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Hemisphere partition function and

analytic continuation to the conifold point

Johanna Knapp, Mauricio Romo, and Emanuel Scheidegger

We show that the hemisphere partition function for certain U(1)
gauged linear sigma models (GLSMs) with D-branes is related to
a particular set of Mellin-Barnes integrals which can be used for
analytic continuation to the singular point in the Kähler moduli
space of an h1,1 = 1 Calabi-Yau (CY) projective hypersurface. We
directly compute the analytic continuation of the full quantum
corrected central charge of a basis of geometric D-branes from the
large volume to the singular point. In the mirror language this
amounts to compute the analytic continuation of a basis of periods
on the mirror CY to the conifold point. However, all calculations
are done in the GLSM and we do not have to refer to the mirror
CY. We apply our methods explicitly to the cubic, quartic and
quintic CY hypersurfaces.
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1. Introduction

Localization techniques in supersymmetric gauge theories in various dimen-
sions pioneered in [1] have brought on a plethora of exciting new results. In
two dimensions this has led to new methods of computing quantum correc-
tions in string compactifications without having to rely on mirror symme-
try. Supersymmetric gauge theories in two dimensions are intimately tied
to Calabi-Yau (CY) compactifications in string theory. A remarkable ex-
ample is the class of N = (2, 2) supersymmetric gauge theories known as
gauged linear sigma models (GLSMs) [2]. The low-energy (IR) limit of a
GLSM with suitably chosen gauge group and field content corresponds to
a superconformal field theory (SCFT) describing a CY compactification of
string theory. The space of FI-θ parameters t of the GLSM can be identi-
fied with the space MK of complexified Kähler parameters of the CY [3].
From the point of view of the IR SCFT it corresponds to the space of a
particular class of exactly marginal deformations. The parameters t do not
get renormalized under the RG flow in the GLSM and therefore we get a
family of SCFTs parametrized by MK . This space is naturally divided into
regions, called phases of the GLSM [2], for which the GLSM has different
low energy effective descriptions. Of particular interest are geometric phases
whose low-energy description is given in terms of a non-linear sigma model
with CY target.

In [4, 5], the exact partition function of a GLSM on a two-sphere S2 has
been computed using techniques of supersymmetric localization. In [6–9] it
has been argued that this computes the quantum corrected Kähler potential
in MK . For GLSMs which have a geometric phase, this information can be
used to extract genus 0 Gromov-Witten invariants without the use of mirror
symmetry. A natural extension is to consider GLSMs on manifolds with
boundaries, such as the disk D2. In [10–12] localization methods were used
to calculate the exact partition function of a GLSM on a hemisphere, i.e. a
disk with the round metric. In CY GLSMs with a geometric phase this was
conjectured to compute the exact central charge of B-branes in the IR limit
including the quantum corrections due to worldsheet instantons.
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Viewing MK as parametrizing families of SCFTs in the topological A–
model, there is a natural holomorphic vector bundle H over MK whose
fiber over t in MK is the chiral ring of the corresponding SCFT determined
by t. Moreover, the bundle H is equipped with a natural flat connection,
the tt∗ connection [13]. The central charge of a D-brane is a flat section
of this connection [14]. As the hemisphere partition function of the GLSM
is conjectured to compute the central charge in the low energy limit, it is
natural to expect that the hemisphere partition function, too, is a flat section
of some holomorphic vector bundle with a flat connection obtained from the
GLSM. In this paper, we give evidence for such a structure.

A particularly appealing aspect of the GLSM is that its correlation func-
tions (without D-branes) are rational functions in the algebraic coordinates
and therefore can be analytically continued to the entire parameter space
MK . These correlation functions then interpolate between the correlation
functions of the SCFTs in the various phases. For the hemisphere partition
function we expect a similar picture to hold, although it is not a rational
function. Instead, the hemisphere partition function admits a very natural
description in terms of a contour integral [12], and is therefore — when tak-
ing into account the grade restriction rule discussed below — defined as a
function over the entire MK . Since contour integrals are the standard tool
to perform analytic continuation, it is a natural question whether they can
be used to transport central charges between phases.

The main goal of this article, then, is to demonstrate that the hemisphere
partition function in the GLSM can be understood — at least locally — as
a multivalued, flat, holomorphic section for an appropriate flat connection,
and that it can serve as a tool to analytically continue information about B–
type D-branes from one phase to another, or more interestingly, to a phase
boundary. The way to achieve this is as follows. First, we mainly focus on
GLSMs with gauge group U(1). One of the reasons is that it is clear which
integration contour to choose and how to evaluate the contour integral. We
make use of the structure of the integrand to derive — after a change of
variable to the algebraic coordinates of the GLSM — a differential equation
for the hemisphere partition function. This derivation is purely within the
GLSM, without making reference to any phase. The differential equation
is of hypergeometric type, i.e. a linear homogeneous complex differential
equation with three regular singularities. The hemisphere partition function
for a special set of D-branes is then identified with the Mellin–Barnes integral
representation of the hypergeometric functions. Of course, as expected by
mirror symmetry, this differential equation is the same as the Picard–Fuchs
equation for the periods of the mirror CY. This is also in agreement with
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the fact that, in the low energy limit, the central charges are mirror to linear
combinations of periods of the mirror CY. See [15] for a recent application
in this context, for the case of CY 4-folds. Our derivation, however, does not
involve the mirror at all.

Abelian GLSMs with gauge group U(1) admit a geometric phase whose
IR limit corresponds to a CY hypersurface in (weighted) PN and whose pa-
rameter space MK admits a presentation as P1 minus three points. These
points are the large volume (or large radius) point zLV , the Landau-Ginzburg
(LG) or Gepner point zLG and the singular or — in the language of the
mirror — the conifold point zc, where the GLSM develops a non–compact
Coulomb branch. They correspond to the regular singularities of the differ-
ential equation. Near each of these points there is a natural basis of solutions
given in terms of power series whose radius of convergence extends to the
closest singularity. Near zLV and zLG these power series can be thought of
as the IR limit of the hemisphere partition function in the geometric and
Landau–Ginzburg phases, respectively. It is therefore natural to consider the
behavior of these bases of solutions, when going around any of these points,
or when going from one point to another. This corresponds to parallel trans-
port of central charges of D-branes along various paths in MK .

By the work of [16], D-branes in the GLSM have a remarkable description
in terms of matrix factorizations of the GLSM superpotential. Matrix fac-
torizations are well-studied in the context of topological Landau-Ginzburg
models where B-branes are described in terms of matrix factorizations of
the Landau-Ginzburg potential [17, 18]. See [19–21] for reviews. In [16] it
was shown that matrix factorizations in the GLSM describe D-branes in the
UV not only in the Landau–Ginzburg phase but all over MK irrespective
of the low-energy description of D-branes in the phases. However, not ev-
ery D-brane in the GLSM is globally defined on MK : only certain subsets,
called grade restricted branes, are. Only these grade restricted branes can be
transported along paths in MK in a well-defined way. Since both the branes
and the hemisphere partition function can be globally defined, we can in par-
ticular study their behavior under monodromy around the singular points.
This can be done without making reference to any phase.

What is a non-trivial task is the analytic continuation of the hemisphere
partition function from one regular singular point to another. The analytic
continuation of hypergeometric functions and of D-branes in the GLSM from
the large radius to the Landau-Ginzburg point is well-understood [22, 23],
and we will not address this here. Analytic continuation to the conifold
point, however, turns out to be a challenging problem. As we will show,
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the solution is formulated in terms of Mellin–Barnes integrals which in turn
have a natural interpretation as hemisphere partition functions.

The main results presented in this article are:

• By the use of the hemisphere partition function of the GLSM, we
give an interpretation of the analytic continuation in terms of cen-
tral charges of grade restricted B-branes. From this point of view the
computation does not require knowledge of a mirror pair. Specializ-
ing to the case of degree N hypersurface in PN−1, we show that the
hemisphere partition function for grade restricted B-branes satisfies
the hypergeometric differential equation associated to the mirror CY.
In this way we can access information about the behavior of B-branes
near the singular point and we can directly compute the central charge
of a B-brane plus its quantum corrections close to the singularity. Fur-
thermore we use the hemisphere partition function to recalculate the
monodromy matrices for the quintic [24].

• We present mathematical methods to analytically continue a basis
of solutions of a particular class of hypergeometric equations which
have three regular singular points at {0, 1,∞} from the point 0 to
the point 1. A priori, this is a classical problem on the mirror CY for
Mellin-Barnes integral representations of a basis of periods given by
the solutions to a Picard-Fuchs equation. This is the point of view
taken in a separate note by the third author [25], where this analytic
continuation is proven in a more general setting. In the present work,
we also propose a second method of analytic continuation and show in
examples that its results are in agreement with [25]. This can lead to
non-trivial identities of hypergeometric functions and their derivatives.

While the hemisphere partition function is a natural object in physics,
in mathematics we need a different approach. From a mathematical point of
view one is faced with the issue that neither MK nor the bundle H admit
a purely mathematical definition yet. Furthermore, a precise mathematical
description for the category of B-branes at every point in MK is lacking.
The equivalence of the category of B-branes at every point in MK is only
conjectural, and moreover, very different descriptions of this category can
occur, depending on the IR SCFT at that point. Nevertheless, the result
of [12] yields an equivalent description of the hemisphere partition function
which can be taken as a definition, and hence as a starting point, in mathe-
matics. For abelian GLSMs we make this definition precise. In the IR limit
of a geometric phase, we reproduce the expected properties of the central
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charge. In a geometric phase (i.e. around a large volume point) a mathe-
matical description of the central charge was formulated in [26], based on
the ideas of [27]. The problem of relating the central charges along a path
joining zLV and zLG has been studied in [28]. However, from our point of
view, these authors worked in the low energy limits of the two phases. The
natural setting is the GLSM, in which the hemisphere partition function
has the advantage of being defined as a function on the whole space MK

in contrast to, say, the central charge defined in [26] which is defined only
inside the complexified Kähler cone but can be extended outside by analytic
continuation.

The article is organized as follows. In Section 2 we give a lightning re-
view of the GLSM and the hemisphere partition function. We also detail
on how convergence of the hemisphere partition function implies a grade
restriction rule for abelian one-parameter GLSMs [12, 16]. We further show
that the hemisphere partition function for a particular grade-restricted set of
B-branes satisfies the hypergeometric differential equation. In Section 3 we
review the main results of [16], with particular focus on the grade restriction
rule. This states that only B-branes whose gauge charges are in a specific
subset called “window” are globally defined over MK . We give an algorith-
mic approach to grade restricting GLSM branes and use it on the GLSM lift
of a standard basis of large radius branes. The resulting hemisphere partition
functions turn out to be linear combinations of the Mellin-Barnes integrals
we know how to analytically continue to the conifold point. In passing, we
also recompute the monodromy matrices for the quintic, which becomes
an almost trivial calculation using the hemisphere partition function. Sec-
tion 4 is dedicated to the analytic continuation of a basis of Mellin-Barnes
integrals to the conifold point. We propose two methods for analytic contin-
uation. One is based on a generalization of the results due to Nørlund and
Bühring [22, 25, 29] which yields the complete result in all cases. The other
is based on the application of a specific integral identity involving Gamma
functions. We show in examples that the second approach yields the same
result, however in quite different-looking expressions. In this way we discover
highly non-trivial identities between generalized hypergeometric functions.
We apply these methods to the cubic curve, the quartic K3 and the quintic
CY threefold. Via the connection to the hemisphere partition function we
can use these results to compute the central charge of B-branes near the
conifold point. In particular, we reconfirm that the D6-brane on the quintic,
corresponding to the structure sheaf, becomes massless at the conifold point.
We end our discussion with an outlook on open issues.
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2. Gauged linear sigma model and hemisphere
partition function

The N = (2, 2) Gauged Linear Sigma Model (GLSM) provides a device to
explore the full quantum Kähler moduli space of Calabi-Yau (CY) manifold
[2]. Recently, by using the machinery of rigid supersymmetry and localiza-
tion, the exact, non-perturbative partition function of a GLSM on the disk
D2 with the round metric (we will also refer to it has hemisphere) has been
computed [10–12].

In order to define this partition function we need to recall some concepts.
(For an even more mathematical description see [31].) We start by defining
a GLSM datum. A GLSM datum is a quadruple (G,W, ρV , R), where G
is a compact real Lie group (the gauge group). ρV is a faithful complex
representation of G: ρV : G → GL(V ) and we set m = dim(V ). V is called
the space of chiral fields. W is a holomorphic, G-invariant function W ∈
Sym(V ∗) (the superpotential). R denotes a representation (the R-symmetry)
R : U(1) → GL(V ). We require that R and ρV commute and that W has
weight 2 under the R-symmetry. Moreover we will allow for the weights of
the representation R to be rational. However we impose the condition of
charge integrality1:

(2.1) R(eiπ) = ρV (J) for some J ∈ G.

We denote by g = Lie(G) and t = Lie(T ) the Lie algebras of G and of a
maximal torus T of G, respectively. For future reference we will also use
{Qi}mi=1 to denote the weights of ρV . If we choose a basis {ta}rkGa=1 for t
and a basis {vi}mi=1 of V then dρV (t

a)vi = Qa
i vi. By {Ri}mi=1 we denote the

1The charge integrality condition comes from imposing that all the R-charges of
gauge invariant operators reduce (modulo 2) to the statistics of such an operator,
i.e. (−1)0 for bosons and (−1)1 for fermions. This is a condition for the physical
theory to be A-twistable [32].
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weights of R. We will refer to these weights as the gauge charges and the
R-charges of the fields φ ∈ V , respectively. The Lie group G can be written
as G = G0 � π0(G) where G0 is the identity component and π0(G) ∼= G/G0

is the group of components of G. Then, we define the parameter t as in
[33, 34]:

et ∈ Hom(π1(G),C∗)π0(G).(2.2)

We briefly discuss this definition in some detail. Since there is a natural
adjoint action of π0(G) inG0, it makes sense to restrict to the π0(G) invariant
subset in (2.2). The Lie algebra g of a compact Lie group decomposes as
g = s+ a where s is semisimple and a is abelian. In particular, a ⊂ t. We
set s = dim a. Given (G,W, ρV , R) as before, we can define a moment map
μ : V → g∗ associated to ρV . We set t ∈ g∗

C
such that it factors through the

embedding a∗
C
↪→ g∗

C
. We choose a basis t = (t1, . . . , ts) of a∗

C
∼= Cs. If we

restrict tj to the cylinder R+ R/(2πi)Z and tj = ζj − iθj , then it is clear
that

et ∈ Hom(π1(G),C∗).(2.3)

However the requirement of invariance under π0(G) may further restrict t
and some of the ζj will be forced to be set to 0 and some θj will be forced to
take discrete values making the space of parameters t smaller. In the main
examples of this work this does not happen so, we will assume from now on
that π0(G) = {1} and π1(G) is torsion-free. The parameters ζj and θj are
called the Fayet-Illiopoulos (FI) parameters and the θ–angles, respectively.

With all these ingredients at hand we can define the D-term equations
given φ ∈ V :

μφ(ξ) = ζ(ξ) for all ξ ∈ g.(2.4)

This divides the parameter space into chambers and the corresponding low-
energy configurations are referred to as phases of the GLSM [2]. Each phase
is characterized by an ideal Iζ ⊂ Sym(V ∗) ∼= C[φ1, . . . , φm], called the irrel-
evant ideal of the phase. The F-term equations are

dW−1(0).(2.5)

We define the space of classical vacua by the solutions of the F-term equa-
tions inside the symplectic quotient of V determined by μ and ζ ∈ a∗:

Xζ = {dW−1(0)} ∩ μ−1
φ (ζ)/G.(2.6)
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The ideal Iζ describes the set of φ for which the quotient μ−1
φ (ζ)/G is ill–

defined. The low-energy (IR) behavior of the GLSM is determined largely
by Xζ . Finding a model for the IR effective theory is not an easy task in gen-
eral since the classical vacuum configurations determined by Xζ can receive
quantum corrections, which requires a more in-depth analysis. However we
can distinguish a special case which is a weakly coupled geometric phase.
This is the case when Xζ is a smooth projective variety, for given values of
ζ. In that region, the IR theory can be well approximated by a non-linear
sigma model (NLSM) whose target space is Xζ . Other types of phases are
Landau-Ginzburg and hybrid phases. We will identify the FI-θ parameters t
with local coordinates on a space MK . The space MK is also called stringy
Kähler moduli space and we will describe it in more detail in the next sec-
tion. In the following we will focus on GLSMs which have a weakly coupled
geometric phase in which Xζ is CY. This imposes a further constraint in the
GLSM datum, the so-called CY condition, or physically, the cancellation of
the axial anomaly. This translates into the condition that ρV factors through
SL(V ):

(2.7) CY condition: ρV : G → SL(V ).

A quick way to motivate the reason of this definition from a geometric
point of view is as follows. If we identify V with Cm by choosing a ba-
sis φ1, . . . , φm, then there is a unique natural holomorphic m–form on V
given by dφ1 ∧ · · · ∧ dφm. The condition that this m–form descends to the
symplectic quotient μ−1

φ (ζ)/G and hence defines a Calabi–Yau structure on

μ−1
φ (ζ)/G is that the determinant of ρV (g) is trivial for all g ∈ G. This

Calabi–Yau structure then induces a Calabi–Yau structure on Xζ .
We will mostly study the concrete case of GLSMs associated with CY

hypersurfaces in PN−1. In these cases the GLSM datum is given by [2]

(U(1),W = pGN , ρV : U(1) → SL(N + 1), R)(2.8)

where (p, x1, . . . , xN ) ∈ CN+1 and the weights of ρV are (−N, 1, . . . , 1). GN

(sometimes denoted by G) is a degree N polynomial in x1, . . . , xN . A set of
R-charges consistent with (2.1) is given by

R(p) = 2− 2Nε R(xi) = 2ε 0 ≤ ε ≤ 1

N
.(2.9)

The R-charges, as presented in the GLSM datum, take rational values. How-
ever, as they appear in the hemisphere partition function ZD2(B), we can
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safely extend them to be real valued. Moreover, the R-charges of gauge-
variant fields cannot be fixed a priori, since they are not physical observ-
ables. Therefore assigning real values to them is a sensible thing to do.
However, the exact R-charges of gauge invariant operators in the IR make
sense physically and are fixed by the low energy theory.

In this case, there are two phases ζ 
 0 and ζ � 0. The first phase is
geometric since Xζ�0 = {GN = 0} ⊂ PN−1 is a Calabi–Yau hypersurface of
degree N in PN−1. The corresponding irrelevant ideal is Iζ�0 = (x1, . . . , xN )
which is the irrelevant ideal of the homogeneous coordinate ring of PN−1. The
second phase is non-geometric. The classical vacuum (2.6) is a point. Taking
into account fluctuations of the massless fields around this vacuum [2], one
obtains the Landau–Ginzburg orbifold [CN/ZN ] with superpotential GN :
[CN/ZN ] → C. By a slight abuse of notation we will denote this phase by
Xζ�0. The corresponding irrelevant ideal is Iζ�0 = (p).

2.1. Discriminant locus

The parameters t defined in the previous section have been identified with
coordinates in the stringy Kähler moduli space MK . By exponentiating the
coordinates t we get coordinates on the algebraic torus (C∗)s. The manifold
MK is expected to take the form of a partial compactification of (C∗)s where
some complex codimension 1 closed subset Δ is removed. In the case of G
abelian, this compactification comes from toric geometry considerations [3,
35]. For G more general, there is no unified construction of MK . In general,
if the CY condition is satisfied and a mirror CY is known, MK can be
indirectly described by mirror symmetry. In the CY case, the parameters t
do not run under RG flow and there is a family of SCFTs in the IR limit for
each point in MK . The set Δ is known as the discriminant. The points in
MK \ (C∗)s correspond to limiting points. Examples of these are Gepner or
Landau-Ginzburg (LG) points and large volume (LV) points. On the other
hand, at points in the discriminant Δ there exist non-compact Coulomb
branches that render the theory ill defined [2]. The Coulomb branch will be
defined as a subset of tC ⊂ gC. It will be helpful in the following to choose a
coordinate on the Coulomb branch by denoting

(2.10) σ ∈ tC ⊂ gC.

For our purposes it will suffice to recall that Δ can be computed exactly for
G = U(1) by a 1-loop computation in the GLSM [3, 36]. Being slightly more
general, we start by defining the effective twisted superpotential for G =
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U(1)s. Given a GLSM datum (U(1)s,W, ρV , R) satisfying the CY condition

plus the parameters t we define the effective twisted potential W̃eff : u(1)s →
C/(2πiZ) as

(2.11) W̃eff(σ) = −t(σ)−
m∑
i=1

Qi(σ) (log(Qi(σ))− 1) (mod 2πi).

Recall that the Qi ∈ t∗
C
are the weights of ρV . In this case, the Coulomb

branch corresponds to the points σ satisfying ∂σW̃eff(σ) = 0. For a GLSM da-

tum (U(1),W, ρV , R) satisfying the CY condition the equation ∂σW̃eff(σ) =

0 gives the full discriminant. Moreover the equation ∂σW̃eff(σ) = 0 does not
depend on σ and we can define Δ as the values of t satisfying this condition.
Then the Coulomb branch has a very simple description:

(2.12) {σ} =

{
tC t ∈ ∂σW̃eff(σ) = 0

{0} otherwise.

For the case of a GLSM associated to a CY hypersurface in PN−1, Δ is a
single point:

(2.13) W̃eff(σ) = −tσ +Nσ log(−N) ⇒ Δ = {(ζ, θ) = (N log(N), πN)}.

At this singular point the GLSM becomes ill-defined. On the mirror CY this
corresponds to the conifold point in the complex structure moduli space.
Slightly abusing the language we will also refer to the singular point in the
GLSM as the conifold point.

For more general G the effective potential on the Coulomb branch only
gives part of the discriminant. The remaining components come from mixed
Coulomb-Higgs branches [3]. Some families of examples for the non-abelian
case, where Δ is studied, can be found in [34, 37, 38].

