
Communications in

Number Theory and Physics

Volume 10, Number 1, 133–156, 2016

Feynman integrals and critical modular

L-values

Detchat Samart

Broadhurst [12] conjectured that the Feynman integral associated
to the polynomial corresponding to t = 1 in the one-parameter
family (1 + x1 + x2 + x3)(1 + x−1

1 + x−1
2 + x−1

3 )− t is expressible
in terms of L(f, 2), where f is a cusp form of weight 3 and level
15. Bloch, Kerr and Vanhove [8] have recently proved that the con-
jecture holds up to a rational factor. In this paper, we prove that
Broadhurst’s conjecture is true. Similar identities involving Feyn-
man integrals associated to other polynomials in the same family
are also established.

1. Introduction

In this article, we consider the evaluation of the integral

I(t) :=

∫
x1,x2,x3≥0

1

(1 + x1 + x2 + x3)(1 + x−11 + x−12 + x−13 )− t

dx1
x1

dx2
x2

dx3
x3

,

which is known as the Feynman integral associated to the three-banana
graph. The zero loci of the polynomials Pt(x1, x2, x3) := (1 + x1 + x2 +
x3)(1 + x−11 + x−12 + x−13 )− t constitute a one-parameter family Xt of K3
surfaces of generic Picard number 19. Moreover, there are countably many
values of t for which Xt has Picard number 20, in which case it is said to be
singular. A singular K3 surface over Q is known to be modular in the sense
that its Hasse-Weil L-function coincides with the L-function attached to a
weight 3 cusp form [20]. Examples of these values include t = −32,−2, 1, 4,
and 16. In general, one can determine the values of t which make Xt singular
by checking whether an elliptic curve Et arising naturally in the correspond-
ing Shioda-Inose structure has complex multiplication. (See Section 5 for
more details.)

There has been evidence suggesting that some special values of I(t) can
be written in terms of interesting arithmetic quantities like zeta values and
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special values of modular L-functions, presumably corresponding to the K3
surfaces Xt. This phenomenon has been well predicted by Deligne’s con-
jecture on critical values of L-functions [15]. When t = 0, the variety Xt

is obviously reducible, and it was proved in [1, 8, 12] that I(0) = 7ζ(3).
More intriguingly, Broadhurst [12] verified numerically using high-precision
computations that

(1) I(1) =
12π√
15

L(f, 2),

where f is the weight 3 cusp form of level 15 whose q-expansion is given by

f(q) = η(τ)η(3τ)η(5τ)η(15τ)
∑

m,n∈Z
qm

2+mn+4n2

= η3(3τ)η3(5τ) + η3(τ)η3(15τ),

and L(f, s) is the L-function associated to f. Here and throughout η(τ)
denotes the usual Dedekind eta function

η(τ) = q1/24
∞∏
n=1

(1− qn),

where q = e2πiτ . Bloch, Kerr and Vanhove [8] have recently proved that
Broadhurst’s conjecture is true up to a rational coefficient by realizing I(1)
and L(f, 2) as periods associated to the differential 2-form on X1 and show-
ing that the underlying regulator is trivial. Their proof involves a special
case of Deligne’s conjecture for critical L-values, which has been proved by
Blasius [7]. The main goal of this paper is to prove that (1) is true.

Theorem 1. Let I(t) and f be defined as above. Then we have

I(1) =
12π√
15

L(f, 2).

In addition, we obtain some new identities involving I(−32), I(−2), I(4),
and I(16).

Theorem 2. Let g be the weight 3 cusp form of level 12 defined by g(q) =
η3(2τ)η3(6τ). Then we have

I(−32) + I(16) =
36π√
12

L(g, 2),(2)

I(16) = 2I(4) = 8(I(−2)− I(−32)).(3)
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The proofs of Theorem 1 and Theorem 2, given in Section 4, depend on
the modular realization of the integral I(t) given in [8] and recent results on
critical L-values due to Rogers, Wan, and Zucker [29]. Other supplementary
results which are required for our proofs will be proved in Section 2 and
Section 3. In Section 5, we discuss a Shioda-Inose structure for the family
Xt of K3 surfaces and give an example of a potential relationship between
the Feynman integral and a critical L-value of the symmetric square of the
underlying elliptic curve in the S-I structure. Finally, we give some further
observations in Section 6.

2. Special values of the Dedekind eta function and Weber’s
functions

Here we prove some auxiliary results about values of η(τ) and Weber’s mod-
ular functions:

f0(τ) = e−πi/24
η
(
τ+1
2

)
η(τ)

,

f1(τ) =
η
(
τ
2

)
η(τ)

,

f2(τ) =
√
2
η(2τ)

η(τ)
,

at certain CM points which will appear in the proofs of Theorem 1 and
Theorem 2 .

