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Tropical count of curves on abelian varieties
Lars Halvard Halle and Simon C. F. Rose

We investigate the problem of counting tropical genus g curves in
g-dimensional tropical abelian varieties. We do this by studying
maps from principally polarized tropical abelian varieties into a
fixed abelian variety. For g = 2, 3, we prove that the tropical count
matches the count provided in [Göt98, BL99b, LS02] in the com-
plex setting.
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1. Introduction

One of the successes of tropical geometry has been the wide variety of so-
called “correspondence theorems” that have been produced. These are typi-
cally theorems of the following form.

Theorem (“Correspondence Theorem”). The tropical count of curves
in setting Xtr matches the classical count in setting X, where Xtr is an
appropriate tropicalization of X.

Tropical curves are very well-suited to be studied combinatorially, and so
with this type of theorem we are given the ability to study and solve many
enumerative problems from a fresh perspective. In particular, we have the
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results of Boehm, Bringmann, Buchholz, and Markwig [BBBM14] which uses
tropical geometry to prove Mirror Symmetry for the elliptic curve. There is
the classic [Mik05] which counts tropical curves in toric surfaces. Further-
more, there has been extensive work on studying Hurwitz theory from the
tropical perspective, see e.g. [CJM10, BCM13].

In fact, these correspondence theorems fit more broadly into the frame-
work of the Gross-Siebert program [Gro11] which seeks to understand Mirror
Symmetry through relating tropical, logarithmic, and complex algebraic ge-
ometry.

The goal of this paper is to prove the following correspondence theorem.
Note that all of the definitions will follow afterwards.

Theorem 1.1 (Correspondence theorem for abelian varieties). Let
(A,L) be a g-dimensional complex abelian variety (for g = 2, 3), with L
an ample line bundle inducing a polarization of type (d1, . . . , dg). Then the
number of genus g curves of type cL (respectively, in the linear system |L|)
matches the tropical count.

We will prove this in three separate steps. Our preliminary main result
is the following.

Theorem 1.2. Let A be a simple tropical torus of dimension g (where g ≥ 1
is arbitrary) with a line bundle L inducing a polarization of type (d1, . . . , dg).
Then the number of homomorphisms f : (P, θ) → (A, cL) (with P principally
polarized by θ) such that f∗cL = (d1 · · · dg)θ is given by ν†(d1, . . . , dg), where
ν†(d1, . . . , dg) is defined in Section 2.1.

For g ≤ 3, every simple principally polarized abelian variety is the Jaco-
bian of a genus g curve, and so we can interpret this result in the context of
embedded curves in abelian varieties. We then obtain the following theorem.

Theorem 1.3. Let A be a tropical torus of dimension g = 2, 3 with a line
bundle L such that (A, cL) is a polarized tropical variety with polarization
of type (d1, . . . , dg). Assume that A is simple and Torelli (Definition 2.28).
Then the number of genus g curves of type cL, up to translation in A, is
ν†(d1, . . . , dg).

This is compared with [LS02] which provides the computation in the
complex setting. Note that Lange and Sernesi provide a homological condi-
tion on their curve class, whereas we use one that is morally Poincaré dual
(in the complex setting, this is exactly the case).
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In the g = 2 case, we can now go even further by noting that curves are
divisors, and so we can speak more refinedly of curves in a fixed linear system
defined by L. We obtain then the following.

Theorem 1.4. Let A be a simple tropical torus of dimension g = 2 with a
line bundle L such that (A, cL) is a polarized tropical surface with polarization
of type (d1, d2). Then the number of genus g curves in the linear system |L|
is (d1d2)

2ν†(d1, d2).

We can of course now specialize even further to the case that the polar-
ization is primitive (i.e. of type (1, n)) to recover Theorem 3.2 of [Göt98].

Theorem 1.5. Let A be a tropical torus with a line bundle L such that
(A, cL) is a polarized tropical abelian surface with primitive polarization of
degree n. Assume that A contains no tropical elliptic curves. Then the number
of genus 2 curves in the linear system |L| is n2σ1(n).

As is usual, performing a tropical count is a somewhat subtle task. One
has to understand the combinatorics of the tropical objects, as well as the
appropriate multiplicities, and then combine these together. This is related to
the fact that the count in Theorem 1.3 is, in a certain sense, really a count of
curves on a polarized abelian variety defined over a non-archimedean valued
field K.

As we will explain in Section 3.2, a tropical abelian variety can be seen as
the image of an abelian K-variety under a so-called tropicalization map. This
map is essentially induced by the valuation map val : K∗ → R, and allows us
to relate the ‘algebraic’ count over K to the count of the underlying tropical
objects, which is of a more combinatorial nature. However, it is important
to note that information usually gets lost when passing from the algebraic
to the tropical setting; this is analogous to the elementary fact that distinct
elements of K∗ can take the same value in R under the valuation map. The
above mentioned multiplicities appear naturally as numerical factors keeping
track of this defect.

In order to translate between algebraic and tropical geometry, we make
use of some standard facts and constructions from rigid analytic geometry.
We have included a summary of the results we need in Section 2.4.

1.1. Acknowledgements
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2. Definitions

2.1. Notation

We need the following definitions (see [Deb99]). For a finite abelian group G,
let G∗ = Hom(G,K×) be its dual group of characters (where K is an alge-
braically closed field of characteristic zero; more will be said about this later).
Furthermore, if G ∼= Λ/c(X) for lattices Λ, X and some full-rank homomor-
phism c : Λ → X, then we define G† = X/c†(Λ), where c† is the unique map
c† : Λ → X such that c† ◦ c = (det c)IdX and c ◦ c† = (det c)IdΛ). This map
is called the adjugate map1.

Definition 2.1. For a finite abelian group G, we define

ν(G) =
∑
H≤G

#Homsym(H,H∗)

where Homsym refers to those homomorphisms H → Hom(H,K×) that are
symmetric when viewed as bilinear functions H ×H → K×.

In the case that we have G ∼= Z/d1Z× · · · × Z/dgZ with d1 | · · · | dg, then
we define

ν(d1, . . . , dg) = ν(G).

