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In earlier work we studied features of non-holomorphic modular
functions associated with Feynman graphs for a conformal scalar
field theory on a two-dimensional torus with zero external momenta
at all vertices. Such functions, which we will refer to as modular
graph functions, arise, for example, in the low energy expansion
of genus-one Type II superstring amplitudes. We here introduce
a class of single-valued elliptic multiple polylogarithms, which are
defined as elliptic functions associated with Feynman graphs with
vanishing external momenta at all but two vertices. These func-
tions depend on a coordinate, ζ, on the elliptic curve and reduce to
modular graph functions when ζ is set equal to 1. We demonstrate
that these single-valued elliptic multiple polylogarithms are linear
combinations of multiple polylogarithms, and that modular graph
functions are sums of single-valued elliptic multiple polylogarithms
evaluated at the identity of the elliptic curve, in both cases with
rational coefficients. This insight suggests the many interrelations
between modular graph functions (a few of which were established
in earlier papers) may be obtained as a consequence of identities
involving multiple polylogarithms, and explains an earlier observa-
tion that the coefficients of the Laurent polynomial at the cusp are
given by rational numbers times single-valued multiple zeta values.
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1. Introduction

Superstring perturbation theory may be merely an approximation to a com-
plete non-perturbative formulation of string theory, but it already exhibits a
remarkably rich mathematical structure. The perturbative series is given by
a topological expansion for two-dimensional surfaces which represent string
world-sheets. For the closed superstring theories the perturbative series is
given by the sum over all genera g, with g ≥ 0, of functional integrals over
orientable (super)Riemann surfaces. In the case of four-graviton amplitudes,
which will be the prototype and point of departure of this paper, the ex-
plicit expressions for tree-level (g = 0) and genus-one (g = 1) were obtained
in [1], for genus-two (g = 2) in [2], and a certain amount is known about the
leading low energy behaviour of the genus-three (g = 3) case in [3]. For the
open string theory, a summation over boundaries and cross-caps must also
be included.

The low energy expansion of string theory corresponds to an expansion
valid when the energies and momenta are small in units of the inverse of
the string length scale �s, a parameter which is related to Newton’s grav-
itational constant. The lowest order contribution corresponds to Einstein’s
theory, while higher order corrections become important for strong gravita-
tional fields. The structure of these higher order corrections is of considerable
mathematical interest. In particular, their coefficients in the low energy ex-
pansion of tree-level N -particle amplitudes in open superstring theory are
multiple zeta values, which are special values of multiple polylogarithms. The
analogous coefficients of tree-level N -particle closed superstring amplitudes
are single-valued multiple zetas [4, 5], which in turn are special values of
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single-valued multiple polylogarithms, following the terminology introduced
in [6–8].

Much less is understood about the low energy expansion of string ampli-
tudes with higher genus. In the genus-one closed superstring case the coeffi-
cients in the low energy expansion are given by integrals of non-holomorphic
modular functions over the complex structure modulus τ of the torus that
is defined by the string world-sheet. These modular functions, which can be
expressed as multiple sums, are generalisations of non-holomorphic Eisen-
stein series. Specific classes of such functions have been shown to satisfy a
number of very intriguing relationships [9–11]. These are reminiscent of the
algebraic relationships between multiple zeta values but, in the present case
they are relationships between functions defined on an elliptic curve. In the
genus-two closed superstring case, a connection has been uncovered with the
Zhang-Kawazumi invariant [12], which satisfies equally intriguing relations
[13], but whose study remains incomplete.

In the present paper, we specialise to the case of a conformal scalar field
theory on a two-dimensional torus, or elliptic curve, with arbitrary complex
modulus τ . To every Feynman graph with vanishing external momenta on
each vertex, L loops, and w scalar Green functions on the edges of the
graph, we associate a non-holomorphic modular function in τ of depth L
and weight w, which we shall refer to as a modular graph function. Certain
classes of graphs will produce vanishing modular functions, such as any one-
edge reducible graph, and any graph in which at least one vertex supports
only a single Green function edge. In this paper, we shall consider graphs
with non-derivative couplings only, but this restriction can be easily lifted
if needed.

We shall also introduce elliptic functions that depend on a point ζ on the
elliptic curve of modulus τ , and that are associated with Feynman graphs in
which all but two vertices have vanishing external momenta. These elliptic
functions provide examples of single-valued elliptic multiple polylogarithms.
We will demonstrate that any modular graph function may be expressed
as the value of a single-valued elliptic multiple polylogarithm1 when ζ is
set equal to the particular value ζ = 1 corresponding to the identity on the
elliptic curve. This is an elliptic analogue of the familiar statement that the

1The elliptic multiple polylogarithms considered in this paper are not holomor-
phic and differ from those introduced in [14], which are of relevance to the open
string annulus amplitude, as discussed in [15, 16]. Although there is a clear rela-
tionship between the open string and the closed string, this relationship is not a
subject studied in this paper.



168 E. D’Hoker, et al.

single-valued multiple-zeta values discussed in [6–8] are the values of single-
valued multiple polylogarithms with their arguments set equal to 1. It is
therefore natural to call these special values single-valued elliptic multiple
zetas. This connection between modular graph functions and single-valued
elliptic multiple polylogarithms suggests a compelling origin of the many
interrelations between modular graph functions (a few of which were moti-
vated in [9]) as a consequence of identities involving elliptic polylogarithms.

1.1. Outline of paper

Section 2 will give a brief overview of some of the relevant features of poly-
logarithms, multiple polylogarithms, multiple zeta values, their single-valued
projections, and their elliptic generalisations that will enter into the subse-
quent ideas in the paper. Section 3 will discuss the modular graph functions
and single-valued elliptic multiple polylogarithms that arise in the low energy
expansion of the perturbative amplitudes in superstring theory and which
are expressed in terms of Feynman graphs for a conformal scalar field theory
on a two-dimensional torus. In particular, we will show that every modular
graph function is given by a single-valued elliptic multiple polylogarithm
evaluated at a special point. Section 4 illustrates this feature by consider-
ing some of the infinite classes of graphs studied in [9–11, 17, 18] by other
methods. Section 5 develops the conjecture which states that single-valued
multiple polylogarithms are linear combinations of elliptic polylogarithms
with rational coefficients, offers a proof for the infinite class of star graphs,
and outlines some of the arguments for general graphs. In Section 6, the
validity of the conjecture is shown to lead to a corollary stating that the
non-leading coefficients of the Laurent expansion of the constant Fourier
mode of modular graph functions are single-valued multiple zeta values. A
summary and further thoughts on the basis of modular graph functions, and
their further generalisations, is relayed to Section 7.

Appendix A presents some relations between Eichler integrals, ellip-
tic polylogarithms, and holomorhic Eisenstein series in preparation of Ap-
pendix B where the algebraic properties of multiple polylogarithms will be
used to evaluate the modular graph function associated with the simplest
two-loop graph, C1,1,1(q). This calculation makes use of various reduction
identities for multiple sums that are determined in Appendix C.
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2. Some basic features of multiple polylogarithms

The emphasis in this paper is the analogy between elliptic functions that
arise as coefficients in the low energy expansion in genus-one closed super-
string amplitudes with single-valued multi-zetas that arise in the expansion
of the tree-level amplitudes [4, 5]. For clarity we will here give a brief (and
incomplete) review of the relationship of these quantities to multiple poly-
logarithms and to single-valued multiple polylogarithms. There are many
detailed reviews of this large subject in the literature and we note in partic-
ular the elementary introduction in [19].

2.1. Polylogarithms

The polylogarithm Lia (z) is defined for any value of a ∈ C by the power
series expansion

Lia (z) =

∞∑
k=1

zk

ka
,(2.1)

which is absolutely convergent for |z| < 1. The polylogarithm is a natural
generalisation of the logarithm since we have Li1 (z) = − log(1− z). Alter-
natively, the function Lia (z) may be defined by the integral representation

Lia (z) =
z

Γ(a)

∫ ∞

1

dt

t

(log t)a−1

t− z
,(2.2)

which coincides with (2.1) for |z| < 1, but may be analytically continued
to all z ∈ C\[1,+∞[. The resulting Lia (z) manifestly has a branch point
at z = 1, but it also has a branch point at z = 0 on its higher Riemann
sheets. Therefore, the function Lia (z) for generic values a ∈ C is multiple-
valued and has interesting monodromies, again generalising the properties
of Li1 (z) = − ln(1− z). Of particular interest is the relation of Lia (z) to the
Riemann zeta function ζ(a) via

(2.3) Lia (1) = ζ(a) ,

and to the Bernoulli polynomials Bn(x) via

(2.4) Lin
(
e2iπx

)
+ (−1)nLin

(
e−2iπx

)
= −(2iπ)n

n!
Bn(x) ,
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for n ∈ N and x ∈ [0, 1]. Recall that Bn(x) is the n-th Bernoulli polynomial
which is defined by the expansion in powers of t of the following generating
function

(2.5)
t ext

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

Moreover, the function Lia (z) satisfies the differential relation

(2.6) z
∂ Lia (z)

∂z
= Lia−1 (z) ,

and the converse integral relation

Lia+1 (z) =

∫ z

0

dy

y
Lia (y) .(2.7)

2.2. Single-valued polylogarithms

At the cost of giving up holomorphicity in z, it is possible to construct
a single-valued polylogarithm associated with Lia (z). The Bloch–Wigner
dilogarithm is the prototype for such single-valued polylogarithms, and is
defined as follows

(2.8) D(z) = �m
(
Li2 (z) + log(1− z) log |z|

)
, z ∈ C\ {0, 1} .

In this paper we will make use of the generalisations of the Bloch–Wigner
dilogarithm introduced by Zagier in [20]. They are single-valued (real an-
alytic) polylogarithms Da,b(z) for z ∈ C\[1,∞[ and a, b ∈ N, and can be
expressed in terms of sums of ordinary polylogarithms Lik (z) for an integer
index k by

(2.9) Da,b(z) = (−1)a−1
a+b−1∑
k=a

(
k − 1

a− 1

)
(−2 log |z|)a+b−1−k

(a+ b− 1− k)!
Lik (z)

+ (−1)b−1
a+b−1∑
k=b

(
k − 1

b− 1

)
(−2 log |z|)a+b−1−k

(a+ b− 1− k)!
(Lik (z))

∗ .

These functions satisfy the complex conjugation relation Da,b(z)
∗ = Db,a(z),

and we define their weight to be a+ b− 1. In particular, the function Da,a(z)



Modular graph functions 171

with a ∈ N has weight 2a− 1 and is real and single-valued on C\{0, 1}. It
is given by a finite linear combination of the Lik (z)-functions
(2.10)

Da,a(z) = 2�e
(
(−1)a−1

a−1∑
k=0

(
k + a− 1

a− 1

)
(−2 log |z|)a−1−k

(a− 1− k)!
Lia+k (z)

)
,

and will play an important role in the sequel of this paper. The following
are examples at low weights. At weight one, we have,

D1,1(z) = −2 log |1− z|2 ,(2.11)

which is manifestly single-valued. At weight 2 we have

D1,2(z) = 2iD(z) + 2 log |z| log |1− z| ,
D2,1(z) = −2iD(z) + 2 log |z| log |1− z| ,(2.12)

where D(z) is the Bloch-Wigner dilogarithm of (2.8) which is single-valued
on C\{0, 1}. At weight 3 we have

D1,3(z) = 2(log |z|)2 Li1 (z)− 2 log |z|Li2 (z) + 2�e(Li3 (z)) ,
D2,2(z) = 4 log |z| �e(Li2 (z))− 4�e(Li3 (z)) .(2.13)

It is not difficult to check that these functions are algebraically independent.

