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A descendent tropical Landau-Ginzburg

potential for P2

Peter Overholser

Following work of Gross [13], a family of Landau-Ginzburg poten-
tials for P2 is defined using counts of tropical objects analogous to
holomorphic disks with descendants. Oscillatory integrals of this
family compute an enhancement of Givental’s J-function, encod-
ing many descendent Gromov-Witten invariants. This construction
can be seen as yielding a canonical family of Landau-Ginzburg po-
tentials on a refinement of a sector of the big phase space, and
the resulting descendent J-function is the natural lift given by the
constitutive equations of Dijkgraaf and Witten [8] to this setting.
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1. Introduction

As introduced by Givental [12], the mirror dual of a toric Fano manifold X
is a Landau-Ginzburg model (X̌,W ), a pair consisting of a variety X̌ and
a potential W : X̌ → C. This relationship was extended by Barannikov [1]
to give an isomorphism between certain A and B-model Frobenius mani-
folds. The former can be regarded as parametrizing quantum cohomology,
a deformation of the cup product given by enumerative data, while the lat-
ter parametrizes an unfolding of perturbations of W . Oscillatory integrals
on the B-model side can be used to identify this isomorphism and recover
the data encoded in the A-model. The usual basis of perturbations of W ,
however, makes the translation to quantum cohomology difficult.

A more direct connection between the geometry of this pair was sug-
gested by work of Cho and Oh [5], who give a correspondence between
terms of W and counts of certain holomorphic disks in X. This observation
leads to a natural strategy for defining a perturbation of W : select a set A
of general points in X, consider families of disks passing through subsets
of A, and deform W in terms given by counts of such families. This idea
was explored independently by Fukaya, Oh, Ohta, and Ono [11] (see [10] for
an overview) and Gross [13], in symplectic and tropical languages, respec-
tively. In both cases, the structure of quantum cohomology is apparent on
the unfolding of W .

Away from a distinguished root vertex, the tropical disks considered by
Gross are piecewise linear embeddings of trivalent graphs into the real plane.
By extending the relevant definitions to allow for higher valence vertices,
one can instead define perturbations of W in terms of counts of descendent
tropical disks, fragments of the tropical descendent curves considered by
Markwig and Rau [28]. This construction gives a fundamentally new struc-
ture in mirror symmetry: a natural family of Landau-Ginzburg potentials on
(a refinement of) a sector of the big phase space. In its natural coordinates,
oscillatory integrals on this family compute a descendent enhancement of
Givental’s J-function. More precisely:

Theorem 1.1. For any general choice of a countably infinite set of points

A := {Q,P1, . . . , } ⊂ R2

there is a family X̌desc
κ−→Mdesc and tropically defined regular function

Wdesc(A) : X̌desc → C



A descendent tropical Landau-Ginzburg potential for P2 741

giving a formal perturbation of W . These data gives rise to a local sys-
tem R on Mdesc ⊗ SpecC[�, �−1], whose fiber over (κ, �) is H2((X̌desc)κ,
Re(Wdesc/�)� 0). There exists a multi valued basis Ξ0,Ξ1,Ξ2 of R such
that

2∑
i=0

αi

∫
Ξi

eWdesc(A)/�fΩ = �−3α
2∑

j=0

(α�)j φj

where Ω is a canonical relative two-form of X̌desc overMdesc, we have identi-
fied a fiber of R∨ with C[α]/(α3) (with αi dual to Ξi), f is a regular function
on X̌desc × SpecC[�] defined in terms of tropical data, and φj is defined be-
low.

Let Ti generate H2i(P2,Z), [l] ∈ H2(P
2,Z) be the class of a line, and

γ := y0,0T0 + y1,0T1 + y2,0T2 + y2,1ψ
1T2 + y2,2ψ

2T2 + · · ·

be a formal expression for insertion into Gromov-Witten invariants. Then

φj := δj,0 +
∑

d,w≥0

�−1

w!

〈
T2−j

�− ψ
, γw, T0

〉
0,d[l]

edy1,0 ,

where

y0,0, y1,0, y2,0, y2,1, . . . .

are natural coordinates on Mdesc.

As a side effect, a new correspondence is proven between invariants of
the type appearing above and certain counts of tropical curves.

The context of this result becomes clearer through a study of the rele-
vant parameter spaces. LetMB be the formal universal unfolding of W and
ω :Mdesc →MB the unique map induced by Wdesc. Under ω, the flat coor-
dinates ỹi ofMB are taken to formal series in yi,j whose coefficients are given
by descendent Gromov-Witten invariants. The equality of the pull-back of
Givental’s J-function under ω (as given by mirror symmetry) and the gen-
erating function of Theorem 1.1 encodes an application of the topological
recursion relation.

A parallel phenomenon was long ago observed on the opposite side of
the mirror. Mdesc can be naturally identified with a refinement of a formal
neighborhood in a sector of the big phase space M∞, encoding descendent
insertions on point-class conditions. The constitutive equations of Dijkgraaf
and Witten introduced a natural lift of vector fields from M to M∞ in [8],
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which is reproduced in ω. Lifts of many structures of the small phase space
to M∞ have been explored in [7] and elsewhere; it would be interesting
to pursue a B-model interpretation of this data. It is tempting to imagine
the construction of a mirror relationship that bypasses descent to the small
phase space.

The construction studied in this paper is not limited in relevance to the
tropics or P2. Indeed, we expect it to transfer to the setting investigated
by Fukaya, Oh, Ohta, and Ono, yielding a novel symplectic formulation of
mirror symmetry involving descendent holomorphic disks.

Likewise, the tropical methods used here are immediately applicable
to other mirror pairs. As shown in [29], Gross’s tropical mirror symmetry
construction can be carried out on more complicated affine manifolds. In
principle, such modifications can be patched to explain enumerative dual-
ities in the wide range of mirror partners generated by the Gross-Siebert
construction (see [21]).

As in all approaches to tropical curve counting, the concept of mul-
tiplicity plays a central role here. In contrast to Mikhalkin’s foundational
multiplicity, those encountered in this paper and in [13] are still mysteri-
ous, but may help to build stronger connections between the tropical and
classical world. In particular, they may potentially be understood through
a log-geometric construction for P2 analogous to that for P1 in [4], linking
the appropriate classical and tropical moduli spaces of curves. For recent
progress in this direction, see [33].

Wall crossing structures and scattering diagrams figure significantly in
this work, generalizations of those found in [13]. It seems clear that there
are many other similar enhancements, and a framework for classifying these
may help to uncover some sort of limiting enumerative scattering structure.
Related constructions have now been explored in depth in [3] [16] [17] [18]
and elsewhere; it would be interesting to formalize the relationship of these
works to this paper. An appealing modification is suggested by the results of
Filippini and Stoppa [9]; Block-Göttsche multiplicity should allow the defi-
nition of a q-refined analogue of our Landau-Ginzburg potential, and thus,
under the appropriate oscillatory integral formalism, a q-refined J-function.
See [26] for some recent related work. This construction is extensible to the
descendent context of this paper through the multiplicity of [34].
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2. Background and structure

Mathematical interest in the enumerative aspects of mirror symmetry arose
in 1991 [2], when counts of rational curves (now known as genus-0 Gromov-
Witten invariants) in the quintic threefoldX ⊂ P4 were predicted to coincide
with period integrals on a “mirror partner” manifold, X̌. Much progress has
since been made toward an understanding of an underlying geometric phe-
nomenon, notably in pursuit of Kontsevich’s homological mirror symmetry
conjecture (see [24]) and the eponymous conjecture of Strominger, Yau, and
Zaslow [36].

The latter suggests the relevance of real, piecewise linear (or tropical)
geometry in this duality. In particular, a real (affine) n-manifold B is thought
to serve as an intermediary between mirror-dual complex n-manifolds X and
X̌; indeed, the Gross-Siebert program (as announced in [20]) continues to
have great success in pushing this idea forward. Enumerative information in
the flavour of [2] is then expected to be reflected in B; for example, counts
of curves in X and of piecewise linear graphs (tropical curves) in B should
be related. See [15] for an introduction to this circle of ideas.

A major step in this direction came with Mikhalkin’s result [30] equat-
ing counts of degree d, genus g curves in P2 through 3d+ g − 1 general
points with those of tropical curves satisfying analogous degree, genus, and
incidence conditions in the real plane. A tropical B-model mirroring this
A-model data arrived with Gross’s explicit tropical construction [13]. As
X = P2 is Fano, rather than Calabi-Yau, its mirror partner is not merely
another manifold but a Landau-Ginzburg model. Such a Landau-Ginzburg
model is a pair consisting of a manifold X̌ and a regular functionW : X̌ → C.

Following work of Givental [12], Barannikov generalizes work of Saito [35]
to prove mirror symmetry for Pn as an isomorphism between two Frobenius
manifolds, MA and MB [1]. The former parametrizes the deformations to
the cohomology ring of P2 given by big quantum cohomology, while the
latter parametrizes perturbations of W .

Quantum cohomology is governed by Gromov-Witten theory, the rele-
vant details of which we review below. For any g, n, d ≥ 0, there exists a
compactified moduli spaceMg,n(P

2, d[l]) of genus g, n-pointed, stable maps
to P2 representing d[l] ∈ H2(P

2,Z) (where [l] is the class of a line). This space
carries natural line bundles Li for 1 ≤ i ≤ n. A point of the moduli space
can be thought of as a map f : (C, x1, . . . , xn)→ X such that f∗[C] = β; the
fiber of Li at this point is the cotangent line mxi

/m2
xi
, where mxi

⊂ OC,xi
is

the maximal ideal. One can then define ψi := c1(Li).
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For αi ∈ H∗(P2,Q), we can define descendent Gromov-Witten invariants

〈ψi1α1, . . . , ψ
inαn〉0,d[l]

:=

∫
[Mg,n(P2,d[l])

ψi1
1 ∪ ev∗1(α1) ∪ · · · ∪ ψin

n ∪ ev∗n(αn) ∈ Q.

Such quantities with ij = 0 for all j are simply known as Gromov-Witten
invariants. Though it may be non-integral and even negative, the quantity
above is usually thought of as a count of curves of genus g, representing
class β and intersecting the Poincaré duals of the classes αi with tangency
conditions prescribed by the ψ classes.

For 0 ≤ i ≤ 2, let Ti be a positive generator of H2i(P2,Z) and γ :=
T0y0 + T1y1 + T2y2 ∈ H ∗ (P2,C[[y0, y1, y2]]). The prepotential of P2 is then
written as

Φ :=

∞∑
d,k=0

1

k!
〈γk〉0,d[l] ∈ H∗(P2,C[[y0, y1, y2]]),

where the notation γk refers to k insertions of γ into the Gromov-Witten
invariant, which is distributive in each entry. The structure constants of
the so-called quantum cohomology product on H∗(X,C) are encoded in the
coefficients of Φ, and the manifoldMA := SpecC[[y0, y1, y2]] can be seen as
parametrizing the deformations they specify, making it a Frobenius manifold
(see [27] for much information on these interesting objects).

The ideas of quantum cohomology can be extended with descendants
to the big phase space M∞ :=

∏∞
n=0MA, an infinite dimensional complex

manifold with natural coordinates yi,j for 0 ≤ i ≤ 2 and 0 ≤ j. For each
g ≥ 0, there is a descendent prepotential function onM∞ encoding genus-g
enumerative information.

Fg :=
∑
k≥0

∑
β∈H2(P2,Z)

∑
a1,b1,...,ak,bk

1

k
〈ψa1Tb1 , . . . , ψ

akTbk〉g,βyb1,a1
· · · ybk,ak

.

There are many interesting structures on M∞, some of which are lifts of
those found on MA; see [7].

The mirror partner of P2 is given by X̌ := V (x0x1x2 − 1) ⊂ C3 and
W = x0 + x1 + x2. Structures onMA can be identified on the manifoldMB

parametrizing a universal unfolding of W through the evaluation of certain
oscillatory integrals. Following the distillation given in §1 of [13], one can
consider the following:
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• A local system R onMB × C∗ whose fiber at (b, �) is given by poten-
tially unbounded, rapid decay cycles inH2(X,
(Wb/�)� 0,C), where
Wb is the deformation of W given by b ∈MB.

• A section s of the dual local system R∨, whose value on Ξ is given by

∫
Ξ
exp(Wb/�)fΩ,

where Ω is a nonvanishing holomorphic 2-form on X̌ and f : X̌ ×
MB × C is a regular function with fX̌×{1}×C∗ = 1.

If these data are chosen to satisfy certain conditions (M4 of loc. cit.), one
can identify the flat coordinates yi of MA on MB and extract Givental’s
J-function, a particular generating function of genus-0 Gromov-Witten in-
variants. For much more detail on this mirror relationship, see Chapter 2 of
[14]. If the basis of deformations of W is chosen arbitrarily, the change of
coordinates will be too complex to yield structural or enumerative insight.

Guided by insights of Cho and Oh [5] and Nishinou [31], Gross defines a
tropical deformation of W that readily matches the data on the other side
of the mirror. For any arrangement of k ≥ 0 general points in the plane, he
defines a tropical Landau-Ginzburg potential Wk whose terms (and thus a
basis of deformations) are given by counts of tropical disks passing through
the selected points. These tropical disks are merely pieces of Mikhalkin’s
tropical curves, and are trivalent.

Using a powerful construction known as a scattering diagram, a variant
of that introduced by Gross and Siebert [21] along with Kontsevich and
Soibelman [25], the integrals of Wk were shown to be independent of the
general choice of k points and expressible as a sum of counts of tropical
curves. Furthermore, the mirror map becomes trivial, and thus the counts
of tropical curves computed in the integral are known to correspond to cer-
tain classical Gromov-Witten invariants of P2. While encoding all of the
genus-0 invariants studied by Mikhalkin, Givental’s J-function also includes
a limited range of descendent Gromov-Witten invariants. Those with de-
scendent insertions on point class conditions were given tropical analogues
Markwig and Rau [28], but many have no a priori tropical interpretation.
Therefore, Gross’s work expands the correspondence between tropical and
classical Gromov-Witten invariants, but depends on prior proofs of mirror
symmetry.

