation (6.2) implies that

(6.3) vΓ(ΞG)− vγ(ΞG) = (hΓ − hγ) + (IΓ,G − Iγ,G) .

Furthermore, IΓ,G ≥ Iγ,G, because if γ is mass-momentum spanning in G,
then so too is Γ by Lemma 3.4 (i). Thus (6.3) is strictly positive for all
strict edge subgraphs γ ⊂ Γ if and only if hγ < hΓ whenever Iγ,G = IΓ,G.
By Lemma 3.4 (i), this is precisely the set of mass-momentum spanning
subgraphs γ � Γ, and we obtain the definition of a motic subgraph. �

6.2. Graph hypersurfaces and the motive

Let G be a graph of type (Q,M). We shall construct various families of
schemes over the space of kinematics KQ,M , defined in (1.20). In order to
lighten the notation, we shall abusively write PEG , LI , and so on, to denote
the base change of the schemes defined in the previous section from Spec Z
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to KQ,M . Define graph hypersurfaces

XΨG
= V (ΨG) ⊂ PEG and XΞG(q,m) = V (ΞG(q,m)) ⊂ PEG .

These are to be viewed as families of hypersurfaces over KQ,M . The for-
mer were considered in [10] when Q = M = 0. Note that the intersection
XΨG

∩XΞG(q,m) is given by the zero locus V (ΦG(q)) of the second Symanzik
polynomial, by (1.9).

If Γ ⊂ G is motic, then by Proposition 6.2, vΓ(ΞG(q,m)) > 0 and so the
linear subspace LΓ is contained in the graph hypersurface on each fiber, i.e.,

LΓ ⊂ XΞG(q,m) .

If Γ is not m.m. in G, then we also have LΓ ⊂ XΨG
by (6.1) since hΓ > 0.

Thus the loci LΓ meet both the boundary of the chain of integration σ,
and the singularities of the Feynman integrand (1.11), causing potential
divergences12.

Definition 6.3. Let G be a motic Feynman graph of type (Q,M). Define

πG : PG = PBG −→ PEG

where BG = {Γ � G motic}, which is stable under unions by Theorem 3.6
(iii).

Let us define XG ⊂ PEG (viewed as a family over KQ,M ) to be

(6.4) XG =

{
XΨG

∪XΞG(q,m) if G has non-trivial kinematics

XΨG
if G has no masses or momenta

.

Because of exceptional cases when the Feynman integrand (1.11) has no
term ΨG in the denominator (i.e., when NG ≥ (hG + 1)d/2)), we can also
define

(6.5) X ′
G = XΞG(q,m) .

Denote the strict transforms of XΨG
, XΞG(q,m), XG, X

′
G in PG by

YΨG
, YΞG(q,m) , YG , Y ′

G

12As suggested by T. Damour, such loci could be termed problemotic.
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respectively. Note that if G has connected components G1, . . . , Gn, then
YΨG

=
⋃n

i=1 YΨGi
. Recall that D ⊂ PG is the divisor defined by (5.2), base-

changed from SpecZ to KQ,M . Denote the canonical projection by πG :
PG → PEG .

Definition 6.4. Let G be a motic Feynman graph of type (Q,M). Let

motG = HNG−1(PG\YG, D\(D ∩ YG))/S .

It is a triple motG = ((motG)B, (motG)dR, c) in a category H(S), for some
Zariski-open S ⊂ KQ,M , defined immediately below, via the construction of
[17] §10.2. There is also a variant

mot′G = HNG−1(PG\Y ′
G, D\(D ∩ Y ′

G))/S .

6.3. Reminders from [17]

Let S be a smooth geometrically connected scheme over Q. Then H(S) is the
category of triples (VB,VdR, c) where VB is a local system of Q-vector spaces
on S(C), and VdR is an algebraic vector bundle on S equipped with an inte-
grable connection∇ with regular singularities at infinity. These are equipped
with a weight (and for VdR, a Hodge) filtration satisfying the conditions of
§7.2 of [17], and c : Van

dR
∼
→ VB ⊗Q OSan is an isomorphism of analytic vector

bundles with connection, respecting the weight filtrations.

6.4. Recursive structure

Let D ⊂ PG denote the divisor defined by (5.2). Its irreducible components
are De, for e ∈ EG an edge, and Dγ for γ � EG a strict motic subgraph of
G. All schemes are viewed over KQ,M where G is of type (Q,M).

Theorem 6.5. For every edge e ∈ EG and γ � EG motic, we have

Dγ = P γ × PG/γ ,(6.6)

De = {pt} × PG/e

and the strict transforms of the graph hypersurfaces satisfy:

YG ∩Dγ =
(
Yγ × PG/γ

)
∪
(
P γ × YG/γ

)
,(6.7)

YG ∩De = {pt} × YG/e .
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Note that at most one of γ and G/γ has non-trivial momenta and masses.
Here, {pt} means the family of points SpecZ×SpecZ SpecKQ,M over
SpecKQ,M .

Proof. Recall that PG = PBG , where BG consists of the set of strict motic
subgraphs of G. Let γ � EG be motic. By Theorem 5.1, and the notation
preceding it,

Dγ = P (BG)γ × P (BG)γ .

By remark 3.5, (BG)
γ = Bγ since a subgraph of γ is motic if and only if it is

motic in G. Finally, (BG)γ = BG/γ by Theorem 3.6 (i) and (ii). This proves
the first line of (6.6). Now consider an affine chart AF ,c defined in §5.3, where
the flag F contains γ (otherwise Dγ does not meet AF ,c, by Lemma 5.4). In
the coordinates (5.8), let β = 0 denote the equation of Dγ ∩ AF ,c in AF ,c.
Write π∗

GΨG in these coordinates and apply (2.4) to obtain

π∗
GΨG = βhγ (π∗

γΨγ)(π
∗
G/γΨG/γ) +O(βhγ+1) ,

where the right-hand side is written using AF ,c ∼= A1 × AFγ ,cγ × AFγ ,cγ and
where the coordinate on the component A1 is β (see the discussion follow-
ing (5.10)). This proves that YΨG

∩Dγ = (YΨγ
× PG/γ) ∪ (P γ × YΨG/γ

). A
similar argument using formulae (2.6) and (2.7) proves that

YΞG(q,m) ∩Dγ = (YΞγ(q,m) × PG/γ) ∪ (P γ × YΨG/γ
) when γ is m.m.

YΞG(q,m) ∩Dγ = (YΨγ
× PG/γ) ∪ (P γ × YΞG/γ(q,m)) γ not m.m.

Since YG = YΨG
∪ YΞG(q,m), this proves the first equation of (6.7).

Now, by Theorem 5.1, we have

De = {pt} × P (BG)e .

We must show that (BG)e = BG/e. The left-hand side is given by the sets
of edges γ\(γ ∩ {e}) for motic γ � EG, and this is the set of edges of the
subgraph (γ ∪ e)/e ⊂ EG/e. By Theorem 3.6 (i) and (iv), such a graph is
motic in G/e, and every motic subgraph of G/e arises in this way. (Note that
the failure of injectivity stated in the last line of Theorem 3.6 (iv) poses no
problem, since we are only concerned with γ ∪ e). This proves the second
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line of (6.6). If e is not a tadpole, it follows from Corollary 1.10 that

XΨG
∩ Le = XΨG/e

and XΞG(q,m) ∩ Le = XΞG/e(q,m) ,

and we deduce the corresponding statements for their strict transforms. If
e is a tadpole it is motic, and we are reduced to the previous case, since
P e = {pt}. �

Remark 6.6. The analogous statement of Theorem 6.5 for Y ′
G = YΞG(q,m)

is

Y ′
G ∩De = {pt} × Y ′

G/e(6.8)

Y ′
G ∩Dγ =

(
Y ′
γ × PG/γ

)
∪
(
P γ × YG/γ

)
if γ is m.m.

=
(
Yγ × PG/γ

)
∪
(
P γ × Y ′

G/γ

)
if γ is not m.m.

Note that every time a YH (with no prime) occurs in these formulae, it
is because the graph H (either γ or G/γ) has no masses or momentum
dependence.

By induction, the theorem implies that the intersection of the strict
transform YG of the graph hypersurface with a facet of D of codimension n
is of the form ⋃

i

P γ1 × · · · × P γi−1 × Yγi
× P γi+1 × · · · × P γn

where the γi are quotients of motic subgraphs of G. In fact, γ1 ⊗ · · · ⊗ γn is
a descendant of G according to Definition 4.5.

6.5. Feynman polytope and Betti class

Let G be a Feynman graph of type (Q,M). Define the Feynman polytope,
following §5.2, to be

σ̃G := σ̃BG
× Ugen

Q,M ⊂ PG(R) .

It is a constant family of compact manifolds with corners over the lo-
cus Ugen

Q,M ⊂ Kgen
Q,M (C) where masses and momenta have positive real parts

(§1.7).

Theorem 6.7. We have σ̃G ∩ YG(C) = ∅. A fortiori, σ̃G ∩ Y ′
G(C) = ∅.
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Proof. Since the polytope σ̃G is stratified, it suffices to show that YG(C)
does not meet any open stratum. We shall do this by induction. We have an
isomorphism (

PG\D
) ∼
−→

(
PEG\

⋃
e∈EG

Le

)
which induces a homeomorphism from the big open stratum

◦
σG ⊂ σ̃G to

◦
σ × Ugen

Q,M , the open coordinate simplex. It sends YG\(YG ∩D) to XG. Thus

YG(C) ∩
◦
σG
∼= XG(C) ∩ (

◦
σ × Ugen

Q,M ) ,

and it suffices to show that XΨG
(C) ∩ (

◦
σ × Ugen

Q,M ) is empty, and likewise

that XΞG(q,m)(C) ∩ (
◦
σ × Ugen

Q,M ) is non-empty, in the case when G has non-
trivial kinematics. Since ΨG is non-zero by Lemma 1.11 and only has positive
coefficients, it is clear that ΨG > 0 when all αi > 0. Similarly, if G has non-
trivial kinematics then ΞG(q,m) is non-zero by Lemma 1.13 since (1.17) and
(1.18) is automatically satisfied if (1.22) holds. Using the explicit expression
(1.9), we have Re(ΞG(q,m)) > 0 when all αi > 0 and (q,m) ∈ Ugen

Q,M . This

proves that XG(C) ∩ (
◦
σ × Ugen

Q,M ) = ∅. Now Theorem 6.5 implies that the
facets of σ̃G satisfy

σ̃G ∩De(C) = {pt} × σ̃G/e and σ̃G ∩Dγ(C) = σ̃γ × σ̃G/γ .

Using the recursive structure (6.7), we are reduced to proving an identical
statement for quotients of motic subgraphs of G, and proceed by induction
by decreasing dimension of the strata. �

Definition 6.8. Let us write σG ⊂ (PG\YG)(R) (with no tilde) for the
intersection

σG = σ̃G ∩ (PG\YG)(C) .

It follows from the previous theorem that σG is homeomorphic to σ̃G, and its
boundary is contained in D(C)\(D ∩ YG)(C). It therefore defines a canonical
Betti class

(6.9) [σG] ∈ Γ
(
Ugen
Q,M , HNG−1(P

G\YG, D\(D ∩ YG))
)
.

which we view as a local section of the dual Betti local system

[σG] ∈ Γ
(
Ugen
Q,M , (motG)

∨
B

)
.

Likewise we can replace YG by Y ′
G in the case when NG ≥ (hG + 1)d/2.
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One reason why we emphasise the action of the de Rham Galois group (as
opposed to the Betti Galois group) on motivic Feynman integrals is because
the Betti class is uniformly defined for all graphs and we wish to keep it
fixed. Furthermore, we prefer to compute with differential forms rather than
homology cycles.

6.6. De Rham class and power-counting

Let G be as above. The pull-back of the form (1.11) along the map πG :
PG\D\YG −→ PEG\XG

π∗
G(ωG(q,m)) ∈ ΩNG−1(PG\D\YG; kQ,M )

may have poles along the exceptional divisors Dγ ⊂ PG for γ motic.

Definition 6.9. The superficial degree of divergence of a graph G is

(6.10) sdG = d hG/2−NG .