Lemma 1. The following evaluations of η(τ), f0(τ), and f2(τ) are true:

∣∣∣∣η
(
3 +

√−15
2

)∣∣∣∣ =
(
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)

120π3

)1/4

e−
1

12
log( 1+

√
5

2 ),(4)

∣∣∣∣η
(
3 +

√−15
6

)∣∣∣∣ =
(
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)

40π3

)1/4

e
1

12
log( 1+

√
5

2 ),(5)

∣∣∣∣f2
(
3 +

√−15
2

)∣∣∣∣ =
∣∣∣∣f2

(
3 +

√−15
6

)∣∣∣∣
−1

,(6) ∣∣∣∣η
(
3 +

√−3
2

)∣∣∣∣ = 31/8

2π
Γ
(
1

3

)3/2
,(7)
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∣∣∣∣η
(
3 +

√−3
6

)∣∣∣∣ = 33/8

2π
Γ
(
1

3

)3/2
,(8) ∣∣∣∣f2

(
3 +

√−3
2

)∣∣∣∣ =
∣∣∣∣f2

(
3 +

√−3
6

)∣∣∣∣ = 21/6,(9)

f0

(√−3
3

)
= f0(

√−3) = 21/3.(10)

Proof. A general formula for

∣∣∣∣η
(

b+
√
d

2a

)∣∣∣∣, where ax2 + bxy + cy2 is a

positive-definite, primitive, integral, binary quadratic form of fundamental
discriminant d < 0, is given in [27, Thm. 9.3]:

a−1/4
∣∣∣∣η

(
b+

√
d

2a

)∣∣∣∣(11)

= (2π|d|)−1/4
⎧⎨
⎩

|d|∏
m=1

Γ
(
m

|d|
)( d

m)

⎫⎬
⎭

w(d)

8h(d)

exp

⎛
⎜⎜⎝−πw(d)

√|d|
48h(d)

∑
L∈H(d)
L �=I

f(L,K)l(L, d)m(L, d)

⎞
⎟⎟⎠ ,

where H(d) is the group of equivalence classes of such forms, h(d) = |H(d)|,

w(d) =

⎧⎪⎨
⎪⎩
6, if d = −3,
4, if d = −4,
2, if d < −4,

K = [a, b, c] ∈ H(d), and the quantities f(L,K), l(L, d), and m(L, d) are de-
fined therein. We have from [27, Ex. 9.4] that H(−15) = {I, A}, where I and
A are classes equivalent to [1, 3, 6] and [3, 3, 2], respectively, together with
the following information about the relevant quantities in (11):

f(A, I) = 1, f(A,A) = −1,
l(A,−15) = 8

15
, m(A,−15) =

√
15

2π
log

(
1 +

√
5

2

)
.

By Euler’s reflection formula

Γ(x)Γ(1− x) =
π

sin(πx)
, 0 < x < 1,
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we can express the product of gamma values in (11) when d = −15 as

15∏
m=1

Γ
(
m

15

)(−15

m )
=

(
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)

4π2

)2

.

Using (11) with [a, b, c] = [1, 3, 6] and [a, b, c] = [3, 3, 2] gives (4) and (5).
We obtain (7) and (8) in a similar way (note that H(−3) is trivial, so the
exponential term in (11) disappears).

To prove (6) and (9), we employ a formula established in [24, §10]:

(12)

∣∣∣∣f2
(

b+
√
d

2a

)∣∣∣∣ = (
2

λ2

)1/4
2

m2
4

1−( d
2 )

2−( d
2 ) eE(K,d)−E(M2,λ2

2d).

In this formula, the integers a, b, c, and d satisfy the same assumption as
in (11) and m2, λ2 ∈ Q and M2 ∈ H(λ2

2d) are dependent on K = [a, b, c].
The quantity E(K, d) is defined by

(13) E(K, d) =
π
√|d|w(d)
48h(d)

∑
L∈H(d)
L �=I

χ(L,K)−1
t1(d)

j(L, d)
l(L, d),

where the definition of each component in the summand is given in [24].
It turns out that knowing only certain values of χ(L,K) is sufficient for
our purposes. When d = −15, we have from Theorem 2 in [24, §10] that
λ2 = 2 regardless of the choice of equivalence class K ∈ H(−15) and the
classes M2 corresponding to I = [1, 3, 6] and A = [3, 3, 2] are I ′ = [1, 6, 24]

and A′ = [3, 6, 8]. Since
(−15

2

)
= 1, the formula (12) yields

∣∣∣∣f2
(
3 +

√−15
2

)∣∣∣∣ = eE(I,−15)−E(I′,−60),∣∣∣∣f2
(
3 +

√−15
6

)∣∣∣∣ = eE(A,−15)−E(A′,−60).

Using the definition of χ(L,K) in [24, §6], one finds that χ(A, I) = χ(A′, I ′) =
1 and χ(A,A) = χ(A′, A′) = −1. Since H(−60) = {I ′, A′} and χ(L,K) is
the only term on the right-hand side of (13) that depends on K, we have
E(A,−15) = −E(I,−15) and E(A′,−60) = −E(I ′,−60), so (6) holds. On

the other hand, if d = −3, we have λ2 = 2, m2 = 1,
(
d

2

)
= −1 and the expo-

nential term in (12) again vanishes due to the triviality of the group H(d).
This gives (9).
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Finally, recall that for each n ∈ N, Ramanujan’s class invariant Gn is
defined by

Gn = 2−1/4f0(
√−n).

