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A relative basis for mixed Tate motives
over the projective line minus three points

Ismaël Soudères

In a previous work, the author built two families of distinguished
algebraic cycles in Bloch-Kriz cubical cycle complex over the pro-
jective line minus three points.
The goal of this paper is to show how these cycles induce well-

defined elements in the H0 of the bar construction of the cycle
complex and thus generate comodules over this H0, that is a mixed
Tate motives over the projective line minus three points.
In addition, it is shown that out of the two families only one is

needed at the bar construction level. As a consequence, the author
obtains that one of the family gives a basis of the tannakian Lie
coalgebra of mixed Tate motives over P1 \ {0, 1,∞} relatively to
the tannakian Lie coalgebra of mixed Tate motives over Spec(Q).
This in turns provides a new formula for Goncharov motivic co-
product, which should really be thought as a coaction. This new
presentation is explicitly controlled by the structure coefficients of
Ihara’s action by special derivation on the free Lie algebra on two
generators.
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1. Introduction

1.1. Multiple polylogarithms and mixed Tate motives

For a tuple of integers (k1, . . . , km), the multiple polylogarithm is defined
by:

Lik1,...,km
(z) =

∑
n1>···>nm

zn1

nk1

1 · · ·nkm
m

(z ∈ C, |z| < 1).

This is one of the one variable version of multiple polylogarithms in many
variables defined by Goncharov in [10].

When k1 � 2, the series converges as z goes to 1 and one recovers the
multiple zeta value

ζ(k1, . . . km) = Lik1,...,km
(1) =

∑
n1>···>nm

1

nk1

1 · · ·nkm
m

.

The case m = 1 recovers the classical polylogarithm and the value of Riemann
zeta function at k1: ζ(k1).

The values of multiple polylogarithms are important in geometric as they
naturally appear as periods, in the Hodge or motivic sense, of moduli spaces
of curves in genus 0 ([3]); as periods of the fundamental groups of P1 minus
a finite set of points ([5]). In number theory, Zagier’s conjecture [28] predicts
that regulators of number fields are linear combinations of polylogarithms at
special points.

Bloch and Kriz in [1] constructed algebraic avatars of classical polyloga-
rithms. However this was part of a larger work proposing in 1994 a tannakian
category MTM(F ) of mixed Tate motives over a number field F . Their con-
struction begins with the cubical complex computing higher Chow groups
which in the case of Spec(F ) is commutative differential graded algebra NF .
The H0 of the bar construction B(NF ) is a Hopf algebra and MTM(F ) is
defined as

MTM(F ) = category of comodule over H0(NF ).

Spitzweck in [25] (as presented in [16]) proved that this construction agrees
with Voevodsky definition of motives [26] and Levine’s approach to mixed
Tate motive [15]. More recently, M. Levine generalized this approach in [17]
to any quasi projective variety X over the spectrum of a field K such that

• the motive of X is mixed Tate in Cisinski and Déglise category DM(K),
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• the motive of X satisfies Beilinson-Soulé vanishing property.

In order to do so, Levine used the complex N qf, •
X of quasi-finite cycles

over X (Definition 3.11) instead of the original Bloch-Kriz complex. This
modification has better functoriality properties and allows a simpler defini-
tion of the product structure. Let Spec(Q) be the ground field, and Let x
be a Q-point of P1 \ {0, 1,∞}. GP1\{0,1,∞} and GQ denote the Spectrum of
H0(B(N qf, •

P1\{0,1,∞})) and H0(B(N qf, •
Q )) respectively. M. Levine’s work shows

in particular that for X = P1 \ {0, 1,∞}:

Theorem 1.1 ([17][Section 6.6 and Corollary 6.6.2]). There is a tan-
nakian category of mixed Tate motives over P1 \ {0, 1,∞}:

MTM(P1 \ {0, 1,∞}) = category of comodule over H0(N qf, •
P1\{0,1,∞}).

Moreover there is a split exact sequence:

(1) 1 πmot
1 (P1 \ {0, 1,∞}, x) GP1\{0,1,∞} GQ 1

p∗

x∗

where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q). In the
above exact sequence πmot

1 (P1 \ {0, 1,∞}, x) denotes Deligne and Goncharov
motivic fundamental group [5].

The exact sequence (1) is the motivic avatar of the short exact sequence
for etale fundamental groups. M. Levine however did not produce any specific
motives. In particular, M. Levine did not produce any specific element in
H0(B(N qf, •

P1\{0,1,∞})) ; a natural motive being then the comodule cogenerated
by such an element.

1.2. Distinguished algebraic cycles over P1 \ {0, 1,∞}

In order to describe explicitly some elements in H0(B(N qf, •
P1\{0,1,∞})), a

first possible step is to produce a family of degree 1 elements in N qf, •
P1\{0,1,∞}

having a decomposable boundary inside the family. More explicitly, the dif-
ferential of such an element is a linear combination of products of other
elements inside the family.

In [23] the author produces such a family. Together with two explicit
degree 1 weight 1 algebraic cycles generating H1(N qf, •

P1\{0,1,∞}), the author
obtains:
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Theorem. For any Lyndon word W in the letters {0, 1} of length p � 2,
there exists a cycle L0

W in N qf, 1
P1\{0,1,∞}(p); i.e. a cycle of codimension p in

P1 \ {0, 1,∞}× A2p−1 × Ap dominant and quasi-finite over P1 \ {0, 1,∞}×
A2p−1. The cycle L0

W satisfies :

• L0
W has a decomposable boundary,

• L0
W admits an equidimensional extension to A1 with empty fiber at 0.

A similar statement holds for 1 in place of 0.

The above result relies on

• The dual of the action of the free Lie algebra on two generators on
itself by Ihara special derivations in order to “guess” the differential of
cycles L0

W .

