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Refined node polynomials via

long edge graphs

Lothar Göttsche and Benjamin Kikwai

The generating functions of the Severi degrees for sufficiently ample
line bundles on algebraic surfaces are multiplicative in the topo-
logical invariants of the surface and the line bundle. Recently new
proofs of this fact were given for toric surfaces by Block, Colley,
Kennedy and Liu, Osserman, using tropical geometry and in par-
ticular the combinatorial tool of long-edged graphs. In the first part
of this paper these results are for P2 and rational ruled surfaces
generalised to refined Severi degrees. In the second part of the pa-
per we give a number of mostly conjectural generalisations of this
result to singular surfaces, and curves with prescribed multiple
points. The formulas involve modular forms and theta functions.
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1. Introduction

The Severi degree nd,δ is the number of δ-nodal degree d curves in the
projective plane P2 through d(d+ 3)/2− δ general points. More generally

193
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for a pair (S,L) of a complex projective surface and a line bundle on S,
the Severi degree n(S,L),δ counts the number of δ-nodal curves in the lin-
ear system |L| passing through dim |L| − δ general points. In [DFI] it was
conjectured that there are polynomials nδ(d) in d, called node polynomi-
als, such that nd,δ = nδ(d), for d sufficiently large with respect to δ. In
[Göt] it was conjectured that there are universal polynomials tδ(x, y, z, w),
such that for L sufficiently ample with respect to δ, n(S,L),δ is obtained
by substituting the intersection numbers L2, LKS , K2

S , χ(OS): writing
nδ(S,L) := tδ(L

2, LKS ,K
2
S , χ(OS)) we should have nδ(S,L) = n(S,L),δ. The

conjecture of [Göt] furthermore expresses the generating functions

n(d; t) :=
∑
δ≥0

nδ(d)t
δ, n((S,L); t) :=

∑
δ≥0

nδ(S,L)t
δ

in terms of some universal power series. The conjecture says that n((S,L); t)
is multiplicative in the parameters, i.e. we can write

(1.1) n((S,L); t) = a1(t)
L2

a2(t)
LKSa3(t)

K2
Sa4(t)

χ(OS),

for some power series ai(t) ∈ Q[[t]], and thus, with b2(t) = a1(t), b1(t) =
a2(t)

−3 and b0(t) = a3(t)
9a4(t) one gets

(1.2) n(d; t) = b1(t)b1(t)
db2(t)

d2

Furthermore the conjecture gives explicit formulas for a1(t) and a4(t) in
terms of modular forms.

We will call (1.1) and (1.2) the multiplicativity of n((S,L); t) and n(d; t).
The Severi degrees of P2 and toric surfaces can be computed via tropical
geometry, by the Mikhalkin correspondence theorem [Mik]. This was used
in [FM] to prove the existence of the node polynomials nδ(d), using Floor
diagrams, which are combinatorial devices for encoding tropical curves. The
conjecture of [Göt] was proven in [Tze], [KST], using the methods of complex
geometry.

In [BCK] and [L] an alternative proof is given for the multiplicativity
of the generating function n(d; t) for the Severi degrees of P2. The starting
point of their approach is the following elementary observation. Let

Q(d; t) := log(n(d; t)) =
∑
δ≥1

Qδ(d)t
δ,

Q((S,L); t) := log(n((S,L); t) =
∑
δ≥1

Qδ(S,L)t
δ

be the formal logarithms of n(d; t) and n((S,L); t).
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Remark 1. (1) If Qδ(d) is a polynomial of degree 2 in d for all δ ≥
0, then one can write Q(d; t) = q0(t) + q1(t)d+ q2(t)d

2, and, putting
Bi(t) = exp(qi(t)), this gives

n(d; t) = exp(Q(d; t)) = B0(t)B1(t)
dB2(t)

d2

.

i.e. the multiplicativity (1.2).

(2) By the same argument, if, in dependence of (S,L), each Qδ(S,L) is
a linear combination of L2, LKS , K

2
S , χ(OS), then the multiplicativ-

ity (1.1) follows.

In [BCK] and [L] this is used to show the multiplicativity by showing that
indeed all Qδ(d) are polynomials of degree 2 in d. For this they introduce and
employ long edge graphs, a modification of floor diagrams. In [LO], using
again long edge graphs and part (2) of Remark 1, this result is extended to
a large class of toric surfaces, and a generalisation is given to toric surfaces
with rational singularities.

In [GS] and [BG] refined Severi degrees Nd,δ(y), and N (S,L),δ(y) for (pos-
sibly singular) toric surfaces are introduced via tropical geometry. These are
symmetric Laurent polynomials in a variable y, and the refined Severi de-
grees interpolate between the Severi degrees and the Welschinger numbers,
i.e. N (S,L),δ(1) = n(S,L),δ, N (S,L),δ(−1) = W (S,L),δ. The Welschinger num-
bers W d,δ count δ-nodal degree d real curves in P2 through d(d+ 3)/2− δ
real points with suitable signs, and W (S,L),δ counts real δ-nodal curves in
the linear system |L| on a real algebraic surface S through a configuration of
dim |L| − δ real points. They are closely related to the Welschinger invari-
ants, deformation invariants defined in genus 0. The Welschinger numbers
depend in general on the point configuration, but in [Mik] it is shown that,
for a so called subtropical configuration of points, they coincide with the
tropical Welschinger invariants W trop

d,δ , W trop
(S,L),δ, defined via tropical geome-

try (and these are independent of the tropical configuration of points). In
future we will assume that we are dealing with a subtropical configuration
of points.

This note applies the methods of [BCK], [L] and [LO] to partially extend
their results about Severi degrees to the refined Severi degrees and thus also
to the Welschinger numbers.

In [GS] analogues of the conjectures of [Göt] are formulated for the
refined Severi degrees.
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Conjecture 2. ([BG],[GS]) There are polynomials tδ(x, y, z, q; y) ∈
Q[x, y, z, w, y±1] such that, for a pair (S,L) of a smooth toric surface and a δ-
very ample toric line bundle, we have N (S,L),δ(y) = tδ(L

2, LKS ,K
2
S , χ(OS)).

We denote Nδ((S,L); y) := tδ(L
2, LKS ,K

2
S , χ(OS)), and Nδ(d; y) :=

Nδ((P
2, dH); y). We call the Nδ(d; y), Nδ((S,L); y) the refined node poly-

nomials of P2, respectively S. In the case of P2, P(1, 1,m) or a Hirzebruch
surface Σm, a weak form of Conjecture 2 is proven in [BG, Thm. 4.2]. We
introduce generating functions for the refined node polynomials. Let

N(d; y, t) :=
∑
δ≥0

Nδ(d; y)t
δ, N((S,L); y, t) :=

∑
δ≥0

Nδ((S,L); y)t
δ.

In [GS] it is again conjectured that N((S,L); y, t) is multiplicative.

Conjecture 3. ([GS]) There exist power series Ai ∈ Q[y±1][[t]], i = 1, 2,
3, 4, such that for all pairs (S,L) of a smooth toric surface and a toric line
bundle we have

N((S,L); y, t) = AL2

1 ALKS

2 A
K2

S

3 A
χ(OS)
4 ,

N(d; y, t) = Ad2

1 A−3d2 A9
3A4.

(1.3)

In [GS] so called refined invariants Ñ (S,L),δ(y) are introduced more gen-
erally for pairs (S,L) of a smooth projective surface and a line bundle. There
is it conjectured that,

(1) if (S,L) is a pair of a smooth toric surface and a toric line bundle,
then Ñ (S,L),δ(y) = N (S,L),δ(y) (Conjecture 29),

(2) the Ñ (S,L),δ(y) have an explicit multiplicative generating function
(Conjecture 32).

Together these two conjectures imply a more precise version of Conjecture 3.
They give a more explicit description of the Ai (see Conjecture 32, Re-
mark 33 below). In particular two of these power series are expressed in
terms of Jacobi forms.

In the first part of this note we adapt the method of long edge graphs
and the proofs of [BCK], [L], [LO] to refined Severi degrees, to prove the
multiplicativity also for theN(d; y, t) and a weaker version of multiplicativity
for rational ruled surfaces (see Theorem 26, Corollary 27). We combine this
with computer calculations of the refined Severi degrees and the Welschinger
numbers of P2 and rational ruled surfaces. This allows to determine the
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refined node polynomials of P2 and rational ruled surfaces for low values
of δ, confirming the predictions of Conjecture 32, (see Corollary 36), and
extending the results of [BG]. Together with our results on multiplicativity of
the node polynomials, this can be seen as strong evidence for Conjecture 29
and Conjecture 32.

We then extend the results and conjectures to surfaces with singularities
and to curves passing through (smooth or singular) points of S with possibly
higher multiplicities. This in particular includes a conjectural generalization
(Conjecture 42) of the results of [LO] for surfaces with rational double points
to the refined Severi degrees, a remarkably simple conjectural formula (Con-
jecture 44) for the refined count of curves passing with higher multiplicities
through A1 singularities, and conjectural formulas (Conjecture 50) in terms
of theta functions for counting curves with multiple points at smooth points
of S.

Using the Caporaso-Harris recursion Theorem 10, we check these con-
jectures for the projective plane P2, the weighted projective plane P(1, 1,m)
and rational ruled surfaces Σm for low values of δ.

These conjectures give rise to the following general conjectural principle
(see Remark 35 below): There are universal power series B1(y, q), B2(y, q),
B3(y, q) ∈ Q[y±1][[q]] and to any condition c imposed on the curves at a
point of S corresponds a power series Dc(y, q) ∈ Q[y±1][[q]], such that the
refined count of curves in a sufficiently ample line bundle |L| on S which
satisfy conditions c1, . . . , cs is

(1.4) Coeff
qL(L−KS)/2

[
B1(y, q)

K2
SB2(y, q)

LKSB3(y, q)
χ(OS)

s∏
i=1

Dci(y, q)

]
.

Conjecture 3 can be reformulated as a special case of this, with the condition
for a curve to pass through a general point corresponding to the Jacobi form
D̃G2(y, q) (see Section 4).

2. Refined Severi degrees and long edge graphs

2.1. Refined Severi degrees and Floor diagrams

In [GS], [BG] refined Severi degrees were introduced. We will briefly recall
some of the results and definitions.