Many values of Gn are known for odd values of n; in particular, we haveG3 =
21/12 (see, for example, [3, p.189]), so f0(

√−3) = 21/3. The first equality
in (10) holds since f0(τ) is invariant under the transformation τ → −1/τ
[35]. �

Remark 1. In a study of short uniform random walks, Borwein et al. [10,
Thm.5.1] obtained similar eta function evaluations at points in Q(

√−15)
using the Chowla-Selberg formula, from which (11) and (12) were derived.

3. Some identities concerning π3 and ζ(3)

In an attempt to generalize Ramanujan’s identity for ζ(2k + 1), where k is
a non-zero integer, Grosswald [18] defined

Fs(τ) =
∑
n≥1

σ−s(n)e2πinτ ,

where

σt(n) =
∑
d|n

dt.

It is obvious that Fs can be written as a double series

(14) Fs(τ) =
∑

m,n≥1

e2πimnτ

ns
.

Moreover, for any odd integer s > 1, we have from [19] that

Fs(τ) =
∑
n≥1

σs(n)

ns
e2πinτ(15)

=
(2πi)sBs+1

2(s+ 1)(s− 1)!

∫ i∞

τ
(Es+1(z)− 1)(z − τ)s−1 dz,

where Bk is the kth Bernoulli number and, for even k ≥ 2, Ek is the nor-
malized weight k Eisenstein series

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn, q = e2πiz.
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In other words, when s > 1 is odd, Fs(τ) is an Eichler integral of the Eisen-
stein series of weight s+ 1. In the proofs of our main theorems the identities
(1), (2), and (3) will be rephrased in terms of the function F3(τ) evaluated
at certain algebraic numbers. We first record some useful transformations
for F3(τ). Throughout this paper H denotes the upper-half plane.

Proposition 1. For all τ ∈ H, we have

F3(τ) = F3(τ + 1),(16)

F3(τ)− τ2F3(−1/τ) = ζ(3)(τ2 − 1)

2
+

(2πi)3

2τ

2∑
j=0

B2jB4−2j
(2j)!(4− 2j)!

τ2j ,(17)

F3(τ + 1/2) = −F3(τ) +
9

4
F3(2τ)− 1

4
F3(4τ).(18)

Proof. The transformation (16) is obvious from the definition of F3(τ)
and (17) is a special case of Grosswald’s formula [18, 19]. Using the integral
expression (15) for each term in (18) and performing a change of variable in
each integral, we obtain

F3(τ + 1/2) + F3(τ)− 9

4
F3(2τ) +

1

4
F3(4τ)

=
(2πi)3B4

16

∫ i∞

τ
(E4(z + 1/2) + E4(z)− 18E4(2z) + 16E4(4z))(z − τ)2 dz.

It is easily seen from the q-expansion of the Eisenstein series that E4(z +
1/2) + E4(z)− 18E4(2z) + 16E4(4z) = 0, so (18) follows. �

Lemma 2. The following identities are true:

F3

(√−3
2

+
1

2

)
=

√
3π3

90
− ζ(3)

2
,(19)

F3

(√−3
6

+
1

2

)
=

7
√
3π3

810
− ζ(3)

2
,(20)

8

(
3F3

(√−3
6

)
− F3

(√−3
2

))
(21)

−9
(
3F3

(√−3
3

)
− F3(

√−3)
)

=
7
√
3π3

135
+ ζ(3),
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24F3

(√−15
6

+
1

2

)
− 8F3

(√−15
2

+
1

2

)
(22)

−3F3

(√−15
3

)
+ F3(

√−15) = π3

√
15
− 7ζ(3).

Proof. Let τ1 =
√−3/2 + 1/2. Then −1/τ1 =

√−3/2− 1/2 = τ1 − 1, so we
have from (16) that

F3(−1/τ1) = F3(τ1 − 1) = F3(τ1).

Together with (17), this gives (19). Similarly, if τ2 =
√−3/6 + 1/2, then

−1/τ2 =
√−3/2− 3/2 = τ1 − 2, so (20) follows from (16), (17), and (19).

Next, applying (18) to F3(τ1) and F3(τ2) and using the fact that 2
√−3

and 2
√−3/3 are sent to

√−3/6 and
√−3/2 respectively under the trans-

formation τ → −1/τ yield

4F3(τ1) = 9F3(
√−3)− 4F3

(√−3
2

)
+ 12F3

(√−3
6

)
− 41

√
3π3

216
+

13ζ(3)

2
,

12F3(τ2) = 27F3

(√−3
3

)
− 12F3

(√−3
6

)
+ 4F3

(√−3
2

)
− 17

√
3π3

216
+

7ζ(3)

2
.