Tropical geometry enjoys an attractive immediacy that suggests many
natural extensions. An excellent example of this is found in the multiplicity
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of Block and Göttsche [23], yielding an invariant whose classical meaning
is still being explored. The author’s thesis [32], which has some overlap
with this paper, explored another tropically inspired extension: the mirror
symmetry of P2 to a descendent setting. By expanding the definition of the
tropical disk to allow vertices of valence greater than three, one can define an
alternative tropical descendent family of Landau-Ginzburg potentials Wdesc

on Mdesc. The oscillatory integrals of Wdesc can calculated in a straightfor-
ward extension of [13] and again interpreted as counts of tropical curves,
now reminiscent of those appearing in the work of Markwig and Rau [28]
on tropical descendent Gromov-Witten theory. As in Gross’s construction,
these counts have no a priori classical enumerative interpretation, but under
mirror symmetry their generating function is found to be the natural lift the
J function to a certain sector of the big phase space. See Remark 9.9.

2.1. Outline

We begin with a set of preliminary definitions in Section 3. The reader is
advised to pay close attention to Bk, a fairly intricate bookkeeping structure
with some unusual operations that is necessary to index the valences of
tropical disks and curves.

In §4, we define the tropical objects necessary for our construction. Our
tropical curves are generalizations of those found in [14] and [28], for they are
designed to calculate genus zero invariants (see Theorem 1.1 for notation)
of type

〈ψνTi, T
k
0 , ψ

r1T2, . . . , ψ
rnT2〉0,d[l].

In [14], Gross gives tropical methods to calculate invariants of type

〈ψνTi, T2, . . . , T2〉0,d[l],

while Markwig and Rau [28] use an intersection theory to give tropical ver-
sions of

〈T k
0 , T

l
1, ψ

r1T2, . . . , ψ
rnT2〉0,d[l].

From a combinatorial perspective, the insertion of a ψ class in a tropical
Gromov-Witten invariant is reflected by an increment in the required valency
of a vertex in the corresponding tropical curves.

We will also make use of a modification of the concept of the tropical
disk found in [13]; these should be understood as fragments of descendent
tropical curves broken apart at a vertex. Instead of restricting to trivalent



A descendent tropical Landau-Ginzburg potential for P2 747

disks, we will allow higher valence vertices to occur at marked points. The
valences are recorded using Bk.

The relevant tropical objects are compiled into moduli spaces of pre-
dictable dimension, which are used to define certain counts of tropical curves
as putative tropical descendent Gromov-Witten invariants. Their invariance
and relation to classical Gromov-Witten theory is justified in later sections.

In §6, we introduce the B-model moduli relevant to our problem. The
tropical Landau-Ginzburg potential of [13] is defined as a sum of monomials
defined by trivalent disks passing through a selection of k points in the
plane, while the sum for our descendent potential runs over disks with higher
valence vertices. The oscillatory integrals of [13] are adapted to this setting
in §7, which has some overlap with [32]. The process involves a generalization
of the scattering diagrams and broken lines.

We next show that our descendent Landau-Ginzburg potential exhibits
certain wall-crossing behaviour with respect to the scattering diagram. The
resulting automorphisms are used to prove that the integrals do not depend
on the choice of our k points, and that they extract a generating function
whose coefficients are the descendent tropical Gromov-Witten invariants de-
fined in §4. See Theorem 7.2. Some of the necessary arguments are unpleas-
antly technical, and have therefore been shunted to §10 for the interested
reader.

Section 8 treats a number of formal manipulations on generating series of
tropical and classical descendent Gromov-Witten invariants, useful for sat-
isfying the conditions necessary to apply mirror symmetry. The generating
function Ttrop defined by the integrals can then be related to a pullback J of
the J-function by identifying flat coordinates on the B-model moduli. See
Theorem 9.5. The induced change of coordinates can be written in terms of
classical Gromov-Witten invariants, yielding an expression for Ttrop entirely
in these terms. Finally, the axioms of Gromov-Witten theory are applied
to show that J is equal to the classical counterpart T of Ttrop, thus proving
Theorem 1.1 and the classical relevance of our tropical descendent invariants.
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3. Preliminary definitions and notation

3.1. Toric notation

Set M := Z2, MR := M ⊗Z R, N := Hom(M,Z), and 〈·, ·〉 : N ×M → Z as
the usual pairing. Let Σ be a toric fan for XΣ := P2 in MR, with each ray
ρi ∈ Σ[1] generated by a primitive element mi ∈M for 0 ≤ i ≤ 2, and define
σi,j ⊂MR to be the cone generated by mi and mj . Let Si be the union of
the dimension i closed cones of Σ.

Denote by TΣ the free abelian group generated by the set of rays Σ[1]

of Σ and T+
Σ ⊆ TΣ its associated semigroup. For ρi ∈ Σ[1], denote by ti the

corresponding generator in TΣ. We will make use of the surjective map r :
TΣ →M defined by r(ti) = mi,

Define z=
∑

ρi∈Σ[1] ti, and for z=
∑

ρi∈Σ[1] aiti∈TΣ, let |z| :=
∑

ρi∈Σ[1] ai
∈ Z.

3.2. Technical tools

We set k ∈ Z>0, which will serve as an “order of approximation” and allow
us to avoid issues of infinity in our tropical structures.

An ordered set of points A := {Q,P1, P2, . . . , Pk} ⊂MR will be called
an arrangement. For an arrangement A and Q′ ∈MR, denote by A(Q′) the
arrangement formed by replacing Q ∈ A by Q′. For an arrangement A, define
Si(A) to be the translation of Si centered at Q ∈ A.

We will often need a notion of generality, which depends on context. In
this paper, generality will always (in a fairly obvious way) refer to conditions
defined by the complements of finite sets of tropical curve-like objects. We
leave it to readers to satisfy themselves with the details.
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Let Bk :=
∏k

i=1{0, 1, . . . , k}. For a vector b = (b1, b2, . . . , bk) ∈ Bk, de-
note by bi the i-th entry and #(b) the number of non-zero entries of b. Fur-
thermore, let b{i} indicate the position and b(i) = bb{i} the value of i-th non-

zero entry in b for 1 ≤ i ≤ #(b). Define |b| := ∑k
j=1 bi =

∑#(b)
i=1 b(i). We occa-

sionally need component-wise operations for b, c ∈ Bk: bc := (b1c1, b2c2, . . . ,
bkck) and b+ c := (b1 + c1, b2 + c2, . . . , bk + ck). Let 0 ∈ Bk be the additive
identity. We say b, c ∈ Bk are disjoint if bc = 0 and b ≤ c if, for all 1 ≤ i ≤ k,
bi ≤ ci. Furthermore, we say c dominates b (written b ≺ c) if b ≤ c and bi > 0
if ci > 0 for all 1 ≤ i ≤ k. If b ≤ c, we define c− b ∈ Bk by (c− b)i = ci − bi
if bi �= 0 and 0 otherwise. Set

(|b|
b

)
:=

( |b|
b1,...,bk

)
. For 1 ≤ i ≤ k, let ei denote

the elementary vector with an i-th entry of 1 and 0 elsewhere.
We will also need an index set containing three distinct types of elements:

I := {x, p1, p2, . . . , q1, q2, . . .}.

I will be used to label the three types of marked points encountered in our
construction.

4. Tropical objects

Our construction requires modest modifications of the parametrized tropical
curves and disks found in [14]. The disks will glue together to form the
curves.

4.1. Definitions

A metric graph is a topological realization of a graph with possible non-
compact edges attached to a single vertex, and a coordinate function (home-
omorphism onto its image) lE : E → R≥0 for each edge E, with lE surjective
when E is non-compact. We will call a finite (here referring to the number
of edges and vertices), connected genus-0 metric graph a frame. For a frame

Γ, let Γ[1] be the set of edges, Γ
[1]
∞ the set of non-compact edges, Γ[0] the set

of vertices, and Γ
[0]
i the set of i-valent vertices.

4.1.1. Curves. Let Γ be a frame for which Γ
[0]
1 = Γ

[0]
2 = ∅. Assign a weight

function w : Γ[1] → Z≥0 such that w(Γ
[1]
∞) ⊆ {0, 1} and w−1(0) ⊆ Γ

[1]
∞ ,

defining a weighted frame (Γ, w). A marking will be a bijection marks
from a subset H ⊆ I of the form {x, p1, . . . , pn, q1, . . . , qm} or {p1, . . . , pn,
q1, . . . , qm} to w−1(0). We will write marks(t) ∈ Γ

[1]
∞ as Et for t ∈ H. The
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data (Γ, w,marks,H) constitutes a marked, weighted frame. We will sup-
press the dependence on the map marks, simply writing (Γ, w, {x, n,m})
when H = {x, p1, . . . , pn, q1, . . . , qm} and (Γ, w, {n,m}) when H = {p1, . . . ,
pn, q1, . . . , qm}.

A parametrized tropical curve (Γ, w, h, {x, n,m}) is a marked, weighted
frame (Γ, w, {x, n,m}) and a continuous map h : Γ→MR, smooth on the
interior of each edge of weight greater than 0, satisfying:

• At any point on the interior of a given edge E, h∗(∂x) = w(E)vE ,
where x is the coordinate given by lE and vE is a primitive vector in
M .

• (Balancing condition) Let V ∈ Γ[0], and E1, . . . , Ej be the edges adja-
cent to V . Let mEi

= ±vEi
∈M be a primitive vector pointing away

from h(V ) along the direction of h(Ei). Then

m∑
i=1

w(Ei)mEi
= 0.

A tropical curve is an equivalence class of parametrized tropical curves
where C = (Γ, w, h, {x, n,m}) is equivalent to C′ = (Γ′, w′, h′, {x′, n′,m′}) if
there exists an isometry φ : Γ→ Γ′ respecting the marking and weight data,
smooth on the interior of each edge, and with φ ◦ h′ = h. A tropical curve

C = [(Γ, w, h, {x, n,m})] is in XΣ if, for each unmarked E ∈ Γ
[1]
∞ , h(E) is a

translation of some ρi ∈ Σ[1]. In this case we can define its degree as

Δ(C) :=
∑

ρi∈Σ[1]

diti ∈ T+
Σ

where di is the number of unbounded edges of Γ that are mapped to trans-
lations of ρi by h.

The combinatorial type of a tropical curve C = [(Γ, w, h, {x, n,m})] is
defined as the homeomorphism class of Γ, the markings, weights, and the
data mE for each edge E. Note that the combinatorial type and metric
structure of the underlying frame determine the image of a tropical curve
up to translation in MR.

4.1.2. Disks. Our strategy for counting these curves involves a similar
object, the tropical disk (modified from the definition in [14]). A tropical
disk (or simply disk) D = [(Γ, w, h, {n,m})] is defined by the same collection
of data as a tropical curve, except we require that the underlying frame Γ
has precisely one univalent vertex, Vout. The (unique) edge of Γ attached to
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Vout will be called Eout. We impose the balancing condition at every vertex
but Vout. Note that x ∈ I will not be used as a marking for any edge. Disks
should be thought of as pieces of tropical curves that have been broken apart
at a vertex; the point of attachment becomes Vout.

Define m(D) := w(Eout)m
prim(D) = −r(Δ(D)) ∈MR, where mprim(D)

is a primitive vector tangent to h(Eout) pointing toward h(Vout). The formal-
ism we used to treat tropical curves can be extended to disks in an obvious
fashion.

4.2. Collections

As is customary for counting problems, we assemble our objects into moduli
spaces.

4.2.1. Curves.

Definition 4.1. Let A be an arrangement, Δ ∈ T+
Σ , S ⊆MR, m, ν ∈ Z≥0

and b ∈ Bk. Then we define Mcurve
Δ (A, b, Tm

0,tr, ψ
νS) to be the moduli space

of tropical curves

C = [(Γ, w, h, {x, p1, . . . , p#(b), q1, . . . , qm})]

in XΣ, such that

1) h(Epj
) = Pb{j}.

2) If Ex shares a vertex Vl with Epl
for 1 ≤ l ≤ #(b), then

V al(Vl) = 2 + b(l) + ν

and the valence of the vertex Vj attached to Epj
for j ∈ {1, . . . ,#(b)} \

{l} is given by

V al(Vj) = 2 + b(j)

3) Otherwise, the valence of the vertex Vx attached to Ex is ν + 3 and
V al(Vj) = 2 + b(j) for 1 ≤ j ≤ #(b).

4) h(Ex) ∈ S.

5) Δ(C) = Δ

Lemma 4.2. Let b ∈ Bk, Δ ∈ T+
Σ and A be a general arrangement. For

0 ≤ l ≤ 2 and r(Δ) = 0, Mcurve
Δ (A, b, Tm

0,tr, ψ
νSl) is a polyhedral complex of



752 Peter Overholser

dimension |Δ|+m− ν − |b|+ l − 2. By the generality of the points Pi ∈ A,
the same result holds if we replace Sl with Sl(A).

Proof. This follows from the argument of Lemma 5.11 in [14], changing the

number of bounded edges to be |Δ|+m+#(b) + 1− (3 + ν +
∑#(b)

j=1 [b(j)−
1]). �
4.2.2. Disks.

Definition 4.3. Let A be an arrangement, m ∈ Z≥0 and b ∈ Bk. Then we
define Disk(A, b, Tm

0,tr) to be the set of tropical disks

D = [(Γ, w, h, {p1, . . . , p#(b), q1, . . . , qm})]

(note that we do not mark disks with x ∈ I) in XΣ, such that

1) h(Epj
) = Pb{j}.

2) The valence of each vertex V is:
• 1 if V = Vout

• 3 if V �= Vout is not attached to Epi
for any pi

• 2 + b(j) if V �= Vout is attached to Epj

Definition 4.4. Define RootDisk(A, b, Tm
0,tr) ⊆ Disk(A, b, Tm

0,tr) to be the
subset of disks with h(Vout) = Q. We define Disk(A, Tm

0,tr) to be the union
over all b ∈ Bk of the sets Disk(A, b, Tm

0,tr), with related subset
RootDisk(A, Tm

0,tr).

Definition 4.5. Let D = [(Γ, w, h, {p1, . . . , p#(b), q1, . . . , qm})] be a tropical
disk in Disk(A, b, Tm

0,tr). Define the flexibility of D as

F (D) := |Δ(D)|+m− |b|.

Lemma 4.6. Let A be general. The set of disks D in RootDisk(A, Tm
0,tr)

with F (D) = n is an n− 1 dimensional polyhedral complex. The set of such
disks in Disk(A, Tm

0,tr) is an n+ 1 dimensional polyhedral complex.