A lattice polygon Δ ⊂ R2 is a polygon with vertices of integer coor-
diates. The lattice length of an edge e of Δ is #(e ∩ Z2)− 1. We denote
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by int(Δ), ∂(Δ) its interior and its boundary. To a convex lattice poly-
gon Δ one can associate a pair S(Δ), L(Δ) of a toric surface and a toric
line bundle on S(Δ). The toric surface is defined by the fan given by the
outer normal vectors of Δ. We have dimH0(S(Δ), L(Δ)) = #(Δ ∩ Z2). The
arithmetic genus of a curve in |L(Δ)| is g(Δ) = #(int(Δ) ∩ Z2). In [BG,
Def. 3.8] refined Severi degrees NΔ,δ(y) are defined for any convex lattice
polygon Δ. They are a count of tropical curves in R2 satisfying suitable
point conditions with multiplicities which are Laurent polynomials in y. We
also write NS(Δ),L(Δ),δ(y) := NΔ,δ(y). The NΔ,δ(y) interpolate between the
Severi degrees (at y = 1) and the tropical Welschinger numbers (at y = −1).

Example 4. In the following we will be concerned only with the following
lattice polygons Δc,m,d =

{
(x, y) ∈ (R≥0)2

∣∣ y ≤ d; x+my ≤ md+ c
}
, for

d ≥ 0,m ≥ 0, c ≥ 0. These are so called h-transversal lattice polygons, i.e.
all the slopes of the outer normal vectors of Δ are integers or ±∞. This
covers three different cases:

(1) d ≥ 0,m = 1, c = 0. In this case S(Δ0,1,d) = P2, L(Δ0,1,d) = dH, with
H the hyperplane bundle on P2.

(2) d ≥ 0, m ≥ 1, c = 0. In this case S(Δ0,m,d) = P(1, 1,m), L(Δ0,m,d) =
dH, with H the hyperplane bundle on P(1, 1,m) with self intersec-
tion m.

(3) d ≥ 0, m ≥ 0, c ≥ 0. In this case S(Δc,m,d) is the m-th rational ruled
surface Σm := P(O ⊕O(m)). Let F be the class of the fibre of the
ruling and let E be the class of a section with E2 = −m. We denote
H := E +mF . Then L(Δc,m,d) = cF + dH.

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � �

� � � � �

d dm c + dm

d d d

c

Δc,m,dΔ0,m,dΔ0,1,d

Figure 1: Lattice Polygons for P2,P(1, 1,m) and Σm.
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Note that in some cases the same lattice polygon corresponds to different
pairs of a surface and a line bundle, but by the above the refined Severi
degree only depends on Δ.

In [BG] it was also shown that the refined Severi degrees can for h-
transversal lattice polygons be computed in terms of Floor diagrams. Here
we will not recall the definition of the refined Severi degrees as a count
of tropical curves, but directly review them in terms of Floor diagrams
which are very closely related to long-edge graphs. We will also restrict
our attention to the lattice polygons Δc,m,d of Example 4, and thus to P2,
P(1, 1,m) and Σm. In the following we fix d,m, c and write Δ = Δc,m,d.

Definition 5. A Δ-floor diagram D consists of:

(1) A graph on a vertex set {1, . . . , d}, possibly with multiple edges, with
edges directed i→ j if i < j. Edges e carry a weight w(e) ∈ Z>0.

(2) A sequence (s1, . . . , sd) of non-negative integers such that s1 + · · ·+
sd = c.

(3) (Divergence Condition) For each vertex j of D, we have

div(j)
def
=
∑

edges e

j
e→k

w(e)−
∑

edges e

i
e→j

w(e) ≤ m+ sj .

We illustrate this and the following definitions with a Δ-floor diagram
with Δ corresponding to (Σ1, 2H + 2F ).

2

Figure 2: A Δ2,1,2-floor diagram with (s1, s2) = (1, 1).

Notation 6. For an integer n we introduce the quantum number [n]y by

[n]y =
yn/2 − y−n/2

y1/2 − y−1/2
= yn−1/2 + yn−3/2 + · · ·+ y−n+3/2 + y−n+1/2.
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Definition 7. We define the refined multiplicity mult(D, y) of a floor dia-
gram D as

mult(D, y) =
∏

edges e

([w(e)]y)
2 .

By definition mult(D, y) is a Laurent polynomial in y with positive in-
tegral coefficients.

Definition 8. A marking of a floor diagram D is defined by the following
four step process, which we illustrate using the floor diagram of Figure 2:

Step 1: For each vertex j of D create sj new indistinguishable vertices
and connect them to j with new edges directed towards j.

2

� �

Figure 3: Step 1 applied to the floor diagram of Figure 2.

Step 2: For each vertex j of D create m+ sj − div(j) new indistinguish-
able vertices and connect them to j with new edges directed away from j.
This makes the divergence of vertex j equal to m.

2

� � � � � �

Figure 4: Step 2.

Step 3: Subdivide each edge of the original floor diagram D into two
directed edges by introducing a new vertex for each edge. The new edges
inherit their weights and orientations. Denote the resulting graph D̃.

�
2 2

� � � � � �

Figure 5: Step 3.

Step 4: Linearly order the vertices of D̃ extending the order of the
vertices of the original floor diagram D such that, as before, each edge is
directed from a smaller vertex to a larger vertex.

The extended graph D̃ together with the linear order on its vertices is
called a marked floor diagram or marking of the floor diagram D.
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� � � � � � �

2 2

Figure 6: An ordering of the vertices of Figure 5.

The cogenus of a marked floor diagram D̃ is δ(D̃) := #(Δ ∩ Z2)− 1− k,
where k is the total number of vertices of D̃ (this coincides with the cogenus
of the tropical curve corresponding to D̃, see e.g. [BG2, Def. 4.2]). We count
marked floor diagrams up to equivalence. Two markings D̃1, D̃2 of a floor
diagram D are equivalent if there exists an automorphism of weighted graphs
which preserves the vertices of D and maps D̃1 to D̃2. We denote ν(D) the
number of markings D̃ of D up to equivalence. Denote by FD(Δ, δ) the set
of Δ-floor diagrams D with cogenus δ.

Theorem 9. ([BG, Thm. 5.7]) For Δ = Δc,m,d as in Example 4 and δ ≥ 0,
we have

NΔ,δ(y) =
∑

D∈FD(Δ,δ)

mult(D; y) · ν(D).

2.2. Caporaso-Harris type recursion

In [BG] also a Caporaso-Harris type recursion is proven for the refined Sev-
eri degrees of P2, P(1, 1,m) or Σm, thus showing that they coincide with
the refined Severi degrees as defined in [GS]. This recursion can be easily
programmed in Maple, and has been extensively used in the course of this
paper to find conjectural generating functions for the refined Severi degrees.
In this section let S be P2, P(1, 1,m) or Σm. We first recall the notations.

By a sequence we mean a collection α = (α1, α2, . . .) of nonnegative in-
tegers, almost all of which are zero. For two sequences α, β we define |α| =∑

i αi, Iα =
∑

i iαi, α+ β = (α1 + β1, α2 + β2, . . .), and
(
α
β

)
=
∏

i

(
αi

βi

)
. We

write α ≤ β to mean αi ≤ βi for all i. We write ek for the sequence whose
k-th element is 1 and all other ones 0. We usually omit trailing zeros. For
sequences α, β, and δ ≥ 0, let γ(L, β, δ) = dim |L| −HL+ |β| − δ.

The relative refined Severi degrees N (S,L),δ(α, β)(y) are defined in [BG,
Def. 7.2]. Here N (S,L),δ(α, β)(1) is the relative Severi degree, i.e. the num-
ber of δ-nodal curves in |L| not containing H, through γ(L, β, δ) general
points, and with αk given points of contact of order k with H, and βk
arbitrary points of contact of order k with H. By definition the relative
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refined Severi degrees contain the refined Severi degrees as special case:
N (S,L),δ(0, (LH))(y) = N (S,L),δ(y).

Theorem 10. ([BG, Thm. 7.5]) Let L be a line bundle on S and let α, β be
sequences with Iα+ Iβ = HL, and let δ ≥ 0 be an integer. If γ(L, β, δ) > 0,
then

N (S,L),δ(α, β)(y)(2.1)

=
∑

k:βk>0

[k]y ·N (S,L),δ(α+ ek, β − ek)(y)

+
∑

α′,β′,δ′

(∏
i

[i]β
′
i−βi

y

)(
α

α′

)(
β′

β

)
N (S,L−H),δ′(α′, β′)(y).

Here the second sum runs through all α′, β′, δ′ satisfying the condition

α′ ≤ α, β′ ≥ β, Iα′ + Iβ′ = H(L−H),

δ′ = δ + g(L−H)− g(L) + |β′ − β| − 1 = δ −H(L−H) + |β′ − β|.(2.2)

Initial conditions: if γ(L, β, δ) = 0 we have N (S,L),δ(α, β)(y) = 0, except
for

N (P2,H),0((1), (0))(y) = 1,

N (P(1,1,m),H),0((1), (0))(y) = 1

N (Σm,kF ),0((k), (0))(y) = 1,

for all k ≥ 0.

2.3. Long edge graphs

We review long edge graphs from [BCK], [L], [LO], working in the context
of refined invariants. They are very closely related to Floor diagrams. We
follow the presentation in [L], [LO]. The arguments used are similar to those
of [L], [LO].

Definition 11. A long edge graph G is a graph (V,E) with a weight func-
tion w : E → Z>0 satisfying the following.

(1) The vertex set is V = Z≥0, the edge set E is finite.

(2) G can have multiple edges, but no loops.
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(3) G has no short edges, i.e. no edges connecting i and i+ 1 of weight 1.

An edge connecting i and j with i < j will be denoted (i→ j) (note that
there can be more than one such edge). The length of an edge e = (i→ j)
is 	(e) := j − i.

In the following figures the labelling of the vertices is suppressed, it
always is consecutive from left to right starting with 0.

� � �

2

Figure 7: Long Edge Graph.

Definition 12. Given a long edge graph G = (V,E,w), the refined multi-
plicity of G is

M(G)(y) :=
∏
e∈E

([w(e)]y)
2.

The Severi multiplicity m(G) and the Welschinger multiplicity of G are

m(G) := M(G)(1) =
∏
e∈E

w(e)2,

r(G) := M(G)(−1) =
{
1 all w(e) are odd,

0 otherwise.

The cogenus of G is δ(G) :=
∑

e∈E(	(e)w(e)− 1).
We denote minv(G) (resp. maxv(G)) the smallest (resp. largest) vertex

i of G adjacent to an edge. The length of G is l(G) := maxv(G)−minv(G).
We denote G(k) the graph obtained by shifting all edges of G to the right

by k.

Definition 13. Let G be a long edge graph. For any j ∈ Z≥0 let λj(G) :=∑
ew(e), for e running through the edges (i→ k) with i < j ≤ k.
For β = (β0, . . . , βM ) a sequence of nonnegative integers, G is called

β-allowable if maxv(G) ≤M + 1 and βj−1 ≥ λj(G) for all j = 1, . . . ,M +
1. G is called strictly β-allowable if it is β-allowable and furthermore all
edges incident to 0 or M + 1 have weight 1. Also write λj(G) := λj(G)−
#{edges (j − 1→ j)}. G is called β-semiallowable if maxv(G) ≤M + 1 and
βj−1 ≥ λj(G) for all j.
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Definition 14. A long edge graph Γ is a template if for any vertex 1 ≤ i ≤
	(Γ)− 1 there exists at least one edge (j → k) with j < i < k. A long edge
graph G is called a shifted template if G = Γ(k) for some template k ∈ Z≥0.

