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Let X be a normal projective Q-Gorenstein variety with at worst
log-terminal singularities. We prove a formula expressing the to-
tal stringy Chern class of a generic complete intersection in X via
the total stringy Chern class of X. This formula is motivated by its
applications to mirror symmetry for Calabi-Yau complete intersec-
tions in toric varieties. We compute stringy Chern classes and give a
combinatorial interpretation of the stringy Libgober-Wood identity
for arbitrary projective Q-Gorenstein toric varieties. As an applica-
tion we derive a new combinatorial identity relating d-dimensional
reflexive polytopes to the number 12 in dimension d ≥ 4.

Introduction 1

1 Stringy Chern classes of complete intersections 8

2 Intersection numbers with stringy Chern classes 12

3 Stringy Chern classes on toric varieties 16

4 Stringy Libgober-Wood identity for toric varieties 21

5 Applications to reflexive and Gorenstein polytopes 29

References 38

Introduction

The orbifold (or stringy) Euler number has been introduced by Dixon, Har-
vey, Vafa, and Witten [DHVW85] as a new topological invariant of sin-
gular varieties motivated by string theory. It was observed by Hirzebruch
and Hofer [HH90] that the orbifold Euler number eorb(X) of a singular
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2 V. Batyrev and K. Schaller

Calabi-Yau variety X can be identified with the usual Euler number e(Y ) of
its Calabi-Yau desingularization Y , i.e., a desingularization ρ : Y → X such
that Y is a smooth Calabi-Yau manifold. Such a desingularization ρ might
not be unique, but the Euler number e(Y ) does not depend on its choice.
Moreover, the orbifold (or stringy) Hodge numbers hp,qstr(X) of the singular
Calabi-Yau variety X can be defined in the same way as the Hodge numbers
hp,q(Y ) of the smooth Calabi-Yau manifold Y . The fact that the stringy
Hodge numbers do not depend on the choice of a Calabi-Yau desingulariza-
tion plays an important role in mirror symmetry for Calabi-Yau varieties
[BD96].

More generally, a desingularization ρ : Y → X of a normal projective
variety X with at worst canonical Gorenstein singularities is called crepant
if ρ∗KX = KY . Using nonarchimedian integration [Bat98], one can prove
that the Euler number e(Y ) and the Hodge numbers hp,q(Y ) do not depend
on the choice of the crepant desingularization ρ. These numbers are called
stringy Euler number estr(X) respectively stringy Hodge numbers hp,qstr(X) of
the singular variety X.

It was discovered by Aluffi [Alu04] that not only the Euler number e(Y )
(the top Chern class cd(Y )) of Y , but also the push-forwards of all other
Chern classes ρ∗ck(Y ) ∈ Ak(X)Q (0 ≤ k ≤ d) are independent of a crepant
desingularization ρ : Y → X of a d-dimensional variety X. This observation
led to the notion of stringy Chern classes cstrk (X) ∈ Ak(X)Q (0 ≤ k ≤ d) of
singular varieties X. They have been introduced and developed in [Alu05,
dFLNU07]. We remark that the stringy Chern class cstrd−1(X) of a singular
d-dimensional projective variety X appears in the stringy version of the
Libgober-Wood formula [Bat00].

In this paper, we are interested in stringy Chern classes of generic com-
plete intersections in toric varieties. Our interest is motivated by the well-
known construction of many examples for Calabi-Yau varieties and their
mirrors as hypersurfaces and complete intersections in Gorenstein toric Fano
varieties [Bat94, BB97, BD96]. Another motivation for our paper was the
search for a higher dimensional generalization of the well-known combinato-
rial identities for reflexive polytopes of dimension 2 and 3. This generaliza-
tion and its connection to the Libgober-Wood formula for smooth manifolds
[LW90] (see also [Sal96]) has been considered independently in the recent
preprint of Godinho, von Heymann, and Sabatini [GvHS16]. Independently
some results of our paper were obtained in the preprint of Douai [Dou16]
motivated by Hertling’s conjecture about the variance of the spectrum of
tame regular functions.
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Stringy Chern classes of singular toric varieties 3

Let X be a d-dimensional normal projective Q-Gorenstein variety with
at worst log-terminal singularities, i.e., the canonical class KX of X is a
Q-Cartier divisor and for some desingularization ρ : Y → X of X, whose
exceptional locus is a union of smooth irreducible divisors D1, . . . , Ds with
only normal crossings, one has

KY = ρ∗KX +

s∑
i=1

aiDi

for some rational numbers ai > −1 (1 ≤ i ≤ s). The above desingularization
ρ will be called log-desingularization of X. For any nonempty subset J ⊆
I := {1, . . . , s} we define DJ to be the subvariety ∩j∈JDj together with
its closed embedding eJ : DJ ↪→ Y and set D∅ := Y . We remark that the
subvariety DJ ⊆ Y is either empty or a smooth projective subvariety of Y
of codimension |J |.

If V is an arbitrary smooth d-dimensional projective variety, then the
E-polynomial of V is defined as

E (V ;u, v) :=
∑

0≤p,q≤d
(−1)p+qhp,q (V )upvq,

where hp,q (V ) are the Hodge numbers of V . Furthermore, the Euler number
e(V ) = cd(V ) of V equals E (V ; 1, 1). The stringy E-function of the singular
variety X is a rational algebraic function in two variables u, v defined by the
formula

Estr(X;u, v) :=
∑
∅⊆J⊆I

E(DJ ;u, v)
∏
j∈J

(
uv − 1

(uv)aj+1 − 1
− 1

)
.(1)

One can prove that the function Estr(X;u, v) does not depend on the choice
of the log-desingularization ρ [Bat98, Theorem 3.4]. As a special case, this
formula implies Estr(X;u, v) = E(Y ;u, v) if ρ is a crepant desingularization
of X. The top stringy Chern class (or the stringy Euler number) of X is
defined to be the limit of the stringy E-function (1), i.e.,

cstrd (X) := lim
u,v→1

Estr(X;u, v) =
∑
∅⊆J⊆I

cd−|J |(DJ)
∏
j∈J

( −aj
aj + 1

)
,(2)

where cd−|J |(DJ) = e(DJ) denotes the Euler number of the smooth subva-
riety DJ ⊆ Y . We regard the stringy top Chern class cstrd (X) as a special
case of the k-th stringy Chern class defined in [Alu05, dFLNU07] for any k
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4 V. Batyrev and K. Schaller

(0 ≤ k ≤ d). In this paper, we apply the following formula for the compu-
tation of the k-th stringy Chern class of a d-dimensional normal projective
Q-Gorenstein variety X with at worst log-terminal singularities using the
usual Chern classes of smooth projective subvarieties DJ ⊆ Y :

cstrk (X) := ρ∗

⎛⎝ ∑
∅⊆J⊆I

eJ∗ck−|J |(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠ ∈ Ad−k(X)Q.

Here, Ad−k(X) = Ak(X) denotes the Chow group of (d− k)-dimensional
cycles on X modulo rational equivalence and A·(X)Q :=

⊕d
k=0Ad−k(X)Q

with Ad−k(X)Q := Ad−k(X)⊗Q the rational Chow ring of X. Moreover,
ρ∗ : Ad−k(Y ) → Ad−k(X) and eJ∗ : Ad−k(DJ) → Ad−k(Y ) are push-forward
homomorphisms corresponding to the proper birational morphism ρ : Y →
X respectively the closed embeddings eJ : DJ ↪→ Y . It is important to note
that the above definition of stringy Chern classes is also independent of the
log-desingularization ρ.

The paper is organized as follows:
In Section 1, we prove that the well-known formula expressing the total

Chern class of smooth complete intersections via the total Chern class of the
ambient smooth variety V remains valid also for the total stringy Chern class
cstr· (·) of generic hypersurfaces and complete intersections in the singular

ambient variety X, i.e.,

i∗cstr· (Z1 ∩ · · · ∩ Zr) = cstr· (X).

r∏
j=1

[Zj ] (1 + [Zj ])
−1,

where Z1, . . . , Zr are generic semiample Cartier divisors on X and i : Z1 ∩
· · · ∩ Zr ↪→ X is the corresponding closed embedding. In particular, we show
that the top stringy Chern class (or stringy Euler number) of generic semi-
ample Cartier divisors Z on X can be computed via stringy Chern classes
of X by

cstrd−1(Z) = estr(Z) = [Z].cstrd−1(X)− [Z]2.cstrd−2(X) + · · ·

=

d∑
k=1

(−1)k−1[Z]k.cstrd−k(X).

We give a similar formula for the top stringy Chern class cstrd−r (Z1 ∩ · · · ∩ Zr)
of complete intersections Z1 ∩ · · · ∩ Zr, where Z1, . . . , Zr are generic semi-
ample Cartier divisors on the singular variety X.
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Stringy Chern classes of singular toric varieties 5

In Section 2, we look at intersection numbers of stringy Chern classes
with Q-Cartier divisors. A particular case of such an intersection number
has appeared in the stringy version of the Libgober-Wood identity

d2

du2
Estr (X;u, 1)

∣∣∣
u=1

=
3d2 − 5d

12
cstrd (X) +

1

6
c1(X).cstrd−1(X)(3)

in [Bat00, Theorem 3.8], where the intersection number c1(X).cstrd−1(X) has
been defined as

c1(X).cstrd−1(X) :=
∑
∅⊆J⊆I

ρ∗c1(X).eJ∗cd−|J |−1(DJ)
∏
j∈J

( −aj
aj + 1

)
(4)

and its independence on the choice of the log-desingularization ρ has been
shown in [Bat00, Corollary 3.9]. In this paper, we consider more general
intersection numbers [Z1]. . . . .[Zk].c

str
d−k(X), where Z1, . . . , Zk are arbitrary

Q-Cartier divisors. These intersection numbers can be defined by a similar
formula

[Z1]. . . . .[Zk].c
str
d−k(X)

:=
∑
∅⊆J⊆I

ρ∗[Z1]. . . . .ρ
∗[Zk].eJ∗cd−|J |−k(DJ)

∏
j∈J

( −aj
aj + 1

)
.

We give a proof for its independence on the choice of ρ without using the
definition of stringy Chern classes.

