
Communications in

Number Theory and Physics

Volume 10, Number 3, 373–431, 2016

Vertical sheaves and Fourier-Mukai

transform on elliptic

Calabi-Yau threefolds

Duiliu E. Diaconescu

This paper studies the action of the Fourier-Mukai transform on
moduli spaces of vertical torsion sheaves on elliptic Calabi-Yau
threefolds in Weierstrass form. Moduli stacks of semistable one
dimensional sheaves on such threefolds are identified with open
and closed substacks of moduli stacks of vertical semistable two
dimensional sheaves on their Fourier-Mukai duals. In particular,
this yields explicit conjectural results for Donaldson-Thomas in-
variants of vertical two dimensional sheaves on K3-fibered elliptic
Calabi-Yau threefolds.
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1. Introduction

Starting with Mukai’s work on the subject [43, 44], Fourier-Mukai functors
have played a central role in the study of moduli spaces of stable sheaves
on algebraic varieties. An incomplete list of applications of Fourier-Mukai
functors to moduli spaces of torsion free sheaves on surfaces includes [4, 5, 8,
10, 30, 49, 54, 56–59]. Further applications to moduli spaces of torsion free
sheaves on elliptic threefolds and higer dimensional elliptic fibrations include
[3, 7, 12–14, 18, 19]. A comprehensive review of the subject and a more
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complete list of results can be be found in [6]. More recently, t-structures
and moduli problems of Bridgeland stable objects in the derived category
have been studied in [9, 15, 35–38, 41, 42, 60] using a similar approach.

Of particular importance for the present paper is the relative Fourier-
Mukai transform for elliptic fibrations. This was constructed by Bartocci et
al [8] and Bridgeland [10, 11] for elliptic surfaces and Friedman, Morgan and
Witten [18, 19] for stable bundles on elliptic threefolds. The foundational
results for elliptic threefolds used in this paper were proven by Bridgeland
and Macciocia in [12]. The higher dimensional construction was carried out
by Bartocci et al in [7].

An important problem in this framework is whether the Fourier-Mukai
transform preserves Gieseker, or, for torsion sheaves, Simpson stability. In
particular if Fourier-Mukai transform yields isomorphisms of moduli spaces
of semistable sheaves. Several results obtained in the literature prove that
this is the indeed the case for suitable open subspaces of moduli spaces pa-
rameterizing relatively semistable objects. However isomorphisms of proper
moduli spaces are much harder to prove. One such result was obtained by
Yoshioka in [56], showing that Fourier-Mukai transform identifies moduli
spaces of semistable pure dimension one sheaves on an elliptic surface with
moduli spaces of semistable torsion-free sheaves on the dual surface. The
main goal of the present paper is to study the analogous problem for pure
dimension one sheaves on elliptic threefolds. As explained in more detail be-
low this problem is mainly motivated by applications to Donaldson-Thomas
invariants [31, 51] of pure dimension two sheaves and modularity questions.

1.1. The main result

Let p : X → B be a smooth projective Weierstrass model with trivial canon-
ical class over a smooth Fano surface B. The Mukai dual X̂ of X was con-
structed in [12] as a fine relative moduli space for rank one degree zero
torsion free sheaves on the fibers of p : X → B. For sufficiently generic X
the dual X̂ is again a smooth Weietrstrass model p̂ : X̂ → B and there is
a canonical isomorphism X̂ � X over B. Since X̂ is a fine moduli space,
there is a (non-unique) universal Poincaré sheaf P on X̂ ×X. The Fourier-
Mukai functor Φ : Db(X̂) → Db(X) with kernel P was proven in [12] to be
an equivalence of derived categories. Moreover it was also shown there in
that the inverse functor Φ̂ : Db(X) → Db(X̂) is also a Fourier-Mukai trans-
form whose kernel Q is the derived dual P up to a shift. A more detailed
summary is provided in Section 3.1.
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The main goal of this paper is to study the action of the above Fourier-
Mukai functors on moduli stacks of Simpson semistable torsion sheaves on
X, X̂. In order to formulate a concrete statement one first needs a concrete
presentation of the Kähler cones and the homology groups ofX, X̂. As shown
in Lemma 2.1, one has an isomorphism

Pic(X)/torsion � Z〈Θ〉 ⊕ p∗Pic(B),

where Θ is the image of the canonical section σ : B → X. Then any Kähler
class ω ∈ PicR(X) can be written as ω = tΘ+ p∗η, with t ∈ R, t > 0 and
η ∈ PicR(B) a sufficiently ample Kähler class on B. In particular ω = tΘ−
sp∗KB is a Kähler class on X for s > t > 0, where KB is the canonical
class of B. Lemma 2.1 also shows that there is a natural isomorphism
Pic(X) � H4(X,Z) which will be used implicitely throughout this paper.
In particular the pairing between Kähler classes and homology classes will
be identified with the intersection product. Using Poincaré duality, Chern
classes of sheaves on X will be also regarded as even homology classes. Fi-
nally, note the direct sum decomposition

H2(X,Z)/torsion � Z〈f〉 ⊕ σ∗H2(B,Z)

where σ : B → X is the canonical section of the Weierstrass model and f is
the elliptic fiber class. Of course, completely analogous statements hold for
p̂ : X̂ → B, the notation being obvious.

This paper will concrentrate on the relation between pure dimension
one sheaves on X̂ and vertical pure dimension two sheaves on X. According
to Definition 2.3.i, a sheaf E on X of pure dimension two is vertical if
ch1(E) · f = 0 and ch2(E) is a multiple of the fiber class f . The discrete
invariants of a sheaf F̂ of pure dimension one on X̂ are given by an element

γ̂ = (γ̂i)1≤i≤3 ∈ H2(B,Z)⊕ Z⊕ Z

where

ch2(F̂ ) = σ̂∗(γ̂1) + γ̂2f̂ , χ(F̂ ) = γ̂3.

The discrete invariants of a vertical sheaf E on X of pure dimension two are
given by

γ = (γi)1≤i≤3 ∈ H2(B,Z)⊕ (1/2)Z⊕ Z,

where

ch1(E) = p∗γ1, ch2(E) = γ2f, ch3(E) = −γ3ch3(Ox)
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with x ∈ X an arbitrary closed point. According to equations (3.8), (3.9),
the induced action of Fourier-Mukai transform on topological invariants is
encoded in the group isomorphism

φ : H2(B,Z)⊕ Z⊕Z
∼−→H2(B,Z)⊕ (1/2)Z⊕ Z,

φ(γ̂1, γ̂2, γ̂3) = (γ̂1, γ̂3 +KB · γ̂1/2, γ̂2).

Here · denotes the intersection product on B.
Note also that Definition 2.3.ii introduces a notion of adiabatic stability

for vertical sheaves on X which plays an important part in this paper. Given
a Kähler class ω = tΘ+ p∗η, a vertical pure dimension two sheaf E is called
ω-adiabatically semistable if and only if it is Simpson semistable with respect
to all Kähler classes ω′ = t′Θ+ p∗η, where 0 < t′ ≤ t.

Given Kähler classes ω = tΘ− sp∗KB, ω̂ = Θ̂− sp̂∗KB with s > t >
0, s > 1, let Mω̂(X̂, γ̂), Mω(X, γ) denote the moduli stacks of Simpson
semistable sheaves with γ̂, γ on X̂, X, respectively. Let Mad

ω (X, γ) ⊂
Mω(X, γ) be the substack of adiabatically semistable sheaves as defined
in 2.3.ii. Then the main result of the present paper is

Theorem 1.1. Let γ̂ ∈ H2(B,Z)⊕ Z⊕ Z be fixed topological invariants
such that γ̂3 > 0. Then there exists a constant s1(γ̂) ∈ R, s1(γ̂) > 1, depend-
ing on γ̂, such that for any s ∈ R, s > s1(γ̂), there exists a second constant
t1(γ̂, s) ∈ R, 0 < t1(γ̂, s) < 1, depending on (γ̂, s), such that the following
statements hold for any t ∈ R, 0 < t < t1(s, γ̂).

(i) The Fourier-Mukai transform Φ yields an isomorphism of moduli
stacks

ϕ : Mω̂(X̂, γ̂)
∼−→Mad

ω (X, γ),

where ω̂ = Θ− sp̂∗KB, ω = tΘ− sp∗KB and γ = φ(γ̂).
(ii) The substack Mad

ω (X, γ)⊂Mω(X, γ) is open and closed in Mω(X, γ).

The proof of Theorem 1.1 is given in Section 3 and requires some prelim-
inary results proven in Section 2. In comparison with the analogous result
for elliptic surfaces [56, Thm. 3.15], one needs to introduce a suitable notion
of generic stability for vertical pure dimension two sheaves in Definition 2.5.
Then one has to further check that generic stability is equivalent to adiabatic
stability in Lemmas 2.11 and 2.12. The proof is then given step-by-step in
Section 3. In contrast with [56, Thm 3.15], one cannot rule out non-adiabatic
components of the moduli stack of semistable pure dimension two sheaves
on a threefold by taking an appropriate limit of the Kähler class. However,
as shown below, such components can be ruled out for elliptic threefolds



Vertical sheaves and Fourier-Mukai transform 377

which also admit a K3-fibration structure, and for two dimensional sheaves
supported on the K3 fibers.

1.2. Sheaf counting on elliptic K3 pencils

As stated in the second paragraph of the introduction, Theorem 1.1 is mainly
motivated by applications to Donaldson-Thomas invariants of pure dimen-
sion two sheaves on elliptic Calabi-Yau threefolds. These are counting in-
variants defined in [51] for stable sheaves and generalized in [31, 34] for
semistable ones. Generating series of Donaldson-Thomas invariants for pure
dimension two sheaves have been conjectured to have modular properties
in [16, 20]. In the mathematics literature, this conjecture has been proven
for certain cases in [21, 22, 53]. In particular explicit results for Donaldson-
Thomas invariants of such sheaves on K3 fibered Calabi-Yau threefolds were
obtained by Gholampour and Sheshmani in [21]. For nodal K3 pencils these
results are restricted to rank one torsion free sheaves on reduced K3 fibers.

On the other hand, string theoretic arguments [33, 40] lead to a conjec-
tural identification of Donaldson-Thomas invariants for vertical pure dimen-
sion two sheaves on an elliptic threefold X with genus zero Gopakumar-Vafa
invariants on its dual X̂. This correspondence was first conjectured in [40]
for sheaves supported on a rational elliptic surface inside X. As observed
in [26], in that case this follows from the results of [56]. As it stands, The-
orem 1.1 does not prove such an identification for general vertical sheaves
because the moduli stack Mω(X, γ) can in principle have other components
in addition to Mad

ω (X, γ). From a string theory point of view it is natural
to conjecture that such components are absent for sufficiently small t1(γ̂, s),
but mathematically this is an open problem.

As shown in below, there is however one situation where such extra
components can be ruled out. Excepting P2, all smooth Fano surfaces B
have a natural projection ρ : B → P1, which induces a projection π = ρ ◦ p :
X → P1. The generic fiber of ρ is a smooth reduced elliptic K3 surface
on X. Moreover if B is a Hirzebruch surface Fa, 0 ≤ a ≤ 1, for sufficiently
generic X, all fibers are reduced irreducible K3 surfaces with at most nodal
singularities. Under this assumptions, Proposition 1.2 shows that no extra
components are present in the moduli space of semistable vertical sheaves
supported on K3 fibers for suitable Kähler classes. Therefore, in such cases
Theorem 1.1 yields explicit conjectural results for generalized Donaldson-
Thomas invariants of two dimensional sheaves supported on the K3 fibers,
verifying the modularity conjecture.
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In more detail, suppose B is the total space of the projective bundle
P(OP1 ⊕OP1(a)) with 0 ≤ a ≤ 1. Let ρ : B → P1 and π = ρ ◦ p : X → P1.
For sufficiently generic X the fibers of π are reduced irreducible K3-surfaces
with at most nodal singularities. Recall that σ̂ : B → X̂ denotes the canon-
ical section and f̂ denotes the fiber class of p̂ : X̂ → B. Let Ξ denote the
fiber class of ρ : B → P1. The K3 fiber class on X is D = p∗Ξ. Then note
the following.

Proposition 1.2. Let ω = tΘ− sp∗KB with s, t ∈ R, s > t > 0. Let γ =
(rD, l,m) be arbitrary discrete invariants with r, l,m ∈ Z, r ≥ 1. Then there
exists a constant t2(γ, s) ∈ R, t2(γ, s) > 0 such that Mad

ω (X, γ) = Mω(X, γ)
for any 0 < t < t2(γ, s) such that t/s ∈ R \Q.

The proof of Proposition 1.2 is given in Section 4. It should be noted
that similar results for torsion free sheaves on elliptic surfaces have been
obtained before in [17, Thm. I.3.3], [46, Prop. I.1.6] and [55, Lemma 1.2].
Here one has to generalize these results to semistable pure dimension two
sheaves supported on scheme theoretic thickenings of divisors in the K3 pen-
cil, including nodal fibers. This requires a careful reduction to the reduced
smooth surface case via Jordan-Hölder filtrations and blow-ups.

Next consider topological invariants γ̂ = (rΞ, n, k) in Theorem 1.1, where
r, n, k ∈ Z, r, k ≥ 1, n ≥ 0. Then equations (3.9) yield

(1.1) γ1 = rD, γ2 = (k − r)f, γ3 = −n.

Let DTω̂(X̂; r, n, k) ∈ Q denote the generalized Donaldson-Thomas invari-
ants counting ω̂-semistable pure dimension one sheaves on X̂ constructed in
[31]. According to [31, Thm 6.16.a], these invariants are independent of ω̂,
hence the subscript will be dropped in the following. Moreover it is conjec-
tured in [31, Conj. 6.12] that there exist integral invariants Ω(X̂; r, n, k) ∈ Z

related to the rational ones by the multicover formula

(1.2) DT (X̂; r, n, k) =
∑

m∈Z, m≥1,
m|(r,n,k)

1

m2
Ω(X̂; r/m, n/m, k/m).

Alternatively the integral invariants can be conjecturally defined directly by
specialization of the motivic invariants of Kontsevich and Soibelman [34] as
explained in Section 7.1 of loc.cit.