Definition 15. Let G be β-allowable for β = (β0, . . . , βM ). Define a new
graph extβ(G) by adding βj−1 − λj(G) edges of weight 1 connecting j − 1
and j for all j = 1, . . . ,M + 1.

A β-extended ordering of G is a total ordering on the union of the vertices
and edges of extβ(G), such that

(1) it extends the natural ordering of the vertices 0, 1, 2, . . .,

(2) if an edge e connects vertices i and j, then e is between i and j.

Two extended orderings o, o′ of G are considered equivalent if there is an au-
tomorphism of the edges, permuting only edges connecting the same vertices
and of the same weight which sends o to o′.

Example 16. Let β = (β0, β1, β2) = (2, 3, 4). The long edge graph G in
Figure 7 is strictly β-allowable. The corresponding extβ(G) is depicted in
Figure 8.

� � � �

2

Figure 8: extβ(G).

Definition 17. For a long edge graph let Pβ(G) be the number of β-
extended orderings of G up to equivalence. Here Pβ(G) is defined to be
0, if G is not β-allowable. Furthermore let

P s
β(G) :=

{
Pβ(G) G strictly β-allowable,

0 otherwise.

Definition 18. Given β ∈ ZM+1
≥0 , define

N δ
β(y) :=

∑
G

M(G)P s
β(G), nδ

β :=
∑
G

m(G)P s
β(G),

W δ
β :=

∑
G

r(G)P s
β(G),

where the summation is over all long edge graphs G of cogenus δ.
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In this paper we will mostly consider the following sequences.

Notation 19. Let c, d,m ∈ Z≥0. We put s(c,m, d) := (e0, . . . , ed) with ei =
c+mi.

The connection to the refined Severi and tropical Welschinger numbers
is given by

Theorem 20. (1) For the refined Severi degrees of P2, P(1, 1,m) and
Σm we have Nd,δ(y) = N δ

s(0,1,d)(y), N
(P(1,1,m),dH),δ(y) = N δ

s(0,m,d)(y),

N (Σm,cF+dH),δ(y) = N δ
s(c,m,d)(y).

(2) For the Severi degrees we have nd,δ = nδ
s(0,1,d), n(P(1,1,m),dH),δ =

nδ
s(0,m,d), n

(Σm,cF+dH),δ = nδ
s(c,m,d).

(3) For the Welschinger numbers we have W d,δ=W δ
s(0,1,d), W

(P(1,1,m),dH),δ

= W δ
s(0,m,d), W

(Σm,cF+dH),δ = W δ
s(c,m,d).

Proof. The proof is similar to that of [BCK, Thm. 2.7], we include it for
completeness. It is enough to prove (1), because by Definition 18 and Defi-
nition 12 we have nδ

β = N δ
β(1) andW δ

β = N δ
β(−1), and we knowN (S,L),δ(1) =

n(S,L),δ, N (S,L),δ(−1) = W (S,L),δ for any pair (S,L) of toric surface and toric
line bundle. Furthermore it is enough to prove (1) in case S = Σm, because
by Theorem 9 we have N (P(1,1,m),dH),δ(y) = N (Σm,dH),δ(y).

Let Δ = Δc,m,d for c,m, d ∈ Z≥0. Let β := s(c,m, d). We will show that
N δ

β is equal to the right hand side of Theorem 9, thus finishing the proof.
First we show that there is a bijection between Δ-floor diagrams and strictly
β-allowable long-edge graphs which respects the cogenus, by showing that
both are in bijection to another set of graphs, which for the moment we will
call β-graphs. A β-graph is defined precisely like a long edge graph, except
that we also allow for short edges (i→ i+ 1) of weight 1, and we require
βj−1 = λj(G) for j = 1, . . . , d+ 1, where as before λj(G) =

∑
ew(e), with e

running through the edges (i→ k) with i < j ≤ k. By definition it is clear
that the map G 
→ extβ(G) defines a bijection from the strictly β-allowable
long-edge graphs to the β-graphs, and the inverse is given by removing all
short edges (i→ i+ 1) of weight 1 from a β-graph. We define the cogenus
of a β-graph by δ(G) =

∑
e(l(e)w(e)− 1), with e running over all edges of

G. It is obvious that δ(G) = δ(extβ(G)).
If D is a Δ-floor diagram, we first perform steps (1) and (2) in Defini-

tion 8. Then we identify all vertices we have created in step (1) to a vertex 0,
and we identify all vertices we have created in step (2) to a vertex d+ 1, in
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addition we add vertices Z≥d+2 to the graph obtained this way. It is easy to
see that in this way we get a β-graph G(D). Clearly the map D 
→ G(D) is
injective, as all the steps are injective, and by definition is is also clear that
it is surjective. If D̃ is a marking of D, then we see that the total number of
vertices of D̃ is equal to d+#E where E is the set of edges of G(D). Defin-
ing M(F ) :=

∏
e[w(e)]

2
y with e running through the edges of the β-graph F ,

Definitions 12 and 7 imply mult(D) = M(G(D)) for a floor diagram D and
M(G) = M(extβ(G)) for a long edge graph G. From the definitions we also
see that

δ(G(D)) =
∑
e∈E

w(e)l(e)−#E =

d∑
i=1

λi(G(D))−#E

= #(Δ ∩ Z2)− d−#E − 1 = δ(D̃).

Note that the markings of the Δ-floor diagram D are in bijection with the
number of diagrams obtained by putting one vertex on every edge of G(D)
and ordering all the vertices of the new diagram, preserving the order of the
vertices of G(D), and such that the vertex introduced on an edge (i→ j) lies
between i and j. But this number clearly is the same as the number of linear
orders on the union of the vertices and edges of G(D), again preserving the
order of the vertices and and such that the edge (i→ j) lies between i and
j. By definition this is just the number of β-extended orderings of the long
edge graph corresponding to D. �

Remark 21. More generally the methods of [BG] will show (using also the
notations from [LO]) the following refined version of [LO, Thm. 2.12] (see
[BG, Rem. 5.8]).

(1) For any δ ≥ 0, any h-transversal lattice polygon the refined Severi
degree is

NΔ,δ(y) =
∑
(l,r)

N
δ−δ(l,r)
β(dt,r−l)(y).

Here the summation is over all reorderings l and r of the multisets
of left and right directions of Δ, satisfying δ(l, r) ≤ δ, β(dt, r− l) ∈
ZM+1
≥0 .

(2) With the same index of summation we have

nΔ,δ =
∑
(l,r)

n
δ−δ(l,r)
β(dt,r−l), WΔ,δ =

∑
(l,r)

W
δ−δ(l,r)
β(dt,r−l),
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Following [L],[LO], we consider logarithmic versions of Pβ(G) and P s
β(G),

Definition 22. A partition of a long edge graph G = (V,E,w) is a tuple
(G1, . . . , Gn) of nonempty long edge graphs such that the disjoint union of
the (weighted) edge sets of G1, . . . , Gn is the (weighted) edge set of G.

For any long edge graph define

Φβ(G) :=
∑
n≥1

(−1)n+1

n

∑
G1,...,Gn

n∏
j=1

Pβ(Gj),

Φs
β(G) :=

∑
n≥1

(−1)n+1

n

∑
G1,...,Gn

n∏
j=1

P s
β(Gj),

where both summations are over the partitions of G.

Let

(2.3)

N (β, y, t) := 1 +
∑
δ>0

N δ
β(y)t

δ,

Q(β, y, t) := log(N (β, y, t)) =
∑
δ>0

Qδ
β(y)t

δ.

Then the same arguments as in [LO] show that

(2.4) Qδ
β(y) =

∑
G

M(G)Φs
β(G),

where the summation is again over all long-edge graphs of cogenus δ.
Let (S,L) = (S(Δ), L(Δ)) be a pair of a toric surface and a toric line

bundle, associated to a lattice polygon. Then analogously to (2.3) we set

N ((S,L); y, t) := 1 +
∑
δ>0

N (S,L),δ(y)tδ,

Q((S,L); y, t) := log(N ((S,L); y, t)) =
∑
δ>0

Q(S,L),δ(y)tδ.

Clearly by Theorem 20 we have

Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y), Q(Σm,cF+dH),δ(y) = Qδ

s(c,m,d)(y).

Definition 23. Let G be a long edge graph. Let ε0(G) := 1, if all edges
adjacent to minv(G) have weight 1, and ε0(G) := 0 otherwise. Similarly let
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ε1(G) := 1, if all edges adjacent to maxv(G) have weight 1, and ε1(G) := 0
otherwise.

By [L, Lem. 2.15] we have Φs
β(G) = 0, if G is not a shifted template. On

the other hand [L, Cor. 3.5] says that for a template Γ we have

Φs
β(Γ(k)) =

{
Φβ(Γ(k)) 1− ε0(Γ) ≤ k ≤M + ε1(Γ)− 	(Γ)

0 otherwise.

Together with (2.4), this gives the following refined version of [LO, Cor. 3.6].

Corollary 24. Let β = (β0, . . . , βM ) ∈ ZM+1
≥0 . Then

Qδ
β(y) =

∑
Γ

M(Γ)

M−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φβ(Γ(k)),

where the first sum runs over all templates Γ of cogenus δ.

Theorem 25. ([LO, Thm. 3.8]) Let G be a long edge graph. There exists
a linear multivariate function Φ(G, β) in β, such that for any β such that
G is β-semiallowable, we have Φβ(G) = Φ(G, β). Furthermore writing β =
(β0, . . . , βM ) ∈ ZM+1

≥0 , the linear function Φ(G, β) is a linear combination of
the βi with minv(G) ≤ i ≤ maxv(G).

3. Multiplicativity theorems

In this section we will show that the generating functions for the refined
Severi degrees on weighted projective spaces and rational ruled surfaces are
multiplicative. Following [L] and [BCK], this is done by showing linearity of
the logarithm of the generating function, and using Remark 1.

Theorem 26.

(1) Let c ≥ δ and d ≥ δ, then Q(Σm,cF+dH),δ(y) is a Q[y±1]-linear combi-
nation of 1, c, d, cd, m, md, md2.

(2) In particular if c ≥ δ, d ≥ δ, then Q(P1×P1,cF+dH),δ(y) is a Q[y±1]-
linear combination of 1, c+ d, cd.