2.2. D-branes in the GLSM

The GLSM data (G,W, ρV , R) together with the parameters t can be used
to define a GLSM as an actual physical theory. To construct this theory we
need to specify a Riemann surface Σ and a principal G-bundle PG over it.
Two types of GLSM fields are relevant for our discussion:

(2.14)
Chiral: φ ∈ Γ(PG ×ρV

V )

Twisted chiral: σ ∈ Γ(PG ×Adj gC)
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At a point p ∈ Σ, σ(p) ∈ gC. (Note that on the Coulomb branch σ(p) is
restricted to tC.) For the case of Σ = R2, a GLSM can be defined just by
the datum (G,W, ρV , R) and a choice of t. The GLSM as an N = (2, 2) su-
persymmetric gauge theory can be defined in a curved space with enough
isometries [39–41], in particular the sphere S2 and the hemisphere D2. The
action of the GLSM has to be modified and a subgroup of the supercon-
formal symmetry group can be matched with the isometries of the curved
space [1, 4, 5]. If ∂Σ = ∅, such as in the case Σ = D2, further information
has to be added in order to specify the boundary conditions. As in the flat
space case, adding a boundary to the GLSM on S2 breaks supersymmetry.
In order to preserve some of the original supersymmetry we must add a
boundary Lagrangian to the Lagrangian of the GLSM on S2.

For this, we need to introduce the boundary datum B. To this aim, we
write Sym(V ∗) = C[φ1, . . . , φm] with m = dimV and denote this polynomial
ring by S. Given a GLSM datum (G,W, ρV , R), a boundary datum is a
quadruple B = (M,Q, ρ, r∗) where M = M0 ⊕M1 is a Z2–graded free S–
module and Q is a matrix factorization of W , which is a Z2 odd map of Z2

graded S–modules, Q ∈ End1S(M), that satisfies

(2.15) Q2 = W idM .

Furthermore, (M,Q) is required to be equivariant with respect to the actions
of ρV and R on V . This is imposed by choosing commuting representations
ρ : G → GL(M) and r∗ : u(1)R → gl(M) on M such that Q has weight 1
under r∗. Explicitly, their action on (M,Q) is given by

ρ(g)−1Q(gφ)ρ(g) = Q(φ)(2.16)

λr∗Q(λRφ)λ−r∗ = λQ(φ)(2.17)

for all λ ∈ U(1)R and g ∈ G. Moreover, these representations are required
to be compatible with the Z2 grading on M as follows.

(2.18) eπir∗ρ(J) =

{
+1 on M0

−1 on M1

for J ∈ G. We will refer to B as a B-brane or GLSM brane.
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In order to preserve ’B-type’ supersymmetry, (the one preserved by B-
branes) the boundary action takes the form of a Wilson loop term

(2.19) trM

[
P exp

(
−
∮
∂D2

φ∗AB + dρ(iv +Reσ)

)]
,

where AB is a connection on M constructed from the boundary data B and
v is the connection on the principal bundle PG. This Wilson line term was
originally constructed for abelian GLSMs in [16, §5.2] and generalized to
nonabelian GLSMs in [11, 12]. The matrix factorization condition (2.15)
then guarantees that the combined bulk-boundary action is invariant under
B-type supersymmetry.

B-branes form a category whose morphisms are determined by the co-
homology of Q. Given two B-branes B1 and B2 the Z2-graded space of open
string states Ψ is [16, §5.6]

(2.20) Hp(B1,B2) = Hp
D(HomS(M1,M2)) p = 0, 1,

where

(2.21) DΨ = Q2Ψ− (−1)|Ψ|ΨQ1 |Ψ| = 0, 1.

The morphisms Ψ are required to be equivariant with respect to the action
of ρ and r∗ as induced by (2.16) and (2.17). We will call this category
D(G,W,ρV ,R).

The information encoded in the matrix factorization can be recast into
complexes of representations of G and u(1), called Wilson line branes [16,
§5.2]. To illustrate this, we first review a natural and general set of ma-
trix factorizations/complexes: the Koszul matrix factorizations [42]. By the
definition of a GLSM datum, we have W ∈ S. Suppose W = 0 is given
in the form W =

∑j
α=1 aαbα for homogeneous polynomials aα, bα ∈ S, α =

1, . . . , j. We collect these polynomials into sequences a = (a1, . . . , aj) and b =
(b1, . . . , bj). Now consider the free S-module E = S⊕j with basis e1, . . . , ej
and equipped with a inner product. Given this data, we define K(a,E) =
(
∧•E, δ) with twisted differential 2

(2.22) δ(w) =

(
j∑

α=1

aαeα

)
∧ w +

(
j∑

α=1

bαeα

)
�w, w ∈

∧β
E,

2If W and a are specified as above, then b can be reconstructed. Hence, having
fixed W in the GLSM datum, it is sufficient to keep track of a (and W ).
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where � is the contraction operator. Thinking of the second summand as
maps going backwards, we obtain two Koszul complexes, one going from
left to right with differential a∧ and another one going from right to left
with differential b�,

(2.23) 0 −→ S
a∧
�
b�

E
a∧
�
b�

∧2
E

a∧
�
b�

· · ·
a∧
�
b�

∧j−1
E ∼= E

a∧
�
b�

∧j
E ∼= S ←− 0

where a∧ and b� represent the first and second summand of δ, respectively.
We will nevertheless loosely speak of the Koszul complex when referring
to (2.23). The S–module M underlying the Koszul complex is the exterior
algebra

∧•E. A convenient way to encode the maps δ as a map of modules
is to recall that

∧•E carries the structure of a Clifford algebra. We use
a 2j-dimensional representation of this Clifford algebra with basis ηα, η̄β ,
α, β = 1, . . . , j satisfying

{ηα, η̄β} = δαβ {ηα, ηβ} = {η̄α, η̄β} = 0.(2.24)

Choosing a nonzero element |0〉 ∈ S (called the Clifford vacuum) we can
build the S moduleM asM =

⊕j
k=0 cβ1···βk

ηβ1
· · · · · ηβk

|0〉, with cβ1···βk
∈ S.

Then

(2.25) Q =

j∑
α=1

aαηα + bαη̄α

is a 2j × 2j matrix factorization of W =
∑j

α=1 aα · bα. Note that it can hap-
pen that some of the left-arrows (i.e. some of the bα) are zero. We will
discuss examples of this kind in Section 3. The Koszul complex K(a,E) is
exact with respect to a∧ except at the jth position. In fact, Hj(K(a,E)) =
S/(a1, . . . , aj), and the Koszul complex can be viewed as a resolution of
S/(a1, . . . , aj).

Up to now, we have only described M and Q and not yet taken into ac-
count ρ and r∗. Let F therefore be a free S–module and consider representa-
tions ρ : G → GL(F ) and r∗ : u(1)R → gl(F ). Then define the Koszul matrix
factorization K(a, F ) as F ⊗S K(a,E), i.e. we replace

∧αE by F ⊗S
∧αE

in (2.23). By repeating the construction above the module M is then F ⊗S∧•E. We will use both descriptions, complex or module, interchangeably,
depending on what is more convenient. This encodes the full information
about the GLSM brane, as opposed to just the matrix factorization (2.23),
and we will refer to it as Koszul brane.
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The Koszul branes do not account for all GLSM branes. More general
boundary data B can be obtained from these by linear algebra operations
such as direct sum, tensor, dual, wedge, kernel, cokernel, and homological
operations such as shifts and mapping cones.

Finally, we consider our main example (2.8). In this case, S = C[x1, . . . ,
xN , p]. All representations ρ and r∗ decompose into direct sums of one-
dimensional representations W(qi)ri where qi and ri are the weights of (2.16)
and (2.17), respectively. Therefore we can choose F =

⊕
j W(qj)rj . The one–

dimensional building blocks W(q)r are called Wilson line branes [16, §5.2].
Recall that the xi and p are given weights 1 and−n, respectively. This defines
a grading on S which we will denote by deg. Taking also into account the R
charges (2.9) with ε = 0, the conditions (2.16), (2.17) determine the gauge
and R-charges of the Clifford basis:

(qηα
, rηα

) = (− deg aα,−R(aα) + 1),

(qη̄α
, rη̄α

) = (− deg bα,−R(bα) + 1).
(2.26)

Choosing F = W(q)r this associates the charges (q|0〉, r|0〉) = (q, r) to the
Clifford vacuum vector |0〉 ∈ F .

Let �1, . . . , �j be linear polynomials in x1, . . . , xN such that W =∑j
α=1 �αbα for appropriate polynomials b1, . . . , bj . For the sequence � =

(�1, . . . , �j) the resulting Koszul brane K(�,W(q)r) then reads

(2.27) W(q)r
�� W(q + 1)

⊕(j1)
r+1��

�� W(q + 2)
⊕(j2)
r+2��

�� · · ·��
�� W(q + j)r+j��

where we have suppressed the maps. The first entry W(q)r determines
the choice of overall normalization in the definitions (2.16) and (2.17) so
that the charges and multiplicities of the Wilson line branes W(qi)ri in
the ith position of the complex are fully specified by the three integers
q, r, j. For later use in Section 2.5 we introduce the abbreviation Kj =
K((�1, . . . , �j),W(0)0), j = 1, . . . , N , as well as Mj for the corresponding
S module.

There are two special Koszul branes associated to the irrelevant ideals
Iζ�0 = (x1, . . . , xN ) and Iζ�0 = (p). Their significance will be discussed in
more detail in section 3. The first one is Kζ�0 = K(Iζ�0,W(q)r) given by

(2.28) W(q)r
�� W(q + 1)

⊕(N1)
r+1��

�� W(q + 2)
⊕(N2)
r+2��

�� · · ·��
�� W(q +N)r+N�� .
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Note that this is the complex KN just introduced for the choice � = (x1, . . . ,
xN ). The corresponding matrix factorization has a special form:

(2.29) Q =

N∑
i=1

xiηi +
1

N

∂W

∂xi
η̄i.

While Koszul matrix factorizations in general may only exist for particular
choices of W (e.g. at the Fermat point), (2.29) exists for any generic choice
W . The second special Koszul brane is Kζ�0 = K(Iζ�0,W(q)r). For later
purposes we write the dual matrix factorization K∗

ζ�0 as

(2.30) W(q)r
G∧
�
p�

W(q +N)r+1

where we have exchanged the maps p andG. The associated 2× 2 matrix fac-
torization is Q = Gη + pη̄. Note that both matrix factorizations Kζ�0 and
Kζ�0 are exact, i.e. have no cohomology, if we work with the rings S/Iζ�0

and S/Iζ�0, respectively. These are the coordinate rings of the phases Xζ�0

and Xζ�0.
As mentioned above, a general GLSM brane can be obtained from the

matrix factorizations Kj , Kζ�0 and Kζ�0 by linear algebra and homolog-
ical operations. Such a brane then consists of sums of Wilson line branes
W(qj)

⊕nj
rj with different gauge charges at a position with fixed R–degree.

The multiplicities nj of these Wilson line branes are determined by the
combinatorics of the Clifford algebra. Hence, the GLSM brane is of the form

(2.31) · · · �
Lj⊕
i=1

W(q
(i)
j )

⊕n
(i)
j

r
(i)
j

�
Lj+1⊕
i=1

W(q
(i)
j+1)

⊕n
(i)
j+1

r
(i)
j+1

� · · ·

where j refers to the position in the complex.
The structure of the category D(G,W,ρV ,R) has been studied in the math-

ematics literature. For this purpose, we need to pass to its algebraic de-
scription. This has already been implicitly used in text. More concretely, we
replace the symplectic quotient μ−1

φ (ζ)/G in (2.6) by the equivalent descrip-
tion in terms of the GIT quotient Y�GC [2]. Here, Y is the affine variety
underlying the vector space V and GC is the complexification of G. Let
further C∗

R denote the complexification of U(1)R. GC and C∗
R act linearly

on Y with the same weights as ρV and R, respectively. Then the category
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D(G,W,ρV ,R) is equivalent to the category D(coh[Y/(GC × C∗
R)],W ) of coher-

ent factorizations [30, Def. 2.3.5, Prop. 2.3.8] 3. For the remainder of this
subsection we will be working with this latter category. A less rigourous, but
more down–to–earth description can also be found in [43].

There are also categories of D-branes associated to the individual phases.
In the case of a GLSM with abelian gauge group GC they can be described
as follows. For an irrelevant ideal Iζ ⊂ S we consider the full triangulated
subcategory Tζ of D(coh[Y/(GC × C∗

R)],W ) generated by those objects for
which the modules are annihilated by a power of Iζ . In [30, p. 18], this
category was denoted DZζ

(coh[Y/(GC × C∗
R)],W ) where Zζ = V (Iζ) is the

vanishing locus of the ideal Iζ . It was shown in [30, Prop. 2.3.9] that

(2.32) D(coh[Y/(GC × C∗
R)],W )/Tζ

∼= D(coh[Yζ/(GC × C∗
R)],W |Yζ

)

where Yζ = Y \ Zζ . We will denote the equivalent subcategory of D(G,W,ρV ,R)

by Dζ
(G,W,ρV ,R).

This quotient has an alternative description directly in terms of the vari-
ety Xζ in the corresponding phase. From now on, we will only be concerned
with the main example D(U(1),pGN ,ρV ,R) or, equivalently, D(coh[Y/(C∗ ×
C∗
R)], pGN ) where Y = CN (cf. the discussion following (2.8)). Recall that

there are two phases, ζ � 0 and ζ 
 0, with Xζ�0 = {GN = 0} ⊂ PN−1 is a
degree N hypersurface in PN−1. To its coordinate ring, R = C[x1, . . . , xN ]/
(GN ), one can associate several categories as follows: mod(R,Z) is the cat-
egory of finitely generated Z–graded R–modules. tors(R,Z) is the full sub-
category of mod(R,Z) consisting of all modules M annihilated by a power
of Iζ�0 restricted to R. Db(modR,Z) is the bounded derived category of
mod(R,Z). PerfR is the full triangulated subcategory of Db(modR,Z) con-
sisting of bounded complexes of finite rank free R–modules.

Based on earlier work [44–46], it is shown in [30, Lemma 7.2.1] that there
is an equivalence of triangulated categories D(coh[Y/(C∗ × C∗

R)], pGN ) ∼=
Db(modR,Z) which induces by [30, Corollary 7.2.2] equivalences of triangu-
lated categories in the phase ζ 
 0,

D(coh[Yζ�0/(C
∗ × C∗

R)],W |Yζ�0
) ∼= Db(modR,Z)/Db(torsR,Z)

∼= Db(cohXζ�0),

3The notation [Y/(GC × C∗
R)] does not mean that one considers the GIT quotient

Y�(GC × C∗
R). It only means the modules carry a C∗

R action in addition to the GC

action.
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and in the phase ζ � 0,

D(coh[Yζ�0/(C
∗ × C∗

R)],W |Yζ�0
) ∼= Db(modR,Z)/PerfR = Db

sg(R,Z)

∼= D(cohXζ�0, GN ).

where D(cohXζ�0, GN ) denotes the finitely generated ZN–graded matrix

factorizations of GN . Equivalently, we have Dζ�0
(U(1),pGN ,ρV ,R)

∼= Db(cohXζ�0)

and Dζ�0
(U(1),pGN ,ρV ,R)

∼= D(cohXζ�0, GN ). Moreover, for n ∈ Z there are full

triangulated subcategoriesWn of D(coh[Y/(C∗ × C∗
R)], pGN ) such that there

are equivalences (cf. [30, Cor. 3.2.2, Prop. 3.3.2], see also [47])

D(coh[Yζ�0/(C
∗ × C∗

R)], pGN |Yζ�0
)

∼
↪−−→ Wn,

Wn
∼←−−↩ D(coh[Yζ�0/(C

∗ × C∗
R)], pGN |Yζ�0

)

This reproduces Orlov’s equivalence [48] that Db
sg(R,Z) ∼= Db(cohXζ�0) as

well as the general picture of [16]. Equivalently, we have

Dζ�0
(U(1),pGN ,ρV ,R)

∼
↪−−→ Wn

∼←−−↩ Dζ�0
(U(1),pGN ,ρV ,R)

for the full triangulated subcategoryWn of D(U(1),pGN ,ρV ,R) corresponding to

Wn. The functorsD(U(1),pGN ,ρV ,R) → Dζ
(U(1),pGN ,ρV ,R) andDζ

(U(1),pGN ,ρV ,R) →
D(U(1),pGN ,ρV ,R) have been explicitly constructed in [16, §10]. We will de-
note the latter as lifting geometric branes to GLSM branes, or GLSM lift
for short. In fact, there is an infinite number of such functors, labeled by
π1(MK). Some aspects of the latter fact will be further detailed in Sec-
tion 2.4. Explicit GLSM lifts for our main example will be discussed in
Section 3.

2.3. The hemisphere partition function

With all the definitions presented in the previous section, we are ready
to state the result of [12]: the hemisphere partition function ZD2(B) for a
GLSM. The function ZD2(B) was computed by supersymmetric localization
and it depends on (G,W, ρV , R), the parameter t, the boundary datum B =
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(M,Q, ρ, r∗) as well as a choice of integration contour γ ⊂ tC:

ZD2(B) = C(rΛ)ĉ/2
∫
γ⊂tC

dlGσ′ ∏
α>0

α(σ′) sinh(πα(σ′))(2.33)

×
∏
i

Γ

(
iQi(σ

′) +
Ri

2

)
eit(σ

′)fB(σ′).

The integration variable is σ′ = rσ where r is the radius of D2. Since we are
only interested in the CY case4, where r only enters trivially, we will denote
σ′ ≡ σ. C is a dimensionless normalization constant, that needs to be fixed
and lG = rk(G). The Ri ∈ Q are the R-charges (weights of R action) of the
chiral fields and Qi ∈ Z the weights of ρV . α > 0 denotes the positive roots
of G and the t are the complexified FI parameters

(2.34) t = ζ − iθ.

For the CY case, since ρV : G → SL(V ), the parameters t do not run with
the energy scale Λ (i.e. the dependence on Λ drops out). The function fB(σ)
is defined by

(2.35) fB(σ) = trM

(
eiπr∗e2πρ(σ)

)
,

where r∗ and ρ(σ) have been defined in (2.16) and (2.17), respectively. All
the dependence of (2.33) on B is contained in (2.35). We will refer to fB as
the “brane factor”. To extract the brane factor we do not require the full
information about the associated complex, since the details of the maps do
not enter. This reflects the expectation that the brane factor only depends
on the Grothendieck group of the category of D-branes in the GLSM. In
geometric phases in which the hemisphere partition function reduces to the
central charge of the corresponding low energy D-brane, the central charge
formula [27] only depends on the K-theory class of the D-brane.

In the special case of a U(1) GLSM with B given in terms of a complex
of Wilson line branes as in (2.31) the brane factor is easily read off:

(2.36) fB(σ) =
∑
j

Lj∑
i=1

n
(i)
j eiπr

(i)
j e2πq

(i)
j σ,

4In the non-CY case i.e. when ρV does not factor through SL(V ), the hemisphere
partition function depends nontrivially on the dimensionless parameter rΛ, where
Λ is the energy scale of the theory. See [12] for more details.
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where the sum over j goes over the positions of the complex.
Note that all the poles of the integrand of ZD2(B) are located in the

space Im(σ) ⊂ tC. They are on the complex codimension 1 hyperplanes:

(2.37) Hi := {iQi(σ) = −Ri/2− k|k ∈ Z≥0} P :=

dimV⋃
i=1

Hi.

The integration contour γ ⊂ tC is an important part of the definition of
ZD2(B) and necessary if we want a non-perturbative description of it i.e. a
description of ZD2(B) which is valid for all values of t on MK . The choice of
γ is determined, among other conditions, by the convergence of the integral.
In the following we will study these contours in much more detail. For this
we start by defining admissible contours:

Given a GLSM datum and boundary data B, we define an admissible con-
tour γ ⊂ tC as a Lagrangian in tC \ P such that ZD2(B) absolutely converges
on γ and such that γ is a continuous deformation of γR = Re(tC) in tC \ P,
i.e. a deformation of γR that avoids the singularities.

We should remark here that the properties of admissible contours are not
yet well understood. They are motivated from the saddle point equations
one obtains by supersymmetric localization as explained in [12].

2.4. Analytic continuation and grade restriction

In this section we will discuss the so-called grade restriction rule (GRR)
for B-branes [16, §7.3.1] from the point of view of the hemisphere partition
function as done in [12]. The GRR is a restriction on the boundary data B
that appears naturally as an answer to the question ’Given B, can we find an
admissible contour at each point t ∈ MK?’. We will have a more categorical
discussion of the GRR in Section 3, but at this point we can give a purely
analytic definition that will fit better in the context of analytic continuation
of the hemisphere partition function. Let us first study admissible contours
in more detail. Start by choosing a basis of t and write

(2.38) σa = σa
1 + iσa

2 a = 1, . . . , rk(G).

Then, a contour γ which is a deformation of γR can be written as the graph
of a function h : t → t:

(2.39) σa = σa
1 + iha(σ1)
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with some additional conditions so that it avoids P. Explicitly, there are
dimV conditions given by −Qi(h(σ1)) +Ri/2 > 0 in the region Qi(σ1) =
Qa

i σ
a
1 = 0. In addition we also have the Lagrangian condition

∑
a dσ

a
1 ∧

dha(σ1) = 0, but that will be trivially satisfied in the one-parameter models
that we study in this paper. Let us denote the integrand of (2.33) by FB(σ).
Asymptotically FB(σ) in (2.33) takes the form

(2.40) |FB(σ)| ∼ P (σ)e−AB(σ) as |σ| → ∞

where P (σ) is polynomial in σ. An explicit expression for AB(σ) in (2.40)
can be found using the Stirling approximation:

Γ(z) ∼ ez log z−
1

2
log z−z |z| → ∞, |Arg(z)| < π.(2.41)

Then, given γ, determined by h as above, the condition for γ to be admissible
is that h∗AB(σ) → ∞ as |σ1| → ∞. This motivates the following definition
of grade restricted branes.

Given a GLSM datum (G, ρV ,W,R), recall that the associated parame-
ters tI = ζI − iθI can be used as coordinates in MK

∼= (C∗)s\Δ by set-
ting zI = exp(−tI) ∈ MK . Set Arg : (C∗)s → Ts := (R/2πZ)s the mapping
Arg(z) = arg(z) and p : Rs → Ts its universal covering. Given Δ ⊂ (C∗)s

considering the coamoeba of Δ, i.e. the image of Δ under the map Arg:
C := Arg(Δ). Therefore the space Θ := p−1(Ts \ C) ⊂ Rs will have a cham-
ber structure. Consider {θI}sI=1 as elements on the universal cover of Ts,
then fix a chamber T ⊂ Θ. We say that B is grade restricted if there exists
an admissible contour γt for every point t ∈ Rs × T .