Finally, we define ν†(d1, . . . , dg) = ν(G†) as above.

Remark 2.2. Note that if we let n = d1 · · · dg, then this can be written as

ν†(d1, . . . , dg) = ν
(
n
dg
, . . . , n

d1

)
.

This function satisfies the following property.

1Note that for a map c : Λ → X of full rank, we define det(c) = [X : c(Λ)], which
is consistent with the case where c is an integral linear map c : RN → R

N .
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Proposition 2.3. Let G,G′ be finite abelian groups such that gcd(|G|, |G′|)=
1. Then

ν(G×G′) = ν(G)ν(G′).

Equivalently, if (d1, . . . , dg) and (d′1, . . . , d′g) are such that di | di+1, d′i | d′i+1,
and gcd(dg, d

′
g) = 1, then

ν(d1d
′
1, . . . , dgd

′
g) = ν(d1, . . . , dg)ν(d

′
1, . . . , d

′
g).

Proof. This follows due to the fact that if H,H ′ are coprime order, then

Hom
(
H ×H ′, (H ×H ′)∗

)
= Hom(H,H∗)×Hom

(
H ′, (H ′)∗

)
(which itself follows due to the fact that the product and coproduct in the
category of finite abelian groups coincide), and the fact that subgroups of
G×G′ are of the form H ×H ′ for subgroups H ≤ G and H ′ ≤ G′. �

We will also use the notation σk(n) =
∑

d|n d
k. Furthermore, unless oth-

erwise stated, the notation Hom(−,−) will always refer to the Hom-sets in
the category of abelian groups.

2.2. Tropical Tori/Abelian Varieties

A tropical variety can be defined in many ways; as a variety over the min-
plus semi-ring, as a certain degeneration of an algebraic variety, or even
a variety which locally has integer-affine structure (and whose transition
functions preserve that). In any case, all of this simplifies greatly for the
case of tropical tori, which have a remarkably simple definition.

In our definition, and in the discussion below, we follow [MZ08] with
notation inspired by [Kat].

Definition 2.4. Let X be a rank g free abelian group. A g-dimensional
tropical torus is given by the quotient

T = Hom(X,R)/Λ

where Λ ↪→ Hom(X,R) is a full rank sublattice. Note that the integral struc-
ture is given as Hom(X,Z) ⊂ Hom(X,R).

Remark 2.5. One main advantage of this definition is that it is basis in-
variant and provides a more natural definition of the dual torus.
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Line bundles on tropical tori are defined in an analogous way to line
bundles in the algebraic setting: they can be defined as continuous projections
π : L → T whose fibres are the tropical line. Using this definition, they are
classified cohomologically as in the algebraic setting as follows.

First, for a tropical torus T , denote by T ∗
Z

the sheaf of 1-forms which
take integer values on integer tangent vectors. Next, in the tropical setting,
the sheaf O× of invertible regular functions is replaced by AffZ, the sheaf of
affine-linear functions with integral slope. This fits into an exact sequence of
sheaves defined on T given by

0 → R → AffZ → T ∗
Z

→ 0

(where the map R → AffZ is the inclusion of constant functions, and AffZ →
T ∗

Z
is given by f �→ df , which is an element of T ∗

Z
since f is locally of the

form f(�x) = 〈df, �x〉+ b). In particular we obtain a long-exact sequence that
is in part given by

(1) · · · → H0(T ∗
Z
) → H1(R) → H1(AffZ)

c−→ H1(T ∗
Z
) → H2(R) → · · ·

We have as expected a bijection between line bundles and H1(AffZ) (see
[MZ08]).

Consider now cL := c(L) (where c : H1(AffZ) → H1(T ∗
Z
) ∼= Hom(Λ, X)).

That is, cL is a map cL : Λ → X. This naturally induces a pairing Λ⊗ Λ → R

given by the diagram

Λ
cL ��

j
��

X

Hom(X,R)

i.e. we define 〈λ1, λ2〉 := j(λ1)
(
cL(λ2)

)
.

Lemma 2.6. The pairing 〈 , 〉 is symmetric.

Proof. As in the case of abelian varieties defined over C, (see e.g. [BL04,
Appendix B]), we can view elements of H1(AffZ) as elements of
H1(Λ, H0(T̃ ,AffZ)) i.e. 1-cocycles on Λ with values in H0(T̃ ,AffZ), where
T̃ = Hom(X,R) is the universal cover of T . These are functions φ : Λ →
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H0(T̃ ,AffZ) which satisfy (for any f ∈ T̃ = Hom(X,R))

(2) φ(λ1 + λ2)(f) = φ(λ1)(λ2 + f) + φ(λ2)(f).

Given that an element φ(λ) of H0(T̃ ,AffZ) is a globally-defined affine-linear
function on Hom(X,R), we can write such an element as φ(λ)(f) = aλ +
f
(
c(λ)

)
with c : Λ → X (where the last term is of this form since we are

considering affine-linear functions with integer slope). If we then examine
the cocycle condition (2), we see that the elements aλ satisfy

aλ1+λ2
= aλ1

+ aλ2
+ j(λ1)

(
c(λ2)

)
.

Since the left-hand side of this equation is symmetric, it follows that
j(λ1)

(
cL(λ2)

)
= j(λ2)

(
cL(λ1)

)
as desired. �

We will assume from here onwards that cL induces a positive-definite
bilinear form on Λ. In particular, it is necessary that the image of Λ in X is
of full rank; this is the tropical version of ampleness of a line bundle.

Definition 2.7. Let L be a line bundle on a tropical torus T =Hom(X,R)/Λ.
Note that the quotient X/cL(Λ) is a finite abelian group, and is hence iso-
morphic to Z/d1Z× · · · × Z/dgZ for some integers d1 | · · · | dg. We define the
type of L to be the tuple (d1, . . . , dg). We define the degree of L to be the in-
dex [X : cL(Λ)] = d1 · · · dg. Finally, we say that the polarization is primitive
if gcd(d1, . . . , dg) = 1.

Remark 2.8. If cL is a polarization of type (d1, . . . , dg), then we will write
n = d1 · · · dg.