For a primitive vector γ̂ = (r, n, k) there are no strictly semistable ob-
jects, and the invariants DT (X̂; r, n, k) = Ω(X̂; r, n, k) specialize to the inte-
gral virtual cycle invariants defined in [51]. In particular this holds for k = 1.
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Then the resulting invariants were conjecturally identified with genus zero
Gopakumar-Vafa invariants in [32],

(1.3) Ω(X̂, r, n, 1) = n0(X̂, r, n)

for any (r, n) ∈ Z2, r, n ≥ 0, (r, n) �= (0, 0). Here n0(r, n) denotes the genus
zero Gopakumar-Vafa invariant for curve class rσ̂(Ξ) + nf̂ . As shown in [52],
equation (1.3) follows from the GW/stable pair correspondence conjectured
in [47] provided that the integral invariants Ω(X̂; r, n, k) ∈ Z are independent
of k for fixed (r, n). Independence of k is a special case of [52, Conj. 6.13].

Let DTω(X, r, l,m) denote the generalized Donaldson-Thomas invari-
ants counting ω-semistable vertical two dimensional sheaves with invariants
γ = (rΞ, l,m) . The wallcrossing formulas of [31, 34] imply easily that the
invariants DTω(X, r, l,m) are independent of ω, hence the subscript may
be dropped. Again, Conjecture 6.12 in [31] states the existence of integral
invariants Ω(X, r, l,m) related to the rational ones by a multicover formula
of the form (1.2).

Then Theorem 1.1 and Proposition 1.2 imply that

DT (X̂; r, n, k) = DT (X, r, k − r, n)

for any r, n, k ∈ Z, r, k ≥ 1, n ≥ 0. Granting the existence of integral invari-
ants, they will be also related by

Ω(X̂; r, n, k) = Ω(X, r, k − r, n).

However note that there is an isomorphism of moduli stacks Mω(X, r, l,
m) � Mω(X, r, l − r,m) for any (r, l,m). This is obtained by taking tensor
product by the line bundle p∗OB(−C0), where C0 is a section of the ruling
ρ : B → P1. For concreteness let C0 be the unique section with C2

0 = −1 for
B = F1 and an arbitrary section with C2

0 = 0 for B = F0. Therefore

(1.4) Ω(X̂; r, n, k) = Ω(X, r, k, n).

for any (r, n, k), r, k ≥ 1, n ≥ 0.
Now let

ZX,r,k(q) =
∑
n∈Z

Ω(X, r, k, n)qn−r/2.

and suppose for concreteness that B = F1. Then, granting the invariance of
DT (X̂, r, n, k) under translations k 
→ k + 1 and the identification (1.3) one
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obtains

ZX,r,k(q) =
∑
n≥0

n0(X̂, r, n)qn−r/2

for any r, k ∈ Z, r, k ≥ 1.
Granting the identification (1.3), an explicit formula for the series

ZX,r,k(q) follows from the work of Maulik and Pandharipande [39] on
Gopakumar-Vafa invariants of K3 pencils. The explicit computation for the
Weierstrass model over F1 was done by Rose and Yui [48]. The formula ob-
tained in [48, Thm. 7.5] is written in terms of a certain transformation of
modular forms defined in [48, Def. 7.1]. Let

f(z) =
∑
n

anz
n

be modular form for SL(2,Z) and r, k ∈ Z, r ≥ 1. Then define fr,k(z) by

fr,k(z) =

∞∑
n=0

arn+k′zrn+k′

where 0 ≤ k′ < r is the unique integer in this range such that k′ ≡ k (mod
r). Note that this is modular form for the subgroup Γ1(r

2) ⊂ SL(2,Z) of
the same weight as f(z). Then identity (1.4) and [48, Thm 7.5] yield the
following conjectural formula:

(1.5) ZX,r,k(q) = −2

r−1∑
�=0

(
1

Δ(u)

)
r,�−1

E10(u)r,1−�

where q = ur. Here Δ(u) = u
∏∞

r=1(1− ur)24 is the discriminant cusp form
of weight 12 and E10(u) is the weight 10 Eisenstein series.

To conclude, note two natural open problems emerging from the present
work. One open question in the context of Theorem 1.1 is whether there ex-
ists a sufficiently small constant t1(γ̂, s) such that the moduli stackMω(X, γ)
coincides with the substack of adiabatically semistable objects. String the-
oretic arguments [33, 40] lead to the conjecture that this is indeed the case.
As shown in Proposition 1.2, this holds in the special case of vertical sheaves
on elliptic K3 pencils. The proof given in Section 4 relies on Bogomolov in-
equality and the algebraic Hodge theorem for surfaces. This leads to the
interesting question whether analogous tools can be developed in general for
vertical sheaves on elliptic threefolds.

The second open problem is whether formula (1.5) can be given a direct
proof using degeneration techniques as in [21].
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2. Vertical sheaves and adiabatic stability

This section introduces adiatically semistable vertical sheaves on elliptic
Weierstrass models, and shows that adiabatic stability is equivalent to a
natural notion of generic stability.

2.1. Basics of Weirestrass models

Let B be a smooth projective del Pezzo surface. Let p : X → B be a smooth
generic Weierstrass model with canonical section σ : B → X. Let Θ ⊂ X
denote the image of the canonical section. Then Θ determines a homology
class in H4(X,Z) as well as a divisor class in Pic(X). Let f ∈ H2(X,Z)
denote the class of the elliptic fiber. The same notation · will be used for the
intersection product on X, as well as B. The distinction will be clear from
the context.

Lemma 2.1. There are direct sum decompositions

(2.1)
H4(X,Z)/torsion � Z〈Θ〉 ⊕ p∗H2(B,Z)

H2(X,Z)/torsion � Z〈f〉 ⊕ σ∗H2(B,Z),

Moreover, there is an isomorphism Pic(X) � H4(X,Z).

Proof. One proceeds by analogy with [48, Lemma 6.1]. Note that h0,i(X) =
0, i ∈ {1, 2}, and h1,1(X) = h1,1(B) + 1 according to [27, Sect. 11]. This
implies that there is an isomorphism Pic(X) � H2(X,Z). By Alexander-
Lefschetz duality, there is also an isomorphism H2(X,Z) � H4(X,Z). Next
recall that Pic(B) � H2(B,Z) is freely generated by rational curve classes
C1, . . . , Ch1,1(B) such that the intersection matrix IB = (Ci · Cj)1≤i,j≤h1,1(B)

has determinant |det(IB)| = 1. LetDi = p∗Ci ∈ Pic(X) � H4(X,Z), 1 ≤ i ≤
h1,1(B). Let IX denote the intersection matrix between the divisor classes



382 Duiliu E. Diaconescu

Θ, D1, . . . , Dh1,1(B) and the curve classes f, σ∗(C1), . . . , σ∗(Ch1,1(B)) on X.
Straightfowrard intersection computations show that |det(IX)| = 1 as well.
This implies the isomorphisms claimed above. �

As explained in Section 1.1, the isomorphism Pic(X) � H4(X,Z) follow-
ing from Lemma 2.1 will be implicitely used throughout this paper. More-
over, Chern classes of sheaves on X will be identified with homology classes
by Poincaré duality. Then note the following.

Corollary 2.2. (i) A real divisor class

ω = tΘ+ p∗η, t ∈ R, t > 0,

is ample if and only if η + tKB is an ample divisor class on B.
(ii) Let C ∈ H2(B,Z) be an arbitrary curve class and let Σ = σ∗(C) +

nf ∈ H2(X,Z)/torsion with n ∈ Z. Then Σ is an efective curve class if and
only if C is effective and n ≥ 0.

Proof. For (i) suppose Σ is an effective curve class on X which contains an
irreducible curve. Let η ∈ Pic(B) be an ample class and note that

Σ · p∗η = p∗Σ · η ≥ 0.

Since Σ contains an irreducible curve, one of the following cases must hold.

(a) The set theoretic support of the irreducible curve in Σ is not contained
in Θ. In this case Σ ·Θ ≥ 0.

(b) The set theoretic support of the irreducible curve in Σ is contained
in Θ. In this case Σ ·Θ < 0 and Σ = σ∗(C) with C an effective curve
class on B. Moreover,

Σ ·Θ = C ·KB.

Then the claim (i) follows easily.
(ii) Let η ∈ Pic(B) be an arbitrary ample class. Note that for sufficiently

large k > 0 there exists a divisor H in the linear system |kη| such that Z =
p−1(C) does not contain the set theoretic support of any of the irreducible
components of Σ. Since Σ is effective, this implies Σ · η ≥ 0, hence

C · η = p∗Σ · η = Σ · p∗η ≥ 0.

Since this holds for any ample class η, it follows that C must be effective
or zero. If C = 0, the claim is obvious. Suppose C �= 0 and n < 0. Note that
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KB · C �= 0. Let s ∈ R be a real number such that

(2.2) 0 < s− 1 <
|n|

|KB · C| .

Then η = Θ− sp∗KB is an ample class on X, hence

0 < η · Σ = (s− 1)|KB · C| − |n|.

This contradicts the second inequality in (2.2). �

2.2. Adiabatic and generic stability

In order to fix terminology, recall Simpson and slope stability for two di-
mensional sheaves on X. The former is a natural generalization of Gieseker
stability to torsion sheaves introduced in [50]. Let ω be an ample class on
X. For any nonzero coherent sheaf E on X of dimension two let

μω(E) =
ω · ch2(E)

ω2 · ch1(E)/2
, νω(E) =

χ(E)

ω2 · ch1(E)/2
.

Then Simpson (semi)stability with respect to ω is defined by the conditions

(2.3) μω(E
′) (≤) μω(E)

for any proper nonzero subsheaf 0 ⊂ E′ ⊂ E, and

(2.4) νω(E
′) (≤) νω(E)

if the slope inequality (2.3) is saturated. Recall that any Simpson semistable
sheaf must be of pure dimension. Furthermore, a pure dimension two sheaf
E is Simpson semistable if and only if the above inequalities are satisfied
for saturated proper nonzero subsheaves i.e. E/E′ pure of dimension two. In
contrast, ω-slope (semi)stability is defined by imposing only condition (2.3)
with respect to nonzero proper saturated subsheaves.

For completeness, recall that the ω-slope of a nonzero pure dimension
one sheaf E is defined by

μω(E) =
χ(E)

ω · ch2(E)
.

Such a sheaf is called Simpson ω-semistable if and only if

μω(E
′) (≤) μω(E)
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for any proper nontrivial subsheaf E′ ⊂ E. In this case Simpson ω-(semi)
stability and ω-slope (semi)stability coincide.

Throughout this paper Simpson stability relative to an ample class ω ∈
PicR(X) will be simply called ω-stability.

Definition 2.3. (i) A pure dimension two sheaf E on X will be called
vertical if and only if

ch1(E) ∈ p∗Pic(B), ch2(E) ∈ (1/2)Z〈f〉.

(ii) A vertical pure dimension two sheaf E on X will be called adia-
batically ω-(semi)stable if and only if it is (t′Θ+ p∗η)-(semi)stable for all
0 < t′ ≤ t.

(iii) A vertical pure dimension two sheaf E on X will be called adiabat-
ically ω-slope (semi)stable if and only if it is (t′Θ+ p∗η)-slope (semi)stable
for all 0 < t′ ≤ t.

Note that the discrete invariants of a vertical sheaf E are given by

(2.5) ch1(E) = p∗C, ch2(E) = kf, ch3(E) = −nch3(Ox)

where C ∈ Pic(B) is an effective divisor class on B, k ∈ (1/2)Z and n ∈ Z.
Using the isomorphism Pic(B) � H2(B,Z), this yields an element

γ = (C, k, n) ∈ H2(B,Z)⊕ (1/2)Z⊕ Z,

as stated in Section 1.
Let H be a very ample divisor on B and Z = p−1(H). For sufficiently

generic H in its linear system, Z is a smooth elliptic surface with reduced
fibers. Furthermore if E is a vertical pure dimension one sheaf the restriction
of E|Z is a one dimensional sheaf set theoretically suported on a finite union
of elliptic fibers. Basically E will be said to be generically semistable if the
restriction E|Z = E ⊗X OZ is an ω|Z-semistable pure dimension one sheaf
on Z for any sufficiently generic very ample divisor H on B. Technically,
this notion requires a more careful definition.

First note that given any very ample line bundle L on B the projection
formula yields an isomorphism H0(X, p∗L) � H0(B,L) since p∗OX � OB.
Therefore the linear system |L| parametrizes simultaneously divisors H ⊂ B
as well as vertical divisors Z = p−1(H) in X. Let Ssm ⊂ |L| denote the open
subset parametrizing smooth divisorsHs such that Zs = p−1(Hs) is a smooth
elliptic surface with reduced fibers.
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Since E is vertical of pure dimension two, its scheme theoretic support
will be a divisor DE on X of the form

DE =

k∑
i=1

�ip
−1(Ci)

where �i ∈ Z, �i ≥ 1, and Ci is a reduced irreducible divisor on B for 1 ≤ i ≤
k. Given any very ample line bundle L on X there is a nonempty open subset
SE,tr ⊂ Ssm such that the following hold for any closed point s ∈ SE,tr:

(T.1) the corresponding divisor Hs intersects each Ci transversely at
finitely many smooth points of Ci, for 1 ≤ i ≤ k and

(T.2) Hs also intersects the discriminant Δ ⊂ B of the map p : X → B
transversely at finitely many smooth points of Δ. This implies that the
elliptic fibration p|Zs

: Zs → Hs will be a Weierstrass model with at most
nodal fibers.

Furthermore, according to [28, Lemma 1.1.13], there exists a second
nonempty open subset SE,pure ⊂ |L| such that E|Zs

is a pure dimension one
sheaf for any closed point s ∈ SE,pure.

Before defining generic stability note the following lemma. The proof is
straightforward and will be omitted.

Lemma 2.4. Let H be a smooth projective curve and pZ : Z → B a smooth
Weierstrass model over H. Let G be a pure dimension one sheaf on Z with
set theoretic support on a finite union of elliptic fibers. Let ωZ , ω

′
Z be arbi-

trary Kähler classes on Z. Then G is ωZ-semistable if and only if it is ω′
Z

semistable.

In the situation of Lemma 2.4, the sheaf G will be said to be semistable if
it is ωZ-semistable for some arbitrary polarization of Z. Given a vertical pure
dimension two sheaf E and a divisor Zs corresponding to s ∈ SE,tr ∩ SE,pure

the sheaf E|Zs
is set theoretically supported on a finite union of elliptic

fibers. Therefore one can formulate:

Definition 2.5. A vertical pure dimension two sheaf E will be called gener-
ically ω-semistable if and only if for any very ample linear system Π = |L| on
B there exists a nonempty open subset SE ⊂ SE,tr ∩ SE,pure ⊂ Π such that
the restriction E|Zs

a semistable sheaf on Zs for any closed point s ∈ SE .