• The pull-back by the multiplication A1 × A1 −→ A1 in order to build
the cycles L0

W from their boundaries.

The free Lie algebra on two generators Lie(X0, X1) is the Lie algebra associ-
ated to πmot

1 (P1 \ {0, 1,∞}, x) from the exact sequence (1) and hence appears
naturally in the construction. However its graded dual Qgeom is more closely
related to H0(B(N qf, •

P1\{0,1,∞})) and is more natural in our context. It appears
in the sequence dual to (1) :

0 −→ QQ −→ QP1\{0,1,∞} −→ Qgeom −→ 0

where QP1\{0,1,∞} and QQ denote respectively the set of indecomposable
elements of H0(B(N qf, •

P1\{0,1,∞})) and H0(B(N qf, •
Spec(Q))).

1.3. Main results

In this paper, using the unit of the adjunction between bar and cobar
construction in the commutative/coLie case, we lift the above algebraic cycles
to elements in QP1\{0,1,∞} viewed as a subspace of H0(B(N qf, •

P1\{0,1,∞})) by the
mean of Hain’s projector px (see [12] or Section 2.3). Let

π1 : B(N qf, •
P1\{0,1,∞}) −→ N qf, •

X

be the projection onto the tensor degree 1 part of the bar construction. We
obtain:
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Theorem (Theorem 3.16). For any Lyndon word W of length p � 2 there
exists an element LB

W , in the bar construction B(N qf, •
P1\{0,1,∞}) satisfying:

• One has π1(LB
W ) = L0

W .

• It is in the image of px ; that is in QP1\{0,1,∞};

• It is of degree 0 and map to 0 under the bar differential; it induces a
class in H0(BP1\{0,1,∞}) and in H0(QP1\{0,1,∞}).

• Its cobracket in QP1\{0,1,∞} is given by the differential of L0
W .

A similar statement holds for cycles L1
W and constant cycles L0

W (1) induced
by the fiber at 1 of L0

W (after extension to A1).

Then we show that the elements LB
W and L1,B

W are related:

Theorem (Theorem 4.5). For any Lyndon word W of length p � 2 the
following relation holds in H0(QX) = QH0(BX)

(2) LB
W − L1,B

W = LB
W (1).

The proof relies on the relation between the situation on P1 \ {0, 1,∞}
and on A1 where the cohomology of N qf, •

A1 is given by constant cycles because
of A1-homotopy invariance of higher Chow groups. As a corollary one obtains
a description of the cobracket of LB

W in terms of the structure coefficients of
Ihara action by special derivation. This makes explicit the relation between
the dual of Ihara action (or bracket) and Goncharov motivic coproduct which
here, as in Brown [2], is in fact a coaction. In a group setting, Goncharov
coproduct corresponds really to the action of GQ on πmot

1 (P1 \ {0, 1,∞}, x)
induced by the short exact sequence (1).

We conclude the paper by showing at Theorem 4.9 that the family of
elements LB

W induces a basis of Qgeom; that is a basis of QP1\{0,1,∞} relatively
to QQ.

Our methods are structural and geometric by opposition to Gangl Gon-
charov and Levin approach [7] toward lifting cycles to bar elements using
the combinatorics of “rooted polygons”.

The paper is organized as follow

• In the next section, Section 2, we begin by a short review of differential
graded (dg) vector spaces. Then we present the bar cobar adjunction
in the case of associative algebras and coalgebras and in the case of
commutative algebras and Lie coalgebras.
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• In Section 3, we present the action of Lie(X0, X1) on itself by Ihara’s
special derivations and the corresponding Lie coalgebra. From there we
recall the results from [23] constructing the cycles Lε

W . We conclude
this section by lifting the cycles to elements in the bar construction.

• In section 4, we prove that bar elements LB
W and L1,B

W are equal up
to the constant (over P1 \ {0, 1,∞}) bar element LB

W (1). From there
we make explicit the relation with Ihara’s coaction and prove that the
elements LB

W provide a basis for Qgeom graded dual of the Lie algebra
associated to πmot

1 (P1 \ {0, 1,∞}, x).

2. Bar and cobar adjunctions

In this section we recall how the bar/cobar constructions give a pair of
adjoint functors in the two following cases:

B :

{
diff. gr. ass.

algebras

}
�

{
diff. gr. coass.

coalgebras

}
: Ω

and

Bcom :

{
diff. gr. com.
ass. algebras

}
�

{
diff. gr. coLie.

coalgebras

}
: ΩcoL.

A differential graded commutative algebra A is also an associative algebra
and we will recall how the two constructions are related in this case.

The material developed here is well known and can be found in Ginzburg-
Kapranov [9] work even if their use of graded duals replaces coalgebra struc-
tures by algebra structures. The presentation used here is closer to the Kozul
duality as developed by Jones and Getzler in [8]. We follow here the signs con-
ventions and the formalism presented by Loday and Vallette in [18]. The as-
sociative case is directly taken from [18, Chap. 2] in a cohomological version.
More about the commutative/coLie adjunction can be found in [8, 9, 19, 22].

2.1. Notation and convention

Koszul sign rule. The objects are all objects of the category of (sign)
graded Q-vector spaces. The degree of an homogeneous element v in V is
denoted by |v| or |v|V if we want to emphasis where v is. The symmetric
structure is given by the switching map

τ : V ⊗W −→ W ⊗ V , τ(v ⊗ w) = (−1)|v||w|w ⊗ v.
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For any maps f : V → V ′ and g : W → W ′ of graded spaces, the tensor
product

f ⊗ g : V ⊗W −→ V ′ ⊗W ′

is defined by

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w).

A differential graded (dg) vector space is a graded vector space equipped
with a differential dV (or simply d) ; that is a degree 1 linear map satisfying
d2V = 0. For V and W two dg vector spaces the differential on V ⊗W is
defined by

dV⊗W = id V ⊗dW + dV ⊗ idW .

