COMMUNICATIONS IN
NUMBER THEORY AND PHYSICS
Volume 10, Number 4, 587-701, 2016

On direct integration for mirror curves of
genus two and an almost meromorphic
Siegel modular form

ALBRECHT KLEMM, MAXIMILIAN PORETSCHKIN,
THORSTEN SCHIMANNEK, AND MARTIN WESTERHOLT-RAUM

This work considers aspects of almost holomorphic and meromor-
phic Siegel modular forms from the perspective of physics and
mathematics. The first part is concerned with (refined) topolog-
ical string theory and the direct integration of the holomorphic
anomaly equations. Here, a central object to compute higher genus
amplitudes, which serve as the generating functions of various enu-
merative invariants, is provided by the so-called propagator. We de-
rive a universal expression for the propagator for geometries that
have mirror curves of genus two which is given by the derivative
of the logarithm of Igusa’s cusp form yi19. In addition, we illus-
trate our findings by solving the refined topological string on the
resolutions of the three toric orbifolds C3/Z3, C3/Zs and C3/Zs.

In the second part, we give explicit expressions for lowering
and raising operators on Siegel modular forms, and define almost
holomorphic Siegel modular forms based on them. Extending the
theory of Fourier-Jacobi expansions to almost holomorphic Siegel
modular forms, we can show that there is no analogue of the almost
holomorphic elliptic Eisenstein series Es. In the case of genus 2,
we provide an almost meromorphic substitute for it. This, in par-
ticular, leads us to a generalization of Ramanujan’s differential
equation for Es.

The two parts are intertwined by the observation that the mero-
morphic analogue of Es5 coincides with the physical propagator.
In addition, the generalized Ramanujan identities match precisely
the physical consistency conditions that need to be imposed on the

propagator.
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The topological string theory on non-compact Calabi-Yau geometries M
provides exact moduli dependent amplitudes in the N = 2 low energy effec-
tive action of type II string theory on these backgrounds. Expanded in flat
coordinates for the moduli, these exact amplitudes are generating functions
of related symplectic invariants, namely the Gromov-Witten-, Donaldson-
Thomas- or Pandharipande-Thomas invariants. From the physics point of
view the most natural invariants are the actual numbers N BL jn €N of re-
fined BPS states with a given representation (jz,jgr) of the 5d little group
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and the charge 8 € Hy(M,7Z). Non-compact Calabi-Yau geometries exhibit
typically an U(1)r isometry, which is most obvious in the toric cases. This
U(1)r symmetry allows a motivic decomposition of the Pandharipande-
Thomas moduli space of stable pairs and a mathematical definition of the
NP (18],

Topological string theory on non-compact Calabi-Yau spaces exhibits
mirror symmetry and is related by string-gauge theory duality to three di-
mensional Chern-Simons theory [67] and matrix models [2]. This makes A-
model localization techniques [45], B-model approaches, see e.g. [26], and
large N-duality methods available for its solutions. The large N Chern-
Simons theory leads to the topological vertex [3]. The Chern-Simons theory
large N expansion can be seen as mirror dual to a matrix model large N ex-
pansion [2]. The Ward identities of the matrix models leads to an iterative
solution of the topological string in the genus [50],[9]. Recently possible non-
perturbative completions of the topological string were studied using a free
Fermi-gas approach [51] and quantum mechanical systems [24]. This led to
a profound connection of topological string theory to operator analysis [41].

The full moduli dependence of the closed amplitudes F) is most ef-
ficiently studied in the B-model using modularity and the holomorphic
anomaly equation of BCOV [6]. For topological strings the F @) can be
compared at special points in the moduli space with the A-model localiza-
tion computation, e.g. of Gromov-Witten invariants. A first check of mirror
symmetry at higher genus was performed in [45] for the non-compact toric
O(—3) — P? Calabi-Yau space. The BCOV equations can be generalized to
the refined holomorphic anomaly equations (2.6) [33],[46]', which can be
used to compute the refined amplitudes F(9). The corresponding check of
refined mirror symmetry for topological strings was done in [15] on the same
geometry O(—3) — P2.

The B-model of a wide class of local Calabi-Yau geometries is defined
by a mirror geometry, whose data are a family of Riemann surfaces Cq of
genus g and a meromorphic differential A. These data (Cg, \) define also
N = 2 Seiberg-Witten theories, where C4 is known as Seiberg-Witten curve
and A as Seiberg-Witten differential [57], and matrix models [50],[9] with
algebraic spectral curve Cq. In this case A defines the filling fractions. So far
the B-model approach using modularity properties has been developed for
g = 1 starting with [32]. Here we will extend the formalism to g = 2. This
extension applies to the calculation of closed amplitudes in all the settings
mentioned above.

!The one of [46] is correct after a shift.
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The occurrence of elliptic quasi-modular- and almost holomorphic mod-
ular forms [59] in the solution of the holomorphic anomaly equation was
noticed in [32]. In particular the identification of the propagator

1 0
1.1 tt _ L F(O,l)
(1.1) S CTQm'aT
L2 ct (log(y) + 41log(|nl| f \))—éﬁ +G
~ omiar VOBV SUMIL) = 7952 T b2

with the almost-holomorphic Eisenstein series Ey=FEy — % up to a mero-
morphic ambiguous piece G was found 2. This was in the context of N = 2
Seiberg Witten theories of rank one on R?*, which do emerge in the field
theory limit of Type II theories on non-compact Calabi-Yau spaces, whose
mirror geometry is a family of elliptic curves Cq—1. Here 7 is the Dedekind
eta-function, 7 € H(9=1) is in the Siegel (Poincaré) upper half space (plane)
and we denote® 7 = x +iy. cl is a constant whose geometrical significance
is explained following eq. (1.3). Further fi(z), a rational function of the ab-
solute modular invariant z* of the family Cy, is the holomorphic ambiguity
at genus one. Gg is hence a meromorphic weight 2 form of the monodromy
group I' of Cg—1. Here I' C SL(2,7Z) is a congruent subgroup and often a
meromorphic weight 2 form of I' does not exist, which fixes f; = 1. In any
case we may set f; = 1 and hence G2 to zero in the definition of the prop-
agator. This merely modifies the form of the higher genus holomorphic or
modular ambiguity. It was argued in [32] that the latter can be fixed by
regularity and the conifold gap for the unrefined theory. In [26] this fact has
been more carefully established.

Historically almost holomorphic (elliptic) modular forms were defined by
Shimura [59], who called them “nearly holomorphic”. The occurrence of the
regularized quasi modular Eisenstein series Eo in topological string theory
can be traced back to the world-sheet contact terms in the derivation of the
holomorphic anomaly equation [6]. Related occurrences of Ey due to space
contact terms in Seiberg-Witten theory on compact target spaces, where
one integrates over the phase space, were noted in [52] and in 2d QCD
on the torus in [18]. The occurrence of Fs in the latter case was related
systematically to almost holomorphic forms in [39], where the isomorphism

2Tt is also implicit in the invariant N = 4 sector of the Zs ® Zs orbifold example
in [6].

3Due to a conflict with other parameters we use in the physical part also explicitly
Re(7) and Im(7) for z and y.

41t is traditionally called u = %TNIJQ for Seiberg Witten curves.
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of the ring of quasi modular and almost holomorphic modular forms, the
closures of these rings under the Serre- and Maass derivative respectively and
the relation to weak Jacobi-forms® was explained. Quasi modular forms have
Fourier expansions. Fourier coefficients attached to quasi modular forms are
not only counting refined BPS states, but they have been connected to a vast
variety of combinatorial and geometric quantities — see, for example, [7] and
papers citing it. In many cases no recursive holomorphic anomaly is known.
E.g. for the 2d QCD example it was argued in [55] that such a recursion
does not exist.

The general structure on almost holomorphic modular forms, which is
particularly useful when holomorphic anomaly equations govern the theory,
is as follows: The non-holomorphic Maass derivative acts as raising opera-
tor R on weight k£ modular forms as 0, — %y‘l. In addition, there is the
lowering operator L = y?0=, which acts trivially on quasi modular forms,
but non-trivially on almost holomorphic ones. The commutation relation
[L,R] = _Tk is crucial when proving that Es is essentially the only proper
quasi modular form that does not arise from differentiating other ones.

This structure allows for the direct integration of the holomorphic
anomaly equations (2.6) and an effective way to determine the F(9") for
mirror curves Cq—1 of genus one [1],[25]. The covariant derivative in the
holomorphic anomaly equation (2.6) becomes the Maass derivative after
changing from the flat coordinate ¢ to the 7 coordinate using % = t;tl.
The fact that the Maass derivative closes on the generators of the ring of
holomorphic forms by the Ramanujan identities, e.g. if the modular group
of the family is I'g = PSL(2,7Z) they read

1 ~ i =2 i _ 1 _
(1.2) 21m87 "o 12 (By = Ba), 5 20- By = g (BaBa — Fo),
%87 Eﬁ = §(E2E6 - Ez) )

implies that the r.h.s. of (2.6) is a polynomial in E», with coefficients that
are rational functions in the absolute modular invariant z. The uniqueness of
the an-holomorphic Fy implies further that the an-holomorphic derivative
on the Lh.s of the holomorphic anomaly equation (2.6) can be replaced
by a derivative by E,. Hence the recursive equations (2.6) can be solved
by integration w.r.t. to Fs up to an integration constant. This constant

®Based on [43] quite spectacular all genus results have been obtained in [31] for
compact elliptical fibered Calabi-Yau 3 folds using this relation to weak Jacobi-
forms.
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in E’g is another rational function in z called the holomorphic or modular
ambiguity. In the refined case it can also be completly determined from
regularity requirements and a refined gap condition [46],[33],[30]. Note that
F) or F91) are meromorphic functions and in fact it is convenient to define
a meromorphic almost holomorphic generator (4.5).

The purpose of this paper is to extend this analysis from families of
elliptic mirror curves Cyg—; to families of mirror curves of genus two Cy—o. A
key observation is that in the generalization of (1.1) the Dedekind n-function
is replaced by the Igusa cusp form 6 y ¢ of weight 10, so that the propagator
becomes

1. = cici — % p®
(1.3) S Gl 271 OTpq mod
1 1

5 1\ i
=510 (8qu log (x10) + 7 (Im7),,, > C,Cy.

Here we set in F(O’l)

od the holomorphic ambiguity fi = 1. Of course this corre-
sponds just to a choice of the ambiguity in the propagator. In this universal
relation the indices i, j refer to the flat coordinates as in (1.1) and the rel-
ative coeflicients of the terms on the r.h.s. are fixed by the weight. The
matrix C’I’; is the intersection matrix of the homology basis of a genus two
surface, which is in general different from the identity matrix. In fact, for
toric geometries, the non-standard intersection form C’; is determined by
the intersection pairing in the even-dimensional homology of the A-model
geometry due to mirror symmetry. In addition, we show that the physical
consistency conditions on the propagator coincide with generalized Ramanu-
jan identities which are derived in the mathematical half of this paper. In
the genus 2 case one has due to the Riemann Roch theorem a normal form
with a corresponding theory of classifying invariants, the Igusa invariants,
which replace the j-function of the elliptic case. The Fourier expansion of
these invariants allows to extract the period matrix 7 given the algebraic
normal form of the Riemann surface, without any further calculation.
Even though Shimura studied nearly holomorphic modular forms in full
generality the theory of quasi Siegel modular forms has not yet been devel-
oped. We fill this gap in this paper, and reveal several interesting, possibly
unexpected phenomena. The theory of Siegel differential operators is well-
known, but it has not yet been made explicit. Section 6 contains expressions

SThere are two classical normalizations of the weight 10 genus two cusp form.
The Maass lift ¢§%) used in section nine is related to it by 4x19 = ¢%).
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for raising (6.13) and lowering (6.6) operators, as well as their commutation
relations (Lemma 6.11 and 6.12).

Fourier Jacobi expansions are important tools, when investigating Siegel
modular forms. The theory of Jacobi forms which arise from vector valued
Siegel modular forms was initiated recently in [36], and we extend it to the
case of genus 2 almost holomorphic Siegel modular forms. Furthermore, we
set up a framework for Jacobi forms that arise from vector valued Siegel
modular forms of arbitrary genus. We do not characterize them as precisely
as in the genus 2 case; rather this will be the theme of a sequel to this paper.

In Section 8, we classify almost holomorphic Siegel modular forms, and
find that every proper quasi Siegel modular form arises from differentiat-
ing other ones. As opposed to the case of elliptic modular forms constant
modular forms do not occur in the image of the lowering operator. A simi-
lar, slightly weaker result was obtained independently by Pitale, Saha, and
Schmidt [53]. This insight naturally leads us to Section 9, in which we study
the genus 2 case in detail. We introduce almost meromorphic Siegel mod-
ular forms with determined singular locus, which comprise the inverse of
Igusa’s x10 [37]. All of a sudden, we observe behavior very similar to the
genus 1 case: There is an almost meromorphic Siegel modular form S(2)
whose image under the lowering operator is 1. It naturally does not occur in
the range of the raising operator; That is, the associated meromorphic quasi
Siegel modular forms cannot be obtained as a derivative of any meromorphic
Siegel modular form: It is analogue to F». In Proposition 9.3 we provide an
analogue of the Ramanujan differential equation for S2).

Increasing the genus of the mirror curve is e.g. very natural for the mir-
ror curves of resolved orbifolds for the A-model geometry. Consider e.g. the
C3/Zs orbifold. Resolving the singularity leads to O(—3) — P? geometry.
The Kihler parameter of the P? is mapped to the one modulus of the genus
one mirror geometry. If one considers the C3/Zs orbifold the mirror will
have g = 2. More precisely, it is a special two parameter family of genus two
curves, where the two parameters correspond to the two blow up divisors of
the C3/Zs blowup geometry. These blow ups have toric descriptions and the
genus g of the mirror curve is given by the interior points of the 2d toric dia-
gram, which represents the trace of the non-compact 3d cone that represents
M. Tt is not directly related to the number of (Kéhler) parameters ny, which
is given by the total number of points in the 2d toric diagram minus 3. The
inner points correspond to dynamical fields of the 4d gauge theory, while
the rest of nj parameters correspond to mass or non-dynamical parameters.
The latter are given by the non-vanishing residua of the meromorphic form
A. Their number is not directly related to g, even though by the Riemann
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Roch theorem the latter determines an upper bound on the number of non
dynamical parameters. An easy example, where such non-dynamical fields
arise in the orbifold construction with a genus two mirror curve is the C?/Zg
orbifold. Our main computational contribution is to solve the C3/Zs and the
C3/Z¢ cases to n+ g =3 and n + g = 1 respectively, checking the general
formalism in great detail.

As reviewed in [11], Siegel modular forms can be constructed from prod-
ucts of 0 functions

(1.4) Ole] = Z 627Ti[(m+6//2)tT(m+6//2)+(m+€’/2)6”/2]’
meZ9

/
where € = ( 66,, with €/, € € {0,1}9 encoding the spin structure. The sim-

plest way is to raise the product of the 2871(28~! 4 1) f-functions with even
spin structure to a power so that no phase transformation occurs. E.g. for
g=1: 2% = (¢ [8] 0 [(1)] 0 [[1]])8, for g = 2: 2Yy10 = — 1, wven 0l€)?, while
for g = 3 the product of the 36 even theta functions defines a Siegel cusp
form of weight 18 under Spg(Z). It is therefore natural to speculate that
(1.1,1.3) get replaced, at least for genus 3, using the corresponding canoni-
cal cusp form and adapting the coefficients to the corresponding weight.

Acknowledgments. It is a pleasure to thank Mirjam Cvetic, Hans Jock-
ers and Don Zagier for discussions. AK thanks for support by KL 2271/1-1
and NSF DMS-11-01089. The work of MP has been supported by a schol-
arship of the Deutsche Telekom Stiftung and by the grant DE-SC0007901.
He also thanks the BCTP for hospitality. TS is supported by a scholarship
by the graduate school BCGS. MWR thanks the Max Planck Institute for
Mathematics for their hospitality.

2. Calculating refined BPS invariants

In this section we provide some necessary background material. We start
with a review of the notion of refined BPS numbers in paragraph 2.1. Af-
terwards, we present the mirror symmetry for toric A-model geometries.
We move on with a review of (refined) B-model computational techniques
in 2.2. In particular, we rigorously discuss how the non-symplectic basis of
the mirror curve modifies the well-known relations that apply to the case
of a standard homology basis. Finally, we end by pointing out the quasi-
respectively almost modular structure of the generating functions of the
(un-)refined BPS invariants in paragraph 2.4.
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2.1. The refined A-model

In this subsection we provide some necessary background material for the
discussion of refined BPS invariants. These can be meaningfully defined
within five-dimen-sional theories with eight supercharges and an additional
U(1)g symmetry. Such theories are naturally engineered by M-theory com-
pactifications on toric Calabi-Yau threefolds X. Physically, these refined
BPS invariants count particles arising from M2-branes that wrap holo-
morphic curves within X. Besides the homology class 5 € Ho(X,Z), these
particles are in addition classified by their spins (jz,jr) under the five-
dimensional little group SU(2);, x SU(2)g. The multiplicities N fL jn are
called the refined BPS invariants. These are counted by a five-dimensional
index which reads

(2.1)  Zpps(er, e2) = Tr(—1)202H0) exp [~ ((e1 — €2) T} + (1 + €2) T3
+(e1 4 €2)J3 + BH)] )

Here we have denoted the respective Cartan generators by J.. It is crucial
to note that the invariance under deformations follows from the twist of the
generator Jr by Jr. It turns out to be convenient to re-organize the refined
BPS invariants in the so-called refined free energy that takes the form

Jr ke Jr bmn
= ) Nﬂ . z qr, Z qr
F(617€27t) = E (-1)2(]L+jR) Jr,JR mLT—]L . mR_.—]R : Qk@)’
22 gm0 ko 2sinh (5) 2sinh (5g)
k=1
QP =e P,

Eliﬁg

Here ¢; denote the Kéhler moduli and ¢, =€ . There is a second set of

invariants, denoted by ngL .gr Which are related to the refined BPS numbers
by a change of spin basis given as

(2.3) m= (2 0], + B]) SN

which is easily recognized as the spin content of the Lefshetz decomposition
of an n-torus. In terms of this new basis, the ngL gr are explicitly given as

L _ B jL jR
@y S e rer=3 N, [E]e[E].

9gr,9gr JrL.Jr
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While both sets of invariants take values in the integers, the refined BPS
invariants N fL jn arein addition non-negative. It is also useful to rewrite the
refined free energy as

“+00

(2.5) Fle,e,t) = Y (e1+€2)(ere2) ' FM9(1).
n,g=0

One recognizes the genus expansion of the unrefined topological string in
the limit e; = —ey. The F(™9)(¢) can be recursively determined using the
refined holomorphic anomaly equations

+ Z/DjF(m’h)DkF(”m’gh)>, n+g>1,

m,h

which are discussed in more detail in Section 2.3.

Mathematically, the formulation of refined BPS invariants is based on
the notion of stable pairs. These are defined as a pure sheaf F of complex
dimension one with

(2.7) chy (F) =8, x(F)=n,

where 8 € Hy(X,Z) gets identified with the D2-brane charge and n de-
termines the number of DO-branes. In addition, one requires a section s €
HO(F) that generates JF outside a finite set of points Q. All this information
can be organized within an exact sequence

0—Ic —0x 5 F—Q—0,

where I denotes the annihilation ideal of a curve C' representing 8. The
moduli space of stable pairs with charges 3, n is denoted P, (X, 3) and carries
a symmetric and perfect obstruction theory. This implies the existence of a
virtual fundamental class [P, (X, )" which can be integrated to a number,
the Pandharipande Thomas invariant

(2.8) Pos = /P oy B
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These are organized in the following generating function

(29) ZPT = anﬁanﬁ.
n)ﬂ

The latter is conjectured, and in the toric case proven, to coincide with the
generating function of disconnected Gromov-Witten invariants

(210)  Zow =exp(Fow (M, Q). Faw(XQ)=>_ > I\2Q°,
840 g
provided one identifies ¢ = —e'.