This is an integer, since d, the dimension of spacetime, was assumed to be
even.

The following lemma gives necessary and sufficient conditions for the
convergence of the Feynman integral in the enlarged Euclidean region in
terms of the superficial degrees of divergences of motic subgraphs.

Lemma 6.10. Let γ � EG be motic. Then π∗
G(ωG(q,m)) has a pole along

Dγ of order given by the following formula:

(6.11) − vγ(π
∗
G(ωG(q,m))) =

{
1 + sdγ if γ is not m.m.

1 + sdγ − sdG if γ is m.m.
.

It has no poles along any divisors of the form De, where e ∈ EG is an edge
which is not motic. It follows that the Feynman integral IG(q,m) (1.10) is
absolutely convergent in the region Ugen

Q,M if and only if

sdγ < 0 for all γ � EG motic and not m.m.(6.12)

sdγ < sdG for all γ � EG motic and m.m. .
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Proof. Recall (1.11). From Equations (6.2) and (6.1), we have

−vγ

(
1

Ψ
d/2
G

( ΨG

ΞG(m, q)

)NG−hGd/2
)

= hγd/2− Iγ sdG

where Iγ is 1 if γ is m.m., and 0 otherwise. Now consider an affine chart
AF ,c where

F : ∅ = I0 � I1 � I2 � · · · � Ik � Ik+1 = EG

is a flag containing γ = Ir and Dγ is given by the equation βjr = 0. The
chart AF ,c lies over the affine αjk+1

= 1. In the local coordinates (5.8) we
find that

π∗
G

⎛⎝ ∏
i �=jk+1

dαi

⎞⎠ = β
|I1|−1
j1

β
|I2|−1|
j2

· · ·β
|Ik|−1
jk

∏
i �=jk+1

dβi

vanishes along βjr = 0 to order 1− |Ir| = 1−Nγ . Thus

−vγ(π
∗(ωG(q,m))) = 1−Nγ + hγd/2− Iγ sdG

which proves (6.11). For the second part, observe that ΨG and ΞG(q,m)
vanish along a coordinate hyperplane Le if and only if e is motic. Therefore
ωG(q,m) has no pole along De if e is not motic.

For the last part, suppose that (6.12) holds. Then ωG(q,m) is continuous
and has no poles on the domain σG, which has compact fibers over Ugen

Q,M .
Its integral IG(q,m) is therefore absolutely convergent. Conversely, suppose
that IG(q,m) is absolutely convergent for some (q,m) in the Euclidean region
Kgen

Q,M (R) defined in §1.7, where all momenta qi and massesme are real. Then
ωG(q,m) is strictly positive on σG, and so for any subset U ⊂ σG we have∫

U
ωG(q,m) ≤ IG(q,m) <∞ .

If ωG(q,m) had a pole along a boundary divisorDγ , it follows from positivity
by taking U to be a neighbourhood of Dγ ∩ σG that the left-hand side is
infinite. Therefore ωG(q,m) has no poles along any Dγ and hence (6.12)
holds. �

Note that one can interpret the quantity sdγ − sdG as −sdG/γ . We say that
a Feyman integral is convergent if the conditions (6.12) are satisfied. In this
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case,

π∗
G ωG(q,m) ∈ ΩNG−1((PG\YG)∗; kQ,M )

where (PG\YG)∗ denotes the generic fiber of PG\YG over KQ,M . This in
turn defines a relative de Rham cohomology class at the generic point

[π∗
G ωG(q,m)] ∈ Γ(Spec kQ,M , (motG)dR) .

In the case when NG ≥ (hG + 1)d/2, we can replace YG by Y ′
G in the above.

Remark 6.11. The formulae for the degrees of divergence of a Feynman
integral with respect to a subgraph are due to Weinberg [54], and are known
as power-counting. Finding a minimal class of subgraphs which give neces-
sary conditions for convergence is more subtle since the inequalities (6.12)
are not independent. This problem was studied by Speer [51, 52] for generic
Feynman integrals.

6.7. Convergence of ‘global periods’: integrals with numerators

Gauge theories can produce Feynman integrals with numerators [41]:

(6.13)

∫
σ
ω(q,m) where ω(q,m) =

P ΩG

ΨA
G ΞG(q,m)B

,

where A,B are integers, and P ∈ Q[αe, e ∈ EG] is homogeneous of degree

(6.14) deg P = AhG +B(hG + 1)−NG

to ensure that ω(q,m) is homogeneous of degree zero. We take B = 0 if G
is of type (0, 0), in which case ΞG(q,m) vanishes.

Lemma 6.12. Suppose that

(6.15) vγ(P ) ≥ Ahγ +B(hγ + Iγ)−Nγ + 1

for all motic subgraphs γ � EG, where Iγ is 0 if γ is not m.m., and 1 if it is
m.m.. Then π∗

G(ω(q,m)) has no poles along D for (q,m) ∈ Ugen
Q,M . Therefore

π∗
G(ω(q,m)) ∈ ΩNG−1(PG\YG; kQ,M )

and the integral (6.13) is convergent for all (q,m) ∈ Ugen
Q,M .
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Proof. Similar to Lemma 6.10. �

Thus in this case also [π∗
G ωG(q,m)] ∈ Γ(Spec kQ,M , (motG)dR). The integral

(6.13) is an example of what we shall call a Feynman period.

Example 6.13. Consider the banana graphG with three edges, no external
momenta and no masses. Its graph polynomial is ΨG = α1α2 + α1α3 + α2α3,
and its Feynman amplitude is divergent. However, the previous lemma pro-
vides examples of Feynman periods such as∫

σ

α1α2α3

Ψ3
G

ΩG =

∫
α1,α2≥0

α1α2

(α1α2 + α1 + α2)3
dα1dα2 =

1

2
.

One easily shows (see section §9) that all periods of this graph are rational.

7. Motivic Feynman amplitudes

Armed with the definition of the motive of a Feynman graph, we can give
the definition of the motivic Feynman amplitude and draw some first con-
sequences.

7.1. Reminders on motivic periods from [17]

Let S ⊂ KQ,M be Zariski open as in §6.3, let s ∈ S(C), and denote by
Spec kQ,M the generic point of S.

Then H(S) has two fiber functors ([17] §7.2.1)

ωgen
dR : H(S) −→ VeckQ,M

ωs
B : H(S) −→ VecQ

where ωgen
dR is the fiber of VdR at the generic point Spec kQ,M of KQ,M , and

ωB,s(VB,VdR, c) = (VB)s is the fiber at s. The ring of H(S)-periods

Pm,s,gen
H(S)

is the space generated by the matrix coefficients ([17], §2.2, (7.3)) of the
form [V, σ, ω]m where V = (VB,VdR, c) is an object of H(S), σ ∈ ωs(VB)

∨,
and ω ∈ ωgen

dR (V ). Now suppose that s1, s2 ∈ Ugen
Q,M ∩ S(C) are two points in

the region of generic kinematics. A path γ ⊂ Ugen
Q,M ∩ S(C) from s1 to s2
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yields an isomorphism

Pm,s1,gen
H(S)

∼= P
m,s2,gen
H(S)

by continuation along paths [17], (7.10) and hence a canonical isomorphism

(Pm,s1,gen
H(S) )π1(U

gen
Q,M∩S(C),s1) = (Pm,s2,gen

H(S) )π1(U
gen
Q,M∩S(C),s2)

where the action of the topological fundamental group is on the right, and
commutes with the action of the de Rham Tannaka group (resp. the de
Rham coaction). If S′ → S is a smooth morphism and s′ ∈ S′(C) is in the
pre-image of s, then the pullback defines a functor H(S)→ H(S′) and hence
a homomorphism Pm,s,gen

H(S) → Pm,s′,gen
H(S′) . By taking π1-invariants, we can move

the complex point s ∈ S(C) to ensure that it lies in the image of S′(C), and
hence take the limit.

Definition 7.1. For Q,M ≥ 0, following [17] §8.2, let

Pm

Q,M = lim
−→
S

(Pm,s,gen
H(S) )π1(U

gen
Q,M∩S(C),s)

where the limit ranges over Zariski open S ⊂ Kgen
Q,M which are defined over

Q and s ∈ Ugen
Q,M ∩ S(C), ordered with respect to inclusion.

The point of this construction is that the Feynman motivic periods will
have poles on the complement of some unspecified Zariski-open set S, but
will always be single-valued on the region Ugen

Q,M (extended ‘Euclidean sheet’).
The ring Pm

Q,M captures exactly this property.

There is a corresponding ring of de Rham periods Pdr

Q,M = lim
−→S

Pdr,gen
H(S) .

It is generated by equivalence classes of triples [V, f, ω]dr where f ∈ ωgen
dR (V )∨

and ω ∈ ωgen
dR (V ) and V is an object of H(S) for some S ⊂ KQ,M as above.

Recall that for (Q,M) = (0, 0) the ring k0,0 = Q and H0,0 = H is the
category of realisations over Q considered in [17] §2. Its ring of periods
Pm
0,0 = P

m

H is simply the ring of periods over Q considered in [17] §3.

7.2. Motivic Feynman amplitudes and motivic Feynman periods

We make frequent use of the definitions and constructions from [17].



514 Francis Brown

Definition 7.2. Let G be a Feynman graph of type (Q,M) and IG(q,m)
a convergent Feynman amplitude (1.10). Define the motivic Feynman am-
plitude to be

ImG (q,m) = [motG, [σG], [π
∗
G ωG(q,m)]]m ∈ Pm

Q,M .

To check that this makes sense, note that the general theory implies that
motG is an object of H(S) for S some Zariski-open set in Kgen

Q,M . Since

[σG] is in a fact constant section of Γ(Ugen
Q,M ∩ S(C), (motG)

∨
B), the funda-

mental group of Ugen
Q,M ∩ S(C) acts trivially upon ImG (q,m). Pick any s ∈

Ugen
Q,M ∩ S(C). The element ImG (q,m) therefore can be viewed as an element

of Pm,s,gen
H(S) , invariant under πtop

1 (Ugen
Q,M ∩ S(C)). It can therefore be viewed

as an element of Pm

Q,M .
For all (q,m) ∈ Ugen

Q,M , its period is given by the convergent Feynman
integral

per(ImG (q,m)) = IG(q,m) .

We can also define (for instance in the case NG ≥ (hG + 1)d/2) a variant:

ImG (q,m)′ = [mot′G, [σG], [π
∗
G ωG(q,m)]]m ∈ Pm

Q,M .

Since the action of the de Rham Galois group on motivic Feynman in-
tegrals will generate new integrands, and since quantum field theory (e.g.,
gauge theories) naturally produce integrands with numerators, we make the
following definition.

Definition 7.3. A motivic Feynman period of type (Q,M) is

ImG (ω) = [motG, [σG], [ω]]
m ∈ Pm

Q,M(7.1)

where [ω] ∈ ωgen
dR (motG) is any relative de Rham cohomology class at the

generic point. Write

IG(ω) = per(ImG (ω)) ,

which we call a Feynman period. It is a multivalued meromorphic function
on Kgen

Q,M (C). Note that graphs for which the Feynman amplitude ωG(q,m)
does not converge may still have non-trivial Feynman periods. The notion
of Feynman period is therefore more general, but contains, the notion of
Feynman amplitude. Feynman periods may not necessarily always have a
physical interpretation.
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One can consider a variant forNG ≥ (h+ 1)d/2, by replacing motG by mot′G.

Remark 7.4. Many, but not all, cohomology classes in ωgen
dR (motG) are of

the form [π∗
G(ω(q,m))], where ω(q,m) is a Feynman integrand with numer-

ator (6.13).

7.3. Coaction formula and cosmic Galois group

By [17] §8.2, the rings of periods considered above admit a coaction

Δ : Pm

Q,M −→ Pm

Q,M ⊗kQ,M
Pdr

Q,M .

Applied to a motivic Feynman period we have the formula [17] (2.3)

(7.2) ΔImG (ω) =
∑
ei

[motG, [σG], ei]
m ⊗ [motG, e

∨
i , [ω]]

dr

and the corresponding variant in which I and motG are replaced by I ′ and
mot′G. In this formula, ei is a basis of ωgen

dR (motG) and e∨i the dual basis.
The elements on the right-hand side of the tensor product in (7.2) are again
motivic Feynman periods of G.