(3) Fix m ≥ 1, c ≥ 0. If d ≥ δ then Q(Σm,dH+cF ),δ(y) is a polynomial of
degree 2 in d.
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(4) Fix m ≥ 1. If d ≥ δ, then Q(P(1,1,m),dH),δ(y) is a polynomial of degree
2 in d. In particular for d ≥ δ, Qd,δ(y) is a polynomial of degree 2 in
d.

(5) If d,m ≥ δ, then Q(P(1,1,m),dH),δ(y) is a Q[y±1]-linear combination of
1, m, d, dm, d2m.

Proof. (1) By Corollary 24 and Theorem 20, we have

Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y)(3.1)

=
∑
Γ

M(Γ)

d−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ.
Let Γ now be a template of cogenus δ, and let k be an integer in

[1− ε0(Γ), d− 	(Γ) + ε1(Γ)]. Then by definition we get Φs(c,m,d)(Γ(k)) =

Φs(c+km,m,�(Γ)−1)(Γ). On the other hand by [LO, Lem. 4.2] we have λi(Γ) ≤ δ

for all i. By our assumption we have c ≥ δ ≥ λi(Γ), thus Γ is s(c+ km,m,
	(Γ)− 1)-semiallowable. Therefore Φs(c+km,m,�(Γ)−1)(Γ) is a linear function
in the c+ lm, k ≤ l ≤ k + 	(Γ)− 1, thus it is linear function in c, m and km
of the form α+ β(c+ km) + γm, with α, β, γ ∈ Q.

LetM1 := d− 	(Γ) + ε1(Γ) + ε0(Γ),M2 := d− 	(Γ) + ε1(Γ)− ε0(Γ) + 1.
It is easy to see (and was already used in [L]) that for a template Γ of cogenus
δ we have 	(Γ)− ε1(Γ) ≤ δ, so, by our assumption d ≥ δ, we have M1 ≥ 0.
Recall that for integers b ≥ a− 1 we have the trivial identity

b∑
k=a

k =
(a+ b)(b− a+ 1)

2
.

Thus we get

d−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c,m,d)(Γ(k)) =

d−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

(
α+ β(c+ km) + γm

)
= M1(α+ βc+ γm) +

M1M2

2
βm,

which is a Q-linear combination of 1, c, d, cd,m,md,md2. Thus the claim
follows by (3.1).
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(2) By (1) Q(P1×P1,cF+dH),δ(y) is a linear combination of 1, c, d, cd. It is
clearly symmetric under exchange of c and d, and thus a linear combination
of 1, c+ d, cd.

(3) By Corollary 24 and Theorem 20,

Q(Σm,cF+dH),δ(y) = Qδ
s(c,m,d)(y)(3.2)

=
∑
Γ

M(Γ)

d−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ.
Let Γ be a template of cogenus δ, and let k be an integer in [1− ε0(Γ), d−

	(Γ)+ ε1(Γ)]. Then by definition we get Φs(c,m,d)(Γ(k))=Φs(c+km,m,�(Γ)−1)(Γ).
For a rational number a we denote by �a� the smallest integer bigger or equal
to a. We put

kmin := max

(
1,max

(⌈
λi(Γ)

m

⌉
− i+ 1

∣∣∣∣ i = 1, . . . , 	(Γ)

))
.

For k ≥ kmin we have that (k + i− 1)m+ c ≥ λi(Γ) for all i, thus Γ is
s(c+ km,m, 	(Γ)− 1)-semiallowable. Thus for k ≥ kmin, we have that
Φs(c+km,m,�(Γ)−1)(Γ) is a linear function in the lm, k ≤ l ≤ k + 	(Γ)− 1, thus
it is a linear function α+ βkm+ γm, with α, β, γ ∈ Q.

By [LO, Lem. 4.2], we have λi(Γ) ≤ δ − 	(Γ) + i+ ε1(Γ). As λi(Γ) ≥ 0,
this implies ⌈

λi(Γ)

m

⌉
− i+ 1 ≤ δ + ε1(Γ)− 	(Γ) + 1

for all i. By the inequality 	(Γ)− ε1(Γ) ≤ δ, already used in part (1), this
implies kmin ≤ δ + ε1(Γ)− 	(Γ) + 1. By our assumption d ≥ δ, we have d−
	(Γ) + ε1(Γ)− kmin + 1 ≥ 0. Therefore the same argument as in (1) shows
that the sum

σ(Γ, kmin) :=

d−�(Γ)+ε1(Γ)∑
k=kmin

Φs(c,m,d)(Γ(k))

is a Q-linear combination of 1, d, m, md, md2. If we fix m, it is a linear
combination of 1, d, d2. But

d−�(Γ)+ε1(Γ)∑
k=1−ε0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ) = σ(Γ, kmin) +

kmin−1∑
k=1−ε0(Γ)

Φs(c+km,m,l(Γ)−1)(Γ).



Refined node polynomials via long edge graphs 211

The second sum is for fixed m just a finite number, thus the claim follows.
(4) As Q(P(1,1,m),dH),δ(y) = Q(Σm,dH),δ(y), (4) is a special case of (3).
(5) By Corollary 24 and Theorem 20,

(3.3)

Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑
Γ

M(Γ)

d−�(Γ)+ε1(Γ)∑
k=1

Φs(0,m,d)(Γ(k)),

with Γ running through all templates of cogenus δ. According to Corol-
lary 24, the inner sum starts at k = 1− ε0(Γ). But Γ is a template and
therefore not s(0,m, d)-semiallowable. Thus (in case ε0(Γ) = 1), the contri-
bution for k = 0 vanishes.

We have Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y), which is computed by the case

c = 0 of (3.3). If m ≥ δ, then kmin = 1 for all templates Γ of cogenus δ, thus

Q(P(1,1,m),dH),δ(y) = Qδ
s(0,m,d)(y) =

∑
Γ

M(Γ)σ(Γ, 1),

with Γ again running through the templates of cogenus δ. By (3) this is a
Q[y±1]-linear combination of 1, d, m, md, md2. �

By Remark 1 this result easily translates into multiplicativity results for
the refined node polynomials of P2, Σm and P(1, 1,m).

Corollary 27. (1) There are power series S0, . . . , S6 ∈ Q[y±1][[t]], such
that

N((Σm, cF + dH); y, t) = S0S
c
1S

d
2S

cd
3 Sm

4 Smd
5 Smd2

6

(2) There are power series Pm,0, Pm,1, Pm,2 ∈ Q[y±1][[t]], such that for all
m ≥ 1

N((P(1, 1,m), dH); y, t) = Pm,0P
d
m,1P

d2

m,2.

In particular N(d; y, t) = P1,0P
d
1,1P

d2

1,2.

Remark 28. This shows (1.3) for P2, but falls short of a proof for ratio-
nal ruled surfaces. We have (dH)2 = d2, dHKP2 = −3d, on P2 and (dH +
cF )2 = md2 + 2dc and (dH + cF )KΣm

= −md− 2c− 2d on Σm. Thus, for
proving (1.3) for both P2 and rational ruled surfaces, we would need to show
in addition P1,2 = S2

3 = S6, and P 3
1,1 = S5 = S2

1 = S2
2 .
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4. Relation to the conjectural generating functions of the
refined invariants

In this section we want to state the explicit version of Conjecture 3 from [GS],
and prove some partial results towards this conjecture for P2 and rational
ruled surfaces.

In [GS] refined invariants Ñ (S,L),δ(y) of pairs (S,L) of a smooth projec-
tive surface and a line bundle on S were introduced using complex geometry,
using relative Hilbert schemes of points. We write Ñd,δ(y) := Ñ (P2,dH),δ(y).
The Ñ (S,L),δ(y) are symmetric Laurent polynomials in a variable y, whose
coefficients can be expressed universally (independent of S and L) as polyno-
mials in the four intersection numbers L2, LKS K2

S and c2(S) on the surface.
For toric surfaces S and sufficiently ample line bundles L the refined invari-
ants Ñ (S,L),δ(y) and refined Severi degrees N (S,L),δ(y) are conjectured to
agree ([GS, Conj. 80]).

Conjecture 29. Let (S,L) be a pair of a smooth toric surface and a line
bundle on L.

(1) If L is δ-very ample on S, then Ñ (S,L),δ(y) = N (S,L),δ(y).

(2) Ñd,δ(y) = Nd,δ(y) for δ ≤ 2d− 2.

(3) Ñ (P1×P1,dH+cF ),δ(y) = N (P1×P1,dH+cF ),δ(y) for δ ≤ min(2d, 2c).

(4) Ñ (Σm,dH+cF ),δ(y) = N (Σm,dH+cF ),δ(y) for δ ≤ min(2d, c).

This conjecture was proven in [BG, Thm. 4.3], for P2 for δ ≤ 10, for
P1 × P1 for δ ≤ 6 and for Σm for δ ≤ 2. Corollary 38 below improves these
bounds.

Remark 30. Note that by definition, Conjecture 29 implies Conjecture 2.
In fact, assuming Conjecture 29, we obtain Nδ((S,L); y) = Ñ (S,L),δ(y) for
any pair of a toric surface and a toric line bundle (S,L). In particular
Nδ(d; y) = Ñd,δ(y) for all d, δ, andNδ((Σm, cF + dH); y) = Ñ (Σm,dH+cF ),δ(y)
for all m, d, c, δ.

In [GS, Conj. 67] also a multiplicative generating function for the refined
invariants Ñ (S,L),δ(y) is conjectured. Together with Conjecture 29 it gives a
conjectural generating function for the Nδ((S,L); y), which we now state.

Notation 31. We start by introducing some notations about quasimodular
forms and theta functions, and reviewing some standard facts, which we
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will use throughout the paper. Modular forms depend on a variable τ in
the complex upper half plane, and have a Fourier development in terms
of q := e2πiτ . We will write them as functions f(q), because we are only
interested in the coefficients of their Fourier development. Similarly theta
functions will be written as functions g(y, q), for y = e2πiz, with z ∈ C and
q = e2πiτ . The Eisenstein series

G2k(q) = −B2k

4k
+
∑
n>0

∑
d|n

d2k−1qk

are for 2k ≥ 4 modular forms of weight 2k on SL2(Z), whereas G2(q) is only
a quasimodular form of weight 2 on SL2(Z). The Dirichlet η-function and
the discriminant Δ(q) are

η(q) := q1/24
∏
n>0

(1− qn), Δ(q) = η(q)24 = q
∏
n>0

(1− qn)24.