The identity (21) follows by subtracting the second equation from the first.
The proof of (22) is much more involved. We first use the transformations

in Proposition 1 to deduce the following identities:

24F3

(√−15
6

+
1

2

)
= (4

√−15− 4)F3

(√−15
4

+
1

4

)
(23)

+

(
37
√
15− 81i

270

)
π3 + (2

√−15− 14)ζ(3),

−3F3

(√−15
3

)
= −3F3

(√−15
3

+ 1

)
(24)

= (2− 2
√−15)F3

(√−15
8

+
5

8

)

−
(
97
√
15− 621i

4320

)
π3 −

(
2
√−15− 5

2

)
ζ(3),
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F3

(√−15
8

+
5

8

)
= −F3

(√−15
8

+
1

8

)
+

9

4
F3

(√−15
4

+
1

4

)
(25)

− 1

4
F3

(√−15
2

+
1

2

)
,

F3

(√−15
8

+
1

8

)
=

(
√−15− 7)

32
F3

(√−15
2

+
1

2

)
(26)

+

(
392
√
15− 72i

61440

)
π3 +

(√−15− 39

64

)
ζ(3),

F3(
√−15) = 9F3

(√−15
2

+
1

2

)
− 4F3

(√−15
4

+
1

4

)
(27)

− 4F3

(√−15
4

− 1

4

)
.

We simplify the left-hand side of (22) using (23)-(27). After a compu-
tation, the remaining term is a multiple of F3(τ3)− τ23F3(−1/τ3), where
τ3 = (

√−15− 1)/4. Therefore, we can apply (17) once again in the final
step to obtain (22). �

4. Proofs of the main theorems

We can now prove Theorem 1 and Theorem 2.

Proof of Theorem 1. Let us first recall from Theorem 2.3.2 and Lemma 2.4.1
in [8] that if we parametrize t by the modular function

(28) t(τ) = −
(

η(τ)η(3τ)

η(2τ)η(6τ)

)6

,

then for each τ ∈ H, we can express the integral I(t) as

(29) I(t(τ)) = 	1(τ)

⎛
⎜⎝ τ

2πi

∑
m∈Z
n≥1

ψ(n)

n2

1

m2 − n2τ2
− 4(2πiτ)3

⎞
⎟⎠ ,

where

	1(τ) =
(η(2τ)η(6τ))4

(η(τ)η(3τ))2

and the value of ψ(n) depends only on n modulo 6, namely

ψ(0) = −5760, ψ(±1) = −48, ψ(±2) = 720, ψ(3) = 384.
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It then remains to choose τ appropriately and evaluate the terms on the
right-hand side of (29) using the results proven in the previous sections. It
is shown in [8, §2.5] that if τ1 = (−3 +√−15)/24, then t(τ1) = 1, whence

I(1) = 	1(τ1)

⎛
⎜⎝ τ1
2πi

∑
m∈Z
n≥1

ψ(n)

n2

1

m2 − n2τ21
− 4(2πiτ1)

3

⎞
⎟⎠ .

The authors of [8] manipulate the right-hand side of the equation above to
get a much simpler expression

(30) I(1) = − (2πi)3

8
√−15	2(τ2),

where

	2(τ) =
(η(τ)η(3τ))4

(η(2τ)η(6τ))2

and τ2 = −1/(6τ1) = (3 +
√−15)/6. Each step in their argument is straight-

forward, except the following equation [8, Eq. 2.5.8]:

(31)
∑
m≥1
n≥1

ψ(n)

n2

(
1

24m2 − 6mn+ n2
+

1

24m2 + 6mn+ n2

)
= 11ζ(4),

which is stated without proof. Since our proof is quite involved, we give the
details here. Let S be the sum in (31). Observe that

∑
n≥1 ψ(n)/n

2 = 0, so
we can rewrite S as

S =
∑
m≥1
n≥1

ψ(n)

n2

(
1

24m2 − 6mn+ n2
+

1

24m2 + 6mn+ n2
− 1

12m2

)

=
1

96

∑
m≥1
n≥1

ψ(n)

m3

(
2m− n

24m2 − 6mn+ n2
+

2m+ n

24m2 + 6mn+ n2

)

=
1

48

∑
m≥1
n∈Z

ψ(n)

m2

1

24m2 + 6mn+ n2

+
1

96

∑
m≥1
n∈Z

ψ(n)

m3

n

24m2 + 6mn+ n2
+ 5ζ(4).
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Substituting −n− 6m for n yields

∑
m≥1
n∈Z

ψ(n)

m3

n

24m2 + 6mn+ n2
= −3

∑
m≥1
n∈Z

ψ(n)

m2

1

24m2 + 6mn+ n2
.

Therefore, we have

(32) S = − 1

96

∑
m≥1
n∈Z

ψ(n)

m2

1

24m2 + 6mn+ n2
+ 5ζ(4).