2.3. Multiple polylogarithms

The multi-variable polylogarithm Lia1,...,ar
(z1, . . . , zr) is referred to as a mul-

tiple polylogarithm and was defined by [21, 22]

(2.14) Lia1,...,ar
(z1, . . . , zr) =

∑
0<m1<···<mr

r∏
i=1

zmi

i

mai

i

,

with ai ∈ N for 1 ≤ i ≤ r, and with |zi| ≤ 1 (1 ≤ i ≤ r − 1) and |zr| < 1.
When ai ∈ N ≥ 2 for all 1 ≤ i ≤ r this function is defined for |zi| ≤ 1 for
1 ≤ i ≤ r.

The weight of a multiple polylogarithm is the sum of its indices
∑r

i=1 ai
and its depth is the number of indices, r. The classical polylogarithm func-
tions Lia (z) are special cases with depth r = 1.
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The multiple polylogarithms in (2.14) satisfy two kinds of differential
relations. One of these reduces the weight by one but leaves the depth un-
changed

(2.15) zi
∂

∂zi
Lia1,...,ar

(z1, . . . , zr) = Lia1,...,ai−1,...,ar
(z1, . . . , zr) 1 ≤ i ≤ r ,

while the other reduces both the weight and the depth by one

(2.16) (1− zr)
∂

∂zr
Lia1,...,ar−1,1 (z1, . . . , zr) = Lia1,...,ar−1

(z1, . . . , zr−1zr) .

Together with the initial conditions Lia1,...,ar
(0, . . . , 0) = 0 these differential

equations determine the multiple polylogarithms by multiple integration.
This leads to Chen iterated integrals [23] which endow the space of mul-
tiple polylogarithms with a shuffle algebra. Since we will not make use of
this construction we refer to [19] for details and references. For additional
reference, we note that these properties have been implemented in the alge-
braic program Hyperint by Erik Panzer [24] and in MPL by Christian Bogner
in [25].

From the series representation one derives the stuffle relations as de-
scribed in [26], and implemented in [27, 28]. The stuffle relation of two
multiple polylogarithms is given by

Lia1,...,ar
(x1, . . . , xr) Lib1,...,bs (y1, . . . , ys)(2.17)

=

r+s∑
k=max(r,s)

Lic1,...,ck (z1, . . . , zk) ,

where the sum is over all the sequences c(k) := (c1, . . . , ck) that arise in the
stuffle product of the sequences a(r) := (a1, . . . , ar) and b(s) := (b1, . . . , bs).
The stuffle product, denoted ∗, is a commutative product defined recursively
by

• (a1, . . . , ar) ∗ {} = (a1, . . . , ar) where {} is the empty sequence

• (a1, . . . , ar) ∗ (b1, . . . , bs) = a1 · ((a2, . . . , ar) ∗ (b1, . . . , bs))
+ b1 · ((a1, . . . , ar) ∗ (b2, . . . , bs))
+ (a1 + b1) · ((a2, . . . , ar) ∗ (b2, . . . , bs))

• x · (a1, . . . , ar) = (x, a1, . . . , ar) is the concatenation operation

The argument zi associated with the index c(k)i = a(k)i + b(k)i is obtained
as follows:
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• if a(k)i 	= 0 and b(k)i = 0 then zi = xi;

• if a(k)i = 0 and b(k)i 	= 0 then zi = yi;

• if a(k)i 	= 0 and b(k)i 	= 0 then zi = xiyi.

Note that since we have assumed that ai ≥ 1 for all i = 1, . . . , r and bj ≥ 1
for all j = 1, . . . , s, the case where both a(k)i = 0 and b(k)i = 0 cannot arise.

We illustrate this with two examples that will be useful later. The first
example is the product of two depth-1 polylogarithms

(2.18) Lia (x) Lib (y) = Lia+b (xy) + Lia,b (x, y) + Lib,a (y, x) .

The second example is the product of a depth-2 multiple polylogarithm by
a depth-1 polylogarithm

Lia,b (x, y) Lic (z) = Lia+c,b (xz, y) + Lia,b+c (x, yz) + Lia,b,c (x, y, z)(2.19)

+ Lia,c,b (x, z, y) + Lic,a,b (z, x, y) .

2.4. Single-valued multiple polylogarithms

The special case of single-variable multiple polylogarithms, which have the
form

(2.20) Lia1,...,ar
(z) = Lia1,...,ar

(1, . . . , 1, z) ,

have monodromies around z = 0 and z = 1. However single valued versions
on C\{0, 1} of such functions were constructed by Francis Brown in [6, 8].
They are obtained by appropriate linear combinations of product single-
variable multiple polylogarithms and their complex conjugate to define func-
tions on C\{0, 1} without monodromies. These combinations are examples of
single-valued multiple polylogarithms. A construction of single-valued multi-
ple polylogarithms with more than one variable has been given in [29], which
appeared some months after the first version of this paper appeared on the
arXiv.

2.5. Multiple zeta values and single-valued multiple zeta values

Multiple zeta values [30] provide a natural generalisation of Riemann zeta
values. The multiple zeta function may be defined by the following multiple
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sums for �e(ai) > 1,

ζ(a1, . . . , ar) =
∑

0<n1<···<nr

r∏
i=1

1

nai

i

,(2.21)

and analytically continued to ai ∈ C. For ai ∈ N, and ar > 1, the quantities
ζ(a1, . . . , ar) give multiple zeta values. The multiple polylogarithm evaluated
with all its arguments equal to 1 is a multiple zeta value given by

(2.22) Lia1,...,ar
(1, . . . , 1) = ζ(a1, . . . , ar) ,

when ai ∈ N with ar > 1.2

The basis of multiple zeta values has been understood in terms of pe-
riods on the Riemann sphere with marked points [31]. This interpretation
also arises naturally in the analysis of the low energy expansion of string
theory tree amplitudes [32–34]. The stuffle and shuffle relations for multiple
polylogarithms lead to a wealth of algebraic relations between multiple zeta
values.

The single-valued multiple zetas are obtained by setting the arguments
of single-valued multiple polylogarithms to 1. For example,

D1,2(1) = D2,1(1) = 0,

D1,3(1) = 2ζ(3)

D2,2(1) = −4ζ(3) .(2.23)

It is not difficult to check that these functions have the properties

Da,b(1) = 0 a+ b ∈ 2N− 1

Da,b(1) ∈ ζ(a+ b− 1)× Z a+ b ∈ 2N .(2.24)

This has led Brown to define single-valued zeta values ζsv that are given
by [8]

ζsv(2n) = 0 n ∈ N

ζsv(2n+ 1) = 2ζ(2n+ 1) .(2.25)

2When ar = 1 the expression diverges and has to be regularised, but this case
will not concern us in the sequel.
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It is important to appreciate that the definition of a single-valued poly-
logarithm on C\{0, 1} is not unique for weight greater than two.3 Different
definitions, when evaluated at 1, gives rise to a different rational linear com-
bination of single-valued multiple zeta. The functions Da,b(z) in (2.9) give
particular examples of single-valued multiple polylogarithms.

2.6. The basis of single-valued multiple zetas

The dimension dw of the subspace of multiple zeta values of weight w in the
ring over Q of multiple zeta values is conjecturally given by the expansion
of a rational function [30, 35, 36]

(2.26)

∞∑
w=0

dw xw =
1

1− x2 − x3
.

The dimension dsvw of the subspace of weight w in the ring over Q of single-
valued multiple-zeta values is smaller than dw [8]. For example, at weight 11
the basis of ordinary multiple zeta values has dimension 9 and is composed
of

ζ(3, 5, 3), ζ(3, 5)ζ(3), ζ(3)2ζ(5), ζ(11),

ζ(2)ζ(3)3, ζ(2)4ζ(3), ζ(2)3ζ(5), ζ(2)2ζ(7), ζ(2)ζ(9) .(2.27)

Since by definition we have ζsv(2) = 0 all the basis elements for multiple zeta
values on the second line are (conjecturally) mapped to zero as elements of
single-valued multiple zetas. At weight 11 a further reduction happens since
according to [8] we have the relation

(2.28) ζsv(3, 5, 3) = 2ζ(3, 5, 3)− 2ζ(3)ζ(3, 5)− 10ζ(3)2ζ(5) ,

and since ζsv(3, 5) = −10ζ(3)ζ(5), the basis of single-valued multiple zetas
at weight 11 has dimension 3 and is composed of

(2.29) ζsv(3, 5, 3), ζsv(3)
2ζsv(5), ζsv(11) .

3A discussion of the general properties of such functions and the relations between
various equivalent definitions may be found, for example, in [6]. This paper provides
a canonical choice of single-valued multiple polylogarithms.
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Corrollary 7.4 of [8] gives the dimensions dsvw of the subspace of single-valued
multiple zetas of weight w

(2.30)

∞∑
w=0

dsvw xw =

∞∏
n=0

(1− x2n+1)−�2n+1 ,

where the positive integers �n are defined by the following product relation,

(2.31)

∞∏
n=1

(1− xn)�n = 1− x2 − x3 .

Note that, up to weight 12, the non-zero values for � are �2 = �3 = �5 = �7 =
�8 = �9 = �10 = 1 and �11 = �12 = 2, so that the non-zero values for dsvw are
dsv3 = dsv5 = dsv6 = dsv7 = dsv8 = 1, while dsv9 = dsv10 = 2 and dsv11 = 3 in agree-
ment with our earlier calculation. Single-valued multiple zeta values are very
efficiently obtained using Schnetz’ Maple routines [37].4

We will give an example in Section 4.3 of how such single-valued mul-
tiple zetas enter into the Laurent expansions of the modular graph func-
tions. They have already appeared in Feynman diagrams in quantum field
theory [7] and in the low energy expansion of closed string tree level ampli-
tudes [4, 5].

2.7. Single-valued elliptic polylogarithms

In the main part of this paper we will consider generalisations of polylog-
arithms and multiple polylogarithms that are defined on a general elliptic
curve, that enters, for example, into the integrand of the genus one closed
string amplitude. An elliptic curve E can be described either as E 
 C/(Z+
τZ) where τ is the period ratio or as E 
 C×/qZ where q = exp(2iπτ), and
C× is the multiplicative group of non-zero complex numbers. A point P on
the elliptic curve is represented as ζ(P ) = exp(2iπ(uτ + v)) ∈ C×/qZ where
u and v are cartesian coordinates in [0, 1]. The real part of the period ratio
is denoted by τ1 = �e(τ) and its imaginary part by τ2 = �m(τ).

4The procedure in [37] presents a Feynman diagram description of single-valued
multiple polylogarithms reminiscent of the description to be presented in this pa-
per. However, the discussion there is in the context of quantum field theories that
are quite different from the two-dimensional conformal field theory that we are
considering, and refers to genus-zero functions, which need special treatment.
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We will make extensive use of the elliptic polylogarithms that were con-
structed by Zagier [20]. These can be expressed as infinite sums over posi-
tive integers n of images of the polylogarithms Lik (z) under the translations
z → z + nτ . To be explicit, these funtions are defined by

Da,b(q; ζ) =
∑
n≥0

Da,b(q
nζ) + (−1)a+b

∑
n≥1

Da,b(q
n/ζ)(2.32)

+
(4πτ2)

a+b−1

(a+ b)!
Ba+b(u) ,

where the function Da,b(x) was defined in (2.9), Bn is the n-th Bernoulli
polynomial, and ζ = e2πi(uτ+v) corresponds to a point on the torus with
modulus q = e2πiτ for u, v ∈ [0, 1]. Zagier showed that if a and b are two
positive integers, this function is equal to the double sum

(2.33) Da,b(q; ζ) =
(2iτ2)

a+b−1

2iπ

∑
(m,n) �=(0,0)

e2iπ(nu−mv)

(mτ + n)a (mτ̄ + n)b
.

