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Monstrous BPS-algebras and the
superstring origin of moonshine

We provide a physics derivation of Monstrous moonshine. We show
that the McKay-Thompson series Ty, g € M, can be interpreted
as supersymmetric indices counting spacetime BPS-states in cer-
tain heterotic string models. The invariance groups of these series
arise naturally as spacetime T-duality groups and their genus zero
property descends from the behaviour of these heterotic models
in suitable decompactification limits. We also show that the space
of BPS-states forms a module for the Monstrous Lie algebras mg,
constructed by Borcherds and Carnahan. We argue that m, arise
in the heterotic models as algebras of spontaneously broken gauge
symmetries, whose generators are in exact correspondence with
BPS-states. This gives my an interpretation as a kind of BPS-
algebra.
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1. Introduction and summary

The famous Monstrous moonshine conjecture [23] has motivated a host of
new developments at the intersection between theoretical physics, algebra,
number theory, and group theory. In its basic formulation, the conjecture as-
sociates with each element g of the Monster group M (the largest sporadic
finite simple group) a modular function Ty, the McKay-Thompson series.
The invariance groups I'y C SL(2,R) of the series T, were conjectured to
satisfy very constraining properties: in particular, the quotient H/I'; of the
upper half plane by I'; is expected to have genus zero. The conjecture has
been proved by Borcherds [7], based on previous contributions by many au-
thors, in particular by Frenkel, Lepowsky, and Meurman [32]. While the
proof dates back to almost 25 years ago, many aspects of Monstrous moon-
shine are still unclear.

This paper aims to provide a natural physical framework where some
of these open issues can be understood. The main idea is to interpret the
McKay-Thompson series as supersymmetric indices in certain heterotic
string compactifications. This leads to the two main results of the paper.
First, we show that the modular groups I'y can be understood as groups
of dualities in these models, and we provide a physical derivation of their
genus zero property. Second, we show that the Monster Lie algebra m, intro-
duced by Borcherds in his proof of Monstrous moonshine, is the algebra of
spacetime BPS-states in these heterotic models. More precisely, the algebra
arises as a spontaneously broken gauge symmetry, whose generators are in
exact correspondence with the BPS single-particle states. In the remainder
of the introduction we shall provide some motivational background, and give
a more detailed overview of the results.
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1.1. Monstrous CHL-models

Monstrous moonshine [7, 23, 32] associates to each element g in the Monster
group M, a modular function (McKay-Thompson series)

o0

(11) TQ(T) = Tth (quO_l) - Z TI'VTE (g)qn7 q:= 627”;7—,

where the coefficients are characters of ¢ in the graded components of the
Frenkel-Lepowsky-Meurman Monster module V= o Vnh. In physics
language, V! is a holomorphic two dimensional conformal field theory (CFT)
of central charge 24 with symmetry group M, and T}, are its g-twisted parti-
tion functions. By the cyclicity property of the trace, the McKay-Thompson
series are actually class functions (i.e., they depend only on the conjugacy
class of g). A key ingredient in Borcherds’ proof of Monstrous moonshine was
the construction of an infinite-dimensional Lie algebra m, known as the Mon-
ster Lie algebra, obtained by applying a certain functor to the Monster mod-
ule V!, In this paper we show that m is the “algebra of BPS-states” of a cer-
tain heterotic string theory. The fact that BPS-states in string theory form
an algebra was first proposed by Harvey and Moore [43, 44], but the precise
structure of this algebra is still poorly understood (see [22, 31, 41, 50, 53] for
various attempts). In the original work, Harvey and Moore envisioned that
the algebraic structure was captured by the OPEs between BPS-vertex oper-
ators, and the algebra should be closely related to a Borcherds-Kac-Moody
algebra (BKM-algebra). A slightly different construction was proposed in
[33, 46], where the space of BPS-states in a certain N' = 4 string theory
realized a module for a BKM-algebra. In this work we take the latter ap-
proach, and show that the space of BPS-states in a certain heterotic orbifold
forms a representation of the Monster Lie algebra m constructed from V.
The algebra is generated by BRST-exact string states, that are in one to
one correspondence with the BPS string states. This provides the first real-
ization of the Monster Lie algebra as an algebra of BPS-states, answering a
long-standing question raised by, in particular, Harvey and Moore [43], and
Carnahan [10]. In fact, our construction is more general and applies to the
entire class of Lie algebras my, g € M, constructed by Carnahan [11] in the
context of proving “generalized moonshine” (the full proof is now complete
and constitutes [9-11]). Generalized moonshine was proposed by Norton [54]
and concerns, for each commuting pair g, h € M, the following “twisted” and
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“twined” generalizations of the McKay-Thompson series:
(1.2) Tyn(T) = Trvgn(thU_l),

where Vgh is the g-twisted sector in the orbifold of V' by g. The specialization’
Ty p, recovers the McKay-Thompson series, while T} 1 constitutes part of the
denominator formula for the Lie algebra my [11]. Each such Lie algebra is
the algebra of BPS-states for a heterotic string model labeled by g.

The key ingredient in our analysis is a new type of “Monstrous CHL”
model, where the name is taken from the analogous construction by Chaud-
huri, Hockney, and Lykken [12, 13]. We consider the heterotic string com-
pactified to 141 dimensions, with the internal CFT of the form V% x V1,
where V% is the super-moonshine module for the Conway group, envisaged
by [32] and constructed by Duncan [27]. It has no NS-sector states of con-
formal weight 1/2, but 24 Ramond ground states of weight 1/2. We then
consider the further compactification of this theory on the spatial circle S*
of radius R and we take a Zy-orbifold of this theory by (4, g), where ¢ is an
order N shift along S' and g € M. The resulting theory has (0,24) space-
time supersymmetry, and the spectrum contains two kinds of irreducible
representations: a short (BPS) 1-dimensional representation and a long rep-
resentation of dimension 2'2.

These constructions raise an immediate puzzle. There are no local mass-
less states in the spectrum since in lightcone quantization these precisely
correspond to currents in the internal CFT, and we have just seen that
these are absent in our models. In particular, there is no dilaton and hence,
at first sight, no string coupling! We will propose a resolution to this puzzle
in Section 2.2 and henceforth tune the string coupling to zero; obstacles to
turning on finite string coupling are discussed briefly in Section 3.3.

1.2. The supersymmetric index

One of the main points of the paper is that in these models we can compute
a supersymmetric index Z which counts (with signs) the number of BPS-
states. This index will allow us to provide a spacetime interpretation of
Monstrous moonshine and use this to shed light on the elusive genus zero
property of moonshine.

Let us first consider the unorbifolded case. We compute the index in
three different ways which each provide certain useful clues. First, using a

'We will always use 1 to denote the identity element 1 € M.
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Fock space construction we define Z as a weighted trace over the second-
quantized BPS-Hilbert space Hpps:

(1.3) Z(T,U) = Trp, e ((_I)FeZTriTWeQTriUM)’

where F' is the fermion number, (W, M) represent winding and momentum
operators along S!, and (T,U) € H x H are the associated (complexified)
chemical potentials, involving in particular the radius R of S' and the inverse
temperature $. Evaluating this index we find the explicit formula

24
(14) Z(T, U) — <62ﬂi(on+moU) H (1 . eQTriUme2m'Tw)c(mw)> 7

m>0
WEZ

where c(muw) are the Fourier coefficients of the modular-invariant J-function

(1.5) J(r)=Ty(1) = i c(n)g" = q ' +196884q + - - .

n=—1

and we allow for possible winding and momentum wg, mo of the ground
state. We will argue below that the correct values are wg = —1, mg = 0.

We stress that in the original Monstrous moonshine the J-function is
the graded dimension of the moonshine vertex operator algebra V¥, or in
physics parlance, the partition function of the Monster CF'T, and therefore it
is intrinsically a worldsheet object. On the other hand, the supersymmetric
index Z(T,U) is a spacetime object, and therefore provides a new spacetime
interpretation of Monstrous moonshine.

Inspired by generalized moonshine we also extend this analysis to all
Monstrous CHL-models and we define for each commuting pair g, h € M
the twisted twined index

(1.6) Zgn(T,U) = Trys (h(_l)FEQM'TWeQm'UM)’

where HgBPS is the space of BPS-states in the CHL-model. We will be par-
ticularly interested in the specialization Z, 1, for which we derive an infinite
product formula analogous to (1.4).

In the second approach, the index is computed in terms of an Euclidean
path integral, with the Euclidean time compactified on a circle with period
the inverse temperature 5. We argue that the path-integral is one loop exact
and show that it reproduces the modulus squared of the supersymmetric
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index.
(1.7) e~ Si-teor — | Z(T, U |%.

The holomorphic part of the one-loop integral is the free energy F and thus
we have the expected relation:

(1.8) F(T,U) =log Z(T,U),

with similar results for all the twisted indices Zy1(7,U). In this second
approach, the invariance of the index under the T-duality group is manifest.

The third approach is purely algebraic. By the work of Borcherds it is
known that, for suitable values of wp, mg, the infinite product formulas (1.4)
and its twined generalizations are the denominator formulas for the Monster
Lie algebra m and its generalizations mg, respectively. We give a spacetime
BPS state interpretation of this algebra and show that m is the algebra of
BRST-exact string states associated with the supersymmetric partners of
the (first quantized) string BPS-states. BRST-exact states in string theory
are expected to generate a gauge symmetry, though in general this might be
spontaneously broken for finite string tension o/ < oo. Therefore, m can be
interpreted as a kind of gauge algebra in this theory. As a consequence, we
show that the supersymmetric index Z, 1 (T, U) exactly coincides with (the
24th power of) the denominator of the algebra mg.2

Starting from the famous product formula for the J-function (see, e.g.,
[7, 40)):

(1.9) J(o)—J(r)= pt H (1- pmqn)C(mn)7 pi= e2mio
m>0,n€Z

and using the description as an algebra denominator, we obtain a new for-
mula for the supersymmetric index of the associated CHL-model:

24
(1.10) Zy1(T,0) = (Ty o(T) = Tpa(U))

2 As we will discuss in Section 5, the space of physical BPS-states in the spectrum
of a single first quantized string form a representation of m,. We conjecture that
the second quantized Fock space Hppg is also a mg-module, but we were not able
to prove this statement.
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1.3. The genus zero property of moonshine

An outstanding puzzle in Monstrous moonshine has been to find an expla-
nation for the so called genus zero property, namely that all the McKay-
Thompson series are “Hauptmoduln” — generators of the function field on
H/T" — for genus zero congruence subgroups I' of SL(2,R). For g =1 and
some other elements in the Monster group, all the properties of moonshine
(except genus zero) have a natural physical interpretation in the Monster
CFT V. Indeed, for these elements, the space H/T'y is simply the moduli
space parameterizing complex tori with additional flat M-bundles and the
McKay-Thompson series, as twisted partition functions in the CFT V¥, are
naturally defined on such spaces. For other g € M, however, the modular
groups naively expected by CFT arguments are strictly smaller than the
actual groups I'; and not necessarily of genus zero. In these cases, there
is no good interpretation of the spaces H/T'; as moduli spaces where the
McKay-Thompson series should be naturally defined.

Our approach allows us to shed light on this issue, by reinterpreting
it in the context of the spacetime BPS-states of CHL-models. We first no-
tice that the group G, of T-dualities of the heterotic model is a subgroup
of SL(2,R) x SL(2,R) acting on (T,U) € H x H. The index Z,1(T,U) is
naturally defined as a function on the moduli space (H x H)/Gy of the het-
erotic model. Thus, for fixed U, Z,1(T,U) as a function of 7" is defined on
H/proj, (Gg4), where proj; (Gy) is the projection of G, C SL(2,R) x SL(2,R)
on the first SL(2,R) factor. We will show that proj,(G4) C SL(2,R) is ex-
actly the modular group I'y (or, more precisely, the eigengroup F’g, see Sec-
tion 7.3). This observation, together with the explicit formula (1.10) relating
Zg1(T,U) to the McKay-Thompson series Ty 4, provides a natural string
theory interpretation for the modular group I'y.

Our arguments also give a new understanding of the genus zero property
of the groups I'y. The Hauptmodul property for the McKay-Thompson series
T, is equivalent to the fact that T has only one single pole on H/I' - Inturn,
this is equivalent to the statement that Z, 1 (T, U), considered as a function
of T for fixed U, has only one pole modulo T-dualities.

The index Z, 1 (T,U) can only diverge in the limit where 7" approaches
one of the cusps at the boundary of the moduli space. From the physics
perspective, these cusps can always be interpreted, in a suitable duality
frame, as decompactification limits at low temperature, where the index is
dominated by the ground state contribution. For example, the limit 7" — 700
always corresponds to a model in two uncompactified space-time dimensions,
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namely heterotic strings on V% x V4. The index Zg.1 diverges in this limit,
due to the contribution e=?™T of the ground state. Suppose that the index
Zg4 1 diverges also at another cusp (say, for T — 0), different from 7" — ioo.
The contribution e ~2™7 of the ground state is finite as 7' — 0, so this cannot
be the dominant term if the index diverges in this limit. This means that, if
we vary the moduli smoothly from T" — ioco to T — 0, the model undergoes
a phase transition at a certain critical value of the moduli, where the energy
of some excited state gets lower than the ground state. The contribution of
this excited state becomes dominant in the ‘small 7" phase’ and eventually
diverges for T — 0. Furthermore, whenever such a phase transition occurs,
the two phases are always related by a T-duality of the model. The reason
is that, at the critical manifold, new massless string modes appear. The
latter generate an enhanced gauge symmetry that contains, in particular,
the relevant T-duality.

To summarize, whenever the index Z,; diverges at some cusp, such a
cusp must be related to ico by a T-duality. The latter is part of an en-
hanced gauge symmetry that exists at some critical value of the moduli,
and relates two different phases for the CHL model. This implies that, up
to dualities, the only divergence of the index Z,; is at the cusp 1" — ioco,
and this property is equivalent to the Hauptmodul property for Tj,.

In many respects, our approach is very similar to Tuite’s reformulation of
the genus zero property in terms of orbifolds of conformal field theories [59].
Tuite noticed that a McKay-Thompson series T,(7) has a pole at 7 — 0 (is
unbounded, using Gannon’s terminology) if and only if the orbifold V¥/(g)
is a VOA without currents. Furthermore, assuming that any holomorphic
VOA of central charge 24 and with no currents is isomorphic to V¥ itself,
he showed that the McKay-Thompson series T7 4(7) is unbounded at 0 if
and only if it is invariant under the Fricke involution T — —NLT, where N
is the order of g. Finally, he showed that this property implies that T} is a
Hauptmodul for a genus zero group.

In our picture, the decompactification limit 7" — 0 corresponds to a two
dimensional heterotic string model on V%/(g) x V*4. Using the representa-
tion of the index as an algebra denominator, we show that Z, 1 diverges at
T — 0 if and only if the orbifold V%/(g) has no currents. Furthermore, we
show that the Fricke involution is contained in the T-duality group G if and
only if VB/(g) is isomorphic to V*? (with some additional conditions). These
results reproduce the first part of Tuite’s argument. However, in order to
complete the proof, we do not need any assumption about the uniqueness
of V% as explained above, the Hauptmodul property (and, in particular,
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Fricke invariance) follows from the existence of critical manifolds with en-
hanced gauge symmetries.

In fact, one can reverse Tuite’s argument and use our construction to
actually prove the following results:

(i) When the orbifold V¥/ (g) is consistent and has no currents, it is iso-
morphic to V.

(ii) When the orbifold V%/(g) is consistent and has currents, it is iso-
morphic to V5eeh (the vertex operator algebra based on the Leech
lattice).

The first statement was part of Tuite’s assumptions. The second state-
ment was proved by Tuite through a case by case analysis, while we obtain
a conceptual proof: our construction shows that the possible number of cur-
rents for a consistent orbifold V/ (g) is either 0 or 24, and in the latter case
it is well-known that V2°¢" is the only possibility.

1.4. Outline

Our paper is organized as follows. In Section 2 we describe the basic features
of our Monstrous CHL-models, which form the core of the results in sub-
sequent sections. In Section 3 we discuss the BPS-spectrum in our model,
and give the Fock space construction of the supersymmetric index Z(7,U).
In Section 4 we define and evaluate a one-loop integral that reproduces the
same index. We also provide an extensive analysis of the T-dualities satis-
fied by the index. In Section 5, we argue that each Monstrous CHL model
contains an infinite dimensional Lie algebra of spontaneously broken gauge
symmetries and show that this algebra is isomorphic to the corresponding
Monstrous Lie algebra m,. We identify each supersymmetric index Z, 3 with
the algebraic index of the associated mg, and show that it reproduces the
denominator formula. In Section 6 we provide a number of detailed examples
where we calculate the twisted index Z,; for elements of low order in M
and explicitly verify our claims. In Section 7 we combine all previous results
to derive the genus zero properties of the McKay-Thompson series. Many
technical details and proofs are relegated to the appendices.

2. The setup

In this section, we describe the main properties of the heterotic string com-
pactifications that are the main focus of our paper.
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2.1. Monstrous heterotic string and CHL models

The models we are interested in are certain compactifications of the heterotic
strings to 0 4+ 1 dimensions. We will define one such model for each element
g in the Monster group M. When two elements g and ¢’ are conjugated
g = hgh~! for some h € M, the corresponding models are equivalent and
will be identified.

The starting point of our construction is a particular compactification
of heterotic string to 1+1 dimensions. The internal CFT of central charges
(c,&) = (24,12) factorizes as V7 x V*, where V! is the famous Frenkel-
Lepowsky-Meurman (FLM) Monster module [32] and V* is the Conway
super-moonshine module first discussed by FLM in [32] and constructed in
[27] (see below for more details).® Compactifications of heterotic strings in-
volving the FLM module V! have been considered before [5, 13, 39, 45]; in
particular, the compactification on V¥ x V¥ is discussed in [5].

The FLM module V! is a holomorphic bosonic conformal field theory,
or vertex operator algebra (VOA), with central charge ¢ = 24. Its partition
function is the SL(2,Z)-invariant J-function with zero constant term

(21)  Trys(go ™) =J(r) =¢ P +0+196884g + -+,  q:= ™",

It is the only known (and, conjecturally, the unique) holomorphic CFT of
central charge ¢ =24 with no fields of conformal weight 1 (currents). Its
group of symmetries (i.e., linear transformations preserving the OPE, the
vacuum, and the stress energy tensor) is isomorphic to the Monster group
M. It can be obtained starting from the Leech lattice CFT, i.e. the chiral
half of the bosonic non-linear sigma model on the torus R24 /ALeech, and
then taking the Zs orbifold under the symmetry that inverts the sign of
all 24 torus coordinates. Here, Apeeqn is the Leech lattice, the unique 24-
dimensional even unimodular lattice with no vectors of squared length 2.

The right moving side of heterotic string, in the NS sector, is the (anti-
)holomorphic A/ = 1 superconformal field theory (super VOA) V8 with ¢ =
12 studied in [27]. It can be obtained as a Zsy orbifold of the N'=1 SCFT
built in terms of the Fg lattice, i.e. the chiral half of the supersymmetric
non-linear sigma model with target space the torus R®/Eg. The theory Vst
is characterized as the unique holomorphic SCFT of ¢ = 12 with no fields
of conformal weight 1/2. Its group of automorphisms Aut(V*!) preserving

3In our conventions, the anti-holomorphic (right-moving) side of the heterotic
string has world-sheet supersymmetry.
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the A/ = 1 superVirasoro algebra is the Conway group Cog, though we will
not need this property in the following. The right-moving Ramond sector of
the heterotic string is the other unique irreducible module for the super VOA
Vst (By abuse of language, we will call these two modules the NS and the R
sectors of V*%; one should keep in mind, however, that in the mathematical
literature V*% denotes only our NS sector.) The Ramond sector has 24 ground
states of conformal weight 1/2 and positive fermion number.

The internal CFT has no direct geometric interpretation, i.e. it cannot
be directly described as a non-linear sigma model on a compact manifold.
However, it can be obtained as an asymmetric Zo X Zo orbifold of a com-
pactification on a torus T®. In the Narain moduli space parametrizing the
geometry and the B-field of the torus T®, there is a unique point where the
non-linear sigma model factorizes as a product of the holomorphic Leech
lattice CF'T and the anti-holomorphic Eg lattice SCFT. One considers the
orbifold of this model by the Zs x Zo symmetries that flip the signs of the
24 left-moving and, independently, of the 8 right-moving scalar (super)fields
in these theories.