Definition 2.1. Let V = ⊕nV
n and W = ⊕nW

n be two graded vector
spaces. A morphism of degree r, say f : V −→ W , is a collection of morphisms
fn : V n −→ Wn+r. Let Hom(V,W )r be the vector space of morphisms of de-
gree r.

Let V and W be two dg vector spaces. Then, the graded vector space
Hom(V,W ) = ⊕Hom(V,W )r turns into a a dg vector space with differential
given by :

dHom(f) = dW ◦ f − (−1)rf ◦ dV

for any homogeneous element f of degree r. A dg morphism f : V −→ W is
a morphism satisfying dHom(f) = 0.

The dual of a graded vector space V = ⊕nV
n is defined by

V ∗ = ⊕nHomV ect(V
−n,Q) = Hom(V,N)

where the dg vector space N is defined by N = Q concentrated in degree 0
with 0 differential. One has an obvious notion of cohomology on dg vector
space.

Definition 2.2 ((de)suspension). Let S = sQ be the 1 dimensional dg
vector space concentrated in degree 1 (that is dS = 0) generated by s.

The dual of S is a one dimensional dg vector space denoted by S−1 and
generated by a degree −1 element s−1 dual to s.

Let V, dV be a dg vector space. Its suspension (sV, dsV ), is the dg vector
space S ⊗ V . Its desuspension (s−1V, ds−1V ) is S−1 ⊗ V .
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There is a canonical identification V n−1 � (sV )n given by

is : V −→ sV v 	−→ (−1)|v|V s⊗ v;

under this identification dsV = −dV .

Associative dg algebra. A differential graded associative algebra (A, dA)
abbreviated into dga algebra is a dg vector space equipped with a unital
associative product μA of degree 0 commuting with the differential :

dA ◦ μA = μA ◦ dA⊗A

and satisfying the usual commutative diagrams for an associative algebra,
all the maps involved being maps of dg vector spaces.

The above equality is nothing but Leibniz rule. The unit 1A belongs to
A0. On elements, one writes a ·A b or simply a · b instead of μA(a⊗ b).

Definition 2.3. The dga A is connected if A0 = 1AQ.

Definition 2.4. The tensor algebra over a dg vector space V is defined by

T (V ) =
⊕
n�0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the
concatenation product given by

[a1| · · · |an]⊗ [an+1| · · · an+m] 	−→ [a1| · · · |an|an+1| · · · an+m]

where the “bar” notation [a1| · · · |an] stands for a1 ⊗ · · · ⊗ an in V ⊗n.

Note that the degree of [a1| · · · |an] is |a1|V + · · · |an|V and that T (V )
admits a natural augmentation given by ε([a1| · · · |an]) = 0 for n > 0 and
the convention V ⊗0 = Q. The concatenation product is associative.

Commutative, symmetric and antisymmetric algebras. A commu-
tative dga algebra (A, dA, μA) or cdga algebra is a dga algebra such that the
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multiplication commutes with the switching map:

A⊗A A⊗A

A

τ

μA μA

On homogeneous elements, this reads as

a · b = (−1)|a||b|b · a.

Let V be a dg vector space and n � 1 an integer. The symmetric group
Sn acts on V ⊗n in two natural ways : the symmetric action ρS and the
antisymmetric action ρΛ (both graded).

For i in {1, . . . , n− 1}, let τi be the permutation exchanging i and i+ 1.
It is enough to define both actions for the τi:

ρS(τi) = id ⊗ · · · id︸ ︷︷ ︸
i−1 factors

⊗τ ⊗ id ⊗ · · · ⊗ id

and

ρΛ(τi) = id ⊗ · · · id︸ ︷︷ ︸
i−1 factors

⊗(−τ)⊗ id ⊗ · · · ⊗ id .

where τ is the usual switching map. Both actions involved signs. The graded
signature εgr(σ) ∈ {±1} of a permutation σ is defined by

ρS(σ)(v1 ⊗ · · · ⊗ vn) = εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

Then, one has

ρΛ(σ)(v1 ⊗ · · · ⊗ vn) = ε(σ)εgr(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

where ε(σ) is the usual signature. Let pS,n be the projector defined on V ⊗n

by

pS,n =
1

n!

(∑
σ∈Sn

ρS(σ)

)
.

Definition 2.5. The (graded) symmetric algebra Sgr(V ) over V is defined
as the quotient of T (V ) by the two side ideal generated by (id −τ)(a⊗ b).
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One can write
Sgr(V ) =

⊕
n�0

Sgr,n(V ).

One also has the isomorphism Sgr,n(V ) = pS,n(V
⊗n). Sgr(V ) is the free

commutative algebra over V . We may write simply V 
 V for Sgr,2(V ).

Definition 2.6. The (graded) antisymmetric algebra Λgr(V ) V is defined
as the quotient of T (V ) by the two side ideal generated by (id +τ)(a⊗ b).

One can write
Λgr(V ) =

⊕
n�0

Λgr,n(V ).

We may write V ∧ V for Λgr,2(V ).

As in the symmetric case, Λgr(V ) is also the image of V ⊗n by the pro-
jector pΛ,n = 1/(n!)(

∑
σ ρΛ(σ)) and Λ(V ) is the free antisymmetric algebra

over V .

Associative coalgebra. A differential graded associative coalgebra (C, dC)
abbreviated into dga coalgebra is a dg vector space equipped with a counital
coassociative coproduct ΔC of degree 0 commuting with the differential :

dC⊗C ◦ΔC = ΔC ◦ dC

and satisfying the usual commutative diagrams for an associative coalgebra,
all the maps involved being maps of dg vector spaces.

The iterated coproduct Δn : C −→ C⊗(n+1) is

Δn = (Δ⊗ id ⊗ · · · ⊗ id )Δn−1 and Δ1 = Δ.

