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Asymptotics of ground state degeneracies

in quiver quantum mechanics

Clay Córdova and Shu-Heng Shao

We study the growth of the ground state degeneracy in the Kro-
necker model of quiver quantum mechanics. This is the simplest
quiver with two gauge groups and bifundamental matter fields,
and appears universally in the context of BPS state counting in
four-dimensional N = 2 systems. For large ranks, the ground state
degeneracy is exponential with slope a modular function that we
are able to compute at integral values of its argument. We also
observe that the exponential of the slope is an algebraic number
and determine its associated algebraic equation explicitly in sev-
eral examples. The speed of growth of the degeneracies, together
with various physical features of the bound states, suggests a dual
string interpretation.

1. Introduction

The entropy of a quantum system is a basic thermodynamic observable. In
conformal field theory in d spacetime dimensions, in finite spatial volume V ,
dimensional analysis constrains the growth of the entropy S with energy E
to take the form

(1.1) S ∼ V 1/dE(d−1)/d .

In particular, the entropy grows slower than linearly with energy. By con-
trast, in quantum field theory in infinite spatial volume, the thermodynamics
is much more subtle. Spatially large stable states, in general have a growth
in energy which is faster than (1.1), and few universal results are known
(see, for example, [1]).

Motivated by these general thermodynamic considerations, in this work
we study a non-relativistic supersymmetric quantum mechanics problem
known as the Kronecker model. This model occurs universally in particle
counting problems in four-dimensional N = 2 field theories and supergravi-
ties where it arrises as the low-energy non-relativistic effective theory of BPS
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dyons or black holes [1–12]. In this context, each ground state of the quan-
tum mechanics is reinterpreted as a stable four-dimensional single-particle
state. The growth of the ground state degeneracy for large charges thus
probes the infinite volume thermodynamics of the field theory.

The Kronecker model of interest describes a multi-particle system com-
posed of two distinct species of (super)particles interacting by long range
electromagnetic forces. The strength of these interactions is invariantly char-
acterized by the integral Dirac pairing of the electromagnetic charges

(1.2) 〈γ1, γ2〉 = k > 0 .

We investigate the spectrum of M particles of type one and N particles of
type two. This system and its interactions are encoded in the Kronecker
quiver illustrated in Figure 1.1

M N
k

��

Figure 1. The Kronecker quiver with k arrows. This supersymmetric quan-
tum mechanics describes M superparticles each with charge γ1 and N su-
perparticles each with charge γ2 with Dirac pairing 〈γ1, γ2〉 = k.

We focus on the ground state degeneracy of these models. We denote
this degeneracy as Ω(M,N, k). These ground states are supersymmetric and
their degeneracies have been studied from a variety of perspectives, including
quantum groups [13], wall-crossing formulas [14–16], spectral networks [1,
17], equivariant cohomology [18, 19], and supersymmetric localization [20–
23].

Our aim is to understand the growth in the degeneracy Ω(M,N, k) for
large ranks M , and N. We study this limit with fixed k and with fixed
limiting ratio N/M → r. Known results, from the special case where r = 1,
indicate that these degeneracies grow exponentially [1, 18, 24]. Based on this
evidence, it was conjectured in [18] that there exists a slope function S(r, k)

1An explicit expression for the Hamiltonian of this system may be found, for
instance, in [6].
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governing the asymptotics of the degeneracy at general r,

(1.3) lim
M→∞

1

M
log
(
Ω(M +m,Mr + n, k)

)
≡ S(r, k) .

In particular, this function is claimed to be independent of the offset (m,n)
and depends only on the asymptotic ratio r and number of arrows k appear-
ing in the quiver.

As we motivate in §2, it is useful to express the slope function S(r, k) in
terms of an auxiliary function G(r, k) as

S(r, k) =

(√
kr − r2 − 1

k − 2

)
(1.4)

(
(k − 1)2 log((k − 1)2)− (k2 − 2k) log(k2 − 2k)

)
G(r, k) .

The known exact results from the case r = 1 are then summarized by
G(1, k) = 1.2

Our main new results presented in §3 are explicit calculations of the slope
function S(r, k) (or equivalently the function G(r, k)) in the special case
where the ratio r is a general non-negative integer. In particular in all such
examples, we verify that the degeneracies indeed grow exponentially, and we
find that the function G(r, k) is not constant. These calculations are possible
thanks to a new formula [23] which provides an explicit expression for all
degeneracies of the form Ω(M,Mr + 1, k) for integer r, and hence enables us
to explore the large rank regime of these models. We also provide evidence
that the slope is independent of the offset using wall-crossing formulas in §4.

The quantity G(r, k) appearing in (1.4) is an interesting function of the
ratio r. As we review in §2.3, dualities in the Kronecker models enable us to
change r without changing the ground state degeneracies. This implies the
following modular identities

(1.5) G(r, k) = G(1/r, k) = G(k − 1/r, k) .

2 In [18, 25] it was further conjectured that G(r, k) = 1 for all r. We find, by
direct calculation, that this further conjecture is false.
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These modular constraints, combined with our exact calculations at integral
r, indicate that the slope demonstrates intricate oscillatory behavior for large
and small values of the ratio.3 See Figure 6 for an illustration of this behavior.

In §5 we explore the number theoretic properties of the slope function.
We find that, for all cases that we have studied, exp(S(r, k)) is an algebraic
number, i.e. it solves an algebraic equation with rational coefficients. Even
for small r and k, the resulting equations are striking in their complexity,
with unexpected coefficients. For example, when (r, k) = (2, 4) we find that
exp(S(2, 4)) is the positive solution to

(1.6) x2 − 53793390359

1088391168
x− 823543

12230590464
= 0 .

It would be interesting to understand a physical or geometric origin of these
equations directly, perhaps by relating them to identities obeyed by gener-
ating functions of threshold bound states [1, 14–17, 26], or to enumerative
Calabi-Yau geometry.

Finally, before delving into the details, we briefly return to our motivat-
ing physical question and take stock of the properties of the ground states
when they are interpreted as stable particles of four-dimensional field theo-
ries. In that context the ranks M and N are linearly related to electric and
magnetic charges Q, and hence (via BPS bounds) to particle masses m (or
equivalently energies E). Thus, we have the scaling relations

(1.7) M ∼ N ∼ Q ∼ m ∼ E .

The general properties of the states in question are then as follows.