The compactification of heterotic strings on T® yields a 141 dimensional
theory with (8,8) space-time supersymmetry. The Zy orbifold acting on the
left-moving (bosonic) side preserves all such supersymmetries, while the Zo
orbifold acting on the right-moving (supersymmetric) sector breaks half of
them, down to (0,8). However, including the twisted sector introduces 16
additional supersymmetries with the same space-time chirality, so that the
theory we are considering has (0,24) supersymmetry [5].

Starting from this heterotic compactification, we will now construct a
host of 0 + 1 dimensional models (i.e., supersymmetric quantum mechanics)
with 24 supersymmetries, by first compactifying one further space direction
on a circle S' of radius R, and then taking a CHL-like orbifold. More pre-
cisely, we consider the orbifold of heterotic strings on S* x (V¥ x V*8) by
a Zy symmetry (8, g), where § is a shift of 1/N of a period along the S*
circle, and g € M is a symmetry of the left-moving internal CFT V. This
is analogous to the standard CHL construction [12-15]. Many of the models
constructed in this way are actually equivalent to each other. In fact, up
to equivalence, the CHL models only depend on the conjugacy class of the
cyclic subgroup (g) C M (although, we will usually denote them simply by
the generator g). This follows from the fact that V7 is invariant under charge
conjugation, and that any power g% of g, with a coprime to the order NV of
g, is conjugated with either g or g~! within the Monster group.
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The CHL construction outlined above is consistent only for those g €
Aut(V?) that satisfy the level-matching condition, i.e. such that the confor-
mal weights in the g-twisted sector Vgu of V¥ take value in %Z, where N is
the order of g. In general, the conformal weights of a g-twisted state takes
values in

&y 1

(2.2) ey + NZ’

where A is a positive integer (depending on ¢g) dividing both N and 24 (see
Appendix B for the proof of the latter), and £, € (Z/A\Z)* is an integer de-
fined modulo A and coprime with A. Here, A is also the order of the multiplier
system of the McKay-Thompson series Tj;. Even when A > 1, a consistent
CHL orbifold can be constructed: it is sufficient to take a symmetry (4, g)
with a shift 0 of order N\ rather than N. We refer to [57] and Appendix B
for more details.

2.2. The dilaton and other moduli

The spectra of these “Monstrous CHL” models will be discussed in some
detail in the next sections. However, one striking feature of these mod-
els deserves to be stressed: there are no local massless degrees of freedom
[5, 39, 45]! This is most easily understood in the light-cone quantization,
where massless string states correspond to states with conformal weight 1
(currents) in the internal bosonic CFT. However, as stressed in the last sec-
tion, V7 has no currents; furthermore, no massless states can be introduced
in the orbifold by (9, g), since the strings in the twisted sectors have non-zero
fractional winding along S*, so that they are necessarily massive.* Therefore,
all physical states in the light-cone quantization must be massive.

In particular, as noticed in [5, 39, 45], there are no moduli and all pa-
rameters of the theory seem to be completely fixed, including the string
coupling constant gs. This is puzzling, as the Zy X Zs orbifold procedure
leading from the compactification on T® to the model we are considering
seems to be perfectly consistent for all (small) values of the string coupling
constant. It is not clear what kind of mechanism could fix g5 to a specific
value. On the other hand, the alternative idea that the coupling constant is
a free parameter not related to any string background seems to be at odds
with all we know about string theory.

4This argument fails in the limit R — 0. Indeed, we will see in the following
sections that, in some CHL models, massless states can appear in this limit.
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A somehow analogous issue seems to arise for the radius R of the com-
pactification circle. In this case, however, the resolution is quite clear: while
the gauge (specifically, diffeomorphism) invariance in two dimensions is more
than sufficient to fix the metric and eliminate all local degrees of freedom,
the length of the geodesic along the circle is gauge invariant and therefore
has physical effects. The possibility of a residual global degree of freedom of
zero measure that cannot be fixed by a gauge transformation is a well known
phenomenon, occurring, for example, in the gauge fixing of string theory at
genus higher than zero. Even in this case, however, it is puzzling that there
is no physical state in the string theory corresponding to deformations of R.

We propose that both these puzzles can be solved by a more careful
treatment of the physical states at zero-momentum. Recall that the light-
cone quantization can be shown to be equivalent to BRST only for non-zero
momentum states k* # 0. At zero momentum, the light-cone gauge is not a
good gauge choice, and one has to apply a BRST quantization procedure.

For simplicity, let us consider the bosonic string compactified on V¥ x
V!, where the same issues appear. In the BRST formalism, the physical
states in closed string theory correspond to the semi-relative BRST co-
homology, i.e. the BRST cohomology on the complex of states satisfying
(bg — bo)|[¥)) = 0. At zero momentum, the BRST cohomology includes all
states of the form

(2.3) D" = c1a" 610" 4]0),
n

where a5, ) are the standard bosonic oscillators in the d uncompactified
directions and ¢y, ¢, are the ghosts, as well as the ghost dilaton [4, 6, 25, 58]

(2.4) Dg = (61671 — 51571)|0>.

Notice that all d? states D*” are physical at zero momentum; the corre-
sponding string background determines the global geometric properties of
our two dimensional space-time, such as the radius R.

The ghost dilaton Dy is the BRST variation of x := (co — ¢9)|0). How-
ever, it is not BRST exact in the semi-relative complex, since y is not a
‘legal’” state in this complex; that is, (bg — bo)x # 0. The zero-momentum
limit of the physical dilaton field is the following linear combination [4]

(2.5) D :=1,, D" — Dy = D,, — Dy,
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of the ghost dilaton and of the so-called matter dilaton

(2.6) Dy, := nu DM,

Indeed, this is the linear combination that transforms as a scalar under
gauge transformations. Another interesting linear combination is the trace

d
(27) g = nl“/g#l/ — Dm _ §-Dg7
of the (Einstein frame) graviton
1
(2.8) G = D" — - Dy,

2

where d is the number of uncompactified space-time dimensions.

In the framework of closed string field theory, it has been shown that,
for any number of space-time dimensions d, a change in the ghost dilaton
background D, has the effect of shifting the string coupling constant [6,
58]. On the other hand, a change of the graviton trace background G only
corresponds to a field redefinition and has no observable physical effect [4].
In the usual case where d > 2, this implies that the string coupling constant
is determined by the background for the dilaton D (the zero-momentum
limit of the physical dilaton field) or, equivalently, by the background for
the ghost dilaton D,. In the case we are considering, where there are only 2
non-compact directions (d = 2), the dilaton D coincides with the graviton
trace G and therefore has no observable physical effect. However, a ghost
dilaton background still makes perfect sense in our theory and has the effect
of shifting the string coupling constant.

While this reasoning has been derived in the context of bosonic strings,
analogous arguments should hold for the Monstrous heterotic CHL models.
We conclude that also in these theories, we are free to set the string coupling
constant to any particular value, since this corresponds to the choice of
the string (ghost) dilaton background, as usual. In particular, in the next
sections, we will consider the Monster CHL models in the free theory limit
gs — 0.
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3. The space-time index I: Fock space construction

We shall now consider the Fock space construction of the supersymmetric
index Z. We do this in two steps: first, we study the case without any CHL-
orbifold and then then we generalize this to the twisted indices associated
with the Monstrous CHL models.

3.1. The untwisted case

Let us consider compactification of the heterotic string on V¥ x V*# to two
space-time dimensions (without CHL orbifold, to start with). We consider
a space-time with a flat metric of Lorentzian signature and the topology
of a cylinder S! x R, where R is the time direction and S is a space-like
circle of radius R. The theory has (0,24) space-time supersymmetries [5] Q?,
1=1,...,24, with algebra

where (PP, P}) are the contributions to the space-time momenta coming
from the world-sheet right-moving sector. This algebra has two kinds of
supermultiplets: short (BPS) supermultiplets, that are 1-dimensional, and
whose states satisfy

(3.2) kg = kg,

which is essentially a BPS condition for the algebra (3.1) ®; and long super-
multiplets with k:% > krjl2 of dimension 2'? and containing half fermions and
half bosons.

We want to consider a Hilbert space H corresponding to the ‘second
quantization’ of this string theory, i.e. including any number of fundamental
strings. In this theory we consider the refined supersymmetric index

(3.3) Z(B,b,v, R) = Try (e PP W oM (—)F),

where H is the space-time Hamiltonian, F' is the space-time fermion num-
ber, and W and M are the total winding and momentum numbers along
the circle S'. We will use lowercase letters w and m to denote the wind-
ing and momentum of a single fundamental string. Here, 3 is the inverse
temperature, and b and v are chemical potentials conjugate to the quantum

"We denote by kY p, kj 5 the eigenvalues of P p, P} p.
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numbers W and M (b can be interpreted as a background B-field and v
as an off-diagonal component of the space-time metric). We impose peri-
odic boundary conditions for the fermions around the circle S'. The space
H carries a representation of the supersymmetry algebra (3.1) and, by the
usual index arguments, the only states contributing to this trace are the
ones in short (BPS) supermultiplets. Thus, we can reduce the trace to the
BPS subspace Hpps.

Let us consider the 1-particle BPS states, obtained through a light-
cone quantization of the string theory. The mass-shell and level-matching
conditions read

(3.4) {8 i )

where (hy,hg) are the (Lo, Lo)-eigenvalues of the state in the internal CFT
V1 x V1. Since there is no winding around the time direction, we have

(/{71)2+th1

(k2)* +
+ (k’ ) —l—hR—*

(kg)?

DN DO
NI—= DNI—

(3.5) K =ky=F

where E is the eigenvalue of the space-time Hamiltonian H. By imposing
the BPS condition (3.2), and using the relations

1 /m

(3.6) Kl = 75 (% (— ~wR), k= \1[ ( +wR)

we obtain

57) {0:—;( L2 4 L2 4 hy — 1= —mw + hy — 1,

The only states satisfying hr = 1/2 are the Ramond ground states in Vi,
If we set

(3.8) J(r)= Y e(n)g" =q ' +0+196884g + - - ,

n=-—1

then for each w, m € Z there are 24¢(mw) fermions carrying winding w and
momentum m along S' and with energy

(3.9) E:k}zz\}i@juwz%).
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In a free theory limit, we can think of the second quantized BPS Hilbert
space Hpps as a Fock space built in terms of fermionic oscillators cor-
responding to the 1-particle BPS states. In particular, states with energy
E > 0 (respectively, E < 0) are interpreted as creation (respectively, anni-
hilation) operators. Notice that

(3.10) c(mw) >0 = mw = —1 or mw > 0,
so that the condition £ > 0 implies

(3.11) m,w >0 or {m_l’w__l ifr<1

m=—lw=1 if R>1.
The ground state is, by definition, the unique (for R # 1) state in H that is
annihilated by all operators with £ < 0. Notice that this definition depends
on the radius R. When R = 1 there are additional zero energy fermionic os-
cillators and the ground state is degenerate. The space Hppg is constructed
by acting on the vacuum in all possible ways with creation operators. Let us
focus on the case R > 1, for definiteness; the case R < 1 is analogous. The
relation (3.9) generalizes by linearity to the relation

(3.12) H = \2 (ﬂé + WR> ,

between operators on the BPS space Hpps, so that

_ 24(=BEo+ivmo+ibwy)

(3.13) Z(B,b,u,R) =e
. H (1— o~ U5 (B +wR) 2mibw e2mivm)2de(mw)
w>0
meZ

where we included the possibility of vacuum momentum 24my, winding 24wy

and energy 24Fj = %(% + woR). Tt is useful to introduce the complex
parameters
. BR . B
3.14 T=b+1 U=v+1 ,
(3.14) 2V/2m 2V271R

so that

(3.15) Z(T,U) = e24(2mi(moU+woT)) H (1— 627riUm627riTw)24c(mw)'

w>0
meZ
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In Section 4, we will provide a formula for Z(T,U) (or, rather, its absolute
value) in terms of a string 1-loop path integral. In this context, the time
direction is Wick-rotated to a Euclidean time compactified on a thermal
circle of radius 3, so that the space-time becomes a Euclidean torus T2. The
complex parameters U and T are then identified with the complex structure
and the (complexified) Kihler structure moduli of T?.

The vacuum winding and momentum will be computed in Section 5 to
be (wg, mo) = (—1,0), so that

24
(3.16) Z(T,U) = (6—27riT H (1- eQWiUmeQNiTw)c(mw)> '

w>0
meZ

Apart from the exponent 24, this is exactly the product formula for Borcherds’
Monstrous Lie algebra! This is not an accident: we will show in Section 5
that the (first quantized) string BPS states are a representation over this
algebra.

As stressed above, when the radius R is varied continuously from R > 1
to R < 1, the energy of two fermionic operators change sign (an annihilation
operator becomes a creation operator and vice-versa), so that the vacuum
state changes. Thus, one might expect a discontinuity of Z(T,U) as one
crosses the line R = 1. Furthermore, the infinite product above is expected to
converge only for sufficiently large 5. However, in the alternative derivations
of the index Z in the following sections, it will be clear that there is no
discontinuity as the radius crosses the line R =1 and that Z(7,U) is an
analytic function of T" and U over all the upper half of the complex plane.

3.2. The twisted case

There are two ‘twists’ of the previous construction that will be interesting
for us. The simplest modification is to consider

(3.17) Z1.4(B,b,v, R) := Try (g e PH 2mibwe2mivm_1)F

where we insert an element g € M of the Monster group inside the trace.
More precisely, the fermionic operators carry an action of the Monster group
M and this determines a representation of M over Hppg preserving H, M
and W. In particular, the vacuum state is invariant under this action, since
the only 1-dimensional representation of M is the trivial one.
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The second modification of the index is to consider the ‘second quantized’
BPS space Hepr(g) constructed from the CHL model associated with an
element g € M, i.e.

(3.18) Z,1(B,b,v, R) := TT?-LCHL(g)(G_ﬂHe%ibWe%i”M(—l)F).

We will show that for g of order N (with A = 1), these twisted indices take
the form

24
(319) Zg,ﬂ (T’ U) — <6_27riT H (1 _ €2ﬂ-iU§$627TiTn)é""m'(77Vn)> :

n>0
MEZ

mn

where the &,,,(%2) is the dimension of the e?™m/N

-eigenspace of the ¢"-
twisted sector Vghn at level Lo — 1 = {7, c.f. equation (4.22). We will denote
these graded spaces of states by

(3.20) VA, = {v € Vi lg(v) = ezﬂ%} , n,m € ZL/(NZ).

Notice that, by definition, ¢, ("5") are always nonnegative integers. We
will also show that similar equations hold in the case A # 1. The indices
Zg1 will be the main subject of our investigation.

3.3. Coupling with gravity?

Let us critically reconsider the construction of Sections 3.1 and 3.2. We have
considered the physical string states arising from the light-cone quantization
of the Monstrous CHL models and from these built a ‘second quantized’ Fock
space of states, which describes the spectrum of an arbitrary number of free
strings. We have taken the strings to propagate in a fixed geometric back-
ground, neglecting any backreaction of the strings on the space-time metric
or B-field. Consistent with taking a non-dynamical background, we have
ignored the zero-momentum string modes that appear in the BRST quan-
tization of string theory, which would be associated to background fluctua-
tions. This decoupling is consistent as long as the string coupling constant is
strictly zero, which we have assumed throughout our computations. From a
different viewpoint, the limit g5 — 0 pushes the Planck scale M pjqpe much
higher than the string scale M¢,ing, so that it makes sense to study the the-
ory at energies in some intermediate region My ing < E < Mpigpner. This
is a convenient set-up for studying the symmetries of the spectrum of the
CHL models, as we will do in the following sections.
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It is natural to ask if one can turn the string coupling constant on, so
as to consider a system of ‘second quantized’ interacting strings coupled
to a dynamical background. Unfortunately, this does not seem to lead to
a consistent physical model. The basic reason is that, in a theory with dy-
namical background fields, the number of spacetime-filling strings cannot be
arbitrary, but is fixed by the requirement of anomaly (or tadpole) cancel-
lation®. In two-dimensional heterotic compactifications, there is a potential
1-point function for the B-field arising from the compactification of the 10-
dimensional Green-Schwarz term. This term in the effective action arises
from a 1-loop string amplitude and its coefficient can be computed using
the techniques in [51, 60] to be

(3.21) 51 (24T Ea(r)

= 57 (2407 + 0(0)(1 = 240 + O(¢%))) ;o = —24.
Here, E5 =1 — 24q + - - - is the Eisenstein series of weight 2 and the notation
(-)qo denotes the constant term in the Fourier expansion of the modular form.
This result can also be understood in terms of local gravitational anomalies
for the two-dimensional effective theory: the 1-point function for the B-field
is necessary in order to cancel the contributions to the anomalies from the
24 chiral gravitini and dilatini. The tadpole makes the background unstable
and the theory inconsistent, but there is a standard procedure to cancel
it: one has to insert 24 spacetime-filling fundamental strings, which couple
to the B-field and thereby add the required positive term to the one-point
function. Equivalently, the contributions to the gravitational anomalies from
the degrees of freedom of the spacetime-filling heterotic strings cancel the
ones from the gravitini and dilatini.

The calculation of the tadpole for the B-field also suggests that the
correct ground state winding in our second quantized string theory is 24wy =
—24. A similar analysis shows that there is no tadpole for the off-diagonal
component of the metric, which implies the ground state momentum mqg = 0.

The outcome of this analysis is that the only sector of our second quan-
tized string theory that can be consistently coupled with gravity and a dy-
namical B-field is the one with 24 spacetime-filling strings, i.e. the sector
with total winding number W = 0. We stress once again that it is formally

6This is completely analogous to the familiar restriction on the number of
spacetime-filling D9-branes in the 10-dimensional type IIB superstring.
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correct to consider the full second quantized free strings in a fixed, non-
dynamical background. In a sense, the situation is similar to the case of
a two- or six-dimensional quantum field theory whose matter content con-
tributes to a non-vanishing gravitational anomaly: the theory is perfectly
consistent as long as it is is decoupled from gravity! The results of the
following sections provide strong support in favour of this viewpoint. On
the other hand, the inconsistency of the full construction when the string
coupling constant is non-vanishing makes our physical interpretation of the
moonshine phenomenon not completely satisfactory. We hope we will be
able improve this point in future publications.

4. The space time index II: 1-loop integral

We shall now define and evaluate a one-loop integral in the Monstrous CHL-
models. The result of this integral reproduces the same supersymmetric
index as was calculated in the previous section using completely different
methods. The main benefit of the present, path-integral approach is that
T-duality becomes manifest. After evaluating the integral we analyze its T-
duality symmetries in great detail, revealing that the T-duality groups are
directly related to the moonshine groups I'y.

4.1. The 1-loop integral and the GSO projection

The supersymmetric index Z,1(T,U) is a refined partition function at fi-
nite (inverse) temperature . In general, one expects any such partition
function to be given by a suitable Euclidean path-integral with Euclidean
time periodically identified with period S. In our context, we need to con-
sider our Monstrous CHL-models with the two space-time directions on a
Euclidean torus T? with complex modulus U and Kihler modulus 7. The
index Z41(T,U) should be obtained by a path-integral

(41) Zgi(j—'7 U) — e*(StrEE+Sl,loop+...)’

where Sy_jo0p is the string /-loop contribution. In general, each loop con-
tribution is weighted by a power g2~2¢ of the string coupling constant gs.
Since we are considering a free theory g, = 0, it is natural to expect the

path-integral should be one-loop exact. The one loop contribution is given
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by the standard string path integral on a torus

1 d27— Lo—= _-Z/D_i
(42) Slfloop = 5 ?(TI'NS(Q 24q 24 PGSO)
F 12

- TTR(qLo_iqLO_iPGSOD

i.e. a trace over the (GSO projected) full space of states, with different signs
for the Ramond and Neveu-Schwarz sector to take the space-time fermion
number into account. The GSO projection is rather subtle for fermions with
k:%% = 0. In two dimensions, the massless Dirac equation relates the spin
of the state with the sign of its momentum ki g. Therefore, for massless
fermions, the GSO projection is implemented by including states with ei-
ther positive or negative transverse (internal) fermion number, depending on
whether ko g = k1 g or ko g = —k1 g. In our specific case, there are 24 inter-
nal Ramond ground states with internal fermion number (—1)¥ = +1 and no
states with (—1)f = —1. Therefore, a properly implemented GSO projection
should include 24 states with kg g = k1 g and no states with ko g = —Fk1 g.