This definition is independent of the place of the Δ factor (here in first
position) because of the associativity of the coproduct. We will use Sweedler’s
notation:

Δ(x) =
∑

x(1) ⊗ x(2) , (Δ⊗ id )Δ(x) =
∑

x(1) ⊗ x(2) ⊗ x(3)

and
Δn(x) =

∑
x(1) ⊗ · · · ⊗ x(n+1).

A coaugmentation on C is a morphism of dga coalgebra u : Q → C. In
this case, C is canonically isomorphic to ker(ε)⊕Qu(1). Let C̄ = ker(ε) be
the kernel of the counit.



A relative basis for MTM(P1 \ {0, 1,∞}) 97

When C is coaugmented, the reduced coproduct is defined by Δ̄ = Δ−
1⊗ id − id ⊗1. It is associative and there is an iterated reduced coproduct
Δ̄n for which we also use Sweedler’s notation.

Definition 2.7. C is conilpotent when it is coaugmented and when, for any
x in C, one has Δ̄n(x) vanishes for n large enough.

A cofree dga coalgebra over the dg vector space is by definition a conilpo-
tent dga coalgebra F c(V ) equipped with a linear map of degree 0 p : F c(V ) →
V commuting with the differential such that p(1) = 0. It factors any mor-
phism of dg vector space φ : C −→ V where C is a conilpotent dga coalgebra
with φ(1) = 0.

Definition 2.8. The tensor coalgebra over V is defined by

T c(V ) =
⊕
n�0

V ⊗n

and equipped with the differential induced on each V ⊗n by dV and with the
deconcatenation coproduct given by

[a1| · · · |an] 	−→
n+1∑
i=0

[a1| · · · |ai]⊗ [ai+1| · · · an].

The deconcatenation coproduct is associative. The natural projection
πV : T c(V ) −→ Q = V ⊗0 onto the tensor degree 0 part is a counit for T c(V )
while the inclusion Q = V ⊗0 −→ T c(V ) gives the coaugmentation. The ten-
sor coalgebra T c(V ) is the cofree counital dga coalgebra over V .
dg Lie algebra. We review here the definition of Lie algebra and Lie
coalgebra in the dg formalism. For any dg vector space V , let ξ be the cyclic
permutation of V ⊗ V ⊗ V defined by

ξ = (id ⊗τ)(τ ⊗ id ).

It corresponds to the cycle sending 1 to 3, 3 to 2 and 2 to 1.

Definition 2.9. A dg Lie algebra L is a dg vector space equipped with a
degree 0 map of dg vector spaces c : L⊗ L −→ L (c stands for “crochet”)
satisfying

c ◦ τ = −c and c ◦ (c⊗ id ) ◦ (id +ξ + ξ2) = 0.

On elements, we will use a bracket notation [x, y] instead of c(x⊗ y).



98 Ismaël Soudères

In the above definition, the first relation is the usual antisymmetry of
the bracket which gives in the dg context:

[x, y] = (−1)|x||y|[y, x].

The second relation is the Jacobi relation:

[[x, y], z] + (−1)|x|(|y|+|z|)[[y, z], x] + (−1)|z|(|y|+|x|)[[z, x], y] = 0.

One remarks that (c⊗ id ) ◦ ξ = τ ◦ (id ⊗c) and that (c⊗ id ) ◦ ξ2 = ((c ◦
τ)⊗ id ) ◦ (id ⊗τ). Using this and the antisymmetry relation, one can rewrite
the Jacobi relation as a Leibniz relation:

c ◦ (c⊗ id ) = c ◦ (id ⊗c) + c ◦ (c⊗ id ) ◦ (id ⊗τ).

The definition of a dg Lie coalgebra is dual to the definition of a Lie
algebra.

Definition 2.10. A dg Lie coalgebra Lc is a dg vector space equipped with
a degree 0 map of dg vector spaces δ : Lc −→ Lc ⊗ Lc satisfying

τ ◦ δ = −δ and (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0

The first condition shows that δ induces a map (again denoted by δ)

δ : Lc −→ Lc ∧ Lc.

Let τ12 : Lc⊗3 −→ Lc⊗3 be the permutation exchanging the two first factors.
The second condition shows that the following diagram is commutative

Lc ⊗ Lc Lc ⊗ Lc ⊗ Lc

Lc

Λgr,2(Lc) Λgr,3(Lc)

δ

δ

δ ⊗ id − id ⊗δ

δ ∧ id − id ∧δ

1/6(id −τ12)(id +ξ + ξ2)

and that the composition going through the bottom line is 0.
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2.2. Bar/cobar adjunction: associative case

Bar construction. In this subsection, we recall briefly the bar/cobar con-
struction and how they give a pair of adjoint functor in the associative case.

B :

{
diff. gr. ass.

algebras

}
�

{
diff. gr. coass.

coalgebras

}
: Ω.

Let (A, dA, μA, εA) be an augmented dga algebra and Ā = ker(εA) its
augmentation ideal. The bar construction of A is obtained by twisting the
differential of the dga free coalgebra T c(s−1Ā).

The differential dA makes Ā and thus s−1Ā into a dg vector vector space.
Let D1 denote the induced differential on T c(s−1Ā) which in tensor degree
n is:

n∑
i=1

id i−1⊗ds−1Ā ⊗ id n−i .

S−1 = s−1Q admits an associative product-like map of degree +1 defined
by:

Πs : s
−1Q⊗ s−1Q −→ s−1Q Πs(s

−1 ⊗ s−1) = s−1.

The map Πs and the restriction μĀ of the multiplication μA to Ā induce the
following map:

f : s−1Q⊗ Ā⊗ s−1Q⊗ Ā
id ⊗τ⊗id−−−−−−→ s−1Q⊗ s−1Q⊗ Ā⊗ Ā
Πs⊗μĀ−−−−→ s−1Q⊗ Ā.