• The physical radius R of the states grows linearly with the ranks M
and N [1], or equivalently linearly in mass m

(1.8) R ∼ m .

• The particles lie on Regge trajectories [27]. In other words, the states
of largest angular momentum J at fixed mass m obey a relation

(1.9) J ∼ m2 .

3In [25] a uniqueness theorem G(r, k) = 1 was proven under certain continuity
assumptions on G(r, k). The oscillatory behavior we observe violates these con-
tinuity assumptions and hence invalidates the uniqueness theorem. See §2.3.1 for
discussion.
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• There is an exponential degeneracy of particle states with entropy
growth linear in mass (so that (1.1) is violated)

(1.10) S ∼ m ∼
√
J .

Taken as a whole, these features suggest the existence of a dual string model
for these bound states, where the Regge behavior and exponential degen-
eracy are manifest. In that context the slope function S(r, k), which plays
a primary role in our analysis, would then be reinterpreted in terms of the
central charge of the dual world sheet string theory. It would be satisfying
to determine this string model explicitly, and we leave this as a potential
avenue for future investigation.

2. Kronecker models and their indices

In this section, we review the Kronecker models and their degeneracies
Ω(M,N, k). In §2.2 we state a conjecture concerning the behavior of these
degeneracies for large ranks.

We begin with the Kronecker quiver illustrated in Figure 1. This sys-
tem is a gauged N = 4 quantum mechanics. At each node, there are vector
multiplets with unitary gauge groups of ranks M and N, respectively. The
arrows of the quiver are bifundamental chiral multiplet matter fields. See,
for instance [6], for the explicit Hamiltonian of this system. The quantity of
interest, Ω(M,N, k), is the Witten index of this system.

In general, the ground states of the Kronecker model occur at threshold
and are challenging to explicitly determine. However, in the special case
where M and N are coprime, the system is gapped and the index Ω(M,N, k)
admits a simple geometric interpretation.

To describe this correspondence, we first introduce the classical Higgs
branch moduli space Mk

M,N . This moduli space is parameterized by the chi-
ral multiplet fields Φi (i = 1, · · · , k) which have constant expectation values.
Thus, they specify linear maps

(2.1) Φi : C
M → C

N .

On the maps Φi we enforce the D-term equations

(2.2)

k∑
i=1

Φ†i ◦ Φi = ζIM ,

k∑
i=1

Φi ◦ Φ†i =
Mζ

N
IN ,
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where ζ > 0 is the Fayet-Iliopoulos parameter,4 and IL is the L× L identity
matrix. To obtain the desired moduli space, we now quotient by the gauge
group U(M)× U(N) acting on the Φi via the bifundamental representation

Mk
M,N ≡

{
Φi

∣∣∣∣∣
k∑

i=1

Φ†i ◦ Φi = ζIM ,(2.3)

k∑
i=1

Φi ◦ Φ†i =
Mζ

N
IN

}
/U(M)× U(N) .

When M and N are coprime, these moduli spaces are smooth, compact,
Käher manifolds. In this case, the complex dimension of the moduli space
may be easily computed by subtracting the dimension of the gauge groups
from the dimension of the space of chiral fields5

(2.4) dim
(
Mk

M,N

)
= kMN −M2 −N2 + 1 .

As usual in supersymmetric quantum mechanics, the ground states are in
one-to-one correspondence with the cohomology of the moduli space Mk

M,N ,
and the index Ω(M,N, k) is the Euler characteristic. In this particular case,
we can say more due to a vanishing theorem constraining the Hodge decom-
position of the cohomology [13]

(2.5) hp,q
(
Mk

M,N

)
= 0 , if p 	= q .

The index Ω(M,N, k) is then

(2.6) Ω(M,N, k) = χ(Mk
M,N ) =

∑
p≥0

hp,p
(
Mk

M,N

)
.

Thus, as a consequence of the vanishing theorem (2.5), all ground states
of the model are bosons, and the index Ω(M,N, k) computes the absolute
degeneracy of the ground states.

4When ζ < 0 all moduli spaces are empty, demonstrating wall-crossing. See §4
for discussion.

5The offset by one is due to the fact that an overall u(1) in the gauge group does
not act on the bifundamental chiral multiplets.
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2.1. Indices as a function of k

The ground state degeneracies show significant dependence on the number
of arrows k in the quiver. Qualitatively, there are three distinct cases k = 1,
k = 2, and k > 2, with increasing k demonstrating increasing complexity.

One way to understand this phenomenon is to examine the moduli space
when M = N . In that case, generically, (i.e. on an open set in the moduli
space) at least one of the maps Φi is invertible. We may then remove some
of the gauge redundancy by fixing one such map to the identity matrix.
After doing so, we must study k − 1 linear maps modulo conjugation. For
k = 1 this problem is trivial. For k = 2, this problem is solved by the Jordan
decomposition theorem. For k > 2 this is a notoriously wild representation
theory problem with no known exact solution.

Returning to the case of general ranks M and N , we now summarize
the qualitative possibilities for the large rank behavior of the degeneracies
Ω(M,N, k) as a function of k. These behaviors are illustrated in Figure 2.6

• When k = 1, there is a single non-trivial degeneracy at M = N = 1.
Thus, in this case there is no growth in the degeneracies for large ranks.
Physically, this model describes the BPS particles in the Argyles-
Douglas conformal field theory [28–30].

• When k = 2, there are infinitely many non-trivial degeneracies, with
allowed values M = N ± 1 and M = N = 1. In the former case the
degeneracy is one, in the latter it is two. Thus, again in this case there
is no growth in the degeneracies for large ranks. Physically, this model
describes the BPS particles in the pure su(2) Seiberg-Witten theory
[5, 31].

• When k > 2, there are infinitely many non-zero degeneracies. Phys-
ically, this model occurs, for instance, as a subsector of su(n) super
Yang-Mills with n > 2 [1]. In general, there is no known closed form ex-
pression for the degeneracies, however previously known exact results
from the case N = M and N = M + 1 indicate that the degeneracies
grow exponentially for large ranks [1, 18, 24].

In this case, it is instructive to regard the degeneracies as a function
of the limiting ratio N/M → r. In terms of r, the dimension of moduli

6For all k the degeneracies Ω(1, 0, k) and Ω(0, 1, k) are one and we do not discuss
them further.
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space (2.4) reads

dim
(
Mk

M,N

)
= kMN −M2 −N2 + 1(2.7)

= M2
(
kr − r2 − 1

)
+O(1/M) .