In Section 3, we apply the results of the previous sections to hyper-
surfaces and complete intersections in normal projective Q-Gorenstein toric
varieties. For this purpose, we compute the k-th stringy Chern class of a
d-dimensional projective Q-Gorenstein toric variety X associated with a fan
Σ of rational polyhedral cones in NR as a linear combination of classes of
torus-invariant cycles Xσ corresponding to k-dimensional cones, i.e.,

cstrk (X) =
∑

σ∈Σ(k)

v(σ) · [Xσ] ,

where Σ(k) is the set of all k-dimensional cones of Σ and NR is a real
vector space obtained by an extension of a d-dimensional lattice N ∼= Zd.
The coefficients v(σ) are positive integers defined by the formula

v(σ) := k! · volk (Θσ) ,
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6 V. Batyrev and K. Schaller

where volk (Θσ) is the k-dimensional volume of the lattice polytope Θσ ob-
tained as the convex hull of the origin and the primitive lattice generators of
all 1-dimensional faces of σ ∈ Σ(k) with respect to the sublattice 〈σ〉R ∩N .
We apply this formula for stringy Chern classes of toric varieties to compute
intersection numbers [D1]. . . . .[Dk].c

str
d−k(X) via mixed volumes of faces of

divisor-associated convex lattice polytopes, where D1, . . . , Dk are semiample
torus-invariant Q-Cartier divisors.

In Section 4, we are interested in a combinatorial interpretation of
the stringy Libgober-Wood identity (3) for d-dimensional projective Q-
Gorenstein toric varieties. Such a toric variety X is defined by a complete
fan Σ in NR such that there exists a piecewise linear function κ : NR → R

that is linear on each cone σ of Σ and has value −1 on every primitive lat-
tice generator of a 1-dimensional cone of Σ. A projective Q-Gorenstein toric
variety X is called log-Fano toric variety if its anticanonical divisor −KX is
ample, i.e., if κ is strictly convex. In this case

Δ := {x ∈ NR | κ(x) ≥ −1}

is a convex lattice polytope whose vertices are primitive lattice generators
of 1-dimensional cones of Σ. Let M := Hom(N,Z) be the dual lattice to
N and 〈·, ·〉 : M ×N → Z the natural pairing, which extends to a pairing
〈·, ·〉 : MR ×NR → R. The dual polytope Δ∗ of Δ is a convex polytope with
rational vertices defined as

Δ∗ := {y ∈ MR | 〈y, x〉 ≥ −1 ∀x ∈ Δ}.

The polytope Δ is called reflexive if all vertices of the dual polytope Δ∗

belong to the lattice M . The latter case happens if and only if the log-Fano
toric variety X is a Gorenstein toric Fano variety (i.e., its anticanonical
divisor is an ample Cartier divisor). Gorenstein toric Fano varieties X of
dimension d associated with reflexive polytopes Δ are used in mirror sym-
metry as ambient spaces for Calabi-Yau hypersurfaces [Bat94, BB97, BD96].
The stringy Euler number of a generic ample Calabi-Yau hypersurface Z in
X is combinatorially computable via

estr(Z) = cstrd−1 (Z) =

d−3∑
k=0

(−1)k
∑
θ�Δ

dim(θ)=k+1

v(θ) · v (θ∗) ,

where the face θ∗ := {y ∈ Δ∗| 〈y, x〉 = −1 ∀x ∈ θ} of the dual reflexive poly-
tope Δ∗ is called dual face to a face θ of Δ (written θ  Δ).
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Stringy Chern classes of singular toric varieties 7

IfX is a toric log del Pezzo surface associated to a convex lattice polytope
Δ (cf. LDP-polytope [KKN10]), then the stringy Libgober-Wood identity (3)
for X is equivalent to the combinatorial equality

v (Δ) + v (Δ∗) = 12
∑

n∈Δ∩N
(κ(n) + 1)2 .

In particular, one always has v (Δ) + v (Δ∗) ≥ 12 and equality holds, i.e.,

v(Δ) + v (Δ∗) = 12,(5)

if and only if Δ is a reflexive polytope.
If Δ is a 3-dimensional reflexive polytope, then the stringy Euler number

of a Calabi-Yau hypersurface in the associated Gorenstein toric variety X
is 24 and one obtains the identity∑

θ�Δ

dim(θ)=1

v (θ) · v (θ∗) = 24.(6)

Our aim in Section 5 is to give a generalization of the above identities for
reflexive polytopes of dimension d ≥ 4. For this purpose, we use the Ehrhart
power series of an arbitrary d-dimensional lattice polytope Δ ⊆ NR defined
as

PΔ(t) :=
∑
k≥0

|kΔ ∩N | tk,

where |kΔ ∩N | denotes the number of lattice points in kΔ. This series can
be written as the rational function

PΔ(t) =
ψd (Δ) td + · · ·+ ψ1 (Δ) t+ ψ0 (Δ)

(1− t)d+1
,

where ψα (Δ) are nonnegative integers for all 0 ≤ α ≤ d [Bat93, Theorem
2.11]. We show that the stringy Libgober-Wood identity (3) for a Gorenstein
toric Fano variety defined by the fan of cones over faces of a reflexive polytope
Δ is equivalent to the combinatorial identity∑

α∈[0,d]∩Z
ψα (Δ)

(
α− d

2

)2

=
d

12
v (Δ) +

1

6

∑
θ�Δ

dim(θ)=d−2

v(θ) · v (θ∗) .(7)

For reflexive polytopes Δ of dimension 2 and 3 this identity is equivalent
to Equation (5) respectively (6), but for reflexive polytopes Δ of dimension
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8 V. Batyrev and K. Schaller

d ≥ 4 Equation (7) is not anymore symmetric with respect to the polar
duality between Δ and Δ∗ (i.e., the equality for Δ is not equivalent to the
one for Δ∗). If d = 4, then (7) is equivalent to

12 · |∂Δ ∩N | = 2 · v (Δ) +
∑
θ�Δ

dim(θ)=2

v(θ) · v (θ∗) ,

where ∂Δ denotes the boundary of the polytope Δ and |∂Δ ∩N | the number
of lattice points in ∂Δ. In addition, we consider some generalizations of the
above identities for Gorenstein polytopes.

1. Stringy Chern classes of complete intersections

First, we note that for projective varieties X the general definition of the
total stringy Chern class cstr· (X) ∈ A·(X)Q due to de Fernex, Luperico,

Nevins, and Uribe [dFLNU07] can be simplified as follows:

Proposition 1.1. Let X be a d-dimensional normal projective Q-Gorenstein
variety with at worst log-terminal singularities and ρ : Y → X a log-
desingularization of X. Then the total stringy Chern class of X can be
computed via total Chern classes c· (DJ) of smooth projective subvarieties
DJ ⊆ Y by

cstr· (X) := ρ∗

⎛⎝ ∑
∅⊆J⊆I

eJ∗c· (DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠ ∈ A·(X)Q.(8)

In particular, one obtains

cstrk (X) := ρ∗

⎛⎝ ∑
∅⊆J⊆I

eJ∗ck−|J |(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠ ∈ Ad−k(X)Q(9)

and has

cstrk (X) = ρ∗ck(Y ) ∈ Ad−k(X)Q

if ρ : Y → X is a crepant log-desingularization (0 ≤ k ≤ d).

Proof. The definition of the total stringy Chern class given by de Fernex,
Luperico, Nevins, and Uribe in [dFLNU07] uses the group homomorphism



�

�

“1-Batyrev” — 2017/6/1 — 22:33 — page 9 — #9
�

�

�

�

�

�

Stringy Chern classes of singular toric varieties 9

of MacPherson c : F (Y ) → A·(Y ) from the group F (Y ) of constructible

functions on Y to the Chow group A·(Y ) of Y . If 1Y is the characteristic

function of the smooth variety Y , then c(1Y ) = c·(Y ). Using the stratifica-

tion of Y by locally closed subsets D◦J := DJ \
(
∪i∈I\JDi

)
(∅ ⊆ J ⊆ I) their

definition looks as follows:

cstr· (X) := ρ∗

⎛⎝ ∑
∅⊆J⊆I

c
(
1D◦

J

)∏
j∈J

(
1

aj + 1

)⎞⎠ .(10)

Using the stratification 1DJ
=

∑
J ′⊇J 1D◦

J′ and c (1DJ
) =

∑
J ′⊇J c

(
1D◦

J′

)
for

all ∅ ⊆ J ⊆ I, we conclude

∑
∅⊆J⊆I

c
(
1D◦

J

)∏
j∈J

(
1

aj + 1

)
=

∑
∅⊆J⊆I

⎛⎝∑
J ′⊇J

c
(
1D◦

J′

)⎞⎠∏
j∈J

(
1

aj + 1
− 1

)

=
∑
∅⊆J⊆I

c (1DJ
)
∏
j∈J

( −aj
aj + 1

)
.

It remains to apply ρ∗ to the above equality and the property c (1DJ
) =

eJ∗c· (DJ), which follows from the commutative diagram

F (DJ) ��

c

��

F (Y )

c

��
A· (DJ) eJ∗

�� A· (Y ) ,

where eJ∗ : A·(DJ) → A·(Y ) is the push-forward homomorphism corre-
sponding to the closed embedding eJ : DJ ↪→ Y . �

Remark 1.2. The important ingredient in the definition of the total stringy
Chern class cstr· (X) (resp. k-th stringy Chern class cstrk (X)) is its indepen-

dence on the choice of the log-desingularization ρ. This property was proved
in [dFLNU07, Proposition 3.2].

Let V be a smooth d-dimensional normal projective variety and Z a
smooth divisor on V with the closed embedding i : Z ↪→ V . Using the exact
sequence of vector bundles 0 → TZ → i∗TV → OZ(Z) → 0, one obtains a
formula that computes the total Chern class of Z in terms of the total
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10 V. Batyrev and K. Schaller

Chern class of the ambient variety V :

i∗c·(Z) = c·(V ).[Z](1 + [Z])−1 = c·(V ).

( ∞∑
k=1

(−1)k−1[Z]k

)
,(11)

where T· denotes the tangent bundle, [Z] the class of Z in Ad−1(V ), and
c·(V ) :=

∑
k ck(V ) the total Chern class of V (cf. [Ful98, Example 3.2.12]).

In particular, the Euler number of Z can be computed as

e(Z) = cd−1(Z) =

d∑
k=1

(−1)k−1[Z]k.cd−k(V ).(12)

We show that the same formulas hold for the total stringy Chern class
respectively the top stringy Chern class of generic hypersurfaces in singular
varieties.

Theorem 1.3. Let X be a normal projective Q-Gorenstein variety with at
worst log-terminal singularities and Z a generic semiample Cartier divisor
on X. Then the total stringy Chern class of Z is

i∗cstr· (Z) = cstr· (X).[Z] (1 + [Z])−1 ,

where i : Z ↪→ X is the closed embedding.