It is customary in the physics literature to restrict to one-particle irre-
ducible graphs. Likewise, we shall restrict to the larger class of motic graphs.

Definition 7.5. The comodule of de Rham Feynman periods of type (Q,M)
is the subspace FPdr

Q,M ⊂ Pdr

Q,M spanned by de Rham Feynman periods

[motG, f, v]
dr , where v ∈ ωgen

dR (motG) and f ∈ ωgen
dR (motG)

∨ ,

and G is motic of type (Q,M). The coproduct is given by the formula

Δ[motG, f, v] =
∑
ei

[motG, f, ei]
dr ⊗ [motG, e

∨
i , v]

dr ,

where ei is a basis of ωgen
dR (motG) and e∨i the dual basis as above. It is not

an algebra since it is not closed under products when (Q,M) �= (0, 0).
The space of motivic Feynman periods of type (Q,M) is the subspace

FPm

Q,M ⊂ Pm

Q,M



516 Francis Brown

spanned by motivic Feynman periods ImG (ω), where G is motic of type
(Q,M). It is a right comodule over FPdr

Q,M . The coaction is given by Equa-
tion (7.2):

(7.3) Δ : FPm

Q,M −→ FPm

Q,M ⊗kQ,M
FPdr

Q,M .

Define the cosmic Galois group CQ,M for convergent Feynman periods
to be

(7.4) CQ,M = Spec FPdr

Q,M .

It is an affine group scheme over kQ,M , and acts on ωgen
dR (motG) for all G

motic of type (Q,M). The coaction (7.3) is equivalent to a group action

CQ,M ×FP•
Q,M −→ FP•

Q,M with • = m, dr .

The cosmic Galois group itself should be taken with a pinch of salt (in
the same way as the Galois group of all algebraic numbers): it is an enormous
pro-algebraic group scheme over kQ,M , and in practice one is interested in
its finite-dimensional representations.

7.4. First applications

The notion of motivic Feynman amplitude leads to a number of immediate
consequences. We briefly mention just a few.

Definition 7.6. The representation associated to a motivic Feynman pe-
riod ImG (ω) is the representation of CQ,M which it generates:

VG(ω) ⊂ FP
m

Q,M .

The Galois conjugates of a motivic Feynman period are the elements of
VG(ω), or equivalently, the elements of the comodule it generates under the
coaction (7.2).

1) (Weight filtration). We can speak of the weights of Feynman periods.
Say that a motivic Feynman period ImG (ω) is of weight at most n if

ImG (ω) ∈WnFP
m

Q,M

This holds in particular if ω ∈Wnω
gen
dR (motG). Note that the weight

is a filtration, not a grading, except in very special circumstances. We
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can say that a Feynman period is of weight ≤ n if it is the period
per ImG (ω) of a motivic Feynman period ImG (ω) of weight ≤ n.13

2) (Picard-Fuchs equations). There is an integrable connection

∇ : FPm

Q,M −→ FPm

Q,M ⊗kQ,M
Ω1
kQ,M

.

See [17] §7.4 for its compatibilities with the period homomorphism
and coaction. It follows from general theory and the construction of
motG that Feynman periods are solutions to differential equations of
Fuchsian type.

3) (Invariants attached to VG(ω)). The representation VG(ω) of a Feyn-
man period carries a barrage of new information. This is discussed in
[17]. For example, a motivic Feynman period has a rank (the dimension
of VG(ω)); a Hodge polynomial ; and a filtration by the unipotency de-
gree (this is the coradical filtration on FPm

Q,M induced by the coaction
(7.3).).

4) (Mixed Tate amplitudes). Call a motivic Feynman period mixed Artin-
Tate if it is equivalent to a motivic period of a variation of Hodge-Tate
type (all Hodge numbers hp,q = 0 unless p = q). Call it mixed Tate if it
is equivalent to a motivic period of H where grWn H is zero if n is odd,
and a direct sum of constant Tate objects Q(−k) if k = 2n is even.
The weight filtration is a grading on such motivic periods. This case
is discussed in §7.7.

Remark 7.7. The Betti realisation of motG is a local system on the com-
plex points of some open S = Kgen

Q,M\LG, where LG is a closed subscheme

we call the Landau variety14 of G. The fiber of this local system at a point
s carries an action of the fundamental group πtop

1 (Kgen
Q,M (C)\LG(C), s), cor-

responding to monodromy of amplitudes, and commutes with the action of

13The Hodge-theoretic weights here are double those commonly used in physics
and the field of multiple zeta values and polylogarithms. For example, ζ(3) has
weight 6 and not 3. If one wishes to divide the weight by two, one will encounter
half-integral weights. The simplest example of this phenomenon occurs already for
amplitudes which are given by elliptic integrals.

14This is more complex [18] than the Landau variety as commonly understood
in the physics literature. The Landau equations in the classical sense describe a
certain subset, but by no means all, of the components of LG.
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CQ,M . In these notes, it plays a subordinate role because we do not know
how to control LG in general.

7.5. Face relations

The recursive structure of graph motives gives rise to relations between the
periods of different Feynman graphs.

Let G be a motic Feynman graph. From Theorem 6.5, the irreducible
components of the divisor D ⊂ PG define morphisms ‘inclusion of facets’:

ie : PG/e\YG/e ↪→ PG\YG(7.5)

iγ : (P γ\Yγ)× (PG/γ\YG/γ) ↪→ PG\YG

where e ∈ EG or γ � EG is a motic subgraph. They induce morphisms of
relative cohomology as described in [17], §10.3.

Theorem 7.8. The maps ie, iγ induce morphisms

ie : motG/e −→ motG(7.6)

iγ : motγ ⊗motG/γ −→ motG

in the category H(S), where S is a Zariski open subset of Kgen
Q,M on which

the above objects are defined. On the Betti realisation, this map gives

ωB(ie)
∨ [σG] = [σG/e] and ωB(iγ)

∨ [σG] = [σγ ]⊗ [σG/γ ] .

This implies equalities of motivic periods in FPm

Q,M

[motG/e, σG/e, ω]
m = [motG, σG, ω

gen
dR (ie)(ω)]

m(7.7)

[motγ , σγ , ω1]
m × [motG/γ , σG/γ , ω2]

m = [motG, σG, ω
gen
dR (iγ)(ω1 ⊗ ω2)]

m.

Proof. Theorem 6.5 implies that the facet map

ie : P
G/e\YG/e

∼
→ De\(YG ∩De)

is an isomorphism of stratified spaces, where the stratification is induced
by the divisor D ∩ (De\(De ∩ YG)) on both sides of the equation. The face
morphisms defined in [17] (10.3) therefore define the required morphism
motG/e → motG in the category H(S). In the Betti realisation, this map
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corresponds to taking the boundary component of a relative homology cy-
cle which is contained in De(C). By Corollary 5.2 this gives exactly σG ∩
De(C) ∼= σ̃G ∩De(C) ∼= σ̃G/e

∼= σG/e.
The corresponding equation in the case of the face map iγ follows from

a similar argument, using the isomorphism of stratified spaces

iγ : (P γ\Yγ)× (PG/γ\YG/γ)
∼
→ Dγ\(YG ∩Dγ) ,

where the stratification on the left is the product of the stratifications in-
duced by the divisors (5.2) on P γ and PG/γ , which follows from Theo-
rem 6.5. �

This theorem implies an analogous statement corresponding to the inclu-
sions of faces of higher codimension. We shall call (7.7) the face relations.15

They are preserved by the action of the cosmic Galois group CQ,M .

7.6. Multiplicative structure

It is important to observe that in the second equation of (7.7), one of γ or
G/γ has no dependence on external kinematics (4.3), and hence defines a
constant motivic period in the sense of [17] §7.3.1. Therefore even if one is
only interested in processes with Q external momenta and M non-zero par-
ticle masses, one is inexorably led to consider the case of Feynman integrals
with no kinematics (these only depend on the graph polynomial ΨG and not
ΞG(q,m)). The following proposition gives another example of the special
role played by periods of Feynman graphs of type (0, 0).

Proposition 7.9. The vector space FPm

Q,M is closed under multiplication
by elements of FPm

0,0. In other words, multiplication defines a map

FPm

0,0 ⊗Q FP
m

Q,M −→ FPm

Q,M .

Thus the space of Feynman periods of type (0, 0) is a commutative algebra,
and the space of Feynman periods of type (Q,M) is a module over it.

Proof. Let γ be a motic graph of type (0, 0), and let H be a motic Feynman
graph of type (Q,M). Choose any vertex v of H. By inserting γ into v and

15Although the face relations are stated here as identities between periods of a
category of Betti and de Rham realisations, it is obvious that they should be true
‘motivically’ for any reasonable definition of the word, since they come from the
morphisms ie, iγ of algebraic varieties.
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attaching the edges of H (both internal and external) which are incident to
v to vertices of γ in any way, defines a new graph G of type (Q,M), such
that γ ⊂ G is motic and G/γ ∼= H is also motic. By Theorem 3.6 (ii), G is
motic. Now apply the face equation in the second line of (7.7). This proves
that a product of motivic periods of γ and H are motivic periods of G. �

The same statement is evidently true also for de Rham periods: multipli-
cation yields a map FPdr

0,0 ⊗Q FP
dr

Q,M −→ FPdr

Q,M , and FPdr

0,0 is an algebra.

7.7. Single-valued amplitudes and symbols

The right-hand side of the coaction involves de Rham Feynman periods. It
is an important problem to determine properties of the right-hand side of
the coaction and try to interpret these quantities physically. Note that they
do not have periods.

As a substitute, we have a notion of single-valued period [17] §8.3. Re-
stricting to the space of de Rham Feynman amplitudes, it is a homomor-
phism

sm : FPdr

Q,M −→ Pm

Q,M ⊗Q P
m

Q,M .

Composing with the period homomorphism defines a real analytic single-
valued function on Kgen

Q,M (C), with possible poles, which we call the single-
valued period.

In the case when a de Rham Feynman period ξ is unipotent [17] §9.2,
we can associate various notions of symbol to it. This holds in particular
when ξ is mixed Artin-Tate, and therefore can be applied to large classes of
Feynman periods. The symbol is a class in the reduced bar construction

smb(ξ) ∈ H0(B(Ω1
kQ,M

))

and has an invariant called its length. The cohomological symbol cmb�(ξ)
is the length-� part of the symbol of length ≤ � and can be viewed as an
integrable word in logarithmic one-forms on kQ,M . See [17] §9.4. This notion
of symbol is a generalisation of the notion of symbol used extensively in the
physics literature.

7.8. Total Feynman motive

Using the face maps we can take the limit over all graphs of type (Q,M)
and assemble them into a single object.
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Definition 7.10. The total (convergent) Feynman motive of type (Q,M)
is

(7.8) motQ,M = lim
−→
G

motG

where the limit is over all motic graphs of type (Q,M) and the morphisms
are given by the face maps ie of (7.6). It is an ind object of Rep (CQ,M ).

The periods of (7.8) do not a priori contain the renormalised amplitudes
of graphs. It would be interesting to write down the object which does
capture the amplitudes of all graphs of type (Q,M) after renormalisation.
Note also that (7.8) has a number of variants: for instance one can take the
limit over all planar graphs, or indeed any family of graphs closed under the
operation of contracting edges.

8. Weights and stability

We now apply results on weight filtrations from [17] §10.4.

8.1. Motives of descendants

We attach a motive to the motic descendants of graphs (defined in §4.2), in
the following way. To a motic descendent γ1 ⊗ · · · ⊗ γn of G of type (Q,M),
assign the object

mot(γ1 ⊗ · · · ⊗ γn) = mot(γ1)⊗ · · · ⊗mot(γn) ∈ H(S) ,

where S is some Zariski-open in the space of kinematics Kgen
Q,M . Define a

Betti class in (ωBmot(γ1 ⊗ · · · ⊗ γn))
∨ by

[σγ1⊗···⊗γn
] = [σγ1

]× · · · × [σγn
] .