In the remaining part of this section it will be shown that adiabatic
semistability is equivalent to generic semistability for vertical semistable
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pure dimension two sheaves. Since the proof is fairly long, it will be divided
into several shorter steps.

Lemma 2.6. Let F be an arbitrary pure dimension two sheaf on X and
D ⊂ X a divisor such that F |D is a one dimensional sheaf on X. Then
T orX1 (OD, F ) = 0 and there is an exact sequence

0 → F (−D) → F → F |D → 0.

where F (−D) = F ⊗X OX(−D).

Proof. This follows immediately from the standard exact sequence

0 → OX(−D) → OX → OD → 0

taking a tensor product by F . Under the current assumptions, the sheaf
T orX1 (OD, F ) is one dimensional, hence it must vanish since F (−D) is pure
of dimension two. �

Let F be a nonzero pure dimension two sheaf on X with ch1(F ) ∈
p∗Pic(B). The second Chern class of F is of the form

ch2(F ) = σ∗(αF ) + kF f

where αF is a curve class on B and kF ∈ (1/2)Z. Let H ⊂ B a sufficiently
generic very ample divisor on B such that Z = p−1(H) is smooth, and F |Z
is a pure dimension one sheaf on Z.

Lemma 2.7. Suppose χ(F |Z) > 0. Then

H · αF > 0.

Proof. Using Lemma 2.6 and the Rieman-Roch theorem, one has

χ(F |Z) = χ(F )− χ(F (−Z)) = Z · ch2(F ).

Then the conclusion follows. �

Lemma 2.8. Let ω = tΘ− sp∗KB, s, t ∈ R, s > t > 0. Suppose E is a
nonzero adiabatically ω-slope semistable vertical pure dimension two sheaf
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on X with topological invariants

ch1(E) = p∗C, ch2(E) = kf, ch3(E) = −nch3(Ox)

where C is a nonzero effective divisor class on B, k ∈ (1/2)Z and n ∈ Z.
Let F ⊂ E be a nonzero proper subsheaf with topological invariants

ch1(F ) = p∗CF , ch2(F ) = σ∗(αF ) + kF f

where CF is a nonzero effective divisor class on B, αF is an arbitrary divisor
class on B and kF ∈ (1/2)Z. Then KB · αF ≥ 0.

Proof. Note that

μω(E) =
k

(s− t/2)|KB · C| , μω(F ) =
(1− s/t)KB · αF + kF
(s− t/2)|KB · CF |

.

Therefore F destabilizes E for sufficiently small t > 0 unless KB · αF ≥ 0.
�

The proof that adiabatic stability implies generic stability uses the same
geometric construction as the proof of the Grauert-Mülich Theorem in [28,
Sect 3.1].

Let L be a very ample line bundle on B, let V = H0(B,L) and Π = P(V )
denote the associated linear system. By convention, P(V ) = Proj(S•(V ∨))
such that H0(Π,OΠ(1)) � V ∨. Let K be the kernel of the evaluation map
ev : V ⊗OB � L, which is a locally free sheaf on B. According to [28, Sect
3.1], the total space H of the projective bundle P(K) parametrizes pairs
(H, b) with H ∈ Π and b ∈ H a closed point. In more detail, note that the
evaluation map determines tautologically a section θ of the line bundle π∗L⊗
π∗OΠ(1), where π : Π×B → B is the canonical projection. Then H is the
divisor θ = 0 in Π×B. In particular there are natural projections

H
ρ

��

q �� B

Π

Moreover, for any closed point s ∈ Π the scheme theoretic inverse image
ρ−1(s) is the divisor θ|Bs

= 0 in Bs = B × {s} ⊂ B ×Π. Given the construc-
tion of θ, it follows that the restriction q|ρ−1(s) maps ρ−1(s) isomorphically

onto Hs. Let qs : ρ
−1(s)

∼−→Hs denote the resulting isomorphism.
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For future reference it will be useful to provide an explicit construction
for the inverse morphism q−1

s : Hs → ρ−1(s). By restriction toHs one obtains
an exact sequence

0 → K|Hs
→ V ⊗OHs

evs−→L|Hs
→ 0

where evs = ev|Hs
. Let 0 �= zs ∈ V be a defining section of Hs. Then evs(zs ⊗

1) = 0, hence there is a section ys ∈ H0(Hs,K|Hs
) such that the following

diagram is commutative

0 �� OHs

1 ��

ys

��

OHs

fs
��

�� 0

��
0 �� K|Hs

�� V ⊗OHs

evs �� L|Hs
�� 0,

where fs(1) = zs ⊗ 1. Then the snake lemma yields an exact sequence

0 → Coker(ys) → Coker(fs) → L|Hs
→ 0

where Coker(fs) is locally free since fs is injective on fibers. This implies
that Coker(ys) is also locally free, hence ys is injective on fibers. Therefore
ys determines a section ξs : Hs → P(K|Hs

). The scheme theoretic image of
ξs coincides tautologically with ρ−1(s) and

qs ◦ ξs = 1Hs
.

Note thatH0(B,K) = 0, hence the section ys does not extend to B. However,
the following lemma shows that ξs can be extended to a certain open subset
U ⊂ B.

Lemma 2.9. There exists an open subscheme U ⊂ B and a section ξ : U →
q−1(U) ⊂ H such that

(2.6) ξ|Hs∩U = ξs|Hs∩U .

Furthermore suppose C ⊂ B is a fixed effective divisor such that the set
theoretic intersection C ∩Hs is a finite set of closed points. Then the open
subscheme U can be chosen such that C ⊂ U .
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Proof. Let M be a very ample line bundle on B such that H1(B,K ⊗B

L−1 ⊗B M) = 0. The exact sequence

0 → K⊗B L−1 ⊗B M → K⊗B M → (K ⊗B M)|Hs
→ 0

yields a surjective map

(2.7) H0(B,K ⊗B M) � H0(Hs, (K ⊗B M)|Hs
).

Since M is very ample, H0(Hs,M |Hs
) is nontrivial. Let ψ : OHs

→ M |Hs
be

a nonzero section of M |Hs
and let Uψ ⊂ Hs be the complement of the zero

divisor of ψ. Then

ys ⊗ ψ|Uψ
: OUψ

→ K|Uψ
⊗Uψ

M |Uψ

determines a section of P(K|Uψ
) which coincides with ξs|Uψ

. Since the map
(2.7) is surjective, there exists a nonzero section y : OB → K⊗B M such
that y|Hs

= ys ⊗ ψ. Let I ⊂ M be the image of the morphism K∨ → M
determined by y. Then I � IY ⊗M , where IY is the ideal sheaf of a zero
dimensional subscheme Y ⊂ B. Let U ⊂ B be the complement of Y . Then
I|U is locally free, hence it determines a section ξ : U → P(K) which agrees
with ξs over Uψ.

Suppose C ⊂ B is a fixed effective divisor which intersects Hs at finitely
many points. Then for sufficiently ample M the section ψ can be chosen
such that U contains the set theoretic intersection C ∩Hs. Moreover the
extension y can be chosen such that the support of Y is disjoint from the
support of C. �

Analogous considerations apply to the linear system |p∗L| on X. Note
that H0(X, p∗L) � H0(B,L) = V since p∗p∗L � L and there is an exact
sequence

0 → p∗K → V ⊗OX → p∗L → 0.

Therefore the total space Z of P(p∗K) parametrizes pairs (Z, x) with Z =
p−1(H) for some H in the linear system Π, and x ∈ Z a closed point. Note
that Z � H×B X and there are natural projections

Z
ρZ

��

qZ �� X.

Π
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For any closed point s ∈ Π there is an isomorphism ρ−1
Z (s) � ρ−1(s)×B X

and the restriction qZ |ρ−1
Z (s) maps ρ−1

Z (s) isomorphically to Zs. The inverse

morphism is given by the section ζs : Zs → q−1
Z (Zs),

ζs = ξs ×B 1X .

Now let F = q∗ZE and let FS = F|π−1(S) for any open subset S ⊂ Π.
Then one has the following lemma.

Lemma 2.10. The following statements hold for any vertical pure dimen-
sion two sheaf E on X.

(i) There is a nonempty open subset Sfl ⊂ Π such that the restrictions
ρ
∣∣
ρ−1(Sfl)

and ρZ
∣∣
ρ−1
Z (Sfl)

are flat and the fibers ρ−1(s), ρ−1
Z (s), s ∈ Sfl are

normal irreducible divisors in X, B respectively.
(ii) There is a nonempty open subset SE,fl ⊂ Sfl such that FS is flat over

S and E|Zs
is pure one dimensional for any s ∈ SE,fl.

(iii) There exists a filtration

(2.8) 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fj = F .

of F by coherent sheaves on Z which restricts to a relative Harder-
Narasimhan fibration over ρ−1

Z (Shn) ⊂ Z for a suitable nonempty open sub-
set SE,hn ⊂ SE,fl. In particular the restrictions

(
Fi/Fi−1

)
SE,hn

, 1 ≤ i ≤ j, are

flat over SE,hn.

Proof. The first two statements are completely analogous to [28, Lemma
3.1.1]. For the third statement note that [28, Thm 2.3.2] implies the existence
of a filtration of the form (2.8) over the open subset ρ−1

Z (SE,fl) ⊂ Z. However,
this filtration can be extended to a filtration of sheaves on Z by successive
applications of [25, Ex. 5.15.(d)]. �

Now one can finally prove:

Lemma 2.11. Let ω = tΘ− sp∗KB, t, s ∈ R, 0 < t < s, and suppose E is
an adiabatically ω-slope semistable vertical pure dimension two sheaf on X.
Then E is generically semistable.

Proof. According to Definition 2.5 one has to prove the existence of a non-
empty open subset SE ⊂ SE,tr ∩ SE,pure such that the restriction E|Zs

is a
semistable pure dimension one sheaf on Zs for any closed point s ∈ SE . Note
that in Lemma 2.10 one has SE,hn ⊂ SE,pure by construction.
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If F1 = F in the filtration (2.8) it follows that E|Zs
is semistable for any

s ∈ SE,hn, hence the claim follows. Suppose this is not the case i.e. the fil-
tration (2.8) has length at least two. Let s ∈ SE,hn ∩ SE,tr be a closed point.

Hence Hs ⊂ B intersects the effective divisor CE =
∑k

i=1 �iCi at finitely
many points. Let ξ : U → ρ−1(U) be a section as in Lemma 2.9 such that
CE ⊂ U . Then relation (2.6) holds:

ξ|Hs∩U = ξs|Hs∩U .

Let Zs = p−1(Hs). Recall that the projection qZ : Z → X maps ρ−1
Z (s)

isomorphically to Zs and the inverse morphism ζs : Zs → q−1
Z (Zs) is given

by

ζs = ξs ×B 1X .

Let XU = p−1(U). Then ζ = ξ ×U 1XU
is a section of qZ over XU such that

(2.9) ζ|Zs∩XU
= ζs|Zs∩XU

.

Moreover DE = p−1(CE) is a subscheme of XU .
Let ζE : DE → Z be the restriction of ζ to DE . Let ϕ : F1 ↪→ F be the

first term in the filtration (2.8). By construction, ϕ|ρ−1
Z (s) is injective. Since

DE is a subscheme of XU , using equation (2.9), one obtains isomorphisms

ζ∗EF1 ⊗X OZs
� ζ∗F1|XU

⊗XU
OZs∩XU

⊗XU
ODE

(2.10)

� ζ∗s
(
F1|ρ−1

Z (s)

)∣∣
Zs∩XU

⊗XU
ODE

.

However F1|ρ−1
Z (s) is a subsheaf of F|ρ−1

Z (s) � q∗Z,s(E|Zs
), where qZ,s :

ρ−1
Z (s) → Zs denotes the natural projection. Since ζs : Zs → ρ−1

Z (s) is an
isomorphism and qZ,s ◦ ζs = 1Zs

, it follows that ζ∗s
(
F1|ρ−1

Z (s)

)
is a subsheaf

of E|Zs
. In particular it is scheme theoretically supported on DE , and equa-

tion (2.10) yields an isomorphism

(2.11) ζ∗EF1 ⊗X OZs
� ζ∗s

(
F1|ρ−1

Z (s)

)
.

Now let f = ζ∗Eϕ : ζ∗EF1 → ζ∗EF � E and let F = Im(f) ⊂ E. Since
ζ∗s
(
F1|ρ−1

Z (s)

)
is a subsheaf of E|Zs

, equation (2.11) implies that

F |Zs
� ζ∗E(F1|ρ−1

Z (s))

is also a subsheaf of E|Zs
. By construction this is the first term in the Harder-

Narasimhan filtration of E|Zs
. Since E is vertical, Lemma 2.6 implies that
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χ(E|Zs
) = 0. Thefore, as E|Zs

is not semistable by assumption, one must
have χ(F |Zs

) > 0. Then Lemma 2.7 implies that c1(L) · αF > 0, where αF

is the horizontal part of ch2(F ) as in loc.cit.
Let ωB be the dualizing sheaf of B. Applying the above construction

to L = ω−m
B , for sufficiently large m ≥ 1, one is then led to a contradiction

with Lemma 2.8 since E is assumed adiabatically ω-slope semistable. �

Lemma 2.11 admits the following converse.

Lemma 2.12. Suppose ω = tΘ− sKB with s, t ∈ R, s > t > 0. Let E be
an ω-semistable vertical pure dimension two sheaf on X with topological
invariants

ch1(E) = p∗C, ch2(E) = kf

where C is a nonzero effective divisor class on B and k ∈ (1/2)Z. Suppose
E is generically semistable. Then E is adiabatically ω-semistable.

Proof. Let 0 �= F ⊂ E be a proper pure dimension two subsheaf of E such
that G = E/F is also pure dimension two. Let H be a sufficiently generic
very ample divisor on B as in Definition 2.5 and Z = p−1(H). Lemma 2.6
shows that T orX1 (G,OZ) = 0, hence there is an exact sequence

0 → F |Z → E|Z → G|Z → 0.

Let ch1(F ) = p∗CF and ch2(F ) = σ∗(αF ) + kF f with CF , αF divisor classes
on B, CF nonzero, effective, and kF ∈ (1/2)Z. Since E|Z is semistable by
assumption, and χ(E|Z) = 0, it follows that

χ(F |Z) = Z · ch2(F ) = H · αF ≤ 0.

In particular, for H in the linear system | −KB|,

(2.12) KB · αF ≥ 0.