Only recently the notion of refinement on the level of PT-invariants has
been established in [15]. It requires an C*-action on P, (X, ) with finitely
many isolated fixed points p and gives rise to a virtual Bialynicki-Birula
cell decomposition. More precisely, for any fixed point p one considers the
decomposition of the tangent space into eigenspaces of positive and negative
characters x of the C*-action

(2.11) LX= P nx=PrnxePrnx,

XEX(C¥) x>0 x<0
—_—— N —
T,F X T, X

and defines dg[ = dim (TpiX ) This construction allows to define the virtual
motive

(212) Pt = Y ()t

pEPn (Xaﬁ)c*

where IL denotes the absolute motive of C. Interpreting the right-hand side as
a direct sum of irreducible SU(2) characters, one ends up with the following
decomposition into refined PT invariants

(2.13) [Prp, (X, B =D (=1)*"N, 1, il
JRr
where [jgr] denotes the representations associated to the respective charac-

ters. In particular the refined PT partition function
(2.14)

JL/R oo m—1

;(?jf = H H H H L—m/2+1/2+]'—mR(7q)m_2mLQ5)(*UZWLHR)N]‘Z,]R7

Bjrsjr ML /r=—jr/r Mm=1 j=0
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coincides with the refined string partition function

(2.15) 7" = exp [F(e1, €2,1)],

where F'(e1,€2,t) denotes the refined free energy defined in (2.2).

2.1.1. Local A-model geometries. A toric (i.e. in particular non-
compact) Calabi-Yau three-fold M is specified as the quotient of some open
subset of C*¥*3 by a group G = ((C*)k x C', where the last factor denotes a
possible discrete part

(2.16) M= (C"? - 2)/G.

The continuous part of the group action is specified by k charge vectors
Q* € ZF+3 satisfying the Calabi-Yau condition

k+3

(2.17) >y =o,
i=1

that act on the open subset as
(2.18) x> Qi a;

Finally, Z denotes the Stanley-Reisner ideal which is the fix point set of the
group action (2.18) and needs to be substracted in order to make M being
well-defined as a variety. All this information is encoded in the so-called
toric diagram.

ar by 1]Qf -+ QF Dy

(2'19) ag bk 1 Qk Qz (—Dk
) )
ok cm

Here Dy = {x = 0} denotes the divisor associated to the coordinate xj
corresponding to the ray e, = (aj by 1) within the toric diagram. The C“
denote a basis of the Mori cone and constitute a distinguished basis of
Hy(X,7Z). In particular, the intersection number between the divisor D;
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and the curve C'* is given by
(2.20) Q¥ =C*.D;.

From a physics point of view, the toric variety (2.16) has an interpretation as
the vacuum field configuration of a two-dimensional Sigma-model. Here the
coordinates z; get identified as the vacuum expectation values of the scalars
of the chiral multiplets having charge vectors @; under the gauge group
U(1)*. The vacuum field configuration arises from the D-term constraints

k+3

(2.21) D™ =" Qffal* = r.
i=1

The inequivalent vacua are obtained by dividing out the group U(1)*. In ad-
dition, r% = fca J +iB correspond to the complexified Kahler parameters,
where J denotes the Kahler class and B is the Kalb Ramond field.

2.2. The refined B-model

2.2.1. Local B-model geometries. The local B-model geometry can
also be constructed in terms of the toric charge vectors using the Hori-Vafa
method. For this one introduces two C-valued coordinates w™,w™ as well
as the homogeneous coordinates x; := e¥* which are subject to the rescaling

(2.22) T; — A\x;, AeCr ,

and are further constrained by

k+3
(2.23) (-1)% [ 2% = za.
i=1

The local mirror geometry is then defined by

k+3
(2.24) whw™ =H =Y "u;,
=1

where the constraints (2.23) as well as the rescaling relation (2.22) can be
used to eliminate all but two (x,y) of the homogeneous coordinates such
that the geometry takes the form of a conic bundle over a family of Riemann
surfaces H(x,y, zo) parametrized by the complex structure moduli z,. The
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local B-model geometry (2.24) naturally inherits a holomorphic three-form
from the ambient space which is given as

dHdxdy

2.25 Q=
(2.25) Hry

After integrating out the non-compact directions this gets reduced to a mero-
morphic one-form defined on H

log(y)dz

(2.26) A=

As the Riemann surfaces arising in this way are generically non-compact,
one does not expect to be able to find a normalizable symplectic basis in
general. Instead the most standard form of a basis A%, B; of Hy(H,Z) is
subject to the intersections
(2.27) AN AT =0, B;NB;j =0, A'NBj=n}, n}el
In fact, these intersections can be determined from toric diagram of the
A-model geometry, see also the discussion in Section 2.2.3. For the follow-
ing discussion we always make use of a normalizable basis and devote the
Section 2.2.2 to analyse the modifications in the case of a non-normalizable
basis.

One refers to the respective period integrals of A along this basis as
the A- and B-periods respectively, denoting them by ¢; and t’b respectively.
These periods are annihilated by a set of linear differential operators, called
the Picard-Fuchs equations

(2.28) Do= [ 0% - [J 0%
Q>0 Q<0

The solutions are constructed by the Frobenius method. Starting with the
fundamental period [14]

(2.29) (%,p) = Z ) (=1)8z)m",

Qo‘n‘“rp )+1

one obtains a constant solution, as well as a number of linear logarithmic
solutions.
1 0

2.30 X0 = wy(2,0)=1 -
( ) wO(Za ) 5 o apz

wo(,?, ﬁ)|P:0 :
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Second order derivatives with respect to p are not solutions to (2.28), but
suitable linear combinations 7 of them constitute the B-periods tb. The num-
ber of these solutions is combinatorically determined by the toric diagram
as well. In fact, any inner point gives rise to a single as well as a doubly
logarithmic solution (that are dual to each other), while the other points
give rise to further linear logarithmic solutions. The first class of solutions
corresponds to true complex structure moduli of the Riemann surface, while
the second class of solutions is identified with additional residues my of the
meromorphic one-form that correspond to non-normalizable directions in
the complex structure moduli space and therefore are merely parameters of
the geometry rather than real moduli. As the residues of the meromorphic
one-form give rise to masses of fundamental matter in the Seiberg-Witten
theory engineered by this Riemann surface, these parameters are also re-
ferred to as mass parameters. From a homological point of view, these mod-
uli correspond to curves that have no compact dual within the geometry,
compare also the discussion in 2.2.3. Yet another interpretation is given as
isomonodromic deformations. In fact, the periods may undergo non-trivial
monodromies when encircling singularities in the complex structure moduli
space. As these monodromies have to respect the symplectic form, they have
to constitute a subgroup I' C Spag(Z). This action takes explicitly the form

5 a b
(2.33) my = my <c d) € szg(Z).

The pairs of true periods and their duals are related to the prepotential

oF(0.0)

(2.34) th = 5

"Clearly, one may also add logarithmic solutions of order zero and one to the
double-logarithmic solutions. The latter do not affect the instanton part of the
prepotential, but only its classical contribution. Nevertheless, they are crucial in
order to obtain a set of solutions that forms an integral basis for the monodromies.
See [29] for a conjecture how this basis is obtained. Recently, the choice of basis has
been related to the -classes and the hemisphere partition function, see [13] for an
application to fourfolds and more detailed references.
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The period matrix of the mirror geometry 7 = {Tij}(i j=1,..g) is related to
the prepotential as

P 00
(2.35) Tij = _atkatlF [

The third derivatives of the prepotential F(0:0)
(236) Cijk = 8ti8t]' 6th(0’0) s

are called the Yukawa couplings. Finally there is the Kahler potential
Lo o
(2.37) K= 5% (tith — tith) -

Note that this form only holds true in the local case, in contrast to the
compact case where the right hand side of (2.37) gets dressed by a logarithm.
From this one deduces the Kahler metric

K

= — = Imr7.
thtJ 8tlatj 4

(2.38)

2.2.2. Modifications for non-compact Riemann surfaces. In this
subsection we discuss the mo-difications of the results obtained in the pre-
vious section for a canonically normalized basis of the Riemann surface.

We start with a basis (A;, BY) of A— and B—cycles of a Riemann surface
of genus g. Their intersection matrix defines the symplectic form

(2.39) Jg = (—ng ]lg) :

and with respect to this one defines the pair of dual cycles

(2.40) ti:/ A, tﬂbz/x,
Ai Bi

where A is the meromorphic one-form that is inherited from the Calabi-Yau
three-form. As already discussed, ¢; and tjD provide an integral basis for the
monodromy group and are related via

oF(0.0)

2.41 th =
(2.41) D ot
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In contrast, if there is no normalizable basis, i.e. the A— and B— cycles
intersect as

non-norm. C
(2.42) e = <_C ) :

the dual periods are given as non-trivial linear combinations of derivatives
of the prepotential [29]

. 9F(0,0)
2.4 th =C"

and it is the pair (¢;, tjD) that provides an integral basis for the monodromy
group.

In order to derive the modification of the period matrix, we note the
following behavior under the symplectic transformation

(2.44) @) - (g COl) @) - <chl43> :

c 0
T+ CrC  for (0 C’_1> € Spyy(Z) -

Instead of a change from (A, B) to (CA,C~1B), we can interpret (2.44) also
as transforming into the basis (A, C~!B) while changing Jg into Jgonmon:
at the same time. Le. (2.44) changes the canonical symplectic form into
a non-canonical form which is characterized by the intersection matrix C.
Accordingly, the period matrix is connected to the prepotential as

o 92 F(0,0)

Ok
(2.45) Tij C; C; I

2.2.3. Mirror symmetry and the mirror map. Mirror symmetry re-
lates the B-model on a three-fold X to the A-model on the mirror three-fold
Y. Mathematically, it is a conjectured equivalence between the category of
coherent sheaves on X and the the derived Fukaya category DFuk(Y,J)
with the Kéhler form J viewed as a symplectic form. This equivalence gives
in particular rise to a symplectomorphism

(2.46) mir : K8(X) — H3(Y,Z).

Here, K°(X) denotes the Grothendieck or K-theory group of coherent
sheaves on X. As our main interest is in non-compact three-folds, we have
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to demand that the latter are compactly supported. As a consequence of the
Grothendieck Riemann Roch theorem the Chern character map gives rise to
a further symplectomorphism

(2.47) KA(X)®Q = AGen(X) @ Q,

that identifies the pairing on K¢(X)

(2.48) (R, S) = / ch(R*)ch(S)td(X)

with the intersection pairing on A ., (X). The latter denotes the compactly
supported Chow group which coincides with the homology group in case
of crepant resolutions of C3/G where G is an abelian subgroup of SL(3,7Z)
which is the concern of the present publication. For this class of geometries
the generators of as well as the pairing in the compact K-theory group can
be calculated group-theoretically using the McKay correspondence®.
Roughly speaking, mir identifies A-cycles in the mirror geometry with
curves in X and B-cycles with divisors such that the natural intersection
pairing between curves and divisors on the left side gets identified with that
of A- and B-cycles on the right side. To be more precise, we have the following
identification, as compactly summarized in table 1. For every generator C'*
of the Mori cone there is a dual element of the Kéhler cone Jj. Also we have
a basis of H4(X,Z) given by divisors Dj. To all these elements we associate

the following sheaves [17, 29]

(249) Cq — Oc, (—Jp) := Oc @ O(—Jy),
(2.50) Dy — Op,(Lk) =0p Lk, L= Ox(—ak71J1 . — ak,lJl) .

Here, Oc, and Op, are supported” on C,, and Dj. The coefficients in (2.50)
are chosen such that

(2.51) X (Op, (L)), 0p,(Ly)) =0.

Finally there is the DO-brane charge which is supported on a skyscraper sheaf
O, and corresponds to the trivial solution of the Picard-Fuchs equations. By

8Strictly speaking, this is only guaranteed for the resolution given by G-Hilb.

90ne way to construct these sheaves is to consider a coherent sheaf Sy
on a compact sub-manifold +:V < X and to compute the compact Chern
character ch®(S) :=ch(:xSy) by the Grothendieck Riemann Roch theorem
s (ch(Sy)td(V)) = ch(e,. Sy )td(X).
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construction, the only non-trivial intersection between the K-theory gener-
ators is given by

(2.52) Cap =X (OCQ(*Ja)’ Op, (EB)) J

which corresponds to the intersection between divisors and curves and can
directly be read off from (2.19). We end by noting that the matrix C' defined
by (2.52) is in general not regular. This can be traced back to the fact
that there are curves which have no compact dual in Hy(X,Q). These are
precisely given by the mass parameters discussed in Section 2.24.

Solution of the PF eqn. | Charge | Heven(X,Z) | K¢X) | comp. dual
1 DO Hy(X,Z) O, no
transcendental single log. D2 Hy(X,Z) | Oca(—Ja) yes
rational single log. D2 Hy(X,Z) | Oco(—Ja) no
double log. D4 Hy(X,7Z) Op,(L;) yes

Table 1: The elements of the compact K-theory group together with their
associated D-brane charges and mirror maps.

In the second part of this subsection we aim to discuss a a second -
obviously not unrelated - notion of mirror map which provides an identifi-
cation of the Kéhler moduli in the A-model on Y in terms of the complex
structure moduli of the B-model on X. Concretely, one identifies for every
normalizable complex structure parameter z; the logarithmic solution given
as

1
(2.53) ti = 5~ log(=i) + X(z),

where ¥(z;) denotes a power series with the Kéhler modulus ¢;. The rela-
tion with the homological mirror map is obtained by noting that the complex
structure moduli are parameterized by HOD (X, 7100 X) = F(D(X) and
the Kéhler moduli by H 1 (X) and passing to the respective Poincaré dual
homology. The transcendental mirror map is finally given by inverting (2.53)
in favor of the monodromy invariant variables Q; = e*™. In contrast, mod-
uli corresponding to non-normalizable directions have rational mirror maps.
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2.3. The refined holomorphic anomaly equations

Refined holomorphic anomaly equations have been proposed in [30, 33]. They
read

(2.54)  GFM9) = jk<D,DkFWﬂ—U

N | —

4 Z’Djpwvmpkpm—mﬂg—m) D ontg> L

m,h

Here the prime signals the omission of (m,h) = (0,0) and (n,g). The co-
variant derivatives are with regard to the bundle 719 X and its symmetric
powers. More precisely, for a correlation function of k operators they take
the form

(2.55) Dy =9y — ()",

where I' denotes the Christoffel symbol of the Kahler metric (2.38). In gen-
eral, the free energies at genus g transform as a section of a line bundle £2972
that gives an additional contribution to the connection in (2.55). However,
in the local limit, £ becomes trivial and (2.55) is exact.

While the unrefined holomorphic anomaly equations can be rigorously
derived, a worldsheet interpretation of the refined holomorphic anomaly
equations is so far missing. However, it was conjectured in [30] that the
second deformation parameter corresponds to the insertion of n times an
operator O into the worldsheet of genus g. Accordingly, the refined free
energies take now the form

39—3

(2.56) F9) :/_ <(9" 11 5k5k> dm A dm .
M, k=1 g

Thus, the second sum in (2.54) gets an interpretation as the distribution of
the n points among the degenerated components of the Riemann surface. In
particular, it was conjectured that

(2.57) FOHL0) — (6©(0)60 (1) (00) O™ =g .
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This implies in particular that F19) ig purely holomorphic such that its
most general ansatz reads

(2.58) F10 — —log AHu‘“Hm ,

where A denotes the discriminant locus of the mirror curve and the constants
a;, bj are fixed by requiring regularity at infinity and the knowledge of a few
BPS numbers. In contrast, F(®!) corresponds to the unrefined free energy
and obeys a holomorphic anomaly equation as well. The most general ansatz
for F(O1) is given in the local limit by

(2.59) FON — log <A“Hu“’m |g \)

Here g,z = 0., 5571( refers to the Kéhler metric (2.38) transformed into the
coordinates z;. This can be re-expressed as

K Oty 8t} kAT
2. 2.5 = e ———— — = I ; T
(2:60) 05 = (oo ) 2 5o = (Imm) GIGH
The quantity
. Ot
2.61 )=
(2.61) Gl=5

is often referred to as the topological metric in the local and holomorphic
limit. Clearly, the factor [Imr;;| is not holomorphic. Accordingly, F O can
be split as

1 — 1 a a;, 0; —1\J
(2.62) FO = 3 log ([Tmr;;| ") + B log (A Hu@m? [(GT); ’)

= %log (Tmr;| ) + %log <| (G_l); |) + FO.1)
As discussed in detail in Section 4 for genus one and two, F(®1) is invariant
under modular transformations, but not holomorphic. In contrast, F(©:)
alone is not modular invariant.

Having discussed the antagonistic behavior under modularity respec-
tively holomorphicity of F(®!)| we remark that the ambiguity can be fixed
with the help of a few known BPS numbers, analogously to the case of F(1.0),
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Alternatively, they can also be determined from the behavior of F(0:1)

singularities, e.g.

near

1
2. lim PO = - — E i i
(2.63) z,-nn() 21 t; coJ;

Besides the prepotential F(©9) the knowledge of the free energies at
genus one is sufficient to determine the higher genus free energies F(™9)
using the refined holomorphic anomaly equations up to an integration con-
stant, called the ambiguity. The direct integration method proceeds by cal-
culating the so-called propagators S%. They can be used to re-express the
anti-holomorphic derivative of F(™9) ag

_ L OF(n9)
p(ng) — ik
(2.64) S

which implies that F(™9) is a polynomial in S% of degree 3(g +n) — 3. The
propagators are determined from a - in the multi-moduli case overdetermined
- set of equations that reads for local Calabi-Yau manifolds as follows

(2.65) DiSM = —Cippp SIS 4 R
(2.66) It = —CiSM + M,

1 )
(2.67) OiF = 5cijksﬂc + A;.

In these equations the ambiguities f, ffl, A; can be solved from the follow-
ing ansatze

h(z)
kKl _ T\
J: c2 AP

A; = 0; (dj log A + I;j log zj) .

The first formula applies to both, ka:l and fikl and p is either zero or one
while h(z;) is a polynomial.

Finally, the integration constant in (2.54) can be fixed by matching the
refined free energies with a very particular behaviour of the refined free
energies at the conifold locus known as the gap condition. It arises from
integrating out a particle becoming massless by performing a Schwinger
Loop computation, where the coordinate ¢ denotes the flat coordinate normal
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to the singularity

(2.68)  Fls,g5,1) = /OOO f4sinh(5:f;)2()_sfflil(seg/2) +0(t")

1 1

TR 24(61 + €2) (6162)1] log(t)

2y 7 7 202 l
2407 T 1440° " 5760° 5 | 2

PR PR R
— S S
100875 7 20160°% T 26330

31
39—2] - Jro(t())

+

_|_
|—||—|
—

1612807 7% | A
(2.69) + contributions to 2(g +n) — 2 > 4.
Here, B’m = (le,l — 1) % with B,, denoting the Bernoulli numbers.

2.4. Background independence of the topological string partition
function and modularity

Besides the (refined) holomorphic anomaly equations, there is a second way
to compute the higher genus free energies which (so far) only applies to the
unrefined case. This method is based on an analysis of the monodromy group
I' that strongly constrains the form of the free energies. Namely it requires
them to transform as almost/quasi modular forms of I', as explained in the
following. In this case the topological string partition function is interpreted
as a state |Z) in the Hilbert space obtained by quantizing H3(M,Z) where
gs plays the role of h. While |Z) as an abstract state is invariant under the
monodromy action, this does not neccessarily have to hold for its wavefunc-
tion (i.e. the projection of | Z) onto a particular set of coordinates). There are
two important choices of coordinates. The first set {z;, z;} refers to picking a
complex structure (holomorphic polarization), while the second set {z;, p;}
refers to a background symplectic structure (real polarization).

The results of this analysis, performed in [1] are as follows:
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1) In the holomorphic polarization the free energies are almost modu-
lar forms of the monodromy group I' (i.e. modular invariant but not
holomorphic) having an expansion

39—3
FO = F + 3 b (r)(Imr)
i=1

with h*(7) being holomorphic functions. From a physics point of view
these are determined by the holomorphic anomaly equation up to an
integration constant.

2) In the real polarization the free energies are quasi modular forms of
the monodromy group I' (i.e. holomorphic but not modular invariant)
F9 and in fact F9) = Fo(g).

3) The holomorphic anomaly equation can be derived from transforming
from the real polarization to the complex polarization.

4) The propagator can be shown to be a modular form of weight two
EY(r,7) = BV (7) + ((Imr)~1)",

transforming as

EU(T,%) — (et + d) e (er + d)JLEKL(%,?). v = <c d> € Spag (Z),

T ~7 = (ar + b)(cr +d) L.

Here E takes values in C#*9. In fact, any free energy f;(g) in holomor-
phic polarization can be written as a polynomial in E'/(r,7) where
the coefficients are given by meromophic modular forms.

3. Invariants of Riemann surfaces and their modular
properties

This section is devoted to discuss the invariants of elliptic and genus two
curves respectively. We mainly focus on the Igusa invariants that classify
the latter. In particular, their Fourier expansion is used in the Sections 4
and 5 in order to extract the period matrix of the mirror curve.
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3.1. Invariants of genus one curves
Any genus one curve can be represented in Weierstrass normal form

(3.1) y? = 42® — go(u, m;) — g3(u, m;) .