The discriminant is a cusp form of weight 12 on SL2(Z). The operator
D := q ∂

∂q sends (quasi)modular forms of weight 2k to quasimodular forms
of weight 2k + 2. We denote two of the standard theta functions by

θ(y) = θ(y, q) :=
∑
n∈Z

(−1)nq 1

2
(n+ 1

2
)2yn+

1

2

= q
1

8 (y
1

2 − y−
1

2 )
∏
n>0

(1− qn)(1− qny)(1− qn/y),

θ2(y, q) :=
∑
n∈Z

(−1)nqn2/2yn,

and the theta zero value θ2(q
2) := θ2(0, q

2) =
∑

n∈Z(−1)mqn
2

= η(q)2

η(q2) . Let

Δ̃(y, q) :=
η(q)18θ(y)2

y − 2 + y−1
= q

∞∏
n=1

(1− qn)20(1− yqn)2(1− y−1qn)2,

D̃G2(y, q) :=

∞∑
m=1

∑
d|m

m

d
[d]2yq

m = q + (y + 4 + y−1)q2

+ (y2 + 2y + 6 + 2y−1 + y−2)q3 +O(q4),

DD̃G2(y, q) =

∞∑
m=1

∑
d|m

m2

d
[d]2yq

m = q + (2y + 8 + 2y−1)q2 +O(q3).
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Conjecture 32. ([GS]) There exist universal power series B1(y, q), B2(y, q)
in Q[y, y−1]�q�, such that for all pairs (S,L) of a smooth projective surface
S and a line bundle L on S, we have

(4.1)
∑
δ≥0

Nδ((S,L); y)(D̃G2)
δ =

(D̃G2/q)
χ(L)B1(y, q)

K2
SB2(y, q)

LKS

(Δ̃(y, q) ·DD̃G2(y, q)/q2)χ(OS)/2

Conjecture 32 has been proven for surfaces S with numerically trivial
canonical bundle in [GS2, Cor. 9].

We give two equivalent reformulations. D̃G2 as a power series in q starts
with q, let

g(t) := g(y, t) = t+ ((−y2 − 4y − 1)/y)t2

+ ((y4 + 14y3 + 30y2 + 14y + 1)/y2)t3 +O(t4)

be its compositional inverse. Write g′(t) := ∂g
∂t .

Remark 33. Let R ∈ Q[y±1][[q]] be a formal power series. For polynomials
Mδ((S,L); y) ∈ Q[y±1] the following three formulas are equivalent:

(1)
∑
δ≥0

Mδ((S,L); y)(D̃G2)
δ =

(D̃G2/q)
χ(L)B1(y, q)

K2
SB2(y, q)

LKS

(Δ̃(y, q) ·DD̃G2(y, q)/q2)χ(OS)/2
R(y, q)

∑
δ≥0

Mδ((S,L); y)t
δ =

(t/g(t))χ(L)B1(y, g(t))
K2

S

B2(y, g(t))−LKS
(2)

(
g(t)g′(t)
Δ̃(y, g(t))

)χ(OS)/2

R(y, g(t)),

(3) For all δ ≥ 0

Mδ((S,L); y)

= Coeff
q(L

2−LKS)/2

[
D̃G2(y, q)

χ(L)−1−δB1(y, q)
K2

SB2(y, q)
LKSDD̃G2(y, q)

(Δ̃(y, q) ·DD̃G2(y, q))χ(OS)/2
R(y, q)

]
.

Proof. (2) is equivalent to (1) by noting thatDD̃G2(y, g(t)) =
g(t)
g′(t)

∂D̃G2(y,g(t))
∂t

= g(t)
g′(t) .



Refined node polynomials via long edge graphs 215

Let A be a commutative ring, and let f ∈ A[[q]], h ∈ q + q2A[[q]]. Then
we get by the residue formula that

f(q) =

∞∑
l=0

h(q)l Coeff
q0

[
f(q)Dh(q)

h(q)l+1

]
.

Applying this with h(q) = D̃G2, and using the equality χ(L) = 1
2(L

2 −
LKS) + χ(OS), shows that (1) is equivalent to (3). �

Remark 34. Now let (S,L) be a pair of a smooth toric surface and a
toric line bundle. Note that by Remark 30, the conjectures Conjecture 29
Conjecture 32 imply (4.1) with on the left hand side the refined invariants
Ñ (S,L),δ(y) replaced by the refined node polynomials Nδ((S,L); y). In par-
ticular part (2) of Remark 33 shows that Conjecture 32 gives a more explicit
version of Conjecture 3: using χ(L) = L(L−KX)/2 + χ(OX) it gives

A1 =
( t

g(t)

)1/2
, A4 =

( t2g′(t)
g(t)Δ̃(y, g(t))

)1/2
.

We can therefore view our multiplicativity results (Corollary 27) as evi-
dence for Conjecture 32. Conversely, while the results of [GS2] do not apply
to toric surfaces, it might be possible to prove Conjecture 32 using e.g. the
geometry of Hilbert schemes, giving an alternative approach to multiplica-
tivity for the node polynomials.

Remark 35. We will in the future mostly use the formula (3) of Remark 33.
Note that this also has the following interpretation. Write

A(S,L)(y, q) :=
B1(y, q)

K2
SB2(y, q)

LKSDD̃G2(y, q)

(Δ̃(y, q) ·DD̃G2(y, q))χ(OS)/2
.

Then, for L sufficiently ample, the refined count of curves in |L| with only
nodes as singularities satisfying k general point conditions is

Coeff
qL(L−KS)/2

[D̃G2(y, q)
kA(S,L)(y, q)].

Thus it seems natural to expect the following general principle: To each
condition c that we can impose at points of S to curves C in |L| (e.g. C
passing through a point with given multiplicity), or just to points in S, (e.g.
S having a singular point) there corresponds a power series Lc ∈ Q[y±1][[q]],
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such that, for L sufficiently ample, the refined count of curves in |L| on S
satisfying conditions c1, . . . , cn is CoeffqL(L−KS)/2 [A(S,L)(y, q)

∏n
i=1 Lci ]. Ac-

cording to this principle the power series corresponding to passing through
a point of S would be D̃G2. In the second half of this paper we will give a
number of instances of this principle.

By Remark 30 for P2 and rational ruled surfaces the conjecture says in
particular

(4.2) Nδ(d; y) = Coeff
q(d2+3d)/2

⎡⎣D̃G2(y, q)
d(d+3)/2−δ B1(y, q)

9

B2(y, q)3d

(
DD̃G2(y, q)

Δ̃(y, q)

)1/2
⎤⎦

(4.3) Nδ((Σm, cF + dH); y) =

Coeff
q(d+1)(c+1+md/2)−1

⎡⎣D̃G2(y, q)
(d+1)(c+1+md/2)−1−δB1(y, q)

8

B2(y, q)2c+(m+2)d

(
DD̃G2(y, q)

Δ̃(y, q)

)1/2
⎤⎦

With the the power series B1(y, q), B2(y, q) given in [GS, Conj. 67] modulo
q11 and in the arXiv version of this paper modulo q18, we have the following
corollary.

Corollary 36. (1) The formula (4.2) and Conjecture 29(2) are true for
δ ≤ 17.

(2) In case m = 0 the formula (4.3) and Conjecture 29(2) is true for
δ ≤ 12.

(3) The formula (4.3) and Conjecture 29(3) are true for all m and δ ≤ 8.

Proof. (1). Using the Caporaso-Harris recursion, we computed the Nd,δ(y)
for d ≤ 19, δ ≤ 19. This also computes the Qd,δ for d ≤ 19, δ ≤ 19. Part (4)
of Theorem 26 gives Qd,δ = Qδ(d) for d ≥ δ. As Qδ(d; y) is a polynomial
of degree 2 in d, the computation above determines Qδ(d; y) and thus the
Nδ(y; d) for δ ≤ 17, giving the claim.

(2) and (3). Using again the Caporaso-Harris recursion we computed the
N (P1×P1,cF+dH),δ(y) for c, d≤13, δ≤13. Again this gives the Q(P1×P1,cF+dH),δ

for c, d≤13, δ≤13. By part (2) of Theorem 26 we have that Q(P1×P1,cF+dH),δ

= Qδ((P
1 × P1, cF + dH); y) for c, d ≥ δ. As Qδ((P

1 × P1, cF + dH); y) is
a polynomial of bidegree (1, 1) in c, d, the computation above determines
Qδ((P

1 × P1, cF + dH); y) and thus the Nδ((Σ0, cF + dH); y) for δ ≤ 12. As
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Qδ((Σm, cF + dH); y) is a linear combination of 1, c, cd, m, md, md2, in or-
der to prove (2) we only need to determine the coefficients ofm,md,md2. For
this we can restrict to the casem = 1, We computedN (Σ1,cF+dH),δ(y) for c ≤
9, d ≤ 10. This determines the coefficients of m, md, md2 of Qδ((Σm, cF +
dH); y) for δ ≤ 8, giving the claim. �

As noted above, the refined Severi degrees N (S,L),δ(y) specialize at y =
−1 to the tropical Welschinger numbers W (S,L),δ. We specialize the above
conjectures of [GS] to the tropical Welschinger numbers. As the Caporaso-
Harris recursion for the tropical Welschinger numbers is computationally
much more efficient than that for the refined Severi degrees, the conjectures
for the tropical Welschinger numbers can be proven for much higher δ. We
denote Wδ((S,L)) := Nδ((S,L);−1), Wδ(d) := Nδ(d;−1).

Let η(q) :=q1/24
∏

n>0(1− qn) the Dirichlet eta function, G2(q) :=− 1
24 +∑

n>0

∑
d|n dq

n be the Eisenstein series, and write

G2(q) := D̃G2(−1, q) = G2(q)−G2(q
2) =

∑
n>0

⎛⎝ ∑
d|n, d odd

n

d

⎞⎠ qn.

We note that D̃G2(−1, q) = G2(q), and Δ̃(−1, q) = η(q)16η(q2)4. We write
B1(q) := B1(−1, q), B2(q) := B2(−1, q). Conjecture 29 specializes to the fol-
lowing (see also [GS]).

Conjecture 37. For the stable Welschinger numbers we have

Wδ(d) = Coeff
q(d2+3d)/2

[
G2(q)

d(d+3)/2−δB1(q)
9(DG2(q))

1/2

B2(q)3dη(q)8η(q2)2

]
,(4.4)

Wδ((Σm, cF + dH))(4.5)

= Coeff
q((d+1)(c+1+md/2)−1

[
G2(q)

(d+1)(c+1+md/2)−1−δB1(q)
8(DG2(q))

1/2

B2(q)2c+(m+2)dη(q)8η(q2)2

]
With B1(q), B2(q) given below modulo q31 we have the following corol-

lary.

Corollary 38. (1) The formula (4.4) is true for δ ≤ 30. Furthermore
for δ ≤ 30 and d ≥ δ/3 + 1 we have W d,δ = Wδ(d).