Proof. Let ρ : Y → X be a log-desingularization of X and KY = ρ∗KX +∑s
i=1 aiDi. By Theorem of Bertini, Z ′ := ρ−1(Z) is a smooth divisor on Y .

By the adjunction formula KZ′ =
(
KY + Z ′

)
|Z′ , we obtain KZ′ = ρ∗KZ +∑s

i=1 aiD
′
i, where D′i := Di ∩ Z ′. Define D′J := ∩j∈JD′j and note that D′J =

DJ ∩ Z ′ ⊆ DJ is a smooth divisor on DJ . Let e′J∗ : A· (D′J) → A· (Z ′) be
the push-forward homomorphism corresponding to the closed embedding
e′J : D′J ↪→ Z ′. Consider the commutative diagram

DJ
� � eJeJ �� Y

ρ �� X

D′J
� �

e′J
��

��

iJ

��

Z ′ ρZ

�� Z,
��

i

��
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Stringy Chern classes of singular toric varieties 11

where ρZ : Z ′ → Z and iJ : D′J → DJ are restrictions of ρ respectively i. We
apply Equation (11) to the smooth divisor D′J ⊆ DJ and obtain

i∗ρZ∗e
′
J∗c·(D′J) = ρ∗eJ∗iJ∗c·(D′J) = ρ∗eJ∗

(
c· (DJ) .

[
D′J

](
1 +

[
D′J

])−1)
.

Using the projection formula twice provides

eJ∗
(
c· (DJ) .

[
D′J

](
1 +

[
D′J

])−1)
= eJ∗c· (DJ) .

[
Z ′

](
1 +

[
Z ′

])−1
and

ρ∗
(
eJ∗c· (DJ) .

[
Z ′

](
1 +

[
Z ′

])−1)
= ρ∗eJ∗c· (DJ) .[Z] (1 + [Z])−1

because eJ
∗Z ′ = D′J , ρ∗Z = Z ′ and the pull-backs eJ

∗, ρ∗ are homomor-
phisms. Therefore, we get

i∗ρ∗e′J∗c·(D′J) = ρ∗eJ∗c· (DJ) .[Z] (1 + [Z])−1 .

By applying Proposition 1.1 to Z and X, we conclude

i∗cstr· (Z) = i∗ρ∗

⎛⎝ ∑
∅⊆J⊆I

e′J∗

⎛⎝c· (D′J)∏
j∈J

( −aj
aj + 1

)⎞⎠⎞⎠
= ρ∗

⎛⎝ ∑
∅⊆J⊆I

eJ∗c· (DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠ .[Z] (1 + [Z])−1

= cstr· (X). [Z] (1 + [Z])−1 .

�

Corollary 1.4. Let X be a normal projective Q-Gorenstein variety of di-
mension d with at worst log-terminal singularities and Z a generic semi-
ample Cartier divisor on X. Then the stringy Euler number of Z is

estr(Z) = cstrd−1(Z) =

d∑
k=1

(−1)k−1[Z]k.cstrd−k(X).

If [Z] = c1 (X), Z has trivial anticanonical class and the formula simplifies
to

estr(Z) = cstrd−1(Z) =

d−2∑
k=1

(−1)k−1[Z]k.cstrd−k(X).
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The formulas in Theorem 1.3 and Corollary 1.4 for total stringy Chern
classes respectively top stringy Chern classes of generic hypersurfaces can
be generalized to generic complete intersections in singular varieties:

Theorem 1.5. Let X be a normal projective Q-Gorenstein variety with at
worst log-terminal singularities, Z1, . . . , Zr generic semiample Cartier divi-
sors on X, and i : Z1 ∩ · · · ∩ Zr ↪→ X the closed embedding. Then the total
stringy Chern class of the complete intersection Z1 ∩ · · · ∩ Zr is

i∗cstr· (Z1 ∩ · · · ∩ Zr) = cstr· (X).

r∏
j=1

[Zj ] (1 + [Zj ])
−1 .

Proof. We apply induction on r and use Theorem 1.3 r-times, since for any
2 ≤ r′ ≤ r the complete intersection Z1 ∩ · · · ∩ Zr′ is a generic hypersurface
in Z1 ∩ · · · ∩ Zr′−1. �

Corollary 1.6. Let X be a normal projective Q-Gorenstein variety of di-
mension d with at worst log-terminal singularities and Z1, . . . , Zr generic
semiample Cartier divisors on X. Then the stringy Euler number cstrd−r(Z1 ∩
· · · ∩ Zr) of the complete intersection Z1 ∩ · · · ∩ Zr is

d−r∑
k=0

(−1)k [Z1] . . . . . [Zr] .

⎛⎜⎝ r∑
j0,...,jk=1

j0≤···≤jk

[Zj0 ] . . . . . [Zjk ]

⎞⎟⎠ .cstrd−r−k (X) .

Corollary 1.7. Let X be a normal projective Q-Gorenstein variety of di-
mension d with at worst log-terminal singularities and Z1, . . . , Zr generic
semiample Cartier divisors on X such that [Z] := [Z1] = · · · = [Zr]. Then
the stringy Euler number cstrd−r (Z1 ∩ · · · ∩ Zr) of the complete intersection
Z1 ∩ · · · ∩ Zr is

cstrd−r (Z1 ∩ · · · ∩ Zr) =

d−r∑
k=0

(−1)k
(
k + r − 1

r − 1

)
[Z]r+k .cstrd−r−k (X) .

2. Intersection numbers with stringy Chern classes

Let X be a d-dimensional normal projective Q-Gorenstein variety with at
worst log-terminal singularities, ρ : Y → X a log-desingularization of X,
and Z1, . . . , Zk arbitrary Q-Cartier divisors on X. Intersecting the classes
[Z1], . . . , [Zk] ∈ Pic(X)Q with the stringy Chern class cstrd−k(X) ∈ Ak(X)Q,
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Stringy Chern classes of singular toric varieties 13

one obtains the rational intersection number [Z1]. . . . .[Zk].c
str
d−k(X), which

can be considered as a generalization of Equation (4). Using (9) for the
definition of the stringy Chern class cstrd−k(X) ∈ Ak(X)Q and the projection
formula for the proper morphism ρ, one receives

[Z1]. . . . .[Zk].c
str
d−k(X)

= [Z1]. . . . .[Zk].ρ∗

⎛⎝ ∑
∅⊆J⊆I

eJ∗cd−|J |−k(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠
= ρ∗

⎛⎝ρ∗ ([Z1]. . . . .[Zk]) .
∑
∅⊆J⊆I

eJ∗cd−|J |−k(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠
=

∑
∅⊆J⊆I

ρ∗[Z1]. . . . .ρ
∗[Zk].eJ∗cd−|J |−k(DJ)

∏
j∈J

( −aj
aj + 1

)
,

where the homomorphism ρ∗ : Pic(X)Q → Pic(Y )Q is determined by the
pullback of line bundles and the intersection product

ρ∗[Z1]. . . . .ρ
∗[Zk].eJ∗cd−|J |−k(DJ)

is the value of the multilinear map Pic(Y )kQ ×Ak(Y ) → Q defined by the
intersection of k classes ρ∗[Z1], . . . , ρ

∗[Zk] of Q-Cartier divisors on Y with the
k-dimensional cycle eJ∗cd−|J |−k(DJ) ∈ Ak(Y ) composed with the natural
map A0(Y )Q → Q. In particular, we obtain

Theorem 2.1. The rational intersection number∑
∅⊆J⊆I

ρ∗[Z1]. . . . .ρ
∗[Zk].eJ∗cd−|J |−k(DJ)

∏
j∈J

( −aj
aj + 1

)

does not depend on the choice of the log-desingularization ρ : Y → X.

Corollary 2.2. Let ρ∗c1(X) = [−ρ∗KX ] be the pullback of the anticanoni-
cal class of X. Then the intersection number

∑
∅⊆J⊆I

ρ∗c1(X)k.eJ∗cd−|J |−k (DJ)
∏
j∈J

( −aj
aj + 1

)

is independent of the log-desingularization ρ.
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14 V. Batyrev and K. Schaller

In the case k = 1 (cf. Equation (4)), this theorem has been proved in
[Bat00, Corollary 3.9].

We observe that the intersection number [Z1]. . . . .[Zk].c
str
d−k(X) can be

computed by a formula that does not involve stringy Chern classes of the
singular varietyX, but only usual Chern classes of smooth subvarietiesDJ ⊆
Y . We give below a proof of Theorem 2.1, which does not use the general
definiton of stringy Chern classes, but only the definition of the stringy Euler
number (2) and its independence of log-desingularization.

Proof of Theorem 2.1. Let us denote the number

∑
∅⊆J⊆I

ρ∗[Z1]. . . . .ρ
∗[Zk].eJ∗cd−|J |−k(DJ)

∏
j∈J

( −aj
aj + 1

)

by ıρ(Z1, . . . , Zk). It is clear that the map

ıρ : Pic(X)kQ → Q, ([Z1], . . . , [Zk]) �→ ıρ(Z1, . . . , Zk)

is symmetric and multilinear. Since the group Pic(X) is generated by classes
of very ample Cartier divisors, it is enough to show the statement of Theo-
rem 2.1 in the case when Z1, . . . , Zk are very ample Cartier divisors. For
any sequence of positive integers n1, . . . , nk, the linear combination n1[Z1] +
· · ·+ nk[Zk] represents a class of a very ample Cartier divisor Z on X. It
follows from the symmetry and multilinearity of ıρ that ıρ(Z,Z, . . . , Z) is a
homogeneous polynomial of degree k in n1, . . . , nk whose coefficients are the
rational numbers ıρ(Zi1 , Zi2 , . . . , Zik), where 1 ≤ i1, . . . , ik ≤ k. Therefore,
it is enough to prove the statement of Theorem 2.1 only for the rational
numbers ıρ(Z,Z, . . . , Z), where Z is a generic very ample Cartier divisor on
X. By Theorem of Bertini, we can assume that Z ′ := ρ−1(Z) is a smooth
divisor on Y and the restriction of ρ to Z ′ defines a log-desingularization
of Z with the exceptional divisors D′i := Di ∩ Z ′ such that KZ′ = ρ∗KZ +
a1D

′
1 + · · ·+ asD

′
s. One can compute the stringy Euler number of Z by

estr(Z) =
∑
∅⊆J⊆I

e(D′J)
∏
j∈J

( −aj
aj + 1

)
,
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Stringy Chern classes of singular toric varieties 15

where e(D′J) denotes the usual Euler number of the smooth variety D′J =
DJ ∩ Z ′ (cf. Equation (2) and [Bat98, Definition 3.3]). Now we apply Equa-
tion (12) to each smooth divisor D′J ⊆ DJ and obtain

e(D′J) =
d−|J |∑
k=1

(−1)k−1
[
D′J

]k
.cd−|J |−k(DJ)

=

d−|J |∑
k=1

(−1)k−1ρ∗ [Z]k .eJ∗cd−|J |−k(DJ)

because the projection formula for the proper morphism eJ : DJ ↪→ Y im-
plies

ρ∗ [Z]k .eJ∗cd−|J |−k(DJ) = eJ∗(eJ∗ρ∗ [Z]k .cd−|J |−k(DJ))

= eJ
∗ρ∗ [Z]k .cd−|J |−k(DJ)

= eJ
∗ [Z ′]k .cd−|J |−k(DJ) =

[
D′J

]k
.cd−|J |−k(DJ).