The functionDa,b(q; ζ) is invariant under ζ→qζ since the expression in (2.33)
is invariant under the shifts u → u+ 1 and v → v + 1, therefore this is a
function on the elliptic curve. Furthermore, under the action of SL(2,Z)

τ → ατ + β

γτ + δ
αδ − βγ = 1, α, β, γ, δ ∈ Z

(u, v) → (δu− γv,−βu+ αv)(2.34)

Da,b(q; ζ) transforms as a modular form of weight (1− b, 1− a), namely,

Da,b(q; ζ) → (γτ + δ)1−b (γτ̄ + δ)1−a Da,b(q; ζ) .(2.35)

The special case a = b will be of particular importance in this paper and
is given by

(2.36) Da,a(q; ζ) =
∑
n≥0

Da,a(q
nζ) +

∑
n≥1

Da,a(q
n/ζ) +

(4πτ2)
2a−1

(2a)!
B2a(u) ,

where Da,a(x) is given by (2.10). The elliptic polylogarithms defined in this
manner are manifestly single-valued, as follows from their form in (2.33).
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2.8. Elliptic multiple polylogarithms

Elliptical generalisations of multiple polylogarithms have been defined in [14].
These are holomorphic functions of q. These are of relevance to loop am-
plitudes in open string theory [15] as well as arising in dimensionally reg-
ularised Feynman graphs in quantum field theory at two loops [38–40] and
three loops [41]. References [38, 41] give a motivic approach to these objects.
We will not review the detailed form of these functions since they do not
arise in the rest of this paper.

It will be established later in this paper that we may define single-valued
elliptic multiple polylogarithms as integrals of products of D1,1(q; ζ) factors
over the torus, with one argument left unintegrated. Modular graph func-
tions may then be described as the values of single-valued elliptic multiple
polylogarithms with the unintegrated argument set equal to 1. The termi-
nology single-valued arises because single-valued elliptic multiple polyloga-
rithms have no monodromy as functions of their unintegrated arguments.
This mimics the terminology used for single-valued multiple zeta values,
which are the values of single-valued multiple polylogarithms with argu-
ments set equal to 1.

The single-valued functions that we will describe should be distinguished
from the elliptic multiple polylogarithms that arise in [14] (mentioned above),
which are holomorphic functions of q. It would be very interesting to dis-
cover a precise relationship between the single-valued and non-single-valued
elliptical multiple polylogarithms.

3. Feynman graphs associated with a torus

Our motivation for considering modular graph functions originated from the
study of the low energy expansion of the genus-one four-graviton amplitude
in Type II superstring theory. The graphs generated in this expansion have
up to four vertices joined by the scalar Green function on the torus, as
will be reviewed below. However, the structure of such graphs generalises in
an obvious fashion to graphs with an arbitrary number of vertices, and it is
these general graphs that will be considered in this section and Sections 4, 5,
and 6 below. Actually, this obvious generalisation will not quite encompass
all the contributions that can arise in the N -string amplitudes at genus-one
for N > 4, as was discussed to a limited extent in [42]. We will comment on
the structure of such graphs in Section 7.
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The four-graviton amplitude at genus one is given by an integral over
the moduli space M1 of a torus Σ of a partial amplitude B4 evaluated at
fixed modulus. A torus Σ with modulus τ may be represented in the complex
plane by C/(Zτ + Z) and parametrised by a complex coordinate z = uτ + v
or equivalently by two real coordinates u, v ∈ R/Z. The volume form on Σ
is normalised to d2z = idz ∧ dz̄/2 = −τ2du ∧ dv. The moduli space M1 of
orientable genus-one Riemann surfaces (or tori) may be represented by a
fundamental domain for the action of PSL(2,Z) on the Poincaré upper half
plane, which may be parametrised by τ = τ1 + iτ2 with τ1, τ2 ∈ R and M1 =
{τ, 0 < τ2, |τ | > 1, |τ1| < 1

2} and the contribution from the boundaries
{τ, 0 < τ2, |τ | ≥ 1, τ1 = −1

2} and {τ, 0 < τ2, |τ | = 1, −1
2 < τ1 ≤ 0}. We

define the following partial amplitude BN (sij |τ) for arbitrary N

(3.1) BN (sij |τ) =
N∏

n=1

∫
Σ

d2zn
τ2

exp

⎛⎝ ∑
1≤i<j≤N

sij G(zi − zj |τ)
⎞⎠ .

The scalar Green function G(zi − zj |τ) on the torus will be discussed in
the subsection below. The parameters sij are related to the momenta ki of
N gravitons, for i = 1, . . . , N . Each momentum ki is a null-vector in 10-
dimensional Minkowski space-time R10 so that ki · ki = 0. The relation be-
tween the sij and ki is given by sij = −�2s ki · kj/2, where �s is the string
length. The null-vector condition on ki and overall momentum conservation∑N

i=1 ki = 0 impose the following relations between the parameters sij

sii = 0,

N∑
j=1

sij = 0, i = 1, . . . , N.(3.2)

Actually, any partition of the sum over momenta into two disjoint sets will
give rise to extra linear partition relations between the variables sij . As a
result, for N ≤ 3, we have sij = 0 for all 1 ≤ i, j ≤ 3 and thus B1 = B2 =
B3 = 1. The first non-trivial case is the four-graviton amplitude with N =
4, and extra partition relations s12 = s34, s23 = s14, s13 = s24 = −s12 − s14
resulting from partitioning the momenta into pairs.

The partial amplitude BN (sij |τ), with the parameters sij subject to the
relations (3.2), is well-defined for any value of N , and will be taken here
as the generating function for modular graph functions, although it is only
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when N = 4 that BN (sij |τ) corresponds precisely to the partial closed super-
string amplitude.5 The restrictions imposed by the extra partition relations
between the parameters sij will be left unenforced, as they may be imposed
easily, if needed, when constructing the partial amplitudes for actual string
processes.

3.1. The scalar Green function

A scalar Green function G(z|τ) is defined to be the inverse of the Laplace op-
erator Δ=4∂z̄∂z on the torus, Σ. Since BN is invariant under a z-independent
shift of the Green function G(z|τ) because of momentum conservation, we
may restrict the Green function to have vanishing integral on Σ. Therefore,
G(z|τ) obeys the following equations

(3.4) ΔG(z|τ) = −4πδ(2)(z) +
4π

τ2

∫
Σ
d2z G(z|τ) = 0 .

This determines the modular invariant formula for G in terms of the Jacobi
ϑ1-function and the Dedekind η-function

(3.5) G(z|τ) = − ln

∣∣∣∣ϑ1(z|τ)
η(τ)

∣∣∣∣2 − π

2τ2
(z − z̄)2 .

Equivalently, the Green function may be expressed as a Fourier sum in terms
of the real variables u, v ∈ R/Z defined by z = uτ + v

(3.6) G(z|τ) =
∑

(m,n) �=(0,0)

τ2
π|mτ + n|2 e

2iπ(mv−nu) .

The integers m,n parametrise the discrete momenta p = mτ + n ∈ Zτ + Z

of the Fourier modes on the torus.

To make contact with polylogarithms, we change variables for both the
modulus τ and the coordinate z on the torus, to new variables defined in

5See the discussion in Section 7 for some comments concerning the N > 4 ampli-
tude. The genus-one four-graviton amplitude is given by

(3.3) A(εi, ki) = 2π κ2
10R4 B4(s12, s13)

where κ2
10 is the ten-dimensional Newton constant and the graviton polarisations,

which appear in the linearised curvature tensor R, are denoted by εi. The α
′ expan-

sion of B4(s12, s13) only involves contributions from products of the Green functions
connecting at most N = 4 vertices on the world-sheet.
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terms of τ and z by

(3.7) q = e2πiτ ζ = e2πiz = e2πi(uτ+v)

The condition 0 < τ2 guarantees that |q| < 1, while periodicity of ζ in v
shows that Σ is parametrised by ζ ∈ C×/qZ. Comparing the expression for
Da,b(q; ζ) of (2.33) for a = b = 1 with the Fourier sum in (3.6), we are led
to the following identification [17, 20]

D1,1(q; ζ) = G(z|τ) .(3.8)

Similarly, the expression D1,1(q; ζi/ζj) will equal the Green function G(zi −
zj |τ) on the torus between the points i and j, with ζi/ζj = e2iπ(zi−zj). In
view of this identity, we shall often refer to D1,1(q; ζ) as the Green function
as well.

Importantly for the subsequent discussions, the Green functionD1,1(q; ζ)
admits a simple expression in terms of polylogarithms 2�eLi1 (·), which are
single-valued on C\{0, 1}, evaluated on an elliptic curve

(3.9) D1,1(q; ζ) = 2�e
⎛⎝∑

n≥0
Li1 (q

nζ) +
∑
n≥1

Li1 (q
n/ζ) + πτ2B2(u)

⎞⎠ ,

where ζ = qu e2iπv with u, v ∈ [0, 1], and B2(u) is the second Bernoulli poly-
nomial.

3.2. Modular graph functions

The Fourier representation of G(z|τ) makes it transparent that the Green
function G(z|τ) is invariant under the modular transformations of (2.34).
As a result, the function BN (sij |τ) is also modular invariant when the vari-
ables sij are left unchanged under the modular transformation. The series
expansion of BN (sij |τ) in powers of sij has a finite radius of convergence,
and may be organised graphically in what physicists refer to as Feynman
graphs, in this case for a conformal scalar field on the torus. Each term in
this expansion corresponds to a specific graph, and will evaluate to a specific
non-holomorphic modular function, whence the terminology modular graph
function.

The building block of the modular graphs is the scalar Green function
G(zi − zj |τ), which we associate with an edge in the graph between vertices
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zi and zj . Alternatively, and more conveniently for application to polyloga-
rithms, the scalar Green function may be set to the function D1,1(q; ζi/ζj).
We have the following graphical representation

= D1,1(q; ζi/ζj) = G(zi − zj |τ).
ζi ζj

The Green function between two vertices ζi and ζj may enter into a given
graph raised to an integer power n, for which we shall use the following
graphical representation,

n = D1,1(q; ζi/ζj)
n = G(zi − zj |τ)n.

ζi ζj

Finally, the integration at one vertex over a product of Green functions
ending at that vertex will be denoted by a filled black dot, in contrast with
an unintegrated vertex which will be represented by an unfilled dot. The
basic ingredient in the graphical notation is depicted in the graph below

· · ·
=

∫
Σ

d2 log ζ

4π2τ2

r∏
i=1

D1,1(q; ζ/ζi).

ζ1 ζ2 ζr−1 ζr

The low energy expansion of BN is obtained simply by expanding the
exponential in (3.1) in powers of sij , or equivalently by expanding in powers
of �2s, while keeping the momenta ki fixed. The coefficient of the term which
is homogeneous of degree w in the sij variables is given by a sum over
all possible graphs with w Green functions joining at most N vertices, as
studied for the special case of N = 4 in [9, 11, 17, 18]. Each weight w graph
Γw,N is evaluated by the integration of the product of Green functions over
the position of the vertices ζi on the torus Σ. When no confusion is expected
to arise, we shall abbreviate Γw,N by simply Γ. The resulting function will
be denoted IΓ(q) and is given by

(3.10) IΓ(q) =

N∏
k=1

∫
Σ

d2 log ζk
4π2τ2

∏
1≤i<j≤N

D1,1(q; ζi/ζj)
nij ,



Modular graph functions 183

where N is the number of vertices and nij is the number of Green functions
joining the vertices i and j. The numbers nij are the entries of the adja-
cency matrix of the graph Γ = Γw,N . By construction, the integral IΓ(q) is
modular invariant, as it arises from the expansion in powers of sij of the
modular invariant generating function BN (sij |τ), and therefore associates
with a graph Γ a non-holomorphic modular function IΓ(q) of q and q̄.