The degeneracies can only be non-trivial if the above is non-negative.
For large M, and fixed r, this bounds the ratio r between the two
values r± given below

(2.8) r± ≡ k ±√
k2 − 4

2
.

Inside the cone r− ≤ r ≤ r+, the occupied ratios are dense.
Finally, we note the following inequalities which hold for k > 2.

(2.9) 0 < r− < 1 < k − 1 < r+ < k .

Thus, the interval [r−, r+] contains k − 1 integral values of r. In §3,
we determine that the degeneracies also grow exponentially at these
integral values of r.

2.2. Conjectured asymptotics of Ω(M,N, k)

We now state a conjecture concerning the growth of the degeneracies
Ω(M,N, k) for large ranks. This conjecture was first articulated in [18, 25],
and subsequently refined by [1].

Conjecture: For fixed r,m, n, and k > 2, the degeneracies grow as follows

1

M
log (Ω(M +m,Mr + n, k))(2.10)

−→
M�1

S(r, k) + E(r, k,m, n)
log(M)

M
+ · · · ,

where the terms · · · tend to zero faster than log(M)/M as M tends to
infinity.

Let us expand upon several aspects of this conjecture.

• The leading asymptotics is controlled by the slope function S(r, k)
which is independent of the offset (m,n). Evidence for this indepen-
dence can be given using explicit calculations from wall-crossing for-
mulas and is presented in §4.
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N

M
(a) k = 1

N

M
(b) k = 2

N

M

r-

r+

(c) k > 2

Figure 2. Occupied dimension vectors (i.e. pairs (M,N)) as a function of
k. In (a), the case k = 1 : there is a single non-trivial dimension vector
(M,N) = (1, 1). In (b), the case k = 2 : there are infinitely many occupied
dimension vectors which accumulate at r = 1. In (c), the case k > 2 : there
are infinitely many occupied dimension vectors which accumulate along the
irrational slopes r = r±. Inside the cone bounded by r± (shown in gray) the
occupied dimension vectors are dense and the degeneracies grow exponen-
tially.

• By contrast, the first correction to the leading growth, controlled by
the function E(r, k,m, n), depends on the offset (m,n). This claim
follows from known exact results for the degeneracies Ω(M,M + 1, k)
[18] and Ω(M,M, k) [1, 16]. In these cases one finds

(2.11) E(1, k, 0, 1) = −5

2
, E(1, k, 0, 0) = −2 .
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• The slope function S(r, k) is assumed to be continuous on the interval
r− ≤ r ≤ r+. Since the moduli spaces become empty at r± we have

(2.12) S(r−, k) = S(r+, k) = 0 .

For r outside the interval [r−, r+], the slope function is not defined.

• The leading growth implied by the conjecture is slower than for generic
quiver models. In a generic quiver with node ranks Qi one expects that
under scaling Qi → ΛQi, with Λ � 1 the index Ω scales as log(Ω) ∝
Λ2. Indeed, this is expected in quiver models that describe BPS black
holes [7]. By contrast, the Kronecker model, which occurs in quantum
field theory, has log(Ω) ∝ Λ.

The slope function S(r, k) is the primary quantity of interest in this work.
Assuming the validity of the conjecture, we constrain its functional form
in §2.3. In §3 we present calculations of the slope at integral values of r.

2.3. Constraints on the slope function

There are a number of a priori restrictions that may be put on the slope
function S(r, k) using dualities and known exact results. We survey these
constraints in this section.

Value at r = 1.

The first piece of information about the slope, is that it is known ex-
actly at the special value r = 1. Indeed, from [18], we have the closed form
expression

(2.13) Ω(M,M + 1, k) =
k

(M + 1) [(k − 1)M + k]

(
(k − 1)2M + k(k − 1)

M

)
.

This exact result is unusual. For the majority of indices Ω(M,N, k) there
is no simple known closed form expression. Given this expression for finite
M, we may easily obtain its asymptotics for large M using the Stirling
approximation. We find

(2.14) S(1, k) = (k − 1)2 log((k − 1)2)− (k2 − 2k) log(k2 − 2k) .

Reflection Symmetry.

We may constrain the slope function S(r, k) using symmetries of the
quiver quantum mechanics. One simple symmetry is that our choice of which
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fields we refer to as chiral and which fields refer to as antichiral is arbitrary.
Exchanging these notions changes the fields Φi to Φ†i , and hence reverses
the direction of the arrows as shown in Figure 3.

M N
k

��

(a)

M N
k

��

(b)

Figure 3. The reflection symmetry. In (a) the original model. In (b) the
quiver obtained after changing the definition of chiral and antichiral fields.
This operation replaces Φi with Φ†i and hence reverses the arrows.

It is clear that the net result of this operation is to exchange the roles
of M and N in the definition of the index. Thus, we have the symmetry

(2.15) Ω(M,N, k) = Ω(N,M, k) .

We may translate this into a constraint on the slope function by using the
definition (2.10). We obtain

(2.16) S(r, k) = rS(1/r, k) .

Mutation Symmetry.

A less trivial symmetry of the slope function follows from the applica-
tion of quiver mutation (Seiberg dualities) [32–34]. Applying this operation
enables us to change the ranks of the gauge groups in a k dependent way as
illustrated in Figure 4.

M N
k

��

(a)

N kN −M
k

��

(b)

Figure 4. The mutation symmetry. In (a) the original model. In (b) the
quiver obtained after a mutation.
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The result of the mutation symmetry is thus to exchange (M,N) →
(N, kN −M). Correspondingly, we have symmetry

(2.17) Ω(M,N, k) = Ω(N, kN −M,k) .

The resulting symmetry of the slope is

(2.18) S(r, k) = rS(k − 1/r, k) .

2.3.1. Solving the constraints. The totality of these constraints on the
slope motivates us to introduce a function G(r, k) and express the slope
function as follows

S(r, k) =

(√
kr − r2 − 1

k − 2

)
(2.19)

(
(k − 1)2 log((k − 1)2)− (k2 − 2k) log(k2 − 2k)

)
G(r, k) .

To understand the significance of this formula, first note that the factor in
the square root satisfies the algebraic identities

(2.20)
√

kr − r2 − 1 = r

√
k

r
− 1

r2
− 1 = r

√
k

(
k − 1

r

)
−
(
k − 1

r

)2

− 1 .

Therefore, the complete list of constraints on the function S(r, k) translates
into the following constraints on the quantity G(r, k).