Let ω′ = t′Θ− sp∗KB with 0 < t′ ≤ t. Then

μω′(F ) = − s

t′(s− t′/2)
KB · αF

|KB · CF |
+

1

s− t′/2
kF +KB · αF

|KB · CF |

and

μω′(E) =
1

s− t′/2
k

|KB · C| .
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Since μω(F ) ≤ μω(E), one finds

kF +KB · αF

|KB · CF |
≤ k

|KB · C| +
s

t

KB · αF

|KB · CF |
.

Using (2.12), this implies that

μω′(F )− μω′(E) ≤ s(t′ − t)

tt′(s− t′/2)
KB · αF

|KB · CF |
≤ 0

for any 0 < t′ < t. Moreover equality holds for some 0 < t′ < t if and only if
KB · αF = 0. If this is the case, ω-stability implies that

νω(F ) ≤ νω(E)

which is equivalent to

χ(F )

|KB · CF |
≤ χ(E)

|KB · C| .

This implies that νω′(F ) ≤ νω′(E). Therefore E is ω′-semistable. �

Let Mω(X, γ) denote the moduli stack of ω-semistable pure dimen-
sion two sheaves E with topological invariants γ = (C, k, n) ∈ H2(B,Z)⊕
(1/2)Z⊕ Z. Let Mad

ω (X, γ) denote the substack of adiabatically semistable
objects. To conclude this section it will be shown that Mad

ω (X, γ) is an
open substack of Mω(X, γ) for any discrete invariants γ and for any Kähler
class ω = tΘ− sp∗KB, s, t,∈ R, s > t > 0. For any 0 < t′ < t < s let ωt′ =
t′Θ− sp∗KB. Then one has:

Lemma 2.13. Suppose E is a vertical (ωt, β)-semistable sheaf with discrete
invariants γ = (C, k, n), C �= 0, which is not ωt′-semistable for some 0 < t′ <
t. Then E is not ωt′′-semistable for any 0 < t′′ < t′.

Proof. Let F ⊂ E be a destabilizing proper non-zero subsheaf with respect
to ωt′-stability. This means that

(2.13) μωt′ (F ) ≥ μωt′ (E),

and, if equality holds, νωt′ (F ) > νωt′ (E). At the same time, note that μωt
(F )

≤ μωt
(E). As in the proof of Lemma 2.12, let

ch1(F ) = p∗(CF ), ch2(E
′) = σ∗(αF ) + kF f
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where CF is a nonzero effective curve class on B. Then the same computation
as in loc.cit. shows that

μωt′ (F )− μωt′ (E) ≤ s(t′ − t)

tt′(s− t′/2)
KB · αF

|KB · CF |
.

Therefore inequality (2.13) implies that KB · αF ≤ 0. Moreover, if KB ·
αF = 0, equality must hold in (2.13).

Now suppose E is ωt′′-semistable for some 0 < t′′ < t′. Then

(2.14) μωt′′ (F ) ≤ μωt′′ (E).

and, if equality holds, νωt′′ (F ) < νωt′′ (E). However inequality (2.13) yields

kF +KB · αF

|KB · CF |
≥ k

|KB · C| +
s

t′
KB · αF

|KB · CF |
.

Therefore

μωt′′ (F )− μωt′′ (E) ≥ s(t′′ − t′)
t′t′′(s− t′′/2)

KB · αF

|KB · CF |
≥ 0.

This implies thatKB · αF = 0, hence equality must hold in (2.13) and (2.14).
However, in this case, νωt′ (F ) > νωt′ (E), which is equivalent to

χ(F )

|KB · CF |
>

χ(E)

|KB · CF |
.

This further implies νωt′′ (F ) > νωt′′ (E), leading to a contradiction. �
In order to formulate the last result of this section, let Mω(X, γ) de-

note the coarse moduli scheme parameterizing S-equivalence classes of ω-
semistable sheaves on X. Note that according to [1, Ex.8.7], Mω(X, γ) is
a good coarse moduli space for the moduli stack Mω(X, γ). This means
that there is a morphism � : Mω(X, γ) → Mω(X, γ) satisfying the properties
listed in [1, Thm. 4.16]. Let Mad

ω (X, γ) ⊂ Mω(X, γ) be the scheme theoretic
image �(Mad

ω (X, γ)).

Lemma 2.14. For any Kähler class ω = tΘ− sp∗KB with s > t > 0, and
for any discrete invariants γ, the subscheme Mad

ω (X, γ) is open in Mω(X, γ),
and the substack Mad

ω (X, γ) is open in Mω(X, γ).

Proof. For any 0 < t′ < t, let Nt′(γ) be the substack of ω-semistable vertical
sheaves which are not ωt′-semistable. Note that this is an closed substack
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of Mω(X, γ) since ωt′-semistability is an open condition in flat families.
Lemma 2.13 shows that Nt′(γ) ⊂ Nt′′(γ) for any 0 < t′′ < t′ < t. According
to [1, Thm 4.16.(i)], the morphism � is universally closed. Therefore the
scheme theoretic image �(Nt′(γ)) is a closed subscheme Nt′(γ) ⊂ Mω(X, γ).
Moreover and [1, Thm.4.16.(iii)] implies that Nt′(γ) ⊆ Nt′′(γ) for any 0 <
t′′ < t′ < t. Since Mω(X, γ) is noetherian, it follows that the union Nω(γ) =
∪0<t′<tNt′(γ) must be a closed subscheme of Mω(X, γ). Therefore its inverse
image Nω(γ) = �−1(Nω(γ)) is a closed substack of Mω(X, γ). To conclude
the proof note that Mad

ω (X, γ) is the complement of Nω(γ) according to
Lemma 2.13. �

3. Fourier-Mukai transform and stability

This section contains the detailed proof of Theorem 1.1. Since the proof is
fairly long and complicated, it will be divided into subsections. The first sub-
section reviews the basic proeprties of the relative Fourier-Mukai transform
on elliptic fibrations.

3.1. Basics of Fourier-Mukai transform

The main references for this section will be [10–12] and the review article [2].
Let X be a smooth generic elliptic Weierstrass model over a smooth Fano
variety B. In particular all singular elliptic fibers are either nodal of cuspidal.
In this subsection X will be assumed of dimension n ∈ {2, 3} and not neces-
sarily Calabi-Yau. Let X̂ be the Altman-Kleiman compactification of the de-
gree zero relative Jacobian of X and p̂ : X̂ → B the natural projection. This
is a fine relative moduli space for rank one degree zero torsion free sheaves
on the fibers of p, hence there is a (non-unique) universal rank one torsion
free sheaf P on X̂ ×B X. There is also a canonical morphism θ : X → X̂
mapping a closed point x ∈ X to Ix ⊗OXp(x)

(σ(p(x))), where Ix ⊂ OXp(x)

is the ideal sheaf of {x} ⊂ Xp(x), and σ : B → X is the canonical section.

Under the current assumptions θ is an isomorphism. Hence p̂ : X̂ → B is a
smooth Weierstrass model with a canonical section σ̂ : B → X̂.

Note that P is flat over X̂ and also flat over X according to [12, Lemma
8.4]. Extending P by zero to X̂ ×X, let

(3.1) Q = RHom
̂X×X(P, π∗

XωX)[n− 1]

where πX : X̂ ×X → X is the canonical projection and ωX is the dualizing
sheaf of X. Then [12, Lemma 8.4] proves that Q is a sheaf on X̂ ×X which



396 Duiliu E. Diaconescu

is flat over both X̂ and X. Moreover, Q is pure and scheme theoretically
supported on X̂ ×B X.

Now consider the commutative diagram

(3.2) X̂ ×B X
ρ ��

ρ̂
��

q

���
��

��
��

��
� X

p

��
X̂

p̂ �� B.

and define the Fourier-Mukai functors Φ : Db(X̂) → Db(X),

(3.3) Φ(Ê) = Rρ∗(Lρ̂∗(Ê)
L
⊗P)

and Φ̂ : Db(X) → Db(X̂),

(3.4) Φ̂(E) = Rρ̂∗(Lρ∗(E)
L
⊗Q).

Theorem [12, Thm 1.2] proves the following relations:

(3.5) Φ̂ ◦ Φ � IdDb( ̂X)[−1], Φ ◦ Φ̂ � IdDb(X)[−1].

For any object E inDb(X) let Φ̂i(E) denote the i-th cohomology sheaf of
Φ̂(E). Since Q is flat over X, the base change theorem implies that Φ̂i(E) is
nonzero only for i ∈ {0, 1}. A sheaf E on X is called Φ̂−WITi if Φ̂

j(Ê) = 0
for all j �= i. The same applies to sheaves on X̂ with respect to the inverse
functor Φ.

For any closed point x̂ ∈ X̂ let ιx̂ : x̂×X ↪→ X̂ ×X denote the canoni-
cal embedding and Px̂ = ι∗x̂P, Q = ι∗x̂Q. Note that Px̂ is isomorphic to the
extension by zero of a rank one torsion free sheaf on the elliptic fiber Xp̂(x̂).

Since P,Q are flat over X̂, [11, Lemma 3.1.1] implies that

Lkι
∗
x̂P = 0, Lkι

∗
x̂Q = 0

for all k > 0. Then, using [24, Prop. III.8.8], relation (3.1) yields the isomor-
phism

(3.6) Qx̂ � RHomX(Px̂, ωX)[n− 1]

in Db(X). This implies that Qx̂ is a pure dimension one sheaf on X with
scheme theoretic support on Xp̂(x̂). Taking a further derived dual, one also
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has

(3.7) Px̂ � RHomX(Qx̂, ωX)[n− 1]

Analogous results hold for the fibers of ρ.
Next note the following lemma, which is a simple consequence of the

definitions.

Lemma 3.1. (i) For any closed point x̂ ∈ X̂ the skyscraper sheaf Ox̂ is
Φ−WIT0 and

Φ0(Ox̂) � Px̂.

(ii) For any closed point x ∈ X the O
̂X-module Px is Φ−WIT1 and

Φ1(Px) � Ox.

(iii) Analogous results hold for closed points x ∈ X relative to Φ̂.

Further results needed in the following include [12, Lemma 9.2] and [12,
Lemma 9.3] which will be reproduced below for convenience.

Lemma 3.2. Let Ê be a sheaf on X̂. Then Φi(Ê) is Φ̂−WIT1−i for i ∈
{0, 1} and there is a short exact sequence

0 → Φ̂1(Φ0(Ê)) → Ê → Φ̂0(Φ1(Ê)) → 0.

An analogous statement holds of sheaves E on X with Φ and Φ̂ reversed.

Lemma 3.3. A sheaf F̂ on X̂ is Φ−WIT0 if and only if Hom
̂X(F̂ ,Qx) = 0

for all x ∈ X.

Now suppose X is a Calabi-Yau threefold. Choosing the normalization
of [2] let P be given by

P = IΔ ⊗ ρ∗OX(Θ)⊗ ρ̂∗O
̂X(Θ̂)⊗ q∗ω−1

B

where IΔ is the ideal sheaf of the diagonal Δ ⊂ X ×B X̂ � X ×B X, ωB

is the dualizing sheaf of B, and Θ ⊂ X, Θ̂ ⊂ X̂ are the canonical sections.
This particular choice for P will be used throughout the remaining part of
the paper. Then note that equations (17) and (18) in [2, Sect 5.3] yield the
following formulas for the Chern characters of the Fourier-Mukai transform
of vertical sheaves.
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Let F̂ be a pure dimension one sheaf on X̂ with

ch2(F̂ ) = σ̂∗(C) +mf̂, ch3(F̂ ) = lch3(Ox̂), m, l ∈ Z.

Then

(3.8)
ch0(Φ(F̂ )) = 0, ch1(Φ(F̂ )) = p∗C,

ch2(Φ(F̂ )) =
(
l +KB · C/2

)
f ch3(Φ(F̂ )) = −mch3(Ox).

with x ∈ X an arbitrary closed point. Conversely, let E be a vertical pure
dimension two sheaf on X with

ch1(E) = p∗C, ch2(E) = kf, ch3(E) = −nch3(Ox)

where C is an effective curve class on B and k ∈ (1/2)Z, n ∈ Z, k ≡ KB · C/2
mod Z. Then

(3.9)
ch0(Φ̂(E)) = 0, ch1(Φ̂(E)) = 0, ch2(Φ̂(E)) = −σ̂∗C − nf̂

ch3(Φ̂(E)) =
(
− k +KB · C/2

)
ch3(Ox̂).

3.2. From sheaves on X to sheaves on X̂

Lemma 3.4. Let E be a vertical pure dimension two sheaf on X. Let Û ⊂
X̂ be an arbitrary affine open subset. Then Φ̂(E)|

̂U is quasi-isomorphic to a
three term complex of coherent locally free O

̂U -modules

0 → W−1
φ0−→W0

φ1−→W1 → 0

where the degree of Wi is i for −1 ≤ i ≤ 1 and φ0 is injective.

Proof. Since E is pure dimension two, it has a locally free resolution

V−2 → V−1 → V0

on X, where V−i is in degree −i for 0 ≤ i ≤ 2. Since ρ is flat and Q is flat

over X, Lρ∗(E)
L
⊗Q is isomorphic to the complex

ρ∗V−2 ⊗Q → ρ∗V−1 ⊗Q → ρ∗V0 ⊗Q

in Db(X̂ ×B X). Let V denote the above complex and note that each term
of this complex is flat over X̂.
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Given any affine open subscheme Û ⊂ X̂ let ρ̂
̂U denote the restriction

of ρ̂ to ρ̂−1(Û). Then Φ̂(E)|
̂U is given by Rρ̂

̂U∗(V|ρ̂−1(̂U)). According to [23,

Thm. 6.10.5] and [23, Remark 6.10.6], or [45, Sect 5, page 46], Rρ̂
̂U∗(V|ρ̂−1(̂U))

is quasi-isomorphic to a finite complex W• of locally free O
̂U -modules. More-

over, for any point x̂ ∈ Û , the cohomology group H i(W•|x̂) is isomorphic to
the hypercohomology group Hi(V|ρ̂−1(x̂)) for all values of i.