Let

T = − 1

96

∑
m≥1
n∈Z

ψ(n)

m2

1

24m2 + 6mn+ n2
.

Working modulo 6, one finds that for any expression f(m,n), if∑
m≥1
n∈Z

f(m,n)−1 converges absolutely, then

− 1

48

∑
m≥1
n∈Z

ψ(n)

f(m,n)
(33)

=
∑
m≥1
n∈Z

(
1

f(m,n)
− 16

f(m, 2n)
− 9

f(m, 3n)
+

144

f(m, 6n)

)
.

Hence T can be expressed as

T =
1

2

∑
m≥1
n∈Z

(
1

m2(24m2 + 6mn+ n2)
− 4

m2(6m2 + 3mn+ n2)

− 3

m2(8m2 + 6mn+ 3n2)
+

12

m2(2m2 + 3mn+ 3n2)

)
.

Then we use the Poisson summation formula to derive the following identi-
ties:

∑
m≥1
n∈Z

1

m2(24m2 + 6mn+ n2)
=

π√
15

∑
m≥1
n∈Z

e2πim|n|
√−15

m3
,
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∑
m≥1
n∈Z

1

m2(6m2 + 3mn+ n2)
=

2π√
15

∑
m≥1
n∈Z

e2πim|n|(
√−15

2
+ 1

2)

m3
,

∑
m≥1
n∈Z

1

m2(8m2 + 6mn+ 3n2)
=

π√
15

∑
m≥1
n∈Z

e2πim|n|
√−15

3

m3
,

∑
m≥1
n∈Z

1

m2(2m2 + 3mn+ 3n2)
=

2π√
15

∑
m≥1
n∈Z

e2πim|n|(
√−15

6
+ 1

2)

m3
.

By (14), we have ∑
m≥1
n∈Z

e2πim|n|τ

m3
= 2F3(τ) + ζ(3),

so it follows from (22) that

T =
π4

15
= 6ζ(4).

Plugging the value of T into (32), we obtain S = 11ζ(4), as desired.
Now we finish the proof by considering the term on the right-hand side

of (30). We first rewrite 	2(τ) in terms of the Weber function f2(τ) defined
in Section 2:

(34) 	2(τ) = 4

(
η(τ)η(3τ)

f2(τ)f2(3τ)

)2

.

Since 	2(τ2) is real, it follows from (4), (5), and (6) that

(35) 	2(τ2) =
1

10
√
3π3

Γ
(
1

15

)
Γ
(
2

15

)
Γ
(
4

15

)
Γ
(
8

15

)
.

In the final step, we use a result of Rogers, Wan, and Zucker [29, Thm. 5]:

L(f, 2) =
Γ
(
1

15

)
Γ
(
2

15

)
Γ
(
4

15

)
Γ
(
8

15

)
120
√
3π

to complete the proof. �

Remark 2. Applying (33) to the summation in (31) directly and doing
a full partial fraction decomposition lead to some (potentially) interesting
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identities for the cotangent Dirichlet series

ξs(τ) =

∞∑
n=1

cot(πnτ)

ns
,

where s is odd. More precisely, (31) is equivalent to

3ξ3

(√−15
6

)
− ξ3

(√−15
2

)
− 24ξ3

(√−15
12

)
+ 8ξ3

(√−15
4

)
=

2π3

√
15

i.

Using a trigonometric identity, we can rewrite this identity as:

3
∑
n≥1

n odd

tan
(
πn

√−15
6

)
n3

−
∑
n≥1

n odd

tan
(
πn

√−15
2

)
n3

=
π3

4
√
15

i.

The study of trigonometric Dirichlet series has a long history dating back
to Ramanujan. Nevertheless, very little is known about their special val-
ues, especially at imaginary quadratic irrationalities. For more details about
trigonometric Dirichlet series, we refer the reader to [2] and [33].

Proof of Theorem 2. We prove (2) and (3) using similar arguments. The CM
points involved include

τ1 =

√−3
3

, τ2 =
−3 +√−3

12
, τ3 =

√−3
6

, τ4 =
3 +

√−3
6

.

Observe that we can rewrite t(τ) in terms of f2(τ):

t(τ) = −
(

2

f2(τ)f2(3τ)

)6

.

Then, using well-known transformations for f0, f1, and f2 under τ → τ + 1
and τ → −1/τ [35] together with (10), it is not hard to show that t(τ1) =
−32, t(τ2) = 4, t(τ3) = −2, t(τ4) = 16, and(

1−√−3
2

)
	2(τ2) = 	2(τ4) = 4	2(τ3) = 2	2(τ1).

For a positive integer N , let wN denote the Fricke involution

wN =

(
0 1√

N

−√N 0

)
,
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acting on H by fractional linear transformation. Then we have τ3 = w6τ1
and τ4 = w6τ2. In addition, the transformation

η(mwNτ) =

√
−
(
iN

m

)
τ · η

(
N

m
τ

)
, m ∈ N,

yields

(36) 	1(w6τ) = −3

4
τ2	2(τ).