• From the special value of the slope, (2.14), we have

(2.21) G(1, k) = 1 .

• From the reflection symmetry, (2.16), we have

(2.22) G(r, k) = G(1/r, k) .

• From the mutation symmetry, (2.18), we have

(2.23) G(r, k) = G(k − 1/r, k) .

Thus, assuming that the conjecture (2.10) is true, it remains to find the
function G(r, k) which determines the value of the slope away from the
special case r = 1. In §3 we provide direct calculations illustrating that the
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function G(r, k) is not constant. In the remainder of this section, we continue
to study its features by exploring the above constraints.

The functional identities obeyed by G(r, k) may be viewed as frac-
tional linear transformation acting on the variable r. Specifically, given any
GL(2,Z) matrix, X, define its action on r in the standard way as

(2.24) X · r =
ar + b

cr + d
, X =

(
a b
c d

)
.

The reflection and mutation symmetries are defined by the two GL(2,Z)
matrices

(2.25) A =

(
0 1
1 0

)
, B =

(
k −1
1 0

)
.

Our constraints on the function G(r, k) may thus be rephrased by saying
that G(r, k) is a modular function for the subgroup of GL(2,Z) generated
by (2.25).

To understand the implications of the modular invariance of the func-
tion G(r, k) it is useful to change coordinates from r to a variable where
the modular constraints are manifest. An appropriate coordinate may be
deduced by diagonalizing the mutation matrix B above. Upon defining θ as

(2.26) θ ≡ 2π

log (r+/r−)
log

(
r − r−
r+ − r

)
,

we find that the transformations act simply as

(2.27) (B ◦A) · θ = −θ , B · θ = θ + 2π .

Therefore, the constraints on the function G(r, k) may be solved by express-
ing G(r, k) in terms of the variable θ and demanding that it is even and
periodic

(2.28) G(θ, k) = G(−θ, k) = G(θ + 2π, k) .

Let us comment further on the coordinate transformation (2.26). This
transformation maps the segment [r−, r+] to the full real line (−∞,∞). In
particular the r values r± map to the θ values ±∞. The fact (demonstrated
in §3) that G(θ, k) is not constant, implies that G(θ, k) undergoes infinitely
many oscillations as |θ| increases. Viewed in the original r coordinate, these
are oscillations with increasing frequency as r approaches r±.
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As a consequence of these considerations, we see that any non-constant
G(r, k) has the feature that its limit as r → r± does not exist. Hence G(r, k)
is not continuous at the edges r± of the interval [r−, r+] where the slope
is defined. This lack of continuity of G(r, k) does not affect the claim that
the full slope function S(r, k) is continuous. Indeed, from (2.19) we see that
the square root factor vanishes at r± so for continuity of the full slope it is
sufficient that

(2.29) lim
r→r±

G(r, k)
√

kr − r2 − 1 = 0 .

In fact, we will see that G(r, k) oscillates in a bounded range, so that the
above is obeyed.

3. Explicit calculations of the slope

In this section we provide new explicit calculations of the slope function
S(r, k). These calculations are possible due to new expressions for the de-
generacies Ω(M,N, k) in the special case where N = Mr + 1 for integral
r. To describe these results it is convenient to first introduce a generating
function

(3.1) F (k, r, x) = (k − r)

∞∑
�=1

(−1)�−1

�

(
k�

r�

)
x� ,

and let [xj ]{q(x)} denote the coefficient of xj in a power series q(x). Then
the result of [23] is

(3.2) Ω(M,Mr + 1, k) =
1

(Mr + 1)2
[xM ]

{
exp

[
(Mr + 1)F (k, r, x)

]}
.

In this section we use this expression to compute the slope S(r, k) for
the integral points r = 1, · · · , k − 1. In §3.1 we describe the saddle point
technique for extracting the slope S(r, k) from (3.2). In §3.2, we describe
results for the slope function in limits where k is also taken to be large.
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3.1. Saddle point approximation

We begin by noting that (3.2) is equivalent to an expression for the degen-
eracy Ω(M,Mr + 1, k) as a contour integral around x = 0:7

Ω(M,Mr + 1, k)(3.3)

=
1

(Mr + 1)2

∮
x=0

dx

(2πi)xM+1
exp [ (Mr + 1)F (k, r, x) ] .

Let us define the angular coordinate φ by x = Reiφ, where R is the radius
of the contour. In terms of R and φ, (3.3) can be expressed as

Ω(M,Mr + 1, k)(3.4)

=
1

(Mr + 1)2
1

RM

∫ 2π

0

dφ

2π
exp

[
−iMφ+ (Mr + 1)F (k, r, Reiφ)

]
.

When M is very large, this integral is well approximated by the saddle point
method.

We now find the saddle point of (3.4) on the complex φ plane. Denote
the saddle point by φs ∈ C and define

xs ≡ Reiφs .(3.5)

The saddle point equation is given by

M

Mr + 1
= xs

d

dx
F (k, r, x)

∣∣∣∣
x=xs

.(3.6)

Given the explicit power series expansion for F (k, r, x), the saddle point
equation can be solved to arbitrary numerical precision for any given k and
r. We make the following claim

Claim: The solution x = xs to (3.6) has a well-defined limit as M → ∞
for all k > 2 and all integral r with 1 ≤ r ≤ k − 1.

This claim is justified by extensive numerical evidence.

7Generally, the function exp [(Mr + 1)F (k, r, x)] has a branch cut on the complex
plane away from the origin. We choose the radius R of the contour integral to be
sufficiently small to avoid crossing the branch cut.
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Assuming this claim, we can rewrite the saddle point equation (3.6) as

1

r
= xs

d

dx
F (k, r, x)

∣∣∣∣
x=xs

.(3.7)

The index can be approximated by evaluating the integrand in (3.4) at xs
in the large M limit:

log Ω(M,Mr + 1, k) � M
[
− log(xs) + rF (k, r, xs)

]
+O(log(M)) ,(3.8)

We have therefore obtain the exponential growth of the index Ω(M,Mr +
1, k) in the large M limit. Moreover, the slope function S(r, k) is determined
to be

S(r, k) = − log(xs) + rF (k, r, xs) , 1 ≤ r ≤ k − 1, r ∈ N .(3.9)

with xs defined as the solution to (3.7).
We can also give an exact expression for the function G(r, k) defined

in (2.19) for these values of r simply by taking ratios,

G(r, k) =

√
k − 2

kr − r2 − 1
(3.10)

− log(xs) + rF (k, r, xs)

(k − 1)2 log [(k − 1)2]− (k2 − 2k) log(k2 − 2k)
,

1 ≤ r ≤ k − 1, r ∈ N .