Here u denotes the the true modulus of the curve that corresponds to
the complex structure modulus 7, while the parameters m; denote possible
isomonodromic deformations as discussed in Section 2.2.1. The coeflicients
g2, g3 are not true invariants, but enjoy a rescaling symmetry

(3.2) g2 rlga, g3 rigs.
In particular there is an r such that
(3.3) Ey=12r'gy,  Eg=216r%3,  Apoa =7 Agis.

Here, we denote the discriminant locus respectively the modular discrimi-
nant by

1
(3.4) Apoq = m(Ei’(T) - Eg(T)) Agis = gg’(u,mi) — 27g§(u,mi) .

In contrast to go, g3, the associated j—function

3 3
.92 (U) mz) Ej (7') 1 2miT
3.5 J = - :7+744+7 q=¢e€ ’
B8 I= Numy) ~ B B2~ q

is a true invariant.
3.2. Invariants of genus two curves
Any Riemann surface R of genus g = 2 can be represented as hyperelliptic

curve

4

(3.6) y? = vox® — v12° + vart — vgd + vaa? — vz + vg,

6
= H(x — )\Z‘) Vi, A; € C.
=1

To see this one notices that a hyperelliptic curve is a double cover of P!
which is equivalent to a function of degree two on R. The existence of the
latter is guaranteed by the Riemann Roch theorem.
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Two such hyperelliptic curves are conformally equivalent and define
therefore the same Riemann surface if their branch points A; differ by a
fractional linear transformation. Thus the moduli space of the hyperelliptic
curves is locally parametrized by the A; and has dimension

(3.7) dim M{P = 29 + 2 — dim PSLy (Z) = 29 — 1.

Note that this coincides for g = 2 with dimension of the moduli space of
Riemann surfaces

(3.8) dim M, =3g—3.

3.2.1. The Igusa invariants. In this subsection we discuss the Igusa
invariants which provide a natural generalization of g2, g3 which occur in
the Weierstrass normal form and the absolute j-invariant.

Given a genus two curve in the form (3.6), the Igusa invariants are
defined as

(39)  A(v) =vg Y (12)°(34)%(56),
15

(3.10)  B(v;) = v y_(12)%(23)%(31)%(45)*(56)*(64)*
10
(3.11)  C(v) = vgz (12)%(23)%(31)%(45)2(56)2(64)(14)%(25)%(36)?

(3.12) = UOOH (i — X))

1<j

In these expressions we have summed over all permutations o € &g and used
the abbreviation (ij) = (As(s) — As(j))- The invariants (3.9), (3.10), (3.11),
(3.12) for a sextic of the form (3.6) are given by

A= 61;§ — 16vovy + 40v1v5 — 240vgvg,

B = 481)61)% + 41)51)% — 121}31}51}% + 3001}01)52)1)2 + 4vv4v5v9 — 180V V3V6V2
— 504vgv4vgve + 481}01)4 — 121}11)31)4 80v? v5 + 16202}01)6 + 361}11)32}5
— 180vgusvavs + 3241)01)31)6 + 3001}1 v4v6 — 540vgv1 V5V,
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C= 361)5112 — 1601}41}61)2 241141)2 96v0v602 + 761}31}41}51}5’
+ 60v3v6v2 =+ 6161}17)51)6112 + 81)31;47)2 + 261}11)31)5112
— 640v0v4v5v2 9001}106112 241)31;51)2 + 28003503
+ 4241)01141)61)2 + 4921)11131)41)61)2 — 8761}01)32151)61)2
— 1601}0@3@2 + 76U1vgvi’vg + 1600vovlvg’v2 + 330001)32,12%1}2
+ 64@%1}41}%1}2 + 30601}01)11)31)%?)2 + 206641)(2)1)41)%1)2
+ 4921)01}31}21)51}2 — 2381}11}32)1)41)51}2 — 1981)11)%1)61)2
— 6400203V — 18600V vEvgus — 468V9v3v4V6V:
— 18601}%1}31}52}61)2 + 3472vgvv405v602 — 361}%1}2‘ + GOUOU?%UZ’
— 3200308 + 225003v3v8 — 119880v3vE — 24v1v303
+ 1760 v3vE — 900v3vivE — 1860vov1v3v4vE — 10044030303
+ 225003 w303 — 18600vgvivavg + 5994003 viv5vE + T201v505
+ 6161}01)11)2115 + 26?)%1)31)31)5 — 1981)01)%1)405 + 162vov§v6
— 961)32}21}6 — 8761}01)11)31)21)6 - 2240001)%1)%1)6 + 3301}%1}%1}41}6
+ 18181}01}11)%051)6 + 1600@%1}4@51}6 + 3060@81}31}4@51)6,

(3.13) D =2A.

The invariants A, B,C, D are the genus two analogues of go and g3 in the
Weierstrass form. L.e. the rescaled coordinates

(3.14) r2A, B, roC, rioD, reC,

define the same curve. In particular, one can find a proportionality constant
such that one has '°

A= —o42X12  p_yip,
(3.15) L

Cl = i(AB - 30) = 47’6E6, D = —2147“10)(10.
Altogether these invariants define a point in P»?3® and the complement of
the divisor D = 0 describes the moduli space of genus two curves. However, if
three roots in (3.6) coincide, the genus two curve degenerates into a product
of elliptic curves. At the same time, the three invariants B, C, D vanish
simultaneously such that the two-dimensional subspace parametrizing the

10The Maass lift ¢§%) used in Section 9 is related to Igusa’s cusp form by 4x19 =
90 -
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two factors gets mapped onto the point [1:0:0: 0]. One can show [37, 3§]
that the following absolute invariants

B
ﬁ )

AB - 3C
A3

To = —2633 A5 y

(3.16)  x, = 2132
serve as good uniformizing parameters around [1: 0 : 0 : 0]. In particular, by
introducing the following quantities

3 73 279

(3.17) Y= —, Yo = —=, Y3 = -
3 3 3

one obtains the relations between the invariants of the degenerated genus
two curve and its respective elliptic factors as

(3.18) y1=j(m)i(ra), v = (i(n)—2°8) (j(r) — 2°3%) .

In this work we will eventually be interested to use the Fourier expan-
sion of (3.16) in order to extract the complex structure parameters of a
given genus two curve. We review some basic properties of the ring of Siegel
modular forms and the computation of their Fourier expansions in the Ap-
pendix C.

4. Direct integration algorithms based on normal forms of
mirror curves

The methods presented in Section 2.3 are perfectly sufficient in order to
compute the (refined) free energies up to arbitrary worldsheet genus. How-
ever, for mirror curves of genus one and two, the fact that these possess a
normal form allows to directly extract many quantities from the toric dia-
gram. The key observation is that all quantities of the associated topological
field theory can be expressed in terms of invariants of the curves and their
period matrices. The latter are obtained by inverting the Fourier expansion
of the associated absolute invariants which are constituted by the j-function
respectively the Igusa invariants. In contrast, there is no way to circumvent
the direct integration procedure to obtain the higher genus invariants in
general. However there is one universal object, the propagator, which in fact
can be written down once the period matrices are known. It is given by the
second Eisenstein series E3 in the case of genus one and by the derivative of
log (x10) in the case of genus two.

Mathematically, for the case of genus one this is reflected in the fact that
it is precisely the second Eisenstein series whose adjunction turns the ring
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of modular forms into the ring of almost respectively quasi modular forms.
We show in Section 9 that a similar statement can be made for genus two.
The complete modular structure which is ensured to hold at least in the
unrefined case is encoded in the monodromy group of the individual mirror
curves and needs to be determined case by case.

In the following two subsections we discuss the algorithmic integration
procedures for genus one and two separately.

4.1. Direct integration for genus one mirror curves

We summarize the integration procedure in Figure 1 and discuss in addition
some salient points of the algorithm.

4.1.1. Obtaining the periods. The relation between the A-period t of
the meromorphic differential and the period of the mirror curve at a cusp
point in the moduli space is given by

@) a_ [ myy 1

' du Eo(7)ga(u, mi)  2mi J, y
It is obvious that this expression is not invariant under the rescalings (3.2).
This ambiguity is fixed by demanding that it coincides with the explicit
integral over the vanishing cycle p which implies the leading behaviour t =
5 log(u) + -+ -. It is trivial, but also important to note that (4.1) is also

the holomorphic limit of the topological metric and is to be identified!! with
the proportionality constant r in (3.3).

4.1.2. Obtaining the propagator. It is also possible to derive a closed
expression for the propagator. One notices from (2.59) and (2.67) that one
can choose A; in such a way that one obtains

1 1
(42) §Cttt8tt = —ﬂ&g IOg (Amod) .

From this one easily obtains

4. Ly O
(43) S =pk

"Up to a numerical factor of 18.
2In the following, we use S to denote the holomorphic part of the propagator.
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We denote by ¢p the intersection number of the A-cycle with the B-cycle.
Here we made use of (2.45) and the well-known relation

1 d

4.4 E = ——1
(4.4) 2(7) 2mi dt 8

(Amod)-
After tensor transforming to the u-coordinates, one obtains

wu _ €0 93(u, my) Eo(7)Ey(T)
(45) ST = 12 go(u, m;)  FEg(t)

In this derivation we have used the generic form (2.62) of F; }(ngl). Taking into
account the modular complement in equation (2.60), the right hand side
of (4.2) picks up an additional summand

(4.6) - %log (Tm7) |

which precisely cancels the modular factor of the discriminant'®. The rela-
tion (4.3) gets accordingly replaced by

3
4, t_ 9O (g _ .
( 7 S 12 2 mlmT

In addition, one has to check in general that the relations (2.65) and (2.66)
are satisfied as well. Here we note that for genus two curves the rela-
tion (2.65) becomes just the Ramanujan identity

1
(4.8) 0By = 75 (E3 — Eu) .

This follows from (4.3) and (2.45). In particular, one finds that
(4.9) "= iCttt£74(q).
144
After transforming to u-coordinates one obtains
2

C,
(410) ;Z = £92szz-

1B Actually this is not completZely true. Under a modular transformation 7 —
Z:is, L transforms into %. But (2.60) also contains a term 9yt which is
not taken into account in (4.2). Altogether these three contributions are modular

invariant.
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Mirror curve

y? =42 — ga(u, mi)z — gs(u, m;)

[ Compute 7 from

Compute the

3
=91 .
l] =R T
Compute the -
A-period from

propagator as
2
v dt 92F5(7)
=0 = = Guu =
ST =) du \ 9sEa(7)

Compute the free en-
ergies at genus one

Compute the

tential
p0) _ 1 log (A o mé;) prepo
24 1:[ 1:I 7 (0.0) 6(2)
P =57
PO = % log (A]‘[udmjﬂc;,}\) ot 2mi
J
Compute the ) Compute the
hl‘gher free ener- B-period from
gies F(™9using 12(0,0)
(2.54) and (2.64) b= 2
up to an ambiguity ot

Fix the ambiguity
in the higher genus
free energies F(9)

The Gap con-
dition (2.68)

Figure 1: This diagram shows the algorithm based on genus one mirror
curves to compute the free energies via direct integration. Boxes show quan-
tities that can derived purely from the mirror curve while clouds denote
information that is needed in addition.
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Mirror curve

2 6 5 4 3 2
Y- =vox —v1x” + U2k — U3x” + 04T — V5T + Vg

[
l

Compute ( S

712
3712 T22

from the Fourier expansion

of the Igusa invariants

/

Compute

Compute the propagator as

_ 11
" 2710 10

ij

Or,, log (x10) C,C5

1G]] =

logical metric from

the topo-

C’E4 (T)

Compute the free en-
ergies at genus one

1 b
FLO = —jog [AT]w® [[m )
24 ¢ 1;[ 1:1 ’

1 e

0,1 d -1

FOD = S los (A [w m]]|Guu|>
J

Compute the
higher free ener-

Compute the
A-period from
the PF equations

Compute the
prepotential

gies F(™9)using

The Gap con-
dition (2.68)

(2.54) and (2.64)
up to an ambiguity

Fix the ambiguity
in the higher genus
free energies F(™9)

J

tp =Cj

Compute the
B-period from
9F(0,0)

ot;

Figure 2: This diagram shows the algorithm based on genus two mirror
curves to compute the free energies via direct integration. Boxes show quan-
tities that can derived purely from the mirror curve while clouds denote
information that is needed in addition. In contrast to the genus one case,
also the knowledge of the A-periods is required.
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4.2. Direct integration for genus two mirror curves

4.2.1. Obtaining the periods and the topological metric. Unfortu-
nately there seems to be no known generalization of (4.1) in order to obtain
the A-periods of the meromorphic differential directly. Therefore these have
to be computed by making use of the Picard-Fuchs equations in the case of
genus two. However we conjecture that (4.1), interpreted as the topological
metric, generalizes as follows to the case of genus two

Eg(7)B(ui, my)
Ey(7)C" (uzymy)

(4.11) ‘GZJ| = Det (auitj) = \/

Clearly, also this expression is not invariant under rescalings and we fur-
ther conjecture that this freedom can be fixed by requiring a leading term
of Tluz We have successfully checked this conjecture for the examples of
the resolutions of C3/Zs and C3/Zg, see also the discussion in Sections 5.2
and 5.3. Finally we note that (4.11) provides up to a numerical factor the
proportionality constant r in (3.14).

4.2.2. Obtaining the propagator. The same derivation as above ap-
plies to the case of genus two. Analogously to the previous discussion, one
chooses the ambiguity in (2.67), such that one obtains

1 - 1 1
(4.12) - iijJk = ——0;log (x10) — £0;log (detImT) .
2 20 2
Here, we abbreviate ¢; by ¢ and have used (3.14).
In this case one finds the following equality for the propagator

. 1 1
4.1 W=
(4.13) s 271 10

<3qu log (x10) + % (ImT)pq1> cicy.

As for the well-known case of genus one, it is interesting to wonder whether

the ambiguity (2.65) is also fixed by a generalized Ramanujan identity. In

fact, we derive such an identity for the almost meromorphic Siegel modular

form 0; log (x10) in Section 9, see (9.3) and (9.5) for an explicit realization.
We recall the constraint (2.65) for the propagator which reads in the flat

coordinates t;

(4.14) SH = —CppnSFmS™ 4 fH
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Again, we can make use of the relation (2.45) to re-write this as

ot
OTrs

(4.15) (Reym2S)"™™" = (S ® §)™™" + (C_l)m (C—l)lm fr

k

By abuse of notation, S™" denotes here only 9, log (x10) and the definition
of the operators Rgym> and ¢(S ® S) is provided in Section 6.1. Comparing
this expression to (9.3), it follows that the ambiguities f/"" are universally
determined and can be expressed in terms of the meromorphic Siegel mod-
ular form frg of weight sym? ® sym? as

(4.16) T = C CECF OO frs )P,
5. Examples

In this section we exemplify the theory which has been developed in Sec-
tions 2, 3 and 4 by solving the topological string on three different toric
geometries. The first one is given by local P2. Besides being the standard
example of a geometry with genus one mirror curve it also serves as an in-
teresting limiting case of the resolution of C3/Zs. The latter geometry has
a genus two mirror curve with two real moduli and no mass parameter de-
formations. Finally, we consider an example with a mass parameter which is
provided by the resolution of C?/Zg. In all calculations we find our formalism
to be perfectly confirmed.

5.1. Solving the topological string on local P2

5.1.1. The geometry and its mirror. First we will solve the refined
topological string on the anticanonical bundle Kp: = O(—3) — P2. The so-
lution to this problem is well known and will serve as a reference for the
latter cases. Here the mirror curve is of genus one and all physical quanti-
ties can be expressed through modular or quasi-modular forms. We read off

2

0 0 1]-3
! 1 0 1] 1
(5.1) 0 1 111
3 -1 -1 1|1

from the toric diagram that the A-cycle intersects the B-cycle —3 times. In
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addition, we find that the coordinates
(5.2) Xo = uxyw, X, = 2%y, Xo = wy”, X5 = w’x,

automatically fulfill the constraint

_ XiXaXs -3

5.3
(53) e

that can be read off from the toric diagram. Accordingly, the mirror curve
Y (z) is given by

(5.4) 2%y + wly + wa? + uzyw = 0.

Here z denotes the complex structure modulus that takes values in the punc-
tured sphere M(2(z)) =P\ {2 =0, 2= —5-, 1 =0}. Using birational
transformations as e.g. provided by Nagell’s algorithm this can be brought
into Weierstrass form

1
(5.5) y? = 4a° —E(1+24z)a:—2—6(1+362+216z)

As a next step, one inverts the j-function in order to evaluate 7 as a function
of z and obtains

(5.6)  q(z) = =23 + 452 —15122° + 4567225 + O(27),  ¢q=e¥".

We can also use the knowledge about ¢ in order to evaluate the A-period
according to (4.1) as

17325 4 | pomy.

(5.7) t =log(z) — 62 + 4522 — 5602° + ——
As a consistency check one notices that the Picard-Fuchs operator

(5.8) D=0%+230+2)(30 +1)30 = £LO, O =20,

annihilates the A-period, as expected. Having computed the period we can
exploit (2.35) to determine the prepotential

1
(5.9) FOO = - X3 +3Q - sz
244 12333 211878
7Q3 o1 =+ WQB +0(Q%).
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Here, we have introduced the monodromy invariant variable @ = e’. Also,
we note that the correctly normalized B-period is given as

1 1
(5.10) tp = ~5 log(2)? + §XA log(2)
141 , 1486 , 129805 ;
3z+4z+32 16z—|—(’)(z).

Finally, we find that the Yukawa couplings are given as

1 1

11 S S
(5.11) ¢ 323(1427z)

The genus one free energies are given by

1 1 0X
. O1) = — —1log(27(1 4 272)) — = 1 A
(5.12) F B og(z'(1+27z)) 5 og 5 |
and
1 1+ 272
(10) — ~
(5.13) F 20 og( - )

5.1.2. Direct integration. In this subsection we discuss the direct inte-
gration procedure applied to the example of local P2. First of all, one notices
that

(5.14) 2e=1427z,

is a good coordinate to perform computations around the conifold locus.
Indeed, using (4.1) one directly obtains the A-period around the conifold
locus as

B 11, 109 , 9389 , 88351 . .
(5.15)  te=a (zc+ T + 543 % T 36044 % + 595245 20 + O(z,)

Here, the proportionality constant a parametrizes the matching of the coni-
fold period with the mass of D2-branes wrapping the vanishing cycle. In
practice, it gets fixed by the gap condition (2.68). As a next step, we use
the results of Section 4.1 in order to determine the propagator,

(5.16) 5% = 222 +92% — 542 4 7562° — 1328420

+ 26049627 — 54516242° + 1191166562° + O (2'9) .
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5.2. Solving the topological string on C3/Zs

5.2.1. The geometry and its mirror. We now apply the direct integra-
tion procedure to the topological string on a mirror-pair where the A-model
geometry is the resolution of the orbifold C3/Zs. The toric data is given
in (5.17) and one can see that the Kaehler-structure is parametrised by two
moduli, both corresponding to normalisable directions in the moduli-space.

0 0 1|=3 1 |
1 0 1|1 -2|n
2 0 1,0 1 |
(5.17) 0 1 1|1 0 |3
—1 -1 1|1 0 |ay

T 1

P, P

By investigating the scaling relations, one easily sees that the divisor ob-
tained by setting xg = 0 is given by a P? while one obtains a F3 from x; = 0.
In addition there are two generators of the Mori cone. They correspond to
the hyperplane class of P?, which can also be identified with the base ]P% of
F3 while the curve IP’} gets identified with the fiber of the latter. There are
no mass parameters present and the mirror curve is now given by a Riemann
surface of genus two. From the two generators of the Mori cone we construct

Figure 3: Toric diagram of the A-model geometry, which is the resolution
of CS/Z5.

the mirror curve and read off the moduli

X1 XX XopX
(5.18) 21 = 1734, zg = 22
XO
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The constraints can be easily solved using the following choice of coordinates

3
(5.19) Xo=uxyz, X;=vzly, X;= ﬁ, Xy =y?z, X4=uxz?,
z

where the relation between u, v and 21, 23 is given as

2 1 _1

(5.20) U=z "2 °, V=2 2

Note that the coordinates u, v are the natural coordinates from a diagram-
matic point of view and signal two normalizable complex structure moduli.
In contrast, z1, 29 are the physical complex structure moduli that appear in
the mirror map. Having clarified the choice of coordinates, the mirror curve
takes the form

3 4

(5.21) y? = —4x® + 2] Pz, P2t + 22, 02, 02
2 1 3

+ (1 +229)2 ézgng +2z 52y P+ 1.
The discriminant locus'? of the curve is given by
(5.22) A =1+27z + 31252925 + 422(4 4 12521) — 29(8 + 22521) .
In addition, one finds three Picard Fuchs operators

L1 = (0] —20,)6?
— 21 [(©2 = 361)® — 3(02 — 301)% + 20, — 604] ,
L= (0 —301)0s — 23 [(202 — ©1)% + 20, — ©1] ,
(5.23) L3 = 0207 + 2129(0y — 301)(205 — ©1)(05 — 301 —1).