Proof. This follows from the argument of Lemma 5.6 in [14], replacing the
idea of Maslov index with flexibility and adjusting the number of bounded
edges as above. �

Definition 4.7. Let D be a tropical disk in Disk(A, b, Tm
0,tr). We say D is

semirigid if F (D) = 1 and rigid if F (D) = 0. By Lemma 4.6, the set of semi-
rigid disks in RootDisk(A, Tm

0,tr) is 0-dimensional. Note, as one degenerate
example, the single semirigid disk D ∈ RootDisk(A, 0, T 1

0,tr).
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5. Multiplicity

An essential element of tropical invariant theory is multiplicity, the amount
by which a tropical curve contributes to a particular invariant. In contrast
to Mikhalkin’s work, the multiplicities we require vary depending on the
invariant to which a curve contributes. As our descendent Landau-Ginzburg
potential is defined by counts of tropical disks, we will also require a notion
of multiplicity for these objects.

5.1. Disks

We will have slightly different definitions of multiplicity for semirigid and
rigid disks, closely related to Mikhalkin’s famous multiplicity. This approach
was inspired by the methods of [28].

Definition 5.1. Let A be a general arrangement and D a semirigid tropical
disk in RootDisk(A, b, Tm

0,tr). Then D can be considered as a point on the
interior of a moduli spaceMD of tropical disks in XΣ of the same combina-
torial type with h(Vout) = Q and no constraint on the image of the collapsed
edges Epi

under h. There are natural coordinates on this moduli space given

by the lengths of the bounded edges E ∈ Γ. Define ev(D) :MD →M
#(b)
R by

ev(h) =
(
h(p1), . . . , h(p#(b))

)
.

For each vertex V ∈ Γ[0], define ni(V ) to be the number of unbounded rays
radiating from V in the direction mi. Define

Aut(D) :=
∏

V ∈Γ[0]

1

n0(V )!n1(V )!n2(V )!

and

Mult(h) := |det(ev)|Aut(D),

where det(ev) is the determinant of the linear part of ev and we set
|det(ev)| := 1 if |#(b)| = 0.

Lemma 4.6 gives an equality of dimension between the source and target
of ev. In particular, as D is semirigid, its number of compact edges is equal
to twice #(b). One can consider the (0-dimensional) cell corresponding to D
in RootDisk(A, Tm

0,tr) as being cut out ofMD by #(b) general 2-dimensional
constraints.
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Definition 5.2. Let D be a rigid tropical disk in Disk(A, b, Tm
0,tr), with

#(b) necessarily greater than 0. We modify the definition above by placing D
into a moduli spaceMDrigid

of tropical disks sharing the same combinatorial
type, length of Eout, and image h(Ep1

) ∈MR. The lengths of the rest of
the bounded edges give a set of coordinates. We define ev′(D) :MDrigid

→
M

#(b)−1
R by

ev′(h) =
(
h(p2), . . . , h(p#(b))

)
.

As before

Mult(D) := |det(ev′)|Aut(D),

where det(ev′) is the determinant of the linear part of ev′ and |det(ev′)| := 1
if |#(b)| = 1.

As in Definition 5.1, this expression is meaningful due to the dimensional
restrictions of Lemma 4.6.

5.2. Curves

Definition 5.3. Let S ⊆MR and

C = [(Γ, w, h, {x, p1, . . . , p#(b), q1, . . . , qm})] ∈Mcurve
Δ (A, b, Tm

0,tr, ψ
νS).

Denote by Γ1, . . . ,Γw the closures of each of the connected components of
Γ \ Ex, with hi being the restriction of h to Γi.

Each disk Di defined by Γi and hi is viewed as being marked by those
points p ∈ {p1, . . . , p#(b)} and q ∈ {q1, . . . , qm} whose corresponding edges
belong to Γi. That is, Di ∈ Disk(A, si, Tmi

0,tr) where mi counts the number of

marked points qj in Γi and bi ∈ Bk is the vector of values of b corresponding
to the marked points pj in Γi. Note that

∑
imi = m, the vectors bj ∈ Bk are

pairwise disjoint, and
∑

j b
j = b. Denote by

Dec(C) := {D1, . . . ,Dw}

the decomposition of C, define Dec(C) ⊂ Dec(C) to be the subset of disks
that do not consist of a single marked edge, and simpDec(C) ⊂ Dec(C) to be
the subset of disks consisting of a single unmarked, unbounded edge.

We can now state the precise relationship between curves and disks.
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Lemma 5.4. Let S ⊆MR be a subset. Let

C = [(Γ, w, h, {x, p1, . . . , p#(b), q1, . . . , qm})] ∈Mcurve
Δ (A, b, Tm

0,tr, ψ
νS).

1) If S = MR and |b| = |Δ| − ν +m, then either:
a) Ex does not share a vertex with any Epi

. In this case, all but two
of the disks D ∈ Dec(C) are semirigid, and the remaining two are
rigid.

b) Ex shares a vertex with Epj
. In this case, Di ∈ Dec(C) is semirigid

for all choices of i.

2) If S = C, a general translation of S1, and |b| = |Δ| − ν +m− 1, then
all but one of the disks D ∈ Dec(C) are semirigid, and the remaining
one is rigid.

3) If S = Q′, a general point in MR, and |b| = |Δ| − ν +m− 2, all disks
D ∈ Dec(C) are semirigid.

Proof. This follows from the argument of Lemma 5.12 in [14], adjusting the
dimensional requirements as dictated by Lemma 4.2. �

The following, rather mysterious, multiplicities (taken from [13]) are
necessary for defining our tropical invariants. Let C be a tropical curve, with
vertex Vx attached to Ex. Define:

Mult0x(C) =
1

n0(Vx)!n1(Vx)!n2(Vx)!

Mult1x(C) = −
∑n0(Vx)

j=1
1
j +

∑n1(Vx)
j=1

1
j

∑n2(Vx)
j=1

1
j

n0(Vx)!n1(Vx)!n2(Vx)!

Mult2x(C) =

(∑2
l=0

∑nl(Vx)
j=1

1
j

)2
+
∑2

l=0

∑nl(Vx)
j=1

1
j2

2n0(Vx)!n1(Vx)!n2(Vx)!
,

where the terms ni(Vx) are as in Definition 5.1.

Definition 5.5. Fix a general arrangement A = {Q,P1, . . . , Pk}. Let b ∈
Bk, n = #(b), and ai := b(i)− 1. Recall the definition z = t0 + t1 + t2 ∈ TΣ.
We now define tropical curve counts that we will call descendent tropical
invariants, though they are not a priori independent of the chosen arrange-
ment.
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1) When 3d− 2− ν +m− |b| = 0, we define

〈ψa1Pb{1} . . . , ψ
anPb{n}, T

m
0,tr, ψ

νS0(A)〉trop0,d

to be ∑
C

Mult(C)

where the sum is over all C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
νS0(A)) with

Mult(C) := Mult0x(C)
∏

Di∈Dec(C)
Mult(Di).

2) When 3d− 1− ν +m− |b| = 0, we define

〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νS1(A)〉trop0,d

to be ∑
C

Mult(C)

where the sum is over all marked tropical rational curves satisfying
one of the following conditions:
a) ν ≥ 0,

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
νS1(A)),

and no D ∈ simpDec(C) maps into the connected component of
S1(A) \ {Q} containing h(Ex). By Lemma 5.4, there is precisely
one rigid D̂ ∈ Dec(C). Suppose that the connected component of
S1(A) \ {Q} is Q+ R≥0mi. Then we define:

Mult(C) := |m(D̂) ∧mi|Mult0x(C)
∏

D∈Dec(C)
Mult(D).

b) ν ≥ 1 and

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
ν−1S0(A))

In this case,

Mult(C) := Mult1x(C)
∏

D∈Dec(C)
Mult(D)
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3) When 3d− ν +m− |b| = 0, we define

〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νS2(A)〉trop0,d

to be ∑
C

Mult(C)

where the sum is over all marked tropical curves C satisfying one of
the following conditions:
a) ν ≥ 0,

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
νS2(A))

and Ex does not share a vertex with any of the Epi
’s. Furthermore,

no D ∈ simpDec(C) maps into the connected component of S2(A) \
S1(A) containing h(Ex). By Lemma 5.4, there are precisely two
rigid disks in Dec(C), which we call D1 and D2. Then

Mult(C) := |m(D1) ∧m(D2)|Mult0x(C)
∏

D∈Dec(C)
Mult(D).

b) ν ≥ 0,

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
νS2(A))

and Ex shares a vertex with Epi
. Suppose l elements of simpDec(C)

map into the connected component of S2(A) \ S1(A) containing
h(Ex). Then we define:

Mult(C) :=
(
ai + ν − l

ν

)
Mult0x(C)

∏
D∈Dec(C)

Mult(D).

c) ν ≥ 1 and

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
ν−1S1(A))

Furthermore, no D ∈ simpDec(C) maps into the connected compo-
nent of S1(A) \ S0(A) containing h(Ex), which we suppose to be
Q+ R≥0mi. By Lemma 5.4, there is precisely one rigid D̂ ∈ Dec(C).
Then we define:

Mult(C) := |m(D̂) ∧mi|Mult1x(C)
∏

D∈Dec(C)
Mult(D).
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d) ν ≥ 2 and

C ∈ Mcurve
dz (A, b, Tm

0,tr, ψ
ν−2S0(A))

In this case,

Mult(C) := Mult2x(C)
∏

D∈Dec(C)
Mult(D).

If 3d− ν +m− |b|+ i �= 2 (we will call this incompatible dimension), we
define

〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νSi(A)〉trop0,d := 0

Refinements of these counts based on the image of Ex under h will be
useful in the remainder.

Definition 5.6. For σ ∈ Σ, define

〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νSi(A)〉tropd,σ

to be the contribution to 〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νSi(A)〉trop0,d from
tropical curves with h(Ex) mapping to the interior of Q+ σ.

The following property of these curve counts will be important in what
follows.

Lemma 5.7. The descendent tropical Gromov-Witten invariants described
above satisfy a tropical fundamental class axiom:

〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m
0,tr, ψ

νSi(A)〉trop0,d

=

n∑
j=1

〈ψa1Pb{1}, . . . , ψ
aj−1Pb{j}, . . . , ψ

anPb{n}, T
m−1
0,tr , ψνSi(A)〉trop0,d

+ 〈ψa1Pb{1}, . . . , ψ
anPb{n}, T

m−1
0,tr , ψν−1Si(A)〉trop0,d ,

where the above counts are taken to be zero if any of the exponents on ψ are
negative.

Proof. This is immediate if any (and thus all) of the counts appearing are
of incompatible dimension. Otherwise, it can be seen by removing the edge
Eqm from each of the curves contributing to the invariant on the left hand
side, thereby generating curves contributing to invariants appearing on the
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right hand side. When i ≤ 1, Eqm shares a vertex V with exactly one of the
marked edges EV ∈ {Ex, Ep1

, . . . , Epn
}. When Eqm is removed, the valency

of V is decreased by one, and the resulting curve then contributes to exactly
one of the tropical invariants appearing on the right hand side, with an
unchanged multiplicity. On the other hand, each tropical curve appearing
in the counts on the right hand side can be uniquely modified, through the
addition of an edge Eqm , to give a curve appearing on the left. Again, the
multiplicity is unchanged, so the lemma in this case follows from a bijection
of curves.

The same argument holds for most of the curves appearing when i = 2.
The case that requires more care occurs when Eqm shares a vertex V with
Ex and some Epj

. The removal of Eqm then yields a curve contributing to
two invariants appearing on the right hand side, those for which the power
of ψ is decremented for Pb{j} or S2(A). The multiplicities of these curves is
dictated by part 3b of Definition 5.5, and the equality of their contribution to
the left and right hand sides of the lemma follows from the familiar identity

(
a+ 1

b

)
=

(
a

b

)
+

(
a

b− 1

)
.

See Figure 5.1 for an example. �

6. Tropical B-model

With the necessary tropical machinery in place, we can begin to define the
elements of the mirror relationship.

6.1. Descendent Landau-Ginzburg potential

Let A be a general arrangement. We generalize the methods of [13] to pro-
duce a finer perturbation of the Landau-Ginzburg potential. The resulting
oscillatory integrals recover tropical versions of a broader class of Gromov-
Witten invariants.

Definition 6.1. To Pi ∈ A associate the variables ui,j in the ring:

R′
k :=

C[{ui,j}i,j ]
I
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S1(A)

Ep1

Ep2

Ex

Eq1

Eq2
Eq3

Q

P1

P2

S1(A)

Ep1

Ep2

Ex

Eq1

Eq2

Q

P1

P2

Figure 5.1. Two tropical curves. The dotted lines indicate unbounded edges
of weight zero. By Definition 5.5 3b, the curve on the left contributes

(
4
2

)
to

〈ψ2P1, P2, T
3
0,tr, ψ

2S2(A)〉trop0,1 , while the curve on the right contributes
(
3
2

)
to

〈ψ1P1, P2, T
2
0,tr, ψ

2S2(A)〉trop0,1 and
(
3
1

)
to 〈ψ2P1, P2, T

2
0,trop, ψ

1S2(A)〉trop0,1 .

with j ∈ Z≥0 and i ∈ Z>0, where I is the ideal generated by the set

{ui,jui,j′ |1 ≤ i ≤ k, 0 ≤ j ≤ j′ ≤ k} ∪ {ui,j |i > k or j ≥ k}

Let m ∈ Z≥0 and define

Rk,m := Rk[y0,0]/(y
m+1
0,0 ).

For b ∈ Bk, define

ub :=

#(b)∏
i=1

ub{i},b(i)−1,

and

y2,j :=

k∑
i=1

ui,j .
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Note that a ∈ Rk,m can be uniquely represented as

a =
∑

0≤m′≤m
b∈Bk

ab,m′uby
m′
0,0

with ab,m′ ∈ C, where we abuse notation by writing uby
m′
0,0 to denote its

equivalence class in Rk,m.

Definition 6.2. Let D be a tropical disk in Disk(A, b, Tw
0,tr). Define uD :=

ub and yD0,0 :=
yw
0,0

w! .
If D is rigid or semirigid disk, we define

Mono(D) := Mult(D)uDzΔ(D)yD0,0 ∈ C[TΣ]⊗C Rk,m

where zΔ(D) ∈ C[TΣ] is the monomial associated to Δ(D) ∈ TΣ. We will write
xi = zti , so zn0t0+n1t1+n2t2 = xn0

0 xn1

1 xn2

2 .

Definition 6.3. The (k,m)-descendent Landau-Ginzburg potential associ-
ated to A is defined as

Wk,m(A) :=
∑
D

Mono(D)

where the sum is over all semirigid disks D ∈ RootDisk(A, b, Tm′
0,tr) for any

b ∈ Bk and m′ ≤ m.