Exactly one of the graphs γi is of type (Q,M); the others are of type (0, 0).
There is a canonical face map mot(γ1)⊗ · · · ⊗mot(γn)→ mot(G) that sends
σγ1⊗···⊗γn

to σG, defined by inclusion of the corresponding face of σG, or by
iterating (7.6). By the face equations (7.7) the motivic periods of descendants
of G (i.e., the motivic periods [mot(γ1 ⊗ · · · ⊗ γn), [σγ1⊗···⊗γn

], [ω]]m) are also
motivic periods of G.

The degree (4.5) coincides with the cohomological degree of the cor-
responding motive, and the dimension of the corresponding facet in the
Feynman polytope.
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Lemma 8.1. Let G be a Feynman graph of type (Q,M). Then W0mot(G) =
Q(0).

Proof. Let NG = |EG| ≥ 2. Apply the results from [17], Corollary 10.6. The
irreducible components of D ⊂ PG, defined in (5.2), are in one-to-one corre-
spondence with the facets of the Feynman polytope σ̃G, whose boundary is
homotopic to an n− 1-sphere, where n = NG − 1. Its cohomology in degree
n− 1 is one-dimensional. The case when NG ≤ 1 is trivial, since PG is a just
a point. �

Remark 8.2. If deg(G) = 0 then mot(G) = H0(Spec Q) = Q(0). It follows
that there are only finitely many motives attached to the set of all possible
tensors γ1 ⊗ · · · ⊗ γn of bounded degree.

8.2. Weight relations

Let G be a Feynman graph of type (Q,M). Recall that

mot(G) = HNG−1(PG\YG, D\(D ∩ YG)).

Let D(k) denote the union of the k-dimensional facets of D. Then there is a
morphism

WkH
k(D(k)\D(k) ∩ YG) −→Wkmot(G)

which is surjective (Proposition 10.4 in [17]). The dual map on Betti homol-
ogy sends the class of the Feynman polytope [σG] to the class of the union

[σ
(k)
G ] of its k-dimensional facets. This implies the following theorem.

Theorem 8.3. Every motivic period of mot(G) of weight ≤ k is equivalent

to a motivic period of the form [Hk(D(k)\D(k) ∩ YG), [σ
(k)
G ], [ω]]m.

Its period is a k-dimensional integral∫
σ

(k)
G

ω

where [ω] ∈ Hk
dR(D

(k)\D(k) ∩ YG). By triangulating the domain of integra-
tion into affine regions, as discussed in Appendix 1, and taking limits, this
integral can be written as a sum of regularised limits of integrals over each
facet of D(k). Since each facet is isomorphic to a product of graph hyper-
surface complements of motic descendants of G of total degree ≤ k, this
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gives a heuristic justification, via the argument of §11.4, for Conjecture 1.
The missing ingredient is to define a notion of regularisation on the level
of motivic periods, which is beyond the scope of these notes. It would also
have applications to the theory of renormalisation.

Remark 8.4. It is not the case that PG\YG are affine, since there exist
cohomology classes in PG\YG of degree greater than its dimension. Therefore
Proposition 10.7 in [17] cannot be applied, and we cannot deduce that the
face maps surject onto WkmotG, which would have implied that all motivic
periods of motG of weight ≤ k are in the image of the face maps. We do
not know, therefore, whether the motivic periods of weight ≤ k of mot(G)
relative to σG are generated by the motivic periods of weight ≤ k of its
motic descendents of degree ≤ k, as one might hope.

8.3. Stability

A first application of this theory is to show that the weight-graded parts of
the total motive grWk motQ,M stabilize.

Theorem 8.5. Let G be a Feynman graph of type (Q,M). Then grWk mot(G)
is a sub-quotient of⊕

γ=γ1×···×γr

⊕
i1+···+ir≤k

grWk
(
H i1(P γ1\Yγ1

)⊗ · · · ⊗H ir(P γr\Yγr
)
)

where the direct sum is over motic descendents of G of degree i1 + · · ·+
ir ≤ k.

Proof. Apply Corollary 10.5 of [17] to mot(G). We deduce that grWk mot(G)
is a sub-quotient of

⊕
|I|≥n−k gr

W
k Hn−|I|(DI\DI ∩ YG)/S , where DI are the

codimension |I|, and hence dimension n− |I| ≤ k facets of D, and n = NG −
1. By Theorem 6.5,

DI\(DI ∩ YG) ∼= P γ1\Yγ1
× · · · × P γr\Yγr

,

where γ1 ⊗ · · · ⊗ γr is a descendant of G of degree n− |I|. The statement
follows from the Kunneth formula. (Note that the degree of γij is unrelated
to ij .) �

The theorem gives a constraint on the Hodge polynomials of the motivic
periods of G of weight ≤ k. Combined with the Galois coaction, this gives a
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constraint on motivic periods to all orders. For example, we can deduce the
following corollary.

Corollary 8.6. Suppose that all 1PI graphs of type (0, 0) up to N + 1 edges
have mixed Tate cohomology in all degrees. Then the Galois conjugates of
any motivic Feynman amplitude of type (0, 0) which is of weight ≤ N is
mixed Tate.

By computation, one knows that the assumption of the corollary is true
for N up to about 10. This corollary therefore already provides a very strong
constraint on the possible periods which can occur to all orders in pertur-
bation theory.

We can be more precise and try to bound not only the weight-graded
parts, but also the extensions between them. This is the spirit of Conjec-
ture 1. In this direction we can prove the following weaker version of the
conjecture.

Theorem 8.7. The space WkFP
m

Q,M is finite-dimensional.

Remark 8.8. A proof of this theorem is given in §8.5 using affine models.
A different way to find an upper bound for the vector space of periods
perWkFP

m

Q,M is as follows. Apply Theorem 8.3 to write any motivic period

of weight ≤ k as a motivic period of a union D(k) of k-dimensional facets.
Using our canonical affine covering of PG, and triangulating as in Appendix
1, its period can be written as a sum of periods of affine pieces of each
facet. Since the number of graphs with at most k + 1 edges is finite, and
each facet is a product of such graphs, there are only finitely many such
affine pieces. This argument gives a crude but effective upper bound for
the periods of weight ≤ k in terms of periods of the relative cohomology of
(blow-ups of) graph hypersurfaces of graphs with ≤ k + 1 edges where we
now integrate over a cube [0, 1]n (see comments after Corollary 11.2). These
can in principle be computed for small k.

8.4. A principle of small graphs

Combined with the action of the cosmic Galois group, CQ,M ×FPm

Q,M −→
FPm

Q,M or rather, the fact that the motivic periods of any graph G are closed
under the action of CQ,M , Theorem 8.7 gives constraints on Feynman am-
plitudes to all orders. The space WkFP

m

Q,M is determined from the finitely
many ‘small’ graphs with at most k + 1 edges. This forces constraints on
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the Galois conjugates of Feynman periods of all graphs. For an example, see
§9.3.

8.5. Affine motive and proof of finiteness Theorem 8.7

Let G be a Feynman graph of type (Q,M). Define the affine motive motaG
of G in an identical way to Definition 6.4 except that we replace PG with
its affine open AG of §5.4:

motaG = HNG−1(AG\YG, D\(D ∩ YG))/S ,

as an object of H(S), for some Zariski-open S in the space of kinematics
Kgen

Q,M . It follows from the construction of AG, which is obtained by removing

from PG hyperplanes with strictly positive coefficients, that

σ̃G ⊂ AG(C) .

See the proof of Theorem 6.7. Thus motaG has a canonical Betti element
defined by σG in an identical manner to Definition 6.8:

[σG] ∈ Γ
(
Ugen
Q,M , (motaG)

∨
B

)
Furthermore, the inclusion AG\YG ⊂ PG\YG defines a morphism of objects

i : motG −→ motaG

in H(S), which respects the Betti-clases [σG] on both sides. This morphism
defines an equivalence on the level of motivic periods [17] §2.

Corollary 8.9. There is an equality of motivic periods

ImG (ω) = [motaG, [σG], idR[ω]]
m ,

where the left-hand side was defined in Definition 7.3. In particular, every
Feynman period of G is a period of the affine motive motaG. We could thus
use the affine motives motaG to study the weights, representations and so on
of Feynman periods.

Note that the affine motive is excessively large: it has many periods
which are unrelated to Feynman graphs. One advantage of the previous
corollary, however, is that it enables us to express every Feynman period
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as an integral of a globally-defined algebraic differential form, since, by a
theorem due to Grothendieck, the de Rham cohomology of an affine variety
is the cohomology of the complex of global regular differential forms. The
price to pay is that the integrand may involve linear denominators of the
form

∑
e∈γ αe, where γ is a motic subgraph of G. This remark may or may

not be of practical use in computing Feynman periods.

Definition 8.10. Let us call the affine motivic periods of a graph G to
be the space of motivic periods of motaG with respect to σG. By the above
remarks, it contains the space of motivic periods of G.

Now, it follows from the product structure on the spaces AG that the
analogue of Theorem 6.5 holds on replacing PG by AG, and hence the face
relations (Theorem 7.8) hold for motaG. Now apply Proposition 10.7 in [17],
which exploits Artin vanishing for the cohomology of affine schemes, to de-
duce the following theorem.

Theorem 8.11. The affine motivic periods of G of weight ≤ k are kQ,M -
linear combinations of the affine motivic periods of motic descendents of G
of degree ≤ k.

Since there are only finitely many descendents of bounded degree (re-
mark 8.2), we immediately deduce Theorem 8.7.

9. The constant cosmic Galois group

The motivic periods of graphs of type (Q,M) = (0, 0), which have no de-
pendence on external kinematics, play a special role in the Galois theory of
all Feynman amplitudes and are of particular number-theoretic interest.

9.1. A Galois theory of graph periods

We recall the main definitions in this case. We shall make no restrictions on
the ‘physicality’ of the graphs under consideration, i.e., our graphs can have
arbitrary vertex-degrees for the time being.

Definition 9.1. For any graph G of type (0, 0), recall that

mot(G) = HNG−1(PG\YG, D\(D ∩ YG)) ,

is an effective object in the category H defined in [17] §2. It consists of
triples (VB, VdR, c) where VB, VdR are finite-dimensional Q vector spaces,
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and c is an isomorphism c : VdR ⊗ C
∼
→ VB ⊗ C. These spaces are equipped

with filtrations which define a mixed Hodge structure. In this context, the
word effective means that the Hodge numbers of mot(G) satisfy hp,q = 0 if p
or q is negative. Denote the ring of motivic graph periods to be the Q-vector
space spanned by the motivic periods:

FPm

0,0 = 〈[mot(G), [σG], [ω]]
m〉Q ⊂ Pm,+

H

where G is motic (i.e., 1PI) and [σG] ∈ mot(G)∨B is the canonical Betti fram-
ing. It actually lands in the subspace Pm,+ ⊂ Pm,+

H defined in [17], Defini-
tion 3.4. Define the space of motivic periods of a fixed graph G to be the
vector space

(9.1) FPm(G) = 〈[mot(G), [σG], [ω]]
m for [ω] ∈ mot(G)dR〉Q

spanned by its motivic graph periods. We say that a graph G has weight at
most n and write w(G) ≤ n if WnFP

m(G) = FPm(G), in accordance with
§7.4.16

In the special case when G is overall log-divergent (NG = 2hG) and
primitive (Nγ > 2hγ for all γ � EG), the mixed Hodge structure underlying
mot(G) coincides with the graph motive of [10]. In this case the amplitude
is given by the integral

(9.2) IG = per([mot(G), [σG], [ωG]]
m) =

∫
σG

ΩG

Ψ2
G

which converges by Lemma 6.10. Thanks to [13, 48] we know hundreds of
examples of periods (9.2), and many identities between them. These iden-
tities, when taken alone, do not give much control on the possible integrals
(9.2), since every new algebra generator is arbitrary. However, if these iden-
tities hold on the level of the motivic periods ImG , as we expect, then when
combined with the action of the cosmic Galois group and stability, we ob-
tain a very rigid structure, since the Galois conjugates are constrained by
the periods of smaller graphs.