In practice, it is however very difficult to implement the GSO-condition
directly in the 1-loop path integral. We circumvent this by the following
trick. Consider instead the naive path integral

we _ 1 [dT Lot Lot 1= (=D)F
(4.3) {lilloeop: 2/]__7_22 Tryg (C] g 2#

a1l (=DF

where the trace is taken over the holomorphic and anti-holomorphic ‘trans-
verse’ CFTs and over the winding-moments in the light-cone directions. The
error we introduce in this way corresponds to the contribution of 24 copies
of each massless (i.e., k% = 0) fermion with the wrong chirality, i.e.

(44) ilill\gi)p = Sflilleoop + P(Sililleoop)v

where P is the parity transformation in the space direction. Let us focus on
the case g = 1 for clarity. We know that Z(7T,U) is given by the exponential
exp(—S}r_“ﬁ)Op) of the correct 1-loop path integral. Therefore, the exponential
of the ‘naive’ 1-loop contribution corresponds to

(4.5) exp(—Spave y — Z(T,U) x P(Z(T,U)).

1—loop
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Parity reversal changes the sign of momentum and winding in the space
direction

(4.6) M — —M W — —W,

while leaving the Hamiltonian H fixed. From the formula
(4.7) Z(R,B,b,v) = Try, o (=1) e PH2m0We2mivll),
we see that the parity transformation corresponds to

(4.8) P(Z(R,B,b,v)) = Z(R, 3,—b, —v),

which, in turn, is equivalent to

(4.9) P(Z(T,U)) = Z(-T,-U) = Z(T,U).
To conclude, if we consider the ‘naive’ 1-loop integral then we have
(4.10) e~ S = |Z(T, U)J%.

Analogous results hold for the cases g # 1. Therefore, the ‘correct’” GSO
projection is simply obtained by picking the holomorphic part of e™5i o,
We will drop the superscript ‘naive’ from now on.

4.2. Evaluating the 1-loop integral

In this section, we compute the 1-loop path integral (4.3) explicitly. Let
us first focus on the unorbifolded case g = 1. The trace factorizes into the
product of three contributions from V¢, from V¥ and from the winding and
momenta along T2. The contribution of the oscillators along T? and from
the ghosts and superghosts cancel each other, as usual. First note that V'
happens to have the nice property that [5]

e 1=(=1DF 1+ (=DF
(411)  Try. g <qL° (2)> —Trpe g <qL° (2)) = —24.

This completely takes care of the trace over V! in (4.3).
In the untwisted case (g = 1), the sum over winding and momenta
along T? is the usual theta function Or22 (T, U, 1) = Z(kL,k:R)eF?v? qFi/2gkR/2,
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where T'?2 (the Narain lattice) is the even unimodular lattice with signa-
ture (2,2). The rest of the left-moving contribution comes from the Monster
module V% As worked out carefully in e.g. [26], the theory simply has chiral
partition function J(7).

For our more general CHL models, the computation is slightly more com-
plicated. One needs to sum over the (9, g)-twisted sectors and then project
over the (9, g)-invariant states. Putting everything together the 1-loop inte-
gral (4.3) can now be written in the following explicit form

o 1"22
(4.12) S loop = — / 272 2 s (T,U,T)Tyr g+ (1),

where r labels the different (6, g)-twisted sectors, + fo: | projects over the
0, g)-invariant states, and T,r ,s(7) is the ¢"-twisted ¢°-twined partition

g 9.9 g g p
function of the Monster CFT:

(4.13) Tyrg+(7) = Trys (g°¢" 7).

We have also defined the shifted theta series by

2,2 1 kR
(4.14) oL, (T,UT)= > ™ AgEgE
AETI+1'2:2

727m - —%—i
= g E qz gz

mi,mo,W2E€Z w1 € +7Z

where

(T i) w9 w1 _U 2
415 K2 — YAz mz) AN
(4.16) k% = k3 — 2myw; — 2maws.

The lattice L of winding and momenta is the union L = Ui\f:l(rd +122),
where r labels the different twisted sectors.

Following Harvey-Moore [43], Borcherds [8] developed a method for cal-
culating general integrals of the form

dxdy
Yy

(4.17) (M, F) := /f (On(z), F(2)),



Monstrous BPS-algebras & the superstring origin of moonshine 457

where z = x + iy € H, M is a lattice, F' is a weight k vector-valued modular
form (valued in the group ring C[MY /M]) and O, is a weight —k vector-
valued Siegel theta series for the lattice M. The notation (, ) denotes the
scalar product

(4.18) (ey,€y) = Oygyr0-

in the vector space freely generated by e,, v € MY /M. In terms of the
basis e, a vector-valued modular function F' for a congruence subgroup
I' C SL(2,Z) can be written as

(4.19) F)= Y F(es,

yEMY /M

where the components F,(z) are modular functions for I', transforming in the
metaplectic representation of (the double cover of) SL(2,Z) on C[M" /M].
In a similar vein, one defines the vector-valued theta series as

(4.20) Oum(r) = Z OM vy,
~yeMY /M

where 074, is the ordinary “shifted” Siegel theta series.

We now want to relate the general integral ®(M, F') to our one-loop
integral (4.12). Let us focus on the case A\ = 1 for simplicity. In our case the
lattice M can be identified with (c.f. Eqn. 4.42)

(4.21) M=L"2NZ®ZOZDZ,

which is the dual of the winding-momentum lattice L.
To construct the vector-valued modular form F, we take the discrete
Fourier transform of the generalized moonshine functions [10]:

(422) F,},( ) Ek Z 6_2WZWT9 97( ):: Z él,k(n)€2ﬂizn

jEZ/NZ n€Z/NZ

Notice that the Fjj are the generating functions for the graded dimensions
of Vj i, c.f. equation (3.20). Thus

(4.23) Fy(z)= Y Fp(2)ews

1,k€Z/NZ
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is a vector-valued modular form of weight 0. Similarly, the theta function
for the lattice M = LV is

(4.24) Orv(o,T,2) Z Orv i€y,
~yeL/LY

and the components are related to our Narain theta function by:

N
2mist 2,2
e~ O, (T,U,).
=1

(425) 0LV+"Y(U7 T,Z) = N

With this choice of data the integrand in the theta lift ®(LY, F;) can be
written out explicitly as

(4.26) (©rv,Fy) = Z Z 01 5F0, 50

~EL/LY §€L/LY

Z Orv i r)Flk

1,k€Z/NZ

1 ik
— 2l
= N E e NTgl,gjeLV—i-(l,k)
1,j,k€Z/NZ

=5 Y el mUT (),

1,jEZ/NZ

where we used the relation

(427) 917;2 = Z 6_27rijk/N0Lv+(l’k).
kEZ/NZ

Thus, we conclude that our integral (4.12) is indeed of the type (4.17) and
may be evaluated using the methods of Borcherds [8]. Omitting the details,
we find that our one-loop integral (4.12), for large enough imaginary parts
T5, Us, evaluates to

(4.28) S1—t00p = —481log|e 2T [T (1 — XU N 2T m)enm (557)],
n>0
meZ

The argument of the logarithm can be recognized as the absolute value of
the infinite product formula (3.19) for the twisted index Zg 1, provided that
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the vacuum contribution is e 2L, Thus we conclude
(4.29) e Srmteor — | 7y (T, U)|?,

as we expected based on physical arguments.

4.3. T-dualities and automorphisms of lattices

In this section, we study the groups of T-dualities of the Monster CHL
models with Euclidean time compactified on a circle. As we will see, the
most general group of T-dualities relates a CHL model at a given point in
the moduli space to a (possibly different) CHL model at different values of
the moduli.

We denote by wy, m1, ws, my the winding and momenta along the space-
like and the Euclidean time circle of T?, respectively. The vectors of winding-
momenta span a four dimensional lattice (the Narain lattice) L. With each
vector in L are associated the left- and right-moving momenta (kr,kg) €
R? x R?, depending on the moduli T, U. The difference k‘% — k‘%, however,
is a moduli-independent even integer and defines the quadratic form of sig-
nature (2,2)

4.30 mi, Wi, Mo, W 2=k k%= 2miwy + 2mows,
L R

on the lattice. A necessary condition for T-duality to preserve the OPE, is
that the action on the lattice L is an automorphism, i.e. an invertible linear
map that preserves the quadratic form.

Thus, as for ordinary compactifications on T?, the full T-duality group of
any CHL model is a discrete subgroup of O(2,2,R) and it can be identified
with the group of automorphisms of the lattice L (of signature (2,2)) of
winding-momenta along T2. The index Z, 1 (T, U) is expected to be invariant
under the subgroup of self-dualities of the CHL model, i.e. the group of T-
dualities that related two different points in the moduli space of the same
CHL model.

The group of T-dualities always contains the parity transformation P
along the space direction, acting as in (4.9) on the index Z (T, U), as well as
T-duality T along the Euclidean time circle. The latter acts by

| —

(4.31) R =

=y
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on the radius R = 2‘%, and more generally by
(4.32) T:U < 1
. . =
Thus, T acts as
1 1
(433)  Zya(T,U) = T(Zyu(T,U)) = Zgs <_U7 _T> |

on the index and is always a self-duality of any CHL model, so that Z, 4 (T',U)
must be invariant (possibly up to a phase) under T.

Every other T-duality in O(2,2,R) can be obtained by composing P and
T with T-dualities in the connected component SOT(2,2,R) of O(2,2,R)
containing the identity. There is an isomorphism

(4.34) SOT(2,2,R) = (SL(2,R) x SL(2,R))/(—1,—1).

To make this isomorphism explicit, rewrite a vector in R%? as a 2 x 2 matrix

(4.35) X = < w2 “”)

—mi1 My
so that its norm (4.30) is simply the determinant
(4.36) | X|? = 2miw; + 2mows = 2det X.

Then, there is an obvious action of SL(2,R) x SL(2,R) on X preserving its
norm, namely

(4.37) X = vmXy Y1,7Y2 € SL(Q, R),

and its clear that the kernel of this action is (—1, —1). We denote by Sb+(L)
C SL(2,R) x SL(2,R) the preimage of SOT(L) C SO*(2,2,R) under the
quotient map SL(2,R) x SL(2,R) — SO™(2,2,R), so that

(4.38) SO*(L) = SO (L)/(~1,-1).

A T-duality acting on the lattice L by a general automorphism

wy Wy a b wy Wy a b
(4.39) <—m1 m2>'_><c d) (—m1 mz) (c’ d’)
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must also act on the moduli T" and U by

T — & d'U + VN

44 s A
(4.40) T INNT +a 02Ut

so that the left- and right-moving momenta are preserved

@ (2w (W)

215U, ’
k‘%% = k‘% — 2m1w1 — 2m2w2.

2

(4.41) k2 =

In the unorbifolded case (i.e. g = 1), preserving the norms k7, k% of all left-
and right-moving momenta is both necessary and sufficient for the spectrum
and the OPE of the theory to be preserved. For general g, this condition
is not sufficient; the elements of SNOJF(L) preserving a given CHL model
generate its group G, of self-dualities.

In the next subsections, we will study the groups of automorphisms
Sb+(L) of the lattices L and then discuss the subgroups of self-dualities.
We will first consider the simplest case A = 1 and then extend the analysis
to generic \.

4.3.1. Case A = 1. In this section, we describe the group of T-dualities
of a Monster CHL model for a symmetry g of order N with trivial multiplier
(A =1). The case A > 1 will be considered in the next section.

In the case of a CHL model with respect to a symmetry g of order N,
the winding and momenta span a lattice L given by

1
(4.42) (ml,wl,mg,wg) GZ@NZEBZEBZ.

The following subgroup of SL(2,Z) C SL(2,R)
(4.43) To(N) := {(Z 2) € SL(2,Z) | ¢=0 mod N} :

will be important in the following. The normalizer I'o(N) of To(N) in
SL(2,R) is described in [23]. It consists of the matrices of the form

(4.44) \}a (dC\ijh bcgeh ) ’
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where a,b,c,d € Z, h is the maximal integer such that |24 and h?|N, e €
Z~q is an exact divisor of N/h?(denoted by eH%), ie. e|% and (e, %) =17
and

N
(4.45) ade? — bcﬁ =e.

Among the elements in Ig(N)/Io(N), an important role is played by the
Atkin-Lehner involutions

1 fae b
(446) We - % <CN d6> )

which obey W2 € I'g(N) and W, W,, = W,, modulo I'q(N), where e3 :=
6162/(61,62)2-

Theorem 1. The group so* (L) of automorphisms of the lattice L is

a0 w-{ (G (% 4w (G 0)
€ SL(2,R) x SL(2,R)

a,b,c,d,a’\V,c,d €Z, e cZy, eHN}.

The group is generated by adjoining to the normal subgroup I'o(IN) x T'o(NV)
C S~O+(L) the Atkin-Lehner involutions (W, W), for all e||N.

Proof. See Appendix A.1. O

For N =1, preserving the norms k%,k% of all left- and right-moving
momenta is both necessary and sufficient for the spectrum and the OPE
of the theory to be preserved. However, this is not the case for N > 1.
The reason is that the orbifold construction forces the states with winding
and momentum w; := 5, my along the spatial circle S! to be tensored
with a state in Vriml, the g = em%—eigenspace of the ¢g"-twisted sector of
the internal CFT V9. Notice that the subgroup T'g(N) x I'o(N) of Sb+(L)
leaves n and m; fixed modulo N. It follows that this subgroup is a genuine
T-duality group, establishing an equivalence of the Monster CHL model at
two different values of the moduli 7', U.

"In this section, we make use of the standard notation ged(a,b) =: (a,b).
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The effect of the Atkin-Lehner involutions (W,, W) € Sb+(L) has been
analyzed in [57]. Let us first introduce some notation. For each holomorphic
bosonic VOA V of central charge ¢ = 24 and symmetry g € Aut(V), let us
denote by (V, g) the CHL model based on the heterotic compactification on
T? x (V x V*%) followed by an orbifold by (6, g), where § is a shift of the same
order as g. Then, the transformation (W,, W,) establishes an equivalence
between the CHL model (V?, g) with moduli 7, U and the CHL model (V’, ¢')
with moduli W, - T, W, - U. Here, V' = V%/(g"/€) is the orbifold of V* by
gN/e and ¢’ = Qg where Q is the quantum symmetry acting by e™e on the
(g™V/¢)"-twisted sector and the action of g on V' is induced by its action on
V. Schematically,

(4.48) (V4 g) L (pr — yagNey o = gQ).

This result follows immediately by observing that if the action of the Atkin-
Lehner involution on the winding momenta is

(We,We)
(4.49) (m1, w1, ma, we) $——— (M, wi, mh, wh),

then (essentially by definition of V' and ¢’)

(4.50) o =V

’ /
n’,m} n,my?

o
2mimy

where VT’L,M,1 is the ¢ = e ~ = eigenspace of the ¢’" -twisted sector of the
CFT V' and n' = Nw'.

From this discussion, it is clear that, for a generic (v1,72) € Sb+(L),
there is a relation between the supersymmetric index relative to the CHL
model (V% g) and one for the CHL model (V’, ¢') by®

’

(4.51) ZYUT,U) =20 (1 - T -U),  (m,72) € SO (L).

It is useful to consider the subgroup G, C Sb+(L) of T-dualities such that
the corresponding orbifold V' is isomorphic to V¥ and ¢ is in the same
Monster conjugacy class as g. We call G4 the group of self-dualities. For this

8Strictlyu speaking, our argument only implies an identity between the absolute
values |Z}';| and |Z), ;|. However, one can check that non-trivial phases only arise
when A > 1.
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subgroup, Eq. (4.51) implies
b b
(4.52) ZW(TU) = Z) (- Ty - U), (71,72) € Gy

i.e. the index Z;i is invariant under the subgroup Gy. The group G| is gen-

erated by I'g(IV) x I'g(IN) as well as the Atkin-Lehner involutions (W, We)
such that V?/(gN/¢) = V% and ¢ is conjugated with g.

4.3.2. Case A > 1. Let us consider the case where the level matching
condition for the g-twisted sector in the Monstrous CFT is not satisfied, i.e.
the conformal weights take values in

&y 1
(4.53) o) + NZ’
where A|N and (&,,A) = 1. As shown in Appendix B, for the Monster CFT
Vi, X is always a divisor of 24. The CHL model for A > 1 is constructed by
taking a shift of order N\ along the space-like circle S' and then tensoring
strings with winding m and momentum 7 along S ! with states in the spaces
Vrim, defined as in (B.13). One has V,Iim =0 unless m —n&; =0 mod A.
Therefore, the lattice L of winding-momenta along T? is spanned by

my A & 0 0
wi | |0 od A L P =
(4.54) my | = k 0 +n 0 + k 1 +n 0 k,n,k,n ez,
wy 0 0 0 1

again with quadratic form (4.30).
It is useful to define the group I'g(N|\) C SL(2,R), whose elements are
matrices

(4.55) <c?\7 b@) .

The group I'o(N|A) is a subgroup of the normalizer of I'g(NA) in SL(2,R).
In particular, as discussed in [23], I'g(N|\) is generated by I'g(N ), together
with

(4.56) (é 1?) and <J{, ‘1)>

One can also define the Atkin-Lehner involutions for I'g(N|))

m (5 12)
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where eH%, that are also in the normalizer of I'o(NA) in SL(2,R). Two
transformations

(4.58) 1 (ae b/A 1 fde V/X

' Ve \cN de Ve \{N dé
are in the same I'o(IVA) left (or right) coset if and only if e = ¢/ and there
is k € Z, with (k,\) = 1, such that

(4.59) a = ka,b = kb, = ke,d =rd mod .

Theorem 2. The group S~O+(L) of automorphisms of the lattice L consists
of transformations

(4.60) (\}E <C“Jf, béj) \}E <b,‘5‘/g€N Cljﬁ)) € SL(2,R) x SL(2,R)

where a,b,c,d,a’ V', d € Z, e € Lso with e||¥ and
(4.61) a = ra,b' = kb, = ke,d = rd mod A

for some k coprime to X. The 97:0%’ 18 generated by adjoining to the normal
subgroup T'o(NA) x To(NAX) C SO (L) the transformations

b ({0 W) (an D) (G03)G):

as well as the Atkin-Lehner involutions (we, we) for all eH%.

Proof. See Appendix A.2 O

As in the A =1 case, the generic T-duality in so* (L) is an equivalence
between the CHL model (V7 g) and a (possibly) different model (V',¢').
The index Z;; is expected to be invariant only under the subgroup G, C
Sb+(L) of self-dualities, i.e. where V' = V% and ¢ is conjugated with ¢’
within Aut(V%) = M. The subgroup T'g(N ) x To(N ) fixes the winding and
momenta modulo N\, so that it must be a (normal) subgroup of G,.

The effect of the symmetries (4.62) is rather subtle. A direct calculation
shows that the action of such dualities on momenta and winding along the
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spatial circle has the form

1
(4.63) wy W) = wy + XX(ml,wl, mo,ws) mod Z,
(4.64) my —=my =my — EgNX (my, wi, me,we) mod NNZ,

where X : L — 7Z is an integral-valued linear functional that depends on the
particular duality. As discussed in Appendix B, for all X € Z there is an
isomorphism

(4.65) Vi & VrEJrNX,megNX?

where Vﬁm is the g = e%—eigenspace in the ¢g"-twisted sector, n,m &
Z/NXZ. In the CHL orbifold, states with winding w = §; and momen-
tum m are tensored with states in Vnum. Thus, the dualities (4.62), together
with (4.65), are symmetries of the Monster CHL model to itself and the
index |Z,1(T,U)[* must be invariant under the corresponding action.

Finally, the Atkin-Lehner involutions (we,w.), where e||% establish an
equivalence with the model (V’, ¢'), where V' = V4/(g"/¢) (notice that N/e
is a multiple of A, so that the level matching condition is satisfied and the
orbifold is consistent) and ¢’ = g*QY is a certain combination of order N of
the quantum symmetry @ and g (see [57] for details).

To conclude, the group of T-dualities so* (L) contains the normal sub-
group G of self-dualities, generated by I'o(INA) x I'g(/NA), the transforma-
tions (4.62) and those Atkin-Lehner involutions (we, we) such that (V',g") ~
(V”, g) up to the non-trivial automorphism of the Monster CHL model. The

index Z;/, ]hl (T, U) is invariant up to a phase with respect to this group

(4.66) 2y (TU) = 1253 (n -T2 - U)P (1,72) € Gy
5. The space-time index III: algebras and denominators

In Section 3 we noticed that the (24th root of the) index Z(T,U) ¥ is ex-
actly the denominator of Borcherds’” Monstrous Lie algebra. In this section,
we will show that this is no coincidence: the Monstrous Lie algebra ap-
pears as a spontaneously broken gauge symmetry in the string theory we
are considering and the BPS states form a representation for this algebra.