We will now define a (polarized) tropical abelian variety.

Definition 2.9. Let A be a tropical torus together with a line bundle L
such that cL induces a positive definite bilinear form. We call the pair (A, cL)
a polarized tropical abelian variety with polarization cL. The degree of the
polarization is the degree of cL. If cL has degree 1, then we call the polar-
ization principal.

Remark 2.10. Note that if A = Hom(X,R)/Λ is principally polarized by
cL, then we have an isomorphism cL : Λ → X. Consequently, we can write
any principally polarized abelian variety as Hom(Λ,R)/Λ.
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We will next investigate maps between tropical tori. The key is that such
maps must preserve the integral structure of the tori, which greatly restricts
their form.

We will start with defining those morphisms that preserve the identity
of the tori.

Definition 2.11. Let T1 = Hom(X1,R)/Λ1 and T2 = Hom(X2,R)/Λ2 be
tropical tori. A homomorphism f : T1 → T2 consists of a pair of morphisms
(g, h) where

g : Λ1 → Λ2 h : X2 → X1

such that the following diagram commutes.

Λ1

��

g �� Λ2

��
Hom(X1,R)

h∗
�� Hom(X2,R).

Note of course that this is a necessary condition2 for this to yield a
map on the level of topological spaces T1 → T2. It is also sufficient when we
consider that the map must preserve the underlying integral structure.

Given such a map, we define the topological degree dt to be the index
[Λ2 : g(Λ1)], and we define the metric degree dm to be the index [X1 : h(X2)].
We define the tropical degree of the map to be the product dtdm.

Remark 2.12. Our definition of topological and metric degrees is defined
so as to be an analog of the definition for maps between tropical curves.
In that case, the topological degree is the number of pre-images of a point,
whereas the metric degree is the degree to which the metric is scaled under
the map.

In general, a morphism T1 → T2 is the composition of a homomorphism
as defined above together with a translation in a ∈ T2. These are given by
post-composing a homomorphism f : T1 → T2 with the morphism

ta : T2 → T2 x �→ x+ a.

2This isn’t quite correct; any map hR : X2 ⊗ R → X1 ⊗ R would actually suffice,
but this is not relevant in our case.
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Remark 2.13. We will use the term homomorphism to specifically refer to
a morphism which preserves the identity, whereas a morphism may include
a translation.

We next investigate how polarizations are affected by morphisms. So
let A1, A2 be tropical tori, Ai = Hom(Xi,R)/Λi. Translations do not affect
polarizations, so we may assume that a morphism is in fact a homomorphism;
let f = (g, h) be a such morphism between them. Let cL be a polarization
on A2. Then the induced polarization on A1 is given by

Λ1

f∗cL

��
g �� Λ2

cL �� X2
h �� X1 .

Lastly, let us define the dual torus/abelian variety.

Definition 2.14. Let A = Hom(X,R)/Λ be a tropical torus. We define the
dual torus to be Â = Hom(Λ,R)/X, where the inclusion X ↪→ Hom(Λ,R) is
given by

Hom
(
Λ,Hom(X,R)

) ≡ Hom(Λ⊗X,R) ≡ Hom
(
X,Hom(Λ,R)

)
.

Moreover, if A is polarized by a degree n polarization cL, then the dual
polarization is given by c

̂L = c†L (the adjugate of cL), and satisfies

cL ◦ c
̂L = n · idX c

̂L ◦ cL = n · idΛ.

Note that the dual polarization is of type
(
n
dg
, . . . , n

d1

)
. See by analogy over

C [BL99a, Proposition 2.7].

Note that unlike the definition of dual polarization provided in [LS02],
we do not have that ̂̂

L ∼= L. The definition we provide (which is the same
as in [BL99a]) is more natural in our context, and the count of curves we
obtain is entirely equivalent.

This can be explained as follows. If we let L′ be the dual line bundle as
defined in [LS02], then we have the relation that (L′)⊗k = L̂ for some k ≥ 1.
However, the count of curves of type cL in the abelian variety A (all defined
over C) is obtained by looking at certain groups defined by the line bundle
(L′)⊗k, and so this is exactly the same line bundle that we use.
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Next, given a polarized tropical abelian variety (A, cL), we obtain a nat-
ural homomorphism A → Â given by the pair (cL, cL). That is, we have

Λ
cL ��

��

X

��
Hom(X,R)

c∗L
�� Hom(Λ,R)

which has tropical degree n2 (each of the topological and metric degrees are
n, respectively). Moreover, the compositions A → Â → A and Â → A → Â
are multiplication by n.

Remark 2.15 (See [MZ08]). One can equivalently define Â = Pic0(A),
which by the long-exact-sequence (1) is isomorphic to our dual. Moreover,
the map A → Â is in this case given by a �→ L−1 ⊗ t∗aL as in the complex
case.

Note that we have a natural isomorphism P → P̂ if P is principally
polarized, which allows us to identify the two tori.

We will provide one last definition which is important for our case.

Definition 2.16. Let T be a tropical torus of dimension g. Then we say
that T is simple if it does not admit any subtori of dimension 0 < h < g.

Remark 2.17. As in the case over C, T is simple if and only if it is not
reducible. That is, T is simple if and only if there do not exist tori T1, T2

and an isogeny T → T1 × T2.
It follows that if A is a tropical abelian variety of dimension g = 2, 3,

then it is simple if and only if there are no non-constant maps from elliptic
curves to A, or from genus 2 curves in the g = 3 case.

2.3. Tropical Curves

We will work in a simplified setting which avoids a possible weighting func-
tion on vertices (which corresponds to certain degenerations of tropical
curves). This section will be particularly brief; for more detail, see [MZ08].

Definition 2.18. Let Γ be a connected graph such that h1(Γ) = g together
with a function 
 : e(Γ) → R>0 (a so-called metric graph). Furthermore, we
assume that Γ has no 2-valent vertices. We call such a pair a genus g abstract
tropical curve.
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Remark 2.19. Note that the integral structure comes from viewing an edge
as [0, 
(e)] ⊂ R.