Therefore, the stringy Euler number estr(Z) of Z has the form

estr(Z) =
∑
∅⊆J⊆I

⎛⎝d−|J |∑
k=1

(−1)k−1ρ∗ [Z]k .eJ∗cd−|J |−k(DJ)

⎞⎠∏
j∈J

( −aj
aj + 1

)

=
∑
k≥1

(−1)k−1ρ∗[Z]k

⎛⎝ ∑
∅⊆J⊆I

eJ∗cd−|J |−k(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠ .

For any positive integer n, the class n[Z] can be again represented by a
generic very ample Cartier divisor Z(n) such that ρ−1(Z(n)) is smooth. So
we can repeat the same arguments for Z(n) to obtain that the stringy Euler
number

estr

(
Z(n)

)
=

∑
k≥1

(−1)k−1nkρ∗[Z]k

⎛⎝ ∑
∅⊆J⊆I

eJ∗cd−|J |−k(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠
is a polynomial P in n whose k-th coefficient

ρ∗[Z]k

⎛⎝ ∑
∅⊆J⊆I

eJ∗cd−|J |−k(DJ)
∏
j∈J

( −aj
aj + 1

)⎞⎠
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16 V. Batyrev and K. Schaller

is equal to ıρ(Z, . . . , Z). Since the stringy Euler number of Z(n) does not
depend on the choice of the log-desingularization ρ [Bat98, Theorem 3.4],
the same is true for the polynomial P and hence for its k-th coefficient
ıρ(Z, . . . , Z). �

3. Stringy Chern classes on toric varieties

It is well-known that singularities of an arbitrary Q-Gorenstein toric vari-
ety X are log-terminal. Moreover, the stringy Euler number estr(X) of the
toric variety X can be computed combinatorially using cones of maximal
dimension in the associated fan Σ [Bat98, Proposition 4.10] In this section,
we give a combinatorial formula of all stringy Chern classes of arbitrary
Q-Gorenstein toric varieties using the intrinsic information provided by the
associated fans. We apply this formula to compute intersection numbers
[D1] . . . . . [Dk] .c

str
d−k(X) via mixed volumes of certain polytopes.

We start with a well-know fact about Chern classes of smooth toric
varieties:

Theorem 3.1. Let V be a smooth toric variety associated with a fan Σ in
NR. Then the total Chern class of V is

c·(V ) =
∑
σ∈Σ

[Vσ] ,

where [Vσ] is the class of the closed torus orbit Vσ corresponding to a cone
σ ∈ Σ.

Theorem 3.2. Let X be a Q-Gorenstein toric variety associated with a fan
Σ. Then the total stringy Chern class of X is

cstr· (X) =
∑
σ∈Σ

v(σ) · [Xσ] ,

where v(σ) = k! · volk (Θσ) and volk (Θσ) is the k-dimensional volume of the
lattice polytope Θσ obtained as the convex hull of the origin and the primitive
lattice generators of all 1-dimensional faces of a cone σ ∈ Σ(k).

Proof. Consider ρ : Y → X to be a log-desingularization of X obtained by
a refinement Σ′ of the fan Σ. There is a natural bijection between the
set of exceptional divisors {D1, . . . , Ds} in Y and the set of 1-dimensional
cones Σ′(1) \ Σ(1). We denote by {Ds+1, . . . , Dr} the set of all remaining
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Stringy Chern classes of singular toric varieties 17

torus-invariant divisors in Y whose elements one-to-one correspond to 1-
dimensional cones in Σ(1) and set I := {1, . . . , s}, I ′ := I ∪ {s+ 1, . . . , r},
and aj := 0 for all j ∈ I ′ \ I.

Let {u1, . . . , ur} = {ui | i ∈ I ′} be the set of all primitive lattice gener-
ators of 1-dimensional cones of Σ′(1) corresponding to all torus-invariant
divisors D1, . . . , Dr. For any subset J ′ ⊆ I ′, the subset DJ ′ = ∩j∈J ′Dj is
either empty or a smooth toric subvariety Yσ′ of Y . The latter holds if
and only if the set {uj |j ∈ J ′} generates a cone σ′ ∈ Σ′ of dimension |J ′|.
Then the locally closed subset D◦J ′ := DJ ′ \

(
∪i∈I′\J ′Di

)
is the dense open

torus orbit Tσ′ in Yσ′ . By Theorem 3.1, we have c·(Tσ′) = [Tσ′ ]. This implies

c
(
1D◦

J′

)
= [Yσ′ ]. Using Equation (10), we get

cstr· (X) = ρ∗

⎛⎝ ∑
∅⊆J ′⊆I′

c
(
1D◦

J′

) ∏
j∈J ′

(
1

aj + 1

)⎞⎠
=

∑
σ′∈Σ′

ρ∗ [Yσ′ ]
∏

uj∈σ′

(
1

aj + 1

)
.

Let us compute ρ∗[Yσ′ ]. If σ ∈ Σ is the minimal cone of Σ containing
σ′ ∈ Σ′, then ρ(Yσ′) = Xσ. In order to compute the corresponding cycle map
ρ∗ : A·(Y ) → A·(X), we need to compare the dimensions of Yσ′ and Xσ. If

dim (Yσ′) > dim (Xσ), then ρ∗[Yσ′ ] = 0. Otherwise, we have ρ∗[Yσ′ ] = [Xσ].
Therefore, we get

cstr· (X) =
∑
σ∈Σ

⎛⎜⎜⎝ ∑
σ′∈Σ′,σ′�σ

dim(σ′)=dim(σ)

∏
uj∈σ′

(
1

aj + 1

)⎞⎟⎟⎠ · [Xσ] .

Furthermore,
∏

uj∈σ′

(
1

aj+1

)
= v (σ′) for every cone σ′ ∈ Σ′ and this implies

cstr· (X) =
∑
σ∈Σ

⎛⎜⎜⎝ ∑
σ′∈Σ′,σ′�σ

dim(σ′)=dim(σ)

v
(
σ′
)⎞⎟⎟⎠ · [Xσ] =

∑
σ∈Σ

v (σ) · [Xσ] .

�

Corollary 3.3. Let X be a d-dimensional Q-Gorenstein toric variety as-
sociated with a fan Σ. Then the k-th stringy Chern class of X (0 ≤ k ≤ d)
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18 V. Batyrev and K. Schaller

is

cstrk (X) =
∑

σ∈Σ(k)

v(σ) · [Xσ] .

The above formula allows to compute combinatorially the intersection
number of the stringy Chern class cstrd−1(X) of a d-dimensional projective
Q-Gorenstein toric variety X corresponding to a fan Σ with an arbitrary
torus-invariant Q-Cartier divisor D =

∑
ρ∈Σ(1) aρDρ on X.

Therefore, we define for any (d− 1)-dimensional cone σ ∈ Σ(d− 1) the
rational number lD(σ): Consider two d-dimensional cones σ′, σ′′ ∈ Σ(d)
such that σ = σ′ ∩ σ′′. Denote by mσ′ and mσ′′ elements in MQ that are
defined by the conditions 〈mσ′ , uρ〉 = −aρ ∀ρ ⊆ σ′ respectively 〈mσ′′ , uρ〉 =
−aρ ∀ρ ⊆ σ′′, where ρ ∈ Σ(1) and uρ ∈ N denotes its primitive lattice gener-
ator. Now choose the primitive lattice generator u of the 1-dimensional sub-
lattice M(σ) := {m ∈ M | 〈m,u′〉 = 0 ∀u′ ∈ σ} such that u|σ′ ≤ 0 and u|σ′′ ≥
0. Since mσ′ −mσ′′ vanishes on σ, there exists a unique number lD(σ) ∈ Q

such that mσ′ −mσ′′ = lD(σ) · u.

Proposition 3.4. Let X be a d-dimensional projective Q-Gorenstein toric
variety associated with a fan Σ and D a torus-invariant Q-Cartier divisor
on X. Then

[D] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v (σ) · lD(σ),

where the rational number lD(σ) ∈ Q is defined as above.

Proof. Using Corollary 3.3, we obtain

[D] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · [D] . [Xσ] .

It remains to apply the equality [D] . [Xσ] = lD(σ) (cf. [CLS11, Proposi-
tion 6.3.8]) for every cone σ ∈ Σ(d− 1). �

Now we compute intersection numbers [D]k.cstrd−k(X), where D =∑
ρ∈Σ(1) aρDρ is a semiample torus-invariant Q-Cartier divisor on the toric
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Stringy Chern classes of singular toric varieties 19

variety X. Consider the corresponding convex rational polytope ΔD of di-
mension ≤ d defined as

ΔD := {y ∈ MR| 〈y, uρ〉 ≥ −aρ ∀ρ ∈ Σ(1)} ⊆ MR,

where uρ ∈ N is the primitiv lattice generator of a 1-dimensional cone ρ ∈
Σ(1). Let σ ∈ Σ(d− k) be a (d− k)-dimensional cone of the fan Σ. Denote
by Δσ

D a face of ΔD of dimension ≤ k defined as

Δσ
D := {y ∈ ΔD| 〈y, uρ〉 = −aρ ∀ρ ∈ Σ(1) with ρ ∈ σ} ⊆ MR.

The volume of the rational polytope Δσ
D is defined as

v (Δσ
D) := k! · volk (Δσ

D) ∈ Q,

where volk (Δ
σ
D) is the volume of Δσ

D with respect to the k-dimensional
sublattice M(σ) = {m ∈ M | 〈m,u′〉 = 0 ∀u′ ∈ σ} of M . In particular, one
has v (Δσ

D) = 0 if dim (Δσ
D) < k.