(2) On P1 × P1 the formula (4.5) is true for δ ≤ 20. Furthermore for
δ ≤ 20 and δ ≤ min(20, 3c, 3d), we have W (P1×P1,cF+dH),δ = Wδ(P1 ×
P1, cF + dH).
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(3) For m > 0, the formula (4.5) is true for δ ≤ 11. Furthermore for δ ≤
min(11, 3d, c) we have W (Σm,cF+dH),δ = Wδ(Σm, cF + dH).

Proof. (1) Using the Caporaso-Harris recursion, we computed to the W d,δ

for d ≤ 32, δ ≤ 33. This also computes the Qd,δ(−1) for d ≤ 32, δ ≤ 33.
The same argument as in the proof of Corollary 36 shows (1). Using again
the Caporaso-Harris recursion we computed the W (P1×P1,cF+dH),δ for c, d ≤
21, δ ≤ 22, and computed W (Σ1,cF+dH),δ(y) for c, d, δ ≤ 13. The same argu-
ment as in the proof of Corollary 36 gives (2) and (3). �

B1(q) = 1− q − q2 − q3 + 3q4 + q5 − 22q6 + 67q7 − 42q8 − 319q9

+ 1207q10 − 1409q11 − 3916q12 + 20871q13 − 34984q14 − 37195q15

+ 343984q16 − 760804q17 − 81881q18 + 5390386q19 − 15355174q20

+ 8697631q21 + 79048885q22 − 293748773q23 + 329255395q24

+ 1041894580q25 − 5367429980q26 + 8780479642q27

+ 10991380947q28 − 93690763368q29 + 203324385877q30 +O(q31),

B2(q) = 1 + q + 2q2 − q3 + 4q4 + 2q5 − 11q6 + 24q7 + 4q8 − 122q9

+ 313q10 − 162q11 − 1314q12 + 4532q13 − 4746q14 − 13943q15

+ 68000q16 − 105786q17 − 124968q18 + 1025182q19 − 2139668q20

− 443505q21 + 15157596q22 − 41007212q23 + 19514894q24

+ 214218876q25 − 755331892q26 + 780656576q27 + 2776494907q28

− 13420432234q29 + 20749875130q30 +O(q31).

5. Correction term for singularities

In this section we want to extend the above results and conjectures to sur-
faces with singularities. This section is partially motivated by the paper
[LO], where this question is studied for the non-refined invariants for toric
surfaces with rational double points. We have conjectured above and given
evidence that there exist generating functions for the refined node poly-

nomials on smooth toric surfaces S, of the form AL2

1 ALKS

2 A
K2

S

3 A
χ(OS)
4 for

universal power series Ai ∈ Q[y±1][[q]]. It seems natural to conjecture that
this extends to singular surfaces in the following form: for every analytic type
of singularities c there is a universal power series Fc(y, q) and the generating

function for a singular surface S is AL2

1 ALKS

2 A
K2

S

3 A
χ(OS)
4

∏
c F

nc
c , where nc

is the number of singularities of S of type c. For the case of toric surfaces
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given by h-transversal lattice polygons with only rational double points this
problem has been solved in [LO] for the (non-refined) Severi degrees.

We start out by formulating a conjecture for general singular toric sur-
faces, and then give more precise results for specific singularities. For ratio-
nal double points we conjecture that somewhat surprisingly the power series
Fc(y, q) is independent of y. In particular this says that the correction factor
for An-singularities, determined in [LO] for the Severi degrees, is the same
for the Severi degrees and the tropical Welschinger invariants.

Now let S be a normal toric surface. We want to formulate a conjecture
about the refined Severi degrees N (S,L),δ(y). Note that the curves counted
in N (S,L),δ(y) are not required to pass through any of the singular points of
S. One can also reformulate the same conjecture in terms of the minimal
resolution of S, i.e. a resolution π : Ŝ → S, which contains no (−1) curves
in the fibres of π.

Conjecture 39. For every analytic type of singularities c there are formal
power series Fc ∈ Q[y±1][[q]], F̂c ∈ Q[y±1][[q]] such that the following hold.
Let (S,L) be a pair of a projective toric surface and a toric line bundle on S.
Let Ŝ be a minimal toric resolution of S and denote by L also the pullback

of L to Ŝ. Define N (Ŝ,L),δ(y) := N (S,L),δ(y). If L is δ-very ample on S, then

(5.1) N (S,L),δ(y) =

Coeff
qL(L−KS)/2

⎡⎣D̃G2(y, q)
χ(L)−1−δB1(y, q)

K2
S

B2(y, q)−LKS

(
DD̃G2(y, q)

Δ̃(y, q)

)1/2∏
c

Fc(y, q)
nc

⎤⎦ ,
(5.2) N (Ŝ,L),δ(y) =

Coeff
q
L(L−K

̂S
)/2

⎡⎣D̃G2(y, q)
χ(L)−1−δB1(y, q)

K2
̂S

B2(y, q)−LK̂S

(
DD̃G2(y, q)

Δ̃(y, q)

)1/2∏
c

F̂c(y, q)
nc

⎤⎦ .
Here c runs through the analytic types of singularities of S, and nc is the
number of singularities of S of type c.

We can see that the two formulas formulas (5.1), (5.2) are equivalent.
Note that LKS = LKŜ . On the other hand it is easy to see that K2

Ŝ
= K2

S −∑
c ncec where ec is a rational number depending only on the singularity

type c. Thus the two formulas are equivalent, via the identification

F̂c(y, q) = Fc(y, q)B1(y, q)
ec .
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It turns out that the power series F̂c(y, q) are usually simpler, so we will
restrict our attention to them. Note that for a rational double point c we
have ec = 0 and thus Fc = F̂c.

We give a slightly more precise version of the conjecture for a weighted
projective space P(1, 1,m) and its minimal resolution Σm, and prove some
special cases of it. In this case the exceptional divisor is the section E with
self intersection −m. The weighted projective space P(1, 1,m) has one sin-
gularity of type 1

m(1, 1), i.e. the cyclic quotient of C2 by the m-th roots of
unity μm acting by ε(x, y) = (εx, εy). We write cm for this singularity. It is
elementary to see that

KΣm
= −2H + (m− 2)F = −m+ 2

m
H − m− 2

m
E,

KP(1,1,m) = −
m+ 2

m
H, ecm =

(m− 2)2

m
, K2

Σm
= 8,

− dHKΣm
= d(m+ 2), χ(Σm, dH) = (md+ 2)(d+ 1)/2.

Conjecture 40. If δ ≤ 2d− 1, then

N (Σm,dH),δ(y) = Coeff
q

m
2

d2+(m
2

+1)d

[
D̃G2(y, q)

m

2
d2+(m

2
+1)d−δB1(y, q)

8

B2(y, q)d(m+2)
(5.3) (

DD̃G2(y, q)

Δ̃(y, q)

)1/2

F̂cm(y, q)

]
.

Furthermore we have for m ≥ 2

F̂cm = 1−mq + ((m− 2)y + (m2/2 + 3m/2− 5) + (m− 2)y−1)q2

− ((m2 + 5m− 14)y + (m3 + 9m2 + 44m− 132)/6

+ (m2 + 5m− 14)y−1
)
q3 +O(q4),

and

F̂c2 =
∑
n∈Z

(−1)nqn2

= 1− 2q + 2q4 − 2q9 + · · · ,

F̂c3 = 1− 3q + (y + 4 + y−1)q2 − (10y + 18 + 10y−1)q3

+ ((6y2 + 70y + 115 + 70y−1 + 6y−2)q4

− ((y3 + 94y2 + 473y + 721y + 473y−1 + 94y−2 + y−3)q5 +O(q6)

F̂c4 = 1− 4q + (2y + 9 + 2y−1)q2 − (22y + 42 + 22y−1)q3

+ ((14y2 + 164y + 273 + 164y−1 + 14y−2)q4 +O(q5).
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Proposition 41. Let δ2 = 8, δ3 = 5, δ4 = 4, δm = 3 for m ≥ 5. Then (5.3)
is correct for m ≥ 2 and δ ≤ min(δm, d).

Proof. Using the Caporaso-Harris recursion we computed N (Σm,dH),δ for 2 ≤
m ≤ 4, δ ≤ δm and d ≤ dm with d2 = 10, d3 = 7, d4 = 6. We find that in
this range (5.3) holds for δ ≤ min(2d− 1, δm). By part (3) of Theorem 26
we have that Q(Σm,dH),δ is a polynomial of degree 2 in d for d ≥ δ. By the
computation we know this polynomial in the following cases: (m = 2, δ ≤ 8),
(m = 3, δ ≤ 5), (m = 4, δ ≤ 4). This shows the result form = 2, 3, 4. Finally
by part (5) of Theorem 26 we have that Q(Σm,dH),δ(y) is for d,m ≥ δ a
polynomial in d and m of degree 2 in d and 1 in m. By the above we know
this polynomial as a polynomial in d for δ = 0, 1, 2, 3 and m = 3, 4. This
determines it and thus also Q(Σm,dH),δ(y) and therefore also N (Σm,dH),δ(y),
for δ = 0, 1, 2, 3 and d,m ≥ δ. The result follows. �

The non-refined Severi degrees for toric surfaces with only rational dou-
ble points given by h transversal lattice polygons have been studied in [LO].
The only rational double points which can occur in this case are An singu-
larities. For such surfaces they prove the analogue of Conjecture 39 for y = 1
with precise bounds. Furthermore they show

Fan
(1, q) =

η(q)n+1

η(qn+1)
=
∏
k>0

(1− qk)n+1

1− q(n+1)k
,

where we denote Fan
(y, q) the power series Fc(y, q) for c an An singularity.

We conjecture that the same result holds also for the refined Severi degrees
with the Fan

(y, q) independent of y.

Conjecture 42. Let S be projective normal toric surface with only rational
double points, more precisely with nk singularities of type Ak for all k (with
nk only nonzero for finitely many k). If L is δ-very ample on S, then

N (S,L),δ(y) = Coeff
qL(L−KS)/2

[
D̃G2(y, q)

χ(L)−1−δ B1(y, q)
K2

̂S

B2(y, q)−LK̂S(
DD̃G2(y, q)

Δ̃(y, q)

)1/2∏
k

(
η(q)k+1

η(qk+1)

)nk
]
.

Remark 43. (1) P(1, 1, 2) has an A1 singularity, and as we saw Σ2 is

a resolution of P(1, 1, 2). It is standard that θ2(2τ) =
η(τ)2

η(2τ) . Thus,
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for P(1, 1, 2), Conjecture 42 is a special case of Conjecture 40, and
Proposition 41 gives evidence for it.

(2) We also used a version of the Caporaso-Harris recursion for P(1, 2, 3).
With the line bundle dH with d small for H the hyperplane bun-
dle. P(1, 2, 3) has one A1 and one A2 singularity, also in this case
Conjecture 42 is confirmed in the realm considered.