Definition 2.20. Let Γ be the graph underlying a tropical curve. We say
that Γ is m-edge connected if the removal of any k < m points in the interior
of distinct edges leaves a connected graph.

Maps between tropical varieties are in general difficult to define. When
the source is a curve and the target an abelian variety, then this is simpler.

Definition 2.21. A morphism from a tropical curve Γ to a tropical abelian
variety A is

• A continuous map f : Γ → A that is locally affine-linear on the edges

• A weighting of the edges (i.e. a function w : E(Γ) → Z≥0)

such that for each vertex of Γ with outgoing primitive tangent vectors {vi}
(which are uniquely determined since each edge obtains an integral struc-
ture from its description as [0, 
(e)]) we have f∗vi = wiξi for some primitive
integral vectors {ξi}, and which satisfy∑

i

wiξi = 0

(the balancing condition).

Example 2.22. Some common examples of local models are

· ·

·

· ·

· ·

· · ·

2

·

· ·
where the weight we of an edge (if greater than 1) is written next to it.

Definition 2.23. The Jacobian of a tropical curve is defined in an analogous
way to the Jacobian of a curve defined over C. We have a notion of the space
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of 1-forms on Γ given by Ω(Γ). There is a map H1(Γ,Z) ↪→ Ω(Γ)∨ into the
dual of Ω(Γ) given by integrating over 1-cycles. From this, we define

J(Γ) = Ω(Γ)∨/H1(Γ,Z).

There is of course a map (depending on a choice of basepoint p0) Γ →
J(Γ) which is given by integrating along partial paths; that is, for p ∈ Γ,
choose any path γ : p0 → p, which yields a map

ω �→
∫ p

p0

ω

which is well defined up to H1(Γ,Z), and so we have a map Γ → J(Γ) as
claimed.

Remark 2.24. J(Γ) is a polarized tropical abelian variety, where the po-
larization θΓ is the natural bilinear form associated to the quadratic form on
q defined on H1(Γ)) as

q

(∑
i

kiei

)
=

∑
i


(ei)k
2
i

(which is called the length pairing). Note that as J(Γ) is principally polar-
ized, there is a unique (up to translation) line bundle ΘΓ which induces this
polarization θΓ (See [MZ08, Section 5.2]).

Most importantly for our purposes, the Jacobian satisfies the following
universal property whose proof is nearly verbatim to the one over C.

Proposition 2.25. Let A be a tropical abelian variety, let Γ be a tropical
curve, let p0 ∈ Γ, and let f : Γ → A be a map such that f(p0) = 0 ∈ A. Then
there is a unique factorization

Γ
f ��

��

A

J(Γ)

F

��

through J(Γ) (with F a homomorphism).

Using the universal property we can now make the following central
definition. Note that in [Göt98] (and in [BL99b] as well) we restrict ourselves
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to curves in a fixed linear system |L|. In the case of abelian surfaces defined
over C, this is simply the statement that O

(
f(C)

)
= L. This is equivalent to

the fact that F ∗L = nΘC , which we will use as the basis for our definition
as it suits us better.

Let f : Γ → (A, cL) be a morphism from a tropical curve of genus g to
a simple polarized tropical abelian variety of dimension g. This induces a
morphism of polarized abelian varieties F : (J(Γ), θΓ) → (A, cL) (where, as
above, the polarization on J(Γ) is obtained by the length pairing on Γ).

Definition 2.26. Let f : Γ → (A, cL) be a morphism as above, and let n
be the degree of the polarization.

(i) We say that the image of Γ in A is of type cL if

(3) F ∗cL ∼= nθΓ.

(ii) Suppose now that A is an abelian surface. We say that the image of Γ
in A is in the linear system |L| if

F ∗L ∼= nΘΓ.

Remark 2.27. An equivalent condition to (3) is that F̂ ∗θΓ ∼= ĉL, where
F̂ : Â → J(C) is the dual morphism and ĉL is the dual polarization.

The second of these two conditions implies the first. However, if you
compose a morphism together with a translation in A (which does not affect
the polarization, as discussed earlier), then while you preserve the polariza-
tion, you will change the linear system unless you translate by an element
of the kernel of the map A → Â. In particular, we note that it is a stronger
condition than the former.

Finally, we introduce a genericity condition that we will assume holds
for A.

Definition 2.28. Let A be a tropical abelian variety. We will say that A
is Torelli 3-connected or more simply Torelli if it is not isogenous to the
Jacobian of a curve which is not 3-connected.

The purpose of this condition is the following. As per [Viv13, Corollary
4.1.16], if we stay away from curves which are not 3-connected, then the
tropical Torelli map Mtr

g → Atr
g (which maps Γ �→ J(Γ)) is injective and in

particular, the Jacobian determines the curve. This implies that for a g-
dimensional A which is simple and Torelli, then for any non-constant map
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Γ → A (with Γ of genus g), we must have that Γ is 3-connected. In particular,
the lifting problem

Γ′

��

�� A

J(Γ)

��

has a unique solution Γ′ = Γ.
One can verify (by the construction of the 3-edge connectivization of a

curve) that the abelian varieties which do not satisfy this condition (i.e. are
isogenous to Jacobians of non-3-connected curves) form a positive codimen-
sion locus in the moduli space of tropical abelian varieties, and so a suitably
generic abelian variety will always be Torelli.

Note that for abelian surfaces, A is Torelli if and only if it is simple. This
follows since there are only two topological types of the graph underlying
the tropical curve; the so-called barbell graph and theta graphs.

• • • •

Since the Jacobian of the barbell graph (which is not 3-connected) is a prod-
uct of two elliptic curves, the claim follows.

Finally, we note the following important property which is used later.
Suppose that A is a simple g-dimensional abelian variety, and that f : Γ → A
is a morphism from a genus g curve. Then the map is generically injective.
That is, it does not factor through a map Γ → Γ′ with g(Γ′) < g(Γ).

2.4. Rigid Analytic Varieties

Throughout this subsection, K denotes a non-archimedean field with absolute
value | · | and valuation ring R. We shall assume that K is algebraically
closed and of characteristic zero (though this is not essential for many of the
statements below).