An alternative evaluation of the modular graph function IΓ(q) is ob-
tained by using the Fourier representation

(3.11) D1,1(q; ζ) =
∑

(m,n) �=(0,0)

τ2
π|mτ + n|2 e

2iπ(mv−nu) ,

where ζ = e2πi(uτ+v). The integration over Σ of the position ζi of the vertex
i enforces momentum conservation on all the Green functions that enter the
vertex i. Carrying out the integrations over Σ for all the vertex positions ζi
for i = 1, . . . , N gives the constrained multiple sum representation for the
graphs, as was studied already earlier for the case N = 4 in [9–11, 17, 18].
The general form of the sum may be schematically represented as follows

(3.12) IΓ(q) =

′∑
p1,...,pw∈Zτ+Z

w∏
α=1

τ2
π|pα|2

N∏
i=1

δ

(
w∑

α=1

Ciαpα

)
.

Here, the prime above the summation symbol indicates that the sums over
p exclude the value 0; the Kronecker δ symbol takes the value 1 when its
argument vanishes and zero otherwise; the coefficients Ciα are given as fol-
lows

Ciα =

{
±1 if edge α ends on vertex i

0 otherwise
(3.13)

the sign being determined by the orientation of the momenta. Note that,
given the weight w, all the information on the graph Γ is encoded in the
coefficients Ciα, the other parts of the sum in (3.12) being the same for all
w. This momentum representation of the modular graph function clearly
confirms its modular invariance.

3.3. Single-valued nature of the modular graph functions

In order to understand the statement that the modular graph functions
are single-valued, we now show that they are naturally expressed in terms of
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elliptic analogues of single-valued multiple polylogarithms. We will call these
functions single-valued elliptic multiple polylogarithms. We will demonstrate
that the function IΓ(q) is a special value of a more general function, IΓ(q; ζ),
associated with the graph Γ = Γw,N when all but one of the vertices, say
vertex j, are integrated and the lines meeting the unintegrated vertex j
are made to terminate at two separate points, ζj and ζ ′j . By translation
invariance on the torus, we may set ζ ′j = 1 without loss of generality. The
function IΓ(q, ζ) has no monodromies in ζ and is therefore single-valued on
the torus.

To be as concrete as possible, we shall concentrate here on the case of
N = 4, but our considerations may be easily generalised to other values of
N . An arbitrary graph Γ = Γw,4 of weight w and with four vertices may be
labeled as follows

n12

n23

n34

n14

n24

n13

IΓ(q) =

The resulting elliptic function IΓ(q; ζ1) is illustrated by the graph below
with five vertices, of which two are unintegrated. The unintegrated vertex
corresponds here to the vertex j = 1 in the figure

n12

n23

n34

n14

n24

n13

ζ1

ζ ′1
IΓ(q; ζ1/ζ

′
1) =

The black dots represent integrated vertices, while the white dots continue
to represent unintegrated vertices. To such a graph we associate an elliptic
function that results from the integration over the remaining three vertices,
which here are k = 2, 3, 4
(3.14)

IΓ(q; ζ) =

4∏
k=2

∫
Σ

d2 log ζk
4π2τ2

∏
1≤i<j≤4

D1,1(q; ζj/ζi)
nij

(
D1,1(q; ζ

′
1/ζ3)

D1,1(q; ζ1/ζ3)

)n13

.
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The function IΓ(q; ζ) depends only on the ratio ζ = ζ1/ζ
′
1 due to translation

invariance on the torus. Since the Green function D1,1(q; ζ) is a single-valued
function of ζ the function IΓ(q; ζ) is a single-valued function of ζ. Translation
invariance implies that the full integral (3.10) is recovered by identifying the
points ζ1 and ζ ′1 in the above graph, in other words, by setting ζ = 1. This
is easily shown using the representation of (3.12) in which the discrete
momentum is preserved at each vertex.

3.4. Proposition

Any modular graph function IΓ(q) may be obtained as the value of a single-
valued elliptic multiple polylogarithm IΓ(q; ζ) evaluated at the point ζ = 1.

4. Examples of modular graph functions

In this section we shall illustrate the structure of modular graph func-
tions IΓ(q) and their associated single-valued elliptic multiple polylogarithms
IΓ(q; ζ) on some simple but significant examples. It will be convenient to
characterise the families of graphs under consideration by the number of
loops L of the graph Γ in the corresponding modular graph function IΓ(q).

4.1. General one-loop graphs

The first family of examples is based on modular graph functions IΓ(q) for
graphs Γ with a single loop. The associated single-valued elliptic multiple
polylogarithm results from a linear chain graph in which a Green functions
are concatenated and integrated over their a− 1 junction points. Such linear
chain graphs are important in their own right, but will also provide natural
building blocks for higher graphs that involve linear chains. We introduce
the graphic notation given in the figure below

a =

a

ζ1 ζa+1ζ1 ζa+1

Recall that the black dots correspond to integrated vertices, while the white
dots are unintegrated and the corresponding vertices are evaluated at the
labels of these points. The weight of the graph is w = a, while its number
of vertices is N = a+ 1. The associated elliptic function may be evaluated
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by performing the a− 1 integrations over the vertices ζj for j = 2, . . . , a. A
convenient way to carry out this evaluation is with the help of the Fourier
representation of (2.33). By comparing the result with the Fourier represen-
tation given in (2.33) for Da,a(q; ζ), we readily find

(4.1)

a∏
k=2

∫
Σ

d2 log ζk
4π2τ2

a∏
j=1

D1,1(q; ζj+1/ζj) = (−4πτ2)
1−aDa,a (q; ζa+1/ζ1) ,

which is the single-valued elliptic polylogarithm defined in [20]. The single-
valuedness in ζ = ζa+1/ζ1 of Da,a(q; ζ) is again a consequence of this integral
representation, as explained in Section 3. We may summarise this results by
the graphical representation for the linear chain graph in the figure below

a = (−4πτ2)
1−aDa,a (q; ζa+1/ζ1) .

By evaluating the open linear chain graph when the vertices ζ1 and ζa+1

coincide yields a one-loop chain graph, depicted in the figure below

a = (−4πτ2)
1−aDa,a(q; 1) .

Upon setting ζ = 1 in the argument of Da,a(q; ζ) in (2.33) we see that

(4.2) (−4πτ2)
1−aDa,a(q; 1) = Ea(q) =

∑
(m,n) �=(0,0)

τa2
πa|mτ + n|2a .

The representation of the real analytic Ea Eisenstein series as a one-loop
graph was used in [9, 17, 18]. The Eisenstein series is the special value at
ζ = 1 of the single-valued elliptic polylogarithm function Da,a(q; ζ).

4.2. General two-loop graphs

The general two-loop graph that produces a modular graph function is given
by the modular functions IΓ(q) = Ca,b,c(q) introduced and studied exten-
sively in [9].6 These graphs always have two trivalent vertices, along with
a+ b+ c− 3 bivalent vertices. For any assignment of value of a, b, c ≥ 1, a
single-valued elliptic multiple polylogarithm IΓ(q; ζ) = Ca,b,c(q; ζ) may be

6This is a slight change of notation from [9] where we used Ca,b,c(τ) to represent
this function.



Modular graph functions 187

constructed from Γ by detaching one edge from one of the two trivalent
vertices. By permutation symmetry of the indices a, b, c, we may detach the
edge labeled a without loss of generality, to obtain the graph shown in the
figure below

ζ1 ζ ′1
a

b

c

= Ca,b,c(q; ζ1/ζ
′
1) .

The associated single-valued elliptic multiple polylogarithm, Ca,b,c(q; ζ) is a
function of the ratio ζ = ζ1/ζ

′
1 and has the form

(4.3)

Ca,b,c(q; ζ) = (−4πτ2)
3−a−b−c

∫
Σ

d2 log ζ2
4π2τ2

Da,a(q; ζ/ζ2)Db,b(q; ζ2)Dc,c(q; ζ2) .

Setting ζ = 1 leads to the modular graph function Ca,b,c(q)

(4.4) Ca,b,c(q) = Ca,b,c(q; 1) ,

associated with the Feynman graph

b

a

c

= Ca,b,c(q) .

It follows that Ca,b,c(q) is the value at ζ = 1 of Ca,b,c(q; ζ), which is a single-
valued function of ζ. This illustrates the general point made in Section 3.3
and Proposition 3.4.

Using the lattice sum expression for Da,a(q; ζ) given in (2.33) leads to
the multiple sum representation studied in [9, 10]

(4.5) Ca,b,c(q) =

′∑
p1,p2,p3∈Zτ+Z

(τ2
π

)a+b+c δ(p1 + p2 + p3)

|p1|2a|p2|2b|p3|2c ,

where pi = miτ + ni parametrises the momenta on the torus Σ. In [9] lin-
ear combinations of the functions Ca,b,c(q) were shown to satisfy Laplace
eigenvalue equations with source terms that are quadratic in real analytic
Eisenstein series. In principle, these equations determine the form of these
functions.
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When at least one of the indices a, b, c is greater than one, the graph Γ
contains bivalent vertices in addition to its two trivalent vertices. When this
is the case, one may detach the edges meeting at any of the bivalent ver-
tices, to obtain another single-valued elliptic multiple polylogarithm, speci-
fied graphically by the figure below

ζ1 ζ ′1
a1 a2

b

c

= Ca1;b,c;a2
(q; ζ1/ζ

′
1) ,

where a1 + a2 = a and a1, a2 ≥ 0. This case provides the simplest exam-
ple of a general phenomenon, namely that to a given modular graph func-
tion, there will correspond a number of different and generally inequiva-
lent single-valued elliptic multiple polylogarithm functions. Finally, we note
that the above modular two-loop graph functions produce, upon detaching
both edges on a single trivalent vertex, a star graph with three branches,
and thereby a two-variable single-valued elliptic multiple polylogarithm. We
shall examine such graphs further in Section 5.1 below.

4.3. General three-vertex graphs

The modular graph function associated with an arbitrary graph with a total
of three vertices is obtained as a special value of the single-valued elliptic
multiple polylogarithm associated with the following graph with two unin-
tegrated vertices

a b c

ζ1 ζ ′1
= Da,b,c(q; ζ1/ζ

′
1) ,

where the encircled numbers indicate the number of the Green functions
D1,1 which appear in the corresponding link, following our earlier graphical
representations. The corresponding single-valued elliptic multiple polyloga-
rithm evaluates as follows

Da,b,c(q; ζ) =
∏

k=2,3

∫
Σ

d2 log ζk
4π2τ2

(4.6)

×D1,1(q; ζ/ζ2)
aD1,1(q; ζ2/ζ3)

bD1,1(q; ζ3)
c ,
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which is a single-valued function of ζ. Its restriction to ζ = 1 gives

(4.7) Da,b,c(q) = Da,b,c(q; 1) ,

corresponding to the modular graph function associated with the figure be-
low

a

b

c = Da,b,c(q) .

4.4. General graphs

The examples of entire classes of modular graph functions, and their asso-
ciated single-valued elliptic multiple polylogarithms, provided in the earlier
paragraphs lend themselves to a natural generalisation. From a general Feyn-
man graph Γ, with associated modular graph function IΓ(q), it is possible
to construct at least one, but in general several inequivalent, single-valued
elliptic multiple polylogarithms IΓ(q; ζ) by detaching one or several Green
function edges from any one of the vertices in the graph. The original vertex
may be placed at an arbitrary reference point, which we choose to be 1,
while the vertex of the detached Green function(s) is placed at an arbitrary
point ζ. These observations show the validity of Proposition 3.4 and provide
an explicit construction for IΓ(q; ζ). The significance of the fact that several
inequivalent single-valued elliptic multiple polylogarithms arise in this way
from a single modular graph function, remains to be explored in full.