90ccasionally, we will loosely refer to Z(T,U) as the algebra denominator;
the reader should be aware that the precise denominator is really its 24th root
Z(T,U)'/?4,
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An analogous relation exists between each Monstrous CHL model and an
infinite dimensional Borcherds-Kac-Moody (BKM) algebra. Using this fact,
we will prove that the only states contributing to the index Z are the ones
annihilating the winding-momentum MW which is the quadratic Casimir
of the algebra.

5.1. Monstrous Lie algebras

The single string BPS states are related to physical string states in the Ra-
mond sector with k% =0and hr = % whose vertex operator (unintegrated,

in the (—1/2)-picture) can be written as
(5.1) (céVye 9281 %X (2, 7),

where ¢, ¢ are the ghosts, e~?/2 is the superghost, 1V, is a holomorphic vertex
operator corresponding to the state y € V? of conformal weight Py, S;,
1=1,...,24 is a tensor product of one of the 24 Ramond ground states
of the internal SCFT V*# (labeled by 4) and a Ramond ground state of
positive chirality in the space-time directions. Furthermore, the space-time
momentum k must satisfy the level-matching conditions (3.4). We denote
by

(5.2) |X71:7a’ k;>’

the corresponding state.

These states have no supersymmetric partners: the reason is that the
corresponding states in the NS sector are either zero or BRST exact. Ex-
plicitly, space-time supersymmetry acts on the BPS states by (we omit the
holomorphic part ¢V, (z) of the vertex operator since it plays no role in this
computation)

(5.3) f dz(e?/?54)(2) (6e~*/255¥) (0) = 6 (LT a5 (@0, ™) (0)
= 69 (&40 — 1)) (0) oc kg (@t )(0),

where " is the weight 1 /2 field related to the current dX* by world-sheet

supersymmetry. We used the fact that the supersymmetry charge and the

BPS state are fermions of the same chirality and that k% = k}, by the BPS
condition. Restoring the dependence on the holomorphic part, we conclude
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that the supersymmetric partners of the BPS states can be written as

(5.4) kR,ul/;ﬁl/ﬂXv k>

and correspond to the (unintegrated, in the (—1)—picture) vertex operator
(5.5) (cévxe*‘gkR,uiﬁ“eikX)(z, zZ).

The space-time momentum k satisfies the same conditions (3.4) as above.
This state is BRST exact

(5.6) kR ) X, k) = G_1jalx. k)

where G_; /2 is the world-sheet supersymmetry operator. More precisely, the
vertex operator (5.5) is the BRST variation

céVXefg)kR#i;“eikX = {QgRST, cVXefdgeikX},

(5.7) <
{Q?RST7 (CVX€7¢€“€X)} =0,

where QERST and QERST are the left- and right-moving components of the
BRST operator. In general, massless (k> = 0) BRST exact (null) states in
string theory correspond to gauge invariances. The zero momentum limit
of such states give rise to global gauge invariance and charge conservation
laws. In the present context of compactification to 0 + 1 dimensions, the very
definition of the mass as k? is somehow problematic. Notice, however, that
the BRST exact states we are considering always carry non-zero momentum
and, in this sense, they are similar to massive null states. In analogy with
massive null states, the BRST exact states (5.5) are expected to generate
a spontaneously broken gauge symmetry, which is restored in the limit of
tensionless string o/ — oo, where all these states become massless.

Even if spontaneously broken, we expect the gauge symmetry generators
to form an algebra. To see this explicitly, it is useful to write the vertex
operator (5.5) in its integrated form and O-picture

(5.8) W, = / P2 (Vo o (OXM)eRX) (2, 2) = / 22 5V X (2, 2).

(For a vector with generic polarization 6“,~th~e O-picture vertex operator
also contains a term proportional to €, kg 1" 1)"; this term vanishes when
€, = kg, for symmetry reasons).
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By formally inserting this null vertex operator inside some string ampli-
tude, we obtain

(5.9) 0= WWViVy---) :y{%;<v1v2---f dz(VXeikX)(z,E)Vi--->,

i€

where ;. is a small circle of radius € around the insertion point of the
vertex operator V;. Let us consider the case where V; is the vertex operator
of a BPS state |y, «, k) inserted at z = 0, for some momentum k and state
X € V2. Then,

€

. ) — .A dlin -n A~ -
= lim dz(VyeFeXe) () ghnkr oxp (Z kR:uTZ ) X, o, k),

E\O Yo,e n>0

(5.10) lim 7{ dz(V, ™) (2, 2)|X, a, k)
Yo,e

where we have written the dependence on Zz explicitly. Now, since both
k:% = k:}l;‘3 and k:% = k}l%, we conclude that kr and kg are proportional to each
other. Therefore,

(5.11) kg - kg o k% = 0.
Let us consider the mode expansion

(Vxelk‘LXL)<z) — Z(Vxeik‘LXL)_nzn—l

nez

(5.12) o |
exp EkR# 7;”2” :Z(eZkRXT),mZm,

n>0 m>0

where we notice that the (anti-)holomorphic fields (VyeheX)(2) and
exp (Zn>0 kRu - ) have total conformal weights'® —mw + hy, =1 and

10Tn the remainder of the paper, for ease of notation, we will simply denote m;, w,
by m,w unless otherwise noted.



470 N. M. Paquette, D. Persson, and R. Volpato

k‘% = 0, respectively. By replacing this expansion in (5.10), we obtain

21
(613)  lm [ dr Y T X (R k)
€ x°J0 m>0
nez
_ li\I‘I(l) 62m(VX€ikLXL)_m(eikRXT')_m’)A(,04, ]%>
>0

= (VxeikLXL)obz, a, l%)

Thus, the action is given by the zero-modes of the holomorphic currents
(Vye*eXr)(2). These zero-modes form an algebra, with commutation rela-
tions given by the usual contour argument, and the space of single particle
BPS states is a module over this algebra. It is easy to see that this is ex-
actly the Monster Lie algebra constructed by Borcherds [7]. Indeed, the
starting point of Borcherds’ definition is the vertex operator algebra given
by the product of V% and the lattice VOA based on the unimodular lat-
tice I'l'! of signature (1, 1). Borcherds then essentially takes the cohomology
with respect to a suitable ‘BRST’ operator, whose class representatives have
total conformal weight 1. Borcherds” BRST operator corresponds to the left-
moving component Q]-L;RST of the full BRST operator in the string model. In
more detail, the level-matching and the right-moving mass-shell conditions
force the left-moving momentum kj, to take values in a lattice isomorphic to
' and the left-moving mass-shell condition is exactly Borcherds’ physical
state condition.

To summarize, the algebra of gauge symmetries corresponding to the null
states (5.4) is Borcherds’ Monster Lie algebra and the space of BPS (first
quantized) string states is a module over this algebra. More precisely, for
each generator of the Monster Lie algebra, there are 24 physical BPS single
string states, that form 24 copies of the adjoint representation. In Section 3,
these BPS string states were the starting point for the construction of the
second quantized BPS Fock space Hppgs and of the index Z(T,U). As we will
explain in the next subsections, Z(T, U)'/?* is a denominator for the Monster
Lie algebra and one can apply the Generalized Kac-Moody generalization of
the standard Weyl-Kac denominator formula to evaluate it.

This construction admits a direct generalization to the other Monster
CHL models. In all cases, the superpartners of the BPS states are BRST vari-
ations of some fields of conformal weights (1,0) and one obtains an infinite
dimensional Lie algebra generated by the zero modes of the corresponding
holomorphic currents. These are exactly the algebras considered in Section 4
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of [10] as part of the proof of the Generalized Monstrous Moonshine conjec-
ture [54]. In all cases, the first quantized BPS string states form 24 copies
of the adjoint representation of the corresponding CHL algebra.

5.2. The index as an algebra denominator

In the last section, we showed that each CHL model contains an infinite
dimensional Lie algebra g and that each generator of this algebra is asso-
ciated with 24 fermionic BPS states. These fermionic BPS states are the
ones involved in the construction of the BPS Fock space in Section 3 and
in the definition of the index Z, 1 (7, U). In this section, we will show that
each index Z, 3 (T, U) is essentially (the 24th root of) the Weyl denominator
of the corresponding Lie algebra g; this interpretation will allow us to de-
rive explicit formulae for the index in terms of the McKay-Thompson series.
This section may be viewed as a physical reinterpretation of the Lie algebra
homology computations of [38, 47-49].

Let us first fix some notation. Let g be a (semi-simple/(generalized)
Kac-Moody) real Lie algebra with a decomposition

(5.14) g=g ®hag",

with respect to a Cartan subalgebra b and subalgebras g* corresponding to
positive /negative roots. The algebra has a grading g = @'yer g” with weight
space I' C h* (or possibly in some extended (h¢)*) and such that each g7 is
finite dimensional. We denote by f%  the (real) structure constants of g

(5.15) b, => f%a bceg

acg

In the case where g is the algebra of a Monster CHL model, the Car-
tan subalgebra is generated by the zero-modes of the left-moving currents
0XH"(z), p = 0,1, so that the weight space h* is two dimensional. The grad-
ing is given by the set of winding-momenta (n,m) or, equivalently, by the
left-moving momenta k%, = 0,1, which are linear combinations of n and
m, depending on the radius R. Remember, we have defined n € Z implicitly
via w:= % (taking A =1 for now). The zero component k9 (the energy)
will be often denoted by FE. The positive energy condition £ > 0 then se-
lects the subalgebra g~ of negative roots. The graded components g7, with
v = (n,m) have dimension ¢y, ("), where ¢, (k) is the coefficient of ¢"
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in the Fourier expansion of F, ,,(7) (4.22) or, equivalently, the dimension of
the space Vﬁ,m at level Lo — 1 = k.

The algebras we are considering can be endowed with a non-degenerate
symmetric g-invariant bilinear form x such that, for any a € g7, x(a,b) =0
unless b € g77. Physically, x(a,b) is the coefficient of the two point function
of the holomorphic vertex operators associated with a,b € g. This is non-zero
only when the two vertex operators have opposite (left-moving) momentum.
On the Cartan subalgebra, & is the usual space-time metric with Lorentzian
signature. In particular, for any k' kY € b*, one has k(kY, k) = Nk kY.
Finally, we require a (Cartan) involution # acting by multiplication by —1
on h and mapping #g* — g and such that —r(a,#(a)) > 0 for all nonzero
a € g7, v # (0,0). This involution simply flips the sign of the momentum in
the vertex operator (V,e*rXr) — (V, e~ikeXr) 11

For each element a € g of the algebra, there are 24 Ramond string states
satisfying the BPS condition (kr)? = 0. For simplicity, we will build a BPS
space H just from one of these 24 sets of BPS states. The full BPS space
considered in Section 3, therefore, will be the tensor product of 24 identical
copies of the space H and the corresponding index Z(T',U) the 24th power
of the index of a single copy.

Thus, with each a € g, we associate a fermionic mode 7,, corresponding
to a physical Ramond string state in the (—1/2)-picture. The two point
function of any pair of such (—1/2)-picture states vanishes, suggesting the
anticommutation relations

(5.16) {Nasmp} =0 a,b€g.

Let us consider a ground state |0) such that
(5.17) 10) =0 acg’ @b,

and let H be the Fock space constructed by acting on |0) by 7., a € g~.
In fact, the operators 7,, a € g™ @ b annihilate every state in H, so we can
simply set them to zero and consider only 7,, a € g~. The Fock space H is
isomorphic to / g~ and inherits the grading from g, so that H = @wer 7—[7.12

We are considering real vertex operators V, of the Monster VOA. In the com-
plexified case, the involution 6 is anti-linear and —x(a,6(b)) is hermitian.

121f g is an ordinary Kac-Moody algebra, A g~ is an irreducible highest weight
g-module, with highest weight the Weyl vector. This can be easily proved using the
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The denominator of the algebra is simply an index in this space

(5.18) Z(z) = ZTTHW(e“(Z”JFp)(—l)F), z € b,
yel

where p € h* is the Weyl vector with defining property

(519 5(p,7) = —5#(7,7),

for all simple roots . As we will see, the Weyl vector exists in all the algebras
relevant for our construction.

The space of Ramond string states in the (—1/2)-picture is dual to the
space of Ramond states in the (—3/2)-picture. Associated with the latter
states, we introduce fermionic operators a%a, a € g~ satisfying

) o 9 )
5.20 0) =0 = 1t=0 — =0 abeg .
(5.20) ana‘ ) {ana 877b} {Gna nb} ’ g

Finally, we can endow ‘H with the structure of a Hilbert space by defining
the adjoint operator as

0
(5.21) 77:2 = _Haa(b)%'

where we use the shorthand kg, := k(a, b).

The definition of the energy depends on the compactification radius R, it
can happen that, as we vary R, the energy of some of the algebra generators
change sign. From the point of view of the algebra, this corresponds to a
Weyl transformation, leading to a different choice of the subalgebra g—.
Apparently, the Hilbert space H depends on this choice. However, notice
that two Hilbert spaces H and H’' related by a Weyl transformation are
actually isomorphic. If aq,...,a, are the algebra elements changing sign
under a Weyl transformation, then this isomorphism maps the new ground

Weyl-Kac denominator formula. To the best of our knowledge, the analogous state-
ment for Generalized Kac Moody algebras has not been established. In particular,
when g is the Monster Lie algebra, / g~ might be a reducible g-module. We thank
Richard Borcherds and Scott Carnahan for correspondence about this point.
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state |0') € H' to 14, -+ 14,.]|0) € H and exchanges

0 " .
(5.22) Na, < /ﬁ;aiba—m[) e & Kby 1=1,...,m.

Let us define the left-moving momenta operators P, i = 0,1, as

)
(5.23) < > <naan 8%”“))@

a,beg~

= > f,ubna (Zf )Teg,

a,beg— acg™
and the winding and momentum number operators

R0 1 1 0 1

(5.24) M \/i(P + P) w \/§R(P PY.

Here, f“ub are the structure constants for the Cartan generator 0.X, and
the subscript reg denotes a suitable regularization procedure. It is easy to
check that the definition (5.23) is independent of the choice of the subalge-
bra g, provided one identifies the corresponding operators as in (5.22). In
particular, M and W are the appropriate winding and momenta in order to
define an index Z(T,U) that is continuous in the moduli, as expected from
the 1-loop integral definition of the previous section.

The vector

(525) Pu = _% ( Z fa/j,a> )
reg

acg™

is a normal ordering constant that determines the winding and momentum
(ng, mo) of the vacuum state |0). If g was a finite dimensional Lie algebra, p
would correspond to the Weyl vector. We will argue that, in order to match
with the 1-loop expression, this must be true also in the case of the CHL
Lie algebras. Notice that each graded component H.,, v € I' is an eigenspace
for P* with a shifted eigenvalue

(5.26) Prlo) = (" +0)le), e,

It is now clear that the index Z(T,U)"/?* exactly corresponds to the Weyl-
Kac-Borcherds denominator (5.18), with v + p = (n + ng,m + mp) and z =
(T,U).
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The final ingredients needed in order to explicitly compute the index
Z(T,U) are the ‘boundary operator’

abcEg*

and its adjoint

(5.28) Z Foen™n 5 8 .

a,b,cegt
Here, the indices are lowered and raised using g, and its inverse k%

0 0
5.29 “i= g0 —— 1= Kghm—
( ) n Kb, one Kab anbv
and we used the algebra automorphism
0
(5.30) o = (a>0(b)9(c).
If we identify H with the A g™ := @Z Ng , then d = @®;d; represents the
standard boundary operator d; : A'g™ — A" ' g~ acting by
(5.31) di(al VANRIERIVAN ai)
= > (=D)"lara] Aag A Adp A Aag A A,
1<r<s<i

The operators d and d are nilpotent
(5.32) d* =0=(d?
as follows by direct calculation and by the Jacobi identity

(533) Z (fabc cde + faec cbcl + fadcfceb> =0, a,b.d,e € gi

069i
for the algebras g~ and g™. Furthermore, they preserve the grading of H
(5.34) d(MHy) CHy  d'(Hy) CH,,

since f%.# 0 implies 74 = + 7. and each 7, (respectively, %) raise
(resp., lower) the weight by ~,. The homology groups H;(g) = ker d; /Imd; 1,
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on the nilpotent operator d represent the standard homology of the Lie
algebra g.

We can decompose H into irreducible representations of the algebra gen-
erated by d,d'. It is clear that only the 1-dimensional representations con-
tribute to the index Z, since the higher dimensional representations contain
the same number of fermions and bosons, all with the same weight. States
belonging to a 1-dimensional representation are annihilated by both d and
d', so that they are contained in the kernel of {d,d'} (in fact, ker{d,d'} =
ker d N ker d', using the standard argument that

(5.35) Wl{d, d}v) = |ldw) | + [|d|)]* > o,

and the right-hand side vanishes only when d|¢) = 0 = df[+)). ).

It is a standard theorem (see for example [38]) that the anticommutator
{d,d} is given by the quadratic Casimir of the algebra. When the algebra
admits a Weyl vector p € h* satisfying (5.19), the Casimir has the form

(5.36) (Y, = 5 (5Cr+ 0.7+ 0) = 50, 0)).

As we will see, all the algebras we are interested in have a Weyl vector
p € b* which coincides with the normal ordering constant (5.25) and is null
k(p, p) = 0. Therefore, using (5.26), we conclude that the only states con-
tributing to the index Z, (7,U) will be the ones annihilated by P,P* =
2MW.

5.3. Explicit formulas for the indices

In this section, we will use the information of Section 5.2 to obtain a third
alternative formula for the indices Z, 1 (T, U).

5.3.1. The index for the Monster Lie algebra. For the Monster Lie
algebra, the infinite product formula (3.19) obeys the famous identity (in-
dependently proved in the 1980’s by Koike, Norton, and Zagier)

(5.37) Z(T,U)Y* = J(T) — J(U),

where the vacuum contribution is given by e 2™ as required by the 1-loop
formula, corresponding to a normal ordering constant (ng,mg) = (—1,0).
Borcherds [7] used this identity to deduce that the simple roots of the algebra
are the ones of the form (1,m), m € Z, with multiplicity ¢(m). For any
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algebra, the one particle states corresponding to simple roots are always in
the kernel of {d,d'}. In this case, their contribution the index is

(5.38) =Y e(m)ermm = —J(U).

MEZ

It is clear then that the vector p = (—1,0) is indeed the Weyl vector, since it
satisfies the defining property (5.19) for all simple roots. As anticipated, the
Weyl vector coincides with the vacuum winding-momentum (ng, mg) and is
null. Therefore, all non-vanishing contributions to Z(7',U) come from states
satisfying

(5.39) 0=r(v,y+2p) =2MW = 2myet(nior — 1),

where we have defined myu, ngor as the sum of momenta and windings,
respectively, of multiparticle states. In particular, the term J(T') — e—2miT
comes entirely from two particle states.

Using this description of the algebra, it is easy to compute a similar
formula for the twined indices [7]

(5.40) Z4 (T, U)Y?* =Ty o(T) — Ty ,(U),

for any g € M.

Of course, it would be ideal to derive the Koike-Norton-Zagier formula
directly in our heterotic construction from the outset. The main impediment
to this is an independent proof of the existence of a Weyl vector for the
Monster Lie algebra, i.e. to derive the vacuum winding and momentum. We
leave this point to future work.

5.3.2. CHL models. Let us consider now the CHL case, for g of order
N (in this section, we will restrict to A = 1, for simplicity). The root lattice
I' is given by

1 /fm nR m nR

Gy =Gk = o (RS- ) . mae
so that

!/ /
(5.42) w( ) = T

N
and the root multiplicity is
(5.43) mult(n, m) = énm (%) ,
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where ¢, ,, (1) is the Fourier coefficient of F, ,,, the (discrete Fourier trans-
form of the) generalized McKay-Thompson series (see Eq. (4.22)). Physi-
cally, they represent the dimensions of Vrim (the g = e N eigenspace in the
g"-twisted sector) at level Ly — 1 = 1.

The positive roots satisfy

m nR

(5.44) R + N > 0.