2.4.1. As we already indicated in Section 1, Theorems 1.2, 1.3 and 1.4 should
be seen as statements concerning the counts of maps from curves, or from
principally polarized abelian varieties, to an abelian K-variety A, subject to
conditions imposed by an appropriate choice of an ample line bundle on A.
(These conditions can be formulated like in Definition 2.26.)

In order to translate statements between algebraic K-varieties and tropi-
cal varieties, we shall pass through the category of rigid analytic varieties. In
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particular, this enables us to formulate the necessary geometric conditions
on A for which this count matches the complex count. Moreover, this will
allow us to use the powerful technique of rigid analytic uniformization of
abelian varieties.

For an introduction to rigid analytic geometry, which is well suited for
questions concerning curves and abelian varieties, we refer to the excellent
textbook [Lüt16]. In particular, the reader will there find a thorough discus-
sion of the various standard facts we recall in the paragraphs below.

2.4.2. Analytification. The rigid analytification functor, denoted (·)an,
takes a (proper) K-variety X to its analytification Xan, which is a (proper)
rigid-analytic space over K. We shall use the following well-known properties
of this functor:

• The functor (·)an is fully faithful on the category of proper K-varieties.

• If X is a proper K-variety, there is also an analytification functor F �→
Fan on OX -modules, which yields an equivalence from the category of
coherent sheaves on X to the category of coherent sheaves on Xan.

2.4.3. Uniformization of abelian varieties. Any abelian K-variety A
allows a uniformization in the rigid analytic category. Here, by a uniformiza-
tion of A, we mean the following data:

• A semi-abelian variety E, which is an extension

0 → T → E → B → 0

of a torus T by an abelian variety B having good reduction over R.

• A lattice M ⊂ E of rank equal to dim(T ) and an exact sequence

0 → Man → Ean → Aan → 0.

Be aware that the morphism Ean → Aan only exists analytically, even
though A and E are algebraic.

When the abelian part B of E is zero, we shall say that A is uniformized
by a torus. Geometrically, this corresponds to the statement that A has max-
imally degenerate reduction over the valuation ring R. A basic example to
keep in mind (which in fact started the whole theory) is Tate’s uniformiza-
tion of elliptic curves. This classic result asserts that if A is an elliptic curve
with split multiplicative reduction over R, i.e., if A degenerates to a cycle
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of smooth rational curves, then Aan is isomorphic to a quotient Gm,K/q
Z.

Here q denotes an element such that |q| < 1. Tate’s construction was gener-
alized by Mumford to higher dimensional abelian varieties (with maximally
degenerate reduction) in [Mum72].

2.4.4. Analytification of curves and abelian varieties. A smooth
proper connected rigid K-group carrying an ample line bundle is the an-
alytification of an abelian variety. Thus, we shall speak about abelian vari-
eties also in the rigid setting. As usual, an ample line bundle determines a
polarization.

For later use, we include some details concerning polarizations of abelian
varieties uniformized by tori. Let A be an abelian variety uniformized by a
torus T = Spec K[M̂ ] modulo a lattice M ⊂ T . Then a polarization of A is
determined by an injective linear map cL : M → M̂ for which the induced
bilinear form 〈m1, cL(m2)〉 is symmetric and |〈m, cL(m)〉| < 1 for all m �= 0.
The degree of cL is the number [M̂ : cL(M)]. The polarization induces a
morphism from A to its dual Â, which is uniformized by T̂ = Spec K[M ]

modulo the lattice M̂ ⊂ T̂ .

We also record the fact that if C is a smooth projective K-curve, then
the formation of the Jacobian variety commutes with analytification, i.e.,
J(Can) = J(C)an. Moreover, the analytic Jacobian again carries a principal
polarization.

2.4.5. From algebraic to analytic. Let A be a simple abelian variety
over K and assume that A is uniformized by a torus. By the properties of
the analytification functor, the count of morphisms g : P → A, say, with P
principally polarized and g an isogeny, can be performed instead in the ana-
lytic category. In particular, this applies to the case where P is the Jacobian
of a curve C of genus equal to the dimension of A, and g is induced by a
non-constant map C → A.

The advantage of working in the analytic category is that we can now
use uniformization techniques; this in fact reduces our problem to a certain
count of lattices. To be precise, we first need to establish the following lemma,
which asserts that, in the situation outlined above, the abelian variety P is
also uniformized by a torus.

Lemma 2.29. Let P be a principally polarized abelian variety and let g :P →
A be an isogeny. Then P is uniformized by a torus as well.

Proof. Let P be uniformized by the data (E,N), where E is a semi-abelian
variety and N is a lattice. As P is principally polarized, we can identify P
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with its dual P̂ . We denote by ĝ be the dual isogeny of g. The composition
g ◦ ĝ yields an isogeny Â → A. Analytically, this isogeny corresponds to an
injective homomorphism M̂ → M which has to factor through the lattice N
(cf. e.g. [Lüt16, Prop. 6.4.1]). This is only possible if rank(N) = dim(P ), i.e.,
if the abelian part of E is zero. Thus also P is uniformized by a torus. �

3. Proof of main theorem

We are now prepared to give the proofs of the main theorems, Theorems 1.2–
1.5. We will break this up into two main steps; first we will look at the com-
binatorics of the tropical maps which we will count without any reference to
multiplicities. Second, we will compute the multiplicity to obtain the result.

3.1. Naïve Count of Maps/Curves

We begin by studying maps from principally polarized tropical abelian vari-
eties. In particular, we will prove the following proposition.

Proposition 3.1. Let A = Hom(X,R)/Λ be a simple tropical torus of di-
mension g with a line bundle L such that (A, cL) is a polarized tropical
abelian variety with polarization of type (d1, . . . , dg). Then the number of
homomorphisms F : (P, θ) → (A, cL) such that F ∗c = (d1 · · · dg)θ is given by
#{H ≤ Λ/c†L(X)}.

The proof of Proposition 3.1 breaks up into two steps.