In the concrete case of GLSMs associated with CY hypersurfaces in PN−1

described by the GLSM datum (2.8) the hemisphere partition function is

ZD2(B) = C(rΛ)ĉ/2
∫
γ
dσΓ (−iNσ + 1−Nε) Γ (iσ + ε)N(2.42)

× eitσ
∑
j

Lj∑
i=1

n
(i)
j eiπ(r

(i)
j +2ε)e2πq

(i)
j σ,

where we have explicitly written the function fB in terms of the weights
(qi, rj) of (ρ, r∗). The factor e2πiε is due to (2.9) and (2.17). The integration
contour γ should be an admissible contour. In order to determine which
contours are allowed we need to start by computing the functionAB in (2.40).
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For G = U(1), we can focus on a particular weight q := qj of ρ since the
analysis of all the other terms will be analogous. Then we write Aq instead
of AB with

Aq = (ζ −N logN)σ2 + (Nπ − sgn(σ1)(θ + 2πq)) |σ1|.(2.43)

The convergence of ZD2(B) is determined, in general, by ζ, θ and q. However,
note that if ζ = N logN we can always choose the following h to define γ

σ2 = h(σ1) = sgn(ζ −N logN)(σ1)
2,(2.44)

so that Aq becomes

lim
|σ1|→∞

(
|ζ −N logN |(σ1)2 + (Nπ − sgn(σ1)(θ + 2πq)) |σ1|

)
∼ |σ1|2 → ∞.

(2.45)

Therefore, if ζ = N logN , there always exists a γ, for all B such that ZD2(B)
is absolutely convergent. For ζ = N logN the dependence on σ2 in Aq drops
out and we get a condition on the weights of ρ:

−N

2
<

θ

2π
+ q <

N

2
.(2.46)

This imposes a condition on the allowed charges q of a brane for a given
length 2π interval of θ. The condition is called the grade restriction rule.
The set of allowed values for q, together with θ is referred to as the “(charge)
window” [16, §7.3.1]. If this condition is satisfied, we can take any function
h satisfying

−1/N + ε < h(σ1 = 0) < ε.(2.47)

In particular, we can take h ≡ 0 i.e. γ = γR. In order to determine the grade
restricted branes in this class of examples, we have to specify the values of
θ. Recall that the conifold point is located at

tc = N logN − iπN.(2.48)

In the universal covering of MK , θ takes values in

θ ∈ R \ (Nπ + 2πZ).(2.49)
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Therefore, the different chambers are determined by an integer n. Call them
Tn, so

Tn = (π(N + 2n), π(N + 2 + 2n)) n ∈ Z.(2.50)

Thus, we have shown the following: For the GLSM (2.8), given a chamber Tn

and a B-brane B = (M,Q, ρ, r∗) there exists an admissible contour γt for B
at all points (ζ, θ) ∈ R× Tn if and only if all the weights of ρ satisfy (2.46).
In particular, γt = γR is an admissible contour.

Hence, we have shown that the B-branes satisfying (2.46) are grade re-
stricted.

2.5. Hemisphere partition function and Mellin-Barnes integrals

Next, we work out some of the consequences of this result for the hemisphere
partition function (2.42) in the case of the GLSM associated to a CY hyper-
surface of degree N in PN−1. We choose the chamber Tn with n = −N and
θ ∈ Tn. Then, (2.46) is solved by the weights q = 0, . . . , N − 1. Now consider
the modules Mq associated to the Koszul branes Kq introduced after (2.27)
for q = 1, . . . , N − 1. Note, that they are automatically grade-restricted to
the chosen charge window. Then, (2.36) yields

(2.51) trMq

(
eiπr∗e2πρ(σ)

)
= (1− e2πσ)q, q = 1, . . . , N − 1.

For a generic GLSM brane, this is typically not the case, which also means
that it is not well-defined outside a given phase. Two prominent examples
where this is not the case are the Koszul branes (2.28) and (2.30). Further
note that the brane factors of a general GLSM brane will not be of the form
(2.51). For instance, if we multiply (2.51) by an integer, the resulting GLSM
brane is no longer represented by a simple Koszul brane of the form (2.27).
All these issues will be addressed in examples in Section 3.

Hence we have completely specified the brane datum Bq = (MN−q, Q,
ρ, r∗), q = 1, . . . , N − 1 (note the reverse order). The hemisphere partition
functions (2.42) for Bq then becomes
(2.52)

ZD2(Bq) = iC(rΛ)ĉ/2
∫ i∞

−i∞
dsΓ (Ns+ 1)Γ (−s)N e−t(s+ε)(1− e2πis)N−q

where we have set s = −iσ − ε and ε was introduced in (2.9). The admissible
contour γR then becomes the imaginary axis. Using the reflection formula
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(A.1) and the multiplication formula (A.2) for the Gamma functions this
can be rewritten as (where we have chosen ε = 0)
(2.53)

ZD2(Bq) = iC(rΛ)ĉ/2
(2πi)NN

1

2

(2π)
N−1

2

∫ i∞

−i∞
ds

∏N−1
j=1 Γ

(
s+ j

N

)
Γ(s+ 1)N−1

(
NNe−te−iπN

)s
(1− e2πis)q

In the following we are going to derive some properties of these integrals.
First we change to the algebraic coordinate of the GLSM [3]

(2.54) z = e−iπNNNe−t.

We denote the integral without the prefactor by y∗q (z)

(2.55) y∗q (z) =
∫ i∞

−i∞
ds

∏N−1
j=1 Γ

(
s+ j

N

)
Γ(s+ 1)N−1

zs

(1− e2πis)q
, q = 1, . . . , N − 1

We are now going to show that y∗q (z), q = 1, . . . , N − 1 satisfies a linear ho-
mogeneous differential equation of order N − 1 in z. For this purpose, we

set gN (s) =
∏N−1

j=1

Γ(s+ j

N )
Γ(s+1) . We first note that

(2.56) gN (s+ 1) =

∏N−1
j=1

(
s+ j

N

)
(s+ 1)N−1

gN (s).

If we set θ = z d
dz , then we also observe that

(2.57) θy∗q (z) =
∫ i∞

−i∞
ds sgN (s)

zs

(1− e2πis)q

and hence

θN−1y∗q (z) =
∫ i∞

−i∞
ds sN−1gN (s)

zs

(1− e2πis)q
(2.58)

N−1∏
j=1

(
θ + j

N

)
y∗q (z) =

∫ i∞

−i∞
ds

N−1∏
j=1

(
s+ j

N

)
gN (s)

zs

(1− e2πis)q
.(2.59)

Now, by (2.56) the equation (2.59) becomes

(2.60) z

N−1∏
j=1

(
θ + j

N

)
y∗q (z) =

∫ i∞

−i∞
ds (s+ 1)N+1gN (s+ 1)

zs+1

(1− e2πis)q
.
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The integrands of the left hand side of (2.58) and (2.60) have the same
poles, hence the integrals are equal, and we conclude that y∗q (z) satisfies the
differential equation

(2.61)

⎛⎝θN−1 − z

N−1∏
j=1

(
θ + j

N

)⎞⎠ y∗q (z) = 0, q = 1, . . . , N − 1

This is a generalized hypergeometric differential equation. The solutions
y∗1(z), . . . , y∗N−1(z) are linearly independent. This can be seen as follows.
Evaluating the integrals y∗q (z) by closing the contour to the right with a
semi-circle and applying the residue theorem, they are of the form
(2.62)

y∗q (z) =
∞∑
k=0

(
g
(q−1)
N (k) +

(
q − 1

1

)
g
(q−2)
N (k) log z + · · ·+ gN (k)(log z)q−1

)
zk

where gN (0), g
(1)
N (0), . . . , g

(q−1)
N (0) do not all vanish simultaneously. Hence,

there are nonzero constants Bq ∈ C such that

(2.63) lim
z→0

y∗q (z)
(log z)q−1

= Bq, q = 1, . . . , N − 1.

Since these constants Bq are non-vanishing, the y∗q (z) are linearly indepen-
dent. We will study the analytic properties of the functions y∗q (z) in more
detail in section 4.

A couple of remarks are in order. The differential equation (2.61) has
regular singularities at z = 0,∞, and 1. By (2.54), these correspond to the
points t = ∞,−∞ and tc = N logN − iπ, respectively. These are precisely
the large radius limit, the Landau-Ginzburg point, and by (2.13) the singular
point where the GLSM develops a non-compact Coulomb branch.

The differential equation (2.61) is the Picard-Fuchs equation satisfied
by the periods of the mirror hypersurface. In view of mirror symmetry,
this is of course not surprising, in particular since (2.55) is nothing but the
Mellin-Barnes representation of these periods. Note however, that we have
derived this hypergeometric differential equation without any reference to
the mirror.

Note that the Koszul complexes Kq we started with do not refer to
any specific phase, i.e. they are genuine GLSM branes and not viewed as
lifts of low-energy D-branes in some phase. Therefore the derivation of the
differential equation is irrespective of the phase. If in (2.52) we had chosen
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to bring Γ(Ns+ 1) into the denominator instead of Γ(−s)N , we would have
obtained

(2.64)

⎛⎝N−1∏
j=1

(
θ + j

N

)
− 1

zθ
N−1

⎞⎠ y∗q(z) = 0,

for
(2.65)

y∗q(z) =
∫ i∞

−i∞
ds

Γ(s)N−1∏N−1
j=1 Γ

(
s+ j

N

) zs

(1− e2πi(s+
q

N
))
, q = 1, . . . , N − 1.

This is the same differential equation as (2.61) and the y∗q(z) are linear
combinations of the y∗q (z).

The hemisphere partition function (2.52) is defined over the whole pa-
rameter space. To compute the IR limit of ZD2 in the two phases we have to
close the integration contour either to the right (ζ 
 0) or to the left (ζ � 0)
and evaluate the residue integral. This leads to convergent expressions in ei-
ther phase which we will denote by Zζ�0

D2 and Zζ�0
D2 . While the evaluation of

the hemisphere partition function in one of the phases just amounts to com-
puting residues it is not obvious how one can extract a convergent expansion
around the singular point.

3. GLSM branes and grade restriction

In this section we discuss the D-brane interpretation of the Mellin-Barnes
integrals in (2.52). So far, these integrals have been studied only for the
GLSM branes Bq. We will relate a special set of GLSM branes to specific
combinations of these Mellin-Barnes integrals. These GLSM branes are ob-
tained from the lift Dζ�0

(G,W,ρV ,R) → D(G,W,ρV ,R) of branes in the geometric

phase. In such a phase the Grothendieck group of Dζ�0
(G,W,ρV ,R) is expected to

agree with the K-theory group K(Xζ�0). The special set is then the lift of a
basis of K(Xζ�0). Since not all of these branes will be grade restricted, we
first have to grade restrict them before we can make the connection to (2.52).
Otherwise it is not possible to sensibly talk about analytic continuation to
or beyond a phase boundary. We will first explain how to do this by recall-
ing the essentials of [16], then apply this to a suitably chosen set of GLSM
branes. The associated hemisphere partition functions can then be related
to certain combinations of the ZD2(Bq) whose analytic continuation to the
conifold point will then be discussed in Section 4. Since we have all tools
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available, we also recompute the monodromy matrices of the quintic directly
in the GLSM by using the hemisphere partition function.

3.1. Grade restriction

According to the seminal paper [16] one can only transport grade-restricted
branes past the conifold singularity from one phase to another in a well-
defined way. In fact, as soon as we approach a phase boundary, grade restric-
tion is required. One can show in examples that non-grade restricted branes
lead to divergence of the hemisphere partition function near the conifold
point. Grade restriction means that the gauge charges of the Wilson line
branes in the GLSM have to be restricted to a certain window as defined
in (2.46). Due to the periodicity of the theta-angle there is an infinite num-
ber of windows of the same width, each corresponding a specific path past
the conifold point in the FI-theta parameter space inside a chamber Tn

as defined in (2.50). Without grade restriction, the Mellin-Barnes integrals
coming from a hemisphere partition function are not well-defined because
they are not globally defined throughout the parameter space. For example,
B-branes which have a simple geometric interpretation such as the struc-
ture sheaf OX ∈ Dζ�0

(G,W,ρV ,R) in the large radius phase, do not lift to grade
restricted GLSM branes. In order to study the behavior of such branes close
to and beyond a phase boundary they have to be grade restricted first.
Since this procedure can become quite tedious, we will propose an algorith-
mic method to grade restrict GLSM branes and extract the brane factor
without doing involved calculations.

Grade restriction replaces a given GLSM brane by a different one which
is the same in the IR but whose gauge charges fit into the desired window.
This can be done by systematically binding “empty” branes via tachyon
condensation. The empty branes are those branes which reduce to “nothing”
in the IR. This means in particular in the respective phase the K-theory class
and the hemisphere partition function of such a brane are zero. For every
phase there is a set of empty branes which can be used to grade restrict.
Having fixed a charge window, grade restricting a GLSM-brane is a two-step
process.

1) Produce a bound state between a non-grade-restricted brane B and an
empty brane BE by turning on boundary-changing Z2-odd open string
state Ψ ∈ H1(B,BE) (the “tachyon”) as in (2.20). In the homological
language this amounts to computing the mapping cone Cone(Ψ : B →
BE). The open string state must have the specific property that there is
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the identity map between the non-grade-restricted Wilson line branes
appearing in B and BE . Typically, one has to bind more than one
empty brane to B with different gauge and R charges to achieve grade
restriction.

2) Remove trivial brane-antibrane pairs by replacing the identity map by
a specific composition of other maps. This removes that Wilson line
brane that is not in the window.

Step 1 is the crucial one because we need to construct a very specific open
string state stretching between two D-branes. Step 2 is more of a cosmetic
nature. In the language of matrix factorizations this amounts to elementary

row and column manipulations to single out blocks of the form

(
0 1
W 0

)
which can be removed from the matrix factorization, as they describe trivial
brane-antibrane pairs. This step is however not strictly necessary since the
brane is already grade restricted after the first step, so it may be skipped
entirely or performed only partially.

In the following we restrict ourselves to the main example of the U(1)
GLSM (2.8) associated to CY hypersurfaces of degreeN in PN−1. In this case
there are two sets of empty branes BE ∈ D(G,W,ρV ,R), one corresponding to

each phase. We denote them by Bζ�0
E and Bζ�0

E , respectively.5 These have
already been introduced in Section 2.2. If we start off in the large radius
phase (ζ 
 0) the empty brane is given by the Koszul brane Kζ�0 in (2.28).
Even though we refer to this as the empty brane, (2.28) actually consists of
an infinite number of GLSM branes, labeled by the choice of q and r. Note
that the empty brane is not grade restricted since by (2.46) the allowed
window of gauge charges q consists of N consecutive integers. Therefore, at
least one of the Wilson line branes in (2.28) cannot be in any given window.
This also shows that the notion of an empty brane cannot be globally defined
but only makes sense in connection with a phase. Indeed, (2.28) only reduces
to “nothing” in the large radius phase, while it corresponds to a non-trivial
B-brane in the Landau-Ginzburg phase. With the associated brane factor

fBζ�0
E

= e2πqσeiπr(1− e2πσ)N(3.1)

this can be verified explicitly by the evaluation of the hemisphere partition
function in both phases which yields Zζ�0

D2 (Bζ�0
E ) = 0 while Zζ�0

D2 (Bζ�0
E ) =

0. Similarly, there is also an empty brane associated to the Landau-Ginzburg

5Bζ�0
E and Bζ�0

E correspond to objects of Tζ�0 and Tζ�0, respectively, in (2.32).
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phase. This is given by the Koszul brane (2.30) whose brane factor is

fBζ�0
E

= e2πqσeiπr(1− e2πNσ).(3.2)

To illustrate the procedure of grade restriction we repeat a discussion of [16,
pp. 202f] for N = 3. i.e. the GLSM associated to the cubic curve. Consider
the GLSM matrix factorization corresponding to the Koszul brane K =
K∗

ζ�0 in (2.30):

(3.3) ŴX : Q =

(
0 G3

p 0

)
→ W(0)0

G3 �� W(3)1
p

��

Note that the matrix factorization Q is not enough to fully specify the
GLSM brane B = (M,Q, ρ, r∗), while the representation in terms of the Wil-
son line branes encodes the full information of B. It includes in particular
the matrices ρ and r∗ in (2.16) and (2.17) with a specific choice of normal-
ization corresponding to overall shifts. In the following we will often only
specify Q without explicitly giving ρ and r∗, as they can be reconstructed
from the Wilson line brane representation. This brane (3.3) is not grade

restricted and we will denote non-grade-restricted branes by Ŵ. In the large
radius phase ζ 
 0, this reduces to the structure sheaf on the cubic given

by G3(x1, x2, x3) = 0 and described by the complex O(0)
G3 �� O(3) . The

window we would like to grade restrict to is q ∈ {0, 1, 2}, which corresponds
to θ ∈ (−3π,−π). The brane factor is

(3.4) fŴX
= 1− e6πσ.

Inserting this into the definition of the hemisphere partition function and
evaluating it in the large radius phase one recovers the expected charges6:

(3.5) Zζ�0
D2 (ŴX) = 3�1 = 3Φ0,12,

where the � and Φ0 are bases of solutions of the hypergeometric equation
near z = 0 whose series expansions are defined in Appendix B. Here we have
made a specific choice for the normalization constant C. Since this is noth-
ing but the empty brane in the Landau-Ginzburg phase one also computes
Zζ�0
D2 (ŴX) = 0. This is certainly not the correct analytic continuation of the

structure sheaf to the Landau-Ginzburg point. This shows why we have to

6In order to obtain this result one has to implement a θ-angle shift between the
UV and the IR theory: θIR = θUV +Nπ [16, pp. 216f].
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grade restrict. To put the brane into desired window we have to get rid of the
Wilson line brane W(3)1. This can be achieved by binding an empty brane
in the following way. We choose the empty brane given by the Koszul brane
K ′ = Kζ�0 ⊗W(0)−1, and a morphism Ψ ∈ H1

D(Hom(K,K ′)) as follows:

(3.6) W(0)0
��

ϕ

��

W(3)1��

1

��

W(0)−1
�� W(1)⊕3

0��
�� W(2)⊕3

1��
�� W(3)2.��

The map ϕ can be determined explicitly (see [16, (10.4)]) but we actually
do not need its explicit form to compute the brane factor. Removing trivial
brane-antibrane factors this reduces to

(3.7) W(0)0

��

W(0)−1
�� W(1)⊕3

0��
�� W(2)⊕3

1 .��

��

This new GLSM brane is a bound state Cone(Ψ : K → K ′) and is clearly
grade restricted. We give it the name WX . By (2.36), its brane factor is

(3.8) fWX
= 3e2πσ(1− e2πσ).

One can easily convince oneself that, evaluated in the large radius phase,
the hemisphere partition function gives the same result for both the grade-
restricted and the non-grade-restricted brane factors. Using the grade-
restricted brane Zζ�0

D2 (WX) will no longer be zero, as it should be. This

means that both branes ŴX and WX are GLSM lifts of the structure sheaf
OX , but only WX is globally defined over MK . In terms of the basis y∗q (z)
in (2.55), the hemisphere partition function is

(3.9) ZD2(WX) = −3
√
3

2π
(y∗2 − y∗1).

which is in agreement with (3.5) by (B.49). We would like to emphasize
again that removing the trivial brane-antibrane pair is not necessary. Both
(3.6) and (3.7) give the same brane factors. Only the gauge charges of the
Wilson line branes and their relative positions enter.

If we want to consider more complicated branes the procedure of grade
restriction, in particular the calculation of the maps specifying the tachyon,
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can become complicated. Even the binding of only two empty branes can
become very tedious, as demonstrated for instance for a D4-brane on the
quintic in [16, pp. 233ff]. Typically the calculations are even more involved
than explained there. Given that most of the information is irrelevant if
we are just interested in the brane factor we would like to shortcut this
calculation. Instead of explicitly computing the maps corresponding to the
desired open string states we simply assume that they exist and position
the Wilson line branes describing the empty brane accordingly. In this way
we skip a tedious calculation but still keep the information that is relevant
for extracting the brane factor. Of course one needs an independent check
that one has done the right thing. This is easily achieved by verifying that
the resulting grade restricted brane factor yields the same result for the
hemisphere partition function in the large radius phase as the non-grade-
restricted one. Let us illustrate this procedure by considering a D0-brane
on the cubic. For the generic cubic the D0 brane is the intersection of a
divisor h =

∑3
i=1 αixi = 0 with the cubic hypersurface equation G3(x) = 0.

This can be lifted to the Koszul brane K((h,−G3),W(0)+):

(3.10) ŴD0 : W(0)+
f1

��

W(1)−
⊕

W(3)−
g1

��

f2
�� W(4)+

g2
�� .

The explicit maps are

(3.11) f1 =

(
h

−G3

)
g1 = (0,−p) f2 = (G3, h) g2 =

(
p
0

)
.

We need not specify the R-charges of the Wilson line branes because for
computing the brane factor it only matters if the charge is even or odd,
which we indicate by a subscript ±. The explicit matrix factorization is

(3.12) Q =

⎛⎜⎜⎝
0 h −G3 0
0 0 0 G3

−p 0 0 h
0 p 0 0

⎞⎟⎟⎠ = hη1 +G3η2 + pη̄2.

The matrices ρ and r∗ can be reconstructed from (3.10). The brane factor
is

(3.13) fŴD0
= 1− e2πσ − e6πσ + e8πσ.
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Grade restriction to the standard window {0, 1, 2} requires binding five
empty branes. We indicate the procedure in the following table.