(3) Note that the conjecture that the Fan
(y, q) are independent of y says

in particular that the correction factor for the An singularities is the
same for Severi degrees and tropical Welschinger invariants.

We want to generalise this conjecture in another direction. Let S be
a singular toric surface with singular points p1, . . . , pr and a minimal toric
resolution Ŝ with exceptional divisors E1, . . . , Er. Let L be a toric line bundle

on S. We have seen that N (Ŝ,L),δ(y) = N (S,L),δ(y) is a refined count of δ-
nodal curves on S, which are not required to pass through the singular

locus of S. In a similar way we can interpret N (Ŝ,L−k1E1−···−krEr),δ(y) as a
refined count of curves in |L| on S which pass through the singular points pi
with multiplicity −kiE2

i . This even makes sense if L is only a class of Weil
divisors on S, the ki are not necessarily integral but L− k1E1 − · · · − krEr

is a Cartier divisor on Ŝ. In this case the curves we count on S are Weil
divisors.

Here we will consider this question only in the case that S has only A1

singularities. Denote η(q) = q1/24
∏

n>0(1− qn) the Dirichlet eta function.

Let θ2(q) :=
∑

n∈Z(−1)nqn
2/2 be one of the standard theta functions. Recall

the Jacobi triple product formula

η(q2)3 = q1/4
∑
n≥0

(−1)n(2n+ 1)qn(n+1).

We define functions fl(q), for l ∈ Z≥0 by

f2k(q) =
(−1)k
(2k)!

∑
n∈Z

(−1)n
(

k−1∏
i=0

(n2 − i2)

)
qn

2

(5.4)

=
(−1)k
(2k)!

(
k−1∏
i=0

(D − i2)

)
θ2(q

2)
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f2k+1(q) =
(−1)k

(2k + 1)!

∑
n∈Z

(−1)n(n+ 1/2)(
k−1∏
i=0

((n+ 1/2)2 − (i+ 1/2)2)

)
q(n+1/2)2

=
(−1)k

(2k + 1)!

(
k−1∏
i=0

(D − (i+ 1/2)2)

)
η(q2)3.

Here as before we denote D = q d
dq . In particular we have

f0(q) =
∑
n∈Z

(−1)nqn2

, f1(q) =
∑
n≥0

(−1)n(2n+ 1)q(n+1/2)2 ,

f2(q) =
∑
n>0

(−1)n−1n2qn
2

.

We write N
(S,L),δ
[k1,...,kr]

:= N (Ŝ,L−k1E1−···−krEr),δ(y), to stress that we view it
as a count of curves on S with prescribed multiplicities at theA1-singularities.

Conjecture 44. Let S be a toric surface with only A1 singularities p1, . . . , pr.
Fix k1, . . . , kr ∈ 1

2Z≥0. Let δ ≥ 0. Let L be a Weil divisor on S, such that

L−∑i kiEi is a Cartier divisor on Ŝ, which is δ-very ample on any irre-

ducible curve in Ŝ not contained in E1 ∪ · · · ∪ Er. Then

N
(S,L),δ
[k1,...,kr]

(y) = Coeff
qL(L−KS)/2

[
D̃G2(y, q)

L(L−KS)/2−∑
i k

2
i−δB1(y, q)

K2
S

B2(y, q)LKS
(5.5) (

DD̃G2(y, q)

Δ̃(y, q)

)1/2 r∏
i=1

f2ki
(q)

]
.

Thus we claim that the correction factors for points of multiplicity k at
A1 singularities of S are given by the quasimodular forms fk(q).

Equivalently we can look at the same question on the blowup Ŝ. Write
L̂ := L− k1E1 − · · · − krEr and

fk(q) =
fk(q)

qk2/4
, k ∈ Z≥0,
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then (with the same assumptions) (5.5) is clearly equivalent to

N (Ŝ,L̂),δ(y) = Coeff
q
̂L(̂L−K

̂S
)/2

[
D̃G2(y, q)

χ(L̂)−1−δB1(y, q)
K2

̂S

B2(y, q)L̂K̂S

(5.6) (
DD̃G2(y, q)

Δ̃(y, q)

)1/2 r∏
i=1

f2ki
(q)

]
.

In other words, the correction factors for L̂ not being sufficiently ample on
Ŝ are the f l(q).

Remark 45. Under the assumptions of the conjecture, if the ki are suf-
ficiently large with respect to δ, then L̂ will be δ-very ample on Ŝ. This
means by Conjecture 32 that for large l the correction factor f l(q) should
be 1 modulo some high power of q. In fact we find the following.

For l ∈ Z>0 we can rewrite

f l(q) =
∑
m≥0

(−1)m 2m+ l

m+ l

(
m+ l

l

)
qm(m+l).

In particular f l(q) ≡ 1 mod ql+1.

Proof. First we deal with the case l even. Note that

k−1∏
i=0

(n2 − i2) = n

k−1∏
i=−k+1

(n+ i).

Thus we get for k > 0

f2k(q) =
(−1)k
(2k)!

∑
n∈Z

(−1)n
k−1∏
i=0

(n2 − i2)qn
2−k2

=
∑
n≥k

(−1)n−k 2n
2k

(
n+ k − 1

2k − 1

)
qn

2−k2

,

where we also have used that
(
n+k−1
2k−1

)
= 0 for n < k. Finally put m = n− k,

so that 2n
2k

(
n+k−1
2k−1

)
= 2m+2k

m+2k

(
m+2k
2k

)
and n2 − k2 = m(m+ 2k).



Refined node polynomials via long edge graphs 225

The case l odd is similar. Note that

k−1∏
i=0

((n+ 1/2)2 − (i+ 1/2)2) =

k∏
i=−k+1

(n+ i).

Thus we get

f2k+1(q)

=
(−1)k

(2k + 1)!∑
n≥0

(−1)n(2n+ 1)

(
k−1∏
i=0

((n+ 1/2)2 − (i+ 1/2)2)

)
q(n+1/2)2−(k+1/2)2

=
∑
n≥0

(−1)n−k 2n+ 1

2k + 1

(
n+ k

2k

)
q(n+1/2)2−(k+1/2)2 ,

and put again m := n− k. �

Remark 46. It is again remarkable that the correction factors fk(q) are
independent of the variable y. In particular this means again that the correc-
tion factor is the same for the Severi degrees and for the tropical Welschinger
number.

We specialise the conjecture to case that S is the weighted projective
space P(1, 1, 2) with the resolution Σ2 with more precise bounds for the
validity. Note that

χ(Σ2, dH − kE) = (d+ 1)2 − k2,

(dH − kE)KΣ2
= (dH − kE)(−2H) = −4d, K2

Σ2
= 8.

Conjecture 47. Let d, k ∈ 1
2Z with d− k ∈ Z. Then for δ ≤ 2(d− k) + 1,

we have

N (Σ2,dH−kE),δ(y) = Coeff
qd2+2d−k2

[
D̃G2(y, q)

d2+2d−k2−δB1(y, q)
8

B2(y, q)4d
(5.7) (

DD̃G2(y, q)

Δ̃(y, q)

)1/2

f2k(q)

]
.

Proposition 48. (1) Conjecture 47 is true for all d, all k ≤ 5 and δ ≤ 4.
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(2) The equation (5.7) holds for all d, k ≥ 0 with δ ≤ d− k and δ ≤ 4.

Proof. We compute N (Σ2,dH+cF ),δ(y) = N (Σ2,(d+c/2)H−c/2E),δ(y) for δ ≤ 8,
d ≤ 6 and c ≤ 5, using the Caporaso-Harris recursion. We find in this realm
that N (Σ2,(dH−kE),δ(y) is equal to the right hand side of Conjecture 47 for
δ ≤ 2(d− k) + 1. By Theorem 26 Q(Σ2,dH+cF ),δ(y) is for fixed c ≥ 0 and for
d ≥ δ a polynomial of degree 2 in d. Thus the above computations determine
this polynomial for δ ≤ 4, and c ≤ 5. On the other hand in dependence of
c and d we have that Q(Σ2,dH+cF ),δ(y) is for c, d ≥ δ a polynomial in c and
d of degree 2 in d and 1 in c. By the above we know this polynomial as a
polynomial in d for c = 4 and c = 5. Thus it is determined and the claim
follows. �

6. Counting curves with prescribed multiple points

Let S be a smooth projective surface, let p1, . . . , pr be general points on S,
and let Ŝ be the blowup of S in the pi with exceptional divisors Ei. Let
n1, . . . , nr ∈ Z≥1. Let L be a sufficiently ample line bundle on S, and denote

by the same letter its pullback to Ŝ. Note that N (Ŝ,L−∑
i niEi),δ(1) counts the

complex curves on S in |L| with points of multiplicity ni in pi which have in
addition δ nodes and pass through dim(|L−∑i niEi)|)− δ general points
of S. If L is sufficiently ample, then the multiple points at the pi impose∑

i

(
ni+1
2

)
independent conditions on curves in |L|. Furthermore we see that

χ

(
L−

∑
i

niEi

)
= χ(L)−

∑
i

(
ni + 1

2

)
.

Now assume that S is a smooth projective toric surface. Let the pi ∈ S
be fixed points of the torus action, so that Ŝ is again a toric surface and the
exceptional divisors Ei are torus-invariant divisors. Then by the above we

can view N (Ŝ,L−∑
i niEi),δ(y) as a refined count of curves in |L| on S with

points of multiplicity ni at pi for all i and in addition δ nodes which pass
through

dim(|L|)− δ −
∑
i

(
ni + 1

2

)
general points on S.

Notation 49. We denote N
(S,L),δ
n1,...,nr(y) := N (Ŝ,L−∑

i niEi),δ(y).
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For an Eisenstein series G2k(q), we denote

Gk(q) := Gk(q)−Gk(q
2) =

∑
n>0

∑
d|n

n
d

odd

d2k−1qn.

We write again D := q ∂
∂q . Note that DlG2k(q) and DlG2k(q) are quasimod-

ular forms of weight 2k + 2l.

Conjecture 50. For each i ≥ 1 there exists a universal power series Hi ∈
Q[y±1][[q]], such that, whenever L is sufficiently ample with respect to δ, r
and n1, . . . , nr, we have

N (S,L),δ
n1,...,nr

(y) = Coeff
q(L

2−LKS)/2

[
D̃G2(y, q)

χ(L)−1−δ−∑
i (

ni+1

2 )(6.1)

B1(y, q)
K2

SB2(y, q)
LKSDD̃G2(y, q)

(Δ̃(y, q) ·DD̃G2(y, q))χ(OS)/2

r∏
i=1

Hni
(y, q)

]
.