This condition, and therefore the Fock space used in the definition of Z,
changes discontinuously whenever R crosses a ‘wall of marginal stability’,
i.e. when the energy of some single particle state changes sign. On the other
hand, the path-integral description suggests that the index Z itself should
be a continuous function of R. Mathematically, the choice of R determines
which Weyl chamber is the fundamental one. Continuity of Z corresponds to
the statement that the denominator of the algebra is invariant under Weyl
transformations, although this invariance is not manifest in its product for-
mula description. Thus, we expect to be able to obtain the same expression
for the index for different values of R. We will consider, in particular, the
regimes R >0 and 1/R > 0.

5.3.3. The R > 0 regime. For R sufficiently large, a necessary and suf-
ficient condition for single particle states to have positive energy, i.e.
R2
5.45 > —n—,
( ) m n
is to have positive winding n > 0. This follows from the following observa-
tions:

1) There are no states with zero winding n = 0. This can be seen by
noticing that Fom (1) = £+ Y €~ e Ty g+(7) has vanishing constant
term, so that the multiplicity ¢, (0) = 0. Note that, in general, there
can be states with zero momentum m = 0. This happens if some of
the twisted-twining McKay-Thompson series Ty 4¢(7) have constant

terms.

2) For n < 0 and R > 0, the positive energy condition implies m > 0 and
therefore "3* < 0. On the other hand, all Fourier coefficients ¢, m ("X*)
vanish when “* is a sufficiently large negative number, so these states
have zero multiplicity (in fact, by unitarity, we expect é, (1) = 0 for
l<—-1).
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The second quantized index is

24
(546)  Zy(T.U) = (e_%”H<1—eg“iUi'v‘eQ”T”f”“(m”")) ,

n>0
mEZ

where T, U are defined as (note the appearance of the factors N with respect
to the Monstrous Lie algebra)

. BR . BN
Fi—Pt U —uy .
Yov2rN Ty AR

(5.47) T=b

In this product formula, we set the constant orderings (ng, mg) to (—1,0) as
for the (unorbifolded) Monster Lie algebra. We will justify this choice below.

Using the expression (5.40), it is easy to derive an alternative formula
for Z41(T,U). Indeed, in the 1-loop picture, Z3 4 can be simply computed
by requiring the fields (and the strings) to transform by a g transformation
as one moves around the Euclidean time circle. This is exactly the same as
taking a CHL orbifold by (4, g) where the shift § is taken along the Euclidean
time direction, rather than along the space-like circle. This means that Z; 1
and Zj 4 are simply related by a rotation of the Euclidean T? torus that
exchanges the space with Euclidean time. Such a rotation acts by U + —%,
T < T on the moduli, so that

1\ /24
(5.48) Zya (T, U\ = 7, , <T, U> =Ty g(T) = Ty (U).

Strictly speaking, since the derivation is based on the 1-loop expression for
the index, we might expect a non-trivial phase to arise. This phase can be
excluded by considering the index Z,1(T,U) in the large radius, low tem-
perature limit R, — oo, /R fixed (i.e. T — ioco, with U fixed). In this
limit, we expect the CHL model to be indistinguishable from the unorb-
ifolded case, since all twisted states become infinitely massive and the effect
of the orbifold projection is negligible when the momentum is approximately
continuous. By requiring Z; 1 (7, U4 ~ Z(T,U)Y/?* ~ e=2mT in this limit,
we find that (5.48) must hold with no additional phase. This reasoning also
shows that the appropriate vacuum winding number is ng = —1. The iden-
tity Zy1(T,U) = Z1,4(T, —%) can also be derived directly by manipulating
the infinite product formulas of both sides (see, for example, the proofs of
Lemma 3.12 and Proposition 3.13 in [10]).
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We can use (5.48) to describe the set of simple roots of the algebra in
the regime R > 0. Since all positive roots have n > 1, then all roots with
n = 1 are simple. Single particle states corresponding to simple roots of the
form (1,m) give a non-vanishing contribution

N
~ m iU 2
649 =Y am(F) UE == 3 FnlU) = T (U),
m=1

MEZ

to the index. Here, we have to set mg = 0 in order to match with (5.48), so
that the vacuum winding-momentum is (ng,mg) = (—1,0), as anticipated
in (5.46). In general, a single particle state corresponding to a simple root
(n,m) contributes

(550) _ 627T’L'T(’r7,7].)‘i’??’I,U7

to the index. By (5.48), the contributions of all simple roots that are not of
the form (1, m) must be included in Ty 4(T), i.e. they must depend only on
T'. This means that all simple roots are either of the form (1, m) or (n,0). It
follows that the vector p = (—1,0) € h* satisfies (5.19) for any simple root
and is therefore a Weyl vector for the algebra. Thus, any CHL algebra has
a (null) Weyl vector and it coincides with the normal ordering constants
(ng, mg) defining the vacuum winding and momentum.
The only states contributing to (Z,1 )1/ 24 are the ones satisfying

MW 2
(5.51) 0=r(y+pv+p) = 27 = Nmtot(ntot —1).
Indeed, (Z,1)"/?* is the sum of a function depending only on T (the con-
tribution from states with my = 0) and a function depending only on U
(from states with n, = 1).

5.3.4. The 1/R > 0 regime. The positive energy condition

Nm
implies, for 1/R > 0,
(5.53) m>0,n€eZ or m=0,n>0.

In particular, one can argue that there are no positive energy states with
negative momentum m < 0. The argument is analogous to the one used in
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the R > 0 regime, just with the winding and momenta exchanged: if m < 0,
the positive energy condition requires n >> 0, but the multiplicity ¢, (")
vanishes for mn < 0.

In fact, the two regimes R > 0 and 1/R > 0 are similar, upon exchang-
ing winding and momentum. The main qualitative difference is that, while
there are no states with n = 0 (because ¢g ,,(0) = 0 for all m), we cannot ex-
clude the presence of states with zero momentum m = 0. This phenomenon
is related to the fact that, while the R — oo limit corresponds to a two
dimensional heterotic model compactified on V%, the R — 0 limit might cor-
respond to a two dimensional heterotic model either on a ¢ = 24 VOA with
currents (if there are states with m = 0) or on one without currents (if there
are no states with m = 0). It is convenient to distinguish these two cases.

Without zero momentum states. Let us assume first that there are no
states with m = 0, i.e. that ¢, ¢(0) = 0 for all n. Then, positive energy single
particle states have necessarily m > 0, so that the single-particle states with
m = 1 are simple roots for any winding n and the Weyl vector p corresponds
to (ng,mp) = (0,—1).

The (single- or multi-particle) states contributing to the index Z 1/24
satisfy

DMW 2

N - N(mmt — D)ngor,

(5.54) 0=r(y+2p,7) =

so that Z/24 is the sum of a function of T (states with my = 1) and a
function of U (states with ng = 0). o

The states with ns,; = 0 consist of the vacuum, contributing —e”™ "~ |
and multi-particle states contributing —ew, Mot > 0, — no single-
particle states with n = 0 exists. Notice that we have to assume that the
vacuum in the 1/R > 0 case has negative fermion number, in order to match

with the R > 0 analysis.' In order to match with the R > 0 regime, all such

13The action of the fermion number (—1)¥ on the vacuum state |0) is a matter

of convention. When R crosses a domain wall, the fermion number of the vacua |0)
and |0') differ by a factor (—1)", where n is the number of single particle fermionic
states whose energy changes sign. In our case, since we have 24 identical copies of
each fermion, n is always a multiple of 24, so that all vacua have the same fermion
number (that we conventionally fix to be positive). However, in the calculations,
we often focus on the Fock space and index (that we denote by Z'/?4) built from a
single copy of each fermion. In this case we might have vacua with different fermion
numbers. By convention we fix the fermion number of the vacuum for R > 0 to be
positive.
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contributions should sum up to =7, 1 (U). This implies that Ty 5 (7) must be
of the form

Z\H

(5.55) Tya(r) = q ¥ +0(q¥),

with the polar term q_% coming from the vacuum contribution and the
other terms coming from multi-particle states.

The only states with my,; = 1 are single-particle states and their contri-
bution to the index (Z, 1(T,U))"/** is

(5.56) 3T, (%) .
nez

By comparing with the R > 0 case, we find the identity

(5.57) ST, ( ) Ty (T) = e 5 104
nez

Eq. (5.57) implies that, whenever é,((0) =0 for all n, the algebra in
the 1 /R>> 0 regime has always one simple root (—1,1) with multiplic-
ity ¢_11(— ) = 1. Similarly, by (5.55), for R > 0, the algebra has always
one simple root (1,-1), again with multiplicity é;,—1(—+) = 1. Roots with
k(v,7) = zm” < 0 are called real roots. Notice that the only oscillators 1,
whose energy can (and do) change sign as we vary R are the ones corre-
sponding to real roots. Further implications of the existence of real roots in
the algebra will be discussed in Section 7.1.

With zero momentum states. Let us consider the case where ¢é,0(0) #
0 for some n > 0. Let 7 > 0 be the smallest winding such that ¢;0(0) # 0
and let n > 0 the smallest winding such that (7, 1) has non-zero multiplic-
ity mult(7i, 1) = é51 (%) # 0. Then, (7,0) and (7, 1) are necessarily simple
roots, so that the Weyl vector must be (ng, mg) = (—n,0). The ground states
contributes e 2™ o the index Z, 1 (T,U )1/ 24 and comparison with the
R > 0 regime shows that n = 1, so that ¢; 1 ( ) # 0 and (ng,mg) = (—1,0).
The condition k(p,7y) = —/a(fy,'y)/2 implies that, as in the R > 0 regime,
the simple roots are of the form (1, m) or (n,0). The states contributing to
(Zy1)"/? satisty
2 2

(5.58) k(Y + 2p,7) = NMW = Nmtot(ntot —-1)=0,

so that states with my. = 0 give a function of T" and states with n; = 1 give
a function of U. There is also a constant term from states with (n¢or, meet) =
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(1,0), that are necessarily single-particle states; it is convenient to include
this contribution in the function of U. Since the positive energy single-
particle states have m > 0, all contributions with my,; = 0 come from states
built (in all possible ways) from single particles of zero momentum. These
contributions are given by

(559) —27rzT H 27r2Tn c,, 0(0) + 61,0(0),
n>0

where we subtract the contribution —¢; ¢(0) from the (fermionic) states with
(n,m) = (1,0). By comparing with the R > 0 regime, we find that

(5.60) Ty g(T) = 2™ H e Tm)eno0) 4 ¢y (0).

This formula can be written as a product of n-functions (see Appendix A.3)

(5.61) Ty o(T) = [[n(¢1)*® + a(1),
(N

where

(5.62) = cao(0)u(t/d),
dle

with p the Mobius function. Using Md6bius inversion formula, it is easy to
verify that the modular weight of this product is zero

(5.63) D a(t) =éng(0) =0.

(N

The exponents «(¥) are also related to the number of currents of the orbifold
CFT V%/(g), which is given by

N N N
CITREED SRUNS S SR URS SRR €8
n=1

d|N nn]\71 d|N
N N
=Y Y00 () =% <e>zso(k£):2a<z>é,
d|N ¢|d (N k| & (N

where ¢(n) is the Euler totient function counting the numbers coprime to
n in Z/nZ.
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Let us consider Eh% states with ny,; = 1. Each such state gives a contri-
bution of the form e~ ~ —, myy > 0; in particular, there are no poles in the
limit U — i00. By comparison with the R > 0 regime, these contributions

should sum up to —T 1 (U); this implies that Ty 3 (7) is of the form

(5.65) Ty1(T) = const + O(¢"'M).

)

This can be verified explicitly using (5.61), since

(5.66) Ty (1) =Thg <—i> SIGE (;))aw) +a(1)

(N
= a(1) + O(g>~ 57)

and noticing that

ol 1 a(l)N
(5.67) 2 zgw) - 24NZ (e) >0
ON N

since the right-hand side is, up to the 24N factor, the number of currents
(5.64) of the orbifold V%/(g). Actually, the number of currents (5.64) can be
evaluated exactly. As we argued above, whenever there are zero momentum
states, one has é1,1(47) # 0, i.e. the coefficient of ¢~ in Ty.1(7) must be non-
zero. By (5.66), this implies that the order (5.67) of the first non-constant
coefficient is at most 1/N, so that the number of currents (5.64) must be at
most 24

(5.68) o<y ON oy
oN t

The only VOA satisfying this bound is the Leech lattice VOA, which has
exactly 24 currents. We conclude that, whenever the orbifold V#/(g) is con-
sistent and has currents, it must be the Leech lattice VOA.

By (5.65), T, 4+ (7) and Fy (1) have no poles as 7 — ioo, for all r, k € Z,
so that ¢ (1) = 0 for [ < 0. Using these observations, it is easy to check that
all contributions to —Tg 1(U) come from single-particle states with n = 1,
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m >0

B8 Y e (D) =S g (1)

m>0 meZ

N
= — ZFLT(U) = —Tg,ll(U)'
r=1

The absence of a polar term in Ty (U) implies that there are no simple real
roots with s (y,7) = & < 0. As a consequence, all simple (and therefore all
positive) roots have m,n > 0. This means that there is no oscillator 7, for
which the energy can change sign as we vary R. This is compatible with the
observation that the Weyl vector p = (—1,0) is the same in the R > 0 and
1/R > 0 regime.

5.3.5. The X\ # 1 case. Much of the analysis of the previous subsections
carries over directly to the A # 1 case if one simply makes the replacement
N — NA. In this subsection we will spell out the less automatic aspects of
the generalization. In this case, the root lattice is given by

1 [kX+n& nR kX+n& nRk
5.70 =k k)= —=|— 4 — L 9 _ keZ
( ) Y (L? L) \/§< R +N)\’ R NA)vna €
and, to emphasize the similitude with the previous subsections, we will use
the notation w := 7 and m := kA + né&,.

The argument in the R > 0 regime directly applies to this case, after
making the aforementioned substitution. In particular, the Weyl vector is
(ng,mo) = (—1,0) and the index is

24
(571) ZQJ] (T’ U) — (e_QWiT H (1 _ 627riU;]”)\627riTn)én,m(§$;)>

n>0
meZ

= (T1,4(T) = Ty1 (U))*.

Recall that é, (1) =0 unless m —&n =0 mod A. The infinite product
formula then implies that

£ 1/24 amie,
(5.72) Zga <T - 7" U+ N) — % Zg1 (T, U2,

27igy

where the phase e”»  comes from the vacuum contribution.
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The % > 0 regime is slightly more involved, but the case without zero
momentum states is very similar to its A = 1 counterpart. Namely, one com-
putes as before

(5.73) T, (U) =e " +0+0(e ™),
and

il 4 n
(5.74) > e (35 ) = Tha(D).

nez

Notice that the coefficients ¢, 1 (%) in this sum can be non-zero only for
n€y; =1 mod . For theories without currents we can show that in fact
the £ = —1 mod A condition always holds: we know the right hand side
of 5.74 starts with a pole of the form e 2™ so the left hand side must
have ¢_1 1 (;,—i) # 0. Then, the values m = 1,n = —1 must satisfy m = n&,
mod A, and this enforces the condition £; = —1 mod .

On the other hand, assume that ¢é,0(0) # 0, for some n > 0 (to satisfy
the positive energy condition). In this case, since (A, &) = 1, we must have
Aln, so we can write n = nA for some n € N. This condition is necessary
but not sufficient to have currents; in particular, it is violated when n =
0 mod N, so we allow for the possibility that ¢,(0) =0 even if A|n. The
T-dependent part of the index again reduces to

(5.75) T 4(T) = e~ 2miT H (1 _ eQTriTﬁ/\)é“’o(O) _ HU(ET)a(Z)
n>0 N

where now we have the condition A|¢. The proof of (5.61) can be repeated
without any essential modification. Turning to the states with n;; = 1, we
can repeat the remainder of the argument after performing the N — N
substitution and find that ¢ ,,(I) = 0,1 < 0 and the =7, 4(U) contribution
comes from the states

NA
(5.76) - Z C1m (%) e = ZFI,T(U) = T4 (U).
r=1

m>0
6. Examples

In this subsection we compute some low-order, representative examples of
the index to illustrate the properties that were discussed abstractly in the
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previous subsection. We include cases with and without currents, and cases
where X\ # 1.

6.1. Elements of order 2

We warm-up with the simplest possible examples. There are two classes of
involutions in the Monster, class 2A and 2B. Let us start with the CHL
model for class 2A. The McKay-Thompson series are

77(7')24 12 77(27')24 1 2
6.1) T; = +2 24 = = 4+ 4372 96256 ..
(6.1) Tyoa(7) (2775 ()7 + . + q+ g+

1
(6.2)  Tonq(r) =Tioa(r/2) = a7t 4372¢"/% + 96256 + - - -
so that

1
(6.3) Foo(r) == +0+100628¢ +--- Fy1(r) = 96256q + - - -
q

1
(64) FLO(T) = 96256q + - - - Fl,l(T) _ v + 4372q1/2 4.
q

Consider the R > 0 regime. Let us compute the contribution to the in-
dex (Z41(T, U))l/24 from states with 7y = 0. The first step is to find
the positive real roots, which correspond to m < 0, n > 0 and have multi-
plicity ¢, (""). The only non-vanishing polar coefficients are éyo(—1) = 1
and ¢11(—1/2) = 1. Now, it is impossible to have % = —1 with m,n =0
mod 2, so that there is no root corresponding to ¢ o(—1). The only solution
to %5 = —1/2 with m,n =1 mod 2 is (m,n) = (—1,1) and this root has
multiplicity ¢,1(—1/2) =1 (as always the case for real roots). There are no
roots with m = 0, since ¢, 0(0) = 0 for all n. Thus, the only way to get m,; =
0 is, apart from the vacuum, a 2-particle state of the form (mior, nior) =
(=1,1) + (1,n). There are ¢11(—1/2)¢1n(%5) = ¢1,n(5) such states. There-
fore,

1/24 _ —2miT TN omiTn
(6.5) (Z(T, U)) = T2A711<U)+6 +§Cl’n (2)6

= *TQA,]I(U) + FLO(QT) + F171(2T)
= —T2A7]1<U) + T2A7]1(2T) = —T2A7]1(U) —+ TLQA(T).
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Note that
(6.6) Ty pa(T) = Fo1(27) + F11(27).

This is a special case of the general identity T 4(T") = Zl]\il Fi1(NT) that
can be proved from (5.57).

Let us consider the CHL model for class 2B. The McKay-Thompson
series are

77(7')24 1 2
(6.7) Ty2p(7) = (27 +24:6+276q—2048q o
(6.8) Top1 (1) = 24 4 4096¢"/2 + 98304q + - - -
so that
1
(6.9) Foolr) = , +0+08580g + - Fo1(7) = 98304q + - - -
(6.10)  Fio(r) = 24+ 98304¢ + - - - Fy1(7) = 4096¢"/% +

The only non-vanishing polar term is ¢g o(—1) = 1, but there is no m, n such
that %5* = —1 with m,n =0 mod 2 and m < 0, so there is no real positive
root. The only way to obtain states with m;,; = 0 is to consider multiparticle
states formed from single particles with m = 0. The latter appear for odd
n and have multiplicity ¢;0(0) = 24. The contribution from such states is
given by

(6.11)  (Zg(T,U))"/* = =Top . ( —em H 2™y 24 4 o4
n>0
n odd
_2 T 27rzTn) 4
- _T2B 1 H eQmT )24 +24
n>0
n(T)*
=T U —— 424
»B,1(U) + CTREL +

= —Top1(U)+ Ty 28(T).

In particular, we have the identity
(612) Ty QB e—2miT H e2miTn cn 0(0) +é 0(0)

in agreement with (5.60).