This map induces a degree 1 map D2 : T
c(s−1Ā) −→ T c(s−1Ā) which

satisfies D2
2 = 0 because of the associativity of μA

One checks that the degree 1 morphisms D1 and D2 commute (in the
graded sense):

D1 ◦D2 +D2 ◦D1 = 0

The coproduct on T c(s−1Ā) is given by the deconcatenation coproduct.
From these definitions, one obtains (see [18][Section 2.2.1]) the following.

Lemma 2.11. The complex B(A) = (T c(s−1Ā), dB) with dB = D1 +D2

and endowed with the deconcatenation coproduct Δ is a conilpotent dga coal-
gebra.

We recall below the explicit formulas related to the bar construction
B(A):
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• An homogeneous element a of tensor degree n is denoted by

[s−1a1| · · · |s−1an]

or when the context is clear enough not to forget the shifting simply
by [a1| · · · |an]. Its degree is given by:

degB(a) =

n∑
i=1

degs−1Ā(s
−1ai) =

n∑
i=1

(degA(ai)− 1)

• the coproduct is given by:

Δ(a) =

n∑
i=1

[s−1a1| · · · |s−1ai]⊗ [s−1ai+1| · · · |s−1an].

• Let ηa(i) or simply η(i) denote the “partial degree” of a:

ηa(i) =

i∑
k=1

degs−1Ā(s
−1ak) =

i∑
k=1

(degA(ak)− 1).

• The differential D1 and D2 are explicitly given by the formulas:

D1(a) = −
n∑

i=1

(−1)η(i−1)[s−1a1| · · · |s−1dA(ai)| · · · |s−1an]

and

D2(a) = −
n∑

i=1

(−1)η(i)[s−1a1| · · · |s−1μA(ai, ai+1)| · · · |s−1an].

The global minus sign in D1 appears because the differential of the
dg vector space s−1Ā is given by ds−1Ā(s

−1a) = −s−1dA(a). The other
signs are due to the Kozul sign rules taking care of the shifting.

Remark 2.12. This construction can be seen as a simplicial total complex
associated to the complex A (as in [1]). Here, the augmentation makes it
possible to use directly Ā without referring to the tensor coalgebra over
A and without the need of killing the degeneracies. However the simplicial
presentation usually masks the need of working with the shifted complex
which is important for sign issues.
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The bar construction B(A) also admits a product x which shuffles the
tensor factors. However, this extra structure becomes more interesting when
A is graded commutative and it will described at Section 2.3.

The bar construction is a quasi-isomorphism invariant as shown in [18]
(Proposition 2.2.4) and the construction provides a functor:

B : {aug. dga algebra} −→ {coaug. dga coalgebra} .

Cobar construction. The cobar construction follows similar but dual
lines. Let (C, dC ,ΔC , εC) be a coaugmented dga coalgebra decomposed as
C = C̄ ⊕Q. Consider T (sC̄) the free algebra over sC̄ (with concatenation
product). The differential on C induces a differential d1 on T (sC̄). S = sQ
comes with a coproduct-like degree 1 map dual to Πs:

Δs : sQ −→ sQ⊗ sQ , Δs(s) = −s⊗ s.

The map Δs and the restriction of the reduced coproduct Δ̄c to C̄ induce
the following map:

g : sC̄
Δs⊗Δ̄C−−−−−→ sQ⊗ sQ⊗ C̄ ⊗ C̄

id ⊗τ⊗id−−−−−−→ sQ⊗ C̄ ⊗ sQ⊗ C̄.

It induces a degree 1 map d2 on T (sC̄) satisfying d22 = 0 because of the
coassociativity of Δc. The two degree 1 maps d1 and d2 commute (in the
graded sense):

d1 ◦ d2 + d2 ◦ d1 = 0.

Lemma 2.13. The complex Ω(C) = (T (sC̄), dΩ) with differential dΩ = d1 +
d2 and endowed with the concatenation product is an augmented dga algebra
called the cobar construction of C.

Note that the cobar construction is not in general a quasi-isomorphisms
invariant. The reader may look at [18, Section 2.4] for more details.

Adjunction. The two functors bar and cobar induces an adjunction which
is described as follows:

Theorem 2.14 ([18, Theorem 2.2.9 and Corollary 2.3.4]). For every
augmented dga algebra A and every conilpotent dga coalgebra C there exists
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a natural bijection

Homdga alg(Ω(C), A) � Tw(C,A) � Homdga coalg(C,B(A)).

The unit υ : C → B ◦ Ω(C) and the counit ε : Ω ◦B(A) → A are quasi-
isomorphisms of dga coalgebras and algebras respectively.

2.3. Bar/cobar adjunction: commutative/coLie case

In this section we recall the bar/cobar adjunction in the commutative
dga algebra and dg Lie coalgebra case giving a pair of functors:

Bcom :

{
diff. gr. com.
ass. algebras

}
�

{
diff. gr. Lie.
coalgebras

}
: ΩcoL.

The cobar construction in the coLie case is a little more delicate. We will
concentrate on this construction. The bar construction in the commutative
case, will be presented as the set of indecomposable elements of the asso-
ciative bar construction. A direct construction can be found in [22]. Other
descriptions were given in [8, 9].

Cobar construction for Lie coalgebras. The construction follows the
lines of the dg associative coalgebra case. However the lack of associativity
and the use of the symmetric algebra must be taken into account.

First we need a notion of conilpotency for a Lie coalgebra (Lc, δ, d). As
δ is not associative, one can not directly use an iterated coproduct. One
introduces trivalent trees controlling this lack of associativity.