Definition 6.4.

Wbasic(A) := x0 + x1 + x2

6.2. B-model moduli

Here we give the necessary modification of the construction found in [13].
The surjective map r : TΣ →M defined by r(ti) = mi yields

0→ KΣ → TΣ
r−→M → 0,

with KΣ defined as the kernel of r. Dualizing over Z gives

0→ Hom(M,Z)→ HomZ(TΣ,Z)→ PicXΣ → 0
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Tensoring with C× gives the sequence

0→ Hom(M,Z)⊗ C× → Hom(TΣ,C
×)

κ−→ PicXΣ ⊗ C× → 0

defining κ, which provides the family of mirrors to XΣ. Set

X̌ := Hom(TΣ,C
×) = SpecC[TΣ].

The Kähler moduli space of XΣ is defined to be

MΣ := PicXΣ ⊗ C× = SpecC[KΣ].

In our case, KΣ
∼= Z. Note that κ, by definition, is now a map

κ : SpecC[TΣ]→MΣ.

A fiber of κ over a closed point ofMΣ is isomorphic to SpecC[M ] = (C∗)2.
Define the (k,m)-order thickening of the Kähler moduli space by

Mk,m :=MΣ × SpecRk,m

and likewise

X̌Σ,k,m := X̌Σ × SpecRk,m.

This yields a family

κ : X̌Σ,k,m →MΣ,k,m

By construction, Wk,m(A) is a regular function on X̌Σ,k,m, and should be
considered as a family of Landau-Ginzburg potentials.

7. Integrals

Oscillatory integrals of Wk,m(A) can be understood in terms of counts of
tropical curves glued from the disks whose monomials define its summands.
In this section, we will give the main result of [32] in this direction and a
summary of the methods used in its proof. Elements of the argument easily
generalized from those found in [13] are given with a reference to the relevant
result, while subtler points are presented in more detail.
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Definition 7.1. Economical presentation of the integral will rely on a few
formal expressions. Let

Si(A)

�− ψ
:= Si(A)�

−1 + Si(A)�
−2ψ + Si(A)�

−3ψ2 + · · ·

and

γa,tr :=
∑

1≤v+1,w≤k

ψvPwuw,v.

These will be inserted into tropical invariants, which are then understood
as being expanded linearly. For example,

〈γa,tr, S2(A)〉trop0,d :=
∑

1≤j+1,i≤k

〈ψjPi, S2(A)〉trop0,d ui,j .

Theorem 7.2. A choice of a general arrangement A gives rise to a function
Wk,0(A) ∈ C[TΣ]⊗C Rk,0, and hence a family of Landau-Ginzburg potentials

on the family X̌Σ,k,0
κ−→MΣ,k,0 with a relative nowhere-vanishing two-form

Ω. This data gives rise to a local system R onMΣ,k,0 ⊗ SpecC[�, �−1], whose
fiber over (κ, �) is H2((X̌Σ,k)κ,Re(Wbasic(A)/�)� 0). Letting y1,0 := log(κ),
there exists a multi valued basis Ξ0,Ξ1,Ξ2 of R satisfying the requirements
of §1 of [13] such that

2∑
i=0

αi

∫
Ξi

eWk,0(A)/�Ω = �−3α
2∑

j=0

(α�)j ey1,0αΘj

where we have identified a fiber of R∨ with C[α]/(α3), with αi dual to Ξi.
Then

Θ0 : = 1 +
∑

d>0,w≥0

�−1

w!

〈
S0(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

Θ1 : =
∑

d>0,w≥0

�−1

w!

〈
S1(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

Θ2 : = �−1
k∑

j=0

y2,j(−�)j +
∑

d>0,w≥0

�−1

w!

〈
S2(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0 .

Furthermore, the result does not depend on the choice of A.

Proof. See [32] and below. �
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7.1. Scattering diagrams

The first step in the proof of Theorem 7.2 is to construct a set of structures
that govern the combinatorics ofWk,0(A). These methods are part of a larger
theory developed by Kontsevich, Soibelman, Gross, Siebert, and a number
of others, with deep and unexpected links to other areas of mathematics
(see [17]).

One can form an object T called a tropical tree from a rigid tropical disk
D = [(Γ, w, h, {p1, . . . , p#(b), q1, . . . , qm})] in Disk(A, b, Tm

0,tr) by deleting the
vertex Vout from the underlying frame (thereby creating a non-compact edge
Eout with w(Eout) ∈ Z>0) and modifying h by extending the image of Eout

to be an unbounded ray in MR. We denote by Tree(A, b, Tm
0,tr) the set of

such trees derived from rigid disks in Disk(A, b, Tm
0,tr). Note that the one

dimensional subset of rigid disks in Disk(A, b, Tm
0,tr) has a natural fibration

over the (finite) zero dimensional set Tree(A, b, Tm
0,tr), and we associate the

same multiplicity Mult(T ), monomial Mono(T ), and flexibility F (T ) = 0 to
a tree as we do to any of its overlying disks. There is a finite set of trees
associated to a general arrangement A:

T(A)k,m =
⋃

w≤m

Tree(A, b, Tm
0,tr).

If one represents the set T(A)k,m in MR by drawing the outgoing edge corre-
sponding to each rigid tree, a striking pattern emerges. The points at which
pairs of these outgoing edges intersect have rays sprouting from them, as
their corresponding rigid trees can be glued at such a point to form a “child”
tree. The weight and direction of the outgoing edge of the child is, by the
balancing condition, determined by the weights and directions of its parents’
outgoing edges. Similarly, the multiplicity and monomial of the child tree
are simply determined by those of its parents. This “scattering” at points
of intersection gives our tool its name.

We hereafter will specialize our scattering diagrams to the case of m = 0,
which was addressed in [32], although it is straightforward to generalize to
m > 0.

Definition 7.3. The following definition is from [13].

1) A ray or line is a pair (d, fd) such that
• d ⊆MR is given by

d = minit − R≥0r(m0)
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if d is a ray and

d = minit − Rr(m0)

if d is a line, where minit ∈MR with m0 ∈ TΣ satisfying

−md := r(m0) �= 0.

The set d is the support of the ray or line. If d is a ray, then minit

is called the initial point and is denoted Init(d).
• fd ∈ C[zm0 ]⊗C Rk,m

• fd ≡ 1 mod ({ui,j}i,j)zm0

2) A scattering digram D is a finite collection of lines and rays.

We will sometimes write w(d) := w(Eout) for walls d in D.
If D is a scattering diagram, we write

Supp(D) :=
⋃
d∈D

d ⊆MR

and

Sing(D) :=
⋃
d∈D

∂d ∪
⋃
d1,d2

dimd1∩d2=0

d1 ∩ d2

where ∂d = {Init(d)} if d is a ray, and is empty if it is a line.

Definition 7.4. D(A)k,0 is assembled from the outgoing edges of the trees
in T(A)k,0. The ray in D(A)k,0 corresponding to a tree T ∈ T(A)k,0 is of the
form (d, fd), where

• d = h(Eout)

• fd = 1 + w(Eout)Mult(T )zΔ(T )uT

Definition 7.5. Given a scattering diagram D and smooth immersion
ξ : [0, 1]→MR \ Sing(D) with endpoints not in Supp(D) and intersecting
Supp(D) transversally, one can define an associated ring automorphism θξ,D
of Rk,0. Find numbers

0 < s1 ≤ s2 ≤ · · · ≤ sn < 1

and elements di such that ξ(si) ∈ di, di �= dj if i �= j and n is taken to be as
large as possible to account for all walls of D that are crossed by ξ. For each
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i ∈ {1, . . . , n}, define θξ,di
to be the automorphism with action

θξ,di
(zw) = zwf

〈n0,r(w)〉
di

θξ,di
(a) = a

for w ∈ TΣ, a ∈ Rk,0, where n0 ∈ N is chosen to be primitive, annihilating
the tangent space to di, and satisfying

〈n0, ξ
′(si)〉 < 0

Then θξ,D := θξ,dn
◦ · · · ◦ θξ,d1

, where composition is taken from right to left.

The reproductive process discussed for Tk,m gives rise to a useful property
of Dk,0 that distinguishes it from scattering diagrams encountered in other
contexts, for example [19].

Lemma 7.6. If P ∈ Sing(D(A)k,0) is a singular point with P /∈ A and ξp
is a small loop around P , then

θξp,D(A)k,0
= Id.

Proof. See [14], Proposition 5.28. �

These automorphisms of C[TΣ]⊗C Rk,0 belong to VΣ,k, a group orig-
inally defined in [25] as a set of Hamiltonian symplectomorphisms (see
[14], 5.4.2). Their significance in this context is the preservation the choice
of Ω := dx1∧dx2

x1x2
referenced in Theorem 7.2 and the oscillatory integrals of

Wk,0(A) under their action.

Lemma 7.7. Let θ ∈ VΣ,k, (w, h) ∈MΣ,k × C× and suppose that f is in
the ideal generated by {ui,j} in C[TΣ]⊗C Rk,0. Then, for any cycle

Ξ ∈ H2(κ
−1(w),Re(Wbasic/�)� 0,C),

we have ∫
Ξ
e

Wbasic+f

� Ω =

∫
Ξ
e

θ(Wbasic+f)

� Ω.

Proof. See [14] Lemma 5.40. �
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7.1.1. Broken lines. The technique of broken lines connects Dk,0(A) to
the potential Wk,0(A). Every semirigid disk in RootDisk(A, T 0

0,tr) can be
uniquely described as a central (infinitely long) stem onto which a number
of rigid disks are grafted. At each attachment point, the stem bends in a way
dictated by the balancing condition. This is easily understood in terms of
the scattering diagram, because the possible points at which any particular
tree can be attached (as a rigid disk) to a stem are given by the wall it
contributes to D(A)k,0. Therefore, in order to understand semirigid disks
contributing to Wk,0(A), it is sufficient to analyze the behavior of these
stems (broken lines) with respect to the scattering diagram. We use the
following definition, adapted from [13].

Definition 7.8. A broken line with basepoint Q′ ∈MR is a continuous
proper piecewise linear map

β : (−∞, 0]→MR

with endpoint Q′ = β(0), along with some additional data. Let

−∞ = s0 < s1 < · · · < sn = 0

be the smallest set of real numbers such that β|(si−1,si) is linear. Then, for

each 1 ≤ i ≤ n, we are given the additional data of a monomial ciz
wβ

i ∈
C[TΣ]⊗C Rk,0 with wβ

i ∈ TΣ \KΣ, satisfying:

1) For each i, r(wβ
i ) = −β′(s) for s ∈ (si−1, si).

2) wβ
1 = ti for some 0 ≤ i ≤ 2 and c1 = 1.

3) β(si) ∈ Supp(D(A)k,0) \ Sing(D(A)k,0) for 1 ≤ i ≤ n.

4) If β(si) ∈ d1 ∩ · · · ∩ dn, then ci+1z
wβ

i+1 is a term in

(θβ,d1
◦ · · · ◦ θβ,dn

)(ciz
wβ

i )

More explicitly, suppose that for 1 ≤ j ≤ n, fdj
= 1 + cdj

zwdj , with
c2dj

= 0, and n ∈ N is primitive, orthogonal to all of the dj ’s, and



768 Peter Overholser

chosen so that

(θβ,d1
◦ · · · ◦ θβ,dn

)(ciz
wβ

i ) = ciz
wβ

i

n∏
j=1

(1 + cdj
zwdj )〈n,r(w

β
i )〉

= ciz
wβ

i

n∏
j=1

(1 + 〈n, p(wβ
i )〉cdj

zmdj ).

Then we must have

ci+1z
wβ

i+1 =
∏
j∈J
〈n, r(wβ

i )〉cdj
zmdj

for some J ⊆ {1, . . . , n}. We interpret this as β being bent at time si
by dj for j ∈ J .

Proposition 7.9. If A is general, there is a one-to-one correspondence be-
tween broken lines with endpoint Q and semirigid disks in RootDisk(A, T 0

0,tr).
In addition, if β is a broken line corresponding to a disk D, and czw is the
monomial associated to the last segment of β, then

czw = Mono(D)

Proof. See Proposition 5.32 of [14]. �

7.2. Wall crossing and evaluation of integrals

To evaluate the integral appearing in Theorem 7.2, we must first show that
changing the arrangement A transforms Wk,0(A) by the action of an element
of VΣ,k, and will thus leave the integral unchanged. Examining the change
in the integral effected by replacing A by A(Q′) while moving Q′ out to
infinity in a particular direction, it becomes clear that the contribution to the
integral from terms with certain classes of monomials vanishes. One can thus
understand the contribution of these monomials to the integral associated to
A by considering the wall crossing automorphisms we encounter as we move
Q′ back to Q. These automorphisms, and thus the oscillatory integrals, can
be interpreted in terms of tropical curves. Using this technique, Theorem 7.2
was proven by Gross in the non-descendent case (in our notation, concerning
only tropical objects with b = (b1, . . . , bn) with bi ≤ 1) in [14]. The same
techniques are modified to treat the descendent case (arbitrary bi) in [32].
This modification is straightforward in most cases, as the relevant scattering
diagrams have identical structure away from the points of A.
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7.3. Wall crossing

In order to characterize the way in which Wk.0(A) depends on Q, it is es-
sential to understand the interplay between disks, broken lines, and trees at
marked points.

Lemma 7.10. Let Q′ ∈MR be very near Pl and, for 1 ≤ j ≤ n, let Dj ∈
RootDisk(A(Q′), bj , T 0

0,tr) be semirigid disks such that the vectors bj are pair-

wise disjoint and elbj = 0 for all j . If
∑n

j=1m(Dj) �= 0, then the disks Dj

can be joined at Pl to give a rigid tree T ∈ Tree(A, b, T 0
0,tr) with outgoing

edge Pl + R
∑n

j=1m(Dj), where b := nel +
∑n

j=1 b
j. Let Mi ⊆ {D1, . . . ,Dn}

be the set of the original disks that are simply outgoing edges in the direction
mi. Then

Mult(T ) = uk,n−1

|M0|!|M1|!|M2|!
∏

i∈{1,...,n}
Mult(Di)

Proof. Because the disks Dj are semirigid and both A and Q′ are in general
position, each belongs in the interior a 2 dimensional cell of the moduli space
of disks Disk(A(Q′), bj , T 0

0,tr), allowing one to deform their endpoint from Q′

to nearby Pl. After gluing these deformed disks and extending the necessary
unbounded edge for balancing, it is easy to see that the resulting tree is
rigid. The rest follows from linear algebra. �

Lemma 7.11. Let T ∈ Tree(A, b, T 0
0,tr) with bl = n+ 1. By splitting T at

the vertex V mapping to Pl, we can form n semirigid tropical disks rooted
at some Q′ ∈MR, chosen near Pl.