Theorem 3.5. Let X be a d-dimensional projective Q-Gorenstein toric va-
riety associated with a fan Σ and D a semiample torus-invariant Q-Cartier
divisor on X. Then

[D]k .cstrd−k(X) =
∑

σ∈Σ(d−k)
v(σ) · v (Δσ

D) ,

where the face Δσ
D of ΔD and v (Δσ

D) are defined as above (0 ≤ k ≤ d).

Proof. By Corollary 3.3, we have

[D]k .cstrd−k(X) =
∑

σ∈Σ(d−k)
v(σ) · [D]k . [Xσ] .

Let Dσ be the restriction of the semiample torus-invariant Q-Cartier divisor
D to the k-dimensional toric subvariety Xσ of X. Then [D]k . [Xσ] is the
intersection number [Dσ]k of the semiample torus-invariantQ-Cartier divisor
Dσ on the k-dimensional variety Xσ. It remains to note that the number
[Dσ]k equals v (Δσ

D) (cf. [CLS11, Section 13.4]). �

Using Theorem 3.5 and Corollary 1.4 respectively 1.7, we derive combi-
natorial formulas for the stringy Euler number of generic hypersurfaces and
complete intersections in toric varieties:
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Corollary 3.6. Let X be a d-dimensional projective Q-Gorenstein toric
variety associated with a fan Σ and D a semiample torus-invariant Cartier
divisor on X together with the corresponding lattice polytope ΔD . Denote
by Z ⊆ X a generic semiample Cartier divisor such that [Z] = [D]. Then
the stringy Euler number of Z is

estr(Z) = cstrd−1(Z) =

d−1∑
k=0

(−1)k
∑

σ∈Σ(d−1−k)
v(σ) · v (Δσ

D) ,

where Δσ
D is a face of ΔD corresponding to a cone σ ∈ Σ. If [Z] = c1(X),

the formula simplifies to

estr(Z) = cstrd−1(Z) =

d−3∑
k=0

(−1)k
∑

σ∈Σ(d−1−k)
v(σ) · v (Δσ

D) .

Corollary 3.7. Let X be a d-dimensional projective Q-Gorenstein toric
variety associated with a fan Σ and D a semiample torus-invariant Cartier
divisor on X together with the corresponding lattice polytope ΔD. Denote by
Z1, . . . , Zr ⊆ X generic semiample Cartier divisors such that [Z1] = · · · =
[Zr] = [D]. Then the stringy Euler number of the complete intersection Z1 ∩
· · · ∩ Zr is

cstrd−r (Z1 ∩ · · · ∩ Zr) =

d−r∑
k=0

(−1)k
(
k + r − 1

r − 1

) ∑
σ∈Σ(d−r−k)

v(σ) · v (Δσ
D) ,

where Δσ
D is a face of ΔD as above.

One can generalize Theorem 3.5 and combinatorially compute intersec-
tion numbers [D1] . . . . . [Dk] .c

str
d−k(X), where D1, . . . , Dk are different semi-

ample torus-invariant Q-Cartier divisors on X. For this purpose, we use
mixed volumes of faces of some convex rational polytopes.

Theorem 3.8. Let X be a d-dimensional projective Q-Gorenstein toric
variety associated with a fan Σ and D1, . . . , Dk semiample torus-invariant
Q-Cartier divisors on X. Then

[D1] . . . . . [Dk] .c
str
d−k(X) =

∑
σ∈Σ(d−k)

v(σ) · v
(
Δσ

D1
, . . . ,Δσ

Dk

)
,
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where Δσ
Di

is a face of ΔDi
(1≤ i≤k) corresponding to a cone σ∈Σ and

v
(
Δσ

D1
, . . . ,Δσ

Dk

)
denotes the mixed volume of the polytopes Δσ

D1
, . . . ,Δσ

Dk

with respect to the sublattice M(σ) ⊆ M .

Proof. Let σ ∈ Σ(d− k) be a (d− k)-dimensional cone. Then we restrict
the semiample torus-invariant Q-Cartier divisors D1, . . . , Dk to the corre-
sponding projective k-dimensional toric subvariety Xσ of X and obtain k
semiample torus-invariant Q-Cartier divisors Dσ

1 , . . . , D
σ
k on Xσ. It remains

to apply Corollary 3.3 and the formula in [Ful93, Section 5.4] that claims
that the intersection number

[D1] . . . . . [Dk] . [Xσ] = [Dσ
1 ] . . . . . [D

σ
k ]

can be computed as the mixed volume v
(
Δσ

D1
, . . . ,Δσ

Dk

)
of the polytopes

Δσ
Di
. �

4. Stringy Libgober-Wood identity for toric varieties

The identity

d2

du2
E (V ;u, 1)

∣∣∣
u=1

=
3d2 − 5d

12
cd(V ) +

1

6
c1(V ).cd−1(V )

has been proved by Libgober and Wood [LW90] for arbitrary smooth d-
dimensional projective varieties V . This identity is equivalent to

∑
0≤p,q≤d

(−1)p+qhp,q(V )

(
p− d

2

)2

=
d

12
cd(V ) +

1

6
c1(V ).cd−1(V )

and so the intersection number c1(V ).cd−1(V ) can be expressed via the
Hodge numbers hp,q(V ) of V [Bor97].

There exists a stringy version of the Libgober-Wood identity

d2

du2
Estr (X;u, 1)

∣∣∣
u=1

=
3d2 − 5d

12
cstrd (X) +

1

6
c1(X).cstrd−1(X),(13)

which holds for any d-dimensional projective variety X with at worst log-
terminal singularities [Bat00, Theorem 3.8] (cf. Equation (3)).

Moreover, if the singularities of X are at worst canonical Gorenstein and
the stringy E-function Estr(X;u, v) is a polynomial

∑
p,q ψp,qu

pvq, then one
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can define the stringy Hodge numbers hp,qstr(X) of X [Bat98, Bat00] as

hp,qstr(X) := (−1)p+qψp,q.

In this case, the stringy Libgober-Wood identity can be equivalently refor-
mulated [Bat00, Corollary 3.10] as

∑
0≤p,q≤d

(−1)p+qhp,qstr (X)

(
p− d

2

)2

=
d

12
cstrd (X) +

1

6
c1(X).cstrd−1(X).(14)

In this section, we are interested in a combinatorial interpretation of
these stringy Libgober-Wood identities (13), (14) for arbitrary d-dimensional
projective Q-Gorenstein toric varieties X associated with a fan Σ. Let qX
be the smallest positive integer such that qXKX is a Cartier divisor. The
number qX is called Gorenstein index of X. Note that the stringy E-function
Estr (X;u, v) of such a toric variety X can be computed combinatorially as

Estr (X;u, v) = (uv − 1)d
∑
σ∈Σ

∑
n∈σ◦∩N

(uv)κ(n),(15)

where κ is the Σ-piecewise linear function corresponding to the anticanonical
divisor of X and σ◦ is the relative interior of a cone σ ∈ Σ [Bat98, Theorem
4.3]. We remark that κ has value −1 on every primitive lattice generator of
a 1-dimensional cone σ ∈ Σ(1) and that the value κ(n) (n ∈ N) belongs to
1
qX

Z.
First, we show that the stringy E-function Estr (X;u, v) is a polynomial

with nonnegative integral coefficients ψα(Σ) in nonnegative rational powers
α ∈ [0, d] ∩ 1

qX
Z of uv:

Proposition 4.1. Let X be a d-dimensional projective Q-Gorenstein toric
variety of Gorenstein index qX associated with a fan Σ in NR and Σ′ a
simplicial subdivision of the fan Σ such that Σ′(1) = Σ(1). For any cone
σ ∈ Σ′, we denote by �◦σ the relative interior of the parallelepiped �σ spanned
by the primitive lattice generators of the cone σ. Then the stringy E-function
can be computed as a finite sum

Estr (X;u, v) =
∑
σ∈Σ′

(uv − 1)d−dim(σ)
∑

n′∈�◦
σ∩N

(uv)dim(σ)+κ(n′).
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Moreover, the stringy E-function can be written as a finite sum

Estr (X;u, v) =
∑

α∈[0,d]∩ 1

qX
Z

ψα(Σ)(uv)
α,

where the coefficients ψα(Σ) are nonnegative integers satisfying the condi-
tions ψ0(Σ) = ψd(Σ) = 1 and ψα(Σ) = ψd−α(Σ) for all α ∈ [0, d] ∩ 1

qX
Z.

Proof. Any s-dimensional simplicial cone σ of Σ′(s) is generated by s lin-
early independent primitive lattice vectors u1, . . . , us. Therefore, any lat-
tice point n ∈ σ◦ ∩N has a unique representation as a sum n = n′ + n′′,
where n′ =

∑s
i=1 λiui ∈ �◦σ ∩N (0 ≤ λi ≤ 1) and n′′ is a linear combination

n′′ =
∑s

i=1 kiui with nonnegative integral coefficients ki. Therefore, one has

(uv − 1)s
∑

n∈σ◦∩N
(uv)κ(n) = (uv − 1)s

∑
n′∈�◦

σ∩N
(uv)κ(n

′)
s∏

i=1

⎛⎝ ∑
ki∈Z≥0

(uv)−ki

⎞⎠
= (uv − 1)s

∑
n′∈�◦

σ∩N
(uv)κ(n

′) ·
(

1

1− (uv)−1

)s

=
∑

n′∈�◦
σ∩N

(uv)s+κ(n′)

and the first statement of Proposition 4.1 follows from Equation (15). Since
κ has value −1 on every primitive lattice generator ui and qX · κ(n) ∈ Z for
all n ∈ N , we obtain that s+ κ(n′) = s−∑s

i=1 λi is a nonnegative ratio-
nal number in 1

qX
Z≥0. Therefore, Estr (X;u, v) can be written as a finite

sum Estr (X;u, v) =
∑

α ψα(Σ)(uv)
α for some integral coefficients ψα(Σ)

and some nonnegative rational numbers α in 1
qX

Z≥0. The Poincaré dual-
ity [Bat98, Theorem 3.7] for the stringy E-function

Estr (X;u, v) = (uv)dEstr

(
X;u−1, v−1

)
delivers the equalities ψα(Σ) = ψd−α(Σ). This implies α ≤ d as soon as
ψα(Σ) �= 0. Therefore, we obtain

Estr (X;u, v) =
∑

α∈[0,d]∩ 1

qX
Z

ψα(Σ)(uv)
α.