5. Single-valued multiple polylogarithms for graphs

In the preceding two sections, we have introduced modular graph functions,
and their relation with single-valued elliptic multiple polylogarithms, lead-
ing to Proposition 3.4, and a series of concrete examples. In the present
section, we shall make progress towards understanding the description in
terms of (non-single-valued) polylogarithms of both modular graph functions
and single-valued multiple polylogarithms. In particular, we shall advance
a Conjecture as to this general structure, and offer a proof for a certain
infinite subclass of graphs, leaving a complete proof for the general case for
future investigations. Assuming the validity of our conjecture, we shall infer
important properties for the ring structure over Q of the coefficients of the
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Laurent series in powers of τ2 of general modular graph functions in terms
of single-valued multiple zeta values. The separate terms in the expansions
to be discussed later in this section will not be elliptic functions. This is not
necessary for the proof of single-valuedness that follows. However, the sum
of terms is guaranteed to be elliptic since the initial expression for any mod-
ular graph function is manifestly elliptic. The Laurent series is the dominant
contribution to these modular functions in the limit τ2 → ∞.

The main conjecture of this paper applies to any single-valued multiple
polylogarithm IΓ(q; ζ) associated with a single-component graph modular
graph function IΓ(q). By single-component graph, we mean a connected
graph, whose associated modular graph function cannot be reduced to the
product of lower weight modular graph functions.
Conjecture The single-valued elliptic multiple polylogarithm IΓ(q; ζ) asso-

ciated with a single component graph Γ = Γw,N , with w Green functions,
N + 1 vertices, and L = w −N loops, is a linear combination of multiple
polylogarithms of depth at most L and weight at most w +N − 1.

5.1. Star graphs

We shall now provide a proof of the above Conjecture for the infinite class of
star graphs. A graph S is a star graph provided it contains a single integrated
n-valent vertex with n > 2, and an arbitrary number of integrated bi-valent
vertices. By construction, the graph then has n unintegrated end points ζi
with i = 1, . . . , n. To obtain the modular graph function with two n-valent
vertices associated with S it suffices to set all ζi equal to 1. To obtain single-
valued multiple polylogarithms from S, one may set one non-empty subset of
end points to 1 while setting the remaining non-empty set of endpoints to ζ.
A general n-valent star graph S, with ai Green functions on leg i of the star,
along with its multi-variable function value IS(q; ζ1, . . . , ζn), is represented
in the figure below

· · ·
= IS(q; ζ1, . . . , ζn).

ζ1 ζ2 ζn

a1 a2 an
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Its associated multi-variable modular graph function evaluates to

IS(q; ζ1, . . . , ζn) =

∫
Σ

d2 log ζ

4π2τ2

n∏
i=1

Dai,ai
(q; ζ/ζi) .(5.1)

To prove the Conjecture for star graphs, we need to show that the result
of performing the integration of the n-valent vertex ζ over the torus Σ pro-
duces a linear combination, with rational coefficients, of (non-single-valued)
multiple polylogarithms, resulting in a formula schematically represented as
follows

(5.2)
∑
s

∑
b1,...,bs

cb1,...,bs Lib1,...,bs (z1, . . . , zs) .

where the coefficients cb1,...,bs are rational numbers, the multiple polyloga-
rithm is defined in (2.14), and zi are products of the arguments, generically
of the form

(5.3) qmq̄m
′ ∏

t

ζαt

t ζ̄βt

t ,

where αt, βt are integers with 1 ≤ t ≤ s. We will proceed by considering
some algebraic features of the integrand

(5.4)

n∏
i=1

Dai,ai
(q; ζ/ζi) ,

making use of the fact that the generalised Green functionsDai,ai
(q; ζ/ζi) are

themselves polylogarithms of depth 1 and weight ai given in (2.32) via (2.10),
and then perform the integrations over the phase v and the variable u of
ζ = e2πi(uτ+v). The intermediate steps will not be manifestly single-valued in
the ζi values but the expression in eq. (5.1) guaranties the single-valueness
of the final answer.

5.2. Integral over the phase v

We begin by recasting the functions Dai,ai
(q; ζ/ζi) in terms of the func-

tions Dai,ai
(qm(ζ/ζi)

±1) and their complex conjugate with the help of equa-
tion (2.36), and then expressing the latter as a linear combination of poly-
logarithms Lik using (2.10). In performing the v-integral, the presence of
the Bernoulli polynomials B2a(u) in (2.36) will be immaterial, as will be the
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logarithms in (2.10), since they involve u but do not depend on v. We will
suppress their presence in this section. Finally, the arguments entering the
polylogarithms Lik in Dai,ai

depend on ζ either through a factor linear in ζ,
or a factor linear in ζ−1. It will be convenient in the sequel to group together
the factors in ζ and those in ζ−1, of which we shall assume there are respec-
tively r and s. The maximal values of these parameters are characterised
by 0 ≤ r, s and r + s ≤ n. Thus, the v-integrals required to evaluate IS take
the form

(5.5) Ja,b(x,y) =

∫ 1

0
dv

r∏
i=1

Liai

(
xi e

2πiv
) s∏
j=1

Libj
(
yj e

−2πiv) ,

where we have introduced the following notation,

a = (a1, . . . , ar) x = (x1, . . . , xr)

b = (b1, . . . , bs) y = (y1, . . . , ys) .(5.6)

The entries of the composite indices a and b are positive integers, while the
entries of x and y depend on u, and on positive powers of q and positive
powers of q̄, but are independent of v. The variables obey |xi|, |yj | < 1 for
all i = 1, . . . , r and j = 1, . . . , s. In view of these bounds, we may use the
series representations for the functions Li to perform the integration over v
which results in the insertion into the sum of a Kronecker δ-function,

(5.7) Ja,b(x,y) =
∑

0<m1,...,mr

∑
0<n1,...,ns

δ

⎛⎝ r∑
i=1

mi −
s∑

j=1

nj

⎞⎠ r∏
i=1

xmi

i

mai

i

s∏
j=1

y
nj

j

n
bj
j

.

To prove that this constrained sum may be expressed as a linear combina-
tion, with rational coefficients, of functions Li evaluated on various combi-
nations of the variables x,y, we shall proceed by induction on s, at fixed but
arbitrary value of r. For r > 0, and s = 0, the integral vanishes identically.

To initiate the induction, consider first the case s = 1. It is straightfor-
ward to solve for n1 which is given by n1 = m1 + · · ·+mr. The constraint
n1 > 0 imposed by the definition of Ja,b is automatically satisfied since all
the integers mi are strictly positive. Thus, we find

(5.8) Ja,b1(x, y1) =
∑

0<m1,...,mr

1

m1 + · · ·+mr

r∏
i=1

(xiy1)
mi

mai

i

.
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The summation may be expressed equivalently as the following integral

Ja,b1(x, y1) =

∫ 1

0

dt

t

r∏
i=1

Liai
(xiy1t) .(5.9)

Using the stuffle relations of (2.17), the product over the Li-functions may be
expressed as a linear combination, with rational coefficients, of multiple poly-
logarithms. The one of highest depth r is given by Lia1,...,ar

(x1y1t, . . . , xry1t),
while the one of lowest depth 1 is given by Lia1+···+ar

(x1 · · ·xryr1tr), along
with all stuffle combinations with rational coefficients and depths in between
1 and r. The integral over t of any of these Li-functions gives back an Li-
function of various combinations of the arguments. This concludes the proof
of the claim for s = 1.

Next, we shall assume that the claimed decomposition property of Ja,b
defined in (5.5) holds true for all indices a,b for any value of r, s. We now
wish to prove by induction that the decomposition property will then also
hold for all indices a,b′ for all r, and s replaced by s+ 1. The corresponding
J-function is given by

(5.10) Ja,b′(x,y
′) =

∑
0<m1,...,mr

0<n1,...,ns,ns+1

δ

⎛⎝ r∑
i=1

mi −
s∑

j=1

nj − ns+1

⎞⎠ r∏
i=1

xmi

i

mai

i

s+1∏
j=1

y
nj

j

n
bj
j

.

and we use the notation b′ = (b1, . . . , bs, bs+1) and y′ = (y1, . . . , ys, ys+1).

To solve the Kronecker δ-function constraint now requires more care than
in the case s = 1. One cannot simply use the solution ns+1 = m1 + · · ·mr −
(n1 + · · ·+ ns), since then ns+1 is not guaranteed to obey the constraint that
it must be positive. Therefore, we shall proceed as follows instead. We single
out an arbitrary m-variable, say m1, and compare the values of ns+1 allowed
by the δ-function constraint to the value of m1. We have three cases, namely
ns+1 = m1, ns+1 < m1 or ns+1 > m1, and split the sum which defines the
function J accordingly into three terms

Ja,b′(x,y
′) = J0 + J+ + J− ,(5.11)

where the terms J0, J+, and J− respectively include the contributions to
the sum from ns+1 = m1, ns+1 < m1, and ns+1 > m1.

For the contributions to the sum with ns+1 < m1, which are regrouped
in J+, we parametrise the difference by m1 = ns+1 + k with k ranging over
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all positive integers. The sum becomes,
(5.12)

J+ =
∑

0<k,m2,...,mr
0<n1,...,ns,ns+1

δ

⎛⎝k +

r∑
i=2

mi −
s∑

j=1

nj

⎞⎠ x
k+ns+1

1

(k + ns+1)a1

r∏
i=2

xmi

i

mai

i

s+1∏
j=1

y
nj

j

n
bj
j

.

We re-baptise the variable k as m1, setting k = m1 in the sum. As a result,
we have
(5.13)

J+ =
∑

0<m1,...,mr
0<n1,...,ns,ns+1

δ

⎛⎝ r∑
i=1

mi −
s∑

j=1

nj

⎞⎠ x
m1+ns+1

1

(m1 + ns+1)a1

r∏
i=2

xmi

i

mai

i

s+1∏
j=1

y
nj

j

n
bj
j

.

Note that the δ-function constraint involves only the first r + s summation
variables but does not involve ns+1. This observation is crucial to make the
inductive proof possible. The summations over m1 and ns+1 are coupled
only through the denominator factor (m1 + ns+1)

−a1 but not through the
Kronecker δ-function constraint. To complete the inductive argument, we
decouple the summations over m1 and ns+1 by differentiating in x1. The
independent sums are then easily regrouped, and lead to the following dif-
ferential equation

(
x1

∂

∂x1

)a1

J+ = Libs+1
(x1ys+1)(5.14)

× Li0,a2,...,ar,b1,...,bs (x1, . . . , xr, y1, . . . , ys) .

Stuffle identities (2.17) may again be used to decompose this product into
a linear combination, with rational coefficients, of Li-functions of depth
r + s+ 1. The above differential equation for J+ may then be integrated
iteratively using (2.15) in terms of linear combinations of Li-functions of
depth r + s+ 1. This concludes the part of the proof for the contributions
J+ to Ja,b(x,y).

For the contributions to the sum with ns+1 > m1, which are regrouped
in J−, we parametrise the difference by m1 + k = ns+1 with k ranging over
all positive integers. The arguments now proceed as in the case of J+ with
labels of positive and negative powers of ζ reversed.
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Finally, for the contributions to the sum with ns+1 = m1, which are
regrouped in J0, we have

(5.15) J0 =
∑

0<m1,...,mr
0<n1,...,ns,ns+1

δ

⎛⎝ r∑
i=2

mi −
s∑

j=1

nj

⎞⎠ (x1ys+1)
m1

m
a1+bs+1

1

r∏
i=1

xmi

i

mai

i

s∏
j=1

y
nj

j

n
bj
j

.

The sum over m1 is now completely decoupled from the other sums, and we
have

(5.16) J0 = Lia1+bs+1
(x1ys+1) Lia2,...,ar,b1,...,bs (x2, . . . , xr, y1, . . . , ys)

Applying the stuffle relations of (2.17) allows us to decompose this product
again into a linear combination with rational coefficients of Li-functions.
This completes the proof for all contributions to Ja,b(x,y), and thus of this
function itself.