Proof. Call the n tropical disks formed by the above procedure D1, . . . ,Dn,
with Dj ∈ RootDisk(A(Q′), bj , T 0

0,tr). As T is rigid, F (Dj) ≤ 1 for each j.

Note F (T )= |Δ(T )|−|b|=0, |b|=n+
∑n

j=1 |bj | and |Δ(T )|=∑n
j=1 |Δ(Dj)|,

so
n∑

j=1

F (Dj) = n.

Thus F (Dj) = 1 for all j ∈ {1, . . . , n}. �

Theorem 7.12. If A(Q) and A(Q′) are two general arrangements and ξ is
a path connecting Q and Q′ for which θξ,D(A)k,0

is defined,

θξ,D(A)k,0
(Wk,0(A(Q))) = Wk,0(A(Q

′)).
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Proof. As Q is moved, its attached broken lines deform, with their bends
moving along the walls of the scattering diagram. Occasionally, one of these
bends will coincide with a point P ∈ Sing(D(A)k,0). Lemmas 7.10 and 7.11
control the wall crossing behavior when P ∈ A. Though the proof of this
result is rather technical, the central idea is encapsulated in Figure 10.1. We
refer the interested reader to §10.1. �

Theorem 7.13. Let A and A′ be two general arrangements.

Wk,0(A
′) = θ(Wk,0(A))

for some θ ∈ VΣ,k.

Proof. This follows from Theorem 7.12 and a relatively straightforward gen-
eralization of the techniques of [13], Theorem 4.15. For details, see [32]. �

7.4. Evaluation of Integrals

We now have all the tools necessary for the calculation of the integrals.

Lemma 7.14. For Ξ ∈ H2(κ
−1(u),Re(Wbasic/�)� 0,C), the integral∫

Ξ
e

Wk,0(A)

� Ω

is independent of the choice of general arrangement A.

Proof. Follows from Lemma 7.7 along with Theorems 7.12 and 7.13. �

This allows the key tool we will use for its computation, observing the
change in the contribution from specific terms as we move Q.

The following identities reduce the integral to a combinatorial question.

Lemma 7.15. Restricting to x0x1x2 = κ, we have

2∑
i=0

αi

∫
Ξi

e(x0+x1+x2)/�xn0

0 xn1

1 xn2

2 Ω = �−3ακα
2∑

i=0

Ψi(n0, n1, n2)α
i

where α and Ξi are as defined in Theorem 7.2 and

Ψi(n0, n1, n2) =

∞∑
d=0

Di(d, n0, n1, n2)�
−(3d−n0−n1−n2)κd,
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where the terms Di are numerical quantities defined in [13], Lemma 5.2. For
w = n0t0 + n1t1 + n2t2 ∈ TΣ, we write Di(d, w) := Di(d, n0, n1, n2).

Proof. See [13], Lemma 5.2. �

Definition 7.16. Fix a general arrangement A. For Q′ ∈MR, let Sk,0(Q
′)

be the finite set of triples (c, ν, w) with c ∈ Rk,0, ν ≥ 0 an integer, and w ∈ TΣ

such that:

e(Wk,0(A(Q′))−Wbasic(A(Q′)))/� =
∑

(c,ν,w)∈Sk,0(Q′)

c�−νzw,

with each term c�−νzw of the form �−ν
∏ν

i=1Mono(Di) for D1, . . . ,Dν semi-
rigid disks with endpoint Q′.

Then

Ld
i (Q

′) :=
∑

(c,ν,w)∈Sk,0(Q′)

c�−(3d+ν−|w|)Di(d, w).

Lemma 7.17.

2∑
i=0

αi

∫
Ξi

eWk,0(A)/� = �−3ακα
2∑

i=0

∑
d≥0

Ld
i (Q)κdαi

Proof. Follows from definitions. �

Definition 7.18. For each cone σ ∈ Σ, σ is the image under p of a proper
face σ̃ of the cone C := T+

Σ ⊗ R. For d ≥ 0, define Cd ⊆ C to be the cube

Cd =

{
2∑

i=0

niti|0 ≤ ni ≤ d

}

and for σ ∈ Σ

σ̃d := (σ̃ + Cd) \
⋃

τ�σ,τ∈Σ
(τ̃ + Cd).

where + denotes the Minkowski sum.

Definition 7.19. For σ ∈ Σ and Q′ ∈MR, define

Ld
i,σ(Q

′) :=
∑

(c,ν,w)∈Sk,0(Q′), w∈σ̃d

c�−(3d+ν−|w|)Di(d, w).
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Lemma 7.20. Ld
i (Q

′) =
∑

σ∈Σ Ld
i,σ(Q

′).

Proof. Follows immediately from definitions. �

Lemma 7.21. Let {0} �= σ ∈ Σ, and v ∈ σ be non-zero. Then

lim
s→∞

Ld
i,σ(Q+ sv) = 0.

Proof. See [14], Lemma 5.51. �

Definition 7.22. Let D = D(A)k,0. Let C1 and C2 be connected compo-
nents of MR \D with dim(C̄1 ∩ C̄2) = 1. Pick general points Qi in Ci, and
let ξ be a general path from Q1 to Q2 intersecting Supp(D) exactly once at
ξ(s0), a nonsingular point of Supp(D). Let d ∈ D contain ξ(s0), and let nd

be a primitive vector perpendicular to d pointing toward Q1.
Suppose that fd = 1 + cdz

wd . Select α, τ ∈ Σ with dim(τ) = dim(α) + 1
and α ⊆ τ . Note that there is a unique index j(α, τ) ∈ {0, 1, 2} such that
mj ∈ τ but mj /∈ α.

Define

Ld
i,d,ξ,α→τ :=

∑
(c,ν,w)

ccd〈nd,mj(α,τ)〉Di(d, w + wd + tj(α,τ))h
−(ν+3d−|w+wd|),

where we sum over all (c, ν, w) in Sk,0(Q1) satisfying w + wd ∈ α̃d but w +
wd + tj(α,τ) ∈ τ̃d. If (c, ν, w) satisfies these conditions, then we say that

c�−νzw contributes to Ld
i,d,ξ,α→τ . Define

Ld
i,ξ,α→τ :=

∑
d

Ld
i,d,ξ,α→τ

where d ranges over all rays of D containing ξ(s0). In order to define this
operation for a general path ξ, one can break it up into segments of the type
outlined above.

Lemma 7.23. Let ξj be the straight path joining Q with Q+ smj for s� 0.
Let ξj,j+1 be the loop based at Q which passes linearly from Q to Q+ smj,
takes a large circular arc to Q+ smj+1, and then proceeds linearly from Q+
smj+1 to Q. Here we take j modulo 3, and ξj,j+1 is always a counterclockwise
loop. Then

Ld
i (Q) = Ld

i,{0}(Q)−
2∑

j=0

Ld
i,ξj ,{0}→ρj

−
2∑

j=0

Ld
i,ξj,j+1,ρj+1→σj,j+1

.
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Proof. See Lemma 5.15 of [13]. �

Each of the contributions in Lemma 7.23 can then be interpreted in terms
of counts of descendent tropical curves. Unfortunately, this process is rather
technical, and we refer the interested reader to §10.2 for details. From these
identifications, we obtain the following lemma, from which Theorem 7.2
follows directly.

Lemma 7.24.

Ld
0(Q) = δ0,d +

∑
w≥0

�−1

w!

〈
S0(A)

�− ψ
, γwa,tr

〉trop

0,d

κd

Ld
1(Q) =

∑
w≥0

1

w!

〈
S1(A)

�− ψ
, γwa,tr

〉trop

0,d

κd

Ld
2(Q) = δ0,d�

k∑
j=0

y2,j(−�)j +
∑
w≥0

�

w!

〈
S2(A)

�− ψ
, γwa,tr

〉trop

0,d

κd.

8. Formal operations

It is possible to enhance the previous arguments to directly evaluate the
integrals of Wk,m(A) for m > 0, but it is more convenient to use the axioms
of Gromov-Witten theory to assemble it from the results of Theorem 7.2.

Remark 8.1. As the integral is independent of the general arrangement A
chosen, we will write Wk,m(A) as Wk,m in the following.

The pair of operators on C[TΣ]⊗C Rk,m defined below are closely related
to the fundamental class axiom of Gromov-Witten theory and will allow us
to calculate oscillatory integrals of Wk,m for m > 0.

Definition 8.2.

op :=
∑

1≤j,l≤k

uj,l
∂

∂uj,l−1

õp := exp(y0,0 op) =

∞∑
j=0

yj0,0
j!

opj .

Lemma 8.3.

Wk,m = y0,0 + õp(Wk,0)
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Proof. Let D be a disk in RootDisk(A, b, Tm
0,tr). Two disks are similar if

they differ by a permutation of the markings on the collapsed edges Eqi .
For 1 ≤ j ≤ k, let gj denote the number of edges marked by elements of
{q1, . . . , qm} that map to Pj under h. Then there are

(
m

g1,...,gk

)
similar disks

associated to D which contribute a total of

ym0,0
g1! · · · gk!

Mult(D)uDzΔ(D)(8.1)

to Wk,m. Define D′ ∈ RootDisk(A, b′, T 0
0,tr) to be the result of removing the

edges marked by q1, . . . , qm from D and adjusting the entries of the vector
b in the necessary way (removing the edges Eqi reduces the valences of the
vertices to which they are attached). This disk contributes

Mult(D′)uD′zΔ(D′) = Mult(D)uD′zΔ(D)(8.2)

to Wk,0. The term
ym
0,0

m! op
m in õp will create summands of the same multi-

degree as (8.1) when acting on (8.2), and the contribution of these terms to
õp(Wk,0) is easily seen to equal (8.1). On the other hand, one can associate
a set of similar disks to any term appearing in the expansion õp(Wk,0) by
adding marked edges Eqi to the associated disk in Wk,0. Finally, the term
y0,0 in the RHS of the lemma corresponds to the semirigid disk consisting
of a single q1-marked edge mapping to Q. �

Lemma 8.4. eõp(Wk,0)/� = õp
(
eWk,0/�

)
Proof. Set b ∈ Bk. Let Dj ∈ RootDisk(A, bj , T 0

0,tr) for 1 ≤ j ≤ ν, with bj

pairwise disjoint and b dominating
∑ν

j=1 b
j := b′. These disks contribute

to Wk,0 and its exponential, and thus to the quantities appearing on either
side of the lemma. We will compare their contribution on either side of the

desired equality to terms of multi-degree uby
|b−b′|
0 �−ν . On the LHS, this is

given by

ν∏
j=1

y
|b−bj |
0,0

|b− bj |!

(|b− bj |
b− bj

)
Mono(Dj)

(recall the definitions given in §3), while on the RHS it is given by

y
|b−b′|
0,0

|b− b′|!

(|b− b′|
b− b′

) ν∏
j=1

Mono(Dj).
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Because
∑ν

j=1 b− bj = b− b′ , the two expressions are equal. All terms ap-
pearing on either side of the desired equality result from such choices of sets
of disks, and the lemma is proven. �

Together, Lemmas 8.3 and 8.4 yield:

Corollary 8.5. eWk,m/� = õp
(
e(y0,0+Wk,0)/�

)
.

Remark 8.6. If we, by abuse of notation, extend op and õp to their obvious
operators on C[[y1,0]]⊗C Rk,m, their actions commute with the integration
of Theorem 7.2.

Definition 8.7. Let

γb,tr := T0,try0,0 + γa,tr

be a formal expression as in Definition 7.1.

Corollary 8.8.

2∑
i=0

αi

∫
Ξi

eWk,m/�Ω = �−3α
2∑

j=0

(α�)j ey1,0αΘ̃j

where

Θ̃0 : = ey0,0/� +
∑

d>0,w≥0

�−1

w!

〈
S0(A)

�− ψ
, γwb,tr

〉trop

0,d

edy1,0

Θ̃1 : =
∑

d>0,w≥0

�−1

w!

〈
S1(A)

�− ψ
, γwb,tr

〉trop

0,d

edy1,0

Θ̃2 : = �−1ey0,0/�
k∑

j=0

(−�)j
m∑
l=0

yl0,0
l!

y2,l+j +
∑

d>0,w≥0

�−1

w!

〈
S2(A)

�− ψ
, γwb,tr

〉trop

0,d

edy1,0

in Rk,m[[y1]].

Proof. By Corollary 8.5 and Remark 8.6,

2∑
i=0

αi

∫
Ξi

eWk,m/�Ω = ey0,0/� õp

(
2∑

i=0

αi

∫
Ξi

eWk,0/�Ω

)
.
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Then, by Theorem 7.2,

Θ̃0 : = ey0,0/� +
∑

d>0,w≥0

ey0,0/� õp

(
�−1

w!

〈
S0(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

)

Θ̃1 : =
∑

d>0,w≥0

ey0,0/� õp

(
�−1

w!

〈
S1(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

)

Θ̃2 : = ey0,0/��−1 õp

⎛
⎝ k∑

j=0

y2,j(−�)j
⎞
⎠

+
∑

d>0,w≥0

ey0,0/� õp

(
�−1

w!

〈
S2(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

)
.

Select d, ν ∈ Z>0, b ∈ Bk with n := #(b), and l ∈ Z≥0. We wish to find the

coefficient of
yl
0,0

l! ube
dy1,0�−(ν+2) in

ey0,0/� õp

⎛
⎝ ∑

d>0,w≥0

�−1

w!

〈
S0(A)

�− ψ
, γwa,tr

〉trop

0,d

edy1,0

⎞
⎠ .

This can be seen to be equal to

min(l,ν)∑
i=0

l!

i!

∑
b′≺b

|b−b′|=l−i

1

|b− b′|!

(|b− b′|
b− b′

)
〈ψb′(1)−1Pb{1}, . . . , ψb′(n)−1Pb{n}, ψν−iS0(A)〉trop0,d

=
∑

i+w1+···+wn=l

(
l

i, w1, . . . , wn

)
〈ψb(1)−w1−1Pb{1}, . . . , ψb(n)−wn−1Pb{n}, ψν−iS0(A)〉trop0,d ,

where the above invariants are interpreted as zero if they contain any neg-
ative powers of ψ. The first line is a count of the ways in which the various
terms of

∑
d>0,w≥0

�−1

w! 〈
S0(A)
�−ψ , γwa,tr〉trop0,d edy1,0 can be upgraded under the ac-

tion of ey0,0/� õp to have the desired coefficient; the multinomial factor results
from the coefficient of the relevant summand of õp. An iteration of the trop-
ical fundamental class axiom (Lemma 5.7) shows the equality of the above
expression and

〈ψb(1)−1Pb{1}, . . ., ψ
b(n)−1Pb{n}, T

l
0,tr, ψ

νS0(A)〉trop0,d .