Proposition 3.2. Let S1, S2 be defined as

S1 = {F : (P, θ) → (A, cL) | θ is principal, F ∗cL = n · θ, F (0P ) = 0A}
S2 = {X f1−→ I

f2−→ Λ | I is a lattice with rank(I) = g, f2 ◦ f1 = c†L}.

Then there is a bijection S1 ⇐⇒ S2.

Proposition 3.3. We have that

|S2| = #
{
H ≤ Λ/c†L(X)}.
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Proof of Proposition 3.2. Let F : P → A be an element in S1, with P =
Hom(I,R)/I. We have a dual morphism F̂ : Â → P which yields a diagram

X

��

f1
��

c†L

��I

��

f2
�� Λ

��
Hom(Λ,R)

f2
∗

�� Hom(I,R)
f∗
1

�� Hom(X,R)

for some pair of homomorphisms (f1, f2). This yields an element of S2.
Conversely, suppose we have a factorization X

f1−→ I
f2−→ Λ. Our goal is

to produce a map P → A from a principally polarized abelian variety P =
Hom(I,R)/I (which will satisfy the conditions outlined in the definition of
S1). The given factorization yields a diagram

X

��

f1
�� I

��

f2
�� Λ

��
Hom(Λ,R)

f∗
2

�� Hom(I,R)
f∗
1

�� Hom(X,R)

and we claim that we can fill in the dashed arrow to yield a principally polar-
ized (tropical) abelian variety P = Hom(I,R)/I which will then necessarily
satisfy the defining conditions of S1. This map is constructed as follows: if
we let j : X → Hom(Λ,R) be the inclusion of the lattice, and let d be the
index [I : f1(X)], then we can simply define the map k : I → Hom(I,R) as

k =
1

d
f∗
2 ◦ j ◦ f †

1 .

One can easily check that this makes the diagram commute, and moreover,
the resulting tropical abelian variety is by definition principally polarized.
This yields our inverse map S2 → S1. �

Proof of Proposition 3.3. The set S2 consists of factorizations

X
f1 ��

c†L

��I
f2 �� Λ



Tropical count of curves on abelian varieties 237

with both f1 and f2 injective (this follows since cL and c†L are). If we quotient
out each term by X we end up with

0 → I/f1(X) → Λ/c†L(X).

We see that such a factorization is equivalent to a subgroup of Λ/c†L(X) as
claimed. �

Next, we investigate the special cases g = 2, 3 in order to prove the naïve
(i.e. non-multiplicity) versions of Theorems 1.3, 1.4.

Proposition 3.4. Let (A, c) be a simple and Torelli polarized abelian variety
of dimension g = 2, 3. Define the set

S3 = {f : Γ → A | f(Γ) is of type c, g(Γ) = g}

There is then a bijection
S3 ⇐⇒ S1.

Finally, we specialize to genus 2.

Proposition 3.5. Let (A, cL) be a simple polarized abelian surface, where
L is a line bundle on A. Define the set

S′
3 = {f : Γ → A | f(Γ) ∈ |L|, g(Γ) = 2}

There is then a bijection

S′
3 ⇐⇒ ker(A → Â)× S1.

We will prove both of these together.

Proofs of Propositions 3.4, 3.5. This proof is roughly the same as in the
proof of Theorem 3.2 of [Göt98]. We begin by noting that the universal
property of Jacobians (which is still valid in our case) yields a map S3 → S1.

So consider an element F : P → A of S1 where P is a principally po-
larized tropical abelian variety of dimension g = 2, 3. By the surjectivity
of the Torelli map (see [BMV11, Remark 5.2.5]), it follows that P = J(Γ)
for some genus g tropical curve Γ. The composition Γ → P → A yields the
map f : Γ → A that we desire3. Moreover, since we are assuming that A is

3Note that this satisfies the conditions of definition 2.21 since the map Γ → J(Γ)
does.
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Torelli (recall the comments following definition 2.28), it follows that the
maps S3 → S1 and S1 → S3 are inverse to each other.

Finally, all of this is up to translation in A. For g = 2, we additionally
need to look at those elements a ∈ A such that t∗aL ∼= L. However, by Re-
mark 2.15, we see that this is the case if and only if a ∈ ker(A → Â), whence
the claim. �

3.2. Multiplicity Computation

3.2.1. Tropicalization of abelian varieties. We will first explain what
we mean by tropicalization of abelian varieties over K. Our discussion follows
closely [BR15], see also [Gub07] for closely related results. To be precise, we
allow arbitrary (non-degenerate) polarizations, but we restrict ourselves to
abelian varieties uniformized by tori, as this is the only case we need. We
continue to use the notation and terminology introduced in Section 2.4.3.

Let A be an abelian K-variety of dimension g, which is uniformized by
the data M ⊂ T . The points T (K) can be naturally identified with the group
Hom(M̂,K∗). Via the group homomorphism

−log : Hom(M̂,K∗) ∼= T (K) → R
g

defined by (t1, . . . , tg) �→ −(log|t1|, . . . , log|tg|), we can identify M(K) with
a full rank lattice Λ = −log(M) in Rg.

One easily checks that a polarization cL yields, by composition with −log,
a polarization of the tropical torus Atr = Rg/Λ, which we will continue to
denote cL. Thus, a pair (A,CL) tropicalizes to a tropical polarized abelian
variety in the sense of Definition 2.9. In conclusion, we obtain a functor

(A, cL) �→ (Atr, cL).

We shall need one additional, crucial, fact from [BR15]. Let C be a
smooth projective and connected K-curve of genus g, and let J(C) denote
its Jacobian variety. Let moreover Ctr denote the tropicalization of C, i.e.,
its minimal skeleton in the sense of non-archimedean geometry. Then one
has a canonical isomorphism

J(Ctr) ∼= J(C)tr

as principally polarized tropical abelian varieties (see [BR15, 2.9, 2.10]).
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Remark 3.6. The reader will find a closely related construction of trop-
icalization of abelian varieties in [Viv13], where the author works over a
complete non-archimedean field with a discrete valuation, which allows the
use of Néron models (instead of uniformization).