16This is a more subtle notion than the naive weight of a graph defined by the
weight of the object motG in H. If Wnmot(G) = mot(G) then it is certainly true
that the periods of G have weight ≤ n, but the examples given below show that
the converse is false.
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9.2. Invariants and classification

Motivic periods over Q are studied in some detail in [17], §3. Two construc-
tions worth mentioning are the unipotency degree (or coradical filtration)
CiP

m,+
H and the decomposition into primitives. Say that a motivic Feynman

period is of unipotency degree at most n if it lies in CnFP
m

0,0. In the case
of motivic multiple zeta values, the unipotency degree is bounded above by
the depth. The decomposition into primitives is a homomorphism [17], §3.8

Φ : grCFPm

0,0 −→ grC0 FP
m

0,0 ⊗Q T c(grC1 O(UdR
H ))

where T c denotes the tensor coalgebra, or shuffle algebra, and grC1 O(UdR
H ) is

a vector space which can be made explicit. The unipotency grading on the
left-hand side coincides with the length grading of tensors on the right. This
map generalises the (highest-length part of) the decomposition of motivic
multiple zeta values into an alphabet of letters f2n+1 to all motivic periods.

We have constructed a map from graphs to representations

{Graphs of type (0, 0)} −→ RepQ(C0,0)(9.3)

G �→ FPm(G)

where C0,0 is the constant cosmic Galois group. This is more subtle than
the naive map which sends G to the object mot(G)dR, since it takes into
account the Betti framing σG. In the notation of [17] §2.4 we have

FPm(G) ∼= (σmot(G))dR

where σmot(G) denotes the smallest quotient of mot(G) in the category H
such that σG ∈ (σmot(G))∨B . We can apply any of the invariants of motivic
periods defined in [17] to FPm(G). The challenge, then, is to relate invariants
of motivic graph periods to topological invariants of their graphs, and find
relations between graphs through which the map (9.3) factorizes (see §9.4).

For example, we called G mixed Artin-Tate if all elements of FPm(G)
have Hodge numbers hp,q = 0 if p �= q. Graphs of vertex-width ≤ 3 are of
this type [18].
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Furthermore, let us call G separated17 if it satisfies

(motG)dR = W0(motG)dR ⊕ F 1(motG)dR .

In this case, [17] §4.3 provides a canonical projection

πdr,m+ : FPm(G) −→ FPdr(G)

from the motivic periods of G to the de Rham periods of G, and gives a
handle on the right-hand terms in the motivic coaction. There is evidence
to suggest, using methods from [20], that a large class of graphs indeed
satisfy this property. In particular, all graphs of mixed Artin-Tate type are
separated.

For any separated Feynman graph G of type (0, 0), apply the projection
followed by the single-valued map sm [17], §4.1 to obtain a linear map

FPm(G)
πdr,m+
−→ FPdr(G)

s
m

−→ Pm

H .

This defines canonical single-valued versions of its motivic periods
smπdr,m+I

m

G (ω). For multiple zeta values, the corresponding single-valued
versions occur in string perturbation theory, and have a physical signifi-
cance since they relate open and closed superstring amplitudes [33, 53, 55].
Indeed, the formula for the closed string vertex operator for the emission of
a closed string state as a product of open string vertex operators precisely
mimics the definition of the single-valued motivic periods ([17], last line of
§4.1.)

9.3. Small-graphs principle

By way of illustration, we compute the motivic periods of graphs with at
most three edges and deduce some non-trivial consequences. We first dis-
pense with two degenerate families of graphs.

Lemma 9.2. If G has a single vertex, or a single loop, then mot(G) ∼= Q(0).

17Or, better, the weaker condition

σ(motG)dR = W0 (σ(motG))dR ⊕ F 1(σ(motG))dR
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Proof. Let n = EG − 1. Suppose that hG = 1. Then ΨG =
∑

e∈EG
αe andXG

is a hyperplaneH. Since G has no non-trivial motic subgraphs, PG = Pn and
PG\YG = Pn\H ∼= An. Similarly, every stratum DI\(DI ∩ YG) is an affine
space and has the cohomology of a point. Therefore the relative cohomol-
ogy spectral sequence Ep,q

1 =
⊕

|I|=pH
q(DI\(DI ∩ YG)), which converges to

mot(G), satisfies Ep,q
1 = 0 if q > 0 and hence mot(G) ∼= Q(0).

Now suppose that G has one vertex. Every subgraph of G is motic, and
the graph polynomial is ΨG =

∏
e∈EG

αe. Since the graph hypersurface XG

is the union L of coordinate axes, its strict transform YG in PG is empty.
Therefore

mot(G) = Hn(PG, D) ∼= Hn(PG\D)∨(−n) ,

by Poincaré-Verdier duality. Since PG\D ∼= Pn\L ∼= Gn
m, the right-hand side

is Hn(Gn
m)∨(−n) = Q(−1)⊗(−n)(−n) = Q(0). �

All two-edge motic (i.e. 1PI) graphs are covered by the previous lemma.
The four 1PI graphs with three edges are depicted below. Their graph poly-
nomials are underneath. The two outer graphs are trivial by the previous

α1 + α2 + α3 α1α2+α1α3+α2α3 α1(α2 + α3) α1α2α3

lemma. The middle two have non-global periods which are in fact trivial
(they satisfy mot(G) ∼= Q(0)⊕Q(−1)). This can be seen in two ways: either
by a similar analysis to §12, or by observing that mot(G) defines a mixed
Tate motive which is unramified at all primes. Every Kummer extension of
mixed Tate motives which is defined over Z splits as a direct sum of Tate
motives, so mot(G) has no non-trivial motivic periods.

Lemma 9.3. We have W2FP
m

0,0 = W0FP
m

0,0
∼= Q

Proof. By Theorem 8.5 and the above calculations, grWi FP
m

0,0 vanishes for
i = 1, and is a direct sum of Tate motives Q(0) and Q(−1) for i = 0, 2
respectively since it is generated by the cohomology of graphs of degree
≤ 2. Therefore W2FP

m

0,0 is a linear combination of Kummer motivic periods
(motivic logarithms), which are the motivic periods of extensions of Q(−1)
by Q(0). By Theorem 8.3 the motivic periods of mot(G) of weight ≤ 2 are
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equivalent to the motivic periods of its 2-dimensional skeleton D(2), each
of whose faces is of one of the above types, or, more trivially, corresponds
to a product of two 2-edge graphs (when |EG| = 2, PG\YG is either P1 if
G has one vertex or A1 if it has two, see Lemma 9.2). From the explicit
description of PG as a blow-up, one can check that D(2) is a mixed Tate
motive over Q unramified at all primes by applying the criterion of [35],
Proposition 4.3. It therefore has no non-trivial periods. It follows that the
only possible periods in weight ≤ 2 are rational numbers (periods of Q(0)),
and rational multiples of the Lefschetz motivic period Lm, whose period
is 2πi. The latter is anti-invariant under the action of the real Frobenius
involution F∞. On the other hand, motivic periods of graphs are invariant
under the real Frobenius, since the Betti class σG is fixed under its action.
This rules out the second case. �

Since a motivic logarithm logm(x) is determined by its period log(x), an
alternative approach to proving this lemma would be by direct computation
of the periods of the two and three-edge graphs, along the lines of the method
of Appendix II.

This innocuous-looking statement provides a constraint to all orders
in perturbation theory, i.e., an equation satisfied by all motivic Feynman
amplitudes.

Theorem 9.4. Let G be a primitive log-divergent graph, and ImG its motivic
amplitude. Then every Galois conjugate which is of weight ≤ 2 is rational.

In fact, no element of FPm

0,0 can have a Galois conjugate of the form
logm(p) for p prime. This theorem is consistent with the coaction Conjec-
ture 2 below.

Example 9.5. In [46], Schnetz and Panzer give examples of amplitudes of
graphs P9,36 = P9,75 and P9,107 = P9,111 with 9 loops which are Euler sums
and are constrained in a non-trivial way by this theorem. One verifies by
replacing them with their motivic versions (assuming the period conjecture
for Euler sums) that, indeed, they never have a Galois conjugate logm(2).

In a similar way, one easily checks that the motivic period Lim2 (ζ6), where
ζ6 is a primitive 6th root of unity does not occur in W4FP

m

0,0. This gives a
non-trivial constraint on the amplitudes P7,11, P8,33 and P9,136 = P9,149 at
seven, eight and nine loops respectively. See [46] for further details.
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9.4. A programme for a Galois theory of graphs

There are several known families of algebraic relations between amplitudes
of graphs of type (0, 0). We expect that many of these relations also hold
between motivic periods. This suggests the following list of relations through
which the map (9.3) might factorize:

1) (Tadpoles). G ∼ G/e where e is a tadpole (self-edge).

2) (Series-Parallel operations). G ∼ G′ where G′ is obtained from G by
subdividing an edge or duplicating an edge.

3) (Planar duals). G ∼ G∨ where G is planar, and G∨ is its dual graph.

4) (One and two-vertex joins). If G is a one or two-vertex join of graphs
G1 and G2 then we expect a relationship between

FPm(G) and FPm(G1)FP
m(G2).

5) (Completion and twist identities). G ∼ G′ where G and G′ are twist-
related or obtained from a four-regular graph by deleting a vertex [48].

Note that (3) could be extended to non-planar graphs if one considers
graph motives of matroids. If one replaces mot(G) with a cubical version
motc(G) following [18], then (3) holds automatically. The series and parallel
operations are (planar) dual to each other. The three-edge examples of §9.3
are equivalent to the empty graph by (2). The relation (5) is considerably
more speculative than the others.

In addition, we can hope for precise information about the weights of
graphs. We expect that the highest weight-graded quotient of FPm(G)
should be related to the c2-invariant of a graph,18 which is known to satisfy
several further combinatorial identities. This suggests, at the very least for
graphs satisfying NG = 2hG, that

6) w(G) ≤ 2NG − 6, and w(G) ≤ 2NG − 8 if G has weight-drop.

7) w(G) ≤ 2NG − 8 if G contains a sub-divergence.

8) w(G) ≤ n if and only if w(G′) ≤ n whenever G,G′ are equivalent under
double-triangle reduction.

18to set this up rigorously, we could enhance the category of realizations H to
include an �-adic component. The c2-invariant should be obtained from the action
of Frobenius on the highest non-trivial weight-graded piece of (motG)�.
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It is highly likely that there are further relations between motivic periods
of graphs which have three-valent vertices or triangles, which remain to be
discovered.19

Finally, one would like to have some control on the degree of unipotency
of motivic periods. This has not been investigated.

9.5. Coaction conjecture and speculation

Recall that a graph G of type (0, 0) is said to be in φn if every vertex of G
has degree at most n.

Definition 9.6. Let FPm

φ4 ⊂ FPm

0,0 denote the Q-vector space spanned by
the motivic amplitudes (9.2) of primitive log-divergent graphs in φ4 theory.

The following extraordinary conjecture was formulated in [46] and called
the coaction conjecture. It was a principal motivation for the present paper.

Conjecture 2. [46] FPm

φ4 is stable under the action of C0,0.

This conjecture goes far beyond what we can presently prove, but has
been verified numerically in hundreds of examples [46]. However, proving
any or all of the properties of §9.4 would lead to spectacular consequences
for graph amplitudes in the direction of this conjecture. For example, let us
assume only (2), and call two graphs sp-equivalent if they are obtained from
each other by series-parallel operations. The smallest graph not equivalent
to the trivial graph is the wheel with three spokes W3 with six edges (whose
amplitude is 6ζ(3); we expect that ζm(3) is its unique non-trivial motivic
period) followed by the wheel with four spokes W4 with eight edges. By
stability, we would deduce that

W7FP
m

0,0
?
= Q⊕ ζm(3)Q .

In particular, no ζm(2) occurs, which would then imply that no motivic
period at any loop order can have a Galois conjugate ζm(2). Since W3 is
primitive log-divergent in φ4 this would also prove Conjecture 2 up to weight

19we know, for example, that graphs of vertex width ≤ 3 evaluate to multiple
zeta values but the numbers of such graphs greatly exceeds the dimension of the
space of multiple zeta values of the appropriate weight, so there must exist many
relations between these amplitudes.
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seven:

WnFP
m

φ4

?
= WnFP

m

(0,0) for n ≤ 7 ,

since the right-hand side is stable under the action of C0,0 by definition.
Things become interesting at nine edges. There are three non-trivial sp-
equivalence classes of graphs: the graph obtained by deleting an edge from
the complete graph K5; the complete bipartite graph K3,3; and a planar
graph which is the skeleton of triangular prism. By continuing in this man-
ner, and computing motivic periods of ever-larger graphs, one could deduce
infinite families of constraints on motivic periods of Feynman graphs to all
orders. This would go a long way to explain the remarkable structure ob-
served in [46].