Monstrous BPS-algebras & the superstring origin of moonshine 489

6.2. Elements of order 3

Again we will start with the simplest case, which is the conjugacy class 3A.
The expression for the McKay-Thompson series is

12 12
(6.13) Tysa =12+ (7;7(((1?)) +729 (7355)))

1
= — + 783q + 8672¢” + 65367¢" + O (¢*)
q

Similarly to the previous subsection, we have
1
(6:14)  Toaa(r) = Traa(r/3) = 7 + 783¢"/% + 8672¢%/* + O(q)

As before, we compute the functions Fj, ,,, for which the first few terms are

1

Foo(r) = - ;1661507 + 7170368¢> + O (¢°)
Foa(r) = 65367q+7161696q +0 (%)
Fyo(r) = 65367¢ + 7161696¢° + O (¢°)
Fy () = 65367¢ + O (¢°)
Fya(7) = 783¢"3 4+ 371508¢"% + O ( 7/3)

1
Fia(T) = 1/3 + 8672¢%/% + 1741787¢°/3 + O ( 8/3)
(1) = 65367¢ + O (¢°)

1
Fya(r) = 7 + 8672¢%/3 + 1741787¢°% + O (¢?)
Foo(r) = 783q1/3 +371508¢*3 + O (qz)

To write down the index, we again focus on the regime R > 0, and so
choose states with m < 0,n > 0. Looking at the polar terms, we have the
multiplicity ¢21(—1/3) = 1 of a positive real root with m = —1 = 2 mod 3,
n =1= mod 3. Essentially identically to 2A, we have two-particle states
with mye = 0 of the form (—1,1) + (1,n) with multiplicity

6271(—1/3)61,11(71/3) = éLn(n/?)).
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Plugging all this in, we have

En,m (15)
Zya (T, U)1/24 _ ezmT( H (1— esz’;ezan)>

n>0,meZ

_ _TSA,H (U) + 6727riT + Z én71(n/3)€2an
n>0
= —T3A’]1(U) + F071(3T) + F171(3T) + F2,1(3T)

=Ti34(T) —T341(U)

In the case of 3B, the McKay-Thompson series is

12
(6.15) Tysp = (;é;%) 12

1
=~ + 54q — 76¢* — 243¢® + 1188¢* + O (¢°)
q

with

(6.16) Tspa = 12 4 729¢'/% + 8748¢%/3 + 65610¢ + 370332¢"/
+1743039¢°3 + O (¢?)

and

1
4,+_65664q4—7164536q2%-CKq3)

(1) =

a(7)

():6mw+0()

(1) = 124 65610¢ + O (¢*)
1(7) = 729¢"3 + 370332¢*3 + O (¢%)
(1) = 8748¢%% +1743039¢°"% + O (¢?)

(1) = 12 + 65610q + O (¢%)

(1) = 8748¢*/° 4 1743039¢°"% + O (¢?)

2(7) = 729¢"3 + 370332¢"° + O (¢%) .

As in the 2B case, there are no polar terms other than the one with mul-

tiplicity 1 = ¢p,0(—1), which does not have a solution for m,n that satisfies
our conditions. Therefore, there are no positive real roots here either. In
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order to get states with m,; = 0 we again consider combinations of single
particle states with m = 0. These have the form

(6.17) e~ 2T H 2miTmyeno(0) gy (0)

Inspecting Fi o we see that ¢19(0) =12 and ¢é20(0) = 12 as well, so we are
only excluding states of the form n =0 mod 3. Thus we can re-write this
contribution as

(6.18) ( n(a) >12 +12 = Ty 55(T)

and the total index is

(6.19) (Zya (T, UNY? =Ty 35(T) — Tzp.1 (V)

Finally, we write the McKay-Thompson series for 3C. This example has
A#land N =X=3:

8 16
(6.20) Tysc = <Z§ZZ;) 498 (ZEZE;) - (1] +248¢2 + 4124¢° + O (¢®)

Applying the S-transformation we get

(6.21) UETeR! #—248q2ﬂ)+—4124q5ﬂ’+_34752q8/9%_C)<qujg>

1
qt/?

In this case, we have essentially 81 Fj, ,,, sectors but most of them will be
zero. For compactness of notation, let us define the following shorthand:

248¢%/% 4 21312679 +

(6.22) a(r) =

(6.23) B(r) = 124q5/9 - 1057504q14/9

(6.24) 1= /9 + 34752439 + 453074447/ +
(6.25) 5(r) = 5628q + 7164504¢% + -

(6.26) K(T) =~ + 65628¢ + 7164752 + -
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The nonzero F, ,, in this notation are:

(6.27)

We will focus on the R > 0 regime again and so let m < 0,n > 0. There are
no solutions for “g* = —1 when m,n are both congruent (mod 9) to 0, 3, 6.
We can find a solution for “5* = —% subject to our constraints, though: m =
—1=8mod 9,7 =1=1 mod 9. This example then proceeds in the same
way as a Fricke-invariant case of order NA = 9. The two particle states with
myor = 0 can again be written as (—1,1) + (1, n) with multiplicity é,.1(n/9).

Foo(r) = k(1)
Fio(1) = a(1)
Foqi(r) = a(r)
Fs0(1) =46(7)
Fya(r) =~(7)
F5a(m) = B(7)
Feo(r) =6(7)
Fra() = B(7)
Fya(r) =~(7)

Fo3(m) =4(7)
Fi5(m) = B(1)
Fou(1) =~(7)
F33(1) = k(1)
Fy5(1) = a7)
F54(7) = a(T)
Fo3(m) = d(7)
Fr5(m) =~(7)
Fya(r) = B(7)

Foe(r) =6(7)
Fig(t) =~(7)
Foq(1) = B(7)
Fs6(1) =46(7)
Fys(m) = B(7)
F5q7(1) =~(7)
Foo(T) = K(7)
Frs(1) = afT)
Fy7(1) = a(T)

Putting it together we again have the U-dependent piece

(6.28)

~ m i
o 2 ém <§> eQTrng _

mEZ

and combining with the T-dependent piece:

Zg}ﬂ(T’ U)1/24 _ e—27riT ( H

n>0,meZ

én,m(
(1 _ eQm’U’g"eQm’Tn))

9
=Y Fin(U) = -Tsca(U)
m=1

_ —T3071(U) + e—27riT + Z én,l (n/g)eQWiTn

n>0

= —Tgoyﬂ (U) + F2,1(9T) + F571(9T) + F871(9T)
=T 3¢(T) = T30,1(U)
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6.3. Some elements of order 4

We also study the McKay-Thompson series corresponding to the conjugacy
class 4D. It is given by the expression

n@)\"* _ 1
(6.29) T]1,4D = <n(q4)> = 6 —12q + 66(]3 - 232(]5 + O(q7)

while
(6.30)  Tip,1 = 64¢"/5 + 768¢%% + 4992¢°/% + 24064¢"/% + O (qg/ 8)

with N = 4, A = 2. Somewhat similarly to the previous case, there are naively
64 sectors, but most will vanish by the arguments in Section 5.3.5. For
compactness, we will only display the minimum number of independent,
nonvanishing F, ,,,(7). The others can be obtained by various symmetries
relating the Hilbert spaces of the different CHL models. In particular (c.f.
Appendix B), we have the relation V;, , = Vot Nym—€,N, which in this sub-

section becomes Vy, m — Vipyamea™

We have:
Foolr) = - + 492844 + 5372928¢° + O(¢°)
Foolr) = 49152q + 53739524 + O(¢%)
Fo.4(1) = 49296¢ + 53729284 + O(¢?)
Fo () = 49152q + 5373952¢* + O(q*)

631) Fri(r) = 64¢"% + O(¢"®)  Fis(r) = 768¢°/% + O(¢''/?)
Fis() = 4992¢°/% + O(¢"'¥®)  Fi7(7) = 24064¢"/® + O(¢"/®)
Foo(r) =12 +49152¢ + O(q?)  Faa(r) = 201642 + O(¢*/?)
Fou() = 124491520 + O(¢?)  Fag(r) = 208042 + O(¢*/?)
F31(7) = 768¢°% + O(¢"V/®)  Fz3(r) = 64¢"/% + O(¢"/®)
F35(7) = 24064¢7/% + O(¢™/8)  Fy7(7) = 4992¢°/% + O(¢'¥/®)

In this case let’s focus on the % > 0 regime. In this case we require m >
0,n € Zorm = 0,n > 0. Note that we do have zero momentum states in this

4In principle, this sign differs depending on whether we are looking at a case
with or without currents, but the distinction is immaterial in these examples.
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example. In particular, we have ¢2,(0) = 12 = é6,0(0). é1,1(3) = 64, much as
before. In this case we have, for the T-dependent piece

(6.32) e—2miT H 27rzTn n,0(0) — e 2miT H (1 _ e27riT(2n))12
n>0 n=1,3,...
12
n(2T)>
=\ =Ty ap(T
<n<4T> )
The U-dependent term comes from the states with n = 1 and sum to

— Z él7m(m/8)€2ﬂimU/8 = —T4D’1(U).

m>0

As a final example, consider the McKay-Thompson series for 45,

2\ 12 4y 12
(6.33) T1,4B=(Z§Z4§> +64<282§>

1
= + 52q + 834¢> + 4760¢° + 24703¢" + O(¢?)

with

(6.34) Typa = 11 5+ 52¢"/® + 834¢%/® + 4760¢%/® + 24703¢7/%
+ 94980¢"/% + O(¢'/®)

and

1
- + 50340¢ + 5397504¢% + O(¢®)

(1) =
() 48128q 4+ 53493764 + O(¢%)
4(7) = 50288¢ + 53975044 + O(¢®)
Fos(r) = 48128 + 53493764 + O(¢?)
(6.35) FLi(7) =520 +94980¢°% + O(¢'"/%)
(1) =

34q3/8+0( W8 R s(r) = 4760¢°/% + O(¢'%/®)

i /8 +24703¢"/% + O(¢"/®)

Foo(t) = 48128¢ + O(¢?)  Faa(r) = +2160¢'/2 + O(¢%/?)

1
42
Fou(T) =48128¢ + O(¢?)  Fae(r) = 2212¢"% + O(¢*/?)
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F3.1(7) = 834¢°8 + O(¢*/®)  Fy3(7) = 52¢"/® + 949804°/% 4+ O(¢*"/®)

1
F35(7) = <5 + 24703¢7/% + O(q*>/®)  Fs7(r) = 4760¢°/® + O(¢'*/®)
q

In this case we can compute directly in the R > 0 regime again. There is one
positive root of multiplicity ¢;7(—1/8) =1 withn =1,m = —1 = 7 mod 8;
the other poles do not satisfy the congruence conditions in the R > 0 regime.
If we build up the contribution from the multi-particle states as before we
get

(6:36) Y Fui(8T) = Fi1(8T) + F31(8T) + F51(8T) + Fr,1(8T)

=Ty 45(T)

and again we get the same kind of contribution from the U-dependent side.
7. Genus zero and Hauptmodul properties

In this section, we describe the properties of the McKay Thompson series
Ty 4 that can be deduced from physics arguments, and in particular from
the properties of the index Z, (7,U). Starting from these properties, we
will then prove that each of these functions must be the Hauptmodul for a
genus zero group.

7.1. Space-like T-duality and Weyl reflections

The analysis of Section 5.3 shows that there are two classes of algebras that
can emerge from the Monstrous CHL models.

The first class corresponds to the case where there the algebra has some
roots with zero momentum, i.e. ¢, (0) # 0 for some n. Equivalently, this is
the case where the orbifold V#/(g*) has currents. As argued in Section 5.3,
both in the R > 0 and in the 1/R > 0 regimes, the positive roots are char-
acterized by n > 0,m > 0, the simple roots are of the form (n =1,m) or
(n,m = 0) and the Weyl vector is (ng, mg) = (—1,0). In particular there are
no positive roots with mn < 0 (real roots), i.e. no oscillator n, whose energy
can change its sign as we vary the radius R.

The second class arises when é,0(0) = 0 for all windings n, i.e. when
there are no roots with zero momentum. Equivalently, this is the case where
the orbifold V#/(g*) has no currents. In this case, at R >> 0, the posi-
tive roots are characterized by n > 0, the simple roots are the ones with
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n =1 and the Weyl vector is (ng,mg) = (—1,0). At 1/R > 0, the posi-
tive roots have m > 0, the simple roots have m =1 and the Weyl vector
is (ng,mg) = (0,—1). There is a single pair +v = £(1,—1) of real roots,
both with multiplicity 1, and we denote by a € g(;,_1) and 0(a) € g(_1,1) the
corresponding generators. In particular, (1,—1) is positive at R > 0 and
(—1,1) is positive at 1/R > 0; the remaining positive roots are character-
ized by m,n > 0 in both regimes.'® This means that, as we cross the critical
value of R = v/N, the energy of the oscillator 7, changes sign, so that the
energy of the excited state 7,|0) gets lower than the energy of |0) and be-
comes the new ground state. From the point of view of the algebra, this
phase transition corresponds to a change of the subalgebra g~ (correspond-
ing to the subset of positive definite oscillators), i.e. to a change of the Weyl
chamber.

It is known that, for each real root v of a BKM algebra, there is a Weyl
reflection 7., i.e. an automorphism of the algebra such that r(y) = —v and,
more generally,

nNo_ K(7,7)
(7.1) ry(vV) =7 —2v wr)

The two Weyl chambers relative to R > vV NA and R < vV N are related by
the Weyl reflection 7., corresponding to the real root v = (1, —1). This Weyl
reflection acts by

m—n

(7.2) ry(n,m) = (n,m) —2(1,-1)

= (m,n).

Since this is an automorphism of the algebra, the multiplicities mult(n,m)
and mult(r,(n, m)) must be the same, i.e.

rs o (22) = (22)

15To be precise, in Section 5.3, we proved that v is the only simple real root and
that it has multiplicity one. It is easy to show that there are no other positive (not
only simple) real roots. Indeed, if a is the generator of g(;,_1), the commutator of
a with any positive root with m > 0 either has still m > 0 or vanishes (remember
that there are no roots with m =0 in this algebra). Since all positive roots are
obtained by commutators of simple roots, we conclude.
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This implies the following symmetry for the index

(74) (Zy (T, U) !/
_ (e—Qm'T _ 6—27@]\%) H (1— e2miU 5 eQTriTn)énmL(;(;;‘)
m,n>0
— _(67271'@'% _ 6727riT) H (1 _ eZm’Uﬁe%riTn)ém,n(%
m,n>0

U 1/24
(2 (L))

where we have separated the contribution of the ground state and the real
positive root from the contribution of the imaginary positive roots. There-
fore, the Weyl transformation exchanges the winding and momenta along
the space-like circle and transforms 7" — ]\% and U <> NAT, which (for
b =v = 0) corresponds to R < %.

The physical interpretation is clear: the Weyl reflection corresponds to
T-duality along the space-like circle. T-duality along a single direction is not
in the component Sb+(L) of the T-duality group connected to the identity.
However, we can compose it with T-duality (4.33) along the Euclidean time
direction, which is always a self-duality for all Monster CHL models. The
composition of the two T-dualities gives

1 NA
(75) Zg7‘]] (T, U) — Zg,]] <—W, —U> .

It is easy to identify this T-duality with the Fricke involution (Wxy, W) €
so* ().

The same reasoning as for the Fricke involution in Section 4.3 shows that
T-duality along the space-like circle exchanges the CHL model relative to
(V1 g) at the radius R with the CHL model relative to the orbifold (V”, ¢')
at the radius N\/R, where V' = V1/(g) and ¢ is the quantum symmetry
Q@. The fact that the Weyl reflection is an automorphism of the associated
BKM algebra implies that the BKM algebras based on these two models are
isomorphic. This suggests that also the underlying CFTs are isomorphic, so
that this T-duality is really a self-duality, i.e. an equivalence of the same
CHL model at different values of the moduli.'® This is indeed the case, as
we will now show. The generators a and 6(a), corresponding to the real roots

16T his implication is far from trivial: in general, it is not known whether isomor-
phic BKM algebras can only arise from isomorphic CF'Ts. We thank Scott Carnahan
for clarifying this point to us.
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(1,—1) and (—1, 1), and the Cartan generator H, = 3[a, 6(a)] form a sly sub-
algebra of the CHL algebra. At the self-dual radius R = Rsg := V' N, the
corresponding 1-particle BPS states have all zero energy, which by the BPS
condition implies k% = 0. This means that the CFT (V# x S1)/(d, g) at the
self-dual radius contains three purely holomorphic currents with winding and
momenta (—1,1), (0,0) and (1, —1), respectively; the zero energy BPS states
are formed by tensoring these three currents with one of the Ramond ground
states of V*1. The zero modes of these three holomorphic currents generate a
SU(2) group which is a symmetry of (V x S1)/(8, g) at the self-dual radius.
This SU(2) symmetry contains a Zs subgroup acting by kI — —k! and fix-
ing k%, k?-‘c’ k:jl% and can be identified with space-like T-duality. The fact that
T-duality at the self-dual radius becomes part of a continuous symmetry
group is a familiar phenomenon in string theory. However, its occurrence in
CHL orbifolds depends on the existence of the holomorphic currents gen-
erating this continuous group. Any CFT whose radius R is infinitesimally
close to Rsq can be obtained as a conformal perturbation of the one at the
self-dual radius. The model at radius R = Ry4(1 + € + O(€?)) and the model
at radius 1/R = R,4(1 — € + O(€?)) are then equivalent, since the deforma-
tions +eR,y are related by the Zo subgroup of the SU(2) symmetry. Thus,
for R in a neighbourhood of R4, the CFT (V% x S1)/(8,g) at radius R is
equivalent to the same CFT at radius 1/R. But the latter is also equiva-
lent to the CFT (V' x S')/(4,¢'). Following the chain of equivalences, we
conclude that the CFTs based on (V% g) and the one based on (V,¢') are
equivalent at the same radius R. This can only happen if V/ 22 V? and this
isomorphism can be chosen so that g and ¢’ are the same symmetry.

As a consequence, whenever the orbifold V%/(g*) has no currents, both
space-like T-duality and the Fricke involution (Wyy, W) € S~O+(L) are
self-dualities of the model. In particular, T-duality along the space-like circle
alone corresponds to the Weyl reflection with respect to the (unique) positive
real root of the BKM algebra.

One of the most striking consequences of this construction is that when-
ever the orbifold V' = V%/(g) is consistent (i.e. A = 1) and has no currents,
then it is isomorphic to V?. Furthermore, the quantum symmetry Q is in
the same conjugacy class as ¢g. This results extends to the case A > 1: if the
orbifold V! = V%/(g*) has no currents, then it is isomorphic to V%, and the
symmetry g@Q on the orbifold V' is mapped, via this isomorphism, to an
element in the same class as g.

More generally, one can show that for every h € Aut(V?) that commutes
with g and fixes the generator a of the root (1, —1), the induced symmetry
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B € Aut(V’) is in the same Monster class as h. The idea is that, in this
case, h commutes with the SU(2) symmetry at the self-dual radius contain-
ing the space-like T-duality. Therefore, the isomorphism V% 22 V’ induced by
T-duality must map 2’ € Aut(V’) to h € Aut(V?), so that these two sym-
metries must be in the same Monster class.

In Appendix A.4, we will prove that whenever g and h commute and
have coprime orders, then h fixes a

(7.6) ged(o(g),0o(h)) =1 = hia) =a,

so that the argument above applies'”. Now, consider some g € Aut(Vh) of or-
der N and multiplier A, which is the product g = hihs of symmetries h1, ho of
coprime orders Ny, No and multipliers A\; = (N7, A\) and A2 = (N3, \). Then,

e:= ])\f—ll is an exact divisor of % and every exact divisor can be obtained in

this way. Suppose that V' = V?/(h}") has no currents. Then, V' 2 V' and
the symmetry ¢’ = (Qhq)hy of V' is in the same Monster class as hihy. But
this is exactly the condition for the CHL model based on g to be self-dual
under the Atkin-Lehner involution (we,w.) (notice that (g™/€) = (h}") ).
We conclude that the CHL model based on g is self-dual under (we, we) if
and only if V#/(g™/¢) has no currents.

7.2. Decompactification limits

In this section we will analyze the behaviour of the index Z,;(7,U) at
the boundary of the moduli space H x H. We will focus on the region of the
moduli space where T5,Us > 1, i.e. the low temperature regime 5 > 1. This
condition assures that the leading contribution to the index is given by the
vacuum state. When the temperature grows, one expects a Hagedorn-type
phase transition. In particular, the infinite product formula for Z, (7, U)
diverges above the Hagedorn temperature, signalling that the Fock space
description of the index cannot be trusted in this regime. High temperature
regions are most naturally described in dual pictures, for example using
T-duality along the Euclidean time (thermal) circle.
The first limit we consider is

(7.7) T — ico U fixed, U > 1,

Tn the remainder of this section, we will use the shorthand (a,b) := gcd(a, b).
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corresponding to

(7.8) B, R — oo % fixed.

This can be interpreted as a decompactification limit where the volume of
the Euclidean T? torus becomes infinite. For R > 0, the ground state has
energy

(7.9) Ey = —

and its contribution e #F0 to the index diverges as R — oo
(7.10)  Zya (T, U)Y?* =Ty o(T) = Ty (U) ~ ™2 5 00, R — oc.