(3.14) WD0 :

− + − + − #

W(0) W(1)
W(3) W(4)

W(1) W(2)⊕3 W(3)⊕3 W(4) 1
W(0) W(1)⊕3 W(2)⊕3 W(3) 1

W(0) W(1)⊕3 W(2)⊕3 W(3) 3

The first two lines capture the information of the non-grade restricted brane
(3.10) with all the maps omitted. The columns indicate the R-degree. In
order to grade restrict the brane have to bind a combination of empty branes
such that the Wilson line branes W(3) and W(4) are removed. The first step
is to remove W(4) by binding an the empty brane as described in (3.6). Since
the tachyon we turn on is a Z2-odd state we have to position the empty brane
appropriately such that the maps between the Wilson line branes go from
even/odd to odd/even R-degree. Only the Z2-grading and not the integer
R-grading is relevant for the brane factor. Therefore the positions of the
Wilson line branes may be wrong up to an even number of shifts to the left
or to the right. Since we are only interested in computing the brane factor
here, we can afford “mistakes” of this kind. In order for W(4) to be removed
the open string state has to be such that there is the identity map between
the two W(4). We indicate that by giving the pairs of Wilson line branes
the same color. There may be further “accidental” identity maps, which
might cancel more terms than indicated in the table. This can terminate
the procedure sooner, but for the sake of systematics, we do not concern
ourselves with those. Keeping them only means that step 2 indicated above
is not fully performed. We proceed analogously to remove W(3). However,
we are not done yet, because by binding the first empty brane we were forced
to introduce Wilson line branes W(3)⊕3 which is also not in the window. To
remove this we have to bind three more empty branes as indicated in the
table: the last column keeps track of how many copies of the brane we need.
After this last step we are done and can easily compute the brane factor
from (3.14) by using (2.36):

(3.15) fWD0
= 3− 6e2πσ + 3e4πσ = 3(1− e2πσ)2.
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If we evaluate the hemisphere partition function in the large radius phase
we get Zζ�0

D2 (WD0) = 3�0 = 3Φ0,11. The relation to the y∗-basis is

(3.16) ZD2(WD0) =
3
√
3

2π
y∗1.

This brane does not have the minimal charge of a point-like object of the
cubic. Indeed, the way we constructed the brane, we end up with three
points on the hypersurface. The object with minimal charge can be obtained
from a GLSM lift of a permutation-type matrix factorization at the Fermat
point [49–53]. Given the Fermat cubic

∑3
i=1 x

3
i we consider the Koszul brane

K((x1 + x2, x3),W(0)+)

(3.17) Wpt : W(0)+
�� W(1)⊕2

−��
�� W(2)+�� ,

corresponding to the matrix factorization:

Q = (x1 + x2)η1 + x3η2 + p(x21 − x1x2 + x22)η̄1 + px23η̄2.(3.18)

The brane is automatically grade restricted and its brane factor is

(3.19) fWpt
= (1− e2πσ)2.

The hemisphere partition function evaluated in the large radius phase is
Zζ�0
D2 (Wpt) = �0 = Φ0,11, which is indeed one third of the value of the “ge-

ometric” D0. This is in agreement with the literature on Landau-Ginzburg
branes and D-branes in Gepner models where it has been shown that the
permutation branes or “short” branes generate the charge lattice [51–53].
The matrix factorization (3.18) is obtained as a GLSM lift of a matrix fac-
torization in the Landau-Ginzburg phase in which the p-field has been fixed
to p = 1. Going from the Landau-Ginzburg phase to the GLSM one has to
add in the p-field. How to to this rigorously has been demonstrated in [16,
pp. 208ff]. Here we just mention the following. There seem to be ambiguities
on how to include the p-field and the result are different GLSM branes. So it
looks like one Landau-Ginzburg matrix factorization yields several different
GLSM branes. Of course this cannot be true. The resolution to this ap-
parent puzzle is that a Landau-Ginzburg brane is specified not only by the
matrix factorization but also by two additional matrices, typically denoted
by (γ,R) which encode the orbifold and R-charges of the brane [54]. By
choosing (3.18) as the lift we have simply picked a Landau-Ginzburg brane
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with a specific orbifold charge. The identification with the Mellin-Barnes
basis gives

(3.20) ZD2(Wpt) =

√
3

2π
y∗1

as expected.
The procedure of grade restriction outlined in this section works equally

well for other GLSMs, in particular also non-abelian ones. We present a
further examples of the grade restriction of GLSM branes on the quartic
and quintic in Appendix C.

3.2. D-branes on the quintic

In Section 4 we will discuss the analytic continuation of a specific basis of
Mellin-Barnes integrals to the conifold point. We would like to understand
which geometric objects this corresponds to in the large radius phase. In or-
der to achieve this we proceed as follows. We first choose a basis of K(Xζ�0)

of large radius branes which we characterize by their central charges Zζ�0
D2 .

Next we find an lift Dζ�0
(G,W,ρV ,R) → D(G,W,ρV ,R) of these branes to the GLSM

and grade restrict to the charge window q ∈ {0, 1, 2, 3, 4} if necessary. Com-
paring with (2.53) we can relate the hemisphere partition function of the
large radius brane to a linear combination of the Mellin-Barnes integrals y∗q
(2.55) whose analytic continuation to the conifold point we can do. In this
way we can directly study how certain D-branes behave near the conifold
point, in particular their masses including all quantum corrections. We only
focus on the quintic in this section. A basis of branes on the cubic has al-
ready been discussed. The completely analogous discussion for the quartic
has been relegated to Appendix C.

We start with a suitable set of D-branes in the geometric phase by picking
a basis of K(Xζ�0) given by the classes of (Opt,O�,OH ,OX), which are the
sheaves of a point, of a line �, of a hyperplane H and the structure sheaf
of a one-parameter Calabi–Yau threefold X. We will study the analytic
continuation of the corresponding central charges

Zζ�0
D2 (Opt) = �0 = Φ0,11(3.21)

Zζ�0
D2 (O�) = �1 = Φ0,12(3.22)

Zζ�0
D2 (OH) =

H3

2
�2 − H3

2
�1 +

(
c2 ·H
24

+
H3

6

)
�0(3.23)
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Zζ�0
D2 (OX) =

H3

6
�3 +

c2 ·H
24

�1 +
ζ(3)c3
(2πi)3

�0 = −Φ0,14,(3.24)

The bases Φ0 and � of solutions to the hypergeometric differential equation
can be found in Appendix B. For the case of the quintic the topological
numbers are

(3.25) H3 = 5 c2 ·H = 50 c3 = −200.

We have already discussed a GLSM lift WX of the structure sheaf OX in the
context of the cubic where we found the GLSM brane (3.7). In the quintic
case the grade restricted GLSM brane WX is represented by

(3.26) W(0)+
�� W(1)⊕5

−��
�� W(2)⊕10

+��
�� W(3)⊕10

−��
�� W(4)⊕5

+��
�� W(0)−�� .

We extract the following brane factor

(3.27) fWX
= −5e2πσ + 10e4πσ − 10e6πσ + 5e8πσ.

This brane is clearly in the desired charge window and a quick calculation
shows that the hemisphere partition function indeed reproduces the correct
central charge (3.24) in the large radius phase. In terms of the y∗q basis we
have the correspondence

(3.28) ZD2(WX) = 5(2πi)(y∗1 − 2y∗2 + 2y∗3 − y∗4).

We will see in Section 4 that it is straightforward to analytically continue
this particular combination of Mellin-Barnes integrals to the conifold point,
where we will confirm directly the known result that this brane becomes
massless.

The GLSM brane WH associated to OH which produces the central
charge (3.23) has already been discussed in [16, p. 234]. We start with the
Koszul brane K((h,−G5),W(−1)+) where the linear polynomial h = 0 is
the defining equation of the hyperplane H:

(3.29) ŴH : W(−1)+
��

W(0)−
⊕

W(4)−
��

�� W(5)+�� .

The structure of the maps is the same as for the D0 brane on the cubic
(3.20). The brane is not grade restricted. The brane factor is

(3.30) fŴH
= e−2πσ − 1− e8πσ + e10πσ,
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and the hemisphere partition function gives the desired central charge (3.23).
Grade restriction yields a GLSM brane WH as follows:
(3.31)

+ − + − + − + #

W(−1) W(0) −
W(4) W(5) −

W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 1
W(−1) W(0)⊕5 W(1)⊕10 W(2)⊕10 W(3)⊕5 W(4) 1

Comparing with the result in [16, p. 235], we find agreement concerning all
the information that is relevant to extract the hemisphere partition function.
The brane factor of WH is

(3.32) fWH
= 5− 15e2πσ + 20e4πσ − 15e6πσ + 5e8πσ,

which also gives (3.23) in the large radius phase. The hemisphere partition
function can be written as

(3.33) ZD2(WH) =
5
√
5

4π2
(y∗1 − y∗2 + y∗3).

When we discuss the analytic continuation to the conifold point we will
see that the following combination of Mellin-Barnes integrals is favored:
ZD2(WD4) ∼ 5(y∗3 − 2y∗2 + y∗1). Comparing with (2.53) the corresponding
brane factor would be

(3.34) fWD4
= 5(e4πσ − 2e6πσ + e8πσ).

The hemisphere partition function, evaluated in the large radius phase is in
this case

(3.35) Zζ�0
D2 (WD4) =

(
5

2
�2 +

5

2
�1 − 25

12
�0

)
= Φ0,13.

The brane factor does not come from a Koszul brane. It rather indicates
that the corresponding brane is a bound state of the D4 brane (3.31) with
a D2 and a D0 discussed in Appendix C. Indeed the brane factors of these
three branes sum up as follows:

fWD4
= (3.32) + (C.10) + (C.5)(3.36)

= 5(1− e2πσ)2(1− e2πσ + e4πσ)

− 5e2πσ(1− e2πσ)3 + 5(1− e2πσ)4.
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Moving on to the GLSM lift of Ol we note that the following Koszul
brane K((f1, f2, x5),W(1)−) yields a GLSM brane Wl that is automatically
grade-restricted and leads to the desired central charge (3.22) in the large
radius phase:

(3.37) Wl : W(1)− �� W(2)⊕3
+��

�� W(3)⊕3
−��

�� W(4)+�� .

The corresponding matrix factorization of the Fermat quintic is well-known
in the literature on Landau-Ginzburg branes [55]. It is the matrix factoriza-
tion of a permutation brane. With

f1 = x1 + x2(3.38)

f2 = x3 + x4(3.39)

g1 = x41 − x31x2 + x21x
2
2 − x1x

3
2 + x42(3.40)

g2 = x43 − x33x4 + x23x
2
4 − x3x

3
4 + x44(3.41)

the associated matrix factorization

(3.42) Q = f1η1 + f2η2 + x5η3 + pg1η̄1 + pg2η̄2 + px45η̄3.

The brane factor is

(3.43) fWl
= −e2πσ + 3e4πσ − 3e6πσ + e8πσ.

which yields

(3.44) ZD2(Wl) = −
√
5

4π2
(y∗2 − y∗1).

This is another combination of Mellin-Barnes integrals we will be able to
analytically continue to the conifold point in Section 4. Note that we could
also have constructed a D2-brane as a complete intersection of two linear
hyperplanes h1 and h2 with the quintic equation. This is a straight-forward
generalization of the construction of the D4-brane above. We give the details
in Appendix C. The corresponding GLSM brane is not grade restricted.
Grade restriction of such a brane is already quite involved and the algorithm
described above turns out to be very useful. The central charge is five times
the charge of the permutation-type matrix factorization.

Finally we come to the GLSM lift Wpt of the D0-brane Opt. The cor-
responding hemisphere partition function is produced by the Koszul brane
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K((f1, x3, x4, x5),W(0)+) which is automatically grade-restricted:

(3.45) Wpt : W(0)+
�� W(1)⊕4

−��
�� W(2)⊕6

+��
�� W(3)⊕4

−��
�� W(4)+�� .

The corresponding matrix factorization is a permutation-type factorization
of the Fermat quintic:

(3.46) Q = f1η1 + x3η2 + x4η3 + x5η4 + pg1η̄1 + px43η̄2 + px44η̄3 + px45η̄4,

where f1 and g1 are the same as in (3.38) and (3.40). The brane factor is

(3.47) fWpt
= 1− 4e2πσ + 6e4πσ − 4e6πσ + e8πσ = (1− e2πσ)4.

With that one easily confirms

(3.48) ZD2(Wpt) =

√
5

4π2
y∗1,

which we will also analytically continue to the conifold point in Section 4.
Let us add a few extra comments. The hemisphere partition function for this
brane, evaluated at the large radius limit, is the same for every integer shift of
the GLSM brane. This reflects the fact that the D0-brane is invariant under
large radius monodromy. Alternatively, we could also construct a D0-brane
as an intersection of three linear hyperplanes h1, h2, h3 with the generic
quintic which we present in Appendix C. The central charge in the large
radius phase is five times the one of the permutation brane. This is consistent
with the fact that such a construction actually describes five points on the
quintic and not a single one.

This concludes our discussion on the analytic continuation of a specific
basis of large radius branes to the conifold point. A completely analogous
analysis for the quartic K3 can be found in Appendix C.

3.3. Hemisphere partition function and monodromy

After the preceding discussion, computing monodromy matrices with the
help of the hemisphere partition function is almost trivial. It can be done
without referring to a particular phase, i.e. without choosing a reference
point. Consider a GLSM brane B and a set of branes such asW = (WX ,WH ,
Wl,Wpt) in (3.26), (3.31), (3.37) and (3.45), which is obtained from a lift
of a lattice basis of K(X). By a slight abuse of language, we also call W
a basis. We assume that B and W are grade restricted to a specific charge
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window such that the brane factor fB can be expressed in terms of linear
combinations of the brane factors of the basis W. The monodromy operation
generates a new brane B̃, which is typically not grade restricted to the se-
lected window anymore. After grade restricting back to the original window
we get a brane B′ whose brane factor fB′ can be expressed in terms of the
brane factors of the basis W and we can read off the monodromy. Below,
we will apply this procedure to the basis W of branes on the quintic which
will lead to relations ZD2(W ′) = MZD2(W), where M is the monodromy
matrix.

3.3.1. Large radius monodromy. The monodromy around the large
radius point corresponds to a shift in the θ-angle θ → θ + 2π which affects
the term eitσ in the hemisphere partition function: eitσ → eitσe2πσ. This shift
has to be absorbed in the brane factor of the new brane B̃ such that under
large radius monodromy:

fB → fB̃ = e2πσfB.(3.49)

The additional factor can be interpreted as a change in the overall normal-
ization of ρ in (2.17), whereas the matrix factorizationQ remains unchanged.
Writing the GLSM brane B in terms of Wilson line branes W(qi)rj the large
radius monodromy amounts to a global shift where the gauge charge of each
constituent brane is shifted by +1: W(qi)rj → W(qi + 1)rj , i.e. we tensor
the whole GLSM brane with W(1). In case we consider a brane B grade
restricted to a window associated to the chamber Tn, the brane B̃ after large
radius monodromy will be grade restricted to a window associated to the
chamber Tn+1. To extract the monodromy matrix we grade restrict B̃ back
to Tn using the empty brane in the large radius phase (2.28). This yields B′

whose brane factor we can express in terms of the basis W.
Applying this procedure to our basis W we can read off the large radius

monodromy matrix MLR from the relation ZD2(W ′) = MLRZD2(W). We
obtain the following result:⎛⎜⎜⎝

ZD2(W ′
pt)

ZD2(W ′
l)

ZD2(W ′
H)

ZD2(W ′
X)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
0 5 1 0
0 5 1 1

⎞⎟⎟⎠
⎛⎜⎜⎝

ZD2(Wpt)
ZD2(Wl)
ZD2(WH)
ZD2(WX)

⎞⎟⎟⎠ .(3.50)

This relation can be read off simply by comparing brane factors, without
evaluating the hemisphere partition function in a phase. We could, however,
also compare the central charges in the large radius phase Zζ�0

D2 (W ′) =
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MLRZ
ζ�0
D2 (W), which gives the same result. This amounts to choosing a

reference point in the large radius phase. Grade restriction is not an issue
then because we do not cross a phase boundary. Therefore we get the same
result, irrespective of whether we perform the monodromy operation on the
grade restricted or non-grade-restricted GLSM branes, which simplifies the
calculation.

3.3.2. Conifold monodromy. Conifold monodromies of GLSM branes
have been discussed in [16, §10.5]. Without loss of generality we assume that
we start in the large radius phase. We would like to transport a given brane
in a loop around the conifold point which, in our examples, is at ζ = NN and
θ = π mod 2π. Computing the conifold monodromy matrix MC is a three-
step process. First we choose a brane B and a basis W and grade restrict
it to a given charge window. In contrast to the large radius monodromy
this is strictly necessary since the path inevitably crosses a phase boundary.
Grade restriction selects a path within a specific chamber Tn corresponding
to θ-angle interval of width 2π between two specific copies of the conifold
singularity. This makes sure that the brane is well-defined along the full
length of this path, all the way down to the Landau-Ginzburg point. The
next step is to bring the brane back along a path corresponding to the
adjacent charge window such that the conifold singularity in encircled. Since
the “turning-point” of the path has to be in the Landau-Ginzburg phase in
order for the conifold point to be encircled, we have to grade restrict to the
adjacent window using the empty brane (2.30) associated to the Landau-
Ginzburg phase. The resulting brane is B̃. In order to make the comparison,
the last step is to grade restrict back to the original window. This yields B′.

Let us apply this to our choice of basis W for the quintic which is grade
restricted with respect to the charge window q ∈ {0, 1, 2, 3, 4} corresponding
to the chamber T−5 = (−5π,−3π). In the second step we use the empty
brane (2.30) to grade restrict to the adjacent window q ∈ {1, 2, 3, 4, 5}. Since
this corresponds to the chamber T−6 = (−7π,−5π), we have θ → θ − 2π.
This amounts to choosing a clockwise path around the conifold point. This
is not a problem, but we have to be aware that we compute the inverse M−1

C

of the conifold monodromy matrix. Due to the simple structure of the empty
brane (2.30), step two simply amounts to replacing any W(0)± by a W(5)±.
This yields W̃. In the last step we have to use the empty brane (2.28) of
the large radius phase to grade restrict back to the original window. This
yields W ′. By comparing the respective brane factors we arrive at a relation
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ZD2(W ′) = M−1
C ZD2(W) with⎛⎜⎜⎝

ZD2(W ′
pt)

ZD2(W ′
l)

ZD2(W ′
H)

ZD2(W ′
X)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 1
0 1 0 0
0 0 1 5
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

ZD2(Wpt)
ZD2(Wl)
ZD2(WH)
ZD2(WX)

⎞⎟⎟⎠ .(3.51)

Since we have not evaluated to hemisphere partition function in any phase,
the choice of a reference point does not matter. We could have started with
the same basis W and could have assumed a reference point in the Landau-
Ginzburg phase. In the second step one would then have to use the empty
brane in the large radius phase (2.28) to grade restrict to the window q ∈
{1, 2, 3, 4, 5}. For the third step we are back in the Landau-Ginzburg phase
and therefore have to use the corresponding empty brane (2.30) to grade
restrict to the original window. Since this describes a counter-clockwise path
around the singular point, this procedure will compute MC , rather than its
inverse.

Depending on the reference point we could also obtain MC or its in-
verse by comparing central charges in the phases. In this case one can omit
the third step. In the Landau-Ginzburg phase this should reproduce known
results for the monodromy of Landau-Ginzburg branes [56, 57].

3.3.3. Landau-Ginzburg monodromy. To summarize, we have com-
puted the following monodromy matrices:

MC =

⎛⎜⎜⎝
1 0 0 −1
0 1 0 0
0 0 1 −5
0 0 0 1

⎞⎟⎟⎠ MLR =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
0 5 1 0
0 5 1 1

⎞⎟⎟⎠ .(3.52)

Using MLG ·MLR ·MC = 1, the monodromy matrix around the Landau-
Ginzburg point is

MLG = M−1
C ·M−1

LR =

⎛⎜⎜⎝
1 0 −1 1

−1 1 0 0
5 −5 −4 5
0 0 −1 1

⎞⎟⎟⎠ .(3.53)

One can check that M5
LG = 1, as expected. Our results are in agreement

with [24].
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4. Analytic continuation to the conifold point

In this section we study analytic properties of the hemisphere partition
function. We present various methods to analytically continue this function
to the conifold point. We would like to emphasize that grade restriction in
the GLSM is crucial to make contact with the discussion in this section. The
proofs of the results can be found in general textbooks such as [58, 59] and
the articles [22, 25, 29]. These references show that the methods presented
here can be applied in a more general context.

4.1. Hypergeometric differential equations and their solutions

Recall from section 2.5 that the hemisphere partition function for branes in
the GLSM associated to CY hypersurfaces of degree N in PN−1 satisfies a
generalized hypergeometric differential equation of order n = N − 1 after a
change of variables. Such a differential equation takes the general form

(4.1)

⎛⎝θ

n−1∏
j=1

(θ − γj)− z

n∏
j=1

(θ − αj)

⎞⎠ y(z) = 0,

where α1, . . . , αn, γ1, . . . , γn−1 ∈ C and θ = z d
dz . For convenience we also in-

troduce γn := 0. For the case of one-parameter Calabi-Yau hypersurfaces in
Pn we see from (2.61) that

(4.2) αi =
i

n+ 1
, γi = 0, i = 1, . . . , n

This differential equation has regular singularities at z = 0, 1,∞ with expo-
nents

(4.3)
z = 0 γ1 γ2 γ3 · · · γn−1 0
z = 1 0 1 2 · · · n− 2 βn
z = ∞ α1 α2 α3 · · · αn−1 αn

where

(4.4) βn = n− 1−
n∑

i=1

(αi + γi).

Let E be a maximal subset of exponents {γi1 , . . . , γiq}, q > 1, at z = 0 with
the property that λ− μ ∈ Z for all λ, μ ∈ E. Then E is called to be in
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resonance or resonant. Most results in the mathematics literature on analytic
continuation of solutions to the hypergeometric differential equation only
deal with the non-resonant case. For CY hypersurfaces however, by (4.2), the
whole set of exponents γi is in resonance. This is the case we are interested in,
and we will frequently state the results only for this case. Before we discuss
the solutions to (4.1) in the resonant case in more detail, we review the
Frobenius method to solve ordinary linear differential equations. The most
compact way to present this method is to consider the equivalent system of
n first order equations

(4.5) θ Y (z) = A(z)Y (z)

where Y (z) = (y(z), θy(z), . . . , θn−1(z))t andA(z) is an n× nmatrix of holo-
morphic functions. For (4.1) the matrix A becomes

(4.6) A(z) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
an1 an2 an3 · · · ann

⎞⎟⎟⎟⎟⎟⎠
where

(4.7) ani =
en+1−i(γ1, . . . , γn−1)− z en+1−i(α1, . . . , αn)

1− z
,

and ei(x1, . . . , xk) is the elementary symmetric polynomial of degree i. Since
there are n linearly independent solutions yi(z) we have n linearly inde-
pendent solution vectors Yi(z) which form the columns of the fundamental
matrix of (4.5):

(4.8) Φ(z) =
(
Y1(z) · · · Yn(z)

)
.

The matrix Φ(z) is only determined up to multiplication by an element in
GL(n,C).