A rooted trivalent tree, or simply a tree, is a planar tree (at each internal
vertex a cyclic ordering of the incident edges is given) where vertices have
valency 1 (external vertices) or 3 (internal vertices) together with a distin-
guished external vertex (the root); other external vertices are called leaves.
The leaves are numbered from left to right beginning at 1. The trees are
drawn with the root (with number 0) at the top.

Let (Lc, δ, d) be a dg Lie coalgebra. Recall that δ is a dg morphism
δ : Lc −→ Lc ⊗ Lc.

Definition 2.15. Let T be a tree with n leaves as above and let {e1, . . . , en}
be the set of its leaves (ei is the i-th leaf). T induces a morphism

δT : Lc −→ Lc⊗n

as follows:



A relative basis for MTM(P1 \ {0, 1,∞}) 103

• if T has n = 1 leaf, δT = id Lc ;

• if T has n = 2 leaves, then T =

e1 e2

and δT = δ;

• if T has n � 3 leaves, then there exists at least one leaf ei in a strict
subtree of the form

T0 =

v

ei ei+1

where v is an internal vertex of T . Let T ′ be the tree T \ T0, where
the subtree T0 of T has been removed and replace by a leaf which is in
position i by construction. The morphism δT is defined by

δT = (id⊗(i−1)⊗δ ⊗ id⊗(n−i)) ◦ δT ′ .

This definition does not depend on the choice of the subtree T0. By
analogy with the associative case, we define:

Definition 2.16. A Lie coalgebra (Lc, δ, d) is conilpotent if for any x ∈ Lc

there exists n big enough such that for any tree T with k leaves, k � n,
δT (x) = 0.

We now fix a conilpotent dg Lie coalgebra (Lc, δ, dLc). Its cobar con-
struction is given by twisting the differential of the free commutative dga
Sgr(sLc).

The differential dLc induces a differential dsLc on sLc and thus on (sLc)⊗n

given by
n∑

i=1

id⊗(i−1) ⊗ dsLc ⊗ id⊗(n−i) : (sLc)⊗n −→ (sLc)⊗n.

This differential goes down to a differential on n-th symmetric power of sLc:

D1 : S
gr,n(sLc) −→ Sgr,n(sLc).

Using the map Δs and the cobracket δLc , one has a morphism:

gL : sLc Δs⊗δ−−−→ sQ⊗ sQ⊗ Lc ⊗ Lc id ⊗τ⊗id−−−−−−→ sQ⊗ Lc ⊗ sQ⊗ Lc

which induces a degree 1 map gL : sLc −→ S2,gr(sLc) because of the relation
τ ◦ δ = −δ and the shift in the degree.
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The relation (id +ξ + ξ2) ◦ (δ ⊗ id ) ◦ δ = 0, combined with the shift in
the degree and Δs, shows that gL induces a differential D2 on Sgr(sLc) given
by the formula:

D2|Sgr,n(sLc) =

n∑
i=1

id⊗(i−1)⊗gL ⊗ id⊗(n−i) .

This is the classical duality between Jacobi identity and D2
2 = 0 for a classical

Lie coalgebra (that is with a dg structure concentrated in degree 0).
The differential D1 and D2 commute (in the graded sens), that is

D1 ◦D2 +D2 ◦D1 = 0

and one obtains the following:

Lemma 2.17. The complex ΩcoL(Lc) = (Sgr(sLc), dΩ,coL) with differential
dΩ,coL = D1 +D2 and endowed with the symmetric concatenation product is
an augmented commutative dga algebra called the cobar (coLie) construction
of Lc.

Bar construction for commutative dga algebras. Let (A, dA, μA, εA)
be an augmented commutative dga algebra and Ā = ker(εA). One can con-
sider its bar construction B(A) as associative algebra. One defines on the
coalgebra B(A) an associative product x by the formula

[x1| · · · |xn]x [xn+1| · · · |xn+m] =
∑

σ∈sh(n,m)

ρS(σ)([x1| · · · |xn|xn+1| · · · |xn+m])

=
∑

σ∈sh(n,m)

εgr(σ)([xσ−1(1)| · · · |xσ−1(n+m)])

where sh(n,m) denotes the subset Sn+m preserving the order of the ordered
sets {1, . . . , n} and {n+ 1, . . . , n+m}. For grading reasons, and thus for
signs issues, it is important to note that, in the above formula, the xi’s are
elements of s−1A.

A direct computation shows that x turns B(A) into an augmented com-
mutative dga Hopf algebra.

The augmentation of B(A) is the projection onto the tensor degree 0
part. Let B(A) be the kernel of the augmentation of B(A) and

QB(A) = B(A)/((B(A))
2
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be the set of its indecomposable elements. Ree’s theorem [18, Theorem 1.3.9]
(originally in [20]) shows the following

Lemma 2.18. The differential dB induces a differential dQ on QB(A). The
reduced coproduct Δ̄ induces a cobracket δQ = 1/2(Δ̄− τΔ̄) on QB(A) mak-
ing it into a conilpotent Lie dg coalgebra.

The complex (QB(A), dQ) endowed with the cobracket δQ is the commu-
tative bar construction of A and denoted Bcom(A).

Working with the set of indecomposable elements as a quotient may be
complicated. In particular, some structure, say for example extra filtrations,
may not behave well by taking a quotient. For this purpose, R. Hain, dealing
with Hodge structure problems, gave in [12] a splitting

iQ : QB(A) −→ B(A)

of the projection pQ : B(A) −→ QB(A) commuting with the differential. The
projector of B(A) given by the composition px = iQ ◦ pQ can be expressed
using the following explicit formula given in [12]:

px([a1| · · · |an]) =
n∑

i=1

(−1)i−1

i
x ◦(Δ̄)i−1([a1| · · · |an])

where the associative product x has been extended to B(A)⊗n for all n � 2
and where Δ̄(0) = id .