More generally, we are interested in studying the possible divergences of
the index Z, 1 (T, U) in the limits

(7.11) W T —ico,  We-U fixed, (W, U)y> 1,

where W, is some Atkin-Lehner involution for I'o(NA), whose action on
T,U is as in (4.40). Eq. (7.11) can be interpreted as a decompactification
limit for the T-dual CHL model (V’,¢') related to (V% g) by the duality
(We, We). The index Z,1(T,U) diverges in the limit (7.11) if and only if
the McKay-Thompson series T, has a pole (i.e., is unbounded) at the cusp
W - i00.

Let us focus first on the Fricke involution Wy, for which (7.11) becomes

(7.12) T — 0, U fixed, U < 1.

This is a high temperature limit, whose direct analysis is quite complicated.
Therefore, it is useful to perform a T-duality T : T < —% along the Eu-
clidean time circle, so that (7.12) becomes

(7.13) U — ioo, T fixed, To>1,
which is a small radius, low temperature limit
(7.14) B — oo, R — 0, BR fixed.

Since the T-duality T along the Euclidean time is always a self-duality of
any CHL model, the two limits (7.12) and (7.13) are equivalent.
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We can smoothly vary the moduli from the large radius limit (7.7) to the
small radius limit (7.13) while keeping the temperature low 5 > 0, so that
the main contribution to the index is always given by the ground state of
the model. It is clear that if the state with energy (7.9) remains the ground
state of the theory as we shrink the radius R all the way to zero, then the
index Z, 1 (T, U) is necessarily bounded in the limit (7.13). As discussed in
Section 5, this is the behaviour expected in the case where the dual theory
V' =V/{g*) has currents.

Therefore, the only possibility for the index Z, (T, U) to diverge in the
small radius limit (7.13) is that the model undergoes a phase transition of
the kind described in Section 7.1. Recall that this happens if and only if the
dual model V' has no currents. Suppose such a phase transition occurs for
a given CHL model. This means that there exists some excited state, whose
energy gets lower than (7.9) as the radius R crosses a critical (self-dual)
value Rgg; such excited state becomes the new ground state for R < Rgg.
The low temperature region T5,Us > 1 is divided into two different phases,
separated by a critical manifold

U
(7.15) T= %
of codimension one in the moduli space. The critical manifold can be char-
acterized as the locus of the moduli space that is fixed under T-duality
T < NL)\ along the space-like circle. As discussed in Section 7.1, at the crit-
ical manifold, the model has an enhanced gauge symmetry containing, in
particular, this space-like T-duality, which is therefore a self-duality of the
model. The space-like T-duality exchanges the limits (7.7) and (7.13), which
are therefore equivalent. In Section 7.1, we also argued that this phase tran-
sition implies that the orbifold theory V/ = V?/(g) is isomorphic to V? and
that the CHL model is self-dual under the Fricke involution (Wxx, Waa).
This argument provides a neat physical understanding of the relationship
between Fricke invariance and unboundedness of a McKay-Thompson series.
The index Z4(T,U) is divergent in the limit (7.13) if and only if there is a
phase transition at the critical manifold 7' = %, and the latter occurs if
and only if the Fricke involution is a self-duality.

Similar arguments apply to the limits (7.11) for more general Atkin-
Lehner involutions W, = % (35, 2, where e||[N. Let us sketch the basic
steps of the reasoning. By composing the Atkin-Lehner duality and the T-
duality T along the Euclidean time circle, we obtain a T-duality along a

circle S of the Euclidean torus T?. For a general W,, the circle S is not



502 N. M. Paquette, D. Persson, and R. Volpato

aligned along the space-like direction. The fixed locus for the T-duality along
S is a critical submanifold of codimension 1 in the moduli space where
phase transitions can possibly occur. In general, the critical manifold does
not intersect the low temperature region T5,Us > 1, so that its physical
interpretation is not clear. For this reason, it is useful to introduce a different
duality frame, where the Euclidean torus T? is rotated in such a way that
the circle S is the space-like direction. The rotation acts by

—cU + ae

(7.16) T—T =T U—=U=—_"+
—dU + b

on the moduli, and the critical manifold is now given by the equation

U/

7.17 T
(717) -

Since the rotation mixes the space and the Fuclidean time direction, the
physics in the rotated frame looks quite different than in the original one. In
particular, the critical manifold (7.17) now intersects the low temperature
region T3, U5 > 1 in the rotated frame. Furthermore, the CHL orbifold in
the rotated frame involves shifts both in the space and in the time direction.
The net result is that the index Z,;(7,U) is interpreted in the rotated
Frame as a ‘twisted-twined index’

(7.18) Zy 1 (T,U) = Zp, o, (T',U").

Here, Zp,, p, is the index ‘twined’ by the symmetry hy = ¢¢ in the CHL model
(V¥ hy), with hy = Ve, The limit (7.7) is interpreted as a large radius,
low temperature limit both in the original and in the rotated frame. The
limit (7.11) is equivalent (upon taking T-duality T in the original Euclidean
time direction) to U’ — ioo, with T” fixed, which is interpreted as a low tem-
perature, small radius limit in the rotated frame. The index Zj,, 5, (T, U’)
can have a pole in this small radius limit if and only if the CHL model
(V% hy) undergoes a phase transition at the critical submanifold (7.17). As
argued in Section 7.1, the occurrence of this phase transition implies the
self-duality of the CHL model (V¥ h;) under the associated space-like T-
duality

!/
(7.19) T %
and also self-duality of the CHL model (V%,g) under the Atkin-Lehner in-
volution (W,, We). We conclude that the index Z,;(T,U) diverges in the
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limit (7.11) if and only if the CHL model is self-dual under (We, W,); in this
case the limits (7.11) and (7.7) are physically equivalent.

7.3. The McKay-Thompson series are Hauptmoduln

The Monstrous moonshine conjecture claims that the McKay-Thompson se-
ries Ty 4 are modular under a group I'y C SL(2,R) of genus zero in the nor-
malizer of I'g(/N) and that they are Hauptmoduln for such group, i.e. degree
1 holomorphic maps from mg to the Riemann sphere C. In this section,
we will derive this conjecture using the properties of the index Z, (T, U).
It is useful to work with the eigengroup F; under which T4 4 is invariant up
to a 24-th root of unity, rather than the fizing group I'j under which Ty 4 is
exactly invariant.

The group of self-dualities G, of the CHL model (V*, g) contains T'o(N\)
x Do(N)) as well as the transformations (4.62). Since | Z, 1 (T, U)|? is invari-
ant under Gy, the series T ; must be invariant (up to a phase) under the pro-
jection proj; (Gy) of this group onto the first factor of SL(2,R) x SL(2,R).
This projection contains the group I'g(N|A), so that 77, must be modular,
up to a multiplier, under this group. Modularity of T 4, under I'g(N) (up
to a multiplier) also follows by standard CFT arguments — in fact, this
was one of our starting points in the construction of the CHL orbifolds. In
particular, T 4 is invariant under I'g(/NA) and transforms with a multiplier
of order A\ under I'g(N) (see Appendix B). The group I'o(N|)\) is generated
by To(IV) together with the transformation 7+ 7+ +. Using Eq. (5.72) in
Section 5.3, one can prove that

27i

1
(7.20) Tig (T + A) =e x Ty4(7).

This implies that 77 4 is a modular form for I'g(N |A) with multiplier of order
A, as expected.

Let us consider the limits of the McKay-Thompson series 77 4 at the
boundary of the quotient space H/T'g(/N|A). This boundary consists of a fi-
nite number of points, corresponding to the orbits of Q U {oo} (cusps) under
[o(N|N). We say that a McKay-Thompson series is bounded (respectively,
unbounded) at a certain cusp if the limit of T 4(7) at the cusp is finite (resp.,
infinite). It is obvious by construction that T4 4 has a single pole at the cusp
at co. Furthermore, at the cusp 0, Ty 4(7) is either bounded or it has a single
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pole with coefficient 1. More precisely,

0(q") if V%/(g*) contains currents

(7:21) - Tpa(r) = {QNIA +0+4 O(q~s)  otherwise.

Let us consider now the limit of T3 , at the other cusps, different from
0 and oo. Consider first the case A = 1. Each cusp for I'g(/V) has a repre-
sentative of the form %, where a, ¢ € Z~o with ¢[N and (a,c) =1 (of course,
it can happen that two rational numbers of this form are equivalent under
['o(N)). The group I'g(N|)) is conjugated to Io(N/A) by (3 9), so that each
cusp of I'g(N|A) has a representative of the form <, where a,c € Z~¢, with
c|% and (a, c) = 1. In particular, all cusps of the form v, with (a, NA) = 1,
are equivalent to oo and all cusps of the form § are equivalent to 0; thus,
another useful set of representatives is given by 0,00 and rationals of the
form < as above, with the restriction 1 < ¢ < N/A.
Some of the cusps ¢ = 5 are related to oo by some Atkin-Lehner invo-
lution for T'o(N|A), i.e. ¢ = w, - co. Such an involution exists if and only if
¢ is an exact divisor of N/A. In particular, 0 is always related to co by the
Fricke involution.

Using the properties above, we can prove the following:

Lemma 3. IfTy 4 is unbounded at a cusp ¢ for To(N|X), then there exists
an Atkin-Lehner involution w, for To(N|X) such that ¢ = w, - co.

See Appendix A.5 for the proof.

We are now ready to prove that the fixing groups I'y are genus zero and
that the McKay-Thompson series are the corresponding Hauptmoduln. The
main ingredient is the result of Section 7.1 that the Atkin-Lehner dualities
(We, we) € Sb+(L), eH% are self-dualities whenever the orbifold V#/(g"V/¢)
has no currents.

Theorem 4. Let g € M have order N and Ty,4 be modular under I'o(N|).
Then the eigengroup Ty of Ty 4 is the projection proj; (Gy) to the first SL(2,R)
factor of the group G4 C SL(2,R) x SL(2,R) of self-dualities of the corre-
sponding CHL model. Furthermore, the fixing group I'y has genus zero and
Ty 4 is a Hauptmodul.

Proof. 1t is clear that proj;(Gy) is contained in the eigengroup F;, since G|
leaves the index Z, 1 (T, U) invariant up to a phase. Furthermore, we argued
above that proj;(Gy) contains T'g(N|)) as a normal subgroup. Since T is
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generated by I'g(IV|A) and some Atkin-Lehner involutions we, e||¥7 we only
have to prove that, whenever w, € Ty then (we,w,) € G. To this aim, notice
that if w, € F’g, then the cusp w, - 0o is unbounded. This happens only if
the orbifold V#/(g"/¢) has no currents. By the argument in Section 7.1,
this implies that the model is self-dual under (we,we). Therefore, w, € F’g
implies we € proj; (Gy), so that I') = proj; (G,).

As for the genus zero properties, by lemma 3 the only possibly un-
bounded cusps for T 4, modulo I'g(N|)), are at w, - 0o for some eH%. This
cusp is unbounded if and only if the orbifold V?/(g"/¢) has no currents, and
in this case the group of self-dualities G, contains (we,w.) and the eigen-
group F’g contains w,. Therefore, all unbounded cusps for T4 , are related
to oo by some 4 in the modular eigengroup F'g. It is easy to see that ev-
ery such unbounded cusp ¢ must be related to co also by an element  of
the fixing group I'y. Indeed, suppose that ¢ =+ - 0o, 7' € I'), and that the
series T 4 is invariant under 4" up to a phase e Using the fact that

the element (é 1?‘) el ; fixes oo and has multiplier e_%, it is clear that

01
only a single pole at oo modulo I'y, then it must be one-to-one as a holomor-

phic function from H/Fg to the Riemann sphere C. Therefore, H/T' , must
have the topology of a sphere and T4 4 is a Hauptmodul. O

~v:i=7"0 (1 v/ ’\2 has trivial multiplier and still maps oo to ¢. Since 77 4 has

8. Outlook

The results of this paper point to many interesting directions for future
research. One of the main points of the paper was to provide a physical
derivation of the genus zero property of Monstrous moonshine in the con-
text of the spacetime properties of certain heterotic CHL-models. Another
physical interpretation of genus zero was proposed previously by Duncan
and Frenkel [28]. Inspired by an earlier conjecture by Witten [62], Dun-
can and Frenkel proposed that there exists a class of twisted chiral quantum
gravity theories in AdS3, whose partition functions are given by the McKay-
Thompson series T, (7). If true, this implies that all the McKay-Thompson
series have a Rademacher sum, interpreted physically as a sum over black
hole states in the gravitational theory. Thus, the Duncan-Frenkel conjecture
implies that the genus zero property of moonshine can rephrased as the state-
ment that each McKay-Thompson series T}, coincides with the Rademacher
sum attached to the invariance group I'y. Given that our analysis identifies
the product formula for the McKay-Thompson series with the supersym-
metric index counting BPS-states, it is natural to expect that there is a
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relation between our results and those of Duncan-Frenkel. In particular, we
would expect that whenever our twisted partition function Zy4(T,U) is un-
bounded, then the associated McKay-Thompson series Ty(7) is Rademacher
summable. From this point of view it would also be interesting to write the
one-loop integrals Si_;,,, as explicit BPS-state sums, using the formalism
developed in [1-3].

We have shown that the space of BPS-states in our heterotic CHL-
models form a module for the Monstrous Lie algebras m,. This differs from
the original proposal of Harvey and Moore, whose starting point was the
observation that for string theory compactified on a manifold X, there is a
product on the space of BPS-states itself,

(8.1) Heps ® Heps — Heps,

which is a realization of the fact that two BPS-states can combine into a
bound state which is also BPS. The space of BPS-states is graded by the
charge lattice I" (essentially the integer cohomology H*(X;Z)):

(8.2) ‘Hpps = @HBPS(’Y).

yel’

For states BB1, Bo of charges 71, v their product By ® Bs — Bs yields a bound
state Bs of charge v3 = 71 + 72. Harvey and Moore argued that the prod-
uct (8.1) on the space of BPS-states is defined via the correspondence con-
jecture, which asserts that the three BPS-states (B1, Ba, Bs) must fit into an
exact sequence 0 — By — B3 — By — 0 which means that the bound state
Bs should be viewed as an extension of By and Ba. The product on Hpps(7)
should reflect this property and a natural candidate is therefore

(8.3) Bi®By=> [{0— By — B3 — By — 0}|Bs,
Bs

where we consider BPS-states as cohomology classes B; € H},(M(7)), where
M) is the moduli space of (semi-)stable sheaves on X, and the structure
constants are given by the dimension of the space of extensions. This product
is the characteristic feature of a Hall algebra, as was first noted in [31]. It
would be very interesting to understand the precise relation between our
analysis and the BPS-algebra of Harvey and Moore. Is it possible to endow
the Monstrous Lie algebras m, with a Hall algebra structure?

Carnahan has recently proven [9-11] Norton’s generalized moonshine
conjecture, showing in particular that all generalized McKay-Thompson se-
ries T, p(7) are Hauptmoduln for genus zero subgroups I'y , C SL(2,R). To
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be precise, this may be considered as a “weak version” of generalized moon-
shine, since there are possible modular phases of Ty 5 which are not specified
by Carnahan’s theorem. It was conjectured by Gannon that these phases can
be completely captured by a 3-cocycle a, determining a class in H3(M, U(1)).
However, very little is known about this cohomology group so at present this
seems out of reach. The generalized version of Mathieu moonshine for My,
[16, 29, 30, 34, 35, 37] was established in [36, 36, 56], where an explicit cocy-
cle a € H3(Ma4,U(1)) was constructed and shown to reproduce all modular
phases of the twisted twining genera ¢, (7, 2). Thus, this may be viewed
as a “strong” form of generalized moonshine for Msy. It would be very in-
teresting to investigate whether the Monstrous CHL-models constructed in
the present paper can be used to shed light on the analogous strong form of
generalized moonshine for the Monster group M.

It would be illuminating to attach a better physical interpretation to the
Lie algebra homology operators d, d', considered in [38] and employed in 5.2.
In particular, we notice that their definition is reminiscent of (part of) the
usual definition of the standard worldsheet BRST operator, if one makes
the substitutions b+ n, ¢ — 8%. Of course, the 7,, a%u have the statistics of
ordinary fermions, while the BRST operator is comprised of ghost fields.
(In fact, [38] introduce a second, equivalent, complex with operators D, Df
that match the usual worldsheet BRST operator and its conjugate after
the aforementioned substitution; the arguments of 5.2 carry through with
these operators in the same way, but with a larger technical burden.) If we
take this correspondence seriously, an exciting, but currently quite specula-
tive, possibility is that d, df (or D, DT) are indeed BRST-like operators for
the spontaneously broken gauge symmetry and reduce to ordinary BRST
operators in the tensionless limit, when the gauge symmetry is restored.
Regardless, it would be interesting to elucidate the physical importance of
these operators more fully.

Finally, an outstanding open question is to determine whether or not our
Monstrous heterotic model has a ITA dual and, if so, what the dual theory
is. The absence of currents in this model makes this a difficult question to
approach. A perhaps more manageable, yet related, question is to investigate
analogous constructions with ¢ = 24 CFTs with currents on the left, arising
from compactification on the Niemeier lattices. If this latter class of theories
admit ITA duals whose geometry includes K3 surfaces, it is conceivable that
our methods may help shed light on the proposed relationships between
umbral moonshine [18, 19] (including M4 moonshine) and K3 geometry, by
string-string duality [17, 20, 21, 24, 42, 55].
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Appendices

In these appendices, we will present several technical proofs referenced in
the main text. In addition, Appendix B contains details about the twisted
twining genera and their multiplier systems. Throughout these appendices,
as in several parts of the main text, we will employ the notation (a,b) :=
ged(a, b).

Appendix A. Proofs
A.1. Proof of Theorem 1
Let us consider the subgroup of automorphisms of L given by elements of

the form (v,1) € SL(2,R) x SL(2,R). It is easy to see that the image of the
action

a b
(A.1) X — (c d> X, Xel,

isin L for all X € Lifand only if (¢ %) € T'o(IN). By an analogous reasoning,
we find that an element (1,72) is an automorphism of L if and only if v, €

I'o(N). Therefore,

(A.2) T'o(N) x To(N) € SO (L).
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Furthermore, if (y1,72) € Sb+(L), then for any v € To(N) also (y1y7;*,1)
isin Sb+(L), so that 'yl’y'yl_l € I'o(N). Analogously, ’ygfwz_l € I'g(N). There-
fore, both 7, and 79 are contained in the normalizer I'o(N) of I'p(N) in
SL(2,R) and

(A.3) To(N) x To(N) € SO (L) C To(N) x To(N).

Let us consider the action of a generic element of To(N) x To(N) on L

1 ae  b/h ae V/h
(A4) X Vee (cN/h de>X(C’N/h d’e’)’ X el

where, as above, a,b,c,d,d’, b, c,d € 7, e, € Z~y, eHh—]\g, e’H% and

N
(A.5) ade — be 1 adde —b'd

eh? o2~ b

A direct calculation shows that the image of this action is in L for all X € L
if and only if ee’ is a perfect square

(A.6) ee/ = 22 z € Lo

and the following congruences hold

/ / !/ [N
aec deb c7 ba'e c7 cd'e

A.
(A7) hz < hz hz hz

€.

Notice that, since both e and ¢’ divide N/h?, then ee’ ],\[—f, so that also z
divides N/h?.

From these relations, we can now restrict the form of the matrices that
comprise Sb+(L) to be exactly that of the matrices in Theorem 1. Let p be
a prime divisor of hz, and p”", with r > 0, be the maximal power for which
p"|hz. Let us consider two cases.

1) Assume first that p|c¢’. Then, for the second of (A.5) to be satisfied,
it is necessary that o', d’, and ¢’ be all coprime to p. By (A.7), this
implies that p"|b and p”|c. But then, by the first of (A.5), a, d, e must
be all coprime to p (and since both e and €’ are coprime to p, then
also z is and p"|h). Thus, by (A.7), p"|b' and p"|¢’. Using an analogous
reasoning, we conclude that if any of b, ¢, I/, or ¢’ is divisible by p,
then all of them must be divisible by p", and a,d,e,d’,d’, €', and z are
coprime to p.
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2) Now, suppose that p does not divide any of b, ¢, b’, or ¢’. Then, by (A.7),
p" divides ae, de, a’¢’, and d'e’. By (A.5), both N/(h%e) and N/(h?¢’)
must be coprime to p. Let p® be the maximal power of p dividing N/h?.
Then, p is a prime factor both of e and ¢’ (and therefore also z) and
with the same power s. By (A.7), a,d,d’,d" are divisible by p"~*, which
is the maximal power of p dividing h.