Now the general solution of (4.5) can be described as follows. There are
a constant n× n matrix R and a single-valued, holomorphic n× n matrix
S(z) such that

(4.9) Φ(z) = S(z)zR.

Under certain conditions on the eigenvalues of A, R can be taken to be A(0).
The method of Frobenius now consists of making a power series ansatz for
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S(z). Substituting this ansatz into (4.5) yields recursion relations for the
coefficients of the power series. It suffices to do this for the first row of S(z),
the remaining rows are obtained recursively in terms of derivatives of the
previous rows.

If a solution to the recursion is known in closed form and if the Jordan
normal form of R contains a block of rank greater than 1, there is an equiv-
alent technique for obtaining the series in the first row of S(z). We illustrate
this near z = 0 where the Jordan normal form ofR = A(0) consists of a single
block of rank n. This is the case for our hypergeometric differential equation,
cf. (4.6) with (4.7) and (4.2). Here, the solution is S0,11(z) =

∑∞
m=0 c(m)zm

with c(m) = Γ(Nm+1)
Γ(m+1)N recalling that N = n+ 1. The remaining solutions

are obtained by formally substituting c(m) by c(m, ε) = Γ(N(m+ε)+1)
Γ(m+ε+1)N

Γ(ε+1)N

Γ(Nε+1)
and expanding near ε = 0:

(4.10) S0,1k =

∞∑
m=0

∂k−1

∂εk−1
c(m+ ε)

∣∣∣∣
ε=0

( z

NN

)m
, k = 1, . . . , n.

The first few terms are given in (B.8) to (B.11), (B.30) to (B.32), and
(B.46) to (B.47), for N = 5, N = 4, and N = 3, respectively.

While everything so far has been explained in a neighborhood of z = 0,
we can of course change the variable in the differential equation to go to a
neighborhood of any other point in P1. Of particular interest are the other
two regular singularities, 1 and∞. We denote fundamental matrices near z =
zi by Φi(wi) = Si(wi)w

Ri

i for i = 0, 1,∞, where w0 = z, w1 = 1− z, w∞ = 1
z .

Explicit expressions for (the first row of) the matrices Si(wi) in our main
examples are given in Appendix B. Analytic continuation of the solutions
from wi to wj then implies the existence of constant matrices Mij such that
Φi(wi) = Φj(wj(wi))Mji. The goal here is to determine the matrices Mij

given the fundamental matrices in some basis.
For the hypergeometric differential equation the matrices Mij have been

determined in the literature for all i, j in the non-resonant case. In the
resonant case, the matrices Mij are known for all i, j if n = 2. For n > 2
only the matrix M0∞ has been fully determined determined so far.

The main idea to determine these matrices is to use the fact that the
solutions of (4.1) have a Mellin–Barnes integral representation y∗j (z) given
by

y∗j (z) =
∫

dt zt
n∏

k=1

Γ(αk + t)

Γ(1− γk + t)

1(
1− e2πi(t−γ1)

)j j = 1, . . . , n.(4.11)



Hemisphere partition function and analytic continuation 117

Closing the contour to the right and invoking the residue theorem, yields
a fundamental matrix whose entries are a polynomial in log z and a power
series in z. By comparing coefficients, it is straightforward to relate the basis
of Mellin-Barnes integrals to the fundamental matrix Φ(z) obtained from the
Frobenius method. In the examples of our interest, these relations are given
in Appendix B. Since we can equally well close the contour to the left, we
obtain a basis of solutions near z = ∞, since the residue theorem now yields
a series in 1

z . At the same time, this computation yields the change of basis
to the solutions near z = 0, i.e. it yields the matrix M0∞.

This method does not work so straightforwardly when going from z = 0
to z = 1. A solution to this problem is due to Nørlund [22] in the case
where no exponents are in resonance. The generalization of his method to
the resonant case has recently been developed in [25]. We will review the
results of this method in the remainder of this section.

For this purpose, we first consider different types of solutions to (4.1)
and express them in terms of (4.11). The first type is the (generalized)
hypergeometric function nFn−1(z)

y∗1(z) =
∫

dt

2πi
e−iπtzt

n∏
j=1

Γ(αj + t)

Γ(1− γj + t)
Γ(γ1 − t)Γ(1− γ1 + t)(4.12)

=

n∏
j=1

Γ(αj + γ1)

Γ(1− γj + γ1)
zγ1

n

× Fn−1

(
α1 + γ1, . . . , αn + γ1

1− γ1 + γ1, . . . , 1− γn−1 + γ1
; z

)

where we have set γn = 0. This is a holomorphic function for | arg z| < π. In
particular it does not need to be holomorphic at z = 1.

The second type of solutions to (4.1) is given in terms of the Meijer
G–function [58]:

Gp,n
n,n

(
1− α1, . . . , 1− αn

γ1, . . . , γn
; z

)
(4.13)

=

∫
dt

2πi
zt

n∏
j=1

Γ(αj + t)

Γ(1− γj + t)

p∏
h=1

Γ(γh − t)Γ(1− γh + t).

for 1 ≤ p ≤ n. This integral converges for | arg z| < pπ. We introduce the
shorthand notation
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Gp(z) := Gp

(
α1, . . . , αn

γ1, . . . , γn
; z

)
(4.14)

:= Gp,n
n,n

(
1− α1, . . . , 1− αn

γ1, . . . , γn
; (−1)p−2z

)
.

In the case that the whole set of exponents γi is in resonance, the Gp(z), 1 ≤
p ≤ n, form a basis of solutions to (4.1) [25]. Moreover, they are related to
the basis (4.11) by

(4.15) Gp(z) = e−2πiγ1eiπ
∑p

j=1 γj (2πi)p−1
p∑

j=1

(−1)p−j

(
p− 1

p− j

)
y∗j (z)

in particular, G1(z) = e−iπγ1y∗1(z). The essential property of the Gp(z) is
that the convergence condition entails that for p > 1 they define holomor-
phic functions in a neighborhood around z = 1. In this neighborhood they
therefore yield n− 1 linearly independent solutions to (4.1). In fact, these
solutions correspond to the exponents 0, 1, . . . , n− 2.

This brings us to the third type of solutions, namely the special solution
near z = 1 corresponding to the remaining exponent βn:

ξn(z) := ξn

(
α1, . . . , αn

γ1, . . . , γn
; z

)
:= zγ1(1− z)βn

∞∑
k=0

ck (1− z)k.(4.16)

The coefficients ck are determined recursively by the differential operator
from c0 = 1. Explicit formulas can be found in [22, §§6,7]. In this reference,
also the analytic continuation of ξn(z) to a neighborhood of z = 0 is deter-
mined. Again assuming that the whole set of exponents γi is in resonance,
we have [22, (3.48),(3.50)].

(4.17) ξn(z) =
Γ(βn + 1)

2πi

n∑
j=1

(−1)j

(n− j)!
ψ(n−j)(e2πiγ1)e−2πijγ1y∗j (z),

where

ψ(x) = e−iπβn

n∏
k=1

(x− e−2πiαk).(4.18)

and ψ(k)(x) = dk

dxkψ(x). If in ξn(z) we interchange αj and γj , j = 1, . . . , n,
and replace z by 1

z , we obtain a solution which we denote by ξ̄n(z) and differs
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from ξn(z) by a factor e±iπβn . This solution will play an auxiliary role in the
discussion of Gp(z) in Section 4.3.

Returning to the problem of the analytic continuation from z = 0 to
z = 1, the fact that the Gp(z), p > 1, are holomorphic at z = 1, together
with (4.17) already gives a partial answer. It remains to determine the se-
ries expansions of the Gp(z), p > 1, at z = 1, as well as to compute the
analytic continuation of G1(z) to z = 1. The solution to the latter problem
by Bühring in [29] will be reviewed in Section 4.2. The former has been
recently solved in [25]. This will be discussed in Section 4.3.

Before we go into details, we explain the strategy to obtain these results.
The idea is to find recurrences for all the solutions. The integral represen-
tation of a solution to an order n equation is written in terms of an integral
representation of a solution to an order n− 1 equation. By repeated appli-
cation of these recurrences, the problem of analytic continuation is reduced
to solutions of an order 2 equation. As mentioned above, the order 2 case is
completely understood. In fact, we have

(4.19)
Γ(a)Γ(b)

Γ(c)
2F1

(
a, b

c
; z

)
=

1

Γ(c− a)Γ(c− b)
G2

(
a, b

c− a− b, 0
; 1− z

)
.

We refer to [60] for details, where the function (−1)c−1Γ(c)
Γ(a)Γ(b) G2

(
a, b

1− c, 0
; z

)
was denoted g(a, b, c; z).

4.2. Holomorphic solution: Bühring’s method

For the first type of solutions, the (generalized) hypergeometric function

nFn−1, Bühring proved in [29] the following recurrence (which we state here
in terms of Mellin–Barnes integrals instead of power series [25]):

nFn−1

(
α1, . . . , αn

1− γ1, . . . , 1− γn−1
; z

)
(4.20)

=
Γ(1− γn−2)Γ(1− γn−1)

Γ(αn)Γ(1− γn−1 − αn)Γ(1− γn−2 − αn)

×
∫

dt

2πi
e±πitΓ(−t)Γ(1− γn−1 − αn + t)Γ(1− γn−2 − αn + t)

Γ(2− γn−1 − γn−2 − αn + t)

× n−1Fn−2

(
α1, . . . , αn−1

1− γ1, . . . , 1− γn−3, 2− γn−1 − γn−2 − αn + t
; z

)
By repeated application of this recurrence one can express nFn−1 in terms
of 2F1 and then use (4.19). The series expansion at z = 1 is then obtained
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by evaluating the contour integrals with the residue theorem. The closure of
the contour is determined by the convergence of the integral.

In βn ∈ Z (as for instance for the quartic) Bühring finds the following
series expansion:

Γ(α1) · · ·Γ(αn)

Γ(1− γ1) · · ·Γ(1− γn−1)
nFn−1

(
α1, . . . , αn

1− γ1, . . . , 1− γn−1
; z

)
(4.21)

=

∞∑
m=0

gm(0)(1− z)m + (1− z)βn

∞∑
m=0

gm(βn)(1− z)m

where

gm(�) = (−1)m
Γ(α1 + �+m)Γ(α2 + �+m)Γ(βn − 2�−m)

Γ(βn + α1)Γ(βn + α2)Γ(m+ 1)
(4.22)

×
∞∑
k=0

(βn − �−m)k
(α1 + βn)k(α2 + βn)k

A(n)(k)

with

A(n)(k) =

k∑
k2=0

(n−1−γn−γn−1+···−γ2−αn+1−αn−···−α3+k2)k−k2
(1−γ1−α3)k−k2

(k−k2)!

(4.23)

×
k2∑

k3=0

(n−2−γn−γn−1+···−γ3−αn+1−αn−...−α4+k3)k2−k3 (1−γ2−α4)k2−k3

(k2−k3)!

× · · ·

×
kn−2∑

kn−1=0

(2−γn−γn−1−αn+1−αn+kn−1)kn−2−kn−1
(1−γn−2−αn)kn−2−kn−1

(kn−2−kn−1)!

× (1− γn − αn+1)kn−1
(1− γn−1 − αn+1)kn−1

kn−1!

and where (· · · )n is the Pochhammer symbol. The series in gm(�) terminates
when � = βn, while for � = 0 we need the conditions Re(αj +m) > 0, j =
3, . . . , n, for convergence.
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For the case βn ∈ Z (corresponding to the quintic in our examples) the
analytic continuation formula for the holomorphic solution reads

Γ(α1) · · ·Γ(αn)

Γ(1− γ1) · · ·Γ(1− γn−1)
nFn−1

(
α1, . . . , αn

1− γ1, . . . , 1− γn−1
; z

)
(4.24)

=

βn−1∑
m=0

lm(1− z)m + (1− z)βn

∞∑
m=0

(wm + qm log(1− z)) (1− z)m

where lm = gm(0), qm = gm(βn) and

wm = (−1)βn
(α1 + βn)m(α2 + βn)m
Γ(βn +m+ 1)Γ(m+ 1)

m∑
k=0

(−m)k
(α1 + βn)k(α2 + βn)k

An(k)

(4.25)

× (ψ(1 +m− k) + ψ(1 + βn +m)− ψ(α1 + βn +m)− ψ(α2 + βn +m))

+ (−1)βn+m (α1 + βn)m(α2 + βn)m
Γ(βn +m+ 1)

∞∑
k=m+1

Γ(k −m)

(α1 + βn)k(α2 + βn)k
A(n)(k),

where ψ is the digamma function. The convergence of the series in lm requires
the conditions Re(αj +m) > 0, j = 3, . . . , n, while the convergence of the
series in wm requires the conditions Re(αj + βn +m) > 0, j = 3, . . . , n. In
Section 5 we will explicitly apply these formulas to one-parameter Calabi-
Yau hypersurfaces in Pn.

4.3. Logarithmic solutions: generalization of Nørlund’s method

The analytic continuation for the solutions of the second type, i.e. those
containing logarithms has recently been derived in [25]. There a method
of analytic continuation due to Nørlund [22] has been generalized to the
resonant case. We refer to these references for the proofs and state here only
the relevant results. One of the basic reasons why the analytic continuation
can be performed is the property of the functions Gp(z) in (4.13) mentioned
above: they are holomorphic at z = 1 for p > 1. Moreover, they admit a
rather simple series expansion at z = 1:

Gp

(
α1, . . . , αn

γ1, . . . , γn
; z

)
(4.26)

= zγq

∞∑
m=0

1

m!
Gp

(
α1, . . . , αn

γ1, . . . , γq−1, γq +m, γq+1, . . . , γn
; 1

)
(1− z)m
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for any p > 1. In order to determine the coefficients in this expansion, we
again make use of a recurrence. To state it we need an auxiliary function

G̃p(z) := G̃p

(
α1, . . . , αp

γ1, . . . , γp
; z

)
(4.27)

:= Gp,p
p,p

(
1− α1, . . . , 1− αp

γ1, . . . , γp
; (−1)p−2z

)
.

Then one can show [25] that for any p ≥ 1 there exists the following integral
representation of Gp(z)

Gp

(
α1, . . . , αn

γ1, . . . , γn
; z

)
(4.28)

=
1

Γ(βn − βp)

∫ z

0

dt

t
G̃p

(
α1, . . . , αp

γ1, . . . , γp
; t

)
ξ̄n−p

(
αp+1, . . . , αn

γp+1, . . . , γn
;
z

t

)
.

if Reβn > Reβp, Re(αs + γj) > 0, j = 1, . . . , p, s = p+ 1, . . . , n. Moreover,

the auxiliary function G̃p(z) satisfies the recurrence for p > 2

G̃p

(
α1, . . . , αp

γ1, . . . , γp
; z

)
(4.29)

= Γ(αp−1 + γp)Γ(αp + γp)

×
∫

ds

2πi
e±πis Γ(αp−1 + s)Γ(αp + s)

Γ(αp−1 + αp + γp + s)
G̃p−1

(
α1, . . . , αp−2,−s

γ1, . . . , γp−1
; z

)
.

By repeated application of this recurrence, the argument is again reduced
to the case n = 2 where G̃2(z) = G2(z) and we can apply (4.19). The t in-
tegral can be solved by using the integral representation of 2F1 and special
properties of integrals of ξ̄n−p due to [22]. The result is then the follow-
ing series expansion for Gp(z), p = 2, at z = 1 [25]. If |z − 1| < 1, Reβn >
Reβp, Re(αs + γj) > 0, j = 1, . . . , p, s = p+ 1, . . . , n, αp + γp, αs + γs+1 ∈
Z≤0, s = 2, . . . , p− 1 then

G2(z) =

∞∑
m=0

Γ(α1 + γ2 +m)Γ(α2 + γ2 +m)

Γ(m+ 1)

(4.30)

×
∫

dv

2πi
e−iπvΓ(α1 + γ1 + v)Γ(α2 + γ1 + v)Γ(−v)

Γ(α1 + α2 + γ1 + γ2 +m+ v)

×
∫

du

2πi
e−iπuΓ(−v + u)Γ(−u)

Γ(−v)

n∏
s=3

Γ(αs + γ1 + u)

Γ(1− γs + γ1 + u)
(1− z)m.
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If p > 2 then the expansion is slightly more involved:

Gp(z) =

∞∑
m=0

Γ(α1 + γ2)

∫
dv

2πi
e−iπvΓ(α1 + γ1 + v)Γ(−v)

(4.31)

×
∫

ds

2πi

Bp,m(s)

Γ(m+ 1)

Γ(γ2 − s)Γ(γ1 + v − s)

Γ(α1 + γ1 + γ2 + v − s)

×
∫

du

2πi
e−iπuΓ(−v + u)Γ(−u)

Γ(−v)

n∏
s=p+1

Γ(αs + γ1 + u)

Γ(1− γs + γ1 + u)
(1− z)m

where Bp,m(s) = Bp(s)|γp→γp+m with

Bp(s) = Γ(αp + γp)Γ(αp−1 + γp)Γ(αp−2 + γp−1) · · ·Γ(α2 + γ3)

(4.32)

×
∫

dsp−2

2πi
e−iπsp−2

Γ(αp + sp−2)Γ(αp−1 + sp−2)Γ(γp−1 + sp−2)

Γ(αp + αp−1 + γp + sp−2)

×
∫

dsp−3

2πi
e−iπsp−3

Γ(αp−2 + sp−3)Γ(γp−2 + sp−3)Γ(−sp−2 + sp−3)

Γ(αp−2 + γp−1 − sp−2 + sp−3)

× · · ·
×
∫

ds2
2πi

e−iπs2 Γ(α3 + s2)Γ(γ3 + s2)Γ(−s3 + s2)

Γ(α3 + γ4 − s3 + s2)

× e−iπsΓ(α2 + s)Γ(−s2 + s)

Γ(α2 + γ3 − s2 + s)
.

These residue integrals can be evaluated by closing the integration contours
in either direction. In the examples discussed in Section 5 we will make a
convenient choice. For p = 2, 3 we will end up with series expansions of the
following form:

G2(z) = zγ1

∞∑
m=0

hm (1− z)m(4.33)

G3(z) = zγ1

∞∑
m=0

km (1− z)m,(4.34)

where we refer to [25] for the explicit expressions of the coefficients hm, km
as they arise after evaluating (4.32).

With that, we have collected all the necessary mathematical methods to
analytically continue a basis of solutions of (4.1) to the singular point z = 1.
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4.4. An alternative approach

We now present an alternative approach to the analytic continuation to the
hemisphere partition function. In contrast to the previous methods this ap-
proach always leads to a double integral. However, evaluating these integrals
is not always straightforward. Despite these difficulties we have successfully
implemented this alternative method for several examples of branes on the
cubic and the quartic.

Let us first explain the general idea. The hemisphere partition functions
that we encounter in our main examples, upon grade restriction, are Mellin-
Barnes integrals of the form

Iq(z) :=

∫ i∞

−i∞
dsKq(s)z

s q = 1, . . . N − 1(4.35)

where

Kq(s) :=
eiπ(q−N)sΓ(−s)N−q

∏N−1
j=1 Γ(s+ j

N )

Γ(s+ 1)q−1
(4.36)

and the contour is defined such that it passes through the left of the pole at
s = 0. In order to investigate the behavior of this integral around z = 1 we
simply substitute z by 1− z in the identity (A.15) in order to write zs as:

zs =
1

2πi

1

Γ(−s)

∫ i∞

−i∞
duΓ(u− s)Γ(−u)(z − 1)u.(4.37)

Then the Mellin-Barnes integral becomes (up to an irrelevant constant)

Iq(z) ∼
∫ i∞

−i∞
duΓ(−u)Fq(u)(z − 1)u,(4.38)

where Fq(u) takes the form

Fq(u) =

∫ i∞

−i∞
ds

e−iπ(N−q)sΓ(u− s)Γ(−s)N−q−1
∏N−1

j=1 Γ(s+ j
N )

Γ(s+ 1)q−1
(4.39)

= GN−q,N−1
N−1,N−1

(
1− 1

N , . . . , 1− N−1
N

u, 0, . . . , 0
; e−iπ(N−q)

)
.

In principle we cannot draw any conclusions about convergence of Fq(u).
Since we are interested in the solution in the region |z − 1| � 1, we can
perform the integral (4.38) by the residue method, closing the contour to
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the right, provided that Γ(−u)Fq(u) does not grow faster than (z − 1)u as
|u| → ∞ and |Arg(u)| < π

2 . Assuming that this is the case, we would like to
see what the poles of Fq(u) in the region Re(u) > 0 are. In order to do this,
first we notice that by repeated application of the identity

e−2πis = 1 +
2πie−iπs

Γ(−s)Γ(s+ 1)
(4.40)

we can bring Fq(u) to the form:

Fq(u) =

N−q−1∑
L=0

CL

∫ i∞

−i∞
ds

e−iπαLsΓ(u− s)Γ(−s)N−q−1−L
∏N−1

j=1 Γ(s+ j
N )

Γ(s+ 1)q−1+L

(4.41)

=

N−q−1∑
L=0

CLF
(L)
q (u)

where CL is a numerical constant, that is irrelevant for this analysis and

αL = 0 or 1 αL + L is even/odd if N − q is even/odd .(4.42)

Let us analyze the convergence of the integrals F
(L)
q (u). First consider the

asymptotics of the integrand. Using the formula:

lim
|y|→∞

|Γ(x+ iy)| =
√
2πe−|y|π/2|y|x− 1

2(4.43)

we obtain

lim
Im(s)=±i∞

[
Integrand(F (L)

q (u))
]
∼ eπ| Im(s)|(±αL−N+q+L)| Im(s)|Re(u)−N−1

2 .

(4.44)

Since ±αL −N + q + L ≤ 0 the integral F
(L)
q (u) is absolutely convergent

unless αL = 1 and L = N − q − 1. If ±αL −N + q + L < 0 then, the expo-

nential term dominates and the integral F
(L)
q (u) is a well defined function

for all u such that Re(u) ≥ 0 since there are no poles hitting the contour.
Indeed we can even take Re(u) < 0 and continuously deform the contour to
avoid the poles. The first pole for Re(u) < 0 will be at u = − 1

N . However,
we are not interested in the behavior for Re(u) < 0. Alternatively, we can
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compare F
(L)
q (u) with (4.13):

(4.45) F (L)
q (u) = GN−q−L,N−1

N−1,N−1

(
1− 1

N , . . . , 1− N−1
N

u, 0, . . . , 0
; e−iπαL

)
.