Furthermore we conjecture for all m > 0 the following:

(1) Hm(y, q) can be expressed in terms of Jacobi theta functions and
quasimodular forms.

(2) Hm(1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q)
of weight ≤ 4k.

(3) Hm(−1, q) is a (usually non-homogeneous) polynomial in the DlG2k(q),
DlG2k(q) of weight ≤ 2k.

For small m we explicitly conjecture the following formulas:

(1) For m ≤ 2 we conjecture

H1(y, q) = D̃G2(y, q),

H2(y, q) =
F1(y, q)

(y1/2 − y−1/2)4
+

F2(y, q)

(y1/2 − y−1/2)2(y − y−1)
,
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with

F1(y, q) =
∑
n>0

∑
d|n

1

2

(
−n3

d3
+

n2

d
− n

d

)
(yd/2 − y−d/2)2qn

F2(y, q) =
∑
n>0

∑
d|n

(
n2

d2
− n

2

)
(yd − y−d)qn.

(2) For the specialisation at y = 1 we conjecture the following (dropping
the q from the notation).

H1(1) = DG2,

H2(1) = − 1

24
DG2 +

1

6
D2G2 − 1

8
DG4 − 1

24
D3G2 +

1

24
D2G4

H3(1) =
DG2

90
− D2G2

18
+

DG4

24
+

13D3G2

288
− 73D2G4

1440
+

DG6

120
− D4G2

144

+
13D3G4

1440
− D2G6

480
+

D5G2

2880
− D4G4

2016
+

D3G6

6912
+

Δ

241920

H4(1) = −9DG2

1120
+

7D2G2

160
− 21DG4

640
− 1063D3G2

23040
+

1207D2G4

23040
− 3DG6

320

+
79D4G2

5760
− 43D3G4

2304
+

149D2G6

26880
− DG8

2688
− 91D5G2

69120
+

95D4G4

48384

− 461D3G6

645120
+

101D2G8

1451520
− 11Δ

5806080
+

D6G2

17280
− 89D5G4

967680
+

D4G6

25920

− D3G8

207360
+

DΔ

2903040
− D7G2

967680
+

D6G4

580608
− D5G6

1244160
+

D4G4

8211456

− D2Δ

84913920
+

ΔG4

864864

(3) At y = −1 we conjecture

H1(−1) = G2(q),

H2(−1) = 1

8

(
G2 −DG2 +G4 −DG2

)
,

H3(−1) = 1

24
G2 − 1

24
DG2 +

7

96
G4 − 7

96
DG2 +

1

2
G

3
2 −

1

192
DG4

− 5

64
G4G2 +

1

96
D2G2 − 5

1024
DG4,
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H4(−1) = 3G2

128
− 5DG2

192
− 67DG2

1536
+

67G4

1536
+

35D2G2

2304
− 247DG4

24576

+
55G

3
2

144
− 55G4G2

1536
− 11DG4

4608
+

D3G2

192
+

25D2G4

6144
− 7DG6

8192

+
11G

4
2

8
− 13G2D

2G2

192
+

35G2DG4

512
− 21G6G2

1024
+

D2G4

512
.

Remark 51. Part (1) of Conjecture 50 is not formulated in a very precise
way. We want to illustrate the statement for H1(y, q) and H2(y, q), which
we have conjecturally determined. In addition to D := q ∂

∂q , we also consider
′ = y ∂

∂y . Writing D̃G2(y, q) =
F0(y,q)

y−2+y−1 we have

F0(y, q) = −Dθ(y)

θ(y)
− 3G2,

F1(y, q) =
1

2

(Dθ(y))2

θ(y)2
+ 3

Dθ(y)

θ(y)
G2 +

1

2

Dθ(y)

θ(y)
+

15

8
G4 − 9

4
DG2 +

3

2
G2,

F2(y, q) = −1

2

Dθ(y)θ′(y)
θ(y)2

− 1

6

Dθ′(y)
θ(y)

− 2G2
θ′(y)
θ(y)

.

Proof. A similar computation has been done in [GS2, Rem 1.4]. By definition
we have

F0(y, q) =
∑
m>0

∑
d>0

m(yd − 2 + y−d)qmd =
∑
md>0

mydqmd − 2G2(q) +
1

12
.

In [Z, page 456, compare (iii) and (vii)] it is proved that

(6.2)
θ′(0)θ(wy)
θ(w)θ(y)

=
wy − 1

(w − 1)(y − 1)
−
∑
nd>0

sgn(d)wnydqnd.

Write w = ex and take the coefficient of x on both sides of (6.2). By the
identity [Z, eq. (7)] we have

xθ′(0)
θ(w)

= exp

⎛⎝2
∑
k≥2

Gk(q)
zk1
k!

⎞⎠ .
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This gives

Coeff
x

[
θ′(0)θ(wy)
θ(w)θ(y)

]
= Coeff

x2

[
θ(wy)

θ(y)

]
+G2(τ)

=
1

2

θ′′(y)
θ(y)

+G2(τ) =
Dθ(y)

θ(y)
+G2(τ),

where the last step is by the heat equation 1
2θ
′′(y) = Dθ(y). On the other

hand we compute

Coeff
z1

[
wy − 1

(w − 1)(y − 1)
−
∑
nd>0

sgn(d)wnydqnd

]
=

1

12
−
∑
nd>0

nydqnd.

This proves the formula for F0.
We have

F2(y, q) =
∑
md>0

sgn(d)(m2 −md/2)yd)qmd.

In [GS2, Rem. 1.4] it is shown (the statement there contains a misprint)
that ∑

md>0

sgn(d)m2ydqmd = − 1

θ(y)

(
2

3
Dθ′(y) + 2G2(q)θ

′(y)
)
.

We see by (6.2) that

∑
md>0

sgn(d)(−md/2)yd)qmd =
1

2
D

(
θ′(0)θ(wy)
θ(w)θ(y)

∣∣∣
w=1

)
=

1

2
D

(
θ′(y)
θ(y)

)
.

This shows the formula for F2.
A similar but slightly more tedious computation shows the formula

for F1. �

The conjectural formulas of Conjecture 50 were found by doing com-
putations for P2 and its blowup Σ1 with exceptional divisor E. We use
the Caporaso-Harris recursion formula to compute N (Σ1,dH+mF ),δ(y) =
N (Σ1,(d+m)H−mE,δ for d ≤ 11, m ≤ 4 and δ ≤ 22, in this realm the following
conjecture is true.

Conjecture 52. There are power series Hm(y, q) ∈ Q[y±1][[q]], such that
the following holds. For d > 0, and 0 ≤ m ≤ 4 and δ ≤ 2d+ 1−m(m+ 1)/2
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we have

N (P2,dH),δ
m (y) =

Coeff
q(d(d+3)/2

[
D̃G2(y, q)

d(d+3)/2−m(m+1)/2−δB1(y, q)
9(DD̃G2(y, q))

1/2

B2(y, q)−3dΔ̃(y, q)1/2
Hm(y, q)

]
.

Furthermore H1(y, q), H2(y, q) coincide with the functions with the same
name from Conjecture 50, and Hi(1, q), Hi(−1, q) coincide for i = 1, 2, 3, 4
with the Hi(1), Hi(−1) from Conjecture 50.

Proposition 53. Conjecture 52 is true from m ≤ 4 and δ ≤ 9.

Proof. The argument is the same as in several proofs before. By Theorem 26
we get that Q(Σ1,dH+mF ),δ is for δ ≤ d a polynomial of degree 2 in d, which
we know for 9 ≤ d ≤ 11. The result follows. �

Let S be a toric surface and Ŝ be the blowup of S in torus fixed point.
Given δ, if m is sufficiently large and L is sufficiently ample on S, then
L−mE will be sufficiently ample on Ŝ, so that Conjecture 32 will apply to
the pair (Ŝ, L−mE), giving

N (S,L),δ
m (y) = N (Ŝ,L−mE),δ(y)

= Coeff
q(L

2−LKS)/2−(m+1
2 )

[
D̃G2(y, q)

χ(L)−1−δ−(m+1

2 )

B1(y, q)
K2

S−1B2(y, q)
LKS+mDD̃G2(y, q)

(Δ̃(y, q) ·DD̃G2(y, q))χ(OS)/2

]
.

Combined with Conjecture 50 this leads to the following conjecture.

Conjecture 54. We have

Hm(y, q)

q(
m+1

2 )
≡ B2(y, q)

m

B1(y, q)
mod qm+1.

Thus, if eventually one would find a way to explicitly determine the func-
tions Hm(y, q) for all m, this could give the unknown power series B1(y, q),
B2(y, q) and thus complete the conjectural formulas of [Göt],[GS].

It is natural to assume that the specialisation of Conjecture 50 and also
of the previous conjectures Conjecture 39, Conjecture 44 to y = 1 hold for
the usual Severi degrees n(S,L),δ for projective algebraic surfaces, not just
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for toric surfaces. Thus we get in particular the following generalisation of
the original conjecture of [Göt].

Let S be a projective algebraic surface withA1-singularties q1, . . . , qs. Let
p1, . . . , pr be distinct smooth points on S. Letm1, . . . ,mr ∈ Z>0, n1, . . . , ns ∈
1
2Z≥0. Let Ŝ be the blowup of S in p1, . . . , pr, q1, . . . , qs and denote Ei, Fj the
exceptional divisors over pi, qj respectively. Let L be a Q-Cartier Weil divi-

sor on S, such that L̂ := L−∑r
i=1miEi −

∑s
j=1 njFj is a Cartier divisor on

Ŝ, which is δ-very ample on all irreducible curves in Ŝ not contained in E1 ∪
· · · ∪ Er ∪ F1 ∪ · · · ∪ Fs. Denote n

(S,L),δ
(m1,...,mr),(n1,...,ns)

:= n(Ŝ,L̂),δ, which we

could informally interpret as the number of curves in |L| which have multi-
plicity mi in pi and nj in qj for all i, j and pass in addition through

χ(L)− 1−
r∑

i=1

(
mi + 1

2

)
−

s∑
j=1

n2
j

general points on S, and have δ nodes as other singularities, where we write
χ(L) = L(L−KS)/2 + χ(OS).

Conjecture 55. Under the above assumptions we have

n
(S,L),δ
(m1,...,mr),(n1,...,ns)

= Coeff
q(L

2−LKS)/2

[
DG2(q)

χ(L)−∑
i (

mi+1

2 )−∑
j n

2
j−1(6.3)

B1(q)
K2

SB2(q)
LKSD2G2(q)

(Δ(q) ·D2G2(q))χ(OS)/2(
r∏

i=1

Hmi
(1, q)

)⎛⎝ s∏
j=1

f2nj
(q)

⎞⎠].
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conjecture, Geom. Topol., 15 (2011), no. 1, 397–406.
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