Here we have used the common abbreviation for logarithmic derivatives
0, = Zid%i' Note that linear dependent relations of the generators in the
toric diagram can lead to linear independent Picard-Fuchs operators which is
what happens here. In particular, the third differential operator is needed in
order to exclude a triple logarithmic solution which is allowed by the first two
operators. If one does not take into account the third operator, the solutions
to the first two operators take the form (1, #!, ;F, 2F — t'9;F) which is
familiar from the compact case but not expected for the non-compact case.

\We refer to the discriminant locus as the product of non-trivial irreducible
components of the discriminant. The discriminant is up to a numerical factor given
by the Igusa invariant D in (5.33).
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After having excluded the triple-logarithmic solution, one then finds five
solutions that are annihilated by the Picard-Fuchs operators L;,

gy = 1
o1 =log(z1) — 621 — 20 + 452'%

3 10
- 525 — 56025 — 182229 — ?zg’ +0(zh

o9 = log(z2) + 221 + 229 — 152% + 323

560

20
+ =23 6222 + gzg’ + O(z%)

3
141 3
03 =32 — 25 — 2129 — Tz% — 2y log(z2) — 523 log(z2)

3 1
10 log(zg)2 ~ log(z1) log(z2) + 221 log(21)

~ 152} log(=1) — £ log(1)* + O(%),

(5.24) 04 = 229 — 725 — z9log(zo) — ;zg log(z1) — glog(zl) log(z2)
- 1—10 log(21)? — 322 log(z0) — gzg log(z2)

~ Hlog(2)* + O,

and a basis for the periods takes the form [29]

tP =3 1 A A2 ;o 8y, F00)

t5 I =2 QX1 A2 p2 oy, F(0:0)
(525) H=| t |=] 0 0o 1 0 ps t ,

to 0 0 0 1 P4 to

1 0 0 0 0 1 1
with

1 1 1 1

5.26) (0, 00, 0, FO0, 11, 1) = , s 501, 502 |
(5.26) (0%, hy B 2) = 22”22 2mi Y 2mi 72

Here, the A\g; as well as p,, parameterize the ambiguity to add logarithmic
solutions of order zero and one to the double logarithmic solutions and do
not influence the non-perturbative part of the prepotential but they are
crucial in order to obtain an integral basis. However, as we do not refer to
such a basis in the following we do not fix these ambiguities. By inverting
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the A-periods 01,09 (5.24), we readily obtain the mirror map as

(5.27) 21(Q1,Q2) = Q1 +6Q% + Q1Q2 + 9Q3 + 10QQ2 + 0(Q*),
(5.28)  29(Q1,Q2) = Q2 — 2Q1Q2 — 2Q3
+5Q1Q:2 + 6Q1Q3 + 3Q35 + 0(QY),

where we have introduced the monodromy invariant variables @; = e%:.

5.2.2. Extracting the complex structure moduli from the mirror.
As a next step we extract the period matrix of the mirror curve that takes
the explicit form

1
(5.29) T = (f“ 2712) .

5T12 T2

In contrast to the torus, where the number of normalizable complex structure
moduli of the mirror curve matches the moduli of a generic elliptic curve, one
finds in the case at hand that the family of mirror curves parametrized by
21, 29 only defines a hypersurface within the Siegel fundamental domain F» =
FQ\H(Q). Using the formulae (3.13), one obtains for the mirror curve (5.21)

(5.30) A= —8z7z5 (—1+ 20 (4+40z)) ,

8
(5.31) B =4z 25 (1 + 2421 + 24002125 — 822 (1 + 2521)
+ 25 (16 + 440z — 8027)),

12

(5.32) C = —szf 2y (— 1 —2021 4 7227 + 82723 (1009 + 1090021 )
+ 429 (3 + Thzy +9227) — 425 (12 + 36521 + 165227)
+ 1625 (4 + 14521 + 94827 + 320z7)),

(5.33) D = 40962723 (1 + 2721 + 3125272
+ 425 (4 + 12521) — 22 (8 + 225z1)).

Computing the absolute invariants (3.16) and comparing them to their

Fourier expansions (C.18) whose computation is presented in Appendix C
one obtains

— 2 4 2y + 452] — 2322 — 602129 — 151227 + O(25)
2225 4162325 — 52325 + O(2Y),
—21 — 32129 + 1527 — 132122 4+ 202329 — 27923 + O(24) .

Q1(21, 22)
q2(21, 22)
(5.34) 7(z1,22)
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Here, we have denoted ¢; = 2™, gy = 2™ and r = *™™2. In addition,
we note that in the limit of restricting to the local P? model, corresponding
to zo — 0 only ¢; survives and gets indeed identified with (5.6). It is also
satisfying to check that z; and x9 reduce to the Weierstrass coeflicients
92,93 in (3.1). Using the knowledge of the 7-matrix as well as of the periods,
we can determine the prepotential. For this purpose we make use of (2.45)
noting that

(5.35) C= <_13 12> :

and find that

1 1 3 3
(5.36)  FOO = _— 73 —721, - DT - T8 4 3Q) - 2Q0

151 10 10 10
45 1 244
- ng +40Q1Q2 — ZQ% - TQ‘I’ —10Q3Q2

F30:03 - Q3+ 0(QY).

Ty

In particular, denoting K;; = 0;a at? F(©.0) one finds the explicit relations!®
(5.37) 11 = —4K11 +4K12 — Koz,

(5.38) Tog = — K11 + 6K15 — 9K99

(539) T12 = —2K11 + 7K12 - 3K22 .

In addition, once the prepotential is known, we can directly write down the
Yukawa couplings which are found to be

- 24921 — 1629 — 952120 + 322% + 300212%

(540) C'2'12’121 = 5Z%A )
1+ 272 — 822 — 210 1623 + 40021 23
(5.41) Coporry = —— P22 7 5% 12 1623 + 400212
527 20 A
3+ 81z1 — 1429 — 405 822 1 395, 22
(5.42) Conny = — + 81z 29 ;122 + 825 + zle’
52125
(5.43) O _ 942432 — 172 — 5402125 4 425 + 2252125
: Z2Z2Z2 T :
24242 5Z§)A

15Clearly, the prepotential can also be integrated by determing the B-periods
first. From this perspective, this is merely a check of (2.45).
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The knowledge of the A-periods enables us to check the conjecture (4.11)
and we find in this case that

(5.44) Gl = SEG( 7)B(2i,m;) ’

27 25 By(1)C" (21, m5)

where we have fixed the rescaling ambiguity accordingly. Finally, with the
help of a few known BPS numbers the unkowns in (2.58) and (2.59) can be
determined and one finds the refined free energies at genus one

1
FOO) = — log (Azf2253) ,

38 39 1
FOU = log <Azl 2y ) — flog (]GU\)
1 1 129
(5.45) F10 = RTL § 15 + Ql - *Q2 - 7@1 *Q1Q2 - *Qz
589
7@1 Qle + *QIQQ - §Q2 +0(QY,
3 1 1
01 _ _~p 9 s T 42
(5.46) F 15T1 20T2 + Q1 Qz Ql + 3Q1Q2 1592

- §Q1 - 6@1@2 + ZQIQQ - EQ% +0(Q%).

After this discussion, we are prepared to proceed to the direct integration
which provides us with the higher genus free invariants.

5.2.3. Direct integration. In order to determine the higher genus free
energies, we first have to calculate the propagator. Recall that the propagator
is in the genus two case given by a matrix

. 811(21,22) 812(Z1,22)

Instead of using equations (2.65), (2.66) and (2.67), we follow the procedure
in Section 4.2. Using the relation (5.39) one finds that the following ansatz
for the components of (5.47) solves (2.67),

B o d
(5.48) Sht = o (9 g, log (x10) + STlog (X10) + Tlog (Xm))

tits _ 1 i 79 5 0
(5.49) S"* = 0 38 11 0g (x10) 5 9r1s log (x10) 28722 log (x10) ) »
1

0 0 0
tols __ _
(5.50) S = M (8 log (x10) + 28712 log (x10) + 48722 log (X10)> )
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This expression can be directly written down without any further compu-
tation, once the toric diagram of the A-model geometry is known and the
T-matrix has been extracted from the mirror curve by inverting the Fourier
expansion of the Igusa invariants as performed in the previous section. After
tensor transforming to the coordinates z; these read explicitly

5.51 SH# = 122 + 923 — 3222'2 — 54zt — 6232 + O(2°)
i 1 i

10 10
3 3
(5.52) S = ~5g%1%2 = 32229 + gzlzg + 182329 + 72322 + O(2%)
3 6
(5.53) S = 1—0,2% + 2125 — 523 — 62222 — 42125 + O(2°) .

In addition, we have checked that these propagators obey the over-
determined system of equations provided by (2.66). Even more importantly,
the ambiguities take precisely the form'® (4.16). Let us emphasize once more
that this reflects the fact that the ambiguity of the propagator is completely
fixed by the generalization of the Ramanujan identities for genus two as
presented in (9).

In order to fix the holomorphic ambiguities f(92:97) that arise after in-
tegration of the holomorphic anomaly equation (2.54), we have to impose
the gap condition at the conifold. To do this we have to choose a rational
point on the discriminant locus in the moduli space and repeat the previous
analysis. Throughout the following discussion, we will work with the point

(5'54) (Zl, ZQ) = (3, —2/9).

The logarithmic singularities in the periods at the conifold are of the form
log(A). However since we will need to transform objects from the large radius
point to the conifold it is desirable that the new set of variables z{(z) can
easily be inverted. The most convenient ansatz is a linear transformation

(5.55) 2 =bi (21— 2%) +ei (22— 5°).

For the expansion of the singular periods to be well behaved in these co-
ordinates we choose zg orthogonal and z; parallel to the conifold locus, i.e.

16For the ambitious reader who wants to re-check this calculation we note that
our internal conventions for f;{ns"’kl differ by a factor of —1/2 for the off-diagonal
elements on each side.
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V.25~ VA and Vz§ - V,A = 0. Then one can expand the logarithm as

~C 2
(5.56)  log(A) = log(z; + O [(2°)°]) = log(2f) + log (1 + (9[2)])

X (_1)n+1 221\ "
~og(p) + 30 U (O[(ZC)]) -

n

and observes that a period w = wlog(A) + f has the structure
(5:57)  w(zp,25) = w(2 2) l0g(25)
o) (_1)n+1 O (ZC)2
+7T(ZO7ZP)Z [zc ] +f( Zos p)

n o

n

Using a linear ansatz we find the variables

2e=—94 2 — 272,

727
(5.58) 2, = ~ 9 + 2721 + 22,

at the point (3, —2/9) which are orthogonal and tangential to the discrim-

inant locus. After transforming the Picard-Fuchs operators into these new
variables one obtains again five periods,

(5.59) t2=1,

271476409 116172
t?’lzzc— ( )2+ €€

° " 2127869700 16120225 °°°P
2187, .2 5
e o
5861900 (%) + 0@,
A2 _ o S420610821 ., . 2408185701

~ P 7 500880856630 °P 205440428315
1 271062557874 Lo 6636689883

¢ T 35748291826115 °  12999378845860
271476409 116172

AR 1 oy —rle
~ 9127869700 )" og (25) + 16120225 %077

2187
1 0
~ Sa1000 () 108(:0) + O,
1359666252¢ 793881 2
2 o~p c 3
_ _ 0@
(26)" — Sooassa1 ~ sooazssat () T O

(zc)2 +0(2%),
(29)% + 25 log ()

2, log (z;)

(5.60) tB?% =

Note that these are not analytical continuations of the periods (5.24), (5.25)
obtained at the large radius point. As there are besides the trivial solution
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three more solutions that take the form of a power series and only one
logarithmic solution, a comment how the splitting into A— and B— periods is
performed is in order. One identifies the power series in front of the logarithm
tf as the period tf ! 24’2 is choosen so that it starts with zg and we found
a possible addition of X252 to cancel out in all physical quantities. Also note
that X2 contains terms with negative powers in z§ at higher order. Finally,
we find the following mirror map

271476409 , 116172
¢ _ ¢ T — TeTe
% =T+ 5157869700 1)~ Tg120225 11 L2
2187 ) 5
=2 (T2 + O(T
+>5861§28;;£3;§I o 2408185701
5.61 c ey TTE 0% qeqe . STOTPT D ey L (T3 .
(5:61) 2 =T * 590880856630 12 +'295440428315( 2)” +O(T7)

At the large radius point the ambiguities A;, fm”, ;; and Yukawa couplings
Uik are rational expressions in the moduli z; and can be tensor transformed
into the conifold coordinates z¢. Again the topological metric can be calcu-
lated from the A-periods via

XM
(5.62) Gi; = TT]?’
and solving the over-constrained system of equations (2.65), (2.66) and
(2.67) yields the propagator at the conifold. We have integrated the refined
holomorphic anomaly equation (2.54) and implemented the gap-condition
(2.68) up to genus three. The first two orders of the refined free energies at
genus two are given by

@oy_ 4 1 783,
46o§g 1280 ; 24072 64071
- O
384012 60’22+ (=),
an___7 M 19 - 2949,
11520 2007 T 60072 200 !
31 19 ,
50021j23_150 1;_CK ;3331
5.63 02 — — —~ 2
(5.63) 1920 T 6407 T 1200°2 ~ 3200 1
9233 11
T 96007 300z2*_6)( ?)
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and the leading terms for genus three are

7 g g o)
= 12002400 Toiggiloooo “ 1_3217278000022 + 0,
e g O
(5:64)  FOV = —e2eis + d60800000~ ~ 180000072 T O

The refined GV invariants are listed in Appendix D. In addition we find the
following non-vanishing refined BPS invariants

1,0 1,1 1,1 1,2
(5.65) N = NGgY = N = NV =1

)

5.3. Solving the topological string on C3/Zg

In the previous section we discussed local C3/Zs which is the simplest geom-
etry with mirror curve of genus two as it only has two true moduli. Now we
present the discussion of the resolution'” of the orbifold C?/Zg which pro-
vides an example with three moduli out of which one is just a deformation

(mass) parameter.
3
4 Nz
5 \%

Figure 4: The A-model geometry of C3/Zg.

I"Note that there are two ways to make Zg act on C3. The second way leads to
a geometry whose mirror curve has genus one.
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The toric diagram is shown in Figure 4 and the corresponding data is
listed in (5.66).

0 0 1]|-2 1 0 |z

0 1 1|1 -2 0 |x

0 2 1/0 1 0 |

(5.66) 1 -1 1] 0 0 1 |a
0 -1 1|1 0 -2

~1 -1 1,0 0 1 |3

We note that the orbifold is resolved by two Hirzebruch surfaces, Fo and
F4 which correspond to the divisors {zp = 0} and {z; = 0} respectively. In
addition there is the non-compact divisor {z4 = 0} that has the topology of
C x P! which resolves the singularity C?/Zy corresponding to the point on
the edge of the toric diagram.

By analogous considerations to those for the case C3/Zs one finds the
mirror curve by the Hori-Vafa method to be given as

22 21 z1 1 z1zo 1
o) = (st )at -Gt (Fg) - (B2 g)

(2 N\ 2
<2+4>x 2" T 4

Note that the variables z; are already those which correspond to the three
Mori vectors of the toric Diagram which need to be contrasted to the two
real moduli and the mass parameters appearing in the toric diagram. The
discriminant locus of the mirror curve is found to consist of two irreducible
components which are given as

Al =1—-82 + 162% — 642%23 — 8z9 + 682129 — 1442%22
+ 57622 2023 + 1625 — 1442125 + 2702223 — 1512272323
+ 2162323 — 86423 2323 + 2162325 + 8642725 23 — 97223 25
+ 38882525 23 + 7292125 — 583221 2523 + 11664212523 ,
(5.68) Ay =423 —1.

Here Ay corresponds to a locus with enhanced SU(2) gauge symmetry where
the theory stays regular, compare also the discussion in [42, 44].
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The three Picard Fuchs operators that correspond to the Mori vectors
of the toric diagram

ﬁl = @1(@1 — 2@2 — 2@3) + 4@2@3 — 21(2@1 — @2 + 1)(2@1 — @2) ,
Lo = 03(O2 —201) + 22(203 — O + 1)(202 — O1),,
(5.69) L3 =02+ 23(203 — 0, +1)(205 — ©1),

need also in this case to be supplemented by a fourth operator corresponding
to the sum of the three mori cone vectors

(5.70) L4 = 0203 + 212023(01 — 202)(01 — 203)(20; — Oy).

The latter discards one double-logarithmic and a triple-logarithmic solution
of the three operators (5.69). In addition, we observe again that the system of
solutions of (5.69) takes the form (1, ¢, ;F, 2F — t'0;F). Having remarked
this we present the solution to the complete system that includes (5.70),

o0 = 17
2 3 2 3 2 3
o1 =log(z1) + 221 + 327 — 23 — 2%~ T 5% + O(z7),
3
o9 = log(za) — 21 — §Z% + 229 + 323 + O(2%),
20 35 252
o3 = log(z3) + 223 4 325 + ?zg + ?zé + ng’ +0(2%),

2
o4 = —2z1 — 22110g(21) — 21 1log(z3) + 343 log(z3)

2 2
~3 log(z1)log(z3) — 229 log(z2) — 3 log(z1) log(z1)

1 9
— 3 log(2s) log(22) — 3 log(22)* + O(z%),

1 1
(5.71) 05 = —229 — 229 log(z1) — 3 log(u)? + 3% log(z3) — 22 log(z3)

1 4

~3 log(z1)log(z3) — 429 log(z2) — 3 log(z1) log(z2)
2 4

— 3 log(z3) log(20) — 3 log(22)” + O(27),

with

(5.72) (PO, 9,00 11, 13, 1)

1 1 1 1 1
= ag. g —0 — 0 — 0 .
@ri)2 " @mi)2 % 2wV 2mi 2 2mi
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Using the monodromy invariant variables ()1 = e, Q2 = €2 and Q3 = €3
the mirror map is given by

21(Q1, Q2, Q3) = Q1 — 2Q7% +3Q% + Q1Q3 — 4Q71Q3 + Q1Q>
—3Q71Q2 + Q1Q2Q3 + 0O(Q"),
2(Q1, Q2, Q3) = Q2 + Q1Q2 + Q1Q2Q3 — 2Q3 — 3Q1Q3
+3Q3 +0(QY),
(5.73)  23(Q1, Q2, Q3) = Q3 — 2Q3 + 3Q3 — 4Q3 + 5Q3 — 6Q3
+7Q5 +0(Q%),

where z3(Q1, Q2, @3) can be expressed as

Q3

Integrating 9, F(©9) and 9, F(%0) we obtain the prepotential

2 1 1 1
(5.75) FOO = 20, —2Q, — §T13 - ngTg — ngTg — 3Ty
2 1

4
— §T1T22 - gT22T3 - §T23 +0(Q?).

We list the corresponding instanton numbers in Appendix E. Having com-
puted the prepotential, we can determine the Yukawa couplings

1
Cii1 = —STA(AL — 821 +1627 — 6427 23— 3220+ 8021 20— 16827 29
z
e + 67227 2923 + 6425 — 1922125 + 54027 23
— 2160222223 — 4322325 + 172822 25 23),

1
Criy = —g5——(2— 1621+ 3227 — 1282723 — 1622 + 1242129
Z1Z
e 26423 29 4 1056272923 + 3223 — 2402 23
+59422 22 — 23762323 25— 21625 25 + 86422 23 23),
1
Crog = ~ 3 A (4 — 3221 + 6422 — 2562723 — 2029 + 1762129
Z1%
e 38422 29 4 1536272923 + 1623 — 1922, 23
454022 22 — 216027 22 23— 10827 25 +43222 23 23),
1
(5.76) Cogp = ——-—(8 — 6421 + 12827 — 5122723 — 2225 + 2082122
32’2 Al

— 4802329 + 192022 2923 + 822 — 1322, 23
+4322322 — 172822 22 23— 5422 25 + 21622 25 23).
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We also use the knowledge of the prepotential in order to successfully check
the relation (2.45). Here, the two derivatives have to be taken with respect
to the two true moduli ¢; and ty. The toric data (5.66) provides us with the
following intersection matrix

-2 1

- ()
We obtain

q1(21, 22, 23) = 212522 + 4272522 4+ 16292522 + 162123 22
4 5627 28 22 4+ 16027 2823 + O(219),
q2(21, 22, 23) = 2123 + 162723 + 1602923 — 2272923
— 40272022 + 212222 + O(2?),
(5.78) (21, 22, 23) = 2523 + 82523 4+ 4821 23 + 2272023
+ 623 2923 + 9222223 + O(29),

and plugging these expressions into the respective Fourier expansions of the
absolute Igusa invariants (3.16) we find perfect agreement with the rational
expressions obtained from the mirror curve (5.67). In addition, we also ver-
ify our conjecture for the expression of the determinant of the topological
metric (4.11)

Es(1)B(2;
(5.79) |Gijl = \/16Z%Z6%(13‘z(7()0)’(zi) ’

where the indices 7, j are again only running over true moduli %1, to.
As a next step, we use the known GV invariants for local F? [4, 34] to
fix the ambiguities for the free energies at genus one

1 4,4 -2
ﬂlog (Alzl 25 23 ),

FO.1) _ _1172 log (Alz§z§z;),> - %bg <|ng‘) .