From this we also can conclude that F
(L)
q (u) is convergent except for L =

N − q − 1 where further analysis is necessary, as we are going to do next.

Coming back to the case of Re(u) ≥ 0, we concluded that the only in-

tegral that can potentially be divergent for u in this range is F
(L)
q (u) with

αL = 1 and L = N − q − 1. In such a case (4.44) shows that F
(L=N−q−1)
q (u)

diverges when

Re(u) ≥ N − 3

2
.(4.46)

We will now show that F
(L=N−q−1)
q (u) can be analytically continued to a

function with simple poles at Re(u) = N−3
2 + k for all k ∈ Z≥0. Let us start

by writing

F (N−q−1)
q (u) =

∫ i∞

−i∞
ds

e−iπsΓ(u− s)
∏N−1

j=1 Γ(s+ j
N )

Γ(s+ 1)N−2
.(4.47)

Then, assume 0 < Re(u) < N−3
2 , so the integral in s is convergent and per-

form it by taking the poles at s = u+ Z≥0. Then we get

F (N−q−1)
q (u) = (2πi)

e−iπu
∏N−1

j=1 Γ(u+ j
N )

Γ(u+ 1)N−2 N−1(4.48)

× FN−2

( 1
N + u, . . . , N−1

N + u

1 + u, . . . , 1 + u
; 1

)
.

Note that the hypergeometric function appearing in (4.48) has balance −u+
N−3
2 and hence satisfies all the assumptions of Theorem 1 of [29]. Therefore

we can write

F (N−q−1)
q (u) = (2πi)

e−iπuΓ( 1
N + u)Γ( 2

N + u)Γ(−u+ N−3
2 )

Γ(N−3
2 + 1

N )Γ(N−3
2 + 2

N )
(4.49)

×
∞∑
k=0

(−u+ N−3
2 )k

(N−3
2 + 1

N )k(
N−3
2 + 2

N )k
A(N−2)(k)
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where the coefficients A(N−2)(k) are defined in (4.23). Note that the series
in (4.49) is convergent, according to theorem 2 in [29] provided that Re(u) +
j
N + k > 0 for j = 3, . . . , N − 1 and for all k ∈ Z≥0. This is clearly satisfied in
our case. Moreover, equation (4.49) is precisely equation (4.6) in [22]. In [22],
there are further remarks regarding these expressions. The most important is
that (4.49) provides an analytic continuation of the left-hand side from 0 <
Re(u) < N−3

2 to u ∈ C \ {N−3
2 + k}k∈Z≥0

, since the right-hand side of (4.49)
is defined in this range of u, with first order poles at u ∈ {N−3

2 + k}k∈Z≥0
.

This concludes our analysis of F
(N−q−1)
q (u). Before we end this section, we

give a list of interesting and useful consequences of the properties of the
functions Fq(u):

• The odd/even properties of αL and L implies that the functions F
(L)
q (u)

are always expressed as linear combinations of generalized hypergeo-
metric functions of type N−1FN−2 at unit argument and their deriva-
tives with respect to its parameters (not with respect to the argument).

• We argued that only F
(N−q−1)
q (u) has poles in the region Re(u) ≥ 0.

Moreover we argued that these poles are simple and located at u ∈
{N−3

3 + k}k∈Z≥0
. As a consequence, if {Φ1,a(y)} is a basis of solutions

for the Picard-Fuchs equation around the conifold point y = 1− z,
then if N is even, none of the solutions contain a log y term but they
may have fractional powers of y. If N is odd, they contain at most one
power log y and no fractional powers of y. The same conclusion can
be reached by looking at the matrix of exponents of the Picard-Fuchs
operator at y.

• We will see that, if we write F
(L)
q (u) in terms of hypergeometric func-

tions, it is not apparent that F
(L)
q (k) are finite, leading to interesting

relations between hypergeometric functions and their derivatives.

5. Application to Calabi-Yau hypersurfaces in PN

In this section we apply our results of analytic continuation to CY hyper-
surfaces in PN for N = 3, 4, 5. By making a connection with the discussion
of GLSM branes in Section 3, we are able to study the behavior of D-branes
near the conifold point. For convenience, we introduce the variable y = 1− z
so that the conifold point is at y = 0. The series expansions of the solutions
of the hypergeometric differential equations around the conifold point are
given in Appendix B.
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5.1. The cubic

5.1.1. Method 1. The analytic continuation of the a D0 and a D2 brane
to the conifold point is almost trivial. In (3.20) we have identified the D0
brane with y∗1. By making use of (4.19) and (4.15) we get

(5.1) y∗1(z) =
1

Γ
(
1
3

)
Γ
(
2
3

)G2

(
1
3 ,

2
3

0, 0
; y

)
=

2πi

Γ
(
1
3

)
Γ
(
2
3

) (y∗2(y)− y∗1(y)) .

To get the analytic continuation of the D2 brane (3.9) we simply replace
z ↔ y. This yields the full analytic continuation matrix Φ0 = Φ1M10 with

(5.2) M10 =

⎛⎝ 0 −3Γ( 1

3)Γ(
2

3)
2πi

2πi
Γ( 1

3)Γ(
2

3)
0

⎞⎠ .

5.1.2. Method 2. We first discuss the analytic continuation of a D0-
brane on the cubic. Its hemisphere partition function has been linked to the
Mellin-Barnes integral

y∗1 =

∫ i∞

−i∞
ds

Γ
(
1
3 + s

)
Γ
(
2
3 + s

)
(1− e2πis)Γ(1 + s)2

zs(5.3)

=

∫ i∞

−i∞

ds

2πi

Γ
(
1
3 + s

)
Γ
(
2
3 + s

)
Γ(−s)

Γ(1 + s)
zse−iπs.

Replacing z by y = 1− z using (A.15) the s-integral can be evaluated by us-
ing Jantzen’s additional identity (A.18) [61]. The resulting u-integral looks
like a hemisphere partition function with z replaced by y for the grade
restricted structure sheaf for the cubic which we could relate to the combi-
nation y∗2 − y∗1 of our basis of Mellin-Barnes integrals.

y∗1(z) =
1

(2πi)Γ
(
1
3

)
Γ
(
2
3

)(5.4)

×
∫ i∞

−i∞
duΓ

(
1

3
+ u

)
Γ

(
2

3
+ u

)
Γ(−u)2yue−2πiu

=
2πi

Γ
(
1
3

)
Γ
(
2
3

)(y∗2(y)− y∗1(y)).

If we start with the D2-brane in the large radius phase, the s-integral reduces
to the first Barnes lemma (A.16). The remaining u-integral then looks like
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a hemisphere partition function for a D0-brane:

y∗2(z)− y∗1(z) =
∫ i∞

−i∞

ds

(2πi)2
Γ

(
1

3
+ s

)
Γ

(
2

3
+ s

)
Γ(−s)2zs(5.5)

=
Γ
(
1
3

)
Γ
(
2
3

)
(2πi)2

∫ i∞

−i∞
du

Γ
(
1
3 + u

)
Γ
(
2
3 + u

)
Γ(−u)

Γ(1 + u)
e−iπuyu

=
Γ
(
1
3

)
Γ
(
2
3

)
(2πi)

y∗1(y).

This is indeed the same result as obtained from method 1. It is interesting
that the result near the conifold point again looks like a hemisphere partition
function for the cubic with a different normalization and the variable z
replaced by y. Furthermore the brane factors for the D0 and D2-branes get
exchanged. This behavior is very special to the cubic curve7. The reason
is that the monodromy behavior around the conifold point is the same as
around the large radius point. Furthermore the hypergeometric differential
operator in the z-variable and the y-variable are the same.

5.2. The quartic

5.2.1. Method 1. For the mirror quartic we fix n = 3 and β3 =
1
2 .

Bühring’s method for the analytic continuation of the holomorphic solution
yields

(5.6) Γ(14)Γ(
1
2)Γ(

3
4)Φ0,11 = g0(0)Φ1,11 + g1(0)Φ1,12 + g0(

1
2)Φ1,13

with

g0(0) =
Γ(14)Γ(

1
2)

2

Γ(34)
3F2

(
1
4 ,

1
2 ,

1
4

3
4 , 1

; 1

)
=

Γ(12)Γ(
1
8)Γ(

3
8)

2 Γ(58)Γ(
7
8)

(5.7)

g1(0) = −Γ(54)Γ(
3
2)Γ(−1

2)

Γ(34)
3F2

(
−1

2 ,
1
4 ,

1
4

3
4 , 1

; 1

)
(5.8)

= 2Γ(12)

(
3Γ(18)Γ(

3
8)

64 Γ(58)Γ(
7
8)

+
Γ(58)Γ(

7
8)

Γ(18)Γ(
3
8)

)
g0(

1
2) = −2Γ(12)(5.9)

7This statement also holds for other elliptic curves that are described in terms
of hypersurfaces in weighted P2.
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This describes the analytic continuation of the central charge of the D0
brane (C.16).

The method of [25] for analytic continuation of the solution Φ0,12 was
outlined in Section 4.3. In particular, (4.15) and (B.34) yield the relation of
Φ0,12 to G2. The latter can be expanded near z = 1 using (4.30) and (4.33)
to yield

(5.10) − 2πiΓ(14)Γ(
1
2)Γ(

3
4)Φ0,12 = h0Φ1,11 + h1Φ1,12.

The left-hand side has been identified as the large-radius value of the hemi-
sphere partition function for the D2-brane (C.30). The coefficients on the
right-hand side are

h0 = Γ(14)
2Γ(12)

2
3F2

(
1
4 ,

1
2 ,

1
4

3
4 , 1

; 1

)
=

Γ(14)Γ(
1
2)Γ(

3
4)Γ(

1
8)Γ(

3
8)

2 Γ(58)Γ(
7
8)

(5.11)

h1 =
1
6Γ(

1
4)

2Γ(12)
2
3F2

(
1
4 ,

1
2 ,

1
4

7
4 , 1

; 1

)
(5.12)

= 2Γ(14)Γ(
1
2)Γ(

3
4)

(
3Γ(18)Γ(

3
8)

64 Γ(58)Γ(
7
8)

− Γ(58)Γ(
7
8)

Γ(18)Γ(
3
8)

)
.

For the evaluation of the 3F2 at 1 we used identities due to Dixon (A.11)
[59] and Lavoie et al. (A.12), (A.13) [62]. By the residue theorem, we have
2
√
2π

3

2Φ0,13 = 2y∗1 − 3y∗2 + 2y∗3 (cf. (B.35)). Since Φ1,13 and ξ3 belong to the
index β3 and their series expansion starts with 1, they are equal and we find
from (4.17)

(5.13) Φ1,13(y) = −Γ(32)

π
(2 y∗1(z)− 3 y∗2(z) + 2 y∗3(z)) ,

which yields

(5.14) Φ0,13(z) = − 1

Γ(14)Γ(
3
4)
Φ1,13(y).

This is the analytic continuation of the hemisphere partition function of the
structure sheaf (C.40) to the conifold point. Since Φ1,13(0) = 0 we immedi-
ately see that the corresponding D4 brane becomes massless at the conifold
point. Collecting all the information we have computed the full analytic
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continuation matrix is [25]

(5.15) M10 =

⎛⎜⎝
A

2
√
2π

− A
4πi 0

2√
2π

(
3A
64 + 1

A

) − 1
πi

(
3A
64 − 1

A

)
0

− 2√
2π

0 − 1√
2π

⎞⎟⎠
where A =

Γ( 1

8
)Γ( 3

8
)

Γ( 5

8
)Γ( 7

8
)
.

5.2.2. Method 2. The basis y∗ of Mellin-Barnes integral has the following
form for the quartic:

y∗j (z) =
1

(2πi)j

∫ i∞

−i∞
dse−jπisΓ

(
s+ 1

4

)
Γ
(
s+ 1

2

)
Γ
(
s+ 3

4

)
Γ(−s)j

Γ(1 + s)3−j
zs(5.16)

j = 1, 2, 3.

Apart from (A.15) we also we make repeated use of the identity (4.40) in
order to carefully treat the factor e−jπis. The D0-brane corresponds to j = 1.
Applying (A.15) we get

y∗1(z) =
1

(2πi)2

∫ i∞

−i∞
dudse−iπ(s+u)(5.17)

× Γ
(
s+ 1

4

)
Γ
(
s+ 1

2

)
Γ
(
s+ 3

4

)
Γ(u− s)Γ(−u)

Γ(1 + s)2
yu.

We can evaluate the s-integral in (5.17) by closing the contour either way.
We choose to close the contour to the right and pick up poles8 at s = u+ k.
Evaluating the residue we get

y∗1 =
1

(2πi)

∫
duΓ(−u)e−2iπuΓ

(
u+ 1

4

)
Γ
(
u+ 1

2

)
Γ
(
u+ 3

4

)
Γ(u+ 1)2

3(5.18)

× F2

(
u+ 1

4 , u+ 1
2 , u+ 3

4

u+ 1, u+ 1
; 1

)
yu.

In order to get an expansion around the conifold point we have to evaluate
the contour integral for Re(u) > 0. In this region the generalized hypergeo-
metric function in the integral is clearly divergent and we need to regularize.

8This means we choose a clockwise orientation of the contour.



132 J. Knapp, M. Romo, and E. Scheidegger

In this case we are lucky because it turns out that all the divergence comes
from poles at u ∈ 1

2 + Z≥0. We can use the Thomae relation (A.9) to write

3F2

(
1
4 + u, 12 + u, 34 + u

1 + u, 1 + u
; 1

)
(5.19)

=
Γ(1 + u)Γ

(
1
2 − u

)
Γ
(
5
4

)
Γ
(
1
4

) 3F2

(
3
4 ,

1
2 ,

3
4 + u

5
4 , 1 + u

; 1

)
.

The remaining u-integral only has first order poles at u = k and u = k + 1
2

for k ∈ Z≥0 and can be evaluated using the residue theorem. The result is

y∗1(z) =
π

Γ
(
5
4

)
Γ
(
1
4

)[ ∞∑
k=0

yk
Γ
(
k + 1

4

)
Γ
(
k + 3

4

)
Γ(1 + k)2

3F2

(
3
4 ,

1
2 ,

3
4 + k

5
4 , 1 + k

; 1

)
(5.20)

−
∞∑
k=0

yk+
1

2

Γ
(
k + 3

4

)
Γ
(
k + 5

4

)
Γ
(
k + 3

2

)2 3F2

(
3
4 ,

1
2 ,

5
4 + k

5
4 ,

3
2 + k

; 1

)]
.

Expanding in k and comparing with the periods at the conifold point in
Appendix B.2 we get

y∗1(z) = π

[
Γ
(
3
4

)
Γ
(
5
4

)3F2

(
3
4 ,

1
2 ,

3
4

5
4 , 1

; 1

)
Φ1,11(5.21)

+
Γ
(
7
4

)
Γ
(
1
4

)3F2

(
3
4 ,

1
2 ,

7
4

5
4 , 2

; 1

)
Φ1,12

− Γ
(
3
4

)
Γ
(
1
4

)
Γ
(
3
2

)2 3F2

(
3
4 ,

1
2 ,

5
4

5
4 ,

3
2

; 1

)
Φ1,13

]

By repeated application of the identities collected in Appendix A, in par-
ticular (A.11) and (A.12), one can show that this perfectly agrees with the
result of method 1.

Next, we consider a D2-brane which we can relate to the combination
y∗2 − y∗1 by making use of (4.40):

y∗2(z)− y∗1(z)

(5.22)

=
1

(2πi)3

∫
dudse−iπuΓ

(
s+ 1

4

)
Γ
(
s+ 1

2

)
Γ
(
s+ 3

4

)
Γ(−s)Γ(u− s)Γ(−u)

Γ(s+ 1)
yu.
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Applying the analysis of Section 4.4, in particular the decomposition (4.41),
this equation can be written as∫ i∞

−i∞
duΓ(−u)F2(u)(z − 1)u −

∫ i∞

−i∞
duΓ(−u)F

(1)
2 (u)(z − 1)u(5.23)

=

∫ i∞

−i∞
duΓ(−u)F

(0)
2 (u)(z − 1)u.

We argued that F
(0)
2 (u) is convergent for Reu ≥ 0, hence the integral on the

right hand side will define a holomorphic function of z − 1. To determine
this function, we perform in a first step the integral over s while keeping u
an arbitrary parameter. The integral we have to evaluate is

(5.24) I1 =

∫
ds

2πi

Γ
(
s+ 1

4

)
Γ
(
s+ 1

2

)
Γ
(
s+ 3

4

)
Γ(−s)Γ(u− s)

Γ(1 + s)
.

If we close the contour to the right there are first order poles at s = k and
s = u+ k with k ∈ Z≥0. The result is

I1 = −Γ(−u)Γ(1 + u)Γ
(
1
4

)
Γ
(
1
2

)
Γ
(
3
4

)
Γ(1− u)

3F2

(
1
4 ,

1
2 ,

3
4

1, 1− u
; 1

)(5.25)

+
Γ(−u)Γ

(
u+ 1

4

)
Γ
(
u+ 1

2

)
Γ
(
u+ 3

4

)
Γ(1 + u)

3F2

(
u+ 1

4 , u+ 1
2 , u+ 3

4
1 + u, 1 + u

; 1

)
.

One can check that both terms are divergent, but we know that the diver-
gences must cancel. As in the D0-case we can use the Thomae relations to
factor out the poles. Specifically, we use (A.10) for the first term and (A.9)
for the second term. The hemisphere partition function then becomes

y∗2(z)− y∗1(z)(5.26)

=
1

(2πi)2

∫
duyu

[
− e−iπuΓ(−u)2Γ

(
1
4

)
Γ
(
3
4

)
Γ
(
1
2 − u

)
Γ (1 + u)

Γ
(
3
4 − u

)
Γ
(
5
4 − u

)
× 3F2

(
1
2 ,

1
2 − u, 12 − u

3
4 − u, 54 − u

; 1

)
+ e−iπuΓ

(
u+ 1

2

)
Γ
(
u+ 1

4

)
Γ
(
u+ 3

4

)
Γ(−u)2Γ

(
1
2 − u

)
Γ
(
1
4

)
Γ
(
5
4

)
× 3F2

(
3
4 ,

1
2 ,

3
4 + u

5
4 , 1 + u

; 1

)]
.
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There are second order poles at u = k and first order poles at u = k + 1
2 for

k ∈ Z. To deal with the double poles we introduce a small shift u = k − ε.
Then can rewrite the integral as follows

(5.27)

∞∑
k=0

[
−
∮

dε

(2πi)2
yk−εeiπε

Γ
(
1
4

)
Γ
(
3
4

)
Γ
(
1
4 + k − ε

)
Γ
(−1

4 + k − ε
)

Γ (1 + k − ε) Γ
(
1
2 + k − ε

)
× π

sinπ
(
3
4 + ε

)
sinπ

(
5
4 + ε

)
sin2 πε sinπ

(
1
2 + ε

) 3F2

(
1
2 ,

1
2 − k + ε, 12 − k + ε

3
4 − k + ε, 54 − k + ε

; 1

)
+

∮
dε

(2πi)2
yk−εeiπε

Γ
(
1
4 + k − ε

)
Γ
(
3
4 + k − ε

)
Γ
(
1
4

)
Γ
(
5
4

)
Γ(1 + k − ε)2

π3

sin2 πε sinπ
(
1
2 + ε

)
× 3F2

(
3
4 ,

1
2 ,

3
4 + k − ε

5
4 , 1 + k − ε

; 1

)]

+
1

(2πi)

∞∑
k=0

[
− e−

iπ

2 yk+
1

2

Γ
(
1
4

)
Γ
(
3
4

)
Γ
(
3
4 + k

)
Γ
(
1
4 + k

)
Γ
(
3
2 + k

)
Γ(1 + k)

sin π
4 sin

3π
4

sin2 −π
2

× 3F2

(
1
2 ,−k,−k

1
4 − k, 34 − k

; 1

)
+ e

iπ

2 yk+
1

2

Γ
(
3
4 + k

)
Γ
(
5
4 + k

)
Γ
(
1
4

)
Γ
(
5
4

)
Γ
(
3
2 + k

)2 π2

sin2 −π
2

3F2

(
3
4 ,

1
2 ,

5
4 + k

5
4 ,

3
2 + k

; 1

)]
.

Evaluating the poles from the first two summands will yield a term holo-
morphic in y and a term proportional to log y. We have argued that the
integral must define a holomorphic function, hence the coefficient of the
term proportional to log y must vanish. The explicit calculation yields the
identity

3F2

(
1
2 ,

3
4 , k + 3

4
5
4 , k + 1

; 1

)
(5.28)

= − Γ
(
5
4

)
Γ
(
k − 1

4

)
Γ(k + 1)

Γ
(
3
4

)
Γ
(
k + 1

2

)
Γ
(
k + 3

4

) 3F2

(
1
2 ,

1
2 − k, 12 − k

3
4 − k, 54 − k

; 1

)
k ∈ Z≥0.

Similarly, the third and fourth summand in (5.27) must vanish for the same
reason as they yield an expression proportional to

√
y and leads to the
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identity

3F2

(
1
2 ,

3
4 , k + 5

4
5
4 , k + 3

2

; 1

)
(5.29)

=
Γ
(
5
4

)
Γ
(
k + 1

4

)
Γ
(
k + 3

2

)
Γ
(
3
4

)
Γ(k + 1)Γ

(
k + 5

4

) 3F2

(
1
2 ,−k,−k

1
4 − k, 34 − k

; 1

)
k ∈ Z≥0

A direct proof of these two identities has been given by C. Krattenthaler [63]
using techniques explained in [64]. It involves resummations and repeated
application of the identities (A.9), (A.10) and (A.14).

Defining two functions f1(k, ε) and f2(k, ε) by writing the terms with
second order poles in (5.27) as

∮
dε

sin2 πε
yk−ε(f1(k, ε) + f2(k, ε)) the final result

is

(5.30) y∗2(z)− y∗1(z) = (2πi)

∞∑
k=0

yk
1

π2

(
df1(k, ε)

dε
+

df2(k, ε)

dε

)∣∣∣∣
ε=0

.

This is convergent and can be expanded in terms of the periods Φ1,11 and
Φ1,12. The coefficients correspond to the terms for k = 0 and k = 1 in the
above sum. Even though the expressions look completely different, com-
parison with (5.10) shows that the results agree numerically. We have not
managed to prove this non-trivial identity analytically and leave this as an
open conjecture.