Given the explicit form of the function F (k, r, x) (3.1), the saddle point
equations (3.7)-(3.10) may be solved to arbitrary numerical precision. Us-
ing the symmetries of the slope function discussed in §2.3.1 we may then
extrapolate these results to larger and smaller non-integral values of r. In-
terpolating between these data points (assuming continuity of S(r, k)) then
provides a plausible picture of the slope for all r in the interval [r−, r+]. We
present such plots in Figures 5 and 6 below. Note that G(r, k) oscillates and
S(r, k) goes to zero as r → r± as anticipated in (2.29).

3.1.1. The subleading term. The explicit expression (3.2) and the sad-
dle point analysis also enables us to study the subleading log(M) term in
log Ω(M,Mr + 1, k). This term receives two contributions: one from the
1/(Mr + 1)2 term in (3.4), and the other from the “one-loop” correction
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Figure 5. The slope function S(r, k) in the case k = 15. On the left the
independent variable is r, on the right the independent variable is θ. The
marked points denote the values of the slope computed using the saddle point
method. These points may be transferred to r < 1 and r > k − 1 (outside
the red dashed lines) using the symmetries of the slope function. The blue
curve is the resulting interpolating function.

from the integrating out the δφ2 term when expanding around the saddle
point φ = φs + δφ. Together they give

log Ω(M,Mr + 1, k)(3.11)

� M [− log(xs) + rF (k, r, xs)]− 5

2
log(M) +O(1) .
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Figure 6. The slope function G(r, k) in the case k = 15. On the left the
independent variable is r, on the right the independent variable is θ. The
marked points denote the values of the slope computed using the saddle point
method. These points may be transferred to r < 1 and r > k − 1 (outside
the red dashed lines) using the symmetries of the slope function. The blue
curve is the resulting interpolating function. Note that G(r, k) undergoes
infinitely many oscillations for r− < r < 1 and k − 1 < r < r+.

This determines the function E(r, k,m, n) appearing in (2.10) for this par-
ticular value of the offset (m,n) = (0, 1):

E(r, k, 0, 1) = −5

2
, 1 ≤ r ≤ k − 1, r ∈ N ,(3.12)

which generalizes the result (2.11) of [1] to general integral r.

3.1.2. Symmetry of the slope function. Finally, we can also use saddle
point analysis to check some of the symmetries of the slope function S(r, k)
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that we argued for on general grounds in §2.3. Since our saddle point analysis
is only valid for integral values of r, the only symmetry we can check is the
composition of the mutation and the reflection symmetry:

S(r, k) = S(k − r, k) ,←→ S(θ, k) = S(−θ, k) .(3.13)

To illustrate this result, we first note from (3.1) that

F (k, k − r, x) =
r

k − r
F (k, r, x) .(3.14)

In other words, the combination r F (k, r, x) is invariant under the symme-
try (3.13) r → k − r. Since both the saddle point equation (3.7) and (3.9)
depend on F (k, r, x) only through the combination r F (k, r, x), it follows that
the slope function S(r, k) given in (3.9) indeed enjoys the symmetry (3.13).
This reflection symmetry is manifest in Figures 5 and 6.

3.2. Limits of the slope function

In this subsection we further take limits on k and r to explore the behavior
of S(r, k) in different regimes of parameters. We emphasize that, in all such
calculations, we first take the large M limit, and then take further limits on
k and r.

3.2.1. Large k with fixed r. We begin with the limit:

k → ∞, r = fixed .(3.15)

Using the Stirling approximation, n! � nne−n
√
2πn, we can rewrite the sad-

dle point equation (3.7) as

1

r
� k

√
k

2πr(k − r)

∞∑
�=1

(−1)�−1√
�

[
kk

rr(k − r)k−r
xs

]�
.(3.16)

To solve the saddle point equation in this limit, we truncate the righthand
side to the first term � = 1. The saddle point xs in the large k limit is then
given by

xs � k−
3

2

√
2π(k − r)

r

rr(k − r)k−r

kk
.(3.17)

As a consistency check on our truncation to the � = 1 term in the saddle
point equation (3.16), we note that the �-th order term on the righthand
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side of (3.16) evaluated at the saddle is

k

√
k

2πr(k − r)

(−1)�−1√
�

[
k−

3

2

√
2π(k − r)

r

]�
∼ k1−� .(3.18)

Hence the terms with � > 1 are suppressed and our truncation to � = 1 is
self-consistent in the large k limit.

Given the explicit expression for the saddle point xs at large k, we can
now solve for the slope function S(r, k) (3.9) we obtain,

S(r, k)
k�1−−−→ (r + 1) log k +

[
r − log

(√
2πrr−

1

2

)
+ 1
]
+O

(
1

k

)
.(3.19)

Note that in the large k limit the dominant contribution comes from− log(xs)
in (3.9). From this we also obtain the large k limit of the function G(r, k)
(3.10),

lim
k→∞

G(r, k) =
r + 1

2
√
r

.(3.20)

These results may be phrased simply in terms of the original degeneracy
Ω(M,N, k) as

(3.21) lim
k→∞

lim
M,N→∞

N/M=r fixed

Ω(M,N, k) ≈ kM+N .

3.2.2. Large k and r with fixed r/k. As another accessible limit, con-
sider the case where

k, r → ∞, q :=
r

k
= fixed .(3.22)

The constraint 1 ≤ r ≤ k − 1 becomes in this limit

0 ≤ q ≤ 1 .(3.23)

Again using the Stirling approximation, the saddle point equation (3.6) can
be written as

1

kq
�

√
k

√
1− q

2πq

∑
�=1

(−1)�−1√
�

[
kk

(qk)qk [(1− q)k](1−q)k
x

]�
.(3.24)
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Upon truncating (3.24) to the first term � = 1, we obtain the saddle point

xs � k−
3

2

√
2π

q(1− q)

(qk)qk [(1− q)k](1−q)k

kk
.(3.25)

As a consistency check on our truncation to the � = 1 term, we note that
the �-th term on the righthand side of (3.24) scales like k

1

2
− 3�

2 , which is
negligible compared with the lefthand side when � > 1.