Example 9.7. To illustrate how the topology of graphs can impinge upon
their periods, consider any class of graphs C which is stable under edge con-
traction and motic subgraphs. It defines a subspace FPm

C
⊂ FPm

(0,0) which
is stable under the action of the constant cosmic Galois group C0,0. For
example, the motivic periods of planar graphs are Galois-stable.

Specialising further still, consider the following thought-experiment for
the wheel with n-spokes graphs Wn. Since there are several missing elements
we shall be very brief. The key topological property of the wheel graphs
is that, modulo sp-equivalence, the vector space they span is stable under
motic descendants. Another way to say this is contracting an edge in a wheel
leads to a graph which is either sp-equivalent to another wheel, or the trivial
graph. Every motic subgraph of a wheel has the same property.

Bloch-Esnault-Kreimer have proved that (e.g., as an object of H),

(9.4) H2n−1(P2n−1\XWn
) ∼= Q(3− 2n) .

Let us assume (2) of §9.4 and furthermore that the wheel motives are mixed
Tate over Z and have no non-trivial non-global motivic periods (i.e., the
conclusion, but not necessarily the hypotheses of Proposition 10.7 in [17]
hold). This would imply that all elements in (σmot(G))dR are images of
classes (9.4) via face maps and hence have weights ≡ 2 (mod 4). By the
following proposition,

FPm(Wn)
?
= Q⊕Qζm(3)⊕Qζm(5)⊕ · · · ⊕Qζm(2n− 3) .

In particular, this would imply that all periods of the wheel graphs are linear
combinations of odd zeta values only. It is known that the wheel amplitude
(9.2) itself is an explicit rational multiple of a single odd zeta value of highest
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weight. In this case, therefore, we expect to see a direct relationship emerging
between the topological properties of wheel graphs in the motic Hopf algebra
and the Galois-theoretic properties of their periods.

Proposition 9.8. Let M be an effective mixed Tate motive over Z such
that

grW4nM = 0 for all n ≥ 1 .

Then the real (i.e., Frobenius-invariant) motivic periods of M are Q-linear
combinations of 1 and ζm(2n+ 1), for n ≥ 1.

Proof. Choose generators σ2n+1 of the de Rham graded Lie algebra ofMT (Z)
in odd degrees −2n− 1 for n ≥ 1, where the degree is the ‘MZV-weight’, or
one half of the Hodge-theoretic weight. The non-rational motivic periods of
M have only odd degrees by assumption. Consider a motivic period ξ2m+1

of M of degree 2m+ 1 > 0. Since σ2n+1ξ2m+1 has even degree 2(m− n),
it is zero unless n = m and σ2n+1ξ2m+1 ∈ Q. Therefore ξ2n+1 has de Rham
Galois conjugates itself and 1. It is therefore primitive (unipotency degree
≤ 1). By Theorem 3.3 of [15] it is in the space ζm(2m+ 1)Q⊕ (Lm)2m+1Q.
Since it has real periods and per(Lm) = 2iπ is imaginary, it is a rational
multiple of ζm(2m+ 1). �

Remark 9.9. The previous argument fails for a weight-drop graph such
as the bipartite graph K3,4, since its motive is non-trivial in weight 16 ≡ 0
(mod 4) and the previous proposition does not apply. It has motic graph
sub-quotients W3 and W4, so the same argument would allow the motivic
amplitude ofK3,4 to have Galois conjugates ζm(3) and ζm(5). This is entirely
consistent with the fact that

IK3,4
= −

216

5
ζ(5, 3)− 81ζ(5)ζ(3) +

522

5
ζ(8)

which, assuming the period conjecture for multiple zeta values, indeed has
non-trivial Galois conjugates ζ(3) and ζ(5).

In conclusion, the Galois theory of graphs described here, with a few
extra speculative ingredients such as those outlined in §9.4, seems to predict
quite accurately the observed patterns of periods in amplitude computations
at low loops.
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10. Examples with general kinematics and conjectures

10.1. General kinematics

It is possible to undertake a classification of the motivic periods of graphs
with few edges and arbitrary external kinematics as above. By the small
graphs principle and Galois action, it leads, in the same way as §9.3, to
all order constraints on Feynman periods of any type (Q,M). We shall not
discuss this here, but only make a few brief comments.

First of all, the cohomology of generic one-loop graphs was studied in [11]
and can be re-expressed in the language of motivic periods. Applying formula
(7.2) it provides a computation of the motivic coaction. The case of graphs
with subdivergences can be treated using the techniques described here, and
one example is treated in full detail in an Appendix §12. The recent preprints
[1] and [2] give conjectural formulae for the coaction on some examples of
graphs (with the caveat that one side of the coaction needs to be expressed
in terms of de Rham periods). I expect that these formulae can be proved
from first principles using the cohomological techniques described here. An
interesting observation of loc. cit. is that the coaction formulae apparently
continue to hold on the level of ε-expansions in dimensional regularisation.

Note also that a complete analysis of Feynman graphs with up to three
edges would include the sunrise graph, which involves the cohomology of
a family of elliptic curves and has a very extensive literature. The results
of [14] likewise can be used to deduce information about the corresponding
motivic periods.

Remark 10.1. Other interesting classes of graphs to study in this frame-
work are those of type (Q,M) = (2, 0) or (0, 1) which depend on a single
scale. When the scale factorizes out of the graph polynomials, the corre-
sponding amplitudes effectively depend upon a single number. The massive
banana graphs (see [12]), for example, would seem to generate a small fam-
ily of motivic periods which are stable under the cosmic Galois group, and
hence should have interesting arithmetic properties. We suspect that this
could explain why certain combinations of periods related to banana graphs
are periods of pure motives, and hence, by Deligne’s conjecture, are critical
values of the underlying L-functions.

10.2. Graphs with many external legs

The parametric representation is inefficient for graphs with many edges, and
the number of edges does not accurately predict the expected weight of the
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amplitude. The existence of the momentum space representation suggests
the weight depends on the loop number.

Conjecture 3. Let G be a Feynman graph with h loops, in d ∈ 2N space-
time dimensions, and let ωG be the integrand of the Feynman amplitude.
Then

(10.1) ωG ∈ ωgen
dR WdhmotG .

Remark 10.2. This conjecture only gives a bound on the weights of am-
plitudes, and not general Feynman periods, which could potentially have
higher weights.

The heuristic rationale behind the conjecture is as follows:

• There should exist objets motmom
G in a category of realisations such

that the amplitude in momentum space is the period of

[motmom
G , ωmom

G , σmom
G ]m.

• The Schwinger trick (universal quadric) should give an equivalence

[motmom
G , ωmom

G , σmom
G ]m = [motG, ωG, σG]

m

This was partly carried out in [10], Equation (10.4), in the case of
no kinematics or subdivergences, and for the absolute (not relative)
cohomology.

• The momentum space integrand should satisfy ωmom
G ∈Wdh(motmom

G )dR.

This conjecture, combined with the stability Conjecture 1, would yield
powerful identities for Feynman amplitudes. In particular, it suggests the
following.

Conjecture 4. Let G be as in Conjecture 3. The amplitude of G is a
(regularised) period of the motic descendants of G of degree ≤ dh.

Let d = 4. Since, for every h there are only finitely many graph topologies
of degree ≤ dh, this would give a finite set of ‘master integrals’ for graphs
with arbitrarily many external legs, at every loop order.

Examples 10.3. Conjecture 3 is certainly true for one-loop graphs. Let
G be such a graph. Then its Feynman amplitude is of weight ≤ 4. It is
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expressible as a Feynman period of quotients of G with at most five edges
(in this case one can do slightly better and replace ‘five’ with ‘three’). This is
a theorem due to Nickel [43], reproved in [11], and can be made effective. The
analogue of this theorem for graphs with two loops is not presently known,
it seems, and the programme outlined above suggests a generalisation to all
higher loop orders.

10.3. Further directions

Some directions for further research include:

1) One would like to incorporate ultraviolet divergent graphs and the
theory of renormalisation along the lines of [21]. Since the geometry
of the Feynman polytope is very close to the BPHZ forest formula,
the theory of renormalisation fits very naturally in the present frame-
work. One approach, which is closest to that used in physics, would be
to allow integrals with logarithmic terms in the numerators. This can
be done by defining a notion of motivic periods with coefficients (one
needs to interpret an integral of a family of motivic periods20 as a mo-
tivic period).21 Another approach, which is perhaps less satisfactory,
is to differentiate with respect to a scale in order to turn all integrands
into algebraic differential forms, as in [21]. Indeed, one can define the
graph motives of UV divergent graphs simply by using the decompo-
sition into angles and scales of [21] and taking the renormalised graph
motive defined in §10.4 there.

2) It would be interesting for applications to understand situations with
infra-red singularities when the genericity assumptions (1.17) are not
satisfied. The graph factorisation theorems partially break down in
this case, but by enlarging the class of polynomials considered, one
might still retrieve a Galois theory of graphs. The QED contributions
to the anomalous magnetic moment g − 2 are a fascinating case study.

3) One would like to rethink the problems of resummation of the pertur-
bative expansion in the context of motivic periods. Taking a sum of
amplitudes viewed merely as complex numbers ignores the fact that
they are periods and all the structure that that entails. We expect the

20For example, one can make sense of a formula of the form ζm(2) =

−
∫
1

0
logm(1− x)dxx .

21This also seems to be a possible way to study dimensional regularisation: the
coefficients of a Taylor expansion in ε are integrals with logarithmic numerators.
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perturbative expansion can be lifted canonically to a series whose coef-
ficients are motivic periods. The invariants of motivic periods defined
in [17] should enable one to sum this perturbative series in a more
organised manner, e.g., according to various types, which may lead to
better convergence properties.

4) In our theory, the domain of integration is trivial and all the content
of the physical theory is in the integrand. For this reason the de Rham
Galois group plays a privileged role. The remarks in this chapter also
suggest that the graph motive in parametric space is not optimal (at
least for graphs with many edges), and one must also consider momen-
tum space or other integral representations, which will give a different
bound on the space of Galois conjugates of amplitudes. It seems to
be an important fact that amplitudes have several quite different inte-
gral representations, each giving different constraints on their Galois
theory.

5) We worked exclusively in Euclidean space. In order to analytically
continue to Minkowski space, one would like to know where the singu-
larities of the Feynman integrals are. A worrying possibility is that the
set of singularities of graphs of a fixed type (Q,M) could become dense
in the space KQ,M as the loop number increases. This is why our de
Rham fiber functor is at the generic point. It would be interesting to
know if there is an open region in kinematic space where all Feynman
amplitudes are non-singular.

6) There is good evidence to suggest that superstring amplitudes have
a Galois theory of their own (at least at tree-level [47]). This seems
entirely reasonable given that the moduli spaces Mg,n have the same
product-structure on their stratification as the one exploited here for
amplitudes.

11. Appendix I: some cohomological tools for periods

Not every cohomology class in the de Rham realisation of the graph motive
can be represented by a global differential form such as (6.13). A study of
non-global periods is necessary for understanding the conjugates of ampli-
tudes under the cosmic Galois group. Therefore in this section we provide
some tools for studying such non-global cohomology classes and their peri-
ods. The first is a complex which we use to show that the periods of graphs
are limits of divergent integrals of globally-defined forms. The second is a
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spectral sequence which allows us to import known results about the co-
homology of graph hypersurfaces in projective space to the study of graph
motives. It is related to the motic Hopf algebra.

11.1. A relative algebraic Čech-de Rham complex

Let D ⊂ X be a simple normal crossing divisor in a smooth scheme X over
Q. Let Ui ⊂ X, for i ∈ I, be a covering of X by a finite collection of smooth
affine varieties defined over Q. Let Dj , for j ∈ J , denote the irreducible
components of D. Write as usual UP = ∩i∈PUi for ∅ � P ⊂ I and DQ =
∩i∈QDi for Q ⊂ J with the convention D∅ = X.