Of course, the same result holds when replacing S0(A) with S1(A) or S2(A).
�
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Next, we normalize the integral from the above corollary to satisfy the
conditions of §1 of [13], allowing us to apply mirror symmetry.

Lemma 8.9. Let Ξ ∈ H2(κ
−1(u),Re(Wbasic/�)� 0,C). Then

∫
Ξ
eWk,m/�(op(Wk,m))Ω = � op

(∫
Ξ
eWk,m/�Ω

)

in C[TΣ]⊗C Rk,m.

Proof. ∫
Ξ
eWk,m/�(op(Wk,m))Ω = �

∫
Ξ
op(eWk,m/�)Ω

= � op

(∫
Ξ
eWk,m/�Ω

)
.

�

Combining Lemma 8.9, Corollary 8.8, and the tropical fundamental class
axiom (Lemma 5.7), we achieve the following result.

Corollary 8.10. Let f := 1 + op(Wk,m). Then

2∑
i=0

αi

∫
Ξi

eWk,m/�fΩ = �−3α
2∑

j=0

(α�)j ey1,0αLj ,

where

L0 : = ey0,0/� +
∑

d>0,w≥0

1

w!

〈
S0(A)

�− ψ
, T0,tr, γ

w
b,tr

〉trop

0,d

edy1,0

L1 : =
∑

d>0,w≥0

1

w!

〈
S1(A)

�− ψ
, T0,tr, γ

w
b,tr

〉trop

0,d

edy1,0

L2 : = �−1ey0,0/�
m∑
l=0

yl0,0
l!

y2,l +
∑

d>0,w≥0

1

w!

〈
S2(A)

�− ψ
, T0,tr, γ

w
b,tr

〉trop

0,d

edy1,0 .

If we define φi by rewriting

�−3α
2∑

j=0

(α�)j ey1,0αLj = �−3α
2∑

j=0

(α�)j φj ,
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we see that

φ0 : = L0

φ1 : = y1,0�
−1L0 + L1

φ2 : =
y21,0�

−2

2
L0 + y1,0�

−1L1 + L2.

If we write φi :=
∑∞

j=0 �
−jφi,j with φi,j ∈ C[[y1,0]]⊗C Rk,m,

φi,0 = δi,0

φ0,1 = y0,0 + K̃2

φ1,1 = y1,0 + K̃1

φ2,1 =

m∑
l=0

yl0,0
l!

y2,l + K̃0,

where

K̃i :=
∑

d>0,w≥0

1

m!
〈S2−i(A), T0,tr, γ

w
b,tr〉trop0,d edy1,0 .

Proof. This follows from some bookkeeping. The tropical fundamental class
axiom yields the insertion of T0,tr that distinguishes the sum over d > 0, w ≥
0 in Li from that appearing in Θ̃i, while the simplification in the first term
of L2 results from a cancellation of terms of opposite sign. The description
of φi in terms of Lj follows easily from its definition, while the final set of
identities results from a check of the maximal powers of � appearing in each
term. �

Definition 8.11. By Theorem 7.2, the expressions above are independent
of the choice of arrangement A. Thus, we can simply write

〈ψa1T2,tr . . . , ψ
anT2,tr, T

m
0,tr, ψ

νT2−i〉trop0,d

in place of

〈ψa1Pr{1} . . . , ψ
anPr{n}, T

m
0,tr, ψ

νSi(A)〉trop0,d .

With this observation, we write

γb,tr := T0,try0,0 + T2,try2,0 + ψT2,try2,1 + · · ·+ ψk−1T2,try2,k−1.
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Markwig and Rau have shown that the tropical invariants appearing
in the definition of K̃i are equal to certain classical Gromov-Witten invari-
ants of P2. In particular

〈ψa1T2,tr . . . , ψ
anT2,tr, T

m
0,tr, Si(A)〉trop0,d = 〈ψa1T2 . . . , ψ

anT2, T
m
0 , T2−i〉0,d[l],

where Ti is a positive generator of H2i(P2,Z) and [l] ∈ H2(P
2,Z) the class

of a line.

Definition 8.12. Let

γb,cl := T0y0,0 + T2y2,0 + ψT2y2,1 + · · ·+ ψk−1T2y2,k−1

and

γc,cl := T0y0,0 + T1y1,0 + T2y2,0 + ψT2y2,1 + · · ·+ ψk−1T2y2,k−1

be expressions for insertion into classical Gromo-Witten invariants.

This notation, along with the tropical correspondence result mentioned
above, allows us to compactly express the generating functions K̃i as a .

Lemma 8.13.

K̃i =
∑

d>0,w≥0

1

w!
〈Ti, T0, γ

w
c,cl〉0,d

Proof.

K̃i =
∑

d>0,w≥0

1

w!
〈Ti,tr, T0,tr, γ

w
b,tr〉trop0,d edy1,0

=
∑

d>0,w≥0

1

w!
〈Ti, T0, γ

w
b,cl〉0,dedy1,0

=
∑

d>0,w≥0

1

w!
〈Ti, T0, γ

w
c,cl〉0,d,

The first equality follows from the observation above, while the second fol-
lows from the divisor axiom (see [6], Chapter 10). �
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Definition 8.14. Let

Ki :=
∑

d,w≥0

1

w!
〈Ti, T0, γ

w
c,cl〉0,d

(we now include degree 0 invariants).

Lemma 8.15. φi,1 = K2−i

Proof. This follows from the fundamental class and point mapping axioms
of Gromov-Witten theory when applied to the degree 0 (d = 0) pieces of Ki.
For example,

deg0(K2) =
∑
w≥0

1

w!
〈T2, T0, γ

w
c,cl〉0,0

= 〈T2, T0, γc,cl〉0,0
= 〈T2, T0, y0,0T0〉0,0
= y0,0.

The case of K0 is slightly more interesting:

deg0(K0) =
∑
w≥0

1

w!
〈T0, T0, γ

w
c,cl〉0,0

=
∑
l≥1

〈T0, T
l+1
0 , ψlT2〉0,0

yl0y2,l−1

l!

=

m∑
l=0

yl0,0
l!

y2,l.

The descendent point mapping axiom (see Chapter 10 of [6]) ensures that
the only nonzero, degree-0 invariant appearing with at most 3 entries is
〈T0, T0, T2〉0,0 = 1. The divisor axiom demonstrates that all invariants con-
taining entries of T1 are 0. A dimensional argument shows that all of the
remaining invariants can be reduced, through the fundamental class ax-
iom, to non-descendent invariants. By the classical point mapping axiom,
all such invariants evaluate to zero except for the cases appearing in the
above sum. �
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9. Mirror symmetry

We will now use mirror symmetry to relate the integral to Givental’s J-
function, and thus classical Gromov-Witten theory. In contrast to the case
explored by Gross in [14], mirror symmetry does not immediately yield an
equality between the descendent tropical invariants appearing in the inte-
grals and classical Gromov-Witten invariants for P2. Indeed, we will see that
such a relationship would be impossible as our period integrals calculate a
larger class of Gromov-Witten invariants than appear in the J-function.

9.1. J-function

We begin by rewriting J in a more convenient format.

Definition 9.1. Consider Givental’s J function as an element

JP2 ∈ C[[ỹ0, ỹ1, ỹ2, �
−1]]⊗H∗(P2,Z),

defined as in [22], up to some minor rearrangement, as

JP2 = e(T0ỹ0+T1ỹ1)/� ∪
(
T0 + ỹ2T2

+

2∑
i=0

( ∑
d≥1,ν≥0

〈T 3d+i−2−ν
2 , ψνT2−i〉0,d�−(ν+2)edỹ1

ỹ2
3d+i−2−ν

(3d+ i− 2− ν)!

)
Ti

)
.

Define Ji to be the Ti component of JP2 .

Lemma 9.2. Let γ := T0ỹ0 + T1ỹ1 + T2ỹ2. Then

JP2 = T0 +

∞∑
w,d=0

2∑
i=0

1

w!

〈
T2−i

�− ψ
, T0, γ

w

〉
0,d

Ti.
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Proof. By the proof of Proposition 2.23 of [14], Ji is equal to the coefficient

of T2 in Ti +
∑∞

w,d=0

∑2
j=0

1
w!

〈
Ti

�−ψ , Tj , γ
w
〉
0,d

T2−j . Therefore,

J0 = 1 +

∞∑
w,d=0

2∑
j=0

1

w!

〈
T2

�− ψ
, T0, γ

w

〉
0,d

J1 =

∞∑
w,d=0

2∑
j=0

1

w!

〈
T1

�− ψ
, T0, γ

w

〉
0,d

J2 =

∞∑
w,d=0

2∑
j=0

1

w!

〈
T0

�− ψ
, T0, γ

w

〉
0,d �

9.2. Mirror map

In this section, we use Barannikov mirror construction [1] (as applied to
P2 in §1 of [13]) to identify flat coordinates on the descendent perturbation
space of W . To simplify our expressions, we begin by passing to a limit of
our coordinate ring and allow arbitrary powers of y0.

Definition 9.3.

Rk := R′
k[[y0,0]] = lim←−Rk,m

Definition 9.4. Let

Φ : C[[ỹ0, ỹ1, ỹ2, �
−1]]⊗H∗(P2,Z)→ Rk[[y1,0, �

−1]]⊗H∗(P2,Z)

be induced by ỹi �→ K2−i for 0 ≤ i ≤ 2.
Further, let

Ttrop :=

2∑
i=0

φiTi

and

J := Φ(JP2).

Theorem 9.5. Let MΣ,k be the formal spectrum of the completion of
C[KΣ]⊗C Rk at the maximal ideal (y0,0, κ− 1, {ui,j}i,j). The completion
is isomorphic to C[[y1,0]]⊗C Rk with y1,0 := log κ, the latter expanded in
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a power series at κ = 1. Let

X̌Σ,k = X̌Σ,k ×MΣ,k
MΣ,k.

The function Wk,m is regular (for all m) on XΣ,k and restricts to Wbasic =
x0 + x1 + x2 on the closed fiber of X̌Σ,k →MΣ,k and hence gives a defor-
mation of this function over MΣ,k. Thus we have a morphism ω from MΣ,k

to the universal unfolding space M := SpecC[[ỹ0, ỹ1, ỹ2]]. This map is given
by:

ỹ0 �→ K2

ỹ1 �→ K1

ỹ2 �→ K0.

The morphism ω induces the map Φ defined above, and

Ttrop = J.

Proof. Follows from the application of Corollary 8.10 and Lemma 8.15 to
the obvious extension of Corollary 8.8 to the setting of Rk[[y1,0, �

−1]], as our
data satisfies the conditions set out in §1 of [13]. See Corollary 3.9 of ibid.
for more details. �

9.3. Extension to formal series

For convenience, we again take an inverse limit of our results and definitions
to remove our finite bounds on degree.

Definition 9.6. Let

R := lim
←k

Rk

and

R̃ := C[[�−1, y0,0, y1,0, y2,0, y2,1, . . .]].

Further, define Wdesc to be the inverse limit of Wk,m(Ak) with respect to k
and m, where Ak := (Q,P1, . . . , Pk) ⊂ (Q,P1, . . . , ) := A∞ for some general
A∞.
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Remark 9.7. It’s easy to see that the above results have immediate gen-
eralizations in which Rk has been replaced by R and Wk,m by Wdesc. Fur-
thermore, note the natural inclusion of R̃ into R[[y1,0, �

−1]] given by

y2,i �→
∑
j

uj,i.

Because the period integrals are symmetric with respect to point labelings,
the limits of Ttrop and J in R[[y1,0, �

−1]] are in the image of this inclusion.
In the following, we restrict to this setting.

Corollary 9.8. Defining γJ = T0K2 + T1K1 + T2K0, we can write

J = T0 +

2∑
i=0

∑
d,w≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
J

〉
0,d

Ti,

a generating function whose coefficients can be written entirely in terms of
the classical Gromov-Witten invariants of P2.

Remark 9.9. If we define the stationary sector Msta ⊂M∞ of the big
phase space (see §2) to be the subspace defined by the vanishing of yi,j for
i ∈ {0, 1} and j > 0, there is a natural surjective map from Mdesc →M∞
for which the integrals of Wdesc descend. Under this identification, the above
is a restriction to Msta of the lift of Dijkgraaf and Witten [8] (as explored
in [7]) of the J-function from the small to the big phase space.

9.4. Tropical-classical correspondence

Definition 9.10. Let T be the classical analogue of Ttrop, where each trop-
ical Gromov-Witten invariant is replaced by its classical counterpart, and
define Ti by the equality T =

∑2
i=0 TiTi,

We will use induction to show that T = J, thus implying Ttrop = T. As
T is classical, we can use the axioms of Gromov-Witten theory to rewrite it
in a convenient form. We do so below.

Lemma 9.11.

T = T0 +

2∑
i=0

∑
d,w≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
c,cl

〉
0,d

Ti.
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Proof. Observe the following simplification of T0:

T0 = ey0,0/� +
∑

d>0,w≥0

1

w!

〈
T2

�− ψ
, T0, γ

w
b,cl

〉
0,d

edy1,0

= T0 +
∑
v≥1

〈ψv−1T2, T0, T
v
0 〉0,0

yv0,0
v!�v

+
∑

d>0,w≥0

1

w!

〈
T2

�− ψ
, T0, γ

w
b,cl

〉
0,d

edy1,0

= T0 +
∑

d,w≥0

1

w!

〈
T2

�− ψ
, T0, γ

w
b,cl

〉
0,d

edy1,0

= T0 +
∑

d,w≥0

1

w!

〈
T2

�− ψ
, T0, γ

w
c,cl

〉
0,d

The second equality is by the fundamental class and point mapping axioms,
while the last follows from the the divisor axiom. A parallel analysis (similar
to that found in Lemma 9.2) can be applied to the other components. �

The following operators are closely related to the dilaton axiom, and will
allow us to decompose J and T to make way for induction.

Definition 9.12.

diff := y0,0
∂

∂y0,0
+ y1,0

∂

∂y1,0
+
∑
i≥0

y2,i
∂

∂y2,i

diff> :=
∑
i>0

y2,i
∂

∂y2,i
.