The nonnegativity of the coefficients ψα(Σ) can be shown using an inter-
pretation of the coefficients ψα(Σ) as dimensions of graded homogenous
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components of a graded artinian ring R obtained as a quotient of a graded
Cohen-Macaulay ring S by a regular sequence of homogeneous elements
(cf. [Bat93, Theorem 2.11]). �

Corollary 4.2. Let X be a 2-dimensional projective Q-Gorenstein toric
variety associated with a fan Σ in NR. Then

Estr (X;u, v) = (uv − 1)2 +
∑
n∈N

κ(n)=−1

uv +
∑
n∈N

−1<κ(n)<0

(
(uv)2+κ(n) + (uv)−κ(n)

)
.

Proof. We do not need a subdivision Σ′ of the fan Σ because every cone
σ ∈ Σ already is simplicial. Therefore, we set Σ′ = Σ. By Proposition 4.1,
we obtain

Estr (X;u, v) =
∑
σ∈Σ

(uv − 1)2−dim(σ)
∑

n∈�◦
σ∩N

(uv)dim(σ)+κ(n)

= (uv − 1)2 +
∑

σ∈Σ(1)

(uv − 1) +
∑

σ∈Σ(2)

∑
n∈�◦

σ∩N
(uv)2+κ(n).

For any 2-dimensional cone σ ∈ Σ(2), the set {x ∈ NR : κ(x) = −1}
divides the parallelogram �σ into two isomorphic lattice triangles �σ

≤−1
and �σ

≥−1. Let u1, u2 be the primitive lattice generators of σ. We can write
every lattice point n ∈ �σ as a linear combination n = λ1u1 + λ2u2 with
rational coefficients λ1, λ2 ∈ [0, 1]. A lattice point n ∈ �σ belongs to the
triangle �σ

≥−1 if and only if the lattice point n∗ := u1 + u2 − n belongs to
the triangle �σ

≤−1. Since the boundary of the lattice parallelogram �σ has
no lattice points except vertices, we can use the bijection n ↔ n∗ together
with the equation κ(n) + κ(n∗) = −2 to obtain∑

n∈�◦
σ∩N

(uv)2+κ(n) = 1 +
∑

n∈σ◦∩N

κ(n)=−1

uv +
∑

n∈σ∩N

−1<κ(n)<0

(
(uv)2+κ(n) + (uv)−κ(n)

)
.

It remains to apply the equalities |Σ(1)| = |Σ(2)| and∑
σ∈Σ(1)

uv +
∑

σ∈Σ(2)

∑
n∈σ◦∩N

κ(n)=−1

uv =
∑
n∈N

κ(n)=−1

uv.

�
The equality Estr (X;u, v) =

∑
α ψα (Σ) (uv)

α in Proposition 4.1 sug-
gests that the nonnegative integral coefficients ψα (Σ) may be interpreted as
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generalized stringy Hodge numbers hα,αstr (X) of the toric variety X for some
rational numbers α ∈ [0, d] ∩ 1

qX
Z.

The following theorem presents a combinatorial interpretation for the
second version of the stringy Libgober-Wood identity (14) using the gener-
alized stringy Hodge numbers of the toric variety X.

Theorem 4.3. Let X be a d-dimensional projective Q-Gorenstein toric va-
riety of Gorenstein index qX associated with a fan Σ and −KX =

∑
ρ∈Σ(1)Dρ

the anticanonical torus-invariant Q-Cartier divisor on X. Then the stringy
Libgober-Wood identity is equivalent to

∑
α∈[0,d]∩ 1

qX
Z

ψα (Σ)

(
α− d

2

)2

=
d

12
v(Σ) +

1

6

∑
σ∈Σ(d−1)

v(σ) · l−KX
(σ),

where ψα (Σ) are nonnegative integers as above, v (Σ) :=
∑

σ∈Σ(d) v(σ), and
l−KX

(σ) ∈ Q is the intersection number [−KX ].[Xσ] (cf. Proposition 3.4).
If −KX is semiample, then

∑
α∈[0,d]∩ 1

qX
Z

ψα (Σ)

(
α− d

2

)2

=
d

12
v(Σ) +

1

6

∑
σ∈Σ(d−1)

v(σ) · v
(
Δσ
−KX

)
,

where Δσ
−KX

is a face of the rational polytope Δ−KX
corresponding to a cone

σ ∈ Σ (cf. Theorem 3.5).

Proof. Using the equality Estr (X;u, v) =
∑

α ψα (Σ) (uv)
α from Proposi-

tion 4.1, we obtain

d2

du2
Estr (X;u, 1) |u=1 =

∑
α

α · (α− 1)ψα (Σ) ,

i.e., the stringy Libgober-Wood identity (13) is given as

∑
α

(
α2 − α

)
ψα (Σ) =

3d2 − 5d

12
cstrd (X) +

1

6
c1(X).cstrd−1(X).

Applying
∑

α αψα (Σ)=
d
duEstr (X;u, 1) |u=1=

d
2c

str
d (X) [Bat00, Proposition

3.4] a short calculation yields

∑
α

α2ψα (Σ) =

(
d

12
+

d2

4

)
cstrd (X) +

1

6
c1(X).cstrd−1(X)
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and implies∑
α

ψα (Σ)

(
α− d

2

)2

=
∑
α

α2ψα (Σ)− d
∑
α

αψα (Σ) +
d2

4

∑
α

ψα (Σ)

=
d

12
cstrd (X) +

1

6
c1(X).cstrd−1(X)

because
∑

α ψα (Σ) = Estr (X;u, 1) |u=1 = cstrd (X) [Bat00, Definition 2.1]. To
finish, it remains to note that cstrd (X) = v(Σ) by Corollary 3.3 (cf. [Bat98,
Proposition 4.10]),

c1(X).cstrd−1(X) = [−KX ] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · l−KX

(σ)

by Proposition 3.4, and

c1(X).cstrd−1(X) = [−KX ] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · v

(
Δσ
−KX

)
by Theorem 3.5 if −KX is semiample. �

We formulate one more combinatorial version of the stringy Libgober-
Wood identity containing only intrinsic informations coming from the as-
sociated fan Σ of the toric variety X. To achieve this, we describe the left
side of the stringy Libgober-Wood identity (13) in pure combinatorial terms
using Proposition 4.1.

Theorem 4.4. Let X be a d-dimensional projective Q-Gorenstein toric va-
riety associated with a fan Σ in NR and −KX =

∑
ρ∈Σ(1)Dρ the anticanoni-

cal torus-invariant Q-Cartier divisor on X. Then the stringy Libgober-Wood
identity is equivalent to

2·
∑

σ∈Σ′(d−2)
|�◦σ ∩N |+ 2 ·

∑
σ∈Σ′(d−1)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)− 1

)
+

∑
σ∈Σ′(d)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)

) (
d+ κ(n′)− 1

)
=

(3d2 − 5d)

12
v (Σ) +

1

6
c1(X).cstrd−1(X),

where Σ′ is a simplicial subdivision of the fan Σ such that Σ′(1) = Σ(1),
�◦σ is the relative interior of the parallelepiped �σ spanned by the primi-
tive lattice generators of a cone σ ∈ Σ, κ is the Σ-piecewise linear func-
tion corresponding to −KX , and v(Σ) =

∑
σ∈Σ(d) v(σ). The rational number
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c1(X).cstrd−1(X) ∈ Q is computable as

c1(X).cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · l−KX

(σ),

where l−KX
is the intersection number [−KX ].[Xσ] (cf. Proposition 3.4). If

−KX is semiample, then

c1(X).cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · v

(
Δσ
−KX

)
,

where Δσ
−KX

is a face of the rational polytope Δ−KX
(cf. Theorem 3.5).

Proof. We derivate one summand of the stringy E-function

Estr (X;u, v) =
∑
σ∈Σ′

(uv − 1)d−dim(σ)
∑

n′∈�◦
σ∩N

(uv)dim(σ)+κ(n′).

from Proposition 4.1 inserted v = 1 twice and get

d2

du2
(u− 1)d−s

∑
n′∈�◦

σ∩N
us+κ(n′)

= (d− s)(d− 1− s)(u− 1)d−2−s
∑

n′∈�◦
σ∩N

us+κ(n′)

+ 2 · (d− s)(u− 1)d−1−s
∑

n′∈�◦
σ∩N

(s+ κ(n′))us+κ(n′)−1

+ (u− 1)d−s
∑

n′∈�◦
σ∩N

(s+ κ(n′))(s+ κ(n′)− 1)us+κ(n′)−2,

where σ is any s-dimensional cone of Σ′(s). Inserting u = 1 the relevant
cones of Σ′ are these of dimension d, d− 1, and d− 2, i.e.,

d2

du2
Estr (X;u, 1)

∣∣∣
u=1

= 2 ·
∑

σ∈Σ′(d−2)
|�◦σ ∩N |

+ 2 ·
∑

σ∈Σ′(d−1)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)− 1

)
+

∑
σ∈Σ′(d)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)

) (
d+ κ(n′)− 1

)
.
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By Equation (13), we obtain the equality

2·
∑

σ∈Σ′(d−2)
|�◦σ ∩N |+ 2 ·

∑
σ∈Σ′(d−1)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)− 1

)
+

∑
σ∈Σ′(d)

∑
n′∈�◦

σ∩N

(
d+ κ(n′)

) (
d+ κ(n′)− 1

)
=

(3d2 − 5d)

12
v (Σ) +

1

6
c1(X).cstrd−1(X)

because cstrd (X) = v(Σ) by Corollary 3.3 (cf. [Bat98, Proposition 4.10]). Fur-
thermore,

c1(X).cstrd−1(X) = [−KX ] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · l−KX

(σ)

by Proposition 3.4 and

c1(X).cstrd−1(X) = [−KX ] .cstrd−1(X) =
∑

σ∈Σ(d−1)
v(σ) · v

(
Δσ
−KX

)
by Theorem 3.5 if −KX is semiample. �

Recall that a normal projective surface is called log del Pezzo surface if
it has at worst log-terminal singularities and if its anticanonical divisor is an
ample Q-Cartier divisor. Toric log del Pezzo surfaces one-to-one correspond
to convex lattice polygons Δ ⊆ NR containing the origin in its interior such
that the vertices of Δ are primitive lattice points in N . These polygons Δ
are called LDP-polygons [KKN10]. The fan Σ defining a toric log del Pezzo
surface X consists of cones over faces of Δ. In particular, any LDP-polygon
Δ is the convex hull of all primitive lattice generators of 1-dimensional cones
of Σ(1). We remark that in general the vertices of the dual polygon Δ∗ ⊆ MR

are not lattice points in M .
We propose a new combinatorial identity that is equivalent to the stringy

Libgober-Wood identity (13) and relates the number 12 to LDP-polygons
Δ:

Corollary 4.5. Let X be a toric log del Pezzo surface defined by a fan Σ
in NR together with the corresponding LDP-polygon Δ ⊆ NR. Then

v (Δ) + v (Δ∗) = 12
∑

n∈Δ∩N
(κ(n) + 1)2 ,
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where κ the Σ-piecewise linear function corresponding to the anticanonical
divisor of X. In particular, one always has v (Δ) + v (Δ∗) ≥ 12 and equality
holds if and only if Δ is a reflexive polygon.