F(10) _

The corresponding refined GV invariants can be found in Appendix E.
Finally using the logarithmic derivatives of y19 we obtain the propagator
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from (4.13) as

2
S = 31% - 6% — 82123 — 322023 — %z%zz + gzi’@
+ 16212923 + O(27)
3 2 3 4 3 2 9 929
Sio = —Z—Ozlzz + 52122 + 4272023 + 16272923 + 52122 — 12122
— 14232223 + O(27),
2 3
(5.80) S = 31% — %21,2% — 2222223 — 8232223 — 6% + gzlzg’

+ 10222523 + O(27).

We have successfully checked that this propagator obeys the over-determined
system of equations (2.65) and (2.66).

6. Almost holomorphic Siegel modular forms

The propagator that was described in (4.13) is an almost meromorphic Siegel
modular form. To subsume it under a satisfying structure theory, we first
develop a theory of almost holomorphic Siegel modular forms. Shimura stud-
ied them very early on [59] and called them nearly holomorphic. Subsequent
work by Zagier [68] and Kaneko-Zagier [40] employed “almost holomorphic”
as terminology, and defined quasi modular form as the “constant part” of
almost holomorphic ones.

From a geometric and representation theoretic point of view, it is clear
how to define almost holomorphic Siegel modular forms. We discuss this in
Remark 6.14. A classical, explicit description, however, is not available in
the literature, and we start the mathematical part of this work by filling that
gap. In fact, not even all covariant differential operators are explicitly known.
They are the theme of Section 6.2. In Section 6.3, we provide a definition
of almost holomorphic functions. It serves as a foundation for Section 6.4,
which contains the definition and basic properties of almost holomorphic
Siegel modular forms.

6.1. Preliminaries

We revisit some basic aspects of the theory of Siegel modular forms. The
reader can find a good introduction, which goes more into detail, in [21]
r [11]. Siegel’s foundational work [60] provides one of the most general
contexts in which Siegel modular forms can be understood.
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The upper half spaces. We write H™ = {7 € Mat! (C) : Jm() is pos-
itive definite} for the degree n Siegel upper half space. The real and imag-
inary parts of 7, which are matrices of size n x n, are written z = Re(7),
y = Jm(7), throughout. Coordinates of 7, x, and y are denoted respectively
by 7, x4, and y;. We use the ambiguous notation yi]fl = (y_l)ij for the

1

ij-th entry of y ' (as opposed to the inverse of ;).

The symplectic group. The Siegel upper half space carries an action of
the symplectic group. Let J, = (_Sén “40") be the standard symplectic form,

where J¥,, is the n x n identity matrix. The symplectic group is its stabilizer
(6.1) ) — Sp,,(R) = {g € Mato,(R) : ‘gJ,g = Jn}.

Elements of G(™ are written as (‘é g) with a, b, ¢, d € Mat,(R). The action
of G on H™ is then defined by

(6.2) g7 = (a7 4+ b) (et +d) 7L

We fix special elements inv = (“9 71(4;") € G and trans(b) = (“B” %bn) €
G™ for b € Mat® (R), where Mat’, (R) denotes the space of n x n symmetric
matrices with real entries. Note that inv and trans(b), for b running trough
Mat! (R), generate G (™),

The integral points of G(™ are denoted by I'™ = Sp, (Z). In analogy
to the previous observation, I'™ is generated by inv and all trans(b) with
b € Mat! (Z).

Slash actions. Given a representation o of GL,,(C), we set

(fl,9)(1) =aler+d)~" f(gr)

for f e C™ (]I-]I(") — V(o)) and g € G, We call |, the slash action associ-
ated to the weight o, or less strictly, the weight o slash action.

If we do not state otherwise, o is assumed to be finite dimensional and
complex. In the special case of o = det”, we write f| g for f|qer 9.

Weights. Write std for the standard representation of GL,,(C), defined by
(g,v) + gv. Let std" be its contragredient, given by (g,v) + ‘g~'v. Bases for
them will be denoted by ¢; and e;/ with 1 <4 < n. We identify the symmetric
square sym? of std and its contragredient sym“? with the representations
(g,m) — gm'g and (g,m) — %9~ tmg~! on Mat! (C). Bases in this case, are
¢j and ¢ with 1 <i,j <n.
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Since every representation of SL,(C) is a subrepresentation of std’ for
some 0 <[ € Z (cf. Theorem 5.5.11 of [23]), we find that every representa-
tion of GL,,(C) can be embedded into std" @ std¥® for some 0 < Iy, 15 € Z.
We will often write tensor products as o0’ = o ® ¢/, if 0 and ¢’ are repre-
sentations of the same group. The outer tensor product is denoted by X.

The space of homomorphisms between two representations is written
Hom(o,0’). If o and o’ are irreducible, then by Schur’s Lemma either
Hom(o,0’) 2 C or Hom(o,0') =0. Do mind the difference between
Hom(o,¢’) and the generally large space of vector space homomorphisms
Hom (V(0),V(0")). To simplify notation, if we are given a Hom (V (o),
V(o'))-valued function m on H™ and a function f taking values in V(o)
then we write m f for 7 — m(7) f(7).

Since we often swap components of tensor product, we fix notation once
and for all. We let

(6.3) tij:01®"‘®0’a—>01®"-®Ui_1®0'j®0'i+1
X ®0j—1®0; Q041 QX 0q

be the canonical isomorphism, if, say, 1 <i < j < a. Now fix distinct inte-
gers i1,...,4 and ji,...,je. between 1 and a. The average of components is
denoted by

1 b c
(6.4) Eityeein) Gtoede) = 3 DD i,

k=11=1

In what follows, we will few sym? and sym"? as subrepresentations of std?

and std" 2, if they originate in the application of lowering or raising opera-
tors.

6.2. Differential operators for Siegel modular forms

A differential operator D from C'*° (]H[(”) — V(o)) to C (H(”) — V(")) is
called covariant if it intertwines the associated slash actions:

D(f|,9) = (Df)

forall f € C* (H(”) — V(o)) andall g € G, The space of such differential
operators is denoted by D(c, o’).

Differential operators for Siegel modular forms in the case of o = det®
were found by Maass [49] and by Shimura [58]. For our purpose we need

O-/g
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a basic understanding of the analytic properties of covariant differential
operators for any (holomorphic) weight.

We proceed in three steps to compute them. We first give the lower-
ing operators (in D(U, sym'? ® a)) for arbitrary holomorphic weight. This
amounts to a direct verification. Second, we deduce from this the raising
operators (in D(O’, sym? ® a)) in case that ¢ is the standard representation
or its contragredient. As a third step, we deduce all properties of covari-
ant differential operators that we need from the previous computations and
the fact that the standard representation generates the representation ring

of SL,,(C).
Notation for differentials. Given 1 < 4,5 < n, we set

d d
g %50 =0 =

(6.5) 0y = Oy = O, =

Differentials with respect to y are analogously denoted by 0, ;.
Following both Maass and Shimura, we define the following matrices of
differential operators.

14 (513
and O = (T aﬂj)i,j’

Z7J

where ¢;; is the Dirac symbol.

Lowering operators. For holomorphic weight o, we define the lowering
operator

(6.6) L=L®=10": fy'(yd) ® f.

Proposition 6.1. Let o be a complex representation of GL,(C). Then L, €
D(o, sym¥2® o).

Remark 6.2. Note that in the genus 1 case, symY? is the same as det™>.
Thus (6.6) reproduces the classical Maass raising operator (see p. 177 of [48]),
which is Ly, = y? 0 up to normalizing, multiplicative scalars.

Lemma 6.3. We have

1 1

yoinv =7 tyr ' =7"1y7 1,
%( — 71 —l—?*l) =7 ty7 L,
0

Proof. Since y = %(7‘ —7T), we have y oinv =
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Proof of Proposition 6.1. Since o is, by assumption, holomorphic, applica-
tion of the cocycle associated with o commutes with application of d7. We
can therefore reduce our considerations to f € C'° (H(”)) and the trivial
weight o = 1. This, in particular, simplifies notation: Instead of yt(y(k) ® f
we can write y((% f)y.

It is clear that L intertwines trans(b) € G(™ for all b € Mat! (R). Com-
patibility of L with the action of inv thus implies the statement. Using
yoinv =7"lyr~t = 771y77! (see Lemma 6.3) and (9=f) oinv = 7(d=(f o
inv))7, verified in Equation (6.7) below, we find that

y(a#f)y|symv2 inv = T(T_ly?_l 7(0=(f oinv))7T ?_1y7_1>7
=y(0=(f oinv))y.
This proves the proposition after we have checked
(6.7) (0-f) oinv = 7(d-(f o inv)) .
Consider
(0r(f o)) (1) = Oef (= 771) = D ey 505/ (—77)
.3
= > e (Mgans) () Fpedu(— 7).
2,9,k,l

The inner differential (%( — ?_1) can be computed using the product rule,
giving

0=0,® (rr ") = (Or@7) a7 ) + (Fu@7) (0 @7 ),
which yields
0r ® T = _(Wn & 7'71) (Z €ij ® %(eij + Bji)) (J/l‘n ® 7'71),
1,7

Symmetry of 7 allows us to shift the occurrence of 7! from the second to
the first tensor component:

Or@T = (17 k) (Z eij ® 3 (i + eji)> (T @ k).
i

This establishes the transformation behavior in (6.7). O
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The raising operator for the standard representation. To deduce
raising operators from lowering operators, we will use the intertwining op-
erators

(6.8) Csa f =y [ and Cyme f=yfy.

Lemma 6.4. The operator Cgq is covariant from std to stdY, and Csym?
is covariant from sym? to sym" 2.

Proof. Covariance of Cgq follows from

Y [lyqr 9= er+d) (er +d) " y(eT +d)~" flg7) =y (er +d)"f(g7).
Covariance of Cgy2 can be established by a similar computation. OJ
Remark 6.5. The inverses of the above operators are given explicitly by
(69) Cuavf=Cuif=y ' T and Cyumef=Colaf =y Ty

We set

(6.10) Rsta = Csiyin2 ® C © Lstav © Csta and
. Rstdv = Cs_ylmz & Cstd o Lstd o Cb_téll .

From the covariance properties of the defining operators, we deduce that

(6.11) Rgq € ]D(std, sym"? ® std) and Rgqv € ]D)(stdv, sym"? ® stdv).
Recall that we denote the canonical basis of V(std) and V(sym?) by

¢i (1 <i<mn)and ey (1 <i,j<n), respectively. In a formal way, we write

t(12)3 V(sym2 ® std) — V(sym2 ® std) for the map that descends from

(6.12) $(t13 + tag) + V(std @ std ® std) — Ilf(std @ std @ std)
¢ ® e @ en > 3 (en ®en @+ ¢ @ ey ®epy).
Proposition 6.6. For f € C* (H(") — V(std)), we have

(6.13) Rad f = 0r @ f — St2)3 (v o f),

and for f € C* (H(") — V(stdv)), we have

(6.14) Retav f =07 ® [+ 5ta12)3(Kn © v ')
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Proof. Denote coordinates of f corresponding to the ¢; by f;. To compute
Rgta, we start by computing Lyiqv © Cgiq f, which equals

Z eijYirjt SRt Oy Z emYmnfn

i7j7k7l mn
= cijem ( > vikittmn E2 0 fn + 5> (YimYin + yinyjm)fn> :
%,J,m k,l,n n

Recall that we write yij_-l for the 4j-th entry of y~'. Now, Csymv2 ® Cgeqv
maps the previous expression to

-1, -1, -1 1
Z Cirjrems Yir Yiir Yy Z <Zyikyjlymn 0 Ot frn

Lo, =
7 7] 7m Z7J7m k7l7n

- % %(yimyjn + Zhnl/]m)fn)

n

= Z CLiln 1+26M aIflfn - i Z CmnCm’ (y;zin/fn + y;r}ufm)

kvlvn m,n,m’

The expression for Ry qv can be derived in an analogous way. O

Differential operators for tensor products of weights. To extend our
considerations to arbitrary representations, we have to study how raising
operators combine when taking the tensor product of two weights. For a
representation o, the order 1 raising operator R, is of the form

R, f=0-f+K, f, for K, € C®(H™ — Hom (V(0),V(sym?®0))).
Given two representations o and ¢/, we write ¢, for the inclusion

Lo : Hom (V (o), V(sym? ® o)) — Hom (V (o ® o'), V(sym? @ o ® a’))
6 — ¢ ®id.

Similarly, ¢, is defined as an inclusion of Hom (V (¢”),V(sym? ® ¢’)) into
the same codomain.

Lemma 6.7. Using above notation, we have

KU@O” = lo (KO') + Lo (Kcr’) .
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Proof. A computation gives for K,gq ( f ‘Uo, g) the expression

(0 @ o(cr + d)_l) ®o'(er+d)~" fgr)
+ t12 (O’(C’T + d)_l & (87' ® U,(CT + d)_1)> f(gT)
+ Koo (J(CT + d)_1 ®o'(cr + d)_lf(gT))-
The transposition ti2, defined in (6.3), switches the first and second compo-

nent of o ® sym? ® o’.
By definition, we have

(BT ® o(er + d)—l) flgr) + K, (O’(CT + d)—l f(gT)) = (Kg f) ‘Sym2®a g,
implying that

(BT ®o(er + d)fl) ® o' (cr + d)f1 fgr)
+10(Ko) (o(er +d) "t @ o' (er +d) f(g7))

equals (Lg(Kg ) ‘ , g. The analogue equation holds for K, and its

H12®O'®0' . . . .
image under (4. A%/ ter plugging this into the first equality and comparing
terms, this implies the lemma. U

Let a,b,c, i1,...,4, and j1,...,Jj. be as in (6.4). The raising operators

for powers of std" involve the following modification of Sisrnsin) (o)

(6'15) (117 1) (J1yeeJe) bc Zztlkﬁ © M]l

k=11=1

1

where ,u? is multiplication with ¥y~ in the j-th component.

Corollary 6.8. Fuxplicit expressions for the corvariant differential opera-
tors

Ryqt € D(stdl, sym”? ® stdl),
(6.16) Ryqvt € ]D)(stdw, sym'? ® sthl), and
Rytqtigegvis € ]D)(stdllstd\/lz, symv2 ® stdllstd\/lz)
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are
Rgar [ = 0- @ [ — Ft2)(3- Q—H)(y ® f),
zl
617) Ryqvi f=0- @ f + ty12)(3 21) W, ®f), and
Rgqustavee = 0r @ f — 5 t(12)(3-- 2441)(y ® f)

ily
* 7‘51(112)(3+ll~..2.|ﬂll+l2)(“An ® f).

The Lie algebra of Sp,,. To describe ]D)(a, smeU) and ID)(U sym" 20)

we employ the Lie theoretic description of differential operators given by
Helgason [27, 28] and, in context of discrete series representations, by
Schmid [56].

Let sp,, denote the complexified Lie algebra of G(™ = Sp, (R). Fix

(6.18) £, = {(_ab 2) :a=—"a € Mat,(C),b= "¢ Matn((C)},

which is the complexified Lie algebra of the maximal compact subgroup

K, = { <_ab 2) :a,b e Mat,(R), ai +b € Un(R)} C Sp,,(R).

Denote the center of ¢, by €, c or, suppressing the genus, £c. To a repre-

sentation o of GL,,(C) we can attach a representation of ¢, by taking the

differential of its restriction to K,,. Since K,, is connected, we can and will

refer to representations of ¢, by corresponding representations of GL,,(C).
As a £, module, we have the decomposition

(6.19) sp, =&, ©p. Dp,,

where p is the differential of the K, representations sym? and sym" 2. A
suitable generator of £¢ acts on them by 4+2. We will throughout refer to
eigenvalues of this generator as £c-eigenvalues.

We denote invariants of a Lie algebra representation V of ¢, by H(€,, V).
Fix two representation o and o’ of GL,,(C). Write D, (o, ') for the space of
order o differential operators that are covariant from |, to |o-. In Theorem 10
of [27], Helgason described them by the following vector space isomorphism:

(6.20) Dy (0,0") 2 H (b, sym® (p @ p,) ® 0" ®@0).

We reiterate Helgson’s remark that this isomorphism is not compatible with
composition of differential operators.
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Helgason’s result allows us to restrict the order of covariant differential
operators.

Proposition 6.9. Fiz irreducible representations o and o' of GL,(C).
(1) If the tc-eigenvalues of o and o’ agree, then Dy (o,0’) = Dy(o, 0’).
(i1) If the tc-eigenvalues of o and o’ differ by +2, then D (o, 0') =Dy (0, 0”).
(iii) We have Dy(o,0’) = Hom(o, o’).

(iv) The space D1 (o, 0’) is spanned by operators my, o L, and g o Ry, where
71, € Hom (sym?c,0") and mg € Hom (sym"?a,0"), respectively.

Proof. Case (iii) is a direct consequence of (6.20). To prove case (i) and (ii),
it suffices to compute £c-eigenvalues in sym®(p; @ p, )@ V(o))" @ o' @0’
for o € {1,2}.

The €c-eigenvalues of 1 = sym®(p;" @ p,,) and p,} @ p,; C sym?(p,} @ p;,)
are 0. On p; and p,, they are 42, by definition, and on sym? p,} and sym? p,;
they equal +4. In case (i) the £c-eigenvalue of 0¥ ® ¢’ equals —a +a +2 =
+2 for some a € C, and in case (ii) it equals 0. Combining these values we
deduce all cases but (iv).

To establish the remaining statement (iv), note that the case of lowering
operators is implied by the isomorphism

H° ({%n, sym"? @ oV ® O'/) = Héom (sym2 ® o, a’).
The case of raising operators can be dealt with analogously. O

Commutation relations. By abuse of notation, we denote two projec-
tions by the same symbol:

(6.21) Tsym? sym? ® sym"? ® o, sym"V? ® sym? @ 0 — 0.

To concisely state commutation relations of differential operators, we sup-
press the composition symbol: LR, = L o R,. Powers of operators will be
understood as repeated composition: LY =Lo---oL for 0 < d € Z.

Lemma 6.10. We have
Trsym? L RsymV2®ULcr - L Tsym? Rsym\/2®0'LO € ]D)l (07 Sym2 @ U) .

In particular, it can be expressed as a linear combination of constituents
of Ly.
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Proof. 1t is straightforward to see that the given expression is a differential
operator of order at most 2, since symbols of differential operators commute.
We may assume that o is irreducible. Denote its ¢ eigenvalue by a. Further,
observe that the £c eigenvalues of sym"? ® sym? ® sym"? ® o equals a — 1.
By Helgason’s theory as stated in Proposition 6.9, the left hand side is an
order 1 differential operator, which is a linear combination of the constituents
of L, by the same proposition. O

Lemma 6.11. We have

Lsym2o Ro — t12 Reymv2o Lo € Hom (O’, Symzsymv2 )

Proof. The left hand side is a covariant differential operator of order at
most 1 that preserves £¢ eigenvalues. Therefore, we can deduce the statement
from Proposition 6.9. |

Lemma 6.12. Let o be a representation with £c eigenvalue a. Then

—(1+n)a
Tsym? (Lsyn12a Rs — t12 R‘symv% LO’) = (8)
Proof. By Lemma 6.11, the left hand side lies in Hom(o, o). We may assume
that o is irreducible, so that Hom(o, o) = C. To compute the precise value,
note that in the following expression for LR — t1oRL

(y t(y&’r)) (87' + KO‘) —t12 ( (87' + I<symv 20) (y t(?/&)))

order 0 terms can only arise from y(yd)K,. Using Lemma 6.7, we reduce
ourselves to the cases o = std and o = std". We focus on the former one,
and leave the latter one to the reader. For any 1 < o < n, we have

—Z _
y(yor) ® 7t(12)3(y '®eo)

—1 1+ 0= 1 _
=3 > equinyi — Ou > i(emoen + Contm) Yo,

i:jakzl m,n,o

1 1 -1, _, _ 1 _
= Z Z ¢ YikYji 5 (emoen + eonem) 7 (yknllyml + yk;ylw}) .