Therefore, due to (29), (36), and some manipulations similar to those
used in [8, §2.5], we have

I(16) = 	2(τ4)

⎛
⎜⎜⎝2
√
3π3

9
−
√
3

64π

∑
m≥1
n �=0

ψ(n)

n2

1

3m2 + 3mn+ n2

⎞
⎟⎟⎠ ,

I(4) = 	2(τ4)

⎛
⎜⎜⎝2
√
3π3

9
−
√
3

4π

∑
m≥1
n �=0

ψ(n)

n2

1

12m2 + 6mn+ n2

⎞
⎟⎟⎠ ,

I(−2) = 	2(τ4)

⎛
⎜⎜⎝
√
3π3

18
+

√
3

4π

∑
m≥1
n≥1

ψ(n)

n2

1

12m2 + n2

⎞
⎟⎟⎠ ,

I(−32) = 	2(τ4)

⎛
⎜⎜⎝
√
3π3

18
+

√
3

64π

∑
m≥1
n≥1

ψ(n)

n2

1

3m2 + n2

⎞
⎟⎟⎠ .

Again, with the aid of (33), the Poisson summation formula, and Lemma 2,
we arrive at the following identities:

I(16) = 	2(τ4)

(
32
√
3π3

135
− 2ζ(3)− 2

(
3F3

(√−3
3

)
− F3(

√−3)
))

,

I(4) = 	2(τ4)

(
16
√
3π3

135
− ζ(3)−

(
3F3

(√−3
3

)
− F3(

√−3)
))

,
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I(−2) = 	2(τ4)

(
23
√
3π3

540
+

7

4
ζ(3) +

7

4

(
3F3

(√−3
3

)
− F3(

√−3)
))

,

I(−32) = 	2(τ4)

(
7
√
3π3

540
+ 2ζ(3) + 2

(
3F3

(√−3
3

)
− F3(

√−3)
))

,

from which it is obvious that

I(16) = 2I(4) = 8(I(−2)− I(−32))

and that

I(−32) + I(16) =

√
3π3

4
	2(τ4).

Since 	2(τ4) is real, it follows from (34), (7), (8), (9), and [29, Thm. 5] that

	2(τ4) =
24

217/3
Γ6

(
1
3

)
π4

=
24

π2
L(g, 2),

which gives (2). �

5. Shioda-Inose structure for the family Xt

K3 surfaces with large Picard number are well known as a class of varieties
enriched with interesting arithmetic information, usually encoded in their as-
sociated L-functions. In order to gain more insight into the interplay between
the Feynman integral I(t) and special values of L-functions, we will inves-
tigate certain arithmetic properties of the family Xt. Recall from [8] that,
for all but finitely many t ∈ Q̄, resolving the singularities of the hypersurface
Pt(x1, x2, x3) := (1 + x1 + x2 + x3)(1 + x−11 + x−12 + x−13 )− t = 0 yields a
K3 surface with Picard number at least 19. Therefore, by a result of Morri-
son [23, Cor. 7.4], the family Xt admits a Shioda-Inose structure; i.e., they
fit into the following diagram:

Xt Et × E′t

Km(Et × E′t)

where Et and E′t are isogenous elliptic curves, Km(Et × E′t) is the Kummer
surface for Et and E′t, the two arrows indicate degree two rational maps, and
the transcendental lattices of Xt and Km(Et × E′t) are isometric. Moreover,
the case when Xt is singular occurs exactly when Et has complex multipli-
cation. It is also known that the Picard-Fuchs equation of the family Xt is



148 Detchat Samart

the symmetric square of an order two ordinary linear Fuchsian differential
equation, where the latter, up to a change of variables, is the Picard-Fuchs
equation for a family of elliptic curves giving rise to a S-I structure on Xt

[16, 21].
We have from [8, §2.3] that the holomorphic period

u(t) =
1

(2πi)3

∫
|x1|=|x2|=|x3|=1

1

(1 + x1 + x2 + x3)(1 + x−11 + x−12 + x−13 )− t

dx1
x1

dx2
x2

dx3
x3

satisfies the Picard-Fuchs equation L3
tu(t) = 0, where

L3
t = t2(t− 4)(t− 16)

d3

dt3
+ 6t(t2 − 15t+ 32)

d2

dt2
(37)

+ (7t2 − 68t+ 64)
d

dt
+ t− 4.

On the other hand, it is shown in [32] that the family of elliptic curves

Er : xy − r(x+ y + 1)(xy + y + x) = 0,

has Picard-Fuchs equation

(38) r(r − 1)(9r − 1)
d2v

dr2
+ (27r2 − 20r + 1)

dv

dr
+ (9r − 3)v = 0.

By the change of variables w = r1/2v and t− 4 = −(1− 3r)2/r, given in the
proof of [34, Lem. 10], we can transform (38) into

L2
tw = 0,

where

(39) L2
t = t(t− 4)(t− 16)

d2

dt2
+ 2(t2 − 15t+ 32)

d

dt
+

t− 8

4
.