Next note that W• can be truncated to a three term locally free complex
of amplitude [−1, 1]. By general properties of the Fourier-Mukai transform,
Φ̂(E)|

̂U has nontrivial cohomology sheaves only in degrees 0, 1 hence one
can truncate W to a locally free complex

· · · → W−1 → W0 → W1 → 0

where Wi is in degree i for all i ≤ 1. Recall that the cokernel of an injective
morphism fi : Wi → Wi−1 of locally free sheaves is locally free if and only if
fi is injective on fibers. Then the claim will follow if one shows that

H−i(V|ρ̂−1(x̂)) = 0

for all i ≥ 2. In order to prove this, note that the cohomology sheaf
H−i(V|ρ̂−1(x̂)) is isomorphic to the local Tor sheaf T orXi (E,Qx̂). Then rela-
tion (3.6) yields isomorphisms

(3.10) H−i(V|ρ̂−1(x̂)) � Ext2−i
X

(
Px̂, E)

for all i ∈ Z. In particular H−i(V|ρ̂−1(x̂)) = 0, i ≥ 3 for degree reasons, and
H−2(V|ρ̂−1(x̂)) = 0 since E is pure dimension two. Then the required van-
ishing result follows from the hypercohomology spectral sequence since the
remaining cohomology sheaves of V|ρ̂−1(x̂) are set theoretically supported in

dimension one. In conclusion Φ̂(E)|U is quasi-isomorphic to a complex of
the form

0 → W−1
φ0−→W0

φ1−→W1 → 0

where φ0 is injective. �

Lemma 3.5. Let H be a smooth projective curve and Z be a smooth Weies-
trass model over H with at most nodal fibers. Let F be a coherent sheaf on
Z with set theoretic support on a reduced fiber Zb, for b ∈ H a closed point.
Suppose χ(F ) = 0 and F is stable with respect to an arbitrary polarization
ωZ . Then F is the extension by zero of a rank one torsion free sheaf G on
Zb with χ(G) = 0.
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Proof. According to [19, Thm 1.1], any stable torsion free sheaf G on Zb

with χ(G) = 0 must have rank one. Therefore it suffices to prove that F is
scheme theoretically supported on Zb.

Since F is stable, it must be pure of dimension one. Hence it is scheme
theoretically supported on a nonreduced divisor kZb on Z for some k ∈ Z,

k > 0. Consider the morphism F
ζ−→F ⊗Z OZ(Zb), where ζ ∈ OZ(Zb) is a

defining section. Note that OZ(Zb) � OZ(Zb′) for any point b′ ∈ H \ {b}.
Pick any such point b′ and let ζ ′ ∈ OZ(Zb) be its defining section. Obviously
ζ ′ is nonzero on Z \ Zb′ , hence its yields an isomorphism F ⊗H OZ(Zb) � F .

Since F is assumed stable it follows that F
ζ−→F ⊗H OZ(Zb) must be either

identically zero or an isomorphism. However note that F
ζk

−→F ⊗Z OZ(kZb)
must be identically zero since F is scheme theoretically supported on kZb.

Therefore F
ζ−→F ⊗Z OZ(Zb) cannot be an isomorphism, which implies that

it must be identically zero. In conclusion F is scheme theoretically supported
on the reduced fiber Zb, hence it must be isomorphic to the extension by
zero of a stable sheaf G on Zb. �

Let E be a vertical pure dimension two sheaf on X scheme theoretically
supported on a divisor

(3.11) DE =

k∑
i=1

�ip
−1(Ci)

for some reduced irreducible effective divisors Ci in B. Using the notation in-
troduced above Definition 2.5, letH be a very ample divisor inB correspond-
ing to a closed point s ∈ SE,tr ∩ SE,pure ⊂ |H|. Therefore Z = p−1(H) is a
smooth elliptic surface with finitely many nodal fibers which intersects each
component p−1(Ci) transversely along a finite collection of elliptic fibers.

Next note that Ẑ = p̂−1(H) ⊂ X̂ is a smooth elliptic surface isomorphic
to Z over H. Moreover Ẑ ×H Z = (X̂ ×B H)×H Z = X̂ ×H Z is the inverse
image ρ−1(Z) under the projection ρ : X̂ ×B X → X. In particular Ẑ ×H Z
is a closed subscheme of X̂ ×B X and ρ∗OZ � O

̂Z×HZ . Let

(3.12) j : Ẑ ×H Z → X̂ ×B X̂

denote the canonical closed embedding and let Φ̂Z : Db(Z) → Db(Ẑ) be the
Fourier-Mukai functor with kernel Lj∗Q.

Lemma 3.6. Suppose E is a nonzero vertical pure dimension two sheaf
with scheme theoretic support (3.11) and let Z = p−1(H) ⊂ X be a vertical
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divisor as above. Then there is an isomorphism

(3.13) Φ̂1(E)⊗X O
̂Z � Φ̂1

Z(E ⊗X OZ)

Proof. Since ρ : X̂ ×B X → X is flat, there is an exact sequence

0 → ρ∗OX(−Z) → ρ∗OX → ρ∗OZ → 0

where ρ∗OX � O
̂X×BX and ρ∗OZ � O

̂Z×HZ . Hence this is a two term locally
free resolution of O

̂Z×HZ . Since Q is flat over X, this sequence will remain
exact when one takes a tensor product with Q. Therefore Lj∗Q is quasi-
isomorphic to Q|

̂Z×HZ .
Since the Fourier-Mukai transform is compatible with base change there

is an isomorphism

Φ̂Z(Lι
∗
Z(E)) � Lι∗

̂Z
Φ̂(E)

in Db(Ẑ), where ι
̂Z : Ẑ → X̂ is the natural closed embedding. However,

Lemma 2.6 yields an isomorphism Lι∗ZE � E ⊗X OZ in Db(Z), hence one
obtains

Φ̂Z(E ⊗X OZ) � Lι∗
̂Z
Φ̂(E).

Since Φ̂(E) has cohomology only in degrees 0 and 1, the base change theorem
[23, Thm. 7.7.5] implies that

(3.14) Φ̂1
Z(E ⊗X OZ) � ι∗

̂Z
Φ̂1(E) � Φ̂1(E)⊗

̂X O
̂Z .

�

Lemma 3.7. Let E be a nonzero generically semistable vertical pure di-
mension two sheaf on X as in Definition 2.5. Then Φ̂0(E) = 0 and Φ̂1(E)
is a pure dimension one sheaf on X̂.

Proof. Using the notation of Lemma 3.4 it suffices the prove that the com-
plex W• is exact in degree 0 for any open affine subset Û ⊂ X. Under the
current assumptions the scheme theoretic support of E is of the form (3.11).
Note that the first Chern character of E is of the form

(3.15) ch1(E) =

k∑
i=1

rip
∗(Ci)

for some integers ri ∈ Z, ri ≥ 1, 1 ≤ i ≤ k.
Let H be a smooth very ample divisor on B satisfying the genericity

conditions in Definition 2.5. In particularH intersects each Ci transversely at
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ni ≥ 1 finitely many smooth points bi,j on Ci, where 1 ≤ j ≤ ni. The inverse
image Z = p−1(H) is a smooth Weierstrass model overH with at most nodal
fibers. Let F = E ⊗X OZ . By assumption, F is an ω|Z- semistable sheaf on
Z set theoretically supported on a finite union of elliptic fibers. According
to Lemma 2.6, there is an exact sequence

0 → E(−Z) → E → F → 0

of sheaves on X which yields χ(F ) = 0 via the Riemann-Roch theorem.
Moreover, the above sequence also implies that

ch1(F ) = ι∗Zch1(E)

as a sheaf on Z. Using a Jordan Hölder filtration and Lemma 3.1, it is
straightforward to check that F is Φ̂Z −WIT1 and Φ̂1

Z(F ) is a zero dimen-
sional sheaf of length

χ(Φ̂1
Z(F )) =

k∑
i=1

rini.

This holds for any very ample divisor H in B satisfying the genericity con-
ditions in Definition 2.5. Then Lemma 3.6 implies that the set theoretical
support of Φ̂1(E) is at most one dimensional. If it had dimension two or
higher, the restriction of Φ̂1(E) to a generic Ẑ would be supported in di-
mension at least one since any effective divisor on X̂ intersects Ẑ along a
nonempty curve.

Let T ⊂ Φ̂1(E) be the maximal zero dimensional subsheaf, and let
Φ̂1(E)′ = Φ̂1(E)/T , which is a sheaf of pure dimension one. Obviously, the
set theoretic support of Φ̂1(E)′ intersects Ẑ at finitely many closed points,

hence T or
̂X
1 (O

̂Z , Φ̂
1(E)′) is a zero dimensional sheaf. Then, using the locally

free resolution

0 → O
̂X(−Ẑ) → O

̂X → O
̂Z → 0,

it follows that T or
̂X
1 (O

̂Z , Φ̂
1(E)′) = 0 since O

̂X(−Ẑ)⊗
̂X Φ̂1(E)′ is pure of

dimension one. As the higher local tor sheaves are obviously zero, one obtains
a quasi-isomorphism

Lι∗
̂Z
Φ̂1(E)′ � O

̂Z ⊗
̂X Φ̂1(E)′.

Moreover, since T depends only on E one can choose H sufficiently generic
such that Ẑ does not intersect the support of T . Then Lemma 3.6 yields an
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isomorphism

O
̂Z ⊗

̂X Φ̂1(E)′ � O
̂Z ⊗

̂X Φ̂1(E) � Φ̂1
Z(F ).

Since T or
̂X
i (O

̂Z , Φ̂
1(E)′) = 0 for all i ≥ 1, the Riemann-Roch theorem yields

χ(O
̂Z ⊗

̂X Φ̂1(E)′) = ch2(Φ̂
1(E)′) · Ẑ.

Therefore for any H satisfying the required genericity assumptions there is
an identity

ch2(Φ̂
1(E)) · Ẑ = χ(Φ̂1

Z(F )) =

k∑
i=1

niri.

However equations (3.9) imply that

ch2(Φ̂(E)) = −
k∑

i=1

riσ̂∗(Ci)− nf

where ch3(E) = −nch3(Ox). Therefore

ch2(Φ̂
1(E)) · Ẑ − ch2(Φ̂

0(E)) · Ẑ =

k∑
i=1

niri.

In conclusion

ch2(Φ̂
0(E)) · Ẑ = 0

for any very ample class H in B. This implies that ch2(Φ̂
0(E)) ∈ Q〈f〉.

However, equations (3.9) imply that

chi(Φ̂
0(E)) = 0

for i ∈ {0, 1} since Φ̂1(E) has one dimensional support. Therefore Φ̂0(E) is
set theoretically supported on a finite union of elliptic fibers.

Now recall that Φ̂0(E) is Φ−WIT1 and there is an injective morphism

Φ1(Φ̂0(E)) ↪→ E

according to Lemma 3.2. Since Φ̂0(E) is Φ−WIT1 and set theoretically
supported on a finite union of fibers, equations (3.9) imply that Φ1(Φ̂0(E))
will be also supported on a finite union of elliptic fibers. Since E is pure
of dimension two, it follows that Φ1(Φ̂0(E)) = 0, which further implies that
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Φ̂0(E) = 0 since Φ̂0(E) is Φ−WIT1. This implies that for any open subset
of X̂ the complex W• constructed in Lemma 3.4 is a locally free resolution
of Φ̂1(E). Therefore Φ̂1(E) must be a pure dimension one sheaf on X̂. �

For the remaining part of this section set

(3.16) ω = tΘ− sp∗KB, ω̂ = Θ̂− sp̂∗KB,

where s, t ∈ R, s > t > 0 and s > 1.
Let E be a vertical ω-semistable sheaf on X with topological invariants

(3.17) ch1(E) = p∗C, ch2(E) = kf, ch3(E) = −nch3(Ox)

where 0 �= C ∈ H2(B,Z) is an effective curve class, k ∈ (1/2)Z, n ∈ Z. Sup-
pose E is also generically semistable. Then E is Φ̂−WIT1 according to
Lemma 3.7 and F̂ = Φ̂1(E) is a pure dimension one sheaf on X̂ with topo-
logical invariants

(3.18) ch2(F̂ ) = σ̂∗(C) + nf̂ , χ(F̂ ) = k − KB · C
2

.

Remark 3.8. Note that Lemma 3.7 and Corollary 2.2.ii. imply that n ≥ 0
for any sheaf E as above since ch2(F̂ ) must be effective.

The next goal is to show that F̂ is ω̂-semistable for sufficiently large
s provided that χ = k −KB · C/2 ≥ 1. This will be carried out in several
steps. For fixed C, k, n as above with C �= 0 effective, χ ≥ 1, n ≥ 0, let

S(C, k, n) = {(C ′, l,m) ∈ Pic(B)× Z× Z |C ′, C − C ′ effective,
l ≥ 0, |KB · C|l − |KB · C ′|χ ≤ 0, 0 ≤ m ≤ n}.

Note that |KB · C ′| ≤ |KB · C| for any (C ′, l,m) ∈ S(C, k, n), hence the sec-
ond defining inequality of S(C, k, n) yields

0 ≤ l ≤ χ.

Therefore S(C, k, n) is a finite set. Moreover,

(3.19) |nl −mχ| ≤ nχ

for any (C ′, l,m) ∈ S(C, k, n).



Vertical sheaves and Fourier-Mukai transform 405

Lemma 3.9. Suppose E, F̂ are as above. Let Ĝ ⊂ F̂ be a nonzero subsheaf
such that F̂ /Ĝ is a nonzero pure dimension one sheaf on X̂. Let

(3.20) ch2(Ĝ) = σ̂∗(C ̂G) +mf̂

with m ∈ Z. Suppose Ĝ is ω̂-semistable and μω̂(Ĝ) > μω̂(F̂ ) for some s > 1.
Then (C

̂G, χ(Ĝ),m) ∈ S(C, k, n).

Proof. Given E, F̂ , Ĝ as in Lemma 3.9, note that μω̂(Ĝ) > μω̂(F̂ ) > 0. Since
Ĝ is assumed ω̂-semistable for some s > 1, Lemma 3.3 implies that Ĝ is
Φ−WIT0. Since E is Φ̂−WIT1 and F̂ = Φ̂1(E), Lemma 3.3 implies that
Φ0(Ĝ) is a subsheaf of E. Moreover equations (3.8) yield

ch1(Φ
0(Ĝ)) = p∗C

̂G, ch2(Φ
0(Ĝ)) = (χ(Ĝ) +KB · C

̂G/2)f,

ch3(Φ
0(Ĝ)) = −mch3(Ox).

Since Ĝ is Φ−WIT0 and Φ0(Ĝ) is a nonzero subsheaf of E one must have
C

̂G �= 0. Otherwise Φ0(Ĝ) would be a nonzero sheaf supported on a finite
union of elliptic fibers, leading to a contradiction since E is purely two
dimensional. Moreover, Corollary 2.2 implies that C

̂G is effective and m ≥ 0.

Since ch2(F̂ /Ĝ) must be an effective curve class, Corollary 2.2 also implies
that C = C

̂G + C ′ where C ′ is an effective curve class on B and n−m ≥ 0.