Lemma 9.13.

2∑
j=0

(
∂

∂yj,0
T

)
K2−j = diff(T).
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Proof.

2∑
j=0

(
∂

∂yj,0
T

)
K2−j

=

2∑
j,i=0

⎛
⎝ ∑

d,w≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
c,cl, Tj

〉
0,d

∑
d′,w′≥0

1

w′!

〈
T2−j , T0, γ

w′
c,cl

〉
0,d′

⎞
⎠Ti

=

2∑
i=0

∑
d,w≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
c,cl, ψT0

〉
0,d

Ti

=

2∑
i=0

diff

⎛
⎝ ∑

d,w≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
c,cl

〉
0,d

Ti

⎞
⎠

= diff(T).

The second equality is due to the topological recursion relation (see [6]) ,
while the third is due to the dilaton axiom. �

Lemma 9.14.

2∑
j=0

(
∂

∂yj,0
J

)
K2−j = diff(J).

Proof.

2∑
j=0

(
∂

∂yj,0
J

)
K2−j

=

2∑
j,i=0

∂

∂yj,0

⎛
⎝ ∞∑

w,d=0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
J

〉
0,d

⎞
⎠K2−jTi

=

2∑
i,j,l=0

∑
w≥1,d≥0

1

(w − 1)!

〈
T2−i

�− ψ
, T0, γ

w−1
J , T2−l

〉
0,d

(
∂

∂yj,0
Kl

)
K2−jTi.
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For 0 ≤ l ≤ 2,

2∑
j=0

(
∂

∂yj,0
Kl

)
K2−j

=
∑

d,w≥0

1

w!
〈Tl, T0, γ

w
c,cl, Tj〉0,d

∑
d′,w′≥0

1

w′!
〈T2−j , T0, γ

w′
c,cl〉0,d′

=
∑

d,w≥0

1

w!
〈Tl, T0, γ

w
c,cl, ψT0〉0,d

= diff(Kl),

where the above equalities follow from the reasoning used in the previous
lemma. So we have

2∑
j=0

(
∂

∂yj,0
J

)
K2−j

=

2∑
i,l=0

∞∑
w≥1,d≥0

1

(w − 1)!

〈
T2−i

�− ψ
, T0, γ

w−1
J , T2−l

〉
0,d

diff (Kl)Ti

= diff

⎛
⎝ 2∑

i=0

∞∑
w,d≥0

1

w!

〈
T2−i

�− ψ
, T0, γ

w
J

〉
0,d

Ti

⎞
⎠ .

�

We can now use induction to show T = J.

Definition 9.15. Define a Z
[
1
3

]
grading on the monomials of R̃⊗H∗(P2,Z)

by

gr(yj0,0y
l
1,0�

−ν
∏
m

yam

2,mTi) :=
1

3

(
ν − j − i+

∑
m

am(m+ 1)

)
+

∑
m>0

am.

Note that diff and diff> preserve the gr-grading of monomials not sent
to 0.

When applied to a summand of T,

gr

⎛
⎝〈T0, T

r0,0
0 , T

r1,0
1 , T

r2,0
2 , . . . , (ψk−1T2)

r2,k−1 , ψνT2−i〉0,d�−(ν+1)Ti

∏
a,b

y
ra,b

a,b

ra,b!

⎞
⎠

= d+ the number of insertions with positive exponent on ψ,

excluding the term whose power of ψ is recorded by the exponent of �.
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The implied integrality results from the dimensional requirements of nonzero
invariants. Defining K̂i := KiT0, we examine the value of gr on a typical
term.

gr

⎛
⎝〈T0, T

r0,0
0 , T

r1,0
1 , T

r2,0
2 , (ψ1T2)

r2,1 , . . . , (ψk−1T2)
r2,k−1 , Ti〉0,dT0

∏
a,b

y
ra,b

a,b

ra,b!

⎞
⎠

= d+
1− i

3
+ the number of insertions with positive exponent on ψ.

When applied to J, gr admits a similar description. The coefficient of the
monomial of a particular degree is a sum of products of Gromov-Witten
invariants. When expressed in this form, the grading can be recovered from
any summand of the coefficient as the sum of the degrees of the invariants in
the product with the count of the total number of insertions with non-trivial
ψ-classes, again excluding the term whose exponent of ψ is recorded by the
power of �.

Theorem 9.16. T = Ttrop, and thus the tropical descendent Gromov-Witten
invariants of Definition 5.5 are equal to their intended classical counterparts.

Proof. For j ∈ Z
[
1
3

]
, define J[j] and T[j] to be the gr-degree j monomials of

J and K, respectively. Note that gr is integral and non-negative for all non-
zero terms in J and T. The case J[0] = T[0] follows from the point mapping
axiom. Let n > 0 ∈ Z, and assume J[j] = T[j] for all j < n.

We analyze the gr-degree n part of diff(T) using Lemma 9.13 (recall
K̂i = KiT0).

diff (T)[n] =

⎛
⎝ 2∑

j=0

(
∂

∂yj,0
T

)
K̂2−j

⎞
⎠

[n]

=

n∑
w=0

2∑
j=0

(
∂

∂yj,0
T

)
[w+ 1−j

3
]

(
K̂2−j

)
[n−w− 1−j

3
]

(9.1)

=

n∑
w=0

2∑
j=0

(
∂

∂yj,0
T[w]

)(
K̂2−j

)
[n−w− 1−j

3
]
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=

2∑
j=0

(
n−1∑
w=0

(
∂

∂yj,0
T[w]

)(
K̂2−j

)
[n−w− 1−j

3
]

+

(
∂

∂yj,0
T[n]

)(
K̂2−j

)
[− 1−j

3
]

)

=

2∑
j=0

(
n−1∑
w=0

(
∂

∂yj,0
J[w]

)(
K̂2−j

)
[n−w− 1−j

3
]
+

(
∂

∂yj,0
T[n]

)
T0yj,0

)

The indices in equality 9.1 are due to the integrality of gr on monomials of
T and the action of ∂

∂yj,0
. Noting that the second summand of the last line

is precisely the difference between diff>(T)[n] and diff(T)[n],

diff>(T)[n] =

2∑
j=0

(
n−1∑
w=0

(
∂

∂yj,0
J[w]

)(
K̂2−j

)
[n−w− 1−j

3
]

)

=

2∑
j=0

(
n∑

w=0

(
∂

∂yj,0
J[w]

)(
K̂2−j

)
[n−w− 1−j

3
]

−
(

∂

∂yj,0
J[n]

)(
K̂2−j

)
[− 1−j

3
]

)

=

2∑
j=0

((
∂

∂yj,0
J

)(
K̂2−j

))
[n]

−
( ∂

∂yj,0
J[n]

)
T0y0,j(9.2)

= diff>(J)[n],

where (9.2) follows from Lemma 9.14. Therefore, diff>(T) = diff>(J). Of
course, the above equality implies T = J in all multi-degrees except those
in the kernel of diff>. Terms in the kernel of diff> are of degree 0 in y2,j
for all j > 0. Then, in all multi-degrees encoding invariants with any ψ-
class insertions present beyond those appearing in the usual J-function,
T = J = Ttrop. On the other hand, Gross has proven [13] that Ttrop agrees
with T in all remaining multi-degrees. �

We immediately obtain Theorem 1.1 and the following as corollaries.

Corollary 9.17. T = J.
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10. Wall crossing and tropical technicalities

10.1. Proof of Theorem 7.12

Theorem 7.12, except for one case, follows from a straightforward modifica-
tion of the argument found in [14], Theorem 5.35. The strategy is to analyze
the behavior of so-called degenerate broken lines. These occur as the limits
of deformations of ordinary broken lines; as one deforms the base point, two
bends can can converge to a single point on the broken line, or one of the
bends can approach a singular point of the scattering diagram. See Defini-
tion 5.34 of [14] for a rigorous definition. Let ξ : [0, 1]→MR be a smooth
path from Q to Q′. Subdivide the plane by a set of walls U composed of those
from D0,k(A) in addition to those formed by such degenerate broken lines;
the change in Wk,0 (A (ξ(s))) as ξ(s) crosses one of these walls can be seen
to be generated by an automorphism of C[TΣ]⊗C Rk,0, a type of mutation
process on the broken lines with endpoint ξ(s).

For Q̂ ∈MR, denote by B(Q̂) the set of broken lines in D(A)k,0 with

endpoint Q̂. Suppose ξ(s0) is in some wall L to which ξ is transverse, and
for small ε > 0, let Q1 := ξ(s0 − ε) and Q2 := ξ(s0 + ε). Let n ∈ N be a
primitive vector annihilating the tangent space to L at ξ(s0) and taking a
smaller value on Q1 than Q2. We decompose B(Qi) into B+(Qi), B

0(Qi),
and B−(Qi), where the membership of β ∈ B(Qi) is determined the sign of
〈β∗(−∂/∂s|s=0),n〉.

These decompositions allows us to write

Wk,0(A(Qi)) = W−
k,0(A(Qi)) +W 0

k,0(A(Qi)) +W+
k,0(A(Qi)).

Following the techniques in [14], one can show

θξ̂,D(A)k,0
(W±

k,0(A(Q1))) = W±
k,0(A(Q2)),

where ξ̂ is the segment of ξ joining Q1 to Q2.
For the remaining case, we will partition B(Qi)

0 =
⊔l

j=1B
i
j and show

that for each j ∈ {1, . . . , l},B1
j andB2

j make equal contributions toWk,0(Q1)
and Wk,0(Q2), respectively. We will assume that a broken line with endpoint
ξ(s0) passes through at most one singular point. The general case follows by
an induction argument.

Suppose β1 ∈ B(Q1)
0 deforms continuously to β2 ∈ B(Q2)

0. In this case,
each βi will appear in a one element set Bi

j , and each Bi
j will make the same

contribution to Wk,0(Qi).
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If β ∈ B(Q1)
0 cannot be continuously deformed to an element ofB(Q2)

0,
then it must deform to a degenerate broken line when the base point reaches
ξ(s0). In other words, there is a map B : (−∞, 0]× [0, s0]→MR such that
B|(−∞,0]×[0,s0) is a continuous deformation of β and β′ := B|(−∞,0]×{s0} is
a degenerate broken line bending at P ∈ Sing(D(A)k,0) at time s′. There
are two cases to examine: P ∈ {P1, . . . , Pk} and P /∈ {P1, . . . , Pk}. We ex-
plain the former, which requires a more sophisticated argument than that
appearing in loc. cit.

Suppose P = Pl and select Q̂ very near Pl. We know that β bends along
exactly one ray d0 emanating from Pl whose attached function has a mono-
mial containing ul,w. By construction, d0 is produced by a tropical tree,
which, by Lemma 7.11, is constructed from perturbations of w + 1 semirigid
descendent tropical disks with endpoint Q̂. Call these disks D1, . . . ,Dw+1,
and define Dj as belonging to RootDisk(A(Q̂), rj , T 0

0,tr). Also note that
B|(−∞,s′]×{s0} is a broken line ending at Pl, corresponding to a semirigid

disk D0 ∈ RootDisk(A(Q̂), r0, T 0
0,tr). The vectors rj are disjoint for all 0 ≤

j ≤ w + 1 . We can expect to form something like a tropical tree Tj for each
0 ≤ j ≤ w + 1 by joining all of the Di except for Dj at Pl and extending
an unbounded outgoing edge dj as dictated by the balancing condition. See
Figure 10.1. We may happen to have

∑
l �=j m(Dl) = 0 and the result will

not strictly qualify as a tropical tree, but these exceptional cases won’t be
problematic.

Let Mi ⊆ {D0, . . . ,Dw+1} be the subset of disks that are simply un-
bounded rays pointing in the direction mi from Pl. Each choice of 0 ≤ j ≤
w + 1 where w(dj) �= 0 gives rise to a broken line Bj bending at dj (the out-
going edge of Tj , as discussed in the previous paragraph) constructed from
the concatenation of a perturbation of a broken line defining Dj and that of
B|[s′,0]×{s0}. We will show that the contributions to Wk,0(Q1) and Wk,0(Q2)
from such broken lines are equal. We are analyzing behavior in the neighbor-
hood of a wall of U given by a union of degenerate broken lines bending at
Pl. Notice that the side of the wall that each Bi inhabits (whether it can be
deformed to a broken line in Wk,0(Q1) or Wk,0(Q2)) is indicated by the sign
of mdi

∧m(B|[s′,0]×{s0}), where m(B|[s′,0]×{s0}) gives the direction vector of
β after bending at d0 (considering β as coming in from infinity toward its
end point). Furthermore, m(B|[s′,0] × {s0}) is given by

∑w+1
j=0 m(Dj).
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The monomial obtained from the bend of Bi at di is given by

w(di)〈ni,m(Di)〉Mono(Di)Mono(Ti)

=
w(di)〈ni,m(Di)〉Mono(Ti)

|M0 \ {Di}|!|M1 \ {Di}|!|M2 \ {Di}|!
∏
n �=i

Mono(Dn)

=
w(di)〈ni,m(Di)〉ul,w

|M0 \ {Di}|!|M1 \ {Di}|!|M2 \ {Di}|!
∏
n

Mono(Dn),

where ni ∈ N is orthogonal to di and chosen so that

w(di)〈ni,m(Di)〉 =

∣∣∣∣∣∣
⎛
⎝∑

n �=i

m(Dn)

⎞
⎠ ∧m(Di)

∣∣∣∣∣∣
(as mdi

is given by
∑

n �=im(Dn)).
The result then follows from some basic observations. First,

0 =

⎛
⎝w+1∑

j=0

m(Dj)

⎞
⎠

∧2

=

w+1∑
j=0

m(Dj) ∧
(

w+1∑
n=0

m(Dn)

)

=

w+1∑
j=0

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠ .

Let I− := {n ∈ {0, . . . , k + 1} |
(∑

n �=im(Dn)
)
∧m(Di)) < 0} under the

identification of ∧2MR with Z, with I0 and I+ defined analogously. Then

0 =
∑
j∈I−

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠+

∑
j∈I+

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠

+
∑
j∈I0

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠

=
∑
j∈I−

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠+

∑
j∈I+

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠ .
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A series of implications follows:

−
∑
j∈I−

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠ =

∑
j∈I+

m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠

∑
j∈I−

∣∣∣∣∣∣m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠
∣∣∣∣∣∣ =

∑
j∈I+

∣∣∣∣∣∣m(Dj) ∧

⎛
⎝∑

n �=j

m(Dn)

⎞
⎠
∣∣∣∣∣∣∑

j∈I−

w(dj)〈nj ,m(Di)〉 =
∑
j∈I+

w(dj)〈nj ,m(Di)〉.