5.3. Arguments for the v-integral in the general case

While the proof of the Conjecture given in the preceding section is complete
for star graphs, and graphs derived from it, we need further results to support
the Conjecture for general graphs. In this subsection, our aim will not be to
provide a complete proof for general graphs, but rather to show that some
of the key novel results that are needed for general graphs but were not
required for star graphs, can be established in a satisfactory way.

One formulation may be obtained by considering the v-integral of a
general multiple polylogarithm, but with arguments given by higher powers
of ζ and ζ−1 (for star graphs only arguments linear in ζ and ζ−1 were
required). This will lead to a general v-integral of the form

(5.17) J γ
a (z) =

∫ 1

0
dv Lia

(
z1e

2πiγ1v, . . . , zre
2πiγrv

)
,

where the exponent γ=(γ1, . . . , γr) has integer entries, while a=(a1, . . . , ar)
has positive integer entries, and the arguments are again bounded by |zi| < 1
for all i = 1, . . . , r. By expanding the Li-function in a power series in zi, we
may readily perform the integral over v to obtain

(5.18) J γ
a (z) =

∑
0<μ1<···<μr

δ

(
r∑

i=1

γiμi

)
r∏

i=1

zμi

i

μai

i

,
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where the summation is over ordered positive integers μ1, . . . , μr. The case
considered earlier corresponds to having γi = ±1, so that the Kronecker δ-
function constraint may be solved to provide an iterative proof as we did in
the preceding subsection. When γi 	= ±1, however, one needs to deal with
the issues of divisibility in solving the constraint equation imposed by the
Kronecker δ-function.

We begin by parametrising the ordering conditions on the indices μi by
setting μ0 = 0 and introducing the following change of variables

(5.19) μi = μi−1 +mi 0 < mi 1 ≤ i ≤ r .

The variables mi are now constrained only to be positive, but no further or-
dering requirement between them is being imposed. Importantly, this change
of variables has the effect of decoupling the ordering conditions between dif-
ferent mi. Next, it will be convenient to express γ and z in this new basis
and we define

(5.20) αi =

r∑
j=i

γj xi =

r∏
j=i

zj .

As a result, the function J γ
a (z) admits the following sum representation

(5.21) J γ
a (z) =

∑
0<m1,...,mr

δ

(
r∑

i=1

αimi

)
r∏

i=1

xmi

i

μai

i

.

To save unnecessary extra notation, the denominator factors have been left
in terms of μi and should be viewed as given in terms of the functions of
the mi by (5.19). Without loss of generality, we shall assume that all αi are
non-vanishing; in the contrary case, the corresponding summation indices
do not enter into the Kronecker δ-function constraint and the sum reduces
to a case with lower value of r.

Next, we partition the set of indices {1, 2, . . . , r} into two sets I+ and
I− according to whether αi is positive or negative

αi > 0 =⇒ i ∈ I+

αi < 0 =⇒ i ∈ I− .(5.22)

It will be convenient to work with positive exponents only, so we shall set
βi = −αi whenever i ∈ I−, so that βi > 0. The summation may then be
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rearranged as follows

(5.23) J γ
a (z) =

∑
0<m1,...,mr

δ

⎛⎝∑
i∈I+

αimi −
∑
i∈I−

βimi

⎞⎠ r∏
i=1

xmi

i

μai

i

.

We now proceed iteratively on the value of n, and assume that the extended
array γ′ = (γ1, . . . , γr, γr+1) produces one additional entry belonging to I−,
which corresponds to an additional exponent βi− > 0 and an additional sum-
mation variable mi− > 0.

We now wish to reduce the Kronecker δ-function involving n+ 1 summa-
tion variables m to one that involves only n summation variables, imitating
the procedure we followed for star graphs. To this end, we single out an in-
dex i+ in I+ corresponding to mi+αi+ . Thus, we need to reduce the following
constraint on n+ 1 summation variables m1, . . . ,mn+1

(5.24)
∑

i∈I+\{i+}
αimi −

∑
i∈I−

αimi + αi+mi+ − βi−mi− = 0 ,

to a summation involving only n summation variables. We proceed as in
the case of star graphs, but take careful account of the divisibility issues.
We shall distinguish contributions for which αi+mi+ = βi−mi− from those
for which αi+mi+ > βi−mi− and those for which αi+mi+ < βi−mi− . We shall
refer to these partial sums respectively as J 0,J +, and J −.

We shall concentrate here on the contribution J +, arising from the con-
tributions satisfying αi+mi+ > βi−mi− . The other cases are analogous, fol-
lowing the model of the star graphs. The integers αi+ and βi− are both pos-
itive, and have been assumed to be non-zero. We shall denote their greatest
common divisor by α� > 0. There now exists a unique solution m0

i± to the
Bézout equation

(5.25) αi+m
0
i+ − βi−m

0
i− = α�

with the properties 0 ≤ m0
i+

< βi−/α� and 0 ≤ m0
i− < αi+/α�. Note that this

solution is determined completely by the nature of αi+ and βi− and does not
in any way involve the summation variables m. Having determined m0

i± , we
may now recast the constraint as follows

(5.26)
∑

i∈I+\{i+}
αimi −

∑
i∈I−

αimi + α�k = 0
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for an integer k which is positive by the assumption αi+mi+ > βi−mi− . As a
result, the Kronecker δ-function constraint now involves only n summation
variables. The complete parametrisation of the summation variables mi± is
given in terms of the integer k > 0, and an additional integer summation
variable �, as follows

mi+ = km0
i+ + �

βi−
α�

mi− = km0
i− + �

αi+

α�
(5.27)

The variable � does not enter into the constraint. In general, the range of
� will include both positive, zero, and negative integers, and must itself be
subdivided into these three sub-ranges. Within each sub-range, the sum-
mation over � may be performed, after sufficient derivatives in the external
variables xi have been taken to deal with the denominator factors μai

i , in
a manner analogous to how we proceeded for star graphs. This concludes
our discussion of the arguments needed to prove that the integral over v
produces a linear combination, with rational coefficients, of Li-functions.

5.4. Integral over the variable u

The second type of integral involves integration over one of the variables ui,
leading to the integrals of the type

(5.28) Kα
a,a(x) =

∫ 1

0
duua Lia1,...,ar

(
x1e

−2πτ2α1u, . . . , xre
−2πτ2αru

)
,

where the variables xi are independent of u and bounded by |xi| < 1, while
a, ai and αi are positive or zero integers for all i = 1, . . . , r. We have in-
troduced the notation α = (α1, . . . , αr). Actually, the integrals make perfect
sense when αi is a positive integer, and it will sometimes be convenient for
performing intermediate calculations, to let αi be real. The multiple poly-
logarithm arises from stuffle relations in the expansion of products of Green
functions on the torus, while the pre-factor ua arises from expanding the
Bernoulli polynomials in Dai,ai

(ζ).

It is sufficient to study the integrals Kα
0,a, since cases with a > 0 may be

obtained by differentiating with respect to one the arguments αi (temporar-
ily allowing it to be a real variable instead of an integer) of the polyloga-
rithms using the differentiation rule of the multiple polylogarithms in (2.15).



Modular graph functions 199

Using the sum representation of the multiple polylogarithms and the integral

(5.29)

∫ 1

0
du e−2πτ2uα =

1

2πτ2

1

α

(
1− e−2πτ2α

)
gives

(5.30) Kα
0,a(x) =

1

2πτ2

∑
0<m1<···<mr

r∏
i=1

xmi

i

mai

i

1− e−2πτ2
∑r

i=1 αimi∑r
i=1 αimi

.

By differentiation we obtain

(
r∑

i=1

αixi
d

dxi

)
Kα

0,a(x)(5.31)

=
1

2πτ2

(
Lia1,...,ar

(x1, . . . , xr)

×−Lia1,...,ar

(
x1e

−2πτ2α1 , . . . , xre
−2πτ2αr

) )
.

Again, using the differential relations of multiple polylogarithms (2.15) one
concludes that Kα

0,a is a combination of multiple polylogarithm of depth r
and weight

∑r
i=1 ai + 1. The same argument implies that Kα

a,a is a linear
combination of multiple polylogarithms of depth r and weight

∑r
i=1 ai + a.

6. Fourier coefficients of modular graph functions

Having proved the Conjecture for the case of star graphs, and graphs derived
from star graphs, and presented an outline of the evidence for the validity
of the Conjecture for general graphs, we now proceed to discuss some im-
plications of the Conjecture, assuming it holds true for general graphs.

6.1. Implications for the constant Fourier mode

Assuming the validity of the conjecture implies the following corollary of the
conjecture concerning the constant Fourier mode of the Feynman integral
IΓ(q; 1) = IΓ(q).
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Proposition. Let I0Γ(τ2) denote the constant Fourier mode of the modular
graph function IΓ(q) associated with a graph Γ = Γw,N with w Green func-
tions and N vertices

(6.1) I0Γ(τ2) =

∫ 1

2

− 1

2

dτ1 IΓ(q) .

1) The constant Fourier mode I0Γ(τ2) has an expansion for large τ2 con-
sisting of a Laurent polynomial with a term of highest degree (πτ2)

w

and a term of lowest degree (πτ2)
1−w with exponentially suppressed

corrections of order O(e−2πτ2).

2) The coefficients of the (πτ2)
k term ( w ≤ k ≤ w − 1) in the Laurent

polynomial is a single-valued multiple zeta value of weight w − k.

The first item is straightforward to establish directly from the definition
of the modular graph functions. The second item follows from the Con-
jecture since the modular graph function IΓ(q) results from evaluating a
linear combination, with rational coefficients, of multiple polylogarithms.
The coefficient are single-valued multiple zetas as a consequence of the
single-valueness with respect to ζ of the modular graph function IΓ(q, ζ)
in eq. (3.14). Since single-valued multiple polylogarithms evaluated at unit
argument yield single-valued multiple zeta functions, the validity of the Con-
jecture supports the validity of item (2) above. Furthermore, item (1) also
follows from item (2) since there are no single-valued multiple zeta values of
negative weights. By convention a single-valued multiple zeta of weight zero
is a rational number.

We shall now provide examples of graphs, and their associated modu-
lar graph functions, for which these Laurent polynomials of the constant
Fourier mode have been calculated, or for which the general structure of the
corresponding Laurent polynomial is understood on general grounds.

6.2. The Eisenstein series

The simplest case where the implications of the Corollary on the constant
Fourier mode may be easily verified is the non-holomorphic Eisenstein series
itself. The constant Fourier mode consists of a Laurent polynomial in τ2 with
just two terms. Throughout, it will be convenient to give the Laurent series
in powers of y = πτ2 instead of τ2, given the structure of the coefficients
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announced in item (3) of the implications. For the Eisenstein series, we have

(6.2)

∫ 1

2

− 1

2

dτ1Ea(q)=(−1)a−1
B2a

(2a)!
(4y)a+

4(2a− 3)!

(a− 2)!(a− 1)!
ζ(2a− 1)(4y)1−a .

The coefficients of powers of y are rational numbers multiplying odd ζ-values
which are single-valued according the definition used in [6–8]. The leading
coefficient is a rational number involving the Bernoulli number B2a, which
may also be described as “single-valued” since the Bernoulli polynomials
in (2.4) are single-valued. This exemplifies the relation between the world-
sheet graphs and the single-valued elliptic multiple polylogarithms in the
very simplest cases.

6.3. The Ca,b,c(q) modular graph functions

Although explicit expressions for the Laurent series of the general two-loop
modular graph Ca,b,c are not available in closed form, it is not difficult to
verify the compatibility of their structure with the Corollary given above.
First of all, the Laurent series of every specific Ca,b,c function evaluated
explicitly in [9] is of the form predicted by the Corollary, with the highest
power being yw and the lowest y1−w. The simplest case is C1,1,1 = E3 + ζ(3),
which is manifestly compatible, in view of the Fourier mode expansion of
the Eisenstein series given in the preceding section.