Given the explicit expression for the saddle point xs at large k and r
limit, we can then solve for the slope function S(r, k)

S(r, k)
k,r→∞−−−−→

q≡r/k=fixed
− [q log(q) + (1− q) log(1− q)] k(3.26)

+
3

2
log k +O(1) .

In contrast to the large k limit with r fixed, the slope now scales linearly
with k.

Meanwhile, the function G(r, k) given by (3.10) behaves as

lim
k,r→∞

q≡r/k=fixed

G(r, k) = −q log(q) + (1− q) log(1− q)

2
√

q(1− q)

√
k

log k
+ · · · .(3.27)

Thus, in this limit, G(r, k) as a function of the ratio q is symmetric under
q → 1− q and has a maximum at q = 1/2. Note also that in this limit G(r, k)
grows in absolute value as

√
k/ log(k). A plot of G(r, k) in this regime of

parameters is shown in Figure 7.

4. Slopes from wall-crossing data

In this section, we describe the information that can be learned about the
slope function S(r, k) using data about the degeneracies obtained from the
wall-crossing formula. Our main goal is to provide evidence for an aspect
of the conjecture stated in §2.2. Namely, we wish to show that the slope
function S(r, k) defined as

(4.1) lim
M→∞

1

M
log (Ω(M +m,Mr + n, k)) = S(r, k) ,

is indeed independent of the offset (m,n). Similar analysis has been pre-
formed in [1].
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Figure 7. The function G(r, k) as a function of q = r/k in the limit k, r → ∞
with q fixed.

For general (m,n), there is no known closed form expression for the
indices which feature in the above. Thus, it is presently impossible to con-
clusively prove or disprove the claim that S(r, k) is independent of the offset
(m,n). Instead, we can obtain evidence for this idea through explicit calcu-
lations of the degeneracies using wall-crossing.

The wall-crossing formula of [14] enables us to find the change in
Ω(M,N, k) as the Fayet-Iliopoulos parameters ζ are varied. In the Kronecker
model, the wall-crossing formula is straightforward to use. If we change the
sign of the FI parameter ζ of (2.2), then all moduli spaces are empty. Thus,
in this simple chamber, the only values of (M,N) with non-vanishing degen-
eracies are (1, 0) or (0, 1), corresponding to a single particle of type one, or
a single particle of type two. We therefore use this simple chamber (ζ < 0)
as a seed, and use wall-crossing to determine the indices in the chamber of
interest (ζ > 0) where the exponential growth in degeneracies occurs.

The wall-crossing calculation makes of functions KM,N defined as power

series in formal variables
[
x, y
]
as

KM,N [x, y] =
[
x(1− (−1)kMNxMyN )kN ,(4.2)

y(1− (−1)kMNxMyN )−kM
]
.

Additionally, we define a sign function σ that detects the parity of the di-
mension of Mk

M,N
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(4.3) σ(M,N, k) =

{
+1 , kMN −M2 −N2 + 1 ≡ 0 (mod 2) ,

−1 , kMN −M2 −N2 + 1 ≡ 1 (mod 2) .

The content of the wall-crossing formula is that a certain function of
[x, y] built from compositions of the KM,N does not depend on the chamber.
In the Kronecker model this reads

(4.4)

→∏
M,N≥0

K
σ(M,N,k)Ω(M,N,k)
M,N = K0,1 ◦K1,0 .

In the above, the product of operators KM,N [x, y] is defined to be composi-
tion of functions, and the order of composition is that of decreasing M/N.8

To use (4.4), observe that KM,N differs from the identity first at order
xMyN . Therefore, fixing an integer Q, we may solve (4.4) to order Q by
truncating the infinite composition to a finite composition where only those
KM,N are retained with M +N ≤ Q. Next we evaluate the composition
as a polynomial by only retaining terms differing from the identity up to
total order Q. Matching to the right-hand side, we can then solve for all
Ω(M,N, k) with M +N ≤ Q.

This procedure is time consuming to carry out for large Q, and does not
directly enable us to analytically determine a closed form expression for the
slope function. However, it does enable us to provide evidence for the claim
that the slope is independent of the offset.

To do so, first define for each (r, k), and each offset (m,n), the following

normalized sequence S
(m,n)
M (r, k)

(4.5) S
(m,n)
M (r, k)

≡ log
[
Ω(M + 1 +m, (M + 1)r + n, k)

]− log
[
Ω(M +m,Mr + n, k)

]
S(r, k)

.

For large M, these sequences approximate a normalized version of the slope
function. Independence of the offset (m,n) implies that the limit is unity

(4.6) lim
M→∞

S
(m,n)
M (r, k) = 1 .

8If M1/N1 = M1/N2 then KM1,N1
◦KM2,N2

= KM2,N2
◦KM1,N1

. The need for
this sign σ due to the fact that we have defined Ω to coincide with the Euler
characteristic.
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We have studied these sequences using wall-crossing data (recorded in Ap-
pendix A). Data collected thus far supports the result (4.6). We illustrate
examples in Figure 8.
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(0,0)offset (m,n)

(a)
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(0,0)offset (m,n)

(b)

Figure 8. Examples of the normalized slope sequence S
(m,n)
M (r, k) of (4.5)

for various offsets at k = 4. (a) The case r = 1. (b) The case r = 2. In both
examples the convergence of the various curves suggests that asymptotic
slope is independent of the offset.

5. Algebraic asymptotics

In this section we explore the number theoretic properties of the slope func-
tion S(r, k). Curiously, we observe that the exponential of the slope is an
algebraic number (i.e. solves a polynomial equation with integral coefficients)
in all examples we have studied. This leads us to conjecture the following:

Conjecture: For any rational r with r− ≤ r ≤ r+, and any k > 2, the quan-
tity exp(S(r, k)) is algebraic.

Before describing our method for verifying this conjecture at special
values of r and k, let us first describe what may be its physical content.
It has been observed in [1, 14–17, 26] that certain generating functions of
threshold bound states obey algebraic equations.

For an explicit example, consider the degeneracies Ω(M,M, k). These
ranks are not coprime and hence the quiver quantum mechanics is not
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gapped. The ground states, counted by Ω(M,Mr, k) are thus at threshold.
We may assemble these degeneracies into a formal multiplicative generating
function as

(5.1) Pk(z) ≡
∞∏
�=1

(
1− (−1)�kz�

) �

k
σ(�,�,k)Ω(�,�,k)

,

where σ is the sign function introduced in (4.3). Then, remarkably, one finds
that this generating function obeys the algebraic equation

(5.2) Pk(z) = 1 + zPk(z)
(k−1)2 .