1,9,k,l,m,n



648 Albrecht Klemm, et al.

We execute multiplication of y and y~! twice

—1

E Z ¢ (emoen + eonem) (5zm53n =+ 5zn5]m)

1:7.j7m7n
—1
~ 16 Z ey (Ciot + eojei + €joti + Cit;).
l,j
Applying 7gym2, we obtain

-1
16 4

%]

—(1
(5]’0 + i + 51‘]‘5]'060 + 61'06@'3') Co = (8+n)eg. -

6.3. Almost holomorphic functions
We throughout write O (H(”)) for the space of holomorphic functions on H(™).

Definition 6.13. A smooth function f: H(™ — V(o) is almost holomor-
phic of depth d if L4*! f = 0.

Remark 6.14. This definition is motivated by the theory of holomor-
phic discrete series, whose behavior under differential operators is well-
known [56]. Very recently, a work that focuses on this perspective has appear
as a preprint: [53].

The following are basic properties of almost holomorphic functions on
H™ which are straight forward to prove.

Proposition 6.15. Suppose that f: H™ — V(o) and g: H™ — V(o)
are almost holomorphic functions of depth d and d’'. Then the tensor product

f ® g is almost holomorphic of depth d + d'.

Proof. We abbreviate d” =d+d'. It suffices to inspect the equation L4+ f®

g= f;gl t (L' f) ® (LY *1~1g)) with suitable permutations of tensor com-
ponents t; : (sym?)lo(sym?)? 1 =to" — (sym?)? Tloo’. O

Lemma 6.16. If f is almost holomorphic of depth d, then meyLRL f —
Lmsym2RL f has depth d — 1.

Proof. This is a consequence of Lemma 6.10, seen that f, which has depth d,
vanishes after applying d + 1 times arbitrary constituents of L. U
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Analytic properties. Almost holomorphic functions in the setting of el-
liptic modular forms can be easily recognized as a polynomial in y~! whose
coefficients are holomorphic functions. Their total degree coincides with the
depth.

Theorem 6.17. A function f € C* (H — V(J)) is almost holomorphic of
depth d if and only if it is a polynomial in the entries of y~' of degree at
most d and with holomorphic coefficients.

Proof. Note that Ly~! is constant. After embedding o into (smeSymV2)d ®
o, it follows that every polynomial in the entries of y~! of at most degree d
is indeed almost holomorphic of depth d.

We proceed as in the case of elliptic modular forms to establish the
converse. Note that it suffices to treat irreducible o. Since the lowering
operator is the same for representations ¢ and detfo for any k € Z, we
may always modify o correspondingly. In particular, we can assume that
the fc-eigenvalue of o is arbitrarily large. Then Lemma 6.12, shows that
the space of almost holomorphic functions of depth d is contained in the
span of depth d — 1 functions and their image under mgy1,2 Rgymz2o. Since the
case d = 0 is clear, the result follows by induction. U

Theorem 6.17 tells us that an almost holomorphic function f is a polyno-
mial in the entries of y 1. For ¢ € Mat,(3Z) with integral diagonal entries,
set y ' = exp (trace(tlog(y™'))). Then f can be written as

(6.22) F@) =Y flr)y™

with holomorphic f;, finitely many of which are non-zero. We call f; the ¢t-th
part of f, and fj is called the constant part of f.

6.4. Definition of almost holomorphic Siegel modular forms

Seen that one goal of this work is to settle basic tools for the treatment of al-
most holomorphic Siegel modular forms, we give a slightly more general def-
inition, including vector valued modular Siegel modular forms with respect
to representations of ') = Sp,_(Z), than the one that is necessary to prove
Theorem 8.6. Note also that statements in this paper can be extended to
representations of the metaplectic double cover Mp,,,(Z) of Sp,,(Z) without
difficulties, since they depend only on analytic properties of corresponding
modular forms.
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Definition 6.18. Let p be a finite dimensional, complex representation of
'™ and o a finite dimensional, complex representation of GL,(C). An al-
most holomorphic function f : H™ — V(o) ® V(p) of depth d that satisfies

fl. y=f forallyel™,

o,p

and, if n = 1, is bounded by some power of 3! as y — oo, is called an almost

holomorphic Siegel modular form of genus n, depth d, weight o, and type p.

We write M(™) (U[d] X p) for the space of such functions; notation which
is inspired by the fact that almost holomorphic Siegel modular forms corre-
spond to automorphic forms whose “K-type at the infinite place”, related
to o, is not the highest possible, but d steps away from it. Proposition 6.15
implies that

(6.23) M) (a[d] Xp)® M) (of [ p') C M) ((aa’)[‘”d/] X pp').
An almost holomorphic Siegel modular form f has Fourier expansion

(6.24) f(r) = Z o(f; t,y) exp (2mi trace(t7))

teMat!, (Q)

where every Fourier coefficient ¢(f; ¢,y) is a polynomial in the entries of y~!

with coefficients in C.
7. Fourier-Jacobi expansions

Fourier-Jacobi expansions of Siegel modular forms have developed to a ma-
jor tool to study Siegel modular forms. They have been abstractly been
considered in [20]. Roughly, a Siegel modular form f can be written as

flr) = Z Gm (71, 2) exp(2mimTy)
meEZ

where we use, here and throughout, the decomposition 7= (Tzl ;j) with
T E H(”_l), Ty € H(l), and z € C" 1. Each ¢,, is a Jacobi form, which can be
related to Siegel modular forms of genus n — 1. The theory of Fourier-Jacobi
expansions has recently culminate in [12], where the last named author and
his coauthor prove that such formal expansions converge, if they exhibit the
symmetry relations of Fourier coefficients that hold for Fourier expansions
of Siegel modular forms.
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In this section, we present the foundations of Fourier Jacobi expansions
of almost holomorphic Siegel modular forms. In particular, we attach al-
most holomorphic Fourier-Jacobi coefficients to almost holomorphic Siegel
modular forms and show that they determine them uniquely. In the case of
genus n = 2, we characterize the spaces of almost holomorphic Jacobi forms
using the approach in [36]. Note that it is possible to extend this to arbitrary
genera, but the focus of this paper lies on n = 2.

7.1. Preliminaries

Jacobi forms were defined in [20] and generalized in [69]. Here, we revisit
basic notation.

The Jacobi upper half space. Write H™J = H® x C" = {(r,2) : T €
H™, 2 e C"} for the Jacobi upper half space of genus n (and cogenus 1). The
real and imaginary part of 7 and z are denoted by 7 = = + iy and z = u + iv.
If n = 1, then we suppress the genus, writing H” instead of M),

The Heisenberg group. Fix the Heisenberg group
HR") = {h=(\ k) : A\,p € R", k € Mat,(R)}
with addition
(A1 pi1, 51) 4 (N2, pis k2) = (A1 + Ao, 1 + pi2, K1 + K2+ Ax g — i1 Ng).

It carries a right action of G(™ defined by the natural action on row vectors
of length 2n:

(A k) (¢8) = (Na+ pe, \b+ pd, k).

The Jacobi group. The real Jacobi group G™7 = G("J(R) is the non-
trivial extension 0 — H(R") — G — G — 1 of G by H(R™). Multi-
plication in G(™7 is defined by

(91, h1) (g2, h2) = (9192, h1ga + h1).

We often consider elements of H(R") as elements of G™Y via the inclu-

sion H(R") ¢ G(™J. Shorthand notation for elements of G(™ considered as
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elements of G(™7 is provided by the following section to G(™7 — G():
g€ GM™— (g,(0,0,0)) € G,

If n = 1, we drop the superscript (n), writing G” instead of G()7. Recall the

shorthand notation a, b, ¢, d for the entries of g € G(™. Similarly, the entries

of h € H(R™) will be denoted by A, , and k without further mentioning it.
We have an action of G(™Y on H(™J.

(7.1) 9" (1.2) = (9. (A 1, K)) (7, 2)
= ((ar +)(er + )7, (z 4+ A + w)(er +d)7").

Remark 7.1. The connection between Jacobi forms and Siegel modular
forms, that we are going to exhibit, is based on the embedding

Cc

a0
(7.2) G — GM™ (b)), (A p,K)) — (éé
00
where Gé??;f is the subgroup of G(™7 such that x + 1\ is symmetric. Details
can be found in [69].
The (discrete) Jacobi group I'™7 ¢ G is defined as
L7 = {57 = (v,(\,1,0)) : g €T, A ez}

Slash actions. Let o be a finite dimensional, complex representation of
the affine group

(7.3) Aff,,(C) = GL,(C) x C™.
We attach to it a slash action on C'*° (H(”)J — V(o)) by
J
(L))
=o(ct+d,c%2+c'u— dt/\)f1
- exp (ZTrim (= (z+ M+ pe(er + d) 7 2 4 A 4 p)

+ 202 + AT A+ trace(/i))) gb(gJ(T, z)).

This is called the Jacobi slash action of weight o and index m. If o = det”
for some k € Z, then we write \im for the corresponding slash action.
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Weights. Via the embeddings

GL,(C) — Aff,(C), g+—(g,0), and
Aff(C) = GLn11(C), (g,h) — (§1)

representations of GL,(C) and GLy41(C) give rise to Aff, (C)-representa-
tions. We ambiguously use std’ and sym? for (symmetric) powers of the
standard representation of GL,(C) for any n. When considering them as
representations of Aff,,(C), we will add n or n + 1 as a subscript to distin-

guish them: std’, and std’, 41 are then the representations of Aff,,(C) that
arise from the first and second inclusion, respectively.

7.2. Differential operators for genus 1 Jacobi forms

The first, physical, part of this paper only made use of genus 2 Siegel modular
form. We have so far formulated the theory of Jacobi forms in the case of
arbitrary genus n. For the rest of this section, we will focus on the case of
genus 1 Jacobi forms (which arise from genus 2 Siegel modular forms). The
main reason is that the explicit theory of differential operators has not yet
been fully developed for all genera. It will be the theme of a separate paper.

We revisit differential operators, following closely the exposition in [16],
but use different notation for the raising and lowering operators. To define
differential operators, we use the following notation:

o=f=E-B).  r=h=iE+iB)
=f=t-iR)  =h=dEid)

The heat operator, normalized as in [36], is

4dm 1
o | 4x?

(7.5) Ly, = 02,

The raising operators and lowering operators with respect to Jacobi slash
actions }i ., are given by

Rim = 2i(0; + y0- + 27TimZ—z) + S, Li,m = —2iy(yor + v0s5),

JH . JH .
Rigm = 10 — dwmy, Ljm @ —1y0s.
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Bernd and Schmidt described their covariance properties in [5]. For g € G/
and ¢ € C>®(H’), we have

Li,m((b’k,m 9) = (Li,m¢)|k72,m 9s Ri,m(¢’k,m 9) = (Ri,m¢)|k+2,mg

As usual, we suppress the subscripts £ and m. Note, however, that (RJ )d =
Ri+2d_27m-~R,J§7m and (R/M)?" = RilidH_l’m"~RiEn. The commutation
rules for the raising and lowering operator are:

L), L] = R, R™M] =0, [L,R'] =k, [L"",RMM]=im,

(76) [LJ RJH} — _LJH [LJH RJj| — RJH.

7.3. Almost holomorhpic functions (genus 1)
Let (’)(HJ ) be the space of holomorphic functions on H.

Definition 7.2. A smooth function ¢ : H) — C isHalmost holmorphic of
depth (d,d") with 0 < d,d" € Z if (L") ¢ = (L'M)" ¢ = 0.

The analogues of Proposition 6.15 and Theorem 6.17 are as follows.

Proposition 7.3. Suppose that ¢ : H' — C and ¢ : H' — C are almost
holomorphic functions of depth (d,d%) and (d',d'™. Then the product fg is
almost holomorphic of depth (d +d, dl + d’H).

Theorem 7.4. A function ¢ € C* (HJ) is almost holomorphic of depth
(d,d™) if and only if it is a polynomial in y~' and vy~ of degree at most d
and d¥, respectively, with holomorphic coefficients.

Proof. This follows from the expressions for L and L’H, using induction.
Indeed, up to non-zero multiplicative constants, L’y~%(vy~')® equals
ay_(“_l)(vy_l)b, and LIH y—a(vy—l)b is by_a(vy_l)b_l. 0

7.4. Almost holomorphic Jacobi forms (genus 1)

We define almost holomorphic Jacobi forms only for weight o = det®, since in
the general case, we have not studied the corresponding lowering operators.
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Definition 7.5. An almost holomorphic function ¢ € C'* (]HIJ ) is called an
almost holomorphic Jacobi form of depth (d, d'), weight k, and index m if
it satisfies

i) d)‘i,m’y = ¢ for all y € IV,

(ii) For all o, 8 € Q, ¢(7,ar + ) is bounded by some power of y as 7 —
100.

We write J; 4 g1 the space of such function.

The followmg proposition generalizes Lemma 6.3 in [10]. It says that
there is no analogue of the exceptional almost holomorphic elliptic modular
form Es.

Proposition 7.6. For every k,m € Z and every pair of positive integers d
and dP, we have

J[ddH] @@ RJ RJH ka.

t=0 tH=0

Proof. 1t suffices to know that there is no Jacobi form of integral weight and
index that is either constant in 7 or z. Then the statement follows along the
lines of the proof of Lemma 6.3 in [10]. O

7.5. Covariant operators from vector valued weights (genus 1)

Recall that we focus on the case of genus n = 1. In this section, we reinterpret
a result by Ibukiyama and Kyomura [36] in terms of covariant operators

!
(7.7) Cdetksym C®(H = detfsymb) — O (HJ N @ V(detk+j))7
j=0

¢ — (10(9), -, u(®)),

where ¢; is defined below.

Fix a basis §; (0 < j < 1) for V(det*sym)), where (¢9) € G’ acts on f;
by multiplication with a/. Coordinates of a function ¢ : H’ — V(symb) with
respect to this basis are denoted by (¢, f;). Ibukiyama and Kyomura defined
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the following maps ¢; on C*° (HJ — V(symé)) on page 795 of [36]:

Tt Uf]f@—% )<l_ét+2t>

t=0 j'=0
2 25 —2t = 5)I1 (2t — I _. "
(ka2 2 2o SO DB piaiyt g5,
(—2m)i—7 (2k + 25 — H)ll

where n!! = (2n)!/(2"n!). They prove in Theorem 2.1 that

ty ((b‘detksym?z,m gJ) = LV(QS) ‘k—}-u,m gJ

for all g7 € G’. This, in particular, implies covariance of Caettsym! -

7.6. Fourier Jacobi coeflicients

In this section, we briefly return to the case of general genus n. We attach
Fourier Jacobi coeflicients to every almost holomorphic Siegel modular form.
Decompose 7 as
(Tzl ;:2) , meH™Y neH, and zeC¥!
Write y; and y9 for the imaginary part of 7 and 5. The ambiguous notation

Yy 1 will be used to denote (y~1)1. Every almost holomorphic Siegel modular
form has a weak Fourier Jacobi expansion

(7.9) flr)= Z $m(71,z, y2) exp(2mwimmy) .

meQ

We define Fourier Jacobi coefficients of f by

(710) gbm(Tlvz) = lim &gm(Tl’zv y2)7

Y2 —>00

which is well-defined, since y~! — <y5 > as yo — oo. If f has trivial type

and weight o, then m € Z if gbm # 0, and for every s, qzbm(ﬁ, z,12) is invari-
ant under the }Um action of T~ )J.

Remark 7.7. Observe that dety™! — 0 as ys — co. In particular, it is
possible to find subexpressions of, for example, R" f for a Siegel modular
form f, whose term of highest depth vanishes when passing to the Fourier
Jacobi expansion.
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8. Classification of almost holomorphic Siegel
modular forms

The graded ring of elliptic modular forms is defined as
M(e) = MU(e) = @ MW (detF ®1).
0<keZ

A minimal set of (algebraically independent) generators is given by the
FEisenstein series E4 and Eg, where

Ep(ir)=1— — Z oi—1(m) exp(2mimr) k> 4.

When extending this to a differential graded algebra with derivative R acting

as Ry = 0, — %y*Q on the k-th graded piece, we obtain

M(e) =EPRIM(e)c | ] B MY (det* 1)
d=0 0<d€eZ 0<keZ

This carries an action of the lowering operator L, which is not surjective.
Instead, we have

(8.1) R(ﬁg)l;ﬂl:) L =R>*M(e) /L (R*M(e)) = span 1.

The (modular) weight 2 Eisenstein series is
-3
(82) Es(r)=—y l+1- 242 o1(n) exp(2minT) € MU )(detgm).

While FEs is not in the range of R, the Ramanujan relation

(8.3) 2R Ey = 5=Ryee Bo = 5 (E3 — Ey)

1
2#1 12

implies that

U @ VS detk[d]

0<d0<k6Z

—@Rd (C[E4, Es] + ExC[Ey, Eg]) = C|Ey, Ey, Eg]
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is a differential algebra. Since L EY = Q%.Eg_l we have an exact sequence
(8.4) 0 — M®(e) — MV (o) =5 NV (e) — 0.

The goal of this section is to show that the situation is more complicated
for higher genera. For n > 2 we have

coker L = M™ /LM™ = gpan 1.

M)
In particular, we prove that there is no analogue of F5 for higher genera. In
Section 9, we will then provide a replacement for it.

8.1. The non-commutative algebra of Siegel modular forms

It is common to consider the graded ring of Siegel modular forms, summing
over all spaces of scalar valued Siegel modular forms like so

(8.5) P M™ (det*).

kEZ

Note that the sum runs over all isomorphism classes of complex 1-
dimensional representations of GL,(C). The above is, indeed, a ring: The
tensor product of two Siegel modular forms of weight k and &’ is a modular
form of weight det® @ det® | which is isomorphic to det***. Further, it is
possible to consistently choose bases of V(detk ) for all k, which turn all the
isomorphisms det” ® det” = det*™™*" into isomorphisms of framed represen-
tations. One simply chooses the unit vector ¢¥ € V(det”) as a basis, and uses
isomorphisms ¢F ® ¢F — eFTF

What seems like excess of precision in the case of scalar valued Siegel
modular forms, becomes important in the vector valued setting. Given two
representations o and o’ of GL,(C) the tensor product o ® ¢’ in general
decomposes into many irreducibles with multiplicities possibly larger than 1.
Also, it is not trivial to consistently choose bases of all irreducibles that
behave well with respect to tensor products. A similar problem arises from
types of Siegel modular forms.

There are two approaches to accommodate this problem, neither of which
seems to have appeared in the literature. It is possible to sum over tensor
powers of the standard representation. One would consider

(8.6) P M (std")

0<IeZ
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By a result of Weissauer [64], every irreducible representation o for which
M) (a& p) is not trivial for some p is contained in some tensor power
of std!, so that (8.6) contains all Siegel modular forms of level 1. More specif-
ically, det® C std™. In particular, the non-commutative graded ring (8.6) of
Siegel modular forms contains the classical one (8.5).

The type of Siegel modular forms, if n > 2, can be expressed in terms of
Weyl representations p, attached to (positive definite and integral) lattices
L. ONe can thus appy a similar construction, to obtain a non-commutative
ring that contains all Siegel modular forms of arbitrary weights and types.
We arbitrary will not go into details, though.

The second approach, which seems most suitable to study the analogue
of (8.1), is to sacrifice the algebra structure in favor of a grading with respect
to irreducible representations of GL, (C) and I'™. The direct sum

(8.7) M™ (e e) = PM™ (s K p),

where o and p run through fixed representatives of isomorphism classes of
representations, is a commutative hyper-algebra.

8.2. Hyper-algebras

A hyper-group is group whose multiplication is multi-valued [63]. We take
the idea of multi-valued operators to define hyper-algebras, which we could
not find in the literature.

Let SubVec(A) be the set of all finite rank submodules of a vector
space A.

Definition 8.1. A triple (A,+, -) with (A,4) a K-vector space and a
binary operator

-1 Ax A — SubVec(A)

is called a hyper-algebra (with strong identity) if

(i) there is a unique element e € A such that e-r =1r-e = spanr for all
r € A, and for every a € A there is a’ such that e € ad’,d a.

(ii) for k € K\ {0} and a,d’ € A, we have aa’ = (ka)a’ = a(kd).
(iii) for a,d’,a” € A, we have a(a’ + da”) C ad’ + ad”.