Therefore ∑
j∈I−

w(dj)〈nj ,m(Di)〉ul,w
|M0|!|M1|!|M2|!

∏
n

Mono(Dn)(10.1)

=
∑
j∈I+

w(dj)〈nj ,m(Di)〉ul,w
|M0|!|M1|!|M2|!

∏
n

Mono(Dn).

Equation 10.1 closely resembles our desired result, as I+ indexes disks re-
lated to broken lines contributing to one of Wk,0(A(Q1)), Wk,0(A(Q2)) and
I− indexes those which contribute to the other. To conclude, note that at
most one broken line is produced for each set Mj , so we can say that the
contribution from each Bi (where Di ∈Mj) is just

1
|Mj | of the contribution

from the unique broken line produced by Mj . That is, the contribution from
Bi ∈Mj should be considered as

1

|Mj |
w(di)〈ni,m(Di)〉ul,w

|M0 \ {Di}|!|M1 \ {Di}|!|M2 \ {Di}|!
∏
n

Mono(Dn)

=
w(di)〈ni, p(Δ(Di)〉ul,w
|M0|!|M1|!|M2|!

∏
n

Mono(Dn)

Of course, if Di /∈ ∪jMj then the contribution is

w(di)〈ni,m(Di)〉ul,w
|M0 \ {Di}|!|M1 \ {Di}|!|M2 \ {Di}|!

∏
n

Mono(Dn)

=
w(di)〈ni,m(Di)〉ul,w
|M0|!|M1|!|M2|!

∏
n

Mono(Dn)

Thus, 10.1 shows that the sum of the monomials generated by our set of
broken lines on either side of the wall is equal. Deforming any of the Bi
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to degenerate at Pl will result in the same scenario, showing that bro-
ken lines degenerating at Pl (for a particular deformation of Q) can be
partitioned into sets which give equal contributions to Wk,0(A(Q1)) and
Wk,0(A(Q2)). As θξ̂,D(A)k,0

(W 0
k,0(A(Q1))) = W 0

k,0(A(Q1)), we have proven

that θξ̂,D(A)k,0
(Wk,0(A(Q1))) = Wk,0(A(Q2)).

10.2. Results leading up to Lemma 7.24

Here we give some details leading up to Lemma 7.24, in which the integral is
described in terms of counts of tropical curves. The first four lemmas below
follow directly from the related results in [13], as the scattering diagrams in
question have identical behavior away from the points Pi of A.

Definition 10.1. If C is a tropical curve contributing to

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,0 ,

define bC ∈ Bk to be its corresponding vector and uC := ubC .

Lemma 10.2.

Ld
i,{0}(Q) = δ0,dδ0,i

+
∑
ν≥i
b∈Bk

|b|=3d−2+i−ν
d≥1

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,{0}ubh
−(ν+2−i).

Proof. See Lemma 5.11 of ibid. �

Lemma 10.3.

−Ld
i,,ξj ,{0}→ρj

=∑
ν≥i−1
b∈Bk

|b|=3d−2+i−ν
d≥1

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,ρj
ubh

−(ν+2−i)

Proof. See Lemma 5.16 of ibid. �
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D3
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Pl

D0D2
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D4 D5
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B1

Pl

D0,D1

D3, d2

D4 D5

B2

Pl

D0,D1D2

D4, d3 D5

B3
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D0,D1D2

D3

D5d4

B4

Figure 10.1. An example of the behavior encountered in the proof of Theo-
rem 7.12. The first three broken lines are on the right hand side of the wall,
while the last three are on the left.

Lemma 10.4. For each point P ∈ Sing(D), let ξP be a small counterclock-
wise loop around P , small enough so that it doesn’t go around any other
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point of Sing(D). Then

Ld
i,ξj,j+1,ρj+1→σj,j+1

=
∑

P∈Sing(D)∩(Q+σj,j+1)

Ld
i,ξP ,ρj+1→σj,j+1

Proof. See Lemma 5.17 of ibid. �

Lemma 10.5. Let P ∈ Sing(D) ∩ (Q+ σj,j+1), and suppose that

P /∈ A.

Then

−Ld
i,ξP ,ρj+1→σj,j+1

=
∑
ν≥0

∑
C

Mult(C)uC�−(ν+2−i)

where the sum is over curves C contributing to

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,σj,j+1

for d ≥ 1, b ∈ Bk with |b| = 3d− 2 + i− ν and h(Ex) = P .

Proof. See Lemma 5.17 of loc.cit. �

The following is the only place in the evaluation of the integral that
requires a significant modification of Gross’s techniques.

Lemma 10.6. Let P ∈ Sing(D) ∩ (Q+ σj,j+1), and suppose that P = Pl ∈
A. Then

−Ld
i,ξP ,ρj+1→σj,j+1

=

k∑
w=1

ul,w−1(−�)wδd,0δ2,i +
∑
ν≥0

∑
C

Mult(C)uC�−(ν+2−i)

where the sum is over curves C contributing to

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,σj,j+1

for d ≥ 1, b ∈ Bk with |b| = 3d− 2 + i− ν and h(Ex) = Pl.

Proof. Here we assume i = 2, and write

LP,j = Ld
2,ξP ,ρj+1→σj,j+1

Choose a basepoint Q′ near Pl. As discussed in Lemmas 7.10 and 7.11,
sets of a+ 1 semirigid disks with endpointQ′ not bending near Pl correspond
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to rays in D based at Pl whose monomial contains ul,a. More precisely, sets
of semirigid disks {D1, . . . ,Da+1} not bending near Pl with endpoint Q′,∏

iMono(Di) �= 0, and
∑

i p(Δ(Di)) �= 0 are in one to one correspondence
with rays in D with attached monomial containing ul,a. Such sets are natu-
rally recovered from exp([Wk,0(A(Q

′))−Wbasic(A(Q
′))]/�). Define LP,j,a to

be the sum of monomials in LP,j that include the factor ul,a.
To find terms from exp([Wk,0(A(Q

′))−Wbasic(A(Q
′))]/�) that will con-

tribute to LP,j,a upon crossing a wall radiating from Pl, we should examine
those not containing the factor ul,w for any w. We consider a term c�−νzn̂

of the form:

c�−νzn̂ = �−ν
ν∏

w=1

Mult(Dw)z
Δ(Dw)uD,

where Dw ∈ RootDisk(A(Q′), bDw , T 0
0,tr) for 1 ≤ w ≤ ν. As opposed to the

case considered in [13] Lemma 5.17, we will have to consider the walls d
resulting from trees containing semirigid disks corresponding to unbounded
rays (translated copies of ρi) emanating from Pl. Write n̂ =

∑ν
v=1Δ(Dv) =∑2

v=0 nvtv and choose the primitive normal vectors nd to each ray d issu-
ing from Pl such that they point in the direction opposite to ξ′P when ξP
crosses d.

The term c�−νzn̂ can only contribute to LP,j,a when ξP crosses rays
whose corresponding tree contains exactly a+ 1 semirigid disks joined at
Pl. The relevant rays can be enumerated as follows. Select {Di1 , . . . ,Dis} ⊆
{D1, . . . ,Dν} and Mv copies (here it’s convenient to consider Mv as an inte-
ger rather than a set) of the simple disk composed of the ray parallel to ρv
for 0 ≤ v ≤ 2 such that s+M0 +M1 +M2 = a+ 1. Set M =

∑2
v=0Mvtv ∈

TΣ. Let ñ :=
∑s

v=1Δ(Div) +M and r(ñ) := wñmñ, where mñ is primitive.
These choices will produce a ray d ∈ D with attached function

fd = 1 + wñ

s∏
m=1

Mono(Dim)z
M 1

M0!M1!M2!
.

Let c′�−(ν−s)zn
′
:= �−(ν−s)

∏
D∈{D1,...,Dν}\{Di1

,...,Dis}Mono(D). This term
will generate a contribution of c�−νzn̂ to LP,j,a upon crossing d, and this
contribution will occur exactly when nj+2 +Mj+2 ≤ d = nj +Mj < nj+1 +
Mj+1. For simplicity of exposition, we set j = 0 in what follows. The quan-
tity of the contribution is then, by definition,

wñ〈nd,m0〉D2(d, n0 +M0 + 1, n1 +M1, n2 +M2)
�−(ν−s+3d−|n̂|−|M |)

M0!M1!M2!
,
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where D2 is defined in [14], Lemma 5.43. Noting that |M| = a+ 1− s and
recalling the isomorphism of

∧2M with Z, we see that the above becomes

(r(ñ) ∧m0)D2(d, n0 +M0 + 1, n1+M1, n2 +M1)
�−(ν−a−1+3d−|n̂|)

M0!M1!M2!
.

Our goal is to now sum this contribution over all choices of s, {Di1 , . . . ,Dis}
⊆ {D1, . . . ,Dν}, M0, M1, and M2. These should exhaust the set of relevant
rays emanating from Pl that ξP crosses, and should thus calculate the total
contribution. After a little rearrangement (see [32]), the sum becomes the
following, where t := a+ 1− d+ n0:

�−(ν−a−1+3d−|n̂|)

(d− n0)!

a+1∑
s=0

∑
M1+M2=t−s

(−1)M1+n1+d+1(n1 +M1 − d− 1)!

M1!M2!(d− n2 −M2)!
(10.2)

×
((

ν − 1

s− 1

)
(n2 − n1) +

(
ν

s

)
(M2 −M1)

)
,

where we take any summands involving factorials with negative arguments
to be 0.

Sublemma 10.7. Let d > 0, ν, n0, n1, n2, a ∈ Z≥0 with n2, n0 ≤ d. Set t =
a+ 1− d+ n0, |n| = n0 + n1 + n2. Then

1

(d− n0)!

a+1∑
s=0

∑
M1+M2=t−s

(−1)M1+n1+d+1(n1 +M1 − d− 1)!

M1!M2!(d− n2 −M2)!

×
((

ν − 1

s− 1

)
(n2 − n1) +

(
ν

s

)
(M2 −M1)

)

= − 1

(d− n0)!(d− n1)!(d− n2)!

(
ν + 3d− |n| − 1− ((d− n0) + (d− n1))

a− ((d− n0) + (d− n1))

)

where any summands involving factorials with negative arguments are taken
to be 0 .

Proof. See Lemma 3.3.17 of [32]. �

Given a non-zero contribution to −LP,j,a of the term c�−νzn̂ in
exp([Wk,0(A(Q

′))−Wbasic(A(Q
′))]/�) (with d > 0 and c�−νzn̂ degree 0 in

ul,w for all w ), we can assemble a balanced tropical curve C. Begin by gluing
the disks D1, . . . ,Dν together by their outgoing vertices at Pl, add on d− nj

unbounded edges in the direction mj for 0 ≤ j ≤ 2 and two additional edges
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Ex and Ep that will be collapsed to mark x and Pl. Thus we have a trop-
ical curve C with h : Γ→MR satisfying h(Ex) = h(p) = h(V ) = Pl. Define
b :=

∑ν
m=1 b

Dm . This procedure yields a frame whose valence at the new
vertex V is given by V al(V ) := ν + 3d− |n̂|+ 2. The previous sublemma
describes the contribution to −LP,j,a of the term c�−νzn̂ upon crossing the
corresponding rays radiating from Pl as

(
V al(V )− 3− ((d− n0) + (d− n1))

a− ((d− n0) + (d− n1))

)

×Mult0x(C)
(

ν∏
l=1

Mult(Dl)uDl

)
ul,a�

−(ν−a−1+3d−|n̂|).

Suppose that |b| = 3d− ν ′ for some ν ′ ≥ 0. The quantity a should be thought
of as specifying the number of ψ-classes associated to Pl, while ν ′ is the
number of ψ-classes associated to Ex. By construction, V al(V ) = ν + 3d−
|n̂|+ 2. On the other hand, because C is obtained by gluing V al(V )− 2
semirigid disks at V , we have

V al(V )− 2 =

ν∑
i=1

(|Δ(Di)| − |bDi |) + 3d− |n̂|

= |n̂| − [3d− ν ′ − (a+ 1)] + 3d− |n̂|
= ν ′ + a+ 1.

The first equality follows from |Δ(Di)| − |bDi | = 1 for each semirigid disk,
while the second is due to Lemma 4.2. Therefore, the contribution to −LP,j,a

from ξP crossing rays associated to this term is precisely the contribution of
C to

〈ψb(1)−1Pr{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

aPl, ψ
ν′
S2(A)〉tropd,σj,j+1

ubul,a�
−ν′

.

Conversely, it is easy to see that any such curve h contributing to the in-
variant will be accounted for by the integral by decomposing it into its
constituent semirigid disks.

Suppose d = 0. An examination of Expression 10.2 shows that any non-
zero contribution must occur when n0 = n2 = 0. In this case, M2 = 0, which
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forces M1 = t− s = a+ 1− s, so our quantity becomes

�−(ν−a−1−(n1))
a+1∑
s=0

(−1)a−s−n1(n1 + a− s)!

(a+ 1− s)!

×
((

ν − 1

s− 1

)
(−n1) +

(
ν

s

)
(−a− 1 + s)

)
.

If n1 > d = 0, then the argument applied in the first case of Lemma 10.7
shows that the above quantity is equal to 0. If n1 = 0, then ν = 0, and the
above simplifies to

�−(−a−1))
a+1∑
s=0

(−1)a−s−n1(n1 + a− s)!

(a+ 1− s)!

((
0

s

)
(−a− 1 + s)

)

= �a+1 (−1)a(a)!
(a+ 1)!

((
0

0

)
(−a− 1)

)
.

In this case the contribution to −LP,j,a from ξP is equal to −(−�)a+1ul,a. �

Lemma 10.8.

− Ld
i,ξj ,ρj+1→σj,j+1

= �
∑

Pl∈Q+σj,j+1

δd,0δ2,i

(
ul,0 − ul,1�+ · · ·+ ul,k(−�)k

)

+
∑

ν≥i−1
b∈Bk

|b|=3d−2+i−ν
d≥1

〈ψb(1)−1Pb{1}, . . . , ψ
b(#(b))−1Pb{#(b)}, ψ

νSi(A)〉tropd,σj,j+1j
urh

−(ν+2−i).

Proof. This follow from the previous lemmas. The first sum results from the
previous remark as a is varied from 0 to k − 1. �
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