The cases of weight 4 and 5 worked out in [9] give the following Laurent
expansions

∫ 1

2

− 1

2

dτ1C2,1,1(q) =
2y4

14175
+

ζ(3)y

45
+

5ζ(5)

12y
− ζ(3)2

4y2
(6.3)

+
9ζ(7)

16y3
+O (

e−2y
)
,∫ 1

2

− 1

2

dτ1C3,1,1(q) =
2y5

155925
+

2ζ(3)y2

945
− ζ(5)

180
+

7ζ(7)

16y2

− ζ(3)ζ(5)

2y3
+

43ζ(9)

64y4
+O (

e−2y
)
,

and these expressions are again compatible with the structure predicted by
the Corollary since the coefficients only involve polynomials in odd ζ values,
which are single-valued multiple zetas.
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This structure of the Laurent series is easily seen to follow from the struc-
ture of nested differential equations satisfied by the Ca,b,c(q) functions. In-
deed, every Laplace-eigenvalue equation of [9] for linear combinations (with
rational coefficients) Cw,s,p of Ca,b,c-functions of weight w = a+ b+ c and
eigenvalue s = 1, 2, . . . , w − 2, has an inhomogeneous part consisting of a
term linear in the Eisenstein series Ew multiplied by a rational number plus
terms of the form Ew1

Ew2
with w1, w2 ≥ 2 and w = w1 + w2, and multiplied

by rational coefficients. Therefore, the inhomogeneous part involves a Lau-
rent polynomial with powers yk ranging from 1− w ≤ k ≤ w, the coefficient
of the term yw being rational, and the remaining coefficients being odd ζ-
values, which by definition are proportional to single-valued zeta values with
rational coefficients. We may represent this by

(6.4)

(
y2

∂2

∂y2
− s(s− 1)

)
Cw,s,p ∈ QEw +

∑
w1,w2≥2

w1+w2=w

QEw1
Ew2

.

The operator on the left hand side of the equation has a kernel consisting
of the Laurent terms proportional to ys and y1−s. The Laplace eigenvalue
equations therefore imply that almost all the coefficients in the Laurent
polynomial for Cw;s;p, except for the highest coefficient of yw, are odd zeta
values or products thereof, as indeed predicted by the Corollary.

6.4. Examples of higher cases

Some Laurent expansions of modular graph functions that do not belong to
the family of graphs Ca,b,c were also evaluated in [9]. Here, we give just two
examples of Laurent series at weight 5, with y = πτ2∫ 1

2

− 1

2

dτ1D3,1,1(q) =
2y5

22275
+

y2ζ(3)

45
+

11ζ(5)

60
+

105ζ(7)

32y2

− 3ζ(3)ζ(5)

2y3
+

81ζ(9)

64y4
+O (

e−2y
)
,∫ 1

2

− 1

2

dτ1D2,2,1(q) =
8y5

467775
+

4ζ(3)y2

945
+

13ζ(5)

45
+

7ζ(7)

8y2
(6.5)

− ζ(3)ζ(5)

y3
+

9ζ(9)

8y4
+O (

e−2y
)
.

In each case, only odd zeta values, or products thereof, occur all of which
are single-valued multi-zeta values. The preceding expressions do not involve
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non-trivial single-valued multiple zetas (i.e. ones which are not reducible to
polynomials in odd zeta values) since these only arise at weights ≥ 11.

Explicit computations of Laurent series at higher weight have been
performed recently by Zerbini [43]. These strikingly confirm the conjec-
tured structure of the coefficients of the Laurent polynomials. For example,
Zerbini’s evaluation of the constant Fourier mode of D1,1,5(q) (which is a
special case of the class of star graphs) is given by

1

47

∫ 1

2

− 1

2

dτ1D1,1,5(q)(6.6)

=
62 y7

10945935
+

ζsv(3)

243
y4 +

119

648
ζsv(5)y

2

+
11

54
ζsv(3)

2y +
21

32
ζsv(7) +

23 ζsv(3)ζsv(5)

6y

+
7115ζsv(9)− 900ζsv(3)

3

576y2
+

1245ζsv(3)ζsv(7)− 150ζsv(5)
2

64y3

+
288ζsv(3, 5, 3)− 4080ζsv(5)ζsv(3)

2 − 9573ζsv(11)

256y4

+
2475ζsv(5)ζsv(7) + 1125ζsv(9)ζsv(3)

128y5

− 1575

64

ζsv(13)

y6
+O(e−2y) .

The fact that the coefficient of y−4 is a linear combination of depth 3 single-
valued multiple zeta values is a non-trivial result. Similarly, the coefficients
of y−3 and y−5 in D1,1,6 are linear combinations with rational coefficients of
single-valued multiple zeta of weight 11 and 13 respectively [43].

Another important aspect of the structure described in this paper is
that the modular graph functions that arise at special values of the single-
valued elliptic multiple polylogarithms can be expressed as integrals of sums
of single-valued multiple polylogarithms. This means that their functional
form can be determined by using the algebraic properties of multiple poly-
logarithms that were described in Section 2. Although this is an interesting
comment on the structure of these functions, it is quite complicated to eval-
uate the functions in this manner, even for the simplest nontrivial function
which is C1,1,1(q), which is evaluated explicitly in Appendix B. The result
has previously been obtained by Zagier (unpublished) and in [9] by other
methods.
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7. Summary and thoughts on the basis of modular graph
functions

The preceding discussion concerns properties of modular graph functions
that are associated with Feynman diagrams for a free conformal scalar field
on a torus. A general graph, denoted Γ = Γw,N , has w Green functions join-
ing N vertices at positions ζi (i = 1, . . . , N) that are integrated over the
torus. Each Green function is itself a single-valued elliptic polylogarithm,
D1,1(q, ζi/ζj). This procedure defines a modular function, IΓ(q), associated
with the graph as in (3.10).

We also considered the graph with N + 1 vertices that is obtained from
Γ = Γw,N by integrating over only N − 1 vertices and separating the Green
functions joined to the N -th vertex into two groups groups that end at
the points ζN and ζN+1. This is associated with the function IΓ(q; ζ) (3.14),
which is a single-valued function of the argument ζ = ζN+1/ζN . This is a par-
ticular example of a single-valued elliptic multiple polylogarithm. The value
of this function at the point ζ = 1 is a modular graph function, IΓ(q; 1) =
IΓ(q).

As in the case of multiple zeta values the question of determining a basis
of modular graph functions seems daunting. In considering this question we
should bear in mind that the context that motivated our analysis was lim-
ited. The general Feynman diagrams with N vertices and w Green functions
that were considered in this paper and in [9–11] generalise those obtained
by expanding the four-graviton superstring scattering amplitude, which only
generates the diagrams with N ≤ 4. This does not provide a complete set of
basis functions. In fact, the relations between the functions that were proved
or conjectured in [9] explicitly involve relations between functions with at
most four vertices and those with more than four vertices.

The preceding comments parallel known properties of the expansion
of the tree-level N -graviton amplitude, which generates a subset of single-
valued multi-zeta values at any weight. For example for N = 4 the expansion
coefficients are polynomial in ordinary odd Riemann zeta values. In order
to access the complete basis of multiple zeta values it is necessary to ex-
pand the tree amplitudes for general N [4, 32]. By analogy, we would expect
that a more complete understanding of the basis for the space of modular
graph functions requires analysis of the low energy expansion of N -graviton
genus-one amplitudes, which is presently rather limited. It is known [42] that
for N = 5 new kinds of modular graph functions appear for weights w > 4.
These are graphs in which 2N − 8 Green functions contain a holomorphic
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or anti-holomorphic numerator momentum factor, which have the form

(7.1) D1,0(q; ζ) = −ζ ∂ζD1,1(q; ζ) , D0,1(q; ζ) = −ζ̄ ∂ζ̄D1,1(q; ζ) .

These functions transform as modular forms of non-zero modular weight as
seen from (2.35). Such graphs are integrals of products of Da,b(q; ζ) with
a, b = 0, 1, with the constraint that the integrand has zero net modular
weight. For example the integrands of the modular graph functions of this
type in the N = 5 case have one D0,1 factor and one D1,0 factor.

Since the relationships between different modular graph functions are
difficult to determine with present techniques, it is not clear how many
independent modular weight functions there are at any weight.

The fact that the coefficients of the Laurent polynomials of the constant
Fourier mode of modular graph functions are single-valued multiple zeta
values suggests that they may be related to coefficients in the low energy
expansion of tree-level amplitudes. After all, in the limit τ2 → ∞ the genus-
one N -graviton amplitude degenerates to a N + 2-particle tree amplitude at
special values of the momenta. It would therefore be interesting to connect
these coefficients to the single-valued multiple zetas that appear in the low
energy expansion of tree-level closed string amplitudes [4, 5].

A related issue is a possible connection between modular graph functions
and holomorphic elliptic multiple polylogarithms of [14]. The latter arise in
the low energy expansion of open string theory, as discussed in [15]. Such a
connection would be analogous to the relation of ordinary multiple polylog-
arithms to single-valued multiple polylogarithms. Within string theory this
corresponds to the KLT relation that builds the tree level closed string am-
plitudes from the open string tree amplitudes. There are strong hints that
the integrands of the open string one-loop amplitude and the closed string
genus-one amplitude considered in this paper are related in an analogous
manner. Determining the details of such a genus-one “KLT” relation would
be very enlightening.
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Appendix A. Polylogarithms and Eichler integrals

We will here demonstrate an interesting connection between elliptic polylog-
arithms and integrals of holomorphic Eisenstein series. Part of this discussion
is contained in [44, §7].

To begin with we will introduce a set of derivatives that shows how the
Da,b(q; ζ) functions of Section 2.7 can be expressed as derivatives of the
polylogarithms and holomorphic Eisenstein series. Consider the differential
operator

(A.1) Da = (−1)a−1
a−1∑
k=0

(
2a− 2− k

a− 1

)
(− log |x|2)k

k!

(
d

d log x

)k

.

Making use of the differentiation relation (2.6) one can express Da,a(x) as

(A.2) Da,a(x) = 2�e (DaLi2a−1 (x)) .

The action of Da can be promoted to the action of a covariant derivative

(A.3) Da = (−1)a−1
a−1∑
k=0

(
2a− 2− k

a− 1

)
(4πτ2)

k

k!

(
d

d log q

)k

,

which maps weight � modular forms to weight k + � modular forms. This
differential operator can be expressed as the product of covariant deriva-
tives [44, §7]

(A.4) Da = (4πτ2)
m−1 (∂−2 ◦ ∂−4 ◦ · · · ◦ ∂2−2a) ,

where ∂k = 1
2iπ∂τ − k

4πτ2
. Equipped with Da one can rewrite (A.2) in the

form

(A.5) Da,a(q; ζ) = 2�eDa

[
G̃2a−1(q; ζ)

]
.
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where

G̃2a−1(q; ζ) =
∑
n≥0

(
Li2a−1 (qnζ) + Li2a−1

(
qn+1/ζ

))
(A.6)

− (log q)2a−1

(2a)!
B2a(u) .

Setting ζ = 1 and using B2a(1) = −2a ζ(1− 2a) leads to an expression for
the Eisenstein series as

(A.7) Ea(q) =
1

(−4πτ2)a−1
2�eDa

[
G̃2a−1(q; 1)

]
,

where the function G̃2a−1(q; 1) is given by

(A.8) G̃2a−1(q) = ζ(1− 2a)
(log q)2a−1

(2a− 1)!
+ ζ(2a− 1) + 2

∞∑
n=1

Li2a−1 (qn) .

In fact, G̃2a−1(q) is an Eichler integral7 that satisfies

(A.9)

(
d

d log q

)2a−1
G̃2a−1(q) = 2G2a(q) .

The quantity G2a(q) weight 2a holomorphic Eisenstein series for SL(2,Z),
defined by

G2a(q) =
(2a− 1)!