The D4-brane is slightly more complicated. With (4.40) one finds that
it is convenient to evaluate the following combination

y∗3(z)− y∗2(z) =
1

(2πi)4

∫
dudse−iπ(u+s)Γ

(
s+

1

4

)
Γ

(
s+

1

2

)
Γ(5.31)

×
(
s+

3

4

)
Γ(−u)Γ(−s)2Γ(u− s).

The s-integral now has second order poles for positive integer s:

(5.32) I2 =

∫
ds

2πi
Γ

(
s+

1

4

)
Γ

(
s+

1

2

)
Γ

(
s+

3

4

)
Γ(−s)2Γ(u− s).

We could close the contour to the left to avoid the second order poles, but it
actually turns out to be better to separate the second order poles and close
the contour to the right. For this purpose we introduce a small parameter ε
so that the integral has first order poles at s = k, s = k + ε and s = k + u for
s ∈ Z≥0. At the end of the calculation we take the limit ε → 0. We get three
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contributions and apply the Thomae relations (A.9) and (A.10) to factor
out poles in u.

I
(1)
2 =

π2

sinπu sinπε

Γ
(
1
4

)
Γ
(
3
4

)
Γ
(
1
2 − u− ε

)
Γ
(
3
4 − u− ε

)
Γ
(
5
4 − u− ε

)(5.33)

× 3F2

(
1
2 − ε, 12 − u, 12 − u− ε
3
4 − u− ε, 54 − u− ε

; 1

)

I
(2)
2 =

π2e−iπε

sinπ(−ε) sinπ(u− ε)

Γ
(
1
4 + ε

)
Γ
(
3
4 + ε

)
Γ
(
1
2 − u− ε

)
Γ
(
3
4 − u

)
Γ
(
5
4 − u

)(5.34)

× 3F2

(
1
2 − u, 12 ,

1
2 − u− ε

3
4 − u, 54 − u

; 1

)

I
(3)
2 =

π2e−iπu

sinπ(−u) sinπ(−u+ ε)
(5.35)

× Γ
(
1
4 + u

)
Γ
(
1
2 + u

)
Γ
(
3
4 + u

)
Γ
(
1
2 − u− ε

)
Γ(1 + u)Γ

(
5
4 − ε

)
Γ
(
1
4 − ε

)
× 3F2

(
3
4 ,

1
2 ,

3
4 + u

5
4 − ε, 1 + u

; 1

)

Expanding these expressions in ε one immediately sees that the 1
ε -

contributions originating from I
(1)
2 and I

(2)
2 cancel and we can safely take

the limit ε → 0. The expansion in particular introduces derivative terms of

3F2 with respect to the parameters. Since the result is quite ugly and can
easily be obtained by feeding the expressions above into Mathematica we
do not give details here. After this we have to perform the u-integration by
closing the integration contour to the right. There are second order poles
at u = k and first order poles at u = 1

2 + k for k ∈ Z≥0. By another set of
highly non-trivial identities, similar to (5.29) and (5.28) but with deriva-
tives on the hypergeometric functions, the terms with log y and

√
y cancel

in accordance with the discussion in Section 4.4. Since we have not found
a way to simplify these lengthy expressions we omit them here. One can
show that the final result is a linear combination of the two periods Φ1,11

and Φ1,12. Numerical comparison to the results of method 1 shows agree-
ment and we seem to have uncovered a further set of non-trivial identities
between generalized hypergeometric functions and their derivatives.
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5.3. The quintic

5.3.1. Method 1. For the quintic we have n = 4 and β4 = 1. The analytic
continuation of the holomorphic solution yields

(5.36) Φ0,11 = l0Φ1,11 + w0Φ1,12 + q0Φ1,13 +
(
w1 − 7

10w0

)
Φ1,14.

The left-hand side has been identified with Zζ�0
D2 (Op) in (3.48). With

(5.37) A(4)(k) =
(35)k(

2
5)k

Γ(1 + k)
3F2

(
1
5 ,

1
5 ,−k

3
5 ,

3
5 − k

; 1

)

the values of the coefficients are

l0 =
Γ(15)

Γ(35)

∞∑
k=0

Γ(35 + k)Γ(25 + k)

Γ(65 + k)Γ(75 + k)
3F2

(
1
5 ,

1
5 ,−k

3
5 ,

3
5 − k

; 1

)
(5.38)

q0 = 1(5.39)

w0 = −ψ(1)− ψ(2) + ψ(65) + ψ(75)(5.40)

−
∞∑
k=1

(35)k(
2
5)k

k (65)k(
7
5)k

3F2

(
1
5 ,

1
5 ,−k

3
5 ,

3
5 − k

; 1

)

w1 = −21
25

(
ψ(2) + ψ(3)− ψ(115 )− ψ(125 )(5.41)

− 1
6

(
ψ(1) + ψ(3)− ψ(115 )− ψ(125 )

)
−

∞∑
k=2

(35)k(
2
5)k

k(k − 1)(65)k(
7
5)k

3F2

(
1
5 ,

1
5 ,−k

3
5 ,

3
5 − k

; 1

))
.

The analytic continuation of Φ0,12 becomes

Φ0,12 = − h0
2πi

Φ1,11 − h1
2πi

Φ1,12 −
(

h2
2πi

− 7

10

h1
2πi

)
Φ1,14.(5.42)
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This describes the analytic continuation of Zζ�0
D2 (Ol) (3.44). The coefficients

are

h0 = Γ(15)
2Γ(25)

2Γ(45)

∞∑
�=0

(15)�(
2
5)�

(35)��!
3F2

(−�, 35 ,
4
5

1, 1
; 1

)
(5.43)

h1 =
2
15Γ(

1
5)

2Γ(25)
2Γ(45)

∞∑
�=0

(15)�(
2
5)�

(85)��!
3F2

(−�, 35 ,
4
5

1, 1
; 1

)
(5.44)

h2 =
7

100Γ(
1
5)

2Γ(25)
2Γ(45)

∞∑
�=0

(15)�(
2
5)�

(135 )��!
3F2

(−�, 35 ,
4
5

1, 1
; 1

)
.(5.45)

The analytic continuation of the Φ0,13 is

Φ0,13 =
5 k0

(2πi)2
Φ1,11 +

5 k1
(2πi)2

Φ1,12 +

(
5 k2

(2πi)2
− 7

10

5 k1
(2πi)2

)
Φ1,14(5.46)

Recall that this is not the analytic continuation of the “canonical” D4 brane
(3.33) in the GLSM but a bound state with D2 and D0 branes given in (3.35).
The coefficients are

k0 = Γ(25)Γ(
3
5)Γ(

4
5)

∞∑
�=0

Γ(15 + �)2

Γ(�+ 1)2
(5.47)

×
(
e−iπ 2

5

Γ(15)Γ(
2
5)Γ(

2
5 + �)

Γ(35)Γ(
3
5 + �)

3F2

(
2
5 ,

2
5 + �, 25

4
5 ,

3
5 + �

; 1

)

+ e−iπ 3

5

Γ(−1
5)Γ(

3
5)Γ(

3
5 + �)

Γ(25)Γ(
4
5 + �)

3F2

(
3
5 ,

3
5 + �, 35

6
5 ,

4
5 + �

; 1

))

k1 = Γ(45)Γ(
7
5)Γ(

8
5)

∞∑
�=0

Γ(15 + �)2

Γ(�+ 1)2
(5.48)

×
(
e−iπ 2

5

Γ(15)Γ(
2
5)Γ(

2
5 + �)

Γ(85)Γ(
3
5 + �)

3F2

(
2
5 ,

2
5 + �,−3

5
4
5 ,

3
5 + �

; 1

)

+ e−iπ 3

5

Γ(−1
5)Γ(

3
5)Γ(

3
5 + �)

Γ(75)Γ(
4
5 + �)

3F2

(
3
5 ,

3
5 + �,−2

5
6
5 ,

4
5 + �

; 1

))
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k2 =
1
2Γ(

4
5)Γ(

12
5 )Γ(

13
5 )

∞∑
�=0

Γ(15 + �)2

Γ(�+ 1)2
(5.49)

×
(
e−iπ 2

5

Γ(15)Γ(
2
5)Γ(

2
5 + �)

Γ(135 )Γ(
3
5 + �)

3F2

(
2
5 ,

2
5 + �,−8

5
4
5 ,

3
5 + �

; 1

)

+ e−iπ 3

5

Γ(−1
5)Γ(

3
5)Γ(

3
5 + �)

Γ(125 )Γ(
4
5 + �)

3F2

(
3
5 ,

3
5 + �,−7

5
6
5 ,

4
5 + �

; 1

))

Finally, the analytic continuation of Zζ�0
D2 (OX) (3.28) can be determined

using (4.17) as

(5.50) Φ1,12(y) =
5

2πi (y
∗
4(z)− 2 y∗3(z) + 2 y∗2(z)− y∗1(z)) =

1

2πi
Φ0,14(z).

Since Φ1,12(0) = 0 we confirm that this D6 branes becomes massless at the
conifold point. This result has first been obtained through a monodromy
argument in [65].

In summary, the following analytic continuation matrix reads [25]

(5.51) M10 =

⎛⎜⎜⎜⎜⎜⎜⎝
l0 − h0

2πi
5 k0

(2πi)2 0

w0 − h1

2πi
5 k1

(2πi)2 2πi

1 0 0 0

w1 − 7
10w0 − h2

2πi +
7
10

h1

2πi
5 k2

(2πi)2 − 7
10

5 k1

(2πi)2 0

⎞⎟⎟⎟⎟⎟⎟⎠
At present, we are not aware of any identities that help evaluating the infinite
sums in hm and km. We can however evaluate them to high precision and find
perfect agreement with numerical analytic continuation. We observe that
the following identity should hold: Im km = πihm,m = 0, 1, 2. This can be
absorbed into the following change of basis in (B.16): Φ0,13 → Φ0,13 − 5

2Φ0,11.
Then all the constants in M10 are real up to the displayed factors of 2πi.

5.3.2. Outline of method 2. We have already seen for the quartic that
the alternative application of analytic continuation crucially depends on
hypergeometric identities that help to regularize the divergent sums. The
same difficulties arise for the quintic. Let us demonstrate this by discussing
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the D0-brane. The double integral we have to solve is

y∗1(z) =
∫

du

2πi
(−y)uΓ(−u)(5.52)

×
∫

ds

2πi

Γ
(
s+ 1

5

)
Γ
(
s+ 2

5

)
Γ
(
s+ 3

5

)
Γ
(
s+ 4

5

)
Γ(u− s)

Γ(1 + s)3
eiπs.

Closing the contour to the right the result for the s-integral is

eiπu
Γ
(
u+ 1

5

)
Γ
(
u+ 2

5

)
Γ
(
u+ 3

5

)
Γ
(
u+ 4

5

)
Γ(1 + u)3

(5.53)

× 4F3

(
u+ 1

5 , u+ 2
5 , u+ 3

5 , u+ 4
5

1 + u, 1 + u, 1 + u
; 1

)
,

which is divergent for positive u. The value at z = 1 for generalized hyper-
geometric functions of type 4F3 are not well-studied. In particular we do not
know of any identities that may help us to isolate the poles. One way out of
this dilemma is to use Bühring’s recursion (4.20) to express 4F3 in terms of

3F2. However, this comes at the cost of a further integral:

y∗1(z) =
√
5

(2π)2

∫
du

2πi
(z − 1)uΓ(−u)eiπu

Γ
(
u+ 1

5

)
Γ
(
u+ 2

5

)
Γ
(
u+ 3

5

)
Γ(1 + u)

(5.54)

× 1

Γ
(
1
5

)2∫ dt

2πi
e±iπtΓ(−t)Γ

(
1
5 + t

)2
Γ
(
6
5 + u+ t

) 3F2

(
u+ 1

5 , u+ 2
5 , u+ 3

5 ,
1 + u, 65 + u+ t

; 1

)
.

Keeping u as a parameter, we can evaluate the t-integral by closing the
contour to the right and enclosing the poles at t = k. Then we get

y∗1(z) =
∫

du

2πi
(−y)uΓ(−u)eiπu

Γ
(
u+ 1

5

)
Γ
(
u+ 2

5

)
Γ
(
u+ 3

5

)
Γ(1 + u)

(5.55)

× 1

Γ
(
1
5

)2 ∞∑
k=0

Γ
(
k + 1

5

)2
Γ(k + 1)Γ

(
u+ k + 6

5

)3F2

(
u+ 1

5 , u+ 2
5 , u+ 3

5 ,
1 + u, 65 + u+ k

; 1

)
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Using (A.9) we can rewrite

3F2

(
u+ 1

5 , u+ 2
5 , u+ 3

5 ,
1 + u, 65 + u+ k

; 1

)
(5.56)

=
Γ
(
6
5 + k + u

)
Γ(1 + k − u)

Γ
(
8
5 + k

)
Γ
(
3
5 + k

) 3F2

(
4
5 ,

3
5 ,

3
5 + u

8
5 + k, 1 + u

; 1

)
.

This can be evaluated for Re(u) > 0, where the integral has at most double
poles. This gives the expected behavior of the periods around the coni-
fold point. Numerical analysis shows that the result is convergent (however,
badly) and that we find agreement with Bühring’s method. This shows that
also this alternative method leads to coefficients in the analytic continuation
matrix that are infinite sums and the result does not have a simpler form
than with the other approach. Since also the convergence issue is not as
clear as for the first method we will not discuss any more examples on the
quintic.

6. Conclusions

There are several obvious directions in which one can generalize our results.
Application of our methods to one-parameter CY hypersurfaces in weighted
projective space is straightforward since these cases are already included in
the methods of analytic continuation discussed in Section 4 and [25]. What is
more challenging is the generalization to CY hypersurfaces in toric varieties
with more than one Kähler parameter. Here the most difficult problem is how
to find suitable recurrences which are necessary for analytic continuation to
the singular locus. A further possibility is to study exotic CYs related to
abelian and non-abelian GLSMs [33, 34, 37, 38, 66–70]. Of particular interest
are the GLSMs associated to the one-parameter CYs found by Rødland
[71] and Hosono and Takagi [72]. The main difference between these one-
parameter examples and our discussion is that they have more than one
conifold point, which complicates matters. The corresponding differential
equation will have more than three regular singular points. So far, much less
is known about the analytic properties of the solutions to these differential
equations.

Another important question is what one can learn from our results about
the physics near the conifold point, where we do not have a well-understood
low-energy effective description. Most of what we know comes from mon-
odromy considerations and the space-time picture [73]. Our methods shed
light on the behavior of the central charge of the brane near the conifold
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point. One hint of a possible approach comes from the cubic curve where we
observed in (5.4) and (5.5) that the analytic continuation of the hemisphere
partition function of a D0 and D2 to the singular point looks like a hemi-
sphere partition function for a D2 and D0 on the cubic, respectively, where
e−t has to be identified with y = 1− z, instead of z. As for one of the phases,
one can evaluate the hemiphere partition function at the conifold point by
closing the contour in such a way that one obtains a convergent series in y.
This is due to the fact that for the cubic, the monodromy behaviour around
the large radius limit and the singular point is the same. More generally, we
observe that one can write the double Mellin–Barnes integrals that appear
in the analytic continuation in the form of a hemisphere partition function
by separating bulk and brane contributions. One might then try to find a
low energy theory which reproduces the bulk contribution.

While we have been working mostly with the relation to the geometric
phase, our arguments can be extended in a straightforward manner to the
Landau–Ginzburg phase. In this way, one can obtain a generalization of [28]
to the GLSM setting. This also allows us to address further mathematical
aspects such as the variation of Hodge structure in the A–model, or Bridge-
land’s stability conditions for D–branes. Assuming the conjecture that the
hemisphere partition function computes the exact central charge in a phase,
the contour integral formula can be taken as a definition for the central
charge, and one can try and verify whether this contour integral satisfies the
axioms of such a stability condition. This would provide the first description
which is intrinsic to the A–model and does not rely on mirror symmetry.

Beyond CYs and GLSMs one may ask if our results can be useful in
other, not directly related contexts. Mellin-Barnes integrals play an impor-
tant role in the computation of amplitudes in string theory and quantum
field theory. It would be interesting to see if the Mellin-Barnes integrals we
encounter also play a role in this context. Moreover, our different approaches
to the analytic continuation lead to nontrivial identities between generalized
hypergeometric functions. It might be interesting from a mathematical point
of view to study these further.

Appendix A. Identities and contour integrals

Here we collect some essential identities for the Gamma function, for gener-
alized hypergeometric functions at z = 1 and certain contour integrals.
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A.1. Gamma function identities

The most important identity is the reflection formula

Γ(z)Γ(1− z) =
π

sinπz
.(A.1)

A further useful identity is the multiplication theorem

N−1∏
k=0

Γ

(
z +

k

N

)
= (2π)

N−1

2 N
1

2
−NzΓ(Nz).(A.2)

Furthermore recall that

Γ(z + 1) = zΓ(z).(A.3)

The digamma function is defined as

ψ(z) =
d

dz
log Γ(z) =

Γ′(z)
Γ(z)

.(A.4)

A.2. Identities of generalized hypergeometric functions at z = 1

Using the Pochhammer symbol

(a)n =
Γ(a+ n)

Γ(a)
,(A.5)

the generalized hypergeometric function is defined as

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∞∑
n=0

(a1)n · · · · · (ap)n
(b1)n · · · · · (bq)n

zn

n!
.(A.6)

This implies in particular:

pFq

(
a1, . . . , ap−1, c
b1, . . . , bq−1, c

; z

)
= p−1Fq−1

(
a1, . . . , ap−1

b1, . . . , bq−1
; z

)
.(A.7)

Via Gauß’s theorem the hypergeometric function at z = 1 can be written in
terms of a quotient of Gamma functions:

2F1

(
a, b
c

; 1

)
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
Rec > Re(a+ b).(A.8)



144 J. Knapp, M. Romo, and E. Scheidegger

The Thomae relations connect different generalized hypergeometric func-
tions of type 3F2 at z = 1. The two identities we use are

3F2

(
a, b, c
d, e

; 1

)
=

Γ(e)Γ(d+ e− a− b− c)

Γ(e− a)Γ(d+ e− b− c)
(A.9)

× 3F2

(
a, d− b, d− c
d, d+ e− b− c

; 1

)
3F2

(
a, b, c
d, e

; 1

)
=

Γ(d)Γ(e)Γ(d+ e− a− b− c)

Γ(b)Γ(d+ e− a− b)Γ(d+ e− b− c)
(A.10)

× 3F2

(
d− b, e− b, d+ e− a− b− c
d+ e− a− b, d+ e− b− c

; 1

)
.

Using the symmetries of the generalized hypergeometric function, further
identities of this type can be generated. We also make use of Dixon’s identity
[59]

3F2

(
a1, a2, a3

1 + a1 − a2, 1 + a1 − a3
; 1

)
(A.11)

=
Γ(1 + a1

2 )Γ(1 +
a1

2 − a2 − a3)Γ(1 + a1 − a2)Γ(1 + a1 − a3)

Γ(1 + a1)Γ(1 + a1 − a2 − a3)Γ(1 +
a1

2 − a2)Γ(1 +
a1

2 − a3)

and a generalization due to Lavoie [62], where we need the following special
cases:

3F2

(
a1, a2, a3

a1 − a2, 1 + a1 − a3
; 1

)
(A.12)

=
2−2 a3Γ(a1 − a2)Γ(a1 − a3 + 1)

Γ(a1 − 2 a3 + 1)Γ(a1 − a2 − a3 + 1)

×
(
Γ(a1

2 − a3 +
1
2)Γ(

a1

2 − a2 − a3 + 1)

Γ(a1

2 + 1
2)Γ(

a1

2 − a2)

+
Γ(a1

2 − a3 + 1)Γ(a1

2 − a2 − a3 +
1
2)

Γ(a1

2 )Γ(
a1

2 − a2 +
1
2)

)
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3F2

(
a1, a2, a3

2 + a1 − a2, 1 + a1 − a3
; 1

)
(A.13)

=
21−2 a2Γ(a1 − a3 + 1)Γ(a1 − a2 + 2)Γ(a2 − 1)

Γ(a1 − 2 a2 + 2)Γ(a1 − a2 − a3 + 2)Γ(a2)

×
(

− Γ(a1

2 − a2 +
3
2)Γ(

a1

2 − a3 − a2 + 2)

Γ(a1

2 + 1
2)Γ(

a1

2 − a3 + 1)

+
Γ(a1

2 − a2 + 1)Γ(a1

2 − a3 − a2 +
3
2)

Γ(a1

2 )Γ(
a1

2 − a3 +
1
2)

)
.

There is a large number of further identities of 3F2 for special values of the
arguments. For n ∈ Z≥0 we use the identity

3F2

(
a, b,−n
d, e

; 1

)
=

Γ(e− b+ n)Γ(e)

Γ(e− b)Γ(e+ n)
3F2

( −n, b, d− a
d, 1 + b− e− n

; 1

)
.(A.14)

A.3. Contour integrals

One of the key identities to analytically continue to the conifold point is the
following:

1

2πi

∫
dsΓ(s− u)Γ(−s)(−z)s = Γ(−u)(1− z)u.(A.15)

A well-known series of identities are the Barnes lemmas. The first Barnes
lemma is ∫

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s)(A.16)

=
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
.

The second Barnes lemma is∫
dz

2πi

Γ(α1 − z)Γ(α2 − z)Γ(β1 + z)Γ(β2 + z)Γ(β3 + z)

Γ(α1 + α2 + β1 + β2 + β3 + z)
(A.17)

=
Γ(α1 + β1)Γ(α2 + β2)Γ(α1 + β3)

Γ(α1 + α2 + β1 + β2)Γ(α1 + α2 + β1 + β3)

× Γ(α1 + β1)Γ(α2 + β2)Γ(α2 + β3)

Γ(α1 + α2 + β2 + β3)
.
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Another useful formula is Jantzen’s additional identity [61]:∫
ds

2πi

Γ (s+ β1) Γ (s+ β2) Γ (u− s)

Γ(γ + s)
eiπs(A.18)

= e±iπuΓ (u+ β1) Γ (u+ β2) Γ(−u+ γ − β1 − β2)

Γ (γ − β1) Γ (γ − β2)
.