3.2.2. Analysis of multiplicities. We can understand multiplicity com-
putations broadly as follows. Let D tr be a diagram of tropically defined
objects which arises as the tropicalization of a diagram D defined over K.
Then the multiplicity associated to the diagram is the number of distinct
diagrams D ′ such that (D ′)tr = D tr.

As an example, let A be an abelian variety defined over K and let Atr be
its tropicalization. Let f : Γ → Atr be a tropical morphism. The multiplicity
is then the number of curves C which tropicalize to Γ and which fit into the
diagram

C ��

��

A

��
Γ �� Atr.

That is, how many ways can we fill in the dashed corner?
In order to prove Theorem 1.2, all that remains is to compute the anal-

ogous multiplicity. We can see that this consists of counting all dashed lifts
in the following diagram.

P ��

��

A

��
P tr �� Atr

Recall now that if A = Hom(X,K×)/Λ, then homomorphisms P tr → Atr are
in bijection with elements of the set S2 defined above (by Proposition 3.2).
That is, factorizations X

f1−→ I
f2−→ Λ.

Proposition 3.7. Let (f1, f2) ∈ S2, where f2 ◦ f1 = c†L. Let H = I/f1(X).
Then the number of lifts of P tr → Atr is

#Homsym(H,H∗).
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Proof. Our goal is to determine the number of dashed arrows that fit into
the following diagram

(4) X
f1 ��

��

I
f2 ��

��

Λ

��
Hom(Λ,K×)

f∗
2 ��

��

Hom(I,K×)
f∗
1 ��

��

Hom(X,K×)

��
Hom(Λ,R)

f∗
2 �� Hom(I,R)

f∗
1 �� Hom(X,R).

For this proof, we will regard a map I → Hom(I,K×) as a bilinear map
I × I → K×. In particular, we are thus trying to determine the number of
(symmetric) bilinear maps I × I → K× (which make the diagram (4) com-
mute, when viewed as a map I → Hom(I,K×)). Let B be the set of such
maps, and let b0 ∈ B be fixed.

We claim that there is a bijection B → Homsym(H,H∗). There is a map
Homsym(H,H∗) → B given as follows. Let ϕ : H ×H → K×. Then we map
ϕ to

(i1, i2) �→ b0(i1, i2)ϕ([i1], [i2])

which is an element of B.
To construct the inverse, choose b ∈ B arbitrary, and define a map ϕb :

H ×H → K× as

(g1, g2) �→ b(g1, g2)

b0(g1, g2)

where gi is any lift of gi to I. As any pair of lifts only varies by an element
of X; since the functions in B agree on elements of X, it follows that this is
well defined. Finally, since the functions in B are symmetric, it follows that
so are the resulting functions on H. �

We can now prove Theorem 1.2.

Proof of Theorem 1.2. From Proposition 3.2, the set of maps P → A which
satisfy our condition are in bijection with the set S2. From the above propo-
sition, each contributes #Homsym(H,H∗) as multiplicity, and so the total
count is ∑

H≤Λ/c†(X)

#Homsym(H,H∗) = ν†(d1, . . . , dg)

as claimed. �
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We now specialize to the lower-dimensional cases. For g = 2, 3, all simple
principally polarized abelian varieties are Jacobians, and so the new detail is
that we need to examine what happens as we lift from Jacobians of tropical
curves to the curves themselves (as well as lifting the above to K).

Naïvely, this may pose a problem. One of the more fascinating aspects
of tropical geometry is the notion of superabundance. In particular, for a
certain class of curves you end up with positive-dimensional families all of
whom have the same Jacobian. When we try to study the lifting problem

C ��

��

P

��
Γ �� J(Γ)

then we can possibly end up with infinitely many such lifts. This would,
needless to say, make it difficult to count curves.

Let us now resolve this while proving Theorem 1.3.

Proof of Theorem 1.3. Since the count of 2- and 3-dimensional simple prin-
cipally polarized tropical abelian varieties mapping P → A is already equal
to the count of genus 2 (resp. genus 3) curves, we just need to ensure that
there is no extra multiplicity when we lift from the tropical world to rigid
analytic one. As stated above, this is something that could in principle occur.

So suppose that we have performed the first lift and produced the fol-
lowing diagram, and that we are trying to determine how many final dashed
lifts can occur.

C ��

��

P

��

�� A

��
Γ �� J(Γ) �� Atr

Since P is 2- (resp. 3-) dimensional, we know that P = J(CK) for some
unique genus 2 (resp. genus 3) curve CK defined over K. Furthermore, P tr =
J(CK)

tr = J(Ctr
K
). Moreover, since Atr is Torelli, we know that Ctr

K
must be

3-connected. In particular, it follows that Ctr
K
= Γ. In sum, it follows that

the lift exists and is unique.
It follows then that the count of genus g curves of type cL is ν†(d1, . . . , dg)

as claimed. �

Lastly, we need to understand how multiplicity arises in the context of
curves in linear systems.
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Proof of Theorem 1.4. We will modify the notation in this proof so that Atr

is our tropical torus with a tropical line bundle Ltr, and we will let A be a
fixed abelian variety defined over K which tropicalizes to Atr. First, recall
that Ltr induces a polarization on Atr of type (d1, d2), and let n = d1d2.

Recall next from Proposition 3.5 that the set of curves in a fixed linear
system on Atr is in bijection with the set ker(Atr → Âtr)× S1. We understand
how S1 lifts to K, and so we only need to determine how ker(Atr → Âtr) does.

Finally, note that K = ker(A → Â) and Ktr = ker(Atr → Âtr) fit into
the diagram (via the Snake Lemma)

0 �� ker(c∗L) ��

��

K ��

��

Ktr

��

�� 0

0 �� Hom(X,μn) ��

c∗L
��

A[n] ��

��

Atr[n] ��

��

0

0 �� Hom(Λ, μn) �� Â[n] �� Âtr[n] �� 0.