Adjunction. As in the case of associative algebras and coalgebras, the
functors ΩcoL and Bcom are adjoint.

Theorem 2.19. For any augmented commutative dga algebra A and any
conilpotent dg Lie coalgebra Lc there exists a natural bijection

Homcom dga alg(ΩcoL(Lc), A) � Homconil dg coLie(Lc, Bcom(A)).

The unit υ : Lc → Bcom ◦ ΩcoL(Lc) and the counit ε : ΩcoL ◦Bcom(A) →
A are quasi-isomorphisms of conilpotent dg Lie coalgebras and commutative
dga algebras respectively.
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Note that the following diagram of dg vector spaces is commutative:

Lc ΩcoL(Lc) = (Sgr(sLc), dΩ,coL)

Bcom(ΩcoL(Lc)) = QB (Sgr(sLc), dΩ,coL)

υ π1

where π1 is the projection onto the tensor degree 1 part restricted to the set
of indecomposable elements; that is its restriction to the image of px .

2.4. An explicit map

We present here an explicit description for the unit υ : Lc −→ Bcom ◦
ΩcoL(Lc) with image in T c(Sgr(sLc)) using the projector px onto the inde-
composable elements.

Definition 2.20. Let n be a positive integer.

• The Catalan number C(n− 1) gives the number of rooted trivalent
trees with n leaves.

• Let T be such a rooted trivalent tree with n leaves. Define δ̃T by

δ̃T =
1

2n
δT

where the map δT : Lc −→ Lc⊗n was introduced at Definition 2.15.

• The morphism δ̃n is up to a normalizing coefficient the sums for all
trees T with n leaves of the morphism δ̃T :

δ̃n =
∑
T

1

nC(n− 1)
δ̃T .

where the sum runs through all trivalent trees with n leaves.

Note that using the identification Lc � s−1Q⊗ sQ⊗ Lc given by x 	→
s−1 ⊗ s⊗ x, the morphism δ̃n induces a morphism

Lc −→
(
s−1 ⊗ s⊗ Lc

)⊗n

again denoted by δ̃n.
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Lemma 2.21. The composition

φLc = px ◦

⎛
⎝∑

n�1

δ̃n

⎞
⎠

gives a morphism

φLc : Lc −→ Bcom ◦ ΩcoL(Lc) = QB (Sgr(sLc))

which is equal to the unit of the adjunction:

φLc = υ.

In the above identification ΩcoL(Lc) = Sgr(sLc), the differential on Sgr(sLc)
is the bar differential dΩ,coL.

The idea for this formula arises by mimicking the associative case where
the unit morphism being a coalgebra morphisms has to be compatible with
the iterated reduced coproduct. This formula can be derived as a consequence
of the work of Getzler and Jones [8] or of the work of Sinha and Walter [22].

3. Families of bar elements

In [23], the author defined a family of algebraic cycles Lε
W indexed by

couple (W, ε) where W is a Lyndon word and ε is in {0, 1}.
One of the idea underlying the construction of the cycles was to follow

explicitly a 1-minimal model construction described in [6] with the hope to
use the relation between 1-minimal model and bar construction in order to
obtain explicit motives over P1 \ {0, 1,∞} in the sense of Bloch and Kriz [1].

The construction of the family of cycles provides in fact a differential sys-
tem for these cycles related to the action of the free Lie algebra Lie(X0, X1)
on itself by Ihara’s special derivations. In this section we will associate bar
elements to the previously defined algebraic cycles using the unit of the
bar/cobar adjunction in the commutative algebra/Lie coalgebra case.

Before dealing with the algebraic cycles situation, we need to recall the
combinatorial situation from [23] and its relation with Ihara action. This is
needed to relate the Lie coalgebra situation (dual to Ihara action) with the
differential system for algebraic cycles.
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3.1. Lie algebra, special derivations and Lyndon words

We present here the Lyndon brackets basis for the free Lie algebra
Lie(X0, X1) and its action on itself by special derivations. The Lie bracket
of Lie(X0, X1) is denoted by [ , ] as usual.

A Lyndon word in 0 and 1 is a word in 0 and 1 strictly smaller than any
of its nonempty proper right factors for the lexicographic order with 0 < 1
(for more details, see [21]). All words considered in this work are Lyndon
words in the two letters 0 and 1.

The standard factorization [W ] of a Lyndon word W is defined induc-
tively by [0] = X0, [1] = X1 and otherwise by [W ] = [[U ], [V ]] with W = UV ,
U and V nontrivial and such that V is minimal.

Example 3.1. Lyndon words in letters 0 < 1 in lexicographic order are up
to weight 4:

0 < 0001 < 001 < 0011 < 01 < 011 < 0111 < 1

Their standard factorization is given in weight 1 and 2 by

[0] = X0, [1] = X1, [01] = [X0, X1],

and in weight 3 by

[001] = [X0, [X0, X1]] and [011] = [[X0, X1], X1].

In weight 4, one has

[0001] = [X0, [X0, [X0, X1]]], and [0111] = [[[X0, X1], X1], X1]

and

[0011] = [X0, [[X0, X1], X1]]

The sets of Lyndon brackets {[W ]}, that is Lyndon words in standard
factorization, form a basis of Lie(X0, X1) ([21, Theorem 5.1]). This basis can
then be used to write the Lie bracket:
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Definition 3.2. For any Lyndon word W , the coefficients αW
U,V (with U < V

Lyndon words) are defined by:

[[U ], [V ]] =
∑

W Lyndon
words

αW
U,V [W ]

with U < V Lyndon words. The α’s are the structure coefficients of the Lie
algebra Lie(X0, X1).

A derivation of Lie(X0, X1) is a linear endomorphism satisfying

D([f, g]) = [D(f), g] + [f,D(g)] ∀f, g ∈ Lie(X0, X1).