Consider the triple complex

(11.1) Ωn,p,q({Ui}, D) =
⊕

|P |=p,|Q|=q

Ωn(UP ∩DQ)

where Ωn(UP ∩DQ) denotes the global sections of the sheaf of Kahler dif-
ferential forms over Q. The differentials Ωn,p,q({Ui}, D)→ Ωn+1,p,q({Ui}, D)
are given by the usual differential d in the de Rham complex. The differen-
tials Ωn,p,q({Ui}, D)→ Ωn,p+1,q({Ui}, D) are given by the differentials in the
usual Čech complex, and the differentials Ωn,p,q({Ui}, D)→Ωn,p,q+1({Ui}, D)
are given by restriction of differential forms to closed subsets DQ∪{j} ⊂ DQ

with the standard sign convention. The relative algebraic de Rham coho-
mology

Hn
dR(X,D) = Hn(Tot(Ωn,p,q({Ui}, D)))

is the cohomology of the total complex associated to the triple complex
(11.1). A cohomology class of degree n in the latter can be represented by
a collection

(11.2) ωP
Q ∈ Ωn+1−p−q(UP ∩DQ)

where P ⊂ I and Q ⊂ J with |P | = p, |Q| = q that are mapped to zero by
the total differential. Associated to the triple complex (11.1) are a number
of spectral sequences, for example

Ep,q
1 =

⊕
|P |=p+1

Hq
dR(UP , UP ∩D) =⇒ Hp+q

dR (X,D)

where the differential is induced by inclusions as for the Čech complex.
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11.2. A relative Stokes’ theorem

Let Cn(UP ∩DQ) denote the complex of singular n-chains with coefficients
in Q on the topological space UP ∩DQ(C). By analogy with (11.1), define
a triple complex of singular chains

(11.3) Cn,p,q({Ui}, D) =
⊕

|P |=p,|Q|=q

Cn(UP ∩DQ)

where the differentials are given by the boundary map on chains, and the in-
clusion maps, with the appropriate signs. The homology of the total complex
is the relative Betti homology

Hn
B(X,D)∨ = Hn(X(C), D(C)) = Hn(Tot(Cn,p,q({Ui}, D))) .

A relative homology class can be represented by a collection of chains

(11.4) σP
Q ∈ Cn+1−p−q(UP ∩DQ)

whose total differential is zero. Denote such a collection by σ = {σP
Q}.

Given such a chain of degree n, and a cohomology class ω ∈ Hn
dR(X,Z)

represented by a collection (11.2), define the period (or integration pairing)
by

(11.5)

∫
σ
ω :=

∑
P,Q

∫
σP
Q

ωP
Q .

Note that there can be signs in this formula depending on sign conventions
for the differentials in the complexes defined earlier. These are not important
for the general discussion which follows. The following theorem is a corollary
of Grothendieck’s Theorem [37]. I was unable to find a suitable reference in
the literature.22

Theorem 11.1. The pairing (11.5) is well-defined and computes the iso-
morphism

compB,dR : Hn
dR(X,D)⊗Q C

∼
−→ Hn

B(X,D)∨ ⊗Q C .

22Although, whilst writing up these notes, Huber and Müller-Stach kindly sent
me a preliminary draft of their book project on periods, which contains similar
considerations.
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Proof. (Sketch). The pairing is well-defined by Stokes’ formula, along with
the definition of the differentials in the complexes (11.1) and (11.3). By
some standard homological algebra, the result follows from Grothendieck’s
algebraic de Rham theorem for affine varieties, which implies that integration
defines a natural isomorphism H i

dR(UP ∩DQ)⊗Q C
∼
−→ H i

B(UP ∩DQ)⊗Q

C for all P,Q. �

11.3. Sectors and blow-ups in projective space

We can apply the above to the following situation. With the notation of §5,
let S be a finite set and B ⊂ 2S be a set of subsets of S closed under unions.
Let PB denote the corresponding blow-up of PS , and DB ⊂ PB the normal
crossing divisor defined in (5.2). Let Y ⊂ PB be a closed subvariety with
the property that Y ∩ σ̃B = ∅. We set

X = PB\Y and D = DB\(DB ∩ Y ) .

The spaces PB come with a natural affine covering {UF ,c} = {A
F ,c\(AF ,c ∩

Y )} where the AF ,c are isomorphic to affine spaces An. We have in mind, of
course, the case where B is the set of motic subgraphs of a Feynman graph,
and Y the strict transform of graph hypersurfaces.

The polytope σ̃B defined in §5.2 can be decomposed into regions in the
following way. Choose any point which lies in the interior of σ:

(11.6) z = (z1 : · · · : zn) ∈ PS(R) where zi > 0 for all i .

It defines a point on every open UF ,c ⊂ AF ,c in our covering. Let β1, . . . , βn
be the coordinates on AF ,c defined by (5.9). Then the inverse image of z is
given by equations βi = zai

/zbi for some indices ai, bi. The equations βi = 0
and βi = zai

/zbi define a hypercube Hz in UF ,c. Let σ
A
B(z) be a face of this

hypercube:

σA
B(z) := {(β1, . . . , βn) ∈ Hz : βi = 0 for i ∈ A, βi = zai

/zbi for i ∈ B} ,

where A,B ⊂ {1, . . . , n} are disjoint. One can verify that σ is tessellated by
a set of σP

Q(z), over the different charts F , c, for certain sets P,Q, and that

{σP
Q(z)} defines a relative Betti homology class representing σ.
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Figure 1: A decomposition of the coordinate simplex in P3 (here B = ∅),
defined by hyperplanes ziαi = zjαj for 0 < zi <∞ and i = 1, 2, 3. The affine
open sets Ui : αi �= 0 for i = 1, 2, 3 are depicted schematically by grey arcs.
On the right, z2, z3 → 0.

Corollary 11.2. Any relative period of PB\Y over the domain σ is given
by

(11.7)

∫
σ
ω =

∑
P,Q

∫
σP
Q(z)

ωP
Q ,

where the ωP
Q are differential forms (11.2) on an affine UP ∩DQ.

This corollary gives a means, albeit an inefficient one, to compute non-
global Feynman periods. It is adapted to the method of parametric inte-
gration [44]. For instance, letting all zi = 1, each term in the sum in local
coordinates is an integral of an algebraic differential form over a cube [0, 1]m

for some m ≤ n.

Remark 11.3. This procedure is not to be confused with the notion of
sector decomposition in the physics literature. In that setting, one integrates
the (pull-back of) the same globally-defined form ω over each sector σP and
sums the contributions. In the above, we are integrating different forms ωP

Q

over each sector.

11.4. Limits and regularisation

The integral (11.7) does not depend on the point z. Since each open affine
Ui(C) contains the preimage of z for any point z (11.6) in the interior of the
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coordinate simplex σ, we can take limits in (11.7):∫
σ
ω = lim

z→∞

∑
P,Q

∫
σP
Q(z)

ωP
Q

as z tends to any point on the boundary of σ. Many of the terms in the sum
on the right-hand side will tend to zero and can be dropped. By repeatedly
taking limits, one obtains an expression for the integral on the left-hand side
as limits of possibly divergent integrals over facets of σB.

23

11.5. The exceptional locus spectral sequence

In this section, let X,D be as above. For reasons which will become apparent
in a moment, let us write E = D. The divisor E defines a stratification on
X by closed subvarieties. Write

Eo
J = EJ\(EJ ∩

⋃
j /∈J

Ej) .

For instance, Eo
∅ = X\E. There is a ‘Gysin’ or residue spectral sequence

(11.8) Ep,q
1 =

⊕
|J |=p

Hq−p(Eo
J)(−p) =⇒ Hp+q(X)

where the differentials d1 are given by residues along the irreducible compo-
nents of E and p, q ≥ 0. From now on, letX = PG\YG where G is a Feynman
graph, and let E = D be defined by (5.2). If G has no masses or momenta,
we obtain the spectral sequence considered by Bloch in [9]. The open strata
Eo

J are complements of graph hypersurfaces in Gn
m. This spectral sequence

is hard to control since the cohomology of the latter is large and there are
many cancellations.

23It would be interesting, by studying the asymptotic behaviour of these integrals
as z tends to the boundary, to define a consistent notion of regularisation of diver-
gent integrals over faces of the polytope σB which commutes with these limits. In
this case, we could write the period of any non-global form as a linear combination
of regularised integrals of global forms over faces of σB . There is no shortage of reg-
ularisation techniques for Feynman integrals in the physics literature. For instance,
if PB = PG is obtained from a Feynman graph, and YG the graph hypersurface, the
boundary strata of PG are related to the motic Hopf algebra, and closely resembles
the combinatorics of the BPHZ forest formula (see [21]). This suggests a possible
way to renormalise divergent integrals using the subtraction of counter-terms.
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Returning now to the case of a general Feynman graph G, and X =
PG\YG, we see that it is more economical to take E ⊂ D to be the excep-
tional divisor:

E = ∪γ⊂GDγ ,

where the union is only over the set of motic subgraphs of G. We shall
call the corresponding spectral sequence (11.8) the exceptional locus spectral
sequence.

Theorem 11.4. In this situation, the non-empty strata EJ are indexed by
strictly increasing sequences of motic subgraphs of G:

(11.9) J : γ1 � γ2 � · · · � γr .

If we write γ′i = γi/γi−1 for the successive quotients, where γ0 denotes the
empty graph, then there is a canonical isomorphism

(11.10) Eo
J
∼=

(
P
Nγ′

1
−1\Xγ′

1

)
× · · · ×

(
PNγ′

r
−1\Xγ′

r

)
.

When J = ∅ is the empty set, Eo
∅
∼= PNG−1\XG. Therefore the E1 terms of

the spectral sequence (11.8) only involve the cohomology of graph hypersur-
face complements in projective space of quotients of motic subgraphs of G.
In particular,

Ep,q
1 = 0

if q ≥ NG or if p ≥ hG + 1. If G has no masses or momenta, Ep,q
1 = 0 for

p ≥ hG.

Proof. By Theorem 5.1 and the fact that the union of two motic subgraphs
is motic, two irreducible components Eγ1

, Eγ2
of E meet if and only if γ1, γ2

are nested. Iterating, we see that every EJ corresponds to a nested sequence
of motic graphs (11.9), and furthermore, by applying Theorem 6.5, that

EJ
∼= (P γ′

1\Yγ′

1
)× · · · × (P γ′

r\Yγ′

r
) .

Now every divisor Ej with j /∈ J which meets EJ corresponds to a motic
subgraph γ ⊂ G such that γi−1 � γ � γi for some i. The latter are in one-
to-one correspondence with the motic subgraphs of γ′i = γi/γi−1 by Theo-
rem 3.6. Therefore E0

J is obtained from EJ by removing all the exceptional
divisors in each factor, which gives (11.10).

That Ep,q
1 = 0 for q ≥ EG is a consequence of the fact that P

Nγ′

i
−1
\Xγ′

i

is affine of dimension Nγ′

i
− 1, since Xγ′

i
is a non-empty hypersurface by
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Lemmas ‘1.11 and 1.13, and hence Hr
B/dR(P

Nγ′

i
−1
\Xγ′

i
) = 0 for r ≥ Nγ′

i
. Fi-

nally Ep,q
1 = 0 whenever p+ 1 is strictly larger than the maximal length of

any chain (11.9). This is hG + 1 if G has kinematics, and hG otherwise by
Lemma 4.4. �

The terms (11.10) are in one-to-one correspondence with the terms in the
r-fold iteration of the reduced motic coproduct.

The previous theorem implies that the graph motives defined here are
iterated extensions of the cohomology of the complements of graph hyper-
surfaces in projective space.

Remark 11.5. There are some variants. Firstly, if G has a motic subgraph
γ with exactly one edge e, then the graph hypersurface has an irreducible
component V (αe). If we remove all such components from XG then we
can consider the smaller spectral sequence using E = ∪γDγ , where γ are
motic subgraphs of G with ≥ 2 edges. Finally, there is an obvious variant
on replacing XG with X ′

G.