Since the bottom two rows are split exact, it follows that K → Ktr is surjec-
tive, and since ker(c∗L) has n elements, it follows that translations contribute
a factor of n. From all of these theorems together, it follows that the count
of curves arising from our lifting to K, including multiplicity, is n2ν†(d1, d2)
as claimed. �

4. Some specific computations

We will now compare the enumerative counts resulting from Theorem 1.3 to
other known results, as well as provide a few additional numerical computa-
tions.

Theorem (Theorem 1.5). Let (A, cL) be a simple polarized abelian surface
with polarization of type (1, n). Then the number of genus 2 curves in |L| is
n2σ1(n).

Proof. It suffices to show that ν(1, n) = σ1(n). But this is clear: the number
of symmetric morphisms from Z/dZ to (Z/dZ)∗ is d, since such homomor-
phisms are trivially symmetric. Thus∑

H≤Z/nZ

#Homsym(H,H∗) =
∑
d|n

d = σ1(n)
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as claimed. �
We also have the following case.

Proposition 4.1. Let p be a prime. Then

ν(p, pn) = σ1(p
2n) + p3σ1(n)

Proof. We separate the proof into two parts. Let G = Z/pZ× Z/(pn)Z. First,
we note that the cyclic subgroups satisfy

(5)
∑
H≤G

H is cyclic

#Hom(H,H∗) = σ1(p
2n)

Since both sides are multiplicative, this can be reduced to the case n =
p�. Noting that for all non-identity g in an abelian p-group, we have that
|g|/ϕ(|g|) = p/(p− 1), we have that∑

H≤G
H is cyclic

#Hom(H,H∗) =
∑
g∈G

|g|
ϕ(|g|)

= 1 +
∑

0 	=g∈G

p

p− 1

= 1 + (|G| − 1)
p

p− 1

= 1 + p+ · · ·+ p�+2 = σ1(p
�+2)

as claimed.
Next, we have the non cyclic subgroups (which are all of the form Z/pZ×

Z/(pd)Z for some d | n). To proceed, we must examine in a little more detail
what the symmetry condition entails. Consider some abelian group A = A1 ×
A2. We know that Hom(A,A∗) can be decomposed as

Hom(A,A∗) = Hom(A1, A
∗
1)×Hom(A1, A

∗
2)×Hom(A2, A

∗
1)×Hom(A2, A

∗
2)

and we seek to determine what is the subset of these that is symmetric. We
have a natural bijection

Hom(A1, A
∗
2) ⇐⇒ Hom(A1 ×A2,K

×) ⇐⇒ Hom(A2, A
∗
1)

and so the symmetric functions in Hom(A,A∗) are those whose projection to
Hom(A1, A

∗
2)×Hom(A2, A

∗
1) lie in the diagonal. Furthermore, if A1 = Z/pZ

and A2 = Z/(pd)Z, we see that this set has order p.
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From this discussion, it follows that these then satisfy

Homsym
(
Z/pZ× Z/(pd)Z, (Z/pZ× Z/(pd)Z)∗

)
= Hom

(
Z/pZ, (Z/pZ)∗

)×Hom
(
Z/pZ, (Z/(pd)Z)∗

)
×Hom

(
Z/(pd)Z, (Z/(pd)Z)∗

)

which has order p3d. Summing over all of these yields p3σ1(n) as claimed. �

Remark 4.2. We have the more general fact that the analog of equation (5)
holds for all finite abelian groups.

It is immediate from Proposition 4.1 that the generating function∑∞
n=1 ν(p, pn)q

n can be written as

∞∑
n=1

ν(p, pn)qn = p3E2(ε
p2

) + E2(ε) +
p3 + 1

24

where q = εp
2 , and where E2(q) = − 1

24 +
∑∞

n=1 σ1(n)q
n is the Eisenstein se-

ries of weight 2. In particular, these generating functions are quasimodular
forms (if not of pure weight) for a non-trivial congruence subgroup of SL2Z.
Moreover, one suspects that there is a consistent definition of ν(p, 0) which
would allow us to account for the constant term; this could possibly be fur-
ther explored using the language of tropical Gromov-Witten theory.

For other cases, we produce the following table of values (which have
been computed in a custom SAGE program). Note that this does not agree
with the table in [LS02], which has some numerical errors (which were also
noted in [BOPY15]). Furthermore, unlike the values ν(1, d) = σ1(d), these
do not form a recognizable sequence as, say, the coefficients of a modular
form.
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d ν(d, d) ν(d, d, d) (d1, d2) ν(d1, d2)

2 15 135 (2, 4) 39
3 40 1120 (2, 6) 60
4 151 11,287 (2, 8) 87
5 156 19,656 (2, 10) 90
6 600 151,200 (2, 12) 156
7 400 137,600 (3, 6) 120
8 1335 810,135 (3, 9) 148
9 1201 915,853 (3, 12) 280
10 2340 2,653,560 (4, 8) 375
11 1464 1,950,048 (4, 12) 604
12 6040 12,641,440 (4, 16) 823
13 2380 5,231,240 (5, 10) 468
14 6000 18,576,000 (5, 15) 624
15 6240 22,014,720 (6, 12) 1560
16 11,191 54,681,751 (6, 18) 2220

5. Conclusion and further work

The goal of this paper was to work towards understanding how the count
of curves in abelian varieties adapts to the tropical setting. In the complex
setting, this has been studied e.g. in [BL99b], [LS02], and [Ros14].

In future work we intend to look at extending this to higher genera in a
number of potential ways. One could naturally look at developing a tropical
analogue of [BL99b], which would presumably require a version of reduced
tropical Gromov-Witten theory.

One could instead focus on hyperelliptic curves, using the work of [Cha13]
on tropical hyperelliptic curves. One should expect some interesting results
by trying to produce an analogous argument to the one provided in this
paper, combined with an understanding of the Jacobians of tropical hyper-
elliptic curves.

One could furthermore follow in the vein of [Ros14] and look at trying to
understand tropical genus 0 curves in the associated tropical Kummer surface
to A. This would require an understanding of the relationship between the
count of such curves and the count of hyperelliptic curves in A; in [Ros14]
this was provided by using orbifold Gromov-Witten theory, which to the best
of our knowledge has not been developed in the tropical setting.
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