By [34, Prop. 11] (or direct computation), L3
t is the symmetric square of L2

t ,
so the family Er(t), where r(t) = (10− t+

√
t2 − 20t+ 64)/18, gives rise to

the S-I structure for Xt. When Xt and Er(t) are defined over Q, the sym-
metric square L-function of Er(t) is, up to simple factors, the L-function
attached to the transcendental lattice T(Xt). In particular, when Xt is sin-
gular, the latter becomes the L-function of a weight 3 cusp form. A concrete
example of these assertions is the following.
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Theorem 3. Let Er be an elliptic curve as defined above and let g be the
cusp form defined in Theorem 2. Then

(40) L(Sym2E−1/3, s) = L(Sym2E1/3, s) = L(χ−3, s− 1)L(g, s),

where χ−3 is the Dirichlet character associated to Q(
√−3).

Proof. Let K = Q(
√−3). Note first that E1/3 is isomorphic to the conductor

36 elliptic curve

y2 = x3 + 1,

which has complex multiplication by OK = Z[(1 +
√−3)/2]. Let Λ = (3 +√−3) ⊂ OK and let P (Λ) be the set of integral ideals of OK coprime to Λ.

Define ϕ : P (Λ)→ C× by

ϕ((m+ n
√−3)) = χ−3(m)(m+ n

√−3), m, n ∈ Z, m > 0.

Then ϕ extends multiplicatively to a Grössencharacter on the group I(Λ) of
fractional ideals of OK coprime to Λ. Hence, by [25, Thm. 1.31],

ψ(q) =
∑

a∈P (Λ)

ϕ(a)qN(a)

is a newform in S2(Γ0(36)). By a simple manipulation, we have

ψ(q) =
1

2

∑
m,n∈Z

mχ−3(m)qm
2+3n2

= q − 4q7 + 2q13 +O(q19).

Since there is only one isogeny class in conductor 36, ϕ is indeed the Grössen-
character of the elliptic curve E1/3. Now let

Ψ(q) =
∑

a∈P (Λ)

ϕ2(a)qN(a),

where ϕ2 is the primitive Grössencharacter attached to the square of ϕ.
Then Ψ(q) is expressible as

Ψ(q) =
1

2

∑
m,n∈Z

(m2 − 3n2)qm
2+3n2

,

which coincides with the cusp form g [30, Lem. 2.3]. Now the second equality
in (40) follows immediately from [14, Prop. 5.1], while the first equality
comes from the fact that the curves E−1/3 and E1/3 are isogenous. �
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Observe that the values r = 1/3 and r = −1/3 correspond to t = 4 and
t = 16. As a consequence of Theorem 3, we can rewrite (2) in terms of a
symmetric square L-value.

Corollary 1. We have

I(−32) + 2I(4) = I(−32) + I(16) = 54L(Sym2E1/3, 2).

6. Final remarks

In the final section, we give some possible directions for future research.
First, due to the fact that the integral I(t) arises from a computation in
physics, it would be interesting to understand a physical interpretation of
the identities (2) and (3). On the other hand, one might be tempted to find
other identities of similar type for I(t). When t = 64, 8,−8, the K3 surface
Xt is singular and the order of complex multiplication corresponding to t
has discriminant D = −15,−8,−24, respectively. In theory, for each t given
above, one can evaluate I(t) at the corresponding CM point τ using (29) and
identify the term 	2(−1/6τ) with a critical L-value of some weight 3 cusp
form using [29, Thm. 5]. However, following the argument in the proofs of
our main theorems, we also have in the expression of I(t) a combination of
special values of the function F3, whose explicit evaluations are not known in
general. For instance, if τ = (−3 +√−15)/6, then we have t(τ) = 64. Note
that the integral I(t) may not converge when t > 16. If we consider the
expression (29) as an analytic continuation of I(t), then we find that

Re(I(64)) =
L(f, 2)

8π2

(
43
√
15π3

15
− 45ζ(3)

− 45

(
3F3

(√−15
3

)
− F3(

√−15)
))

.

One might also consider finding a direct relationship between the integral
I(t) and a critical value of the symmetric square L-function of Er(t), as sug-
gested by Theorem 3 and Corollary 1. Unfortunately, for all but finitely many
values of t, r(t) is irrational and the theory of symmetric square L-functions
of elliptic curves defined over number fields has not yet been completely
established. (For instance, the elliptic curve Er(1) is defined over Q(

√
5).)

Goncharov briefly explained the connection between Feynman integrals and
special values of symmetric power L-functions from a polylogarithmic point
of view in [17, §3.5.7].
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We close this article by pointing out some parallel results on another ob-
ject, the Mahler measure of the polynomial Pt, which is defined analogously
to the integral I(t). Indeed, we first discovered the identities (2) and (3) from
our numerical computation based on some known results on Mahler mea-
sures. Recall that, for a nonzero Laurent polynomial P ∈ C[x±11 , . . . , x±1n ],
the (logarithmic) Mahler measure of P is

m(P ) =

∫ 1

0
· · ·

∫ 1

0
log |P (e2πiθ1 , . . . , e2πiθn)| dθ1 · · · dθn.