2(2iπ)2a

∑
(m,n) �=(0,0)

1

(mτ + n)2a
(A.10)

=
1

2
ζ(1− 2a) +

∞∑
n=1

n2a−1 qn

1− qn
.

Since Li0 (x) =
x

1−x the q-expansion is given by a weight 0 polylogarithm as
implied by the relation (A.9). Combining (A.5) with (A.9) leads to a relation
between the non-holomorphic Eisenstein series Ea(q) and the holomorphic
Eisenstein series, G2a(q).

At the end of the next appendix we will use a similar argument to obtain
relations between both the modular functions E3(q) and C1,1,1(q) and the
holomorphic Eisenstein series G6(q).

7 There is a polynomial ambiguity
∑2a−2

i=0 ai (log q)
i where ai are constants. This

polynomial is the period polynomial of the modular form as discussed in [45].
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Appendix B. The C1,1,1(q) modular graph function

In this section we illustrate how the connection between modular graph
functions and single-valued multiple polylogarithms can be used to evaluate
their functional form. We will here consider the first nontrivial example,
which is the function C1,1,1(q) that is defined by

(B.1) C1,1,1(q) =

∫
Σ

d2 log ζ

4π2τ2
D1,1(q; ζ)

3 ,

with D1,1(q; ζ) defined in (3.9) and ζ = que2iπv with u, v ∈ [0, 1].
We now expand the integrand using the stuffle relations of polyloga-

rithms obtained using the series representation

3∏
i=1

Liai
(xi)(B.2)

= Lia1+a2+a3
(x1x2x3)

+
∑
σ∈S3

Liaσ(1),aσ(2),aσ(3)

(
xσ(1), xσ(2), xσ(3)

)
+

3∑
i=1

δ{i,jk}={1,2,3}
(
Liai,aj+ak

(xi, xjxk) + Liaj+ak,ai
(xjxk, xi)

)
,

where xi are the arguments of the polylogarithms that are of the form in
the various terms of (3.9). The symbol S3 denotes the set of permutations
of three elements, and δ{i,jk}={1,2,3} enforces the constraint that (i, j, k) is a
permutation of (1, 2, 3). We apply this identity with ai = 1, 2

As an illustration we evaluate the contribution from the term in the
integrand with only the factors of Li2. This has the form

I2,2,2 =
τ32
π3

∫
Σ

d2 log ζ

4π2τ2

(
Li2

(
e2iπu

)
+ Li2

(
e−2iπu

))3
(B.3)

=
6τ32
π3

�e
∫ 1

0
duLi2

(
e2iπu

)2
Li2

(
e−2iπu

)
.
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Substituting the expansion (B.2)

Li2
(
e2iπu

)2
Li2

(
e−2iπu

)
(B.4)

= Li6
(
e2iπu

)
+ 2Li2,2,2

(
e2iπu, e2iπu, e−2iπu

)
+ 2Li2,2,2

(
e2iπu, e−2iπu, e2iπu

)
+ 2Li2,2,2

(
e−2iπu, e2iπu, e2iπu

)
+ 2Li2,4

(
e2iπu, 1

)
+ 2Li4,2

(
1, e2iπu

)
+ Li2,4

(
e−2iπu, e4iπu

)
+ Li4,2

(
e4iπu, e−2iπu

)
,

and using the series expression for the multiple polylogarithms we find that
the only non vanishing contributions are

I2,2,2 =
6τ32
π3

�e
∫ 1

0
du

(
2Li2,2,2

(
e2iπu, e2iπu, e−2iπu

)
+ Li4,2

(
e4iπu, e−2iπu

))(B.5)

=
6τ32
π3

�e
(
2

∑
0<m1<m2

1

m2
1m

2
2(m1 +m2)2

+
1

4
Li6 (1)

)
.

The expression in parenthesis is real and is a special value of the multiple
sum

(B.6) La,b;c(x, y) =
∑

m1,m2≥1

xm1ym2

ma
1m

b
2(m1 +m2)c

.

since

La,b;c(x, y) =
1

2c

∑
0<m

(xy)m

ma+b+c
+

∑
0<m1<m2

xm1ym2

ma
1m

b
2(m1 +m2)c

(B.7)

+
∑

0<m2<m1

xm1ym2

ma
1m

b
2(m1 +m2)c

.

The multiple sums La,b;c(x, y) may be reduced to a linear combination
of multiple polylogarithms as shown in Appendix C, with the result

L2,2;2(x, y) = Li2,4

(y
x
, x

)
+ Li2,4

(
x

y
, y

)
(B.8)

+ 2Li1,5

(y
x
, x

)
+ 2Li1,5

(
x

y
, y

)
,
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and the value at x = y = 1 is easily obtained using Hyperint routines of [24]

(B.9) L2,2;2(1, 1) = 2Li2,4 (1, 1) + 4Li1,5 (1, 1) =
ζ(6)

3
.

Therefore

I2,2,2 = 2ζ(6)
τ32
π3

.(B.10)

The remaining integrals are performed similarly. Collecting everything we
have

(B.11) C1,1,1(q) =
2ζ(6)

π3
τ32 + ϕ0(q) +

ϕ1(q)

τ2
+

ϕ2(q)

τ22
,

where

ϕ0 = ζ(3) + 4
∑
n≥1

�eLi3 (qn)(B.12)

+ 12
∑

n1,n2,n3≥1
�eL1,1;1(q

n1+n3+1, qn2+n3+1) ,

and

ϕ1(q) = − 3

π

∑
n1,n2≥0

�e(Li4 (qn1 q̄n2) + Li4
(
qn1+1q̄n2+1

)
)(B.13)

+
3

π

∑
n1,n2,n3>0

�e(L1,1;2(q
n1 q̄n3 , qn2 q̄n3)

− L1,1;2(q
n1+1q̄n3+1, qn2+1q̄n3+1)

)
+

6

π

∑
n1,n2,n3≥0

�e(L2,1;1(q
n1 q̄n3 , q̄n2+n3+1)

− L2,1;1(q
n1+1q̄n3+1, q̄n2+n3+1)

)
,

and finally

(B.14) ϕ2(q) = − 3

4π2
ζ(5) +

3

2π2

∑
n≥0

�eLi5 (qn) .
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We note that the Eisenstein series E3(q) has an expansion that follows
from (A.7) of the form

E3(q) =
2ζ(6)

π3
τ32 +

3ζ(5)

4π2τ22
(B.15)

+
∑
n≥1

(
2n2�eLi3 (qn) + 3n

πτ2
�eLi4 (qn) + 3

2π2τ22
�eLi5 (qn)

)
.

Putting everything together we have

(B.16) C1,1,1(q)− E3(q)− ζ(3) = �e
(
2φ0(q) +

3

π

φ1(q)

τ2

)
,

where

(B.17) φ0(q) = 6
∑

n1,n2,n3≥0
L1,1;1(q

n1+n3+1, qn2+n3+1) +
∑
n≥1

(1− n2) Li3 (q
n) .

and

φ1(q) = −
∑
n≥1

nLi4 (q
n) +

∑
n1,n2≥0

(
Li4 (q

n1 q̄n2) + Li4
(
qn1+1q̄n2+1

))
(B.18)

−
∑

n1,n2,n3≥0

(
L1,1;2(q

n1 q̄n3 , qn2 q̄n3)

− L1,1;2(q
n1+1q̄n3+1, qn2+1q̄n3+1)

)
− 2

∑
n1,n2,n3≥0

(
L2,1;1(q

n1 q̄n3 , q̄n2+n3+1)

− L2,1;1(q
n1+1q̄n3+1, q̄n2+n3+1)

)
.

It is striking that these identities are not reducible to standard polylogarithm
identities and that they mix the q and q̄ expansion as is seen in the expression
for φ1(q).

Using the expressions for La,b;c(x, y) derived in Appendix C

L1,1;1(x, y) = Li1,2 (y/x, x) + Li1,2 (x/y, y)

L1,1;2(x, y) = Li1,3 (y/x, x) + Li1,3 (x/y, y)

L2,1;1(x, y) = Li2,2 (x/y, y) + Li1,3 (y/x, x) + Li1,3 (x/y, y) .(B.19)

one can easily check that φ0(q) = 0 = φ1(q) to an arbitrary order in the q
expansion using HyperInt [24]. It then follows from (B.16) that

C1,1,1(q) = E3(q) + ζ(3) .(B.20)
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B.1. Remark on Eichler integrals

Introducing the covariant derivative

(B.21) D2 = −2− 4πτ2
d

d log q
,

we find that

(B.22) E3(q) = − 1

(−4πτ2)2
2�eD2G̃5(q)

and

(B.23) C1,1,1(q) = − 1

(−4πτ2)2
2�eD2Ĝ5(q) ,

where

(B.24) G̃5(q) = ζ(−5)
(log q)6

5!
+ ζ(5) + 2

∞∑
n=1

Li5 (q
n)

and

(B.25) Ĝ5(q) = G̃5(q) +
1

2
π3ζ(3)(log q)2 .

Both of these function satisfy

(B.26)

(
d

d log q

)5

G̃5(q) =

(
d

d log q

)5

Ĝ5(q) = 2G6(q) .

where G6(q) is the holomorphic Eisenstein series

(B.27) G6(q) =
60

(2iπ)6

∑
(m,n) �=(0,0)

1

(mτ + n)6
.

This means that E3(q) and C1,1,1(q) are related to two Eichler integrals
of the holomorphic weight 6 Eisenstein series for SL(2,Z). The difference
between G̃5(q) and Ĝ5(q) is the polynomial ambiguity related to the period
polynomial arising when integrating the holomorphic Eisenstein series. We
refer back to the Appendix A for a review of this construction.
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Appendix C. Reduction of multiple sums to multiple
polylogarithms

In this appendix we wil reduce various multiple constrained sums to multiple
polylogarithms, making use of the partial fractions identity given in [20]

(C.1)
1

manb
=

a+b−1∑
r=b

(
r−1
b−1

)
(m+ n)rma+b−r +

a+b−1∑
r=a

(
r−1
a−1

)
(m+ n)rna+b−r .

These reductions have been checked with the program HyperInt [24].8

We will now reduce the multiple constrained sum La,b;c(x, y) that arose
in the evaluation of C1,1,1(q) to a sum of multiple polylogarithms, which is
given by

(C.2) La,b;c(x, y) =
∑

m1,m2≥1

xm1ym2

ma
1m

b
2(m1 +m2)c

can be expressed, when a, b > 0, in the form
(C.3)

La,b;c(x, y) =
∑

r+s=a+b

r,s>0

((
r − 1

a− 1

)
Lis,c+r (y/x, x) +

(
r − 1

b− 1

)
Lis,c+r (x/y, y)

)
.

Clearly La,b;c(x, y) = Lb,a;c(y, x) and

L0,b;c(x, y) = Lib,c (y/x, x)(C.4)

La,b;0(x, y) = Lia (x) Lib (y) .(C.5)

One can integrate the differential equation

(C.6)

(
x
d

dx
+ y

d

dy

)c

La,b;c(x, y) = Lia (x) Lib (y) .

to give

(C.7) La,b;c(x, y) =
1

(c− 1)!

∫ ∞

0
dααc−1 Lia

(
xe−α

)
Lib

(
ye−α

)
.

This integral representation can then be efficiently integrated with HyperInt

[24]. The expression can be written in different ways as a consequence of the

8 We thank Erik Panzer for help in performing theses checks.
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shuffle algebra. For example

(C.8) L1,1;1(x, y) = Li1,2

(y
x
, x

)
+ Li1,2

(
x

y
, y

)
,

which is easily checked with HyperInt to be equal to

(C.9) L1,1;1(x, y) = Li3 (x) + (Li2 (x)− Li2

(
x

y

)
)Li1 (y) + Li1,2

(
y,

x

y

)
.

Equating these two expressions evaluated at x = y = 1 implies Euler’s fa-
mous relation ζ(1, 2) = ζ(3).
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