Since E is ω-semistable, one also has μω(Φ
0(Ĝ)) ≤ μω(E), which is

equivalent to

χ(Ĝ)|KB · C| − χ(F̂ )|KB · C
̂G| ≤ 0.

In conclusion, (C
̂G, χ(Ĝ),m) ∈ S(C, k, n). �

Now consider the subset

S ′(C, k, n) = {(C ′, l,m) ∈ S(C, k, n) | |KB · C|l − |KB · C ′|χ ≤ −1}
⊂ S(C, k, n).

For any s ∈ R, s > 0, let fs : S ′(C, k, n) → R be the function

fs(C
′, l,m) = (s− 1)(|KB · C|l − |KB · C ′|χ) + (nl −mχ).

Then the following is a straightforward consequence of inequality (3.19).

Lemma 3.10. For fixed C, k, n as above there exists s1 ∈ R, s1 > 1 depend-
ing only on (C, k, n) such that for any s > s1 one has fs(C

′, l,m) < 0 for all
(C ′, l,m) ∈ S ′(C, k, n).
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Lemma 3.11. For fixed (C, k, n) as above let s1 > 1 be as in Lemma 3.10.
Then for any s > s1 the Fourier-Mukai transform F̂ = Φ1(E) of any ω-
semistable and generically semistable sheaf E with topological invariants
(3.17) is ω̂-semistable.

Proof. Suppose s > s1. The goal is to show that no destabilizing subsheaf
Ĝ ⊂ F̂ as in Lemma 3.9 can exist for any pair (E, F̂ ). Suppose Ĝ ⊂ F̂ is such
a subsheaf for some pair (E, F̂ ). Note that μω̂(Ĝ) > μω̂(F̂ ) is equivalent to

(3.21) (s− 1)δ1 + δ2 > 0,

where

δ1 = χ(Ĝ)|KB · C| − χ(F̂ )|KB · C
̂G|, δ2 = nχ(Ĝ)−mχ(F̂ ).

According to Lemma 3.9, (C
̂G, χ(Ĝ),m) ∈ S(C, k, n). In particular δ1 ≤ 0.

Since δ1 ∈ Z, there are two cases.
(i) δ1 ≤ −1. Then according to Lemma 3.10

(s− 1)δ1 + δ2 = fs(C ̂G, χ(Ĝ),m) < 0,

contradicting (3.21).
(ii) δ1 = 0. Solving for χ(Ĝ), δ2 reduces to

δ2 =
χ(F̂ )

|KB · C|
(
n|KB · C

̂G| −m|KB · C|
)
.

In this case μω(Φ
0(Ĝ)) = μω(E), hence one must have

νω(Φ
0(Ĝ)) ≤ νω(E)

since E is ω-semistable. This is equivalent to δ2 ≤ 0, leading again to a
contradiction. �

3.3. From sheaves on X̂ to sheaves on X

Again, consider Kähler classes of the form (3.16) on X, X̂ respectively.
Suppose F̂ is a pure dimension one sheaf on X̂ and let L be a very ample
line bundle on B. Using the same notation as in Definition 2.5, let Ssm ⊂ |L|
be the nonempty open subset parametrizing smooth irreducible divisors H ∈
|L| such that Z = p−1(H) is also smooth. Since F̂ is scheme theoretically
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supported on a closed subscheme of X̂ of pure dimension one, there exists
a nonempty open subset S

̂F ⊂ Ssm such that:
• the set theoretic intersection between Zs = p−1(Hs) and the support

of F̂ consists of finitely many closed points, and
• Hs intersects the discriminant Δ ⊂ B transversely at finitely many

points in the smooth locus of Δ.
for any closed point s ∈ S

̂F . If the above conditions are satisfied, Ẑs =
p̂−1(Hs) is a smooth Weierstrass model over Hs with at most finitely many
nodal fibers.

Lemma 3.12. Let F̂ be an ω̂-semistable pure dimension one sheaf on X̂
with

(3.22) ch2(F̂ ) = σ̂(C) + nf̂ , χ(F̂ ) > 0,

where C �= 0. Then the following hold.
(i) F̂ is Φ−WIT0 and Φ0(F̂ ) is a vertical pure dimension two sheaf

on X̂.
(ii) Let L be a very ample line bundle on B, let H be a divisor in B

corresponding to a closed point in S
̂F ⊂ |L|, and Z = p−1(H) ⊂ X. Then

Φ0(F̂ )⊗X OZ is a semistable pure dimension one sheaf on Z.

Proof. (i) Since F̂ is ω̂-semistable, condition (3.22) implies that Hom
̂X(F̂ ,

Qx) = 0 for any closed point x ∈ X. Therefore Lemma 3.3 implies that F̂
is Φ−WIT0. Moreover, equations (3.8) imply that Φ0(F̂ ) is a vertical two
dimensional sheaf. The proof of purity is completely analogous to the proof
of Lemma 3.4.i.

(ii) Under the current assumptions F̂ |Z = F̂ ⊗
̂X O

̂Z is a zero dimen-

sional sheaf on Ẑ. Using the same notation as in Lemma 3.6, let Φ
̂Z :

Db(Ẑ) → Db(Z) denote the Fourier-Mukai functor with kernel P|
̂Z×HZ . Then

it is straightforward to show that Φ0
̂Z
(F̂ ⊗

̂X O
̂Z) is a semistable sheaf on Z

of pure dimension one set theoretically supported on a finite union of elliptic
fibers. Moreover, by analogy with Lemma 3.6, there is an isomorphism

Φ0
Z(F̂ ⊗

̂X O
̂Z) � Φ0(F̂ )⊗X OZ

�
Next let F̂ be an ω̂-semistable pure dimension one sheaf on X̂ as in

Lemma 3.12 with

(3.23) ch2(F̂ ) = σ̂∗(C) + nf̂ , χ(F̂ ) = k − KB · C
2

≥ 1,
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where C is a nonzero divisor class on B and n ∈ Z, k ∈ (1/2)Z. Note that
Corollary 2.2 implies that C must be effective and n ≥ 0. According to
Lemma 3.12, F̂ is Φ−WIT0 and E = Φ0(F̂ ) is a vertical pure dimension
two sheaf on X with topological invariants

ch1(E) = p∗C, ch2(E) = kf, ch3(E) = −nch3(Ox)

where Ox is the structure sheaf of an arbitrary closed point x ∈ X. In the
remaining part of this section it will be shown that E is ω-semistable for
sufficiently small t > 0. This will be carried out in several stages.

First suppose E = Φ0(F̂ ) � G is a nonzero pure dimension two quotient
such that μω(G) ≤ μω(E) and G is not isomorphic to E. Then G will have
topological invariants

ch1(G) = p∗CG, ch2(G) = σ∗(αG) + cf, ch3(G) = −mch3(Ox),

where CG is a nonzero effective divisor class on B, αG is an arbitrary divisor
class on B, and c,m ∈ (1/2)Z, c ≡ KB · CG/2 mod Z, m ≡ CG · αG/2 mod
Z. Since G is a quotient of E, not isomorphic to E, the curve class C − CG

is effective, nonzero. Therefore

(3.24) |KB · CG| < |KB · C|.

Lemma 3.13. Under the above assumptions αG is an effective divisor class
on B and

(3.25)
c− |KB · αG|
|KB · CG|

≤ k

|KB · C| .

Moreover equality holds in (3.25) if and only if αG = 0.

Proof. Note that

μω(E) =
1

(s− t/2)

k

|KB · C| , μω(G) =
−(s/t− 1)(αG ·KB) + c

(s− t/2)|KB · CG|
.

Given any very ample linear system Π on B, Lemma 3.12 shows that E|Z
is semistable for any sufficiently generic very ample divisor H ∈ Π, where
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Z = p−1(H). Moreover using Lemma 2.6, one has

χ(E|Z) = 0, χ(G|Z) = H · αG.

Therefore H · αG ≥ 0 for any very ample divisor H on B. This implies that
αG must be an effective divisor class on B, in particular αG ·KB ≤ 0. Then

μω(G) =
(s/t− 1)|KB · αG|+ c

(s− t/2)|KB · CG|
,

and inequality (3.25) follows from the slope inequality μω(G) ≤ μω(E). �

Lemma 3.14. There exists a constant A depending on (C, k, n) and s, but
not t, such that

|c− |KB · αG|| < A

for all quotients E = Φ0(F̂ ) � G as above and for all ω̂-semistable sheaves
F̂ with topological invariants (3.23).

Proof. Recall that the set of isomorphism classes of ω̂-semistable sheaves
with fixed topological invariants is bounded [28, Thm. 3.3.7]. Since the
Fourier-Mukai transform preserves families of sheaves [11, Prop. 6.13.], this
implies that the family of sheaves E = Φ0(F̂ ) is also bounded and depends
on (C, k, n), and s, but not t. Moreover, [28, Lemma 1.7.6] implies that the
same holds for the family EB = σ∗E.

Let η0 = −KB, which is very ample on B. Then the set of Hilbert poly-
nomials P = {Pη0,EB

} is finite and indepedent of t. Let P ∈ P be fixed.
Obviously, the set of isomorphism classes {[EB]}P of sheaves EB with fixed
Pη0,EB

= P is also bounded and independent of t.
Given a quotient E � G, note that GB = σ∗G is also a quotient of EB,

and there is an exact sequence of OB-modules

0 → TG → GB → G′
B → 0

where TG is the maximal zero dimensional subsheaf of GB and G′
B has pure

dimension one. Since G is pure of dimension two and has vertical support
Lemma 2.6 yields an exact sequence

0 → G(−Θ) → G → σ∗GB → 0.
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Using the above exact sequence and the Grothedieck-Riemann-Roch theo-
rem for the embedding Θ ↪→ X, one obtains

(3.26) ch1(GB) = CG, ch2(GB) = (c− |KB · αG|) ch2(Ob)

with b ∈ B an arbitrary closed point. Since TG is zero dimensional, μη0
(G′

B) ≤
μη0

(GB). Then inequality (3.25) yields

(3.27) μη0
(G′

B) ≤
c− |KB · αG|
|KB · CG|

≤ k

|KB · C| .

For fixed P = Pη0,EB
∈ P, let QP denote the set of isomorphism classes

of pure dimension one sheaves F on B such that
(a) there exists an epimorphism EB � F , for some E = Φ0(F̂ ) as above

with Pη0,EB
= P , and

(b) μη0
(F ) ≤ k/|KB · C|.

Then Grothendieck’s lemma [28, Lemma 1.7.9] implies that QP is
bounded and depends only on P and the bounded family {[EB]}P . In par-
ticular it is independent of t. This implies that the set {Pη0,G′

B
}P of Hilbert

polynomials of all quotients EB � G′
B where Pη0,EB

= P is finite and
|{Pη0,G′

B
}P | is bounded above by a constant depending on P and the bounded

family {[EB]}P , but not on t. Since the whole family {[EB]} = ∪P {[EB]}P
is bounded and depends only on (C, k, n) and s, it follows that there exists
a constant A1 depending on (C, k, n) and s, but not t, such that

|χ(G′
B)| < A1

for all pure dimension one quotients EB � G′
B, for all E = Φ0(F̂ ) as above.

To conclude the proof, note that χ(GB) = χ(TG) + χ(G′
B) ≥ χ(G′

B) since
TG is zero dimensional. On the other hand, using equation (3.26) and the
Riemann-Roch theorem,

χ(GB) = c− |KB · αG|+ |KB · CG|/2.

Therefore, using inequality (3.24),

c− |KB · αG| > −A1 − |KB · CG|/2 > −A1 − |KB · C|/2.

At the same time inequalities (3.24), (3.25) yield

c− |KB · αG| ≤
|KB · CG|
|KB · C| k < |k|.

Therefore the claim follows. �
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Lemma 3.15. There exists a constant t1 ∈ R, 0 < t1 < s, depending on
(C, k, n) and s, such that for all 0 < t < t1 and for any ω̂-semistable sheaf
F̂ with topological invariants (3.23) any pure dimension two quotient E � G
with μω(G) ≤ μω(E) is vertical, where E = Φ0(F̂ ).

Proof. For any 0 < t < s set ωt = tΘ− sp∗KB. The topological invariants
(C, k, n) and s > 0 are fixed in the following.

Suppose the opposite statement holds. Given any 0 < t1 < s, there exist
0 < t < t1, a sheaf F̂ as in Lemma 3.15 and a nonzero quotient E � G, not
isomorphic to E, such that μωt

(G) ≤ μωt
(E) and G is not vertical. It will

be shown below that this leads to a contradiction.
Note that G has topological invariants

ch1(G) = p∗CG, ch2(G) = σ∗(αG) + cf, ch3(G) = −mch3(Ox)

and G is vertical if and only if αG = 0. Suppose αG �= 0. Lemma 3.13
shows that αG is effective, hence

(3.28) μω(G) =
s

t(s− t/2)

|KB · αG|
|KB · CG|

+ δ, δ =
1

s− t/2

c− |KB · αG|
|KB · CG|

.

According to Lemma 3.14, there is a constant A depending on (C, k, n) and
s, but not t, such that

|c− |KB · αG|| < A

for any quotient E � G as above. Moreover since −KB is very ample, the
set

{|β ·KB| | 0 �= β ∈ Pic(B) effective} ⊂ Z>0

is bounded from below. Let M ∈ Z>0 denote its minimum and note that
|KB · CG| ≥ M , |KB · αG| ≥ M since CG, αG are effective, nonzero.

Suppose 0 < t < 2. Then 0 < s− 1 < s− t/2, hence

|δ| < 1

s− 1

A

M
.

Using inequality (3.24),

s

t(s− t/2)

|KB · αG|
|KB · CG|

>
s

t(s− t/2)

M

|KB · C| .

Moreover, the map

f : (0, s) → R, f(t) =
s

t(s− t/2)
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is a decreasing function of t on the interval 0 < t < s for fixed s > 0, and
limt→0 f(t) = +∞. Therefore there exists a constant 0 < t1 < min{s, 2} de-
pending on (C, k, n) and s such that for any 0 < t < t1,

μω(G) >
1

(s− 1)

|k|
|KB · C| + 1

for all quotients G as in Lemma 3.15 with αG �= 0. In order to conclude the
proof note that under the current assumptions

|μω(E)| = |k|
(s− t/2)|KB · C| ≤

1

(s− 1)

|k|
|KB · C|

for any 0 < t < t1, leading to a contradiction. �

Lemma 3.16. Let s > s1 be fixed, where s1 > 1 is a constant as in Lemma
3.10 and 0 < t < t1 where t1 is a constant as in Lemma 3.15 for fixed
(C, k, n) and s. Then the Fourier-Mukai transform E = Φ0(F̂ ) of any ω̂-
semistable sheaf F̂ with topological invariants (3.23) is ω-semistable for all
0 < t < t1.