It has been proved that the Mahler measures of certain three-variable poly-
nomials are expressible in terms of non-critical L-values. For example, Bertin
[4, 5] proved that, for some integral values of t which are corresponding to
singular K3 surfaces, the Mahler measures of

Qt : = x1 + x−11 + x2 + x−12 + x3 + x−13 − t,

Rt : = (1 + x1 + x2 + x3)(x1x2 + x2x3 + x1x3 + x1x2x3)− tx1x2x3,

are rational linear combinations of
√
NL(h, 3)/π3 and

√
DL(χ, 2)/π for some

newform h ∈ S3(Γ1(N)) and some odd Dirichlet character χ of conductor D.
By a substitution (x1, x2, x3)→ (x1/x3, x3/x2, x2) in m(Rt) and [31, Lem.
7], we have that m(Pt) = m(Rt), which we shall denote by m(t). As a conse-
quence, Bertin’s formulas for m(Rt) given in [4, Thm. 1] and [5, §4.3] become
equivalent to

m(16) = 4m(4) =
48
√
3

π3
L(g, 3),

m(4) = 2(m(−32)− 2m(−2)),

which are clearly reminiscent of the identities in Theorem 2. The author also
showed further in [30, Cor. 3.2] that

m(−32) = 48
√
3

π3
L(g, 3) +

4

π
L(χ−4, 2),

m(−2) = 21
√
3

π3
L(g, 3) +

2

π
L(χ−4, 2).

These formulas lead us to believe that each integral I(t) in Theorem 2 can
also be written in terms of a special L-value and some ‘meaningful’ quantity.
Given these examples and (1), one should expect thatm(1) is also expressible
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in terms of L(f, 3). In contrast, by a result of Bertin [6], we have

m(1) =
6
√
3

5π
L(χ−3, 2).

A non-critical L-value of f , on the other hand, conjecturally appears in the
Mahler measure of a linear polynomial of four variables.

Conjecture 1 (F. Rodriguez Villegas [11]). We have

m(1 + x1 + x2 + x3 + x4)
?
= 6

(√−15
2πi

)5

L(f, 4).

The (desingularized) variety 1 + x1 + x2 + x3 + x4 = 0 is not a surface, but
the complete intersection of this hypersurface and 1 + x−11 + x−12 + x−13 +
x−14 = 0 is compactified to a singular K3 surface, whose L-function is L(f, s)
[26]. In fact, by a transformation given in [8, §7.1.1], it can be seen that this
K3 surface is isomorphic to X1.

Let us elucidate a link between I(t) and m(t) here. Recall from [8, Thm.
2.2.1] that I(t) satisfies the nonhomogeneous differential equation L3

t I(t) =
−24, while the derivative m′(t) is a solution of the associated homogeneous
equation. Hence, parametrizing t by (28) we can write m′(t) in terms of
	1(τ). We also have from the proofs of [8, Thm. 2.3.2] and [5, Thm. 1.1]
that

I(t(τ)) = 	1(τ)

(
40π2τ2 +

1

2

∫ q

1

(
log

q̂

q

)2

σ(q̂)d log q̂

)
,

m(t(τ)) =
1

24

∫ q

1
σ(q̂)d log q̂,

where σ(q) = 1
5(−E4(τ) + 16E4(2τ) + 9E4(3τ)− 144E4(6τ)).

The connection between Feynman integrals and Mahler measures seems
even more obscure in the two-variable cases. For instance, consider the so-
called sunset integral

J(t) =

∫
x1,x2≥0

1

(1 + x1 + x2)(1 + x−11 + x−12 )− t

dx1
x1

dx2
x2

,

studied in [9]. Note that when t �= 0 the zero locus of St := (1 + x1 + x2)(1 +
x−11 + x−12 )− t is the curve E1/t introduced in Section 5, but, to our knowl-
edge, no J(t) is known to be related to an L-value of E1/t. (This may
be regarded as a part of Broadhurst’s remark in [13]: “The absence of
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weight 2 examples is remarkable: does quantum field theory avoid Birch
and Swinnerton-Dyer?”.) On the other hand, Rogers [28] verified numer-
ically that for many integral values of t, m(St) is a rational multiple of
L(E1/t, 2)/π

2. For example, he found that

m(S8) = 6m(S2) =
3

5
m(S−7) =

21

π2
L(E, 2),

where E is an elliptic curve of conductor 14, which have been successfully
proved by Mellit [22]. Despite the absence of weight 2 evidence for J(t), we
have found from our numerical computation that

J(8)
?
= 2J(2).

(Curiously, the integral J(−7) does not appear to be a rational multiple of
the other two.) In summary, it would be interesting to gain deeper under-
standing about how Feynman integrals and Mahler measures are related.
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