Algebraic equations, such as the above, suggest a combinatorial interpreta-
tion of threshold bound states. Moreover, if such algebraic equations are a
feature at general ratio r (not just r = 1) then they also provide evidence
that exp(S(r, k)) is indeed algebraic for general rational ratio.9

In practice since we do not have access to such equations, our method
for demonstrating that exp(S(r, k)) is algebraic is less direct. We carry out
this analysis at integer r where the saddle point approximation method of
§3 can be applied. Using this method we may evaluate the slope S(r, k) to
extremely high precision, say p decimal digits. With the aid of computer
software,10 we then “guess” simple algebraic equations obeyed by the slope
S(r, k) to the given precision p. We then test the validity of the result-
ing equations by evaluating their roots to precision q > p and comparing
against the numerical saddle value of the slope at the same higher precision
q. Agreement for large q strongly suggests that we have hit upon the correct
algebraic equation.

We have carried out this algorithm for r and k sufficiently small. In prac-
tice in these examples the precision p used to determine the equation is of
the order of 3000 decimal digits, and the precision q used to test the equation
is of the order of 10000 decimal digits, thus giving overwhelming evidence
that the equations to follow are correct. Remarkably, even for small values
of these parameters, the resulting algebraic equations have large unfamiliar
coefficients. We present examples of these polynomials below in the special
case r = 2 and increasing k. In each case, exp(S(r, k)) is the unique posi-
tive root of the given polynomial. The complexity of these results demands

9We have been informed by M. Kontsevich and Y. Soibelman that Pk(z) is indeed
algebraic. See also [35].

10Specifically, we use the “RootApproximant” function in Mathematica.
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explanation.

• r = 2, k = 3 :

256− 27x .

• r = 2, k = 4 :

600362847 + 440675453820928x− 8916100448256x2 .

• r = 2, k = 5 :

− 591413771772821360012500490693032929265968209672451145145917265

965744128 + 154452605112448522226515494740065379723981012919983800

320000000000000000000000000x− 3165226777631350043180934590396624

62828346178866922855377197265625000000000000000000000000x2 + 2350

98870164457501593747307444449135563733111354417504301750341255683

4518909454345703125x3 .

• r = 2, k = 6 :

− 205077382356061005364520560917237603548617983652060754729491696

618936729600000000000000000000 + 203527456365940827930199473495960

49624338559361382715379523490900542769110256081622496009928477170

3619584x− 642474930837821907013905941067121157858446361009384583

66932530627926893892348597995911202127555619214492164722524160x2

+ 228273036346967044979900512337165522400819024722490933829954793

073267717315004135590642802687246850771579138342847x3 .

• r = 2, k = 7 :

− 632210447498753584137450224190378529992114602189123548591822787

23793194763608955690831585152728832148267192599815441444017798573

93246859297454316875384045119131604097301061292493879453481774113

25214212521132649260658490824379019540346646977013733703643083572

38769531250000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000

+ 768931700143680868846594496835357146564963658043009477662494651

51838746022572496817798838151445552610980365480372933812665981956

06502397949074008546740284693586817820238543713304335387355788224

25987042129844041550859618270642303592615213998130932618911918515

52671758344981167709875080618076026439666748046875000000000000000
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00000000000000000000000000000000000000000000000000000000000000000

0000000000000000x− 115126222920974049935255706063169599786631128

62440929180117311144093090960752721747645999125234835100940426957

05333448791438799220001314908243837369529446368067130170129731848

81908620479323776481326221034157246474236592501781928465277018647

58976555597044399924916019009630666772766093694042014840509245634

47725224030193658109055832028388977050781250000000000000000000000

000000000000000000000000000000000000000000000000000x2 − 672232996

60579770929375864747083052183628238733887917868657258005534772442

46379143424114010311179248689686734542268517271729316048108628676

19832257942195711045408357754290131843590347004907611409361306027

92075359628915794032135861665922175808851726245041715754623682086

39230705722673335152846132776520652869016606152849160935592735893

68571610054261540720072739069167196263462396972656250000000000000

000000000000000000000000000000000000x3 − 182822109543635371746317

46144372473309761583826560498722383756331622928687337481339864446

27799798272893603723875378702067493338791230176944947387962394081

12733284492009790370082099139751891929559461803806333226546059334

02448500061893467638415600041365981598673140175455715066120040268

22799245375407831045735371095310392708232813444765629796346407827

50717162415439593036061033323032854282308841815501351114416935677

549582015625000000000000000000000000x4 + 361174340566357226990152

07713423930816156704189176680796574974972753795736895597822048576

76561201426730734937864394846343145339533029221076753457687358806

57895757722032512324984768606833144419439613783656485149225842816

60022574609986953248726716425843968132578017856117612030077581511

23590846908325491660994943573867336626008249075660058584580343705

51163280078366069025014468919793348940488399910890856318533605156

447765637099923292983683865980527x5 .

• r = 2, k = 8 :

− 134359730992479741191539993021929240046707667243497260643608787

06671568536722421573749161186183719583391291653129563520704310127

91097794648157926377354291605560815197811144889243548960712774982
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37553895626003602035163408030213775466890051884123979696892709068

01140249233051548018043312082946995133242592233846490756832281476

818025112152099609375− 193601863517910456075496929547919510349923

33280696911015169254722289053416284152526969102804765216978173499

94770061377656448038102089037285554469065154826535044098274348768

09745286231146824540062146365142908306289249004534973044635629884

72932081326581749238397927098301302152693352812062249144023151201

69366166114926592000000000000000000000000000000000000000000000x−
39031683665444267888083085274872287110434229714139546409233894827

91932364670655158660067543390810812308065528236183089255310622230

61761394054417454859984429984530932997048108945642228333995340784

23325034569823695950939250661287933951293598953292474937769102988

97905445580447730873053482046949689644028683066439662853300775859

29060732569657251503013888000000000000000000000000000000x2 − 1338

95744676946232484630361361970279700475052303543145856717974576524

75669226712726244312921102456433269200946898920221029949016657861

51216134233511274384197715005574803455795078830652501165515811832

18624831563463378285458771448831416840195438741952493407476023629

51654946723835419155334270838245321019706445904937563094594291998

67550480242286295886197150523554699491707353931647549440000000000

00000x3 + 1622667490347886753074861154430756407401826887961441735

67019689784025017324184886177707487609123152078541098643869487615

40569773284583982440580996741594147768641355272296624733228263268

91659517912123461261627509365717769910551022552212956516357565250

40838400078493107875375499048651224347657733851270232654184222578

13940696073901833375787323428539614117860026726874893757413199933

8755502611890176x4 .
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Appendix A. Tables of wall-crossing data

In this appendix, we record the explicit wall-crossing data used to study the
slope when k = 4 (see Figure 8). We record only log(Ω) to four significant
digits. Complete, integral values of indices are available upon request.