Proof. We use the formula for the stringy E-function from Corollary 4.2 and
obtain

Estr (X;u, 1) = (u− 1)2 +
∑
n∈N

κ(n)=−1

u+
∑
n∈N

−1<κ(n)<0

(
u2+κ(n) + u−κ(n)

)
.

Therefore,

d2

du2
Estr (X;u, 1)

∣∣∣
u=1

= 2 +
∑

0 �=n∈Δ◦∩N
((2 + κ(n))(1 + κ(n)) + (−κ(n))(−κ(n)− 1))

= 2
∑

n∈Δ◦∩N
(κ(n) + 1)2 = 2

∑
n∈Δ∩N

(κ(n) + 1)2,

where Δ◦ denotes the interior of the polygon Δ. By Equation (13), we get
the equality

2
∑

n∈Δ∩N
(κ(n) + 1)2 =

1

6
cstr2 (X) +

1

6
c1(X)2 =

1

6
(v(Δ) + v(Δ∗))

because cstr2 (X) = v(Σ) = v(Δ) and c1(X)2 = v(Δ∗). One has∑
n∈Δ∩N

(κ(n) + 1)2 ≥ 1

because the origin is contained in Δ. Equality holds, if and only if the origin
is the unique interior lattice point n in Δ. �

5. Applications to reflexive and Gorenstein polytopes

Let Δ ⊆ NR be a d-dimensional convex lattice polytope that contains the
origin in its interior. Denote by Σ a fan in NR consisting of cones over faces
of Δ that defines a normal projective toric variety X. The polytope Δ is
called reflexive if its dual Δ∗ = {y ∈ MR|〈y, x〉 ≥ −1 ∀x ∈ Δ} is also a lattice
polytope. If Δ is reflexive, then the associated varietyX is a Gorenstein toric
Fano variety (i.e., qX = 1).
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We are interested in a combinatorial identity for reflexive polytopes Δ
that is equivalent to the stringy Libgober-Wood identity (14) for Gorenstein
toric Fano varieties. For this purpose, we observe that the generalized stringy
Hodge numbers ψα (Σ) in

Estr(X;u, v) =
∑

α∈[0,d]∩Z
ψα (Σ) (uv)

α

are equal to the nonnegative integral coefficients ψd (Δ) , . . . , ψ0 (Δ) in the
numerator of the Ehrhart power series

PΔ(t) =
ψd (Δ) td + · · ·+ ψ1 (Δ) t+ ψ0 (Δ)

(1− t)d+1
.(16)

Lemma 5.1. Let Δ ⊆ NR be a d-dimensional reflexive polytope and X the
associated Gorenstein toric Fano variety. Then

Estr(X;u, v) = ψd (Δ) (uv)d + · · ·+ ψ1 (Δ) (uv) + ψ0 (Δ) ,

i.e., ψα (Σ) = ψα (Δ) for all α ∈ [0, d] ∩ Z, where ψα (Σ) and ψα (Δ) are
given as above.

Proof. By Equation (15), we have

Estr (X;u, v) = (uv − 1)d
∑
n∈N

(uv)κ(n) = (uv − 1)d
∑
k≥0

∑
n∈N

κ(n)=−k

(uv)−k,

since the fan Σ defining X is complete. We note that the number of lat-
tice points n ∈ N such that κ(n) = −k equals |kΔ ∩N | − |(k − 1)Δ ∩N |.
Therefore, we get

Estr (X;u, v) = (uv − 1)d
(
1− (uv)−1

)∑
k≥0

|kΔ ∩N | (uv)−k.

Using the definition of PΔ

(
(uv)−1

)
and Equation (16), this implies

Estr (X;u, v) = (uv)d
(
1− (uv)−1

)d+1 · PΔ

(
(uv)−1

)
= ψd (Δ) + · · ·+ ψ1 (Δ) (uv)d−1 + ψ0 (Δ) (uv)d

= ψd (Δ) (uv)d + · · ·+ ψ1 (Δ) (uv) + ψ0 (Δ)

because ψα (Δ) = ψd−α (Δ) for all 0 ≤ α ≤ d [Bat93, Theorem 2.11]. �
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Let Δ ⊆ NR be a d-dimensional convex lattice polytope that contains the
origin in its interior. If θ is a face of Δ, then the face θ∗ = {y ∈ Δ∗| 〈y, x〉 =
−1 ∀x ∈ θ} ⊆ Δ∗ is the dual face to θ. This establishes a one-to-one order-
reversing correspondence between faces of Δ and faces of Δ∗ such that
dim(θ) + dim (θ∗) = d− 1.

Theorem 5.2. Let Δ ⊆ NR be a d-dimensional reflexive polytope. Then
the stringy Libgober-Wood identity for the Gorenstein toric Fano variety X
corresponding to Δ is equivalent to

∑
α∈[0,d]∩Z

ψα (Δ)

(
α− d

2

)2

=
d

12
v (Δ) +

1

6

∑
θ�Δ

dim(θ)=d−2

v(θ) · v (θ∗) ,

where ψα (Δ) are the coefficients in the numerator of the Ehrhart power
series PΔ(t).

Proof. Using Lemma 5.1 and Theorem 4.3, we obtain

∑
α∈[0,d]∩Z

ψα (Δ)

(
α− d

2

)2

=
d

12
v (Σ) +

1

6

∑
σ∈Σ(d−1)

v(σ) · v
(
Δσ
−KX

)
,

since the anticanonical divisor−KX is ample. It remains to use v (Σ) = v (Δ)
and ∑

σ∈Σ(d−1)
v(σ) · v

(
Δσ
−KX

)
=

∑
θ�Δ,

dim(θ)=d−2

v (θ) · v (θ∗) ,

since Δ−KX
= Δ∗, σ is a cone over a face θ of Δ, Δσ

−KX
= θ∗, and every

facet of Δ has lattice distance 1 to the origin. �

The well-known identities for reflexive polytopes of dimension 2 and 3
follow from the above statement:

Corollary 5.3. Let Δ ⊆ NR be a 2-dimensional reflexive polytope. Then
the stringy Libgober-Wood identity is equivalent to

v(Δ) + v (Δ∗) = 12.
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Proof. Using Theorem 5.2, we get∑
α∈[0,2]∩Z

ψα (Δ) (α− 1)2 =
1

6
v (Δ) +

1

6

∑
θ�Δ

dim(θ)=0

v(θ) · v (θ∗) .

Moreover,
∑

α∈[0,2]∩Z ψα (Δ) (α− 1)2 = 2 because ψ0 (Δ) = ψ2 (Δ) = 1. It
remains to apply the equalities∑

θ�Δ

dim(θ)=0

v(θ) · v (θ∗) =
∑
θ�Δ

dim(θ)=0

v (θ∗) = v (Δ∗)

that hold because Δ∗ is reflexive and v (θ) = 1 if dim(θ) = 0. �

Corollary 5.4. Let Δ ⊆ NR be a 3-dimensional reflexive polytope. Then
the stringy Libgober-Wood identity is equivalent to∑

θ�Δ

dim(θ)=1

v (θ) · v (θ∗) = 24.

Proof. Theorem 5.2 implies∑
α∈[0,3]∩Z

ψα (Δ)

(
α− 3

2

)2

=
1

4
v (Δ) +

1

6

∑
θ�Δ

dim(θ)=1

v(θ) · v (θ∗) .

The coefficients ψα (Δ) in the numerator of the Ehrhart power series PΔ(t)
are ψ0 (Δ) = ψ3 (Δ) = 1 and ψ1 (Δ) = ψ2 (Δ) = |Δ ∩N | − 4 [Bat93, Theo-
rem 2.11], i.e.,

∑
α∈[0,3]∩Z

ψα (Δ)

(
α− 3

2

)2

=
9

2
+

1

2
ψ1 (Δ)

and we conclude∑
θ�Δ

dim(θ)=1

v(θ) · v (θ∗) = 27 + 3

(
ψ1 (Δ)− 1

2
v (Δ)

)
= 24,

where the last equality holds because

v (Δ) = v(Σ) = estr(X) =
∑

α∈[0,3]∩Z
ψα (Δ) .

�
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If the dimension d of a reflexive polytope is greater than 3, the identity
in Theorem 5.2 is not anymore a symmetric equation with respect to polar
duality between Δ and Δ∗. The received identities for reflexive polytopes Δ
and Δ∗ of dimension ≥ 4 are not equivalent to each other. The latter is easy
to see in the case d = 4:

Corollary 5.5. Let Δ ⊆ NR be a 4-dimensional reflexive polytope. Then
the stringy Libgober-Wood indentity is equivalent to

12 · |∂Δ ∩N | = 2 · v (Δ) +
∑
θ�Δ

dim(θ)=2

v(θ) · v (θ∗) ,

where ∂Δ denotes the boundary of Δ and |∂Δ ∩N | the number of lattice
points in ∂Δ.

Proof. By Theorem 5.2, we have∑
α∈[0,4]∩Z

ψα (Δ) (α− 2)2 =
1

3
v (Δ) +

1

6

∑
θ�Δ

dim(θ)=2

v(θ) · v (θ∗) .

Furthermore, ψ0 (Δ) = ψ4 (Δ) = 1 and ψ1 (Δ) = ψ3 (Δ) = |Δ ∩N | − 5
[Bat93, Theorem 2.11], i.e., we obtain∑

α∈[0,4]∩Z
ψα (Δ) (α− 2)2 = 8 + 2 · (|Δ ∩N | − 5) .

It remains to apply |∂Δ ∩N | = |Δ ∩N | − 1 because a reflexive polytope Δ
has a single interior lattice point. �

One may produce a more “mirror symmetric” identity for arbitrary
4-dimensional reflexive polytopes by summing the equations from Corol-
lary 5.5 for Δ and Δ∗.