From this analysis, we deduce that if p is a prime factor of e (and therefore
of z and hz), then it also divides e’ with the same power. We conclude that

(A.8) e=¢€ =z

Furthermore, a,d,a’,d" have the same greatest common divisor with A (let
us call it k)

(A.9) (a,h) = (a',h) = (d,h) = (d', h) =: k,
and analogously
(A.10) (b,h) = (b',h) = (c,h) = (', h) = h/k,
and (k,h/k) = 1. We conclude that the elements in Sb+(L) have the form
(A11) (1 < ake B/k') ’i ( c/J/k:e 5/’/]4:))
Ve \WN/k ke )’ \Je \W'N/k ke
where «, 3,7,0,d/,8',7',8 € Z, k € Z~o with k||h, e € Z~( with e||% and

N N
A12 2e - By—5 =1 '"VEk%e — By — = 1.
( ) adke 578k2 o' d'k‘e — By e

Upon defining € := k2e, we finally obtain
1 fae 1 (de p
with
N N
(A.14) ade — B'y? =1 ode— 5’7’? =1

Conversely, every €||N can be written as ¢ = ek?, for some k||h and 6”%, S0)

that (4.47) follows. The fact that Sb+(L) is generated by I'g(N) x I'g(N)
and the Atkin-Lehner involutions follows from [23].
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A.2. Proof of Theorem 2

It is easy to verify by a direct calculation that the normal subgroup of
Sb+(L) generated by elements of the form (1,v) and elements of the form
(7,1) is To(NA) x To(NA). This means that Sb+(L) is a subgroup of the
normalizer of T'o(NA) x T'o(NA) in SL(2,R) x SL(2,R):

(A.15) To(NA) x To(NA) € SO (L) CTo(NA) x To(NN).
The elements of T'g(N ) are given in (4.44), where h is the maximal integer

such that h* is a divisor of N and h[24 (in particular, A|h). Let us consider
the action of a generic element of I'o(INA) x I'g(INA) on L

(A.16) Xi—>1< ae b/h>X< a'e bl/h), X el

Vee! \cNX/h de dNXh de
where, as above, a,b,c,d,d’, b, c,d € Z, e, € Z~y, eﬂ%, e’H% and
N N
(A17) ad@ — bC% =1 a,d/e, — b/C, e/h2 =1.

A direct calculation shows that the image of this action is in L for every
X € L if and only if ee’ is a square

(A.18) ee/ = 22 z € Lo
and the following congruences are satisfied

aed —bd'€'E, cd'e! — deb'E,
- I 6 -7

Al Z Z
(A.19) hz ' hz €4
ba'e’ deb’
(A.20) 0 €Z, W €Z,
) )
NA 2
(A21) Egz(ad — da’) —:hzz(cc’ —bb'EY) <7

Egs. (A.19) and (A.20) imply the weaker conditions

hz hz hz hz
. i s e
(A.22) aec € 3 Z, cde € 3 Z, ba'e € 3 Z, deb’ € 3 7.

Let p be a prime factor of % and p", with r > 0, the maximal power for

which p’”|%. Then, using a reasoning analogous to the proof of Theorem 1,
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(A.22) and (A.17) imply that either p" divides b, ¥/, ¢, ¢’ and is coprime to
a,ad,d,d, e, e;orp" divides ae, de, a'e’, d'e’ and is coprime to b, V', ¢, ¢,
%, and S{Yhé In particular, if p® is the maximal power of p dividing % and

if p divides e, then p® is an exact divisor of both e and ¢’. It follows that

(A.23) e=¢€ =z
Furthermore,

h h h h
A.24 —|=(d,~|=(d~)=(d,~) =k
a2 (o3) = (05) = (#3) = (#3) =~
and

am () (1) (o B) ()

with (&, )\%) = 1. Thus, upon defining

(A.26) a=ak d=6k d=dk d=7dk

h h h h
A27 b= = Y=g =
(A-27) % T T

and € := ek? = €'k? we obtain
1 ae % 1 de Y
A.28) — ), — h
e \c= de el \ 52 e
< (% &)= (% &)
(1 [« g 1 [de %
\WVe \WN d¢) e \WN d¢))’

where «, 3,7,0,0,5',v,8 € Z, € € Z~g with eH% (since eH]X—Z)‘ and kH%,
then ek?| %ﬁ—z) and

N N
A. _ -1 ISl ol ] -1
(A.29) ade B'yd\ a'd'e B’y—e)\
The congruence conditions (A.19)-(A.21) become

! / ! /
(A.30) =Pl g, 20 0B

Z
A A 7
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and

e€g(ad’ —b6a') + K(yy — BBEY)
A

(A.31) €Z.

Eqgs.(A.29) and (A.30), together with (£,, ) = 1, imply

(a7 )‘) = (O/, >‘)7 (67 )‘) = (6,7 /\)7

(A.32)
(B,A) = (/7,7 A (v, A) = (Blv A)-
Set f:= (a,\) = (/, ). The first equation in (A.32) implies that

(A.33) o = ki mod A

for some integer ry; furthermore, Eq. (A.30) determines x; modulo 2

By (A.33) and the first of (A.30), we obtain

~l

A
(A.34) 7' = BEyk1 mod i
so that there is an integer y such that
, A
(A.35) v = BEgk1 +y—- mod A

f

Since k1 is only defined modulo A/ f, we are free to shift k1 — k1 + ZL'% for
some integer x, and obtain

(A.36) v = BEgk1 + ;(y + zB€;) mod .

Let us choose z such that
(A.37) y+xpEg=0 mod f.

Such an integer z always exists, because (8, ) =1 by (A.29) and (&, \) =
1 by construction, so that S&,; is coprime to f = (a,\) and is therefore
invertible mod f. We conclude that there is an integer k1 satisfying (A.33)
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and such that
(A.38) v = BEyk1 mod .

Eqgs.(A.33) and (A.38) determine x; modulo A. By a similar reasoning, one
can show that there exists k9 such that

(A.39) 8 = kad, &8 =Koy mod A

By (A.29),(A.33),(A.38),(A.39), we obtain
N N
(A.40) 1=d'de— 'Y~ =kika | ade — By— | = k1ko mod .
€A €A
Finally, notice that, for every divisor \ of 24,
(A41l) kike =1 mod A & ((m,)\) =1and kK1 =Ky mod )\).

We conclude that egs.(A.29) and (A.30) imply that there exists x € Z, with
(k,\) = 1, such that

(A.42) o =ka, B =kEy, v =kEHB, & =krd mod A,

where in the second equality we used that, by (A.41), (&5, A) =1 implies
592 =1 mod A. Vice versa, (A.42) obviously implies (A.30) and (A.31). We

conclude that the elements of SO (L) are as described in the statement of
the theorem. The description of the generators of SO+(L) follows from [23].

A.3. Proof of Eq. (5.61)

The coefficient ¢,0(0) depends only on the greatest common divisor d :=
(n,N), i.e.

(A.43) ¢n,0(0) = €4,0(0).
Indeed, each g™ is conjugated to either g or to its inverse within the Monster

group, so that the g"-twisted sector is isomorphic to the g-twisted sector
(or its dual). In particular, the dimensions of the g-invariant subspaces at
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level Lo — 1 = 0 are the same. Thus,

(A.44) [[a-gye@ =1 ] @-qHe®

n>0 dIN n>0

(n,N)=d
:H H 1_q'” Cdoo)_HH Cdo )OI N),u(z)
an J(,/>do)7 d|N r=1
_HHH kldcdo (i) HHq 24T]Zd7' do()()
dIN i k=1 dIN 3|
T ner)) @ T (g n(en)™©,
(N dle LN

where we used the property

(A.45) Zﬂ(a) _ {1 for b :.1,

0 otherwise,
alb

of the Mobius function. It follows that

(A.46) Ty g(7) = é1,0(0) = ¢~ JT (1 = g™
n>0
24+zmzvm<e>
- [Toter
(N

In order for the right hand side to be modular under I'o(N), the power of ¢
in front of the n-product must vanish, i.e.

(A.47) > taft) = -

N
Finally, we notice that a(1) = ¢;,0(0) and obtain (5.61).
A.4. Proof of Eq. (7.6)
Let g € Aut(V?) of order N be such that the orbifold V#/(g) is consistent

(A =1) and has no currents. In Section 7.1, we showed that, in this case,
there is an isomorphism (corresponding to T-duality in the space direction
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for the CHL model based on g)
(A.48) fiVi, oV,  nmeZ/NZ,

of (V)9 modules inducing an isomorphism of the VOAs V' = @nvjp and
Vi= EBmV(im. The isomorphism maps g € Aut(V?) to the quantum sym-
metry @ € Aut(V'). The BKM algebra corresponding to the CHL model
based on g has a real root v = (1, —1) with generator a and the Weyl re-
flection r,, with respect to 7 is exactly the automorphism induced by f. Let
h € Aut(Vh) be a symmetry commuting with ¢ and of order coprime to N.
In this appendix, we will prove that h always fixes the root a.

The root a corresponds to the ground state in the g-twisted sector of
V. Recall that Tyga(r) = q_ﬁ + -+, so that the g-twisted ground state
is 1-dimensional and h can only act on a by a phase £ The phase £ is
the coefficient of the polar term q_N% in the series Ty (7). Since g and h
have coprime order, T, ,(7) is a SL(2,Z) transformation of Ty 44 (7). If gh
has order M then, for each n coprime to M, g"h™ is in the same Monster
conjugacy class as gh or (gh)~!. In either case, one has Ty gh = 11 gnpn, SO
that Tgn pn = Ty . Now, one can always find n coprime to M such that
¢" =g and A" = h~!, so that Tyn =Typ and £ = ¢!, This means that
€= +1.

If h has odd order, then the only possibility is £ = 1. Let us consider the
case where h has even order, so that the order N of g is odd. We will suppose
by absurdity that h(a) = —a and derive an inconsistency. The symmetry h
must act by —1 also on the generator 6(a), corresponding to the opposite
root (—1,1), and leave invariant the Cartan generator H, = 3a, 6(a)]. Con-
sider a generator b € g ,,) ® C in the (complexified) algebra component
corresponding to a simple root (1,m), m > 0, and assume it is an eigen-
vector of h with eigenvalue ¢. The vector b is annihilated by 6(a) (because
there are no generators with roots (0,m + 1)) and has eigenvalue 1 —m
under the Cartan generator H,. Therefore, b is the highest weight vec-
tor of a m-dimensional representation of the sl subalgebra generated by
a,0(a) and H,, whose lowest weight vector is in the root component g, 1)
Furthermore, this sly-representation is spanned by eigenvectors of h with
eigenvalues +(; in particular, the lowest weight vector with root (m, 1) has
eigenvalue (—1)™~1¢. The Weyl reflection ., exchanges the highest and low-
est weight vector within each sly representation. Therefore, it preserves the
h-eigenvalues of all odd dimensional sly-representations and multiplies by
—1 the h-eigenvalues of all even dimensional slo-representations. In partic-
ular, a generator b € g1, for a simple root (1,m) and its Weyl transform
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7(b) € g(m,1) have the same (respectively, the opposite) h-eigenvalue if m is
odd (respectively, even).

This means that conjugation of A by the Weyl reflection defines a new
automorphism 7 hr, commuting with both g and h (since it has the same
eigenvectors as h). An equivalent description of r,hr, is as follows. The
symmetry h € Aut(V?) has a unique lift to a symmetry (automorphism
of (V#)9-modules) of the same order acting on the twisted sectors Vnm
This lift induces a symmetry h’' € Aut(V’) of the VOA V' = @nV o By
conjugating n by the isomorphism f : V/ — V¥, we obtain a new automor-
phism h := fh/f~1 € Aut(V?) of V¥, possibly different from h. Then, ryhry
is the symmetry induced on the BKM algebra by h. Under the assump-
tion that h(a) = —a, the symmetries h, h € Aut(V?) and the correspond-
ing actions on the BKM algebra g are different. Indeed, the composition
t:=h'h acts by (—=1)™~! on the simple roots in g m,. Let us prove that
such a symmetry ¢ cannot exist. Recall that the generators of g1 ,, corre-
spond to states in the g-twisted sector V1 of V¥ and level (Lo —1) =
These states are eigenvectors of ¢ with elgenvalue (—=1)m~1 Let x be a t-
invariant state in the g-twisted sector (for example the ground state) and
level (Lo — 1) = %7, with m odd. The Virasoro descendant L_,x, with r odd,
has level (Lo — 1) = 2 +r = ™Y and since both r and N are odd, has
t-eigenvalue (—1)™*+"N=1 = _1. But this is absurd: every symmetry ¢ must
commute with the Virasoro algebra, so y and L_,x must have the same
eigenvalue. Thus, the symmetry ¢ cannot exist, and the initial assumption
that h(a) = —a is inconsistent.

A.5. Proof of Lemma 3

Let &, with a,c > 0, /X v, (a,c) =1, bea representatlve for the cusp ¢. We
have to prove that if T 4 is unbounded at -, then c is an exact divisor of
N . Indeed, in this case also e = f\V is an exact d1v1sor for ¥ 5 and (ae, )]\\2 ) =1.

Thus we can find integers b, d such that ade — —eb =1, so that

1 ae b
[ A
(A.49) We \/E <N de)

is an Atkin-Lehner involution for I'g(/NV|A) such that we - 0o = §¢ = {&.
Choose integers «, 3, 6 such that ( | g) € SL(2,7Z). The assumption that
Ty 4 is unbounded at - implies that

(A.50) T g (( ;c ?) ) T) = T gpe g0 (1) = qu_% + O(qo)a
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where ¢ is a phase and A is the eigenvalue of g% on the ground state of Hore.
(Notice that if 7y , has multiplier \, then g*° has trivial multiplier). Then

__2mikAc __ Ac

(AB1) Ty, ((Aac ?jkkfé) .T) =ETpe gs(T+ k) =EAe” v ¢ v +0(¢").

Set

wN

where w = % is the minimal integer for which (Ac)?|Nw, and notice

that
(A.53) a [+ka)  [1—-kale ka? a f
' e 64kxe)  \ —kXN2? 1+Ekade) \ e 6
_ — %a ka? a f
~\ —wN  1+kaX) \ X 6)°
Since Ty 4 is I'g(IV) invariant up to a phase, we have
a B+ka o 1-<No  ka? a bBy .
(A54) T]lag <( Ac SBJrk)\c) ’ T) - Tﬂ’g <( —wN 1+ko¢)\c)(>\c 56) T)

2miwEy

=e x Ty ((,\acg)T)

By comparing (A.51) and (A.54), we obtain

(A.55) e R = e%,

that is

(A.56) % = —)\gw mod Z.

Now!8, since w = % the latter congruence implies Ac = —Sg)\CQ mod

(N, A%¢?). Next, for any prime p that divides ¢, let v,(z) be the p-valuation of
the integer x, which is defined as the number of times x can be divided by p.
We have immediately that v,((N,A2¢?)) = min (v,(N),v,(A%c?)) and the
congruence further implies that min (v,(Ac),vp(N)) = min (vy(—EGAc?),
vp(N), v,(A%c?)). Finally, since v,(c) > 0 by assumption, we have v,(\c) =
vp(N).

18We thank the anonymous referee for feedback that greatly simplified the latter
part of this proof.
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Appendix B. Twisted-twining partition functions

In this Appendix we summarize some basic properties of orbifolds of holo-
morphic conformal field theories (vertex operator algebras). We refer to
[52, 61] and references therein for recent new results on this topic.

Given a holomorphic VOA (chiral bosonic two-dimensional CFT, in
physics language) V' of central charge 24 with group of automorphisms
G = Aut(V), we can consider the twisted-twining partition functions

(B.1) Tyn(r) == Try, (th"_l),

where g, h are any commuting elements of G and V}, is the g-twisted sector of
V. Strictly speaking, the action of h on the twisted sectors is only determined
up to a N-th root of unity, where IV is the order of g: we implicitly assume
that a choice has been made for this action. When h = g, we always make
the standard choice

(B.2) g = e*milo,

The partition functions (B.1) are related to one each other by modular
transformations

at +b a b a b
(BS) Tg’h(m) = gg,h (C d) Tgahc,gbhd(T)7 (C d) S SL(2,Z),

where §g,h(‘; Z) are non-zero complex numbers. We will only focus on the

case where the group generated by ¢ and h is cyclic. For a cyclic group (g)
of order N, all {4 45 are N-th roots of unity and are completely determined
by the conformal weight (Lg-eigenvalue) of the g-twisted ground state. In
general, the Lg-eigenvalue A, of a g-twisted state takes value in

& 1
+ J—
N\, N

(B.4) A, € Z,

for some positive integer Ay, with A\¢|N, and & € Z/\,Z coprime to A\, (we
often omit the subscript in A, when there is no ambiguity). The orbifold of
V by ¢ is a consistent CFT if and only if A = 1; when A\ > 1 we have a failure
of the level matching condition. The g-twisted and ¢~ '-twisted sector have
the same conformal weights modulo 1/N

1
(B.5) Ay = Ay, mod NZ.
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More generally, the conformal weights of the ¢g"-twisted sector take values
in

89 4 (n,N)

2
(B.6) N

Z.

In particular, one has Agn = (/\2‘%71), so that the orbifold of V' by (g") is
consistent if and only if n is a multiple of A,.

The Monster CFT V! (or rather its group of automorphisms Aut(V?) =
M) has another special property: given any g € M of order N and any integer
a coprime to N, g% is always conjugated to either g or g—!

(B.7) (a,N)=1 — g* =hgh ' or ¢° = hg 'h7!,
for some h € M. The symmetry h induces an isomorphism
(B.S) ¢h : ‘/tq ; ‘/ga,

between the g-twisted and the g%-twisted sector. In particular, the conformal
weights must be the same

1

B. Ay = A d —=Z

(B.9) g ge 1O N

and using (B.4),(B.6) one obtains that

(B.10) (a,N) =1 = a?>=1 mod \.

As observed in [23], this condition holds for all a € Z/\Z if and only if A is a
divisor of 24. In general, for any holomorphic CF'T V and for all g € Aut(V)
such that (B.7) holds, one has \y|24.

For CFTs where (B.7) holds, the twining partition function T4, is a
modular form for

(B.11) To(N) := {<Z Z) € SL(2,7)

c=0 modN},

up to a multiplier

at +b\ o Eacd a b
(B12) T]l,g (m’—i—d) =€ N T]l’g(’]'), <C d) S FO(N)
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In particular, T} 4 is invariant under Io(NA). 1°

The fixed point subVOA V9 has N? irreducible modules, given by the
g-eigenspaces in the ¢"-twisted sectors r =1,..., N. When A > 1, by our
definition (B.2), g has order N\ when acting on the twisted sectors, i.e. it
generates a central extension of (g). In constructing the CHL orbifolds, it is
useful to define (N\)? irreducible V9-modules, given by

(B.13) Vim ={v € Vg | glv) =~ v},  n,m e Z/NNL.

Notice that
(B.14) m—nEy #0 mod A = Vam = 0.

so that only N2\ out of (NA)? modules V,,,, are actually non-zero. Fur-
thermore, many of the non-zero V,, ,, are isomorphic. For example, the
gN-twisted sector is isomorphic, as a V9-module, to the untwisted sector.
However, as discussed in [57], it is useful to define the action of g on the
gN-twisted sector so that

(B.15) g(Vn) = Q_QM%VN,

where Vy is the vertex operator relative to the ground state of conformal
weight 0 in the g™V-twisted sector. This choice yields the simple fusion rules

(B.lﬁ) ‘/i,j G Vk,l — Vi—&-k’,j-ﬁ-l: 1,7, k,l € Z/N/\Z,

and allows to eliminate the phases in the SL(2,Z) transformations of T 4

(B.17) Ty, (“T“Lb> = Tye gu(7), <‘z Z) € SL(2,7).

The CHL orbifold relative to g can be simply defined by imposing that the
strings with momentum m and winding w = 7y be tensored with states in
Vi,m- The OPE with the gN -twisted vertex operator Vy defines an isomor-
phism

(BlS) VN : Vn,m i) VnJrN,megN-

These equivalences further reduce the number of irreducible modules from
N2\ to N2, as expected.

YFor a general CFT V and g € Aut(V'), where (B.7) does not hold, T4 , is only
modular under a subgroup I'1(N) C To(V).
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