M N log Ω

1 1 1.386
1 2 1.792
1 3 1.386
1 4 0
2 2 2.773
2 3 4.060
2 4 4.025
2 5 4.060
2 6 2.773
2 7 1.792
3 3 4.970
3 4 6.555
3 5 7.142
3 6 6.898
3 7 7.142
3 8 6.555
3 9 4.970
3 10 4.060
3 11 1.386
4 4 7.398
4 5 9.183
4 6 9.950
4 7 10.43
4 8 10.09
4 9 10.43
4 10 9.950
4 11 9.183
4 12 7.398
4 13 6.555
4 14 4.025
4 15 0

M N log Ω

5 5 9.986
5 6 11.90
5 7 12.93
5 8 13.56
5 9 13.83
5 10 13.43
5 11 13.83
5 12 13.56
5 13 12.93
5 14 11.90
5 15 9.986
5 16 9.183
5 17 7.142
5 18 4.060
6 6 12.67
6 7 14.67
6 8 15.81
6 9 16.53
6 10 17.11
6 11 17.32
6 12 16.88
6 13 17.32
6 14 17.11
6 15 16.53
6 16 15.81
6 17 14.67
6 18 12.67
6 19 11.90
6 20 9.950
6 21 6.898
6 22 2.773

M N log Ω

7 7 15.43
7 8 17.50
7 9 18.78
7 10 19.69
7 11 20.34
7 12 20.76
7 13 20.87
7 14 20.40
7 15 20.87
7 16 20.76
7 17 20.34
7 18 19.69
7 19 18.78
7 20 17.50
7 21 15.43
7 22 14.67
7 23 12.93
7 24 10.43
7 25 7.142
7 26 1.792
8 8 18.24
8 9 20.36
8 10 21.71
8 11 22.75
8 12 23.39
8 13 24.08
8 14 24.40
8 15 24.46
8 16 23.97
8 17 24.46
8 18 24.40

M N log Ω

8 19 24.08
8 20 23.39
8 21 22.75
8 22 21.71
8 23 20.36
8 24 18.24
8 25 17.50
8 26 15.81
8 27 13.56
8 28 10.09
8 29 6.555
9 9 21.08
9 10 23.24
9 11 24.69
9 12 25.76
9 13 26.65
9 14 27.32
9 15 27.78
9 16 28.09
9 17 28.08
9 18 27.57
9 19 28.08
9 20 28.09
9 21 27.78
9 22 27.32
9 23 26.65
9 24 25.76
9 25 24.69
9 26 23.24
9 27 21.08
9 28 20.36

Table A1. The wall-crossing data for log Ω(M,N, k) with k = 4 and M +
N ≤ 40 . The plots for some of these data are shown in Figure 8.
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M N log Ω

9 29 18.78
9 30 16.53
9 31 13.83
10 10 23.96
10 11 26.15
10 12 27.66
10 13 28.85
10 14 29.80
10 15 30.41
10 16 31.14
10 17 31.56
10 18 31.77
10 19 31.74
10 20 31.21
10 21 31.74
10 22 31.77
10 23 31.56
10 24 31.14
10 25 30.41
10 26 29.80
10 27 28.85
10 28 27.66
10 29 26.15
10 30 23.96
11 11 26.86
11 12 29.08
11 13 30.65
11 14 31.91
11 15 32.93
11 16 33.74
11 17 34.41

M N log Ω

11 18 34.96
11 19 35.32
11 20 35.49
11 21 35.41
11 22 34.87
11 23 35.41
11 24 35.49
11 25 35.32
11 26 34.96
11 27 34.41
11 28 33.74
11 29 32.93
12 12 29.78
12 13 32.03
12 14 33.64
12 15 34.94
12 16 36.00
12 17 36.95
12 18 37.54
12 19 38.31
12 20 38.73
12 21 39.07
12 22 39.21
12 23 39.10
12 24 38.56
12 25 39.10
12 26 39.21
12 27 39.07
12 28 38.73
13 13 32.72
13 14 34.99

M N log Ω

13 15 36.65
13 16 38.01
13 17 39.16
13 18 40.13
13 19 40.90
13 20 41.58
13 21 42.18
13 22 42.59
13 23 42.86
13 24 42.95
13 25 42.81
13 26 42.26
13 27 42.81
14 14 35.68
14 15 37.96
14 16 39.65
14 17 41.07
14 18 42.27
14 19 43.29
14 20 44.16
14 21 44.73
14 22 45.53
14 23 46.04
14 24 46.41
14 25 46.64
14 26 46.69
15 15 38.65
15 16 40.94
15 17 42.67
15 18 44.11
15 19 45.37

M N log Ω

15 20 46.39
15 21 47.37
15 22 48.13
15 23 48.81
15 24 49.43
15 25 49.85
16 16 41.62
16 17 43.93
16 18 45.69
16 19 47.19
16 20 48.45
16 21 49.59
16 22 50.58
16 23 51.42
16 24 51.97
17 17 44.61
17 18 46.93
17 19 48.72
17 20 50.25
17 21 51.58
17 22 52.75
17 23 53.76
18 18 47.61
18 19 49.94
18 20 51.75
18 21 53.30
18 22 54.68
19 19 50.61
19 20 52.95
19 21 54.79
20 20 53.63

Table A2. The wall-crossing data for log Ω(M,N, k) with k = 4 and M +
N ≤ 40. The plots for some of these data are shown in Figure 8.
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[23] C. Córdova and S.-H. Shao, Counting trees in supersymmetric quantum
mechanics, arXiv:1502.08050 [hep-th].

[24] H. Kim, Scaling behaviour of quiver quantum mechanics, arXiv:1503.
02623 [hep-th].

[25] T. Weist, Asymptotische Eulercharakteristik von Kroneckermodulräu-
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