12. Appendix II: worked example

For the benefit of physicists who may not be accustomed to the techniques
of the previous section, we give a complete worked example in a simple
situation. The amplitudes computed here can be obtained directly, but we
shall use completely general methods without taking any shortcuts, except
in the very final section. Consider the graph

3

1

q

−q

2

G

Its graph polynomial is

ΞG = q2α3(α1 + α2) + (m2
1α1 +m2

2α2)(α1 + α2 + α3)

whose zero locus defines a family of quadrics XΞG
⊂ P3. For generic values of

q,m1,m2, this quadric meets the coordinate axes at a single point α1 = α2 =
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0 which corresponds to the motic subgraph of G spanned by the edges 1, 2.
Let PG → P2 be the blow up of P2 at the point D1 ∩D2, i.e., α1 = α2 = 0,
and let YG ⊂ PG be the strict transform of XΞG

(only). The situation is
depicted below.

XΞG
⊂ P2 YG ⊂ PGD12

D3 D3

D2 D2D1 D1

The exceptional divisor is called D12. For simplicity, we shall only con-
sider the graph hypersurface XΞG

, and not XΨG
, and compute the fibres

of

mot′G = H2(PG\YG, D\D ∩ YG)

over Ugen
2,2 , where D is defined in (5.2). It satisfies grW2 mot′G

∼= Q(−1)⊕
Q(−1), and hence has two non-trivial periods. These were computed in an
indirect manner in [19], §5.3.2, using the fact they are necessarily logarithms
of projective invariants of seven points in P2. We give full details of the period
computation using the general methods described above. The calculations
are somewhat tedious but are more subtle than they may at first appear.

12.0.1. Exceptional locus spectral sequence. Let G be the graph
above. It has exactly one non-trivial motic subgraph γ, which is the sub-
graph spanned by the edges 1, 2. Since D12 is isomorphic to a copy of
P1, the relevant terms Ep,q

1 in the exceptional locus spectral sequence, for
(p, q) ∈ [0, 1]× [1, 2], are therefore

H2(P2\XΞG
) → H1(P1\XΞγ

)(−1)(12.1)

H1(P2\XΞG
) → H0(P1\XΞγ

)(−1)

since G/γ has only one edge and hence P0\XΞG/γ
is a point. Since XΞG

is
an odd-dimensional quadric, H i(P2\XΞG

) = 0 for i = 1, 2, and since Ξγ =
(q2 +m2

1)α1 + (q2 +m2
2)α2, we have P

1\XΞγ
= A1. Therefore the above Ep,q

1
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terms in (12.1) are

0 0

0 Q(−1)

and henceH2(PG\YG) = Q(−1). Now consider the relative cohomology spec-
tral sequence Ep,q

1 =
⊕

|I|=pH
q(DI\DI ∩ YG) converging to mot′G. The terms

E1,1
1 all vanish except for

H1(D3\YΞG/3
) = H1(Gm) ∼= Q(−1)

since the other faces D•\(D• ∩ YG), for • ∈ {1, 2, 12}, are copies of A1. The
face D3 is given by α3 = 0 and ΞG/3 = (m2

1α1 +m2
2α2)(α1 + α2). Since E

2,0
1

is in weight zero, and by the previous computations E0,2
1 = H2(PG\YG) =

Q(−1), and E1,2
1 = 0, we deduce that grW2 mot′G = Q(−1)⊕2. We shall com-

pute the period of a class [ω̃] ∈ (mot′G)dR which maps to a generator [ω] ∈
H2

dR(P
G\YG) ∼= Q(−1). Note that its image is zero in H2

dR(P
2\XΞG

) = 0.
The other period comes from the face D3 via a face map, so is a period of
the quotient graph G/3.

12.0.2. Affine covering. The prescription of §5 defines the following
affine spaces corresponding to maximal flags of subgraphs of G, where B =
{∅, {1, 2}, {1, 2, 3}},

A12,1 = AF ,c where (F , c) = (∅ ⊂ {1, 2} ⊂ {1, 2, 3}, j1 = 2, j2 = 3)

A12,2 = AF ,c where (F , c) = (∅ ⊂ {1, 2} ⊂ {1, 2, 3}, j1 = 1, j2 = 3)

A1 = AF ,c where (F , c) = (∅ ⊂ {1, 2, 3}, j1 = 2)

A2 = AF ,c where (F , c) = (∅ ⊂ {1, 2, 3}, j1 = 1) .

Let (α1 : α2 : α3) be projective coordinates on P2. The affine rings of the
above spaces are O(A12,1) = Z[β12,1

1 , β12,1
2 ], where, by abuse of notation,

β12,1
1 =

α1

α2
, β12,1

2 = α2 ,

and similarly O(A12,2) = Z[β12,2
1 , β12,2

2 ], with

β12,2
1 = α1, β12,2

2 =
α2

α1
,

and α3 = 1 in both cases. Denote the coordinate rings of A1 and A2 by
Z[α1, α3] (α2 = 1) and Z[α2, α3] (α1 = 1) respectively. The charts A• provide
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a canonical affine covering of PG. The exceptional divisor D12 is given by the
equations β12,1

2 = 0 and β12,2
1 = 0 in the charts A12,1 and A12,2 respectively.

Let q2,m2
1,m

2
2 satisfy the genericity conditions (1.18), namely

q2 +m2
1 �= 0 , q2 +m2

2 �= 0 , m2
1 �= 0 , m2

2 �= 0 ,

and for a fixed choice of such q,m1,m2, let us write

Q = q2α3(α1 + α2) + (m2
1α1 +m2

2α2)(α1 + α2 + α3) ,(12.2)

Q = q2(α1 + α2) + (m2
1α1 +m2

2α2)(α1 + α2 + 1) .

Let us denote by U• ⊂ A• the open subsets obtained by removing the strict
transform of V (Q). Thus O(U12,i) = Z[β12,i

1 , β12,i
2 , Q−1

i ] for i = 1, 2, where

Q1 = q2(β12,1
1 + 1) + (m2

1β
12,1
1 +m2

2)(β
12,1
1 β12,1

2 + β12,1
2 + 1)

Q2 = q2(β12,2
2 + 1) + (m2

1 +m2
2β

12,2
2 )(β12,2

1 β12,2
2 + β12,2

1 + 1)

Likewise O(U1) = Z[α1, α3, Q|
−1
α2=1] and O(U2) = Z[α2, α3, Q|

−1
α1=1].

12.0.3. Absolute Čech-de Rham class. The sets U1, U2, U12,1, U12,2

form our canonical open affine covering of PG\YG. Define four closed differ-
ential forms:

ωab = d logQ
∣∣
U12,a∩Ub

∈ Ω1(U12,a ∩ Ub) where a, b ∈ {1, 2} ,

whereQ is defined in (12.2). Consider the element {ω} of degree 2 in the total
complex of the absolute Čech-de Rham double complex24 Ωn(UP ) whose only
non-zero components are the ωab. The element {ω} is closed for the total
differential and so defines a class

[ω] ∈ H2
dR(P

G\YG) .

12.0.4. Relative Čech-de Rham class. We next wish to extend {ω} to
a closed element in the relative Čech-de Rham triple complex (11.1) where
D has four irreducible components D12, D1, D2, D3. This will necessarily use
the fact that Di\(Di ∩ YG) is isomorphic to A1, for i = 1, 2, and hence has
vanishing H1.

24this is the triple complex (11.1) in the special case when the divisor D is empty.
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Define four closed 1-forms

μi ∈ Ω1(Di ∩ U12,i), νi ∈ Ω1(Di ∩ Ui)

where i ∈ {1, 2}, by

μ1 =
2m2

2 dβ
12,1
2

q2 +m2
2(β

12,1
2 + 1)

and ν1 =
(q2 +m2

2)dα3

q2α3 +m2
2(1 + α3)

and μ2, ν2 are defined by interchanging all subscripts ‘1’ and ‘2’ (and ‘12, 1’
with ‘12, 2’). Note that Di does not meet U12,j or Uj if i �= j. Consider the
element {ω̃} of degree 2 in the total complex associated to (11.1) which
is zero in every component of Ωn(UP ∩DQ) except for the eight elements
ωab ∈ Ω1(U12,a ∩ Ub) for a, b ∈ {1, 2} as above and μi, νi, for i = 1, 2. The
element {ω̃} is closed for the total differential essentially because of the
equations

ωii|Di
= μi − νi for i = 1, 2 ,

on the open U12,i ∩ Ui ∩Di ⊂ Di (recall that the left-hand side is
d logQ|αi=0). This defines a class in relative de Rham cohomology

[ω̃] ∈ H2
dR(P

G\YG, D\(D ∩ YG)

whose image in absolute de Rham cohomology is [ω] ∈ H2
dR(P

G\YG).

12.0.5. The period. We can compute the period

I =

∫
σG

{ω̃}

following the prescription of §11.3. Let t > 0 and let zt ∈ P2(R) denote the
point with projective coordinates (t : t : 1). Only six regions σP

Q(z) of the
domain of integration provide a non-zero contribution to the period integral,
shown below.

Here, σ1 = {(x : t : 1), 0 ≤ x ≤ t} and σ2 = {(t : x : 1), 0 ≤ x ≤ t}.
From the general formula (11.5) we have

I =
∑
i=1,2

∫
σ12
i (t)

μi +

∫
σi
i(t)

νi +

∫
σi(t)

ωii .

It can be computed directly, and does not depend on t. Instead, we shall
compute it by letting t→∞ and using tangential base points.
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D1 σ
12

1 σ
1

1

U12,1 U1

D12 D3

U12,2 U2

D2 σ
12

2 σ
2

2

σ
1

zt

σ
2

D1

a1

a2

σ
12

1 b1

b2

D12

σ
12

2D2

D3

Figure 2: Integration of a period. Left: the non-trivial contributions to the
period integral. Right: taking the limit as t→∞ and replacing the paths
with tangential base points.

12.0.6. Limits and tangential basepoints. Consider the following base-
points onD1: an ordinary base point a1 = D1 ∩D12 (given by β12,1

2 = 0), and
a tangential base point b1 on D1 at the point D1 ∩D3 defined by −∂/∂β12,1

2 .
Denote the analogous basepoints on D2 by a2, b2, as shown in the figure.
Since our forms have at most logarithmic poles, we deduce on taking t→∞,
that

I =

∫ b1

a1

μ1 +

∫ a2

b2

μ2 +

∫ b2

b1

d logQ

as shown in the previous figure. The third term is given by

lim
t→∞

log

(
Q(t, 0)

Q(0, t)

)
= lim

t→∞
log

(
q2 +m2

1(t+ 1)

q2 +m2
2(t+ 1)

)
= log

(m2
1

m2
2

)
.

The first term is given by

lim
t→−1∞

∫ t

0

2m2
2 dx

q2 +m2
2(x+ 1)

= 2 lim
t→−1∞

log

(
q2 +m2

2(t+ 1)

q2 +m2
2

)
= 2 log

(
m2

2

q2 +m2
2

)
where limt→−1∞

denotes the regularised limit as t→∞ with respect to the
tangential base point −∂/∂t (set log t to zero). The second term is obtained
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by replacing m2 by m1 in this formula and changing the sign. In total,

I = 2 log

(
q2 +m2

1

q2 +m2
2

)
− log

(
m2

1

m2
2

)
.

We see that I is a linear combination of limits of divergent generalised
amplitudes.

On the other hand, the amplitude of the one-loop graph G/3 is propor-
tional to logm2

1m
−2
2 . By the face relations, this provides another period of

G. From the cohomology calculations, we know that the motivic periods of
mot′G are motivic logarithms. Since these are uniquely determined by their
period, we deduce the:

Corollary 12.1. The motivic periods of mot′G are spanned by 1 and the
two motivic logarithms (on the space of generic kinematics Ugen

2,2 )

logm
(
m2

2

m2
1

)
and logm

(
q2 +m2

2

q2 +m2
1

)
.

Thus the periods of G are regularised limits of linear combinations of
amplitudes of the three graphs G/1, G/2, G/3. See [19] §5.3.2 for an inter-
pretation of these periods in terms of hyperbolic geometry. This example
illustrates how the motivic periods of small graphs can in principle be com-
puted algorithmically.
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1–21.

[52] E. Speer and M. Westwater, Generic Feynman amplitudes, Ann. Inst.
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