Proof. Recall that under the current assumptions

χ(F̂ ) = k − KB · C
2

≥ 1.

Let E � G be a nonzero pure dimension two quotient of E such that G is
ω-semistable and destabilizes E. This means either

μω(G) < μω(E) =
1

(s− t/2)

k

|KB · C|

or μω(G) = μω(E) and

νω(G) < νω(E).

According to Lemma 3.15, G must be vertical i.e.

ch1(G) = p∗CG, ch2(G) = cf, ch3(G) = −mch3(Ox)

where CG is a nonzero effective divisor class on B and c ∈ (1/2)Z, m ∈ Z,
c ≡ KB · CG/2 mod Z. Therefore

μω(G) =
c

(s− t/2)|KB · CG|
.
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At the same time E is generically semistable according to Lemma 3.12.
Hence, given any very ample linear system Π on B, E|Z is semistable for
any sufficiently generic very ample divisor H ∈ Π, where Z = p−1(H). More-
over Lemma 2.6 yields χ(E|Z) = χ(G|Z) = 0. This implies that G must be
generically semistable as well. Then Lemma 3.7 implies that G is Φ̂−WIT1

and Φ̂1(G) is pure dimension one. Furthermore the epimorphism E � G
yields an epimorphism F̂ � Φ̂1(G). Therefore

(3.29) μω̂(F̂ ) ≤ μω̂(Φ̂
1(G))

since F̂ is ω̂-semistable. The topological invariants of Φ̂1(G) are

ch2(Φ̂
1(G)) = σ̂∗(CG) +mf̂, χ(Φ̂1(G)) = c−KB · CG/2.

Note that Corollary 2.2 implies that 0 ≤ m ≤ n. Moreover, χ(Φ̂1(G)) > 0
since χ(F̂ ) > 0 under the current assumptions. At the same time, the slope
inequality μω(G) ≤ μω(E) is equivalent to δ1 ≤ 0, where

δ1 = χ(Φ̂1(G))|KB · C| − χ(F̂ )|KB · CG|.

In conclusion (CG, χ(Φ̂
1(G)),m) ∈ S(C, k, n), where S(C, k, n) is the finite

set defined above Lemma 3.9.
The slope inequality (3.29) is equivalent to

(s− 1)δ1 + δ2 ≥ 0,

where

δ2 = nχ(Φ̂1(G))−mχ(F̂ ).

Since δ1 ∈ Z, one has to distinguish two cases.
(i) δ1 ≤ −1. In this case

(s− 1)δ1 + δ2 = fs(CG, χ(Φ̂
1(G)),m) < 0

where fs : S ′(C, k, n) → R is the function defined above Lemma 3.10. Obvi-
ously, this leads to a contradiction.
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(ii) Suppose δ1 = 0. This implies

δ2 =
χ(F̂ )

|KB · C|
(
n|KB · CG| −m|KB · C|

)
.

However in this case μω(G) = μω(E), hence one must have

νω(G) < νω(E),

which is equivalent to n|KB · CG| −m|KB · C| < 0. Since χ(F̂ ) > 0, this im-
plies δ2 < 0, leading again to a contradiction. �

3.4. Proof of Theorem 1.1

This subsection concludes the proof of Theorem 1.1. Let γ̂ ∈ H2(B,Z)⊕
Z⊕ Z be fixed topological invariants with γ̂1 an effective curve class on B,
and γ̂3 > 0. Let γ = φ(γ̂). Let s1(γ̂) > 1 be a constant as in Lemma 3.10.
For any s ∈ R, s > s1(γ̂), let t1(γ̂, s) ∈ R, 0 < t1(γ̂, s) < s be a constant as
in Lemma 3.15. Let

ω = tΘ− sp∗KB, ω̂ = Θ̂− sp̂∗KB.

Lemmas 3.12 and 3.16 prove that any ω̂-semistable sheaf F̂ with topo-
logical invariants γ̂ is Φ−WIT0 and Φ0(F̂ ) is an ω-semistable vertical pure
dimension two sheaf E onX with invariants γ. Moreover E is also generically
semistable. Conversely, Lemmas 3.7 and 3.11 prove that any ω-semistable
and generically semistable vertical sheaf E with topological invariants γ is
Φ̂−WIT1 and Φ̂1(E) is an ω̂-semistable sheaf on X̂ with invariants γ̂. Fur-
thermore, Lemmas 2.11 and 2.12 prove that generic semistability is equiva-
lent to adiabatic semistability for ω-semistable sheaves.

In order to conclude the proof of Theorem 1.1.i. note that the Fourier-
Mukai transform preserves flat families of sheaves [11, Prop. 6.13.].

For the second statement, note that the substack Mad
ω (X, γ) is open in

Mω(X, γ) according to Lemma 2.14. Moreover, let Mω̂(X̂, γ̂), Mω(X, γ) be
the coarse moduli schemes parameterizing S-equivalence classes of semistable
sheaves. As noted above Lemma 2.14, according to [1, Ex. 8.7], the coarse
moduli schemes are good moduli coarse moduli spaces for the moduli stacks
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Mω̂(X̂, γ̂), Mω(X, γ). Using [1, Thm 4.16], this yields a commutative dia-
gram

Mω̂(X̂, γ̂)
ϕ ��

�̂

��

Mω(X, γ)

�

��
Mω̂(X̂, γ̂)

f �� Mω(X, γ)

where ϕ factors through the natural embedding Mad
ω (X, γ) ⊂ Mω(X, γ). In

the above diagram f is a morphism of schemes, and the vertical morphisms
are those constructed in [1, Thm 4.16]. Since both coarse moduli spaces
are projective, it follows that f is proper. At the same time, according to
Lemma 2.14, the scheme theoretic image Mad

ω (X, γ) = �(Mad
ω (X, γ)) is open

in Mω(X, γ). Since f is proper and Mω̂(X̂, γ̂) is projective, it follows that
Mad

ω (X, γ) is open and closed in Mω(X, γ). Therefore Mad
ω (X, γ) is open

and closed in Mω(X, γ).
�

4. Vertical sheaves on elliptic K3 pencils

Using the notation in Section 1.2, let X be a smooth generic Weierstrass
model over the Hirzebruch surface B = Fa, 0 ≤ a ≤ 1. Let π : X → P1 be
the natural projection to P1. Note that all fibers of π are reduced irre-
ducible elliptic K3-surfaces in Weierstrass form. For sufficiently generic X,
the generic K3 fiber is a smooth Weierstrass model and the singular fibers
will be Weierstrass models with finitely many isolated type I1 and I2 fibers.
In particular all singular K3 fibers are reduced, irreducible with isolated
simple nodal singularities. This will be assumed throughout this section.

Let Ξ ∈ Pic(B) � H2(B,Z) denote the fiber class of the Hirzebruch sur-
face and note that the K3 fiber class is D = p∗Ξ ∈ Pic(X) � H4(X,Z). Let
ω = tΘ− sp∗KB be a Kähler class on X with t, s ∈ R, 0 < t < s. In order
to simply the notation the pushforward σ∗C ∈ H2(X,Z) of a curve class on
B will be denoted by C. The distinction will be clear from the context.

First note the following simple fact.

Lemma 4.1. Let E be a nonzero pure dimension two sheaf set theoretically
supported on a finite union of K3 fibers. Then

(4.1) ch1(E) = rD, ch2(E) = mΞ + lf

for some r,m, l ∈ Z, r ≥ 1.
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Proof. Let C0 ∈ H2(B,Z) be a section class with C2
0 = −a for B = Fa, 0 ≤

a ≤ 1. Let D0 = p∗C0 ∈ H4(X,Z). According to Lemma 2.1

H4(X,Z)/torsion � Z〈D0, D,Θ〉, H2(X,Z)/torsion � Z〈C0,Ξ, f〉.

Obviously chi(E) ·D = 0 in the intersection ring of X for 1 ≤ i ≤ 3 since
under the current assumptions E � E ⊗X OX(−D) and D2 = 0. Then the
claim follows easily from Lemma 2.1 and the following relations in the in-
tersection ring of X:

(4.2) D0 ·D = f, D ·D = 0, Θ ·D = Ξ

C0 ·D = 1, Ξ ·D = 0, f ·D = 0. �
Now suppose ι : S ↪→ X is a singular K3 fiber. Under the current gener-

icity assumptions S is an elliptic surface over P1 in Weierstrass form with
finitely many type I1 and I2 fibers. Therefore S will have finitely many iso-
lated simple nodes and the singular locus of S is disjoint from the canonical
section of the Weierstrass model. Let ρ : S̃ → S be a smooth crepant resolu-
tion of singularities and let ψ = ι ◦ ρ : S̃ → X. Let Ξ̃ = ψ∗Θ, f̃ = ψ∗D0 be
induced divisor classes on S̃. Let also ε1, . . . , εk denote the exceptional (−2)
curve classes on S̃ and note that

Ξ̃2 = −2, Ξ̃ · f̃ = 1, f̃2 = 0,(4.3)

εi · Ξ̃ = εi · f̃ = 0, 1 ≤ i ≤ k,

in the intersection ring of S̃, and

ψ∗εi = 0, 1 ≤ i ≤ k.

Then note the following.

Lemma 4.2. (i) Let ι : S ↪→ X be a smooth K3 fiber of X and F a torsion
free sheaf on S such that

ch1(ι∗F ) = rD, ch2(ι∗F ) = mΞ + lf, ch3(ι∗F ) = −nch3(Ox)

for some l,m, n, r ∈ Z, r ≥ 1. Then

ch0(F ) = r, ch1(F ) = mΞ + lf + β, ch2(F ) = −nch2(Os)

for a curve class β ∈ H2(S,Q) such that β · Ξ = β · f = 0 in the intersection
ring of S and ι∗β = 0.
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(ii) Let ι : S ↪→ be a singular K3 fiber of X and F̃ a torsion free sheaf
on the resolution S̃ such that

ch1(ψ∗F̃ ) = rD, ch2(ψ∗F̃ ) = mΞ + lf, ch3(ψ∗F̃ ) = −nch3(Ox)

for some l,m, n, r ∈ Z, r ≥ 1. Then

ch0(F̃ ) = r, ch1(F ) = mΞ̃ + lf̃ + β̃ +

k∑
i=1

piεi, ch2(F̃ ) = −ñch2(Os)

for some pi ∈ Q, 1 ≤ i ≤ k, ñ ∈ Z, ñ ≤ n, and a curve class β̃ ∈ H2(S̃,Q)
such that

β̃ · Ξ̃ = β̃ · f̃ = β̃ · εi = 0, 1 ≤ i ≤ k

in the intersection ring of S̃ and ψ∗β̃ = 0.

Proof. For (i) note that the Grothendieck-Riemann-Roch theorem yields

(4.4) ch0(F ) = r, ι∗ch1(F ) = mΞ + lf, ch2(F ) = −nch3(Os)

with s ∈ S a closed point. Then the push pull formula yields

ch1(F ) · Ξ = l − 2m, ch1(F ) · f = m

in the intersection ring of S. Therefore

ch1(F ) = mΞ + lf + β

where β ∈ H2(S,Z) is orthogonal to Ξ, f . Moreover the second equation
in (4.4) implies ι∗β = 0.

(ii) Since ψ = ι ◦ ρ and ρ : S̃ → S is an isomorphism onto the smooth
open part of S, R1ψ∗F̃ is a zero dimensional sheaf supported at the nodes
of S. Then the Grothendieck-Riemann-Roch theorem gives

ch0(F̃ ) = r, ψ∗ch1(F̃ ) = mΞ + lf,

ψ∗ch2(F̃ ) = −nch3(Ox) + ch3(R
1ψ∗F̃ ).

The remaining part of the proof is analogous to (i). �

For any pure dimension two sheaf E with scheme theoretic support on
a reduced nodal K3 fiber S ⊂ X, let F̃E = ψ∗E/torsion. Note that given an
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ample class ω on X, the real divisor class ω̃λ = λψ∗ω −∑k
i=1 εi is ample on

S̃ for sufficiently large λ ∈ R, λ > 0. Then the following result is similar to
[29, Lemma 2.1].

Lemma 4.3. Let ι : S → X be a reduced nodal K3 fiber. Let E be a nonzero
ω-slope stable pure dimension two sheaf on X set theoretically supported on
S. Then E is scheme theoretically supported on S and F̃E is ω̃λ-slope stable
for sufficiently large λ > 0.

Proof. Proving that E is scheme theoretically supported on S is completely
analogous to Lemma 3.5. The details will be omitted. For the second state-
ment, by construction there is an exact sequence

0 → T → ψ∗E → F̃E → 0

where T is set theoretically supported on the exceptional locus of ρ. This
yields a second sequence

0 → ψ∗T → ψ∗ψ∗E f−→ψ∗F̃E → R1ψ∗T → · · ·

where ψ∗T , R1ψ∗T are set theoretically supported on the singular locus
Ssing ⊂ S, which consists of fintely many points. Moreover there is a natural
morphism g : E → ψ∗ψ∗E which is an isomorphism on the smooth locus S \
Ssing. The morphism f ◦ g : E → ψ∗F̃E is also an isomorphism on S \ Ssing,
hence it must be injective since E is purely two dimensional. In conclusion
there is an exact sequence

(4.5) 0 → E → ψ∗F̃E
f−→T → 0

with T zero dimensional. This implies that μω(E) = μω(ψ∗F̃E).
If r = 1, F̃E is a rank one torsion free sheaf which is slope stable for

any polarization of S̃. Recall that slope stability is defined with respect to
saturated nonzero test subsheaves as in [28, Sect. 1.6].

Let r ≥ 2 and suppose G̃ ⊂ F̃E is a nonzero proper saturated subsheaf of
rank 1 ≤ r′ ≤ r − 1. Then ψ∗G̃ is a subsheaf of ψ∗F̃E . Let I ⊂ T ,G ⊂ ψ∗G̃ be
the image and respectively the kernel of f |ψ∗ ˜G in the exact sequence (4.5).
Then I is zero dimensional and G is a subsheaf of E. This implies that
μω(G) = μω(ψ∗G̃), hence μω(ψ∗G̃) < μω(E) = μω(ψ∗F̃E) since E is ω-stable
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by assumption. Therefore

(4.6) (r′ch1(F̃E)− rch1(G̃)) · ψ∗ω > 0.