Appendix B. Differential equations and bases of solutions

Depending on the problem, we make use of various bases of periods. In this
appendix we discuss how they are connected. In the large radius limit we
use three kinds of bases: Φ0, �k, and y∗q . The basis �k is the Frobenius basis
defined by

(B.1) �k(z) =
1

(2πi)k

∞∑
m=0

∂k

∂εk
c(m, ε)zm+ε

∣∣∣∣
ε=0

, k = 0, . . . , N − 2.

where c(m, ε) = Γ(N(m+ε)+1)
Γ(m+ε+1)N

Γ(ε+1)N

Γ(Nε+1) . The basis Φ0 appears naturally in the
context of analytic continuation of GLSM branes and corresponds to the
integral symplectic basis defined by Hosono in [74]. Details are given be-
low. We give power series expansions of periods at large radius (coordinate
z) in these two bases. Finally we also define a basis y∗ of Mellin-Barnes
representations of periods, following Nørlund:

y∗q (z) =
∫ i∞

−i∞
ds

∏N−1
j=1 Γ

(
s+ j

N

)
Γ(s+ 1)N−1

zs

(1− e2πis)q
, q = 1, . . . , N − 1.(B.2)

Near the conifold point we choose a basis Φ1 of periods whose power se-
ries expansion we can obtain from solving the hypergeometric differential
equation in the variable y = 1− z. Since we are concerned with analytic
continuation the relative normalization of the bases of periods at large ra-
dius and at the conifold point is important. We have chosen it in such a
way that our results have a relatively simple form. Recall that we use the
following differential operator:

θ

N−2∏
j=1

(θ − γj)− z

N−1∏
j=1

(θ − αj) ,(B.3)
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where θ = z d
dz . Note that the variable z is chosen such that the singular

points are at {0, 1,∞}. This differs from the standard convention in the
mirror symmetry literature where the large radius variable is typically chosen
as z′ = z

NN so that the conifold point is at z = N−N .

B.1. Quintic

For the quintic we choose N = 5 and

αi =
i

5
γi = 0 i = 1, 2, 3, 4.(B.4)

The topological characteristics of the quintic are

H3 = 5 c2 ·H = 50 c3 = −200.(B.5)

The basis Φ0 in the large radius limit z = 0 can be determined by the Frobe-
nius method as described in Section 4.1 starting from (4.9). The matrix of
solutions can be written as

Φ0(z) = S0(z)z
R05−5R0C0,(B.6)

where

R0 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ ,

C0 =

⎛⎜⎜⎝
1 0 0 0
0 1

2πi 0 0
0 0 1

(2πi)2 0

0 0 0 1
(2πi)3

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
1 0 −25

12
200

(2πi)3 ζ(3)

0 1 5
2 −25

12
0 0 5 0
0 0 0 −5

⎞⎟⎟⎠ .

(B.7)

The choice of C0 follows from [74]. To construct the matrix S0(z) we only
need to know the first row, which is given in terms of the following power
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series expansions:

S0,11 = 1+
24z

625
+
4536z2

390625
+
1345344z3

244140625
+

488864376z4

152587890625
+O

(
z5
)

(B.8)

S0,12 =
154z

625
+
32409z2

390625
+
29965432z3

732421875
+
296135721z4

12207031250
+O

(
z5
)

(B.9)

S0,13 =
23z

125
+
168327z2

1562500
+
135716176z3

2197265625
+
57606926969z4

1464843750000
+O

(
z5
)

(B.10)

S0,14 = −46z

125
− 26387z2

312500
− 373292959z3

13183593750
− 104105463971z4

8789062500000
+O

(
z5
)
.(B.11)

Evaluating the Mellin-Barnes representation y∗j and the solution ξ4 in the
large radius phase we find the following relation to the basis Φ0(z):

y∗1(z) =
4π2

√
5
Φ0,11(B.12)

y∗2(z)− y∗1(z) = −4π2

√
5
Φ0,12(B.13)

y∗3(z)− 2y∗2(z) + y∗1(z) =
4π2

√
5
Φ0,13(B.14)

√
5

4π2
ξ4(z) = y∗4 − 2y∗3 + 2y∗2 − y∗1 =

1

5

1

2πi
Φ0,14.(B.15)

Note that 4π2√
5
= Γ

(
1
5

)
Γ
(
2
5

)
Γ
(
3
5

)
Γ
(
4
5

)
. In the context of D-branes in the

GLSM it is convenient to use the Frobenius basis �k, (k = 0, . . . , 3) given
in (B.1) which is related to the basis Φ0 in the following way:

Φ0,11 = �0

( z

55

)
(B.16)

Φ0,12 = �1

( z

55

)
(B.17)

Φ0,13 =
H3

2
�2

( z

55

)
+

H3

2
�1

( z

55

)
− c2 ·H

24
�0

( z

55

)
(B.18)

Φ0,14 = −
[
H3

6
�3

( z

55

)
+

c2 ·H
24

�1

( z

55

)
+

c3ζ(3)

(2πi)3
�0

( z

55

)]
.(B.19)

Near the singular point the basis of solutions can be written as power series
in y = 1− z with

Φ1(y) = S1(y)y
R1C1,(B.20)
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where

R1 =

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 2

⎞⎟⎟⎠ , C1 =

√
5

4π2

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ .(B.21)

The first row in the matrix S1(y) is

S1,11 = 1 +
2y3

625
+

97y4

18750
+

2971y5

468750
+O

(
y6
)

(B.22)

S1,12 = 1 +
7y

10
+

41y2

75
+

1133y3

2500
+

6089y4

15625
+

160979y5

468750
+O

(
y6
)

(B.23)

S1,13 = −23y3

360
− 6397y4

60000
− 333323y5

2500000
+O

(
y6
)

(B.24)

S1,14 = 1 +
37y

30
+

2309y2

1800
+

286471y3

225000
+

41932661y4

33750000
(B.25)

+
237108737y5

196875000
+O

(
y6
)
.

A closed formula for these series expansions is not known except for S1,12,
see [22, (2.11)]. A further closed formula follows from the derivation of (4.24):

S1,12 =

∞∑
m=0

gm(1)ym

where gm(�) was given in (4.22) and we need to set � = β4 = 1 in this ex-
ample. Still another closed expression is given by the coefficients Bm in [75,
Thm. 6.1].

B.2. Quartic

The quartic corresponds to N = 4 with

αi =
i

4
γi = 0 i = 1, 2, 3.(B.26)

The topological characteristics of the quartic are

H2 = 4 c2 ·H = 6.(B.27)
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The basis Φ0(z) in the large radius limit is

Φ0(z) = S0(z)z
R04−4R0C0(B.28)

with

R0 =

⎛⎝0 1 0
0 0 1
0 0 0

⎞⎠ , C0 =

⎛⎝1 0 1
4

0 1
2πi 0

0 0 1
(2πi)2

⎞⎠ .(B.29)

The first row in the matrix S0(z) is given by the following power series
expansions:

S0,11 = 1 +
3z

32
+

315z2

8192
+

5775z3

262144
+

7882875z4

536870912
(B.30)

+
183324141z5

17179869184
+O

(
z6
)

S0,12 =
13z

32
+

3069z2

16384
+

176005z3

1572864
+

163635325z4

2147483648
(B.31)

+
19276992819z5

343597383680
+O

(
z6
)

S0,13 =
169z2

2048
+

35841z3

524288
+

86041595z4

1610612736
+

2917954325z5

68719476736
+O

(
z6
)
.(B.32)

The relation to the basis of Mellin-Barnes integrals is

y∗1 =
√
2π

3

2Φ0,11(B.33)

y∗2 − y∗1 = −
√
2π

3

2Φ0,12(B.34)

− π

Γ
(
3
2

)ξ3 = 2y∗1 − 3y∗2 + 2y∗3 = 2
√
2π

3

2Φ0,13.(B.35)

Note that
√
2π

3

2 = Γ
(
1
4

)
Γ
(
1
2

)
Γ
(
3
4

)
. When we consider a basis of GLSM

branes, we also use the basis �i (i = 0, 1, 2) given in (B.1) where

Φ0,11 = �0

( z

44

)
(B.36)

Φ0,12 = �1

( z

44

)
(B.37)

Φ0,13 =
1

2
�2

( z

44

)
+

1

4
�0

( z

44

)
.(B.38)

Near the conifold point the solutions are

Φ1(y) = S1(y)y
R1(B.39)
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with

R1 =

⎛⎝0 0 0
0 1 0
0 0 1

2

⎞⎠(B.40)

and

S1,11 = 1− y2

32
− 131y3

3840
− 9407y4

286720
− 211711y5

6881280
+O

(
y6
)

(B.41)

S1,12 = 1 +
35y

48
+

665y2

1152
+

5915y3

12288
+

122395y4

294912
(B.42)

+
57015413y5

155713536
+O

(
y6
)

S1,13 = 1 +
11y

24
+

39y2

128
+

1181y3

5120
+

385397y4

2064384
(B.43)

+
1361519y5

8650752
+O

(
y6
)
.

A closed formula for these series expansions is not known except for S1,13,
see [22, (2.11)]. A further closed formula follows from the derivation of (4.21):

S1,13 =

∞∑
m=0

gm(12)y
m

where gm(�) was given in (4.22) and we need to set � = β3 =
1
2 in this ex-

ample.

B.3. Cubic

For completeness we also discuss the cubic with N = 3, where

α1 =
i

3
γi = 0 i = 1, 2.(B.44)

The solutions around z = 0 can be written as Φ0 = S0(z)z
R03−3R0C0 with

R0 =

(
0 1
0 0

)
, C0 =

(
1 0
0 3

2πi

)
.(B.45)
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The power series expansions in the first row of the matrix S0(z) are

S0,11 = 1 +
2z

9
+

10z2

81
+

560z3

6561
+

3850z4

59049
+

28028z5

531441
+O

(
z6
)

(B.46)

S0,12 =
5z

9
+

19z2

54
+

5018z3

19683
+

141355z4

708588
+

522109z5

3188646
+O

(
z6
)
.(B.47)

The relation to the basis of Mellin-Barnes integrals is

y∗1(z) =
2π√
3
Φ0,11(B.48)

1

3
ξ2 = y∗2(z)− y∗1(z) = − 2π

3
√
3
Φ0,12,(B.49)

where 2π√
3
= Γ

(
1
3

)
Γ
(
2
3

)
. The relation to the Frobenius basis �i (i = 0, 1)

given in (B.1) is: Φ0,11 = �0

(
z
33

)
and Φ0,12 = 3�1

(
z
33

)
.

One can easily show that the differential operator transforms into itself
under the coordinate change z → y = 1− z. Therefore the solutions near
the the conifold point look the same as at large radius and we choose Φ1 =
Φ0(y).

Appendix C. Further GLSM branes on the quintic
and quartic

In the following we discuss a set of (D0,D2,D4)-branes on the quartic which
we can analytically continue to the conifold point. Before that we also dis-
cuss further examples of geometric branes on the quintic. These examples
are necessary for understanding the D4 branes we encounter in the GLSM
and in the mathematical approach for analytic continuation. They further
show how the algorithmic approach to grade restriction works in non-trivial
examples.

C.1. Quintic

C.1.1. D0. We have identified the D0 brane with minimal charge as a
permutation-type GLSM matrix factorization at the Fermat point. Another
example on the quintic is a complete intersection of the generic quintic
G5(x) = 0 with three divisors hi =

∑5
j=1 α

i
jxi = 0 (i = 1, 2, 3). This infor-

mation can easily be encoded in the matrix factorization

Q = h1η1 + h2η2 + h3η3 +G5η4 + pη̄4.(C.1)
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With a suitable normalization of ρ and r∗ this defines the following GLSM
brane:

ŴD0 : W(0)+
��

W(1)⊕3
−

⊕
W(5)−

��
��

W(2)⊕3
+

⊕
W(6)⊕3

+

��
��

W(3)−
⊕

W(7)⊕3
−

��
�� W(8)+�� .(C.2)

The brane is clearly not grade restricted. The brane factor is

fŴD0
= 1− 3e2πσ + 3e4πσ − e6πσ − e10πσ + 3e12πσ − 3e14πσ + e16πσ.(C.3)

The hemisphere partition evaluated in the large radius phase is ZD2(ŴD0) =
5�0 = 5Φ0,11. To grade restrict this example to the charge window q ∈
{0, 1, 2, 3, 4} we have to get rid of the unwanted Wilson line branes W(5),
W(6)⊕3, W(5)⊕3 and W(8). This leads to a whole cascade of empty branes
that needs to be bound to grade restrict. For the readers’ amusement and as
a means to demonstrate that the algorithmic approach to grade restriction
indeed works, we collect the necessary steps in the following table.

− + − + − + − + − #

W(0) W(1)⊕3 W(2)⊕3 W(3) −
W(5) W(6)⊕3 W(7)⊕3 W(8) −

W(3) W(4)⊕5 W(5)⊕10 W(6)⊕10 W(7)⊕5 W(8) 1
W(2) W(3)⊕5 W(4)⊕10 W(5)⊕10 W(6)⊕5 W(7) 3

W(1) W(2)⊕5 W(3)⊕10 W(4)⊕10 W(5)⊕5 W(6) 3
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 1

W(2) W(3)⊕5 W(4)⊕10 W(5)⊕10 W(6)⊕5 W(7) 5
W(1) W(2)⊕5 W(3)⊕10 W(4)⊕10 W(5)⊕5 W(6) 10

W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 10
W(1) W(2)⊕5 W(3)⊕10 W(4)⊕10 W(5)⊕5 W(6) 15

W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 30
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 15

W(1) W(2)⊕5 W(3)⊕10 W(4)⊕10 W(5)⊕5 W(6) 25
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 50
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 50
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 75

W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 125

(C.4)

Calling this brane WD0 and extracting the brane factor out of this we obtain

fWD0
= 5(1− e2πσ)4,(C.5)

which is, as expected, five times the brane factor of the permutation-type
D0-brane.



154 J. Knapp, M. Romo, and E. Scheidegger

C.1.2. D2. Analogously we can construct a D2-brane on the quintic. We
take two divisors h1 = 0 and h2 = 0 as above and intersect it with G5(x) = 0.
This lifts to a matrix factorization

Q = h1η1 + h2η2 +G5η3 + pη̄3,(C.6)

which we can associate with the following non-grade-restricted GLSM brane:

ŴD2 : W(−1)− ��

W(0)⊕2
+

⊕
W(4)+

��
��

W(1)−
⊕

W(5)⊕2
−

��
�� W(6)+�� .(C.7)

The brane factor is

fŴD2
= −e−2πσ + 2 + e8πσ − e2πσ − 2e10πσ + e12πσ.(C.8)

From this we get the hemisphere partition function Zζ�0
D2 (ŴD2) = 5�1 =

5Φ0,12 in the large radius phase. The grade restriction procedure is simpler
than for the D0 brane:

− + − + − + − #

W(−1) W(0)⊕2 W(1) −
W(4) W(5)⊕2 W(6) −

W(−1) W(0)⊕5 W(1)⊕10 W(2)⊕10 W(3)⊕5 W(4) 1
W(1) W(2)⊕5 W(3)⊕10 W(4)⊕10 W(5)⊕5 W(6) 1

W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 2
W(0) W(1)⊕5 W(2)⊕10 W(3)⊕10 W(4)⊕5 W(5) 5

(C.9)

The grade-restricted brane factor of the resulting brane WD2 is

fWD2
= −5e2πσ(1− e2πσ)3.(C.10)

C.2. Quartic

We have not discussed any GLSM branes on the quartic in the main text
since their construction is completely analogous to the examples discussed
for the cubic and the quintic. However, since we have been successful in
analytically continuing a basis of solutions of the hypergeometric equation
on the quartic to the conifold point with two different methods we find it
necessary to complete the discussion by explicitly giving the GLSM branes
related to these Mellin-Barnes integrals.
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C.2.1. D0. As for the quintic, there are two canonical ways to construct
the D0 brane: the object of minimal charge is the GLSM-lift of a permu-
tation brane on the Fermat quartic. Alternatively we can also construct a
“geometric” D0 as a complete intersection of two linear divisors with the hy-
persurface equation. Let us start with the permutation brane. In a Landau-
Ginzburg framework this has already been discussed in [76]. To discuss the
particular GLSM-lift of the matrix factorization on the Fermat quartic we
are interested in, we define:

f1 = x1 − κ1x2(C.11)

g1 = x31 + κ1x
2
1x2 + κ21x1x

2
2 + κ31x

3
2,(C.12)

with κ41 = −1. Choosing a 23-dimensional Clifford basis, we consider the
matrix factorization

Q = f1η1 + x3η2 + x4η3 + pg1η̄1 + px33η̄2 + px34η̄3.(C.13)

To this, we can associate the Koszul brane K((f1, x3, x4),W(0)−):

Wpt : W(0)− �� W(1)⊕3
+��

�� W(2)⊕3
−��

�� W(2)+.��(C.14)

This is automatically grade restricted with respect to the window {0, 1, 2, 3}.
The brane factor is

fWpt
= (1− e2πσ)3.(C.15)

The hemisphere partition function, evaluated in the large radius phase is
Zζ�0
D2 (Wpt) = �0 = Φ0,11. Comparing with the basis y∗j of Mellin-Barnes

integrals, the correspondence is

ZD2(Wpt) =
1√
2π

3

2

y∗1.(C.16)

Geometrically we can construct the D0-brane by intersecting two divisors
h1, h2 with the hypersurface equation G4(x) = 0 with the generic quartic.
The matrix factorization is exactly the same as the matrix factorization of
a D2 on the quintic, with G5 → G4. The associated GLSM brane is

ŴD0 : W(0)+
��

W(1)⊕2
−

⊕
W(4)−

��
��

W(5)+
⊕

W(5)⊕2
+

��
�� W(6)−�� .(C.17)
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This is not grade restricted and the brane factor is

fŴD0
= 1− 2e2πσ + e4πσ − e8πσ + 2e10πσ − e12πσ.(C.18)

The hemisphere partition in the large radius phase is Zζ�0
D2 (ŴD0) = 4�0 =

4Φ0,11, which reflects that this construction leads to four point-like objects
on the quartic. In order to make contact with the Mellin-Barnes integrals
we have to grade-restrict to obtain a brane WD0. The steps are summarized
in the table below.

+ − + − + − + #

W(0) W(1)⊕2 W(2) −
W(4) W(5)⊕2 W(6) −

W(2) W(3)⊕4 W(4)⊕6 W(5)⊕4 W(6) 1
W(1) W(2)⊕4 W(3)⊕6 W(4)⊕4 W(5) 2

W(0) W(1)⊕4 W(2)⊕6 W(3)⊕4 W(4) 1
W(1) W(2)⊕4 W(3)⊕6 W(4)⊕4 W(5) 4

W(0) W(1)⊕4 W(2)⊕6 W(3)⊕4 W(4) 6
W(0) W(1)⊕4 W(2)⊕6 W(3)⊕4 W(4) 8

W(0) W(1)⊕4 W(2)⊕6 W(3)⊕4 W(4) 16

(C.19)

This results in the following grade-restricted brane factor

fWD0
= 4(1− e2πσ)3,(C.20)

which we can identify with our basis of Mellin-Barnes integrals:

ZD2(WD0) =
4√
2π

3

2

y∗1.(C.21)

C.2.2. D2. The D2-brane with minimal charge is also described by the
GLSM lift of a specific permutation brane of the Fermat quartic to the
GLSM whose matrix factorization is

Q = f1η1 + f2η2 + pg1η̄1 + pg2η̄2(C.22)

with

f1 = x1 − κ1x2(C.23)

f2 = x3 − κ2x4(C.24)

g1 = x31 + κ1x
2
1x2 + κ21x1x

2
2 + κ31x

3
2(C.25)

g2 = x33 + κ2x
2
3x4 + κ22x3x

2
4 + κ32x

3
4,(C.26)
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where κ41 = κ42 = −1. The associated Koszul brane K((f1, f2),W(1)−) is
grade restricted:

W� : W(1)− �� W(2)⊕2
+��

�� W(3)−��(C.27)

and the brane factor is

fW�
= −e2πσ(1− e2πσ)2.(C.28)

Evaluated in the large radius phase we get

Zζ�0
D2 (W�) = �1 = Φ0,12.(C.29)

We match this with the following expression in terms of the Mellin-Barnes
basis:

ZD2(W�) = − 1√
2π

3

2

(y∗2 − y∗1).(C.30)

For completeness, we also give an example of a D2-brane which is constructed
as an intersection of a divisor h with the hypersurface equation G4(x). The
matrix factorization Q = hη1 +G4η2 + pη̄2 is the same as the one for the
D4 brane on the quintic discussed in the main text. The associated GLSM
brane

ŴD2 : W(−1)− ��

W(0)+
⊕

W(3)+

��
�� W(4)−�� .(C.31)

The brane is not grade restricted and the brane factor is

fŴD2
= −e−2πσ + 1 + e6πσ − e8πσ.(C.32)

The hemisphere partition function in the large radius phase is

Zζ�0
D2 (ŴD2) = 4�1 − 2�0.(C.33)

Grade-restriction is achieved by binding two empty branes:

WD2 :

+ − + − + #

W(−1) W(0) −
W(3) W(4) −

W(0) W(1)⊕4 W(2)⊕6 W(3)⊕4 W(4) 1
W(−1) W(0)⊕4 W(1)⊕6 W(2)⊕4 W(3) 1

(C.34)
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The associated brane factor is

fWD2
= −2(1− e2πσ − e4πσ + e6πσ).(C.35)

The hemisphere partition function for this brane factor can be expressed as
the following combination of Mellin-Barnes integrals:

ZD2(WD2) =
2√
2π

3

2

(−2y∗2 + y∗1).(C.36)

C.2.3. Structure sheaf. As usual, the GLSM lift ŴX of structure sheaf
is given by the matrix factorization Q = G4η + pη̄ with fŴX

= 1− e8πσ.
This is not grade restricted. In the large radius phase the hemisphere parti-
tion function is

Zζ�0
D2 (ŴX) = (2�2 +�0) = 2Φ0,13.(C.37)

Grade restriction is almost trivial and leads to the following GLSM brane:

WX : W(0)+
�� W(1)⊕4

−��
�� W(2)⊕6

+��
�� W(3)⊕4

−��
�� W(0)+.��

(C.38)

The brane factor is

fWX
= 2− 4e2πσ + 6e4πσ − 4e6πσ,(C.39)

which yields

ZD2(WX) =
1√
2π

3

2

(2y∗1 − 3y∗2 + 2y∗3) = −
√
2

π
ξ3.(C.40)
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