(iv) for a,d’,a” € A, we have a(a'a”) = (aad’)a”, where the product is lin-
early extended to SubVec(A) x SubVec(A).
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Further, we say that

(1) A is commutative if for a,a’ € A, we have ad’ = da.
(2) Ais G-graded for a hyper-group G if A = P, Agand AgAy C > )00 Ap.
(3) A is a differential hyper-algebra, if there is a K-linear map

0: A — SubVec(A)

satisfying the Leibniz rule d(aa’) C (da)d’ + a(dd’) for all a,a’ € A. If
A is graded by G, then we say that 0 has grading g € G, if 0 Ay C
> hegy An forall ¢’ € G.

Remark 8.2. The notion of hyper-groups makes it obvious to call the
structure that we have defined a hyper-algebra. But the reader should be
warned that this is not standard. In fact, it has nothing in common with
hyper-algebras associated with groups in, for example, [62].

8.3. The differential graded hyper-algebra of almost holomorphic
Siegel modular forms

Recall that isomorphism classes of irreducible, finite-dimensional, complex
representations of GL,(C) form a hyper-group Rep(GL,(C)) with multi-
plication given by the decomposition of tensor products. Typically, this
is formulated in terms of fusion algebras (see [19] for one instance) or
Grothendieck rings, but Definition 8.1 suggests that it is more convenient to
work with hyper-groups. Similarly, irreducible, finite-dimensional represen-
tations of '™ with finite index kernel, yield a hyper-group Rep(I'™). By
fixing representatives once and for all, we consider elements of Rep(GL,,(C))
and Rep(I'™) as actual representations.
Set

(8.8) M = B M)

0<de€Z oeRep(GL,(C))
pERep(I'™)

For f € M) (U[d] % p) and g € M) (0./ 4] x p/)7 set

(8.9) fog=span (ko ®k,)(f®g),

Ko: 0RO —0irr
Kp: pPRP' = Pirr
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where the span runs through all homomorphism representations with ir-
reducible oy; and pir. The C-module M™) carries a graded commutative
hyper-C-algebra structure when equipped with multiplication as in (8.9).

The raising operators Ry, qi can be extended to M(™. Given o choose an
embedding ¢ : o < std’ for some 0 < [ € Z. Then

(8.10) Rf= span K (Rgar f)-

k:sym2®std! = oy,

When equipped with the differential R, then M® becomes a differential
graded hyper-algebra, and R has grading sym?. Similarly, we obtain an ac-
tion of L on M),

8.4. Exception Siegel modular forms

The goal of this section is to prove the following theorem.
Theorem 8.3. For alln > 2, we have
M) /LI\A/_[(") = span 1

Given o, p, and 0 < d, we have

d
M® (¢l x p Z 7Tsym2R )((symVQ)ta X p).

Lemma 8.4. Suppose that o and p are irreducible. If the tc-eigenvalue of
o is negative, or if it is zero and o # 1 or p # 1, then dim M(™ (O‘ X p) = 0.

Proof. This is a consequence of Theorem 2 in [64]. Indeed, for negative
tc-eigenvalue, we obtain the statement directly. If it vanishes, than the
corank of ¢ in the sense defined in [64] equals n, so that o is a power of
det, implying ¢ = 1. Then p = 1 is a consequence of the fact p is irreducibe,
and hence its invariant subspaces are all trivial. Il

Corollary 8.5. For any irreducible o with tc eigenvalue a, we have

M (oM@ p) =M™ (oI Rp),  ifd> .

Proposition 8.6. Ifn > 2, then for any p, we have

M) (sym2 N'x ,0) =M™ (sym2 X p).



662 Albrecht Klemm, et al.

Proof. We can and will assume that p is irreducible. Then Lemma 8.4 implies
the statement, if p # 1. We therefore assume throughout the proof that
p=1.

We claim that every f € M) (Sme[l]) is of the form f(7) = g(7) + cy~*
for some constant ¢ € C and holomorphic g. Indeed, assume that f(7) =
g(7) + h(y~1) for a holomorphic function g and a linear function h € sym? ®
sym" ? without constant term. A direct computation shows that the image
of f under L equals —ty h. It is a modular form of weight sym" 2sym?, which
by Lemma 8.4 is supported on the span of ), m(e,] + ¢j;). This proves
the claim.

It suffices to show that there is no f(™ e M) (sme[”) of the form
f™@ (1) = g™ (7) 4+ y~ 1. The 0-th Fourier Jacobi coefficient of f("), defined
in (7.10), is a Siegel modular form of genus n — 1. Since dim M~V (sym?) =
0, we find that it equals f("~1). We are therefore reduced to the case n = 2.

Consider the case n = 2. We employ the Fourier Jacobi expansion. As
a next step we show that vanishing of the 0-th Fourier Jacobi coefficient
of f@ contradicts its existence. Assuming that f(2) exists, let m be minimal
subject to the condition that the m-th Fourier Jacobi coefficient, say ¢,
of f® is non-zero. Combining (7.10) and (7.7), we see that Csymz ¢m has
Fourier expansion starting at m:

Z c(n,r)exp (2mi(nmy + r2)).
m<n;r
Its components are elements of Jg)ng], J [1072], and J, L, ] . Using the same argu-
ment as in [12], these correspond via the maps DQV in (9) of [20] to almost
modular forms modular forms of weight at most 2+ 2m, whose Fourier
expansions starts at m. If m > 1, they are zero by the theory of almost
holomorphic elliptic modular forms. This implies that ¢g # 0, if f 2) exists.
It suffices to show that the 0-th Fourier Jacobi coefficient of 2 would
have to vanish, contradicting its existence. The Fourier Jacobi expansions
of £ starts like

@) _ [ P03(T1,2) <Z>o,2(71,2)>
Fn = <¢0,2(T1,Z) $0,1(71,2)

B ¢1’3(7—1’Z) ¢1,2(7’1,z)
e <¢1,2(ﬁ,z) <Z51,1(T1,z)> e(r2) + O(e(2m)),

where 7= (7 %) as in Section 7. The covariant operator Csym2 in (7.7)

yields Jacobi forms in
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Joo = {0}, Jo1 ={0}, I3 = span(Ey),

Jio={0}, Jui={0}, Jiy = {0},
This implies that

bo1=1¢ ¢o2=0, ¢os(t1,2)+y; "= = Ea(1),
$11=0, ¢12=0, ¢13=0

for some constant ¢ € C. The symmetry relations c(f; t,y) = wuec(f; utu,y)u
for u € GLy(Z), when applied to t = ({ ) and uw=(9}) contradicts the
given equality for ¢g 3. This establishes the statement. Il

Remark 8.7. In the case n > 4, one could prove Proposition 8.6 by com-
bining [66] and [65].

Lemma 8.8. Fix irreducible p and o, and assume that o has tc eigen-
value a & {2,4,...,2d — 2}. Then for f € M) (a[d] X p) we have

d
f= Z a%42t Tsym?2 © Rsymv 2oLo f € M(n) (U[d_l] X p) .
t=1

Proof. This follows directly when applying L¢ to the given expression, and
then employing Lemma 6.16 and 6.12. For 1 < ¢ < d, we have

a— 2

Ld*i‘l’l,ﬂ.syrn2 RL?, f — Ld*iﬂ_symzLRLi f — Ld*iﬂ_symzRLLi f _ Ld f

O
Proposition 8.9. Ifn > 2, then for any o and p, we have
M) (0[1] X p) =M™ (0 X p) + Tsym? © Rgymv 2o M (sym\/2a X p).

Proof. We can restrict ourselves to irreducible o and p. The statement fol-
lows from Lemma 8.8, if o # sym?. In the latter case, it is a consequence of
Proposition 8.9. 0

Proof of Theorem 8.3. It suffices to prove the second part, since then the
first one is a consequence of Lemma 6.16.

Assuming that o is irreducible, let a be its £¢ eigenvalue. Combining
Corollary 8.5 and Lemma 8.8 the theorem follows in all cases but a = 2d.
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Consider the case a = 2d. The statement is trivial, if d = 0. Proposition 8.9
can be used to establish the case d = 1. In all other cases, it suffices to note
that

Ld—l M(n) (O_[d] X p) C M(n)((sym\/ 2)d—10_[1] X p) _ M(n)((sym\/ Z)d—lo_ X p)
and then apply induction. ]
9. A meromorphic replacement for E,

Throughout this section, we focus on the case n = 2. Physical considerations
naturally gave rise to the logarithmic derivative 9; log( %)) of qﬁ%) = 4x10
for Igusa’s x190 € M (detlo), defined on page 195 of [37]. The goal of this
section is to describe 0, log(x1p) as a meromorphic replacement of the con-
stant part of the weight 2 Eisenstein series Fs in the genus 1 case. In par-
ticular, we will find a ring-like structure equipped with the (vector valued)
differential 0, acting on it.

9.1. An almost meromorphic Siegel modular form
In (4.13), we find the following definition:
(9.1) S(r) = SA(r) = 150r log(9{d) — 4y,

where 0, is the vector valued derivative defined in Section 6.2. We can
conveniently express S as

92)  S(r) = 56 T Ryepo 02 = LoD (8, — 5iy1) 6,

from which modularity of S becomes immediately clear.
In analogy with Definition 6.13, we define almost meromorphic functions
for complex representations o of GL,,(C), subsuming S.

Definition 9.1. Let D ¢ H™ be a smooth, locally closed submanifold of
codimension 1. A smooth function f : H™ \ D — V(o) is almost meromor-
phic of depth d if L& f = 0.

It is immediately clear that Theorem 6.17 generalizes. That is, almost
meromorphic functions are polynomials in the entries of y~! whose coeffi-
cients are meromorphic functions. The constant term of this polynomial is
called its constant part.
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Let us summarize immediate consequences of Equation (9.2).

Proposition 9.2. The function S defined in (9.1) is an almost meromor-
phic function, whose singularities lie on the submanifolds z = 0 and its T
translates. For any ~ € T®) we have S‘Sme y=2_5.

The Ramanujan relation (8.3) is generalized by the next proposition. Be-
fore stating it, recall the averaged transposition t = t(12)(34) defined in (6.4).
When applying it to sym?sym?, as below, it has the form

t(enen) = ¢11€11, t(enem) = l611312 + l312211 ) t(211€22)

1~ ~ (~ ~
= z¢12€12, t(€12€12) =epje2 + eggeq1 + 612612’

~ ¢ij + ¢
h —
where ¢ s
Proposition 9.3. We have
(9.3) Reym2 S =t(S® S) + frs(7),

where frs is a meromorphic Siegel modular forms of weight sym? @ sym?,
which has a pole of order 2 at z = 0; that is, d)%)ng 1s holomorphic.

Proof. We prove this by first comparing non-constant parts and then check-
ing Fourier coefficients. To summarize, we have

1008 @S =ay T¢10 @ 0,0 —5isly) ' 0r0f) @y
_5Z¢ -1 71®87 (2)_25y71®y—1’

10 Rgym2 5 = _¢10 ( (2) ® 8r¢10) ¢(2)71 (0- ® 0, )gzﬁ%)
—5ig Oy — Z¢10 b2y (' ® 3T¢10 )
—5taney (v @),

Set A =3, ¢ (e + ¢ji). We have 9yy~' = —(y~* ®H‘2)A( Lok,
and a straightforward computation reveals that t(12)34) yleoyhH=w'e
Ko)A(y~! @ Ws). It is obvious from the definition of t that t(12)(34) (y'®
8T¢§%)) = t(lg)(34)(07¢%) ® y~1). Taking these equalities, we find that R S —
t(S ® S) is meromorphic.
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To finish the proof consider the holomorphic modular forms

(9.4) 10062 % (Regm2 S — (S ® S))
=10 (0,03 ® 8T¢§%)) +10¢12 (9, ® 9,) %)
— t(12)(34) ( r¢10 ® aT¢1o)

We compute its expansion around z = 0. Let Ajs = A(71)A(m2) be the
product of the modular discriminant depending on 71 and 7o. Then

% %) Q(Rsym2 S —t(S®S)) has expansion

— 10(?127;A12 + (’)(23)) (?mzAm + (’)(23))

- t((?lngu +0(2%)) (f122012 + 0(23)))

+10(22A12 + O(zY)) (mazz Or, A1 + e208122 Or, A s
+e12e112 07, Aqg + €12¢222 07, A1n

+ 12125 A0 + (9(23)).
The leading term is therefore

22A% (72 T12812 — Fer1e22 — 1e22011)
+102°A12 (0, Ara(er1 €12 + E12e11) + Or, Ara(e22e12 + €1222),

which, in particular, implies that qbg%) f is holomorphic. U
9.2. Fourier coefficients of frg

Our goal is to compute Fourier coefficients of frg defined in (9.3). We use an
Ansatz to find an expression for d)ﬁ)) frs in terms of usual generators. This
expression is displayed in Equation (9.5). We obtain it by first decompos-
ing det'%sym?2sym? explicitly, finding a basis for the corresponding spaces
of Siegel modular forms, and then comparing coefficients with (9.4). Multi-
plication with QS%) ~! then yields Fourier coefficients of frg (in a prescribed
Weyl chamber).

In this Section we will frequently refer to Sage [61] scripts. They can all
be found on the last named author’s homepage. Note that several of them
make us of the implementation of Jacobi forms [54] that is currently only
available at Sage-Trac, i.e., as a branch u/mraum/ticket/16448 at Sage-Git.
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We will use polynomials p in two variables v; and vo with the ac-
tion (gp)(v1 v2) = p((v1v2)g) as a basis for symmetric power representations
of SL(C). An isomorphism to our previous basis e11, ¢12 + ¢21, 22 of sym?
is given by

2 2
€11 — V1, €12 + ¢91 — 2’1)1112, €22 — V3.

A decomposition of sym2 ® sym?2. By the Clebsch-Gordan rules we
know that sym? ® sym? = sym® @ sym? @ sym* as a representation of
SL2(C). Let us find an explicit basis in terms of v; and ve. To simplify
notation, we will denote by ui, ue and vy, vo the variables of the polyno-
mials in the first and second tensor component. Those in the image will be
denoted by w; and ws.

The trivial representation, one checks, is spanned by

2 — 2uyusvive + usV? .
Bases for sym? and sym?, respectively, are given by

2 2 2 1(,2,2 2,2
Wy, = U012 — ULU2VY, WIW2 = §(U1U2 — U2U1),

2 2 2
w2 — U1UQ7J2 - U2U1U2 5

and
wh 2,2 3 1(,2 2
wi = ufvy, wiws = 3 (ufvivs + uusvy),
2,2 _ 1(,2 2
wiw,; = 6( udv? + dugugvivy + ulv2)
3_1 2 4 2,2
wiwy = §(u2v1v2 + u1u2v2) Wy = UHVS.

Table of basic Fourier coefficients. In Table F1, we give the first few
Fourier coefficients of classical scalar valued Siegel modular forms that have
been taken from [47]; Or equivalently computed by the Sage script ba-
sic_fourier_expansions.sage. On the left of Table F'1, we give names of Siegel
modular forms, which are all explained in below. On the right, we give their
Fourier coefficients according to the scheme dictated by the first 9 lines.

The space M) (det'?) has dimension 3. A natural basis consists of the
Siegel Eisenstein series Eg), the Klingen Eisenstein series E(A2) attached to
the unique weight 12 cusp form A in genus 1, and the Maass lift gbg) of the
unique Jacobi cusp form ¢19 of weight 12 and index 1.
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The space M (det'%ym?) is one dimensional. A generator was found

by Ibukiyama in [35] using Ef) and EéZ) as input data. The Ibukiyama-

Rankin-Cohen bracket is

{f, gtsyms € M®) (detk+klsym4) for feM® (detk) and g € M) (detk,).

With respect to our choice of basis w‘f, . ,w%, it equals

L/ (K +1) g(afl fwt + 2001010 f whws + (0% f + 200109 f) wiw)
+ 201200 f wiwh + O3, f wé)
— (k+1)(K" +1) ((anf)(ang) wi + ((0111)(D12g) + (D12f)(D119)) wiwy
+ ((811.1)(D229) + (912f)(D129) + (92.f)(D119)) wiws
+ ((022£)(D129) + (012.f)(229)) wiws + (Dazf)(Da2g) w‘f)
+ Lk(k+ 1) f(a%12 w + 20110109 wws + (929 + 20110259) Wi
+ 20190229 w1w} + 0359 w%),

We do not reproduce the Fourier coefficients of {Ef), Eéz) }symt, but refer
the reader to the Sage script mentioned above.

An explicit expression for gb%) frs. Using the Sage script fRS_phi2_10_

fourier_expansion.sage, we compute an explicit representation of gb%) frs-
We obtain

(2) -1 @ p© ()

9.5 =——1{FE,” F —

(95) D10 1S = Tomnon 124 0 B6 dapme T g2 -

where the embedding of det'®sym?* and det'? into det!®sym?2sym? is as above.

From this expression, we obtain the Fourier coefficients in Table F2.
Fourier expansion of qb%) ~!. The Fourier expansion of gb%)_l is not
unique, but depends on a Weyl chamber as explained in [8]. The zero locus
of ¢%) is 1@ {r : 2 =0}, and a Weyl chamber is a connected component
of its complement in H®. We consider the one that contains 4 ( t12 t; ) for
all sufficiently small, positive ¢. In this Weyl chamber, qb%) ~! has Fourier
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expansion

q1(q2 H (1 o qllc’l‘qgn)c(nm—rz)’

(n,r,m)>0
where ¢q1 = exp(27mi 1), ¢ = exp(27i z), g2 = exp(27i 2), and
(n,r,m) =04 (n>0)V (n=0Am>0)V (n=m=0Ar>0).

The ¢(n) are the Fourier coefficients of the weak Jacobi form of weight 0 and
index 1 that is uniquely determined by ¢(—1) = 2. Its Fourier expansion is
computed to the necessary extend in the Sage script phi2_10_inv_fourier_
expansion.sage.

To compute the Fourier expansion of (b(l%)_l correctly the bound on
(n,r,m) that were found in [22] have to be taken into account. This, even-
tually yields the Fourier coefficients, some of which are displayed in Table F3.
The reader is also referred to the file phi2_10_inv_fe.sobj. This file is com-
puted by phi2_10_inv_fourier_expansion.sage and contains a Sage-readable
dictionary of Fourier coefficients

chilOinv_fe.sobj : (n,r,m) C(éf)%)il’ (7«72 %2) )

for many more (n,r,m).

Fourier coefficients of frs. Computing Fourier coefficients of frg in
the Weyl chamber that was previously defined, we simply have to multi-
ply (ﬁgzo) frs by (b%)_l. This is performed in the Sage script fRS_fourier_
expansion.sage. The resulting Fourier coefficients are displayed in Table F4.
The previously mentioned Sage script will produce a file fRS_fe.sobj, which
contains a dictionary of Fourier coefficients

fRS_fe.sobj : (n,r,m) — c(frs, <r72 %2) )-

9.3. Almost meromorphic Siegel modular forms with
restricted divisor

We consider the differential hyper-algebra

(9.6) W — 5O (62 5 B,
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which consists of almost meromorphic Siegel modular forms all parts of
which are holomorphic outside {z =0} and its I () translates. We clearly
have S € ‘M(?,

Theorem 9.4. We have an exact sequence
0 — M@ ($Y) — M@ Ly 1@ 0.
As a differential algebra, ‘M@ s generated by M2 (gb%)) and S.

Proof. The first part follows from LS = 5z:yl._/,€1yj_l1 eij%(ekl + ejx), since
Lemma 8.8 generalizes without difficulty to the meromorphic case. The sec-
ond part is a consequence of Proposition 9.3. ]
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Appendix A. The ambiguities for C3/Zs

1
A= g (500,21,23 41622 — 4502129 — 1629 + 8121 + 3)
1
(A1) A= on (500z1z§ 43222 — 2252129 — 1629 + 272 + 2)
(A2) fil= ~100A ( 10000027 25 +15000023 23 — 1680021 25 — 57625
— 10002225 + 3016021 25 4 100825 — 36002723
— 111902122 — 39622 + 12152125 + 452’2)
1
(A3) fi*= ~100A (500002122 + 2500027 25 4 690027 25 + 28821 25
— 1200023 23 4 369527 25 + 962123 + 1080023 29
25552225 — 1022120 + 40522 + 15z1>
1
(A4) f2= ~ 10054 ( — 2500025 2 + 81000232 — 32400222
— 27002523 + 62652325 — 24602925 + 13523
— 1442322 4+ 1522323 — 492927 + 52’1)
(A5) =~ A( 2000002228 4+ 500002223 — 316002, 23 — 115223

+ 30002725 + 2132021 25 + 86425 — 12002725
48152123 — 21623 + 3652122 + 18z§)
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1
(A6) fi2= ~T00A (100000z1z2 — 125002725 + 128002, 25 + 57625
— 140002225 — 73602125 — 43225 + 360022 23

412202122 + 10822 — 452125 — 922>
1
(A7) f2= ——( 500002324 + 1250002323 — 49002223 — 288223

400A
+ 5700025 25 4 314052723 4 12162125 — 1080025 29
120852220 — 5542129 + 148522 + 6721>

~ 1
(A8) fl = 5020 A < — 1050002325 — 10021 25 — 45002725 — 1653521 23
2

52822 4 69572120 + 2482 — 78321 — 29)

. 1
(A9) Jhi =5 (15000,22,21 4135002223 + 502322 + 28552222
2

— 2162221 8121 + 842221 — 92921 — 3,21)

~ 1
(A.10) fL, = 50 A( 1000022 25 — 2002125 — 150022 23 — 14702, 23
<1

4822 4 6642120 + 2420 — 8121 — 3)

(A11) f2, = 20; A( 75002223 + 10021 23 + 45002222 — 4652122
1622 4 2432129 + 820 — 272 — 1)

(A.12) fiy = 20; A (50002122 40025 — 50021 25 + 76023
29722 4 33z2>

(A.13) f2, = M< — 900002325 + 20021 25 + 15002723 — 135302 25

— 40023 + 6086212 + 20025 — 7292 — 25)

Any other combination of indices follows by symmetry. We find the following
holomorphic ambiguities:
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Appendix C. Siegel modular forms of genus two

In this appendix we introduce the basics of Siegel modular forms that are
needed. Although many statements and definitions hold for arbitrary genus,
we restrict ourselves to genus two. The Siegel upper halfplane is denoted by

(C.1) H? = {recC>?| =7 Imr>0},

on which the homogenous modular group I's = Sp(4, Z) operates by
(C.2) 7 (ar +b) (e + d)_1 a b € Sp(4,7)
. , e d 7).