Let λ0 > 0 be fixed such that ω̃0 = λ0ψ
∗ω −∑k

i=1 εi is ample on S̃. The

subsheaves G̃ ⊂ F̃E are of two types:
a) (r′ch1(F̃ )− rch1(G̃)) · ω0 > 0. Then, using inequality (4.6),

(4.7) (ω0 + λψ∗ω) · (r′ch1(F̃E)− rch1(G̃) > 0

for any λ > 0.
b) (r′ch1(F̃E)− rch1(G̃)) · ω0 ≤ 0. According to Grothendieck’s Lemma

[28, Lemma 1.7.9] the family of such subsheaves is bounded for fixed F̃E and
ω0. Therefore there exists a constant c1 > 0 depending on F̃E , ω0 such that

(r′ch1(F̃E)− rch1(G̃)) · ψ∗ω > c1

for any subsheaf G̃ of type (b). Furthermore there is a second constant c2 > 0
depending on F̃ , ω0 such that

(r′ch1(F̃E)− rch1(G̃)) · ω0 > −c2

for any such subsheaf. This implies that there exists a sufficiently large
λ > 0 such that inequality (4.7) holds for all subsheaves of type (b) as well.
In conclusion F̃E is (ω0 + λψ∗ω)-slope stable. �

Now recall that the discriminant of a rank r ≥ 1 torsion free sheaf F on
a smooth projective surface S is defined (up to normalization) by

Δ(F ) = n+
1

2r
ch1(F )2

where ch2(F ) = −nch2(Os), with s ∈ S and arbitrary closed point. For any
vertical pure dimension two sheaf E with

ch1(E) = rD, ch2(E) = mΞ + lf, ch3(E) = −nch3(Ox)

let

(4.8) δ(E) = n− 1

r
m(m− l).

Then note the following.
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Lemma 4.4. Let E be an ω-slope semistable pure dimension two sheaf on
X with topological invariants

ch1(E) = rD, ch2(E) = mΞ + lf, ch2(E) = −nch3(Ox)

where r, l,m, n ∈ Z, r ≥ 1, and x ∈ X is an arbitrary closed point. Suppose
E is scheme theoretically supported on a reduced K3 fiber ι : S ↪→ X. Then
δ(E) ≥ 0.

Proof. Obviously, E = ι∗F for a torsion free sheaf on S.
Suppose first that S is smooth. Then F is ω|S-slope semistable. Accord-

ing to Lemma 4.2.i,

ch1(F ) = mΞ + lf + β

where β ∈ H2(S,Q) is a curve class such that β · Ξ = β · f = 0. At the same
time ω|S = tΞ + 2sf , hence β · ω|S = 0. Then β2 ≤ 0 according to the Hodge
index theorem. Since F is ω|S-slope semistable, it satisfies the Bogomolov
inequality, Δ(F ) ≥ 0, where

Δ(F ) = n− 1

r
m(m− l) +

β2

2r
= δ(E) +

β2

2r
.

Since β2 ≤ 0, this implies the claim.
Next let S be a singular K3 fiber. Suppose first that E is ω-slope stable.

Then it is scheme theoretically supported on S. Let F̃E be the corresponding
torsion free sheaf on S̃. Lemma 4.3 shows that F̃E is stable for a suitable
ample class ω̃ on S̃, hence Δ(F̃E) ≥ 0. Moreover as shown in the proof of
Lemma 4.3, there is an exact sequence

0 → E → ψ∗F̃E → T → 0

with T zero dimensional. Setting

ch3(E) = −nch3(Ox), ch3(ψ∗F̃E) = −n′ch3(Ox)

this implies n ≥ n′. Furthermore, according to Lemma 4.2.ii,

ch0(F̃E) = r, ch1(F̃E) = mΞ̃ + lf̃ + β̃ +

k∑
i=1

piεi,

ch2(F̃E) = −ñch2(Os)
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with pi ∈ Q, ñ ∈ Z, ñ ≤ n′, and β̃ ∈ H2(S̃,Q) a curve class orthogonal to
Ξ̃, f̃ , εi for all 1 ≤ i ≤ k. In particular β̃ · ω̃ = 0. Then

Δ(F̃E) = ñ− 1

r
m(m− l) +

1

2r

(
β̃2 − 2

n∑
i=1

p2i

)

Since β̃ · ω̃ = 0, the Hodge index theorem shows that β̃2 ≤ 0. Since ñ ≤ n′ ≤
n, this implies the claim.

To finish the proof, suppose E is strictly ω-slope semistable. According
to [28, Thm 1.6.7.ii], there is a Jordan-Hölder filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ej = E

for slope semistability with j ≥ 2. Each succesive quotient Ei/Ei−1, 1 ≤ i ≤
j, is ω-slope polystable, hence scheme theoretically supported on S. There-
fore δ(Ei/Ei−1) ≥ 0 for all 1 ≤ i ≤ j. Then the claim follows by a recursive
application of Lemma 4.5 below. �

Lemma 4.5. Let

0 → E1 → E → E2 → 0

be an extension of nonzero pure dimension two sheaves such that E1, E2

are ω-slope semistable and set theoretically supported on finite unions of K3
fibers. Suppose that μω(E1) = μω(E2). Then

δ(E) ≥ δ(E1) + δ(E2)

Proof. Let

ch1(Ei) = riD, ch2(Ei) = miΞ + lil

for 1 ≤ i ≤ 2, where r1, r2 ≥ 1. Then

δ(E)− δ(E1)− δ(E2) = d

where

d =
(r1m2 − r2m1)

r1r2(r1 + r2)
[(r1m2 − r2m1)− (r1l2 − r2l1)] .

Let S be a generic smooth K3 fiber and Ξ, f ∈ H2(S,Z) the section, respec-
tively fiber class. Then

d = − α2

2r1r2(r1 + r2)
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where

α = r1(m2Ξ + l2f)− r2(m1Ξ + l1f).

The slope equality μω(E1) = μω(E2) is equivalent to α · ω|S = 0. Since S
is smooth, the Hodge index theorem shows that α2 ≤ 0. This proves the
claim. �

Lemma 4.6. Let E be an ω-slope semistable sheaf on X with topological
invariants

ch1(E) = rD, ch2(E) = mΞ + lf, ch2(E) = −nch3(Ox)

where r, l,m, n ∈ Z, r ≥ 1, and x ∈ X is an arbitrary closed point. Suppose
E is scheme theoretically supported on a reduced K3 fiber ι : S ↪→ X and
there is an extension

0 → E1 → E → E2 → 0

with E1, E2 nonzero pure dimension two sheaves with ch1(Ei) = riD, ri ∈ Z,
ri ≥ 1, 1 ≤ i ≤ 2. Moreover suppose

(4.9) μω(E1) = μω(E2) and
1

r1
ch2(E1)−

1

r2
ch2(E2) �= 0.

Then

(4.10)
t

s
≥ 2

1 + r3δ(E)
.

Proof. As in the proof of Lemma 4.5, let ι′ : S′ ↪→ X be a smooth generic
K3 fiber and Ξ, f ∈ H2(S

′,Z) the section and fiber class respectively. Note
that

ch2(Ei) = ι′∗αi

for αi = miΞ + lif ∈ H2(S
′,Z), 1 ≤ i ≤ 2 and

δ(E)− δ(E1)− δ(E2) = − α2

2rr1r2

where α = r1α2 − r2α1. Then Lemma 4.4 implies that

− α2

2rr1r2
≤ δ(E).
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For simplicity let α = aΞ + bf , a, b ∈ Z. The slope equality in (4.9) implies
that α · ω|S′ = 0, which yields

b = 2a
(
1− s

t

)
.

Therefore

−α2 = 2a2
(
2s

t
− 1

)
.

Next note that a �= 0; if a = 0, one has b = 0 as well, hence α = 0, contradict-
ing the second condition in (4.9). Therefore a2 ≥ 1 since a ∈ Z. Moreover,
δ(E) ≥ 0 according to Lemma 4.4, and 1 ≤ r1, r2 ≤ r. This implies inequal-
ity (4.10). �

Lemma 4.7. Let E be an ω-slope stable pure dimension two sheaf on X
with topological invariants

ch1(E) = rD, ch2(E) = lf, ch3(E) = −nch3(Ox),

l, n, r ∈ Z, r ≥ 1. Suppose there exists t′ ∈ R, 0 < t′ < t such that E is not
ω′-slope semistable, where ω′ = t′Θ− sp∗KB. Then

(4.11)
t

s
>

2

1 + r3δ(E)
.

Proof. Any sheaf E with ch1(E) = rD must be set theoretically supported
on a finite union of K3 fibers of X. Since E is ω-slope stable, it must be
scheme theoretically supported on a reduced irreducible fiber ι : S ↪→ X.

Let QE(t
′, t) denote the family of sheaves E′ such that E′ is a nonzero

pure dimension two quotient of E, not isomorphic to E, and μω′(E′) <
μω′(E). According to Grothendieck’s lemma [28, 1.7.9], QE(t

′, t) is bounded.
Any quotient E′ of E is also scheme theoretically supported on S and has
invariants of the form

(4.12) ch1(E
′) = r′D, ch2(E

′) = m′Ξ + l′f, ch3(E
′) = −n′ch3(Ox),

l′,m′, n′, r′ ∈ Z, r′ ≥ 1. Since the family QE(t
′, t) is bounded, the set of nu-

merical invariants (r′,m′, l′, n′) of all sheaves in this family is finite.
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For any t′′ ∈ R, t′ ≤ t′′ ≤ t set ω′′ = t′′Θ− sp∗KB. For any γ′ = (l′,m′,
n′, r′) ∈ Z4, r′ ≥ 1 let ηγ′ : [t′, t] → R be the linear function

ηγ′(t′′) =
2m′

r′
s−

(
2m′ − l′

r′
+

l

r

)
t′′.

Then note that for any sheaf E′ with invariants (4.12) one has

μω′′(E′)− μω′′(E) =
ηγ′(t′′)

t′′(2s− t′′)
.

Since E is ω-slope stable and not ω′-slope semistable, one has

ηγ′(t′) < 0, ηγ′(t) > 0

for any sheaf E′ in the family QE(t
′, t). Therefore ηγ′ is an increasing linear

function of t′′ for any such sheaf . In particular there exists exactly one point
t′ < t(γ′) < t such that ηγ′(t(γ′)) = 0. The set of all t(γ′) associated to E′

in QE(t
′, t) is finite. Let t0 be its maximal element and ω0 = t0Θ− sp∗KB.

Then it will be shown below that E is strictly ω0-slope semistable.
Given the choice of t0, one has ηγ′(t0) ≥ 0 for any quotient E � E′

in QE(t
′, t). Moreover, there exists E′

0 in QE(t
′, t) such that ηγ′(t0) = 0.

Clearly, E′
0 cannot be isomorphic to E since μω′(E0) < μω′(E). Hence the

kernel E′′
0 = Ker(E � E′

0) is nontrivial. This implies that ch1(E
′
0) = r′0D,

ch1(E
′′
0 ) = r′′0D with r′0, r′′0 ≥ 1.

Given a quotient E � E′ not in QE(t
′, t), one has

ηγ′(t′) ≥ 0, ηγ′(t) > 0.

Since ηγ′ is linear this implies that ηγ′(t0) > 0, hence E′ cannot destabilize
E with respect to ω0.

In conclusion E is indeed ω0-slope semistable and there is an exact se-
quence

0 → E′′
0 → E → E′

0 → 0

such that μω0
(E′′

0 ) = μω0
(E′

0) and r′0, r′′0 ≥ 1. Moreover, since E is ω-slope
stable one must have

1

r′0
ch2(E

′
0)−

1

r′′0
ch2(E

′′
0 ) �= 0.

Then Lemma 4.6 implies that t0/s ≥ 2/(1 + r3δ(E)). �
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4.1. Proof of Proposition 1.2

Let (n, r) ∈ Z× Z be fixed integers, n ≥ 0, r ≥ 1. For any j ∈ Z, 1 ≤ j ≤ r,
let

Γj(n, r) =

{
((n1, r1), . . . (nj , rj)) ∈ (Z× Z)×j

∣∣∣∣
ni ≥ 0, ri ≥ 1, 1 ≤ i ≤ j,

j∑
i=1

ri = r,

j∑
i=1

ni = n

}
.

Then let Γ(n, r) = ∪r
j=1Γj(n, r). Clearly Γ(n, r) is a finite set. Let t ∈ R,

t > 0 be such that t/s ∈ R \Q and

(4.13)
t

s
<

2

1 + r3i ni
, 1 ≤ i ≤ j,

for any element
(
(ni, ri)

)
1≤i≤j

∈ Γj(n, r), and for all 1 ≤ j ≤ r.
Let E be an ω-semistable sheaf on X with topological invariants

ch1(E) = rD, ch2(E) = lf, ch3(E) = −nch3(Ox),

l, n, r ∈ Z, r ≥ 1. Then E is ω-slope semistable. Let

(4.14) 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ej = E

be a Jordan-Hölder filtration of E with respect to ω-slope stability. Let

ch1(Ei/Ei−1) = riD, ch2(Ei/Ei−1) = miΞ + lif,(4.15)

ch3(Ei/Ei−1) = −nich3(Ox)

be the topological invariants of the i-th successive quotient, where ri, li, ni ∈
Z, ri ≥ 1. Since t/s ∈ R \Q a simple computation shows that

(4.16) mi = 0,
li
ri

=
l

r

for each 1 ≤ i ≤ j. Obviously,

j∑
i=1

ri = r,

j∑
i=1

ni = n
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Moreover, Lemma 4.4 shows that δ(Ei/Ei−1) = ni ≥ 0 for each 1 ≤ i ≤ j.
Since t/s satisfies inequalities (4.13), Lemma 4.6 implies that each Ei/Ei−1

is adiabatically ω-slope semistable. According to Lemma 2.11, this implies
that each Ei/Ei−1 is generically semistable as in Definition 2.5. Let H be a
very ample divisor in B satisfying the genericity conditions in loc. cit. for E
as well as for each successive quotient Ei/Ei−1. In particular Z = p−1(H)
is a smooth elliptic surface which intersects the set theoretic support of
E along a finite union of elliptic fibers. Then Lemma 2.6 implies that the
filtration (4.14) restricts to a filtration of E|Z with successive quotients
(Ei/Ei−1)|Z , 1 ≤ i ≤ j, and χ((Ei/Ei−1))|Z = 0 for all 1 ≤ i ≤ j. Since each
Ei/Ei−1 is generically semistable, (Ei/Ei−1)|Z is a zero slope semistable pure
dimension one sheaf on Z. Hence E|Z is also semistable, which means that E
is generically semistable. Finally, Lemma 2.12 implies that E is adiabatically
ω-semistable. �
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