Corollary 5.6. Let Δ ⊆ NR be a 4-dimensional reflexive polytope. Then

12 · (|∂Δ ∩N |+ |∂Δ∗ ∩M |) = 2 · (v (Δ) + v (Δ∗)) +
∑
θ�Δ

dim(θ)=1,2

v(θ) · v (θ∗) .

Let r be a positive integer. A d-dimensional lattice polytope Δ ⊆ MR

is called Gorenstein polytope of index r if rΔ−m is a reflexive polytope
for some lattice point m ∈ M . Note that reflexive polytopes are Gorenstein
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polytopes of index r = 1. Denote by Σ the normal fan in NR of the polytope
Δ (or, equivalently, of rΔ). The fan Σ defines a Gorenstein toric Fano variety
X such that its anticanonical class c1(X) is divisible by r in Pic(X).

There exists a duality for Gorenstein polytopes that generalizes the polar
duality for reflexive polytopes. For this purpose, we associate to every d-
dimensional Gorenstein polytope Δ ⊆ MR of index r the (d+ 1)-dimensional
cone

CΔ := {(y, λ) ∈ MR ⊕ R | y ∈ λΔ} ⊆ MR ⊕ R.

The dual cone C∨Δ ⊆ NR ⊕ R is defined as

C∨Δ := {(x, μ) ∈ NR ⊕ R | 〈y, x〉+ λμ ≥ 0 ∀(y, λ) ∈ CΔ}

and the l-th slice C∨Δ(l) of C
∨
Δ is defined as the lattice polytope

C∨Δ(l) := C∨Δ ∩ {(x, μ) ∈ NR ⊕ R | 〈m,x〉+ rμ = l} ⊆ NR ⊕ R.

The lattice polytope Δ∗ := C∨Δ(1) is again a Gorenstein polytope of index r
and is called dual Gorenstein polytope to Δ. The duality between two (d+
1)-dimensional cones CΔ and C∨Δ establishes a one-to-one order-reversing
correspondence between faces of CΔ and C∨Δ that induces a duality between
faces of the Gorenstein polytopes Δ and Δ∗ = C∨Δ(1). It is important to
note that the reflexive polytope (rΔ)∗ and the Gorenstein polytope Δ∗ are
not only naturally combinatorially isomorphic, but this isomorphism also
induces isomorphisms between proper faces of (rΔ)∗ and Δ∗ considered as
lattice polytopes [BN08].

The fan Σ in NR can be constructed via the projection

NR ⊕ R → (NR ⊕ R)/R(n, r) ∼= NR

of all proper faces of the cone C∨Δ along the 1-dimensional subspace generated
by the unique interior lattice point (n, r) in the reflexive polytope C∨Δ(r).

It is well-known [BD96, Corollary 7.10] that the stringy Euler number of
a generic Calabi-Yau hypersurface Z in a Gorenstein toric Fano variety X
can be computed via volumes of faces θ  Δ and θ∗  Δ∗ of d-dimensional
reflexive polytopes Δ respectively Δ∗ as

estr (Z) = cstrd−1 (Z) =

d−3∑
k=0

(−1)k
∑
θ�Δ

dim(θ)=k+1

v(θ) · v (θ∗) .
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Using our previous results and the duality between faces θ  Δ and
θ∗  Δ∗ of Gorenstein polytopes Δ respectively Δ∗, we can generalize this
combinatorial formula to the case of generic Calabi-Yau complete intersec-
tions in Gorenstein toric Fano varieties.

Theorem 5.7. Let X be a Gorenstein toric Fano variety associated with
a d-dimensional Gorenstein polytope Δ ⊆ MR of index r and D an ample
torus-invariant Cartier divisor on X such that [D] = 1

r c1(X). Denote by
Z1, . . . , Zr ⊆ X generic semiample Cartier divisors such that [Z1] = · · · =
[Zr] = [D] = 1

r c1(X). Then the stringy Euler number of the Calabi-Yau com-
plete intersection S := Z1 ∩ · · · ∩ Zr is

cstrd−r(S) =
d−r−1∑
k=0

(−1)k
(
k + r − 1

r − 1

) ∑
θ�Δ

dim(θ)=k+r

v(θ) · v (θ∗)

+ (−1)d−r
(
d− 1

r − 1

)
v(Δ).

Proof. By Corollary 3.7, we have

cstrd−r (S) =
d−r∑
k=0

(−1)k
(
k + r − 1

r − 1

) ∑
σ∈Σ(d−r−k)

v(σ) · v (Δσ
D) ,

where Σ is the associated fan to X and Δσ
D a face of the lattice polytope

ΔD. Let σ be a (d− r − k)-dimensional cone of Σ (0 ≤ k ≤ d− r − 1). Then
σ can be considered as a cone over a (d− r − k − 1)-dimensional proper face
of the reflexive polytope (rΔ)∗, which we naturally identify with the corre-
sponding proper face θ∗  Δ∗ of the dual Gorenstein polytope Δ∗ [BN08,
Proposition 1.16]. Therefore, we obtain v(σ) = v(θ∗). On the other hand,
the lattice polytope ΔD is exactly the Gorenstein polytope Δ and θ∗ is the
dual face to a (k + r)-dimensional face Δσ

D = θ of Δ. This implies

∑
σ∈Σ(d−r−k)

v(σ) · v (Δσ
D) =

∑
θ∗�Δ∗

dim(θ∗)=d−k−r−1

v (θ∗) · v(θ) =
∑
θ�Δ

dim(θ)=k+r

v (θ) · v (θ∗)

for all 0 ≤ k ≤ d− r − 1. It remains to note that in the case k = d− r (i.e.,
dim(σ) = 0), one has Δσ

D = Δ, v (Δσ
D) = v(Δ), and v(σ) = 1. �
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The combinatorial formula from Corollary 5.4

24 =
∑
θ�Δ

dim(θ)=1

v(θ) · v (θ∗)

for a 3-dimensional reflexive polytope Δ can be generalized for arbitrary
d-dimensional Gorenstein polytopes Δ (d ≥ 3) of index r = d− 2.

Proposition 5.8. Let Δ ⊆ MR be a d-dimensional Gorenstein polytope of
index r = d− 2. Then

24 =
∑
θ�Δ

dim(θ)=r

v(θ) · v (θ∗) + r(1− r)

2
v(Δ).

Proof. Let S := Z1 ∩ · · · ∩ Zr be a generic Calabi-Yau complete intersection
in the Gorenstein toric Fano variety X associated to Δ, i.e., Z1, . . . , Zr are r
generic ample Cartier divisors on X such that [Z1] = · · · = [Zr] =

1
r c1 (X).

Then dim(S) = 2, i.e., S is a (possibly singular) K3-surface. The stringy
Euler number cstr2 (S) of S equals the usual Euler number c2(S̃) of the mini-
mal (crepant) desingularization S̃ of S. Since S̃ is a smooth K3-surface, we
have cstr2 (S) = c2(S̃) = 24. Using Theorem 5.7, we obtain

24 = cstr2 (S) =
∑
θ�Δ

dim(θ)=r

v(θ) · v (θ∗)− r ·
∑
θ�Δ

dim(θ)=d−1

v(θ) · v (θ∗) + (r + 1)r

2
v(Δ).

Since rΔ is a reflexive polytope, one has

rdv(Δ) = v(rΔ) =
∑

rθ�rΔ

dim(rθ)=d−1

v(rθ) = rd−1 ·
∑
θ�Δ

dim(θ)=d−1

v(θ).

Moreover, v(θ∗) = 1 if dim(θ∗) = 0. It remains to apply the equalities

∑
θ�Δ

dim(θ)=d−1

v(θ) · v (θ∗) =
∑
θ�Δ

dim(θ)=d−1

v(θ) = rv(Δ).

�
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It was proved in [BJ10, Proposition 3.4] that the combinatorial identity

12 =
∑
θ�Δ

dim(θ)=1

v(θ) · v (θ∗)

holds for any 3-dimensional Gorenstein polytope Δ of index 2. We show
that this identity can be generalized for arbitrary d-dimensional Gorenstein
polytopes Δ (d ≥ 3) of index r = d− 1.

Proposition 5.9. Let Δ ⊆ MR be a d-dimensional Gorenstein polytope of
index r = d− 1. Then

12 =
∑
θ�Δ

dim(θ)=r−1

v(θ) · v (θ∗) + r(1− r) + 2

2
v (Δ) .

Proof. Let S := Z1 ∩ · · · ∩ Zr−1 be a generic complete intersection in the
Gorenstein toric Fano variety X associated to Δ, i.e., Z1, . . . , Zr−1 are r − 1
generic ample Cartier divisors on X such that [D] := [Z1] = · · · = [Zr−1] =
1
r c1 (X). Then dim(S) = 2, i.e., S is a (possibly singular) del Pezzo surface.

The stringy Euler number cstr2 (S) of S equals the usual Euler number c2(S̃)
of the minimal (crepant) desingularization S̃ of S. Then S̃ is a smooth
rational surface and we have cstr2 (S) = c2(S̃) respectively c1(S)

2 = c1(S̃)
2.

Using Noether’s Theorem for S̃, we obtain

12 = c2(S̃) + c1(S̃)
2 = cstr2 (S) + c1 (S)

2 .

It remains to derive combinatorial formulas for c1 (S)
2 and cstr2 (S). By the

adjunction formula, the anticanonical class of S is the restriction of c1(X)−
(r − 1)[D] = [D] to S. Therefore, c1 (S)

2 = [D]2.[D]r−1 = [D]d = v(Δ). By
Corollary 3.7, we have

cstr2 (S) =
∑

σ∈Σ(2)

v(σ) · v (Δσ
D)− (r − 1) ·

∑
σ∈Σ(1)

v(σ) · v (Δσ
D)

+
r(r − 1)

2
v(ΔD).
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Using the same arguments as in the proof of Theorem 5.7, we can rewrite
the above equation as

cstr2 (S) =
∑
θ�Δ

dim(θ)=d−2

v(θ) · v (θ∗)− (r − 1) ·
∑
θ�Δ

dim(θ)=d−1

v(θ) · v (θ∗)

+
r(r − 1)

2
v(Δ).

Using the last equation ∑
θ�Δ

dim(θ)=d−1

v(θ) · v (θ∗) = rv(Δ)

in the proof of Proposition 5.8, we obtain

cstr2 (S) =
∑
θ�Δ

dim(θ)=r−1

v(θ) · v (θ∗) + r(1− r)

2
v (Δ) .

�
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