The quotient H® by this action is called the Siegel fundamental domain
Fo = FQ\H(Q). A Siegel modular form of weight w is a holomorphic function
f:H® — C, such that for all 7 € H® and v € I'y

(C.3) f(y7) = det (CT + d)wf(’l'), N = (a Z) ,

C

holds. The space of all Siegel modular forms of weight w is denoted by

0 1
a Fourier expansion which reads

(C.4) f = a(T)exp(2ri Tr(T7)).
T

M, (H®). As <]1 1) is contained in I'9, any Siegel modular form f admits

Here the summation is over all half integer matrices T € %Z2X2 which have
integer diagonal elements. Next we introduce the Siegel operator ®, which
is a map My, (H®) — M, (HM) and is defined by

. T 0
(C.5) (I)f_tllfgof<o it)’ TEeH, teR.

The elements of ker ® are called cusp forms. For w > 4 we define the Eisen-
stein series by

(C.6) Ey(r) =) det(cr+d)~".
C,D

The summation is over all inequivalent bottom rows (C D) of elements
of I's. A classical theorem by Igusa states that the space of Siegel modular
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forms of genus two has a representation as

(C.7) M = (C[E4;E67X107X127X35]/{X§5 = R},

Here F4 and Eg denote the Eisenstein series of degree four and six, while
the cusp forms are given as follows

43867

(C.8) X10 = —m(E4E6 - E10) )
131593

Note that 19 as defined by Igusa differs from the Maas lift qﬁ%) considered
in Section 9 by a factor of four. R denotes a polynomial in Fy4, Eg, x10, X12
whose explicit form can be found in [38].

Fourier Expansion of Eisenstein series of genus two

In this subsection we discuss how to compute the Fourier coefficients of
Eisenstein series. We start by recalling some mathematics terminology.

e Let d be a square-free integer and consider the field extension K =
Q[v/d] of the rational numbers. The discriminant of K is given as

(C.10)

B d ifd=1 modulo 4
K 4d if d=2,3 modulo 4

e The Mobius function p: N — {—1,0,1} is defined as follows

1 if n is a square-free, positive integer
with an even number of prime factors
(C.11) pu(n) =< —1 if n is a square-free, positive integer

with an odd number of prime factors

0  if n has a squared prime factor

e The divisor function oi(n) with k£ € C is defined as

(C.12) or(n) =Y d*

dn

e A Dirichlet character is a function x : Z — C with the following prop-
erties
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1) There is a k € Z, such that x(n) = x(n + k) for all n

=0 if ged(n, k) > 1
2) x(m) {0 e )

# 0 if ged(n, k) =1
3) x(mn) = x(m)x(n)
In particular, a Dirichlet character y is a group homomorphism
(z/ (k:Z))* — C*. Vice versa, any character of the unit group of
Z](kZ) extends to a Dirichlet character by setting x(n) =0 for n &

(z/(kZ))"

e A Dirichlet L-function associated to a Dirichlet character is given by

(C.13) L(s,x) = i X(n), Re(s) > 1

nS

n=1

e Given a prime p, the Kroneckersymbol (%) is for a € Z defined as

(C.14)

1, if a is a quadratic rest modulo n
a
( ) = ¢ —1, if a is not a quadratic rest modulo n

0, if @ = 0 modulo n

For general n € N with prime factorization n = p{*---p/* one puts
(%) = (p%)u1 e (p%)yk. Note that (5) is a Dirichlet character modulo
n.

Theorem. (E. g. [20]) Let E,, be an Eisenstein series of weight w, T =

(;2 bé2> G%ZQX2 be positive semi-definite. Denote D=0b*>—4ac<0 and
let Dy be the discriminant of Q(v/D). Then the Fourier coefficient a(T) is
one, ifa=b=c=0 and

(C.15) _B—Q“’ S @ la(D/d?)

Y dlged(a,b.c)

otherwise. Here By, denotes the kth Bernoulli number, o is defined by a(0) =
1 and

(C.16) a(D) = C(w—1,D).
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Here the Cohen function C is defined by

(C.17) C(s—1,D) = Lp,(2- ) > u(d ( )ds 2095_3(f /),

d|f
D = Dy f2.

In this expression, ¢ denotes the Dedekind zeta-function and Lp, is the
Dirichlet L-series associated to the character (D—U)

In the following we list the explicit Fourier expansions of the above
generators

(C.18)

Bulq1, g2, 7) = 1 + 2401 + 240gs + 216062 + 30240412 + 2160¢2 + 240@
+ 13440@ + 13440q1go7 -+ 2401 gor + 67204 + 18144047
+ 181440162 + 672043 + 30240 L2 ql 2 1 3024018 qlq?
© 1382400 | 13804005 138240q%q2r n 138240q1q§r

r T
+ 3024062 qor? + 302401 2172

Es(q1,qo,7) = 1 — 504q; — 504qy — 16632¢% + 166320q1q2 — 1663243

. 504@ n 44352@ + 44352¢1go7 — 504¢1gar? — 1229764

+ 379200642 o + 379209612 — 12297643 + 166320q1 1

Q1Q2 (11QZ

+ 1663207122 4 212889612 4 21288962 q”b + 2128896¢2qor

+ 2128896q1q27“ + 166320q1 qgr + 166320q1q2r2

1 Ge | 0B e | 4de
= ~q1g2 — 94} q2 — 90163 + ;- .
x10(q1,q2,7) 2Q1CI2 q192 q193 + 22 + 272 4 T r
dpgs 1 1 1
4 qnaq; quqﬂ“ + 4q%q27“ + 4q1q§r + iq%qzﬂ -+ QQIQSTQ
5 5 qqu 505 | 12 224iq
Sqigs — 11¢2qs — 11 = = -
x12(q1,q2,7) = 6‘11‘12 QIQ2 Q1Q2 + 6 + 6 72 + 127 3 r
2q¢2 1 22 22 5 5
-5 A e — S aer - Tadr+ cder’ + cagr
21(q1, g2, 7) = 9 + 103681 + 10368q2 + 76515847 + 16505856q1q2

+ 76515842 + 3456 + 10368@ n 3456 216%
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(J% q2 q142 CJ%
— 238680 — 2162 — 508032—= — 238680-2 — 2161
T T T T
— 238680q,7 — 174078936¢%1 — 238680¢ar — 382465152¢1 gor
— 174078936457 + 345612 4 4188672¢, 1% + 3277494144712
+ 4188672¢o1r% + 725346316841 g2 4 3277494144431>
22(q1, q2,7) = —27 — 34992¢; — 34992¢5 — 2582409647 — 2293142441 ¢o
2 2
q q192 q q1
— 2582409602 — 21384-L — 3499272 — 2138422 4 9722
r2 r2 r2 r
q2 q2 q142 q2
+ 9107641 + 9722 4 653184——= + 9107642 + 972r
T r r T
+ 910764417 + 635595660437 + 910764qor + 83878156841 gor
+ 635595660¢57 — 2138412 — 20015424, — 1416464301647
— 200154244212 — 23598639792¢1 q21> — 14164643016431>
753 243 q1q2 525123
2
3(q1,q2,7) = — et T st qger - 3411720q, gor
Appendix D. Refined GV invariants for C3/Zs
d 0 1 2 3 4 5 6 7 8 9 10
dy
0 3 -6 27 -192 1695 -17064 188454 -2228160 27748899 -360012150
1 -2 4 -10 64 -572 6076 -71740 909760 -12146622 168604540 -2412582616
2 0o 3 -12 91 -980 12259 -166720 2394779 -35737460 548460000 -8599208436
3 0 5 -12 108 -1332 18912 -289440 4632120 -76306398 1282295808 -21860004816
4 0o 7 -24 150 -1808 26983 -443394 7665776 -136440800 2471539911 -45269668626
5 0 9 -56 294 -2982 42005 -689520 12254816  -227540162 4331108122 -83626566000
6 0 11 -140 675 -5992 76608 -1192644 20764870  -386343036 7482057534 -148451081248
7 0 13 -324 1738 -13550 158814  -2322056 38750866  -703362386 13488597425  -268229722780
8 0 15 -686 4732 -33552 359898  -4954570 79050699 -1387505216 25992283043  -509660731360
9 0 17 -1328 12960 -88746 874588 -11327904 172924796 -2932945300 53475853968 -1026989105240
10 0 19 -2394 34357 -245520 2245125 -27363700 399648535 -6552913216 116272411761 -2183695179370
Table D1: GV invariants at genus (0,0)
d 0 1 2 3 4 5 6 7 8 9 10
dy
0 0 0 -10 231 -4452 80948 -1438086 25301295 -443384578 7760515332
1 00 0 -18 576 -13968 305244 -6329628 127275876 -2508961104 48786866820
2 00 0 -24 896 -25636 650852 -15418734 349139480 -7658224250 164057415432
3 00 0 -28 1152 -37032 1056780 -27964428 701652588 -16919331450 395589996732
4 0 0 0 -30 1407 -48966 1515448 -43561508 1185905652 -30938142568 779767395056
5 00 9 -66 2061 -68908 2174157 -65084016 1863846681 -51392001108 1371429906120
6 0 0 68 -280 4500 -119124 3489856 -102704154 2969225052 -83868926462 2312642950872
7 0 0 300 -1410 13413 -261576 6617379 -181806634 5100476481 -142921977728 3965155214627
8 0 0 988 -6760 48183  -695664 14702120  -365286402 9681953781 -262834540958 7179092104476
9 0 0 2698 -29360 187770 -2131298 37329793  -822940764 20261551070 -525109967206 13926533807541
10 0 0 6444 -113186 751019 -7150716 105558998 -2048434992 46290047925 -1133487473126 28930878789904

Table D2: GV invariants at genus (1,0)
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On direct integration for mirror curves
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Appendix F. Fourier coefficients of Siegel modular forms

(0,0.1) (0,0,2) (0,0,3) (0,0,4)
(1,0.1) (1,1,2) (1,0,2)
(1,0.3) (1,1,4) (1,0,4)
(2.1,2) (2.0,2)
(n,r,m) (2.1.3) (2,0,3)
(2.1,4) (2.0,4)
(3.2.3) (3.1.3) (3.0.3)
(3.2,4) (3.1,4) (3.0,4)
(4,3,4) (4,2,4) (4.1.4) (4,0.4)
1 240 2160 6720 17520
13440 30240 138240 181440
362880 497280 967680 997920
604800 967680 1239840
EP 1814400 2903040 2782080
5114880 5806080 7439040
3642240 5987520 6531840 8467200
10644480 13426560 17418240 15980160
20818560 24192000 35804160 34974720 41882400
1 -504 -16632 -122976 -532728
44352 166320 2128896 3792096
15422400 23462208 65995776 85322160
24881472 65995776 90644400
EP 234311616 453454848 530228160
1126185984 1724405760 2066692320
883802304 1945345248 2818924416 3327730560
4864527360 8158449600 11304437760 12013404480
12809611584 22751511552 34911765504 42077629440 46585733040
0 0 0 0 0
1 2 -16 36
99 272 -240 1056
240 -240 32
Yo -1800 2736 -1464
4352 6816 576
15399 -19008 27270 -43920
6864 -26928 44064 12544
135424 -22000 65280 -36432 -279040
53678953 5089790160 10428980037840 901646147263680 21358556207286480
22266840960 456798756960 162868282536960 661522702800960
18728849326561920 46719773564929920 486707206711864320 957976883554934880
46765376055216000 486707206711864320 958912407409188960
E® 9975044773603728000  43296648289119912960  67657429630096225920
341726484448551121920  994500257327275345920  1388669119242478032960
232922065682969976960  1387314320747141666880  3553058504433847368060  4778384234988952224000
11078677991333226193920 39296440893457709619840  78584973005595527976960  97978466594063423571840
98074242084224505939840 409369370741219790720000 1021197866857079343344640 1703669378274682309370880 2010986989911829611208800
0 12096 -290304 3048192 -17805312
158976 2146176 377726976 1558123776
44644753152 111108644352 1155817838592 2276348012928
-3910809600 -25315338240 -54993613824
EQ 210642882048 -1097120692224 -1622158990848
-10065668456448 -28301296693248 -39925363636224
2356270891776 8269812764928 2477841746680 1936386585600
18898645911552 108976387336704 198828131659776 245736461090304
-245453236125696 -584737669785600 -1744357612732416 -2891211375900672 -3257305227141120
0 0 0 0
1 10 -132
1275 736 -2880
2784 -8040
#\2 13080 -14136
64768 389520
48303 38016 -256410 1073520
-806520 938400 -1227600 -2309120
3392512 2311640 -5917440 6141960 15902720

Table F1: TT/LQ Ty/n 2

ular forms in [47].

Fourier coefficients c( 1, ) of some genus 2 Siegel mod-



Table F2: Fourier coefficients C(QS%) frs, (

tion as in Section 9.2.

r/2 m

On direct integration for mirror curves 699
(TL, T, m) U%D% Ul’lLQUl U%’U? u11117)2 ULUVLV2 U%Ulvz U%U% ’U,l’uzU% u%vg
1 1 1 1 1 1 1 1 1
(LLD) -5 —10 w1 o — 105 wo —T00
(17 0, 1) 5i 0 ~_200 0 7% 0 200 0 %
(1.1,2) P 4 3 4 39 19 3 19 Doy

b 25 25 5 25 % % 50 2% %
(1,0,2) —2 0 o0 0 o 0 00 0 5
(1.1.3) W 9 L TT ) P _aose M s 8%

) 52100 100 100 100 20 100 100 100 109,
(1,0,3) % 0 —35 0 — 55 0 —2% 0 -3
L14) ¥ 2 # Z 5 69 32 69 192
(1,0,4) 64 0 8 0 1416 0 4 0 264
(2.29) M7 m 3 81 133 84 3B 84 81
(21,2) 8 2003 P Soos Zhosr "oos P Poos s
(27 07 2 %° 0 %5 s4d 0 5 5% D 0 25 3247 0 25 56°

bl 9
(22.3) —1%6 -1 83 _1pg  2u a5 g He
(2.1,3) 418 8631 23h 8631 o3 331 24 331 howte
( ’ 73) L5620 % M7 » 1761 2 179 2 18758
2,0, — 0 — =5 0 e 0 0
(2,2, 4) 7618° 7616 Cds s Ys704 Cawaos 1308 31408 1857
(27 17 4) Rioos 35004 3ud 235004 otk 24088 311 21000 27364
(27 07 4 —1 » ZBo12 0 % s 0 B %Do12 0 »  %ote
( 37 37 3) 3065° 3969 620 3969 sty 3969 se2di 3969 306"

( 37 27 3) 43093()92 _1(@ _4?8632 _10905ﬂ _ 83924 _109 04 98632 _109& 30%092

( 37 17 3) PPisser 7381 1%Wes 79081 51567 73881 13 s1 Alissst
(3: 0: 2 ﬁoo 0 50 @10 0 50 _2509?}86 0 50 51?70 0 50 55rﬂoo
(3,3,4) 200772 _ 200772 ~ho101 200772 144213 132957 Y9101 132957 27456
(37 27 4) 125198 278781 70794 278781 8874 6330 70794 6330  Hasos
( 37 17 4) 19856 71186 73509 71906 748856 37314 73009 37314 176

Ny 1312 » e » 14736 % 112 » 488381
(3,0,4) 0 0 0 0
(4.4, 4) _Bise  _sise  zoads _sise  _dsosse  _sise 200084 _sise 3D

. c 1%%n Boeir 1%em 20380 13%om Bo1r _ 13%m 2
(4,3,4) 3520 ! : i : i 2 o4l 3590
(4 2 4) 42816 102192 _555036 102192 221_6 4 102192 _5&536 102192 42816
( 4’ 17 4) 148728 _ thorsor 230571 ibarsor dbirso  idarsor 230571 1227897  14B72s
( 4: O: 4 - §45944 0 % 25456},8 0 % _3 4§16 0 5 25456},8 0 = - §45944

n r/2

) ) of qé%) frs with nota-

(-1,1,-1) (=1,2,-1) (0,0,—1)  (0,1,—1)  (0,2,—1) (1,—1,—1) (1,0,—1)
(1,1,-1)  (1,2,-1)  (2,-2,-1) (2,-1,-1) (2,0,—-1) (2,1,-1) (2,2,—1)
(-1,0,0)  (-1,1,0) (-1,2,0) (0,—1,0)  (0,1,0)  (0,2,0) (1,-2,0) (1,-1,0)

(n,r,m) (1,0,0) (1,1,0) (1,2,0) (2,-2,0)  (2,—1,0) (2,0,0) (2,1,0)  (2,2,0)
(-1,-1,1) (-1,0,1) (-L1,1) (-L,21) (0.-2.1) (0,—1,1) (0,0,1)  (0.1,1) 0,2,1)  (1,-2,1)
(L,-1,1)  (1,0,1) (1,1,1) (1,2,1) (2,-2,1) (2,-1.1)  (2.,0,1)  (2.1,1) (2,2,1)
(-1,-2,2) (-1,-1,2) (-1,0,2) (-1,1,2) (-1,22) (0,-2,2) (0,—1,2) (0.0,2) 0,1,2)  (0,2,2)
(1,-2,2)  (1,-1,2)  (1,0,2) (1,1,2) (1,2,2)  (2,-2.2)  (2.-1,2) (2.0,2) (2,1,2)  (2.2,2)
1 2 2 24 48 3 48
327 648 4 72 648 3272 6404
2 24 48 24 600 1152 48 600
—648 8376 15600 1152 8376 —12800 85176 154752
3 48 327 648 48 600 —648 8376 15600 —648
25353 —50064 130329 209304 —50064 561576 —1127472 1598376 2023536
4 72 648 3272 6404 1152 8376 —12800 85176 154752
—50064 561576 —1127472 1598376 2023536  —3859456 18458000 —32861184 28698000 16620544

. . . @ -1 ( n r/2 2)-1 .
Table F3: Fourier coefficients c(qSlO 2 m ) of ¢15 in the Weyl

chamber described in Section 9.2.
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(’ll, T, m) u%v% UjuU2vy U%U% ujv1v2 U1U2UVLV U%Ulvz u%v% UuU2v5 ugvg
1 1 1 1 1 1 1 1 1

(0,0,0) W 1% “m 0 -5 0 N 100
(0,1,0) 0 1 B S _n by Qo 0

)4 50 100 50 b 50 100 50
(0,2,0 0 S o S O e G
(1,-1,0) _4 iy 1 iy _f 1 o sl 0

» T h % 25 100 25 50 50 700 50
(1,0,00 -2 -£ = -3 4 0 = 0 0
(1,1,0) _4 _18 L ,ﬁ _ L i L 0
(1’270) 0 . i (1)00 i 0 " 80 6 ’ 80 0

34y — 95 925
(2,-2,0) -2 2 0 5 5 -5 0 -5 0
(2,-1,0) _3s il 3 il _i L1 3 L1 0

» T h P 10 190 10 50 50 100 50
(2,000 -32 - = -2 3 0 = 0 0
(2,1,0) _38 ,ﬁ i ,ﬁ _3 1 i 1 0
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Table F4: Fourier coefficients c( frs, (r /2 m ) ) of frg in the Weyl chamber

described in Section 9.2.
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