Definition 3.3 (Special derivation, [13, 14]). For any f in Lie(X0, X1)
we define a derivation Df by:

Df (X0) = 0, Df (X1) = [X1, f ].

Ihara bracket on Lie(X0, X1) is given by

{f, g} = [f, g] +Df (g)−Dg(f).

Ihara bracket is simply the bracket of derivations

[D1, D2]Der = D1 ◦D2 −D2 ◦D1

restricted to special derivations :

[Df , Dg]Der = Dh, with h = {f, g}.

Let L1 and Lx be two copies of the vector space Lie(X0, X1). The sub-
script x denotes a formal variable but it can be thought as a point x in A1.
Lx is endowed with the free bracket [ , ] of Lie[X0, X1] while L1 is endowed
with Ihara bracket { , }. The Lie algebra L1 acts on Lx by special derivations
; which act on X1 hence the subscript. If f is an element of Lie(X0, X1), we
write f(1) its image in L1 and f(x) its image in Lx.
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Definition 3.4 ([11]). The semi-direct sum L1;x of Lx by L1 is as a vector
space the direct sum

L1;x = Lx ⊕ L1

with bracket { , }1;x given by [ , ] on Lx, by { , } on L1 and by

{g(1), f(x)}1;x = −{f(x), g(1)}1;x = Dg(f)(x) ∀f, g ∈ Lie(X0, X1)

on cross-terms.

The union of {[W ](x), [W ](1)} for all Lyndon words gives a basis of L1;x

while a basis of L1;x ∧ L1;x is given by the union of the following families

[U ](x) ∧ [V ](x) for any Lyndon word U < V

[U ](x) ∧ [V ](1) for any Lyndon word U 
= V

[U ](1) ∧ [V ](1) for any Lyndon word U < V.

Definition 3.5. The structure coefficients αW
U,V , βW

U,V and γWU,V of L1;x are
given for any Lyndon words W by the family of relations

(3)

{[U ](x), [V ](x)}1;x =
∑

W∈Lyn
αW
U,V [W ](x) for any Lyndon word U < V

{[U ](x), [V ](1)}1;x =
∑

W∈Lyn
βW
U,V [W ](x) for any Lyndon word U 
= V

{[U ](1), [V ](1)}1;x =
∑

W∈Lyn
γWU,V [W ](1) for any Lyndon word U < V.

All coefficients above are integers.

Because { , }1;x restricted to Lx is the usual bracket on Lie(X0, X1),
the αW

U,V are the α’s of Definition 3.2 ; Similarly the γ’s are the structure
coefficients of Ihara’s bracket.

Special derivations acts on X1 and DX0
is simply bracketing with X0.

This and the above remark show:

Lemma 3.6 ([23, Lemma 4.18]). Let W be a Lyndon word of length
greater than or equal to 2. Then the following holds for any Lyndon words
U, V :

• βW
0,V = 0,

• βW
V,0 = αW

0,V
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• βU,1 = 0,

• βW
1,U = αW

U,1.

• γWU,V = αW
U,V + βW

U,V − βW
V,U .

In particular, βW
0,0 = βW

1,1 = 0. We also have for W = 0 and W = 1:

αW
U,V = βW

U,V = γWU,V = 0.

3.2. The dual setting : a coaction and a Lie coalgebra

The Lie algebra Lie(X0, X1) is graded by the number of letters appearing
inside a bracket. Hence there is an induced grading on L1;x. Taking the
graded dual of the L1;x, we obtain a Lie coalgebra T coL

1;x .

Definition 3.7. The elements of the dual basis of the Lyndon bracket basis
[W ](x) of Lx are denoted by TW ∗(x). Similarly, TW ∗(1) denotes, for a Lyndon
word W the corresponding element in the basis dual to the basis of L1 given
by the [W ](1)’s.

For a in {1, x}, the elements TW ∗(a) can be represented by linear com-
binations of rooted trivalent trees with leaves decorated by 0 and 1 and root
decorated by a (cf. [23, Section 4.3]). This remark explains the notation “T ”
which stands for “trees” (cf. [23]).

A basis of T coL
1;x ∧ T coL

1;x is given by the union of the following families:

TU∗(x) ∧ TV ∗(x) for any Lyndon word U < V

TU∗(x) ∧ TV ∗(1) for any Lyndon word U 
= V

TU∗(1) ∧ TV ∗(1) for any Lyndon word U < V.

By duality between L1;x and T coL
1;x one has the following:

Proposition 3.8. The bracket {, }1;x on L1,x induces a cobracket on T coL
1;x

δ1;x : T coL
1;x −→ T coL

1;x ∧ T coL
1;x .
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In terms of the above basis one gets

δ1;x(TW ∗(x)) =
∑
U<V

αW
U,V TU∗(x) ∧ TV ∗(x)(ED-T)

+
∑
U,V

βW
U,V TU∗(x) ∧ TV ∗(1)

and

(4) δ1;x(TW ∗(1)) =
∑
U<V

γWU,V TU∗(1) ∧ TV ∗(1)

where U and V are Lyndon words. The coefficients αW
U,V , βW

U,V and γWU,V are
those defined in Equation (3).

Note that one has

δ1;x(T0∗(x)) = δ1;x(T0∗(1)) = 0 and δ1;x(T1∗(x)) = δ1;x(T1∗(1)) = 0.

In weight 2 one has

δ1;x(T01(x)) = T0∗(x) ∧ T1∗(x) + T1∗(x) ∧ T0∗(1).

Because of geometric constraints, one cannot use directly the combina-
torics of the cobracket δ1;x in this basis to define a family of algebraic cycles
over P1 \ {0, 1,∞}. One defines for any Lyndon word W

T 0
W ∗ = TW ∗(x) and T 1

W ∗ = TW ∗(x)− TW ∗(1).

The definition of T 0
W ∗ can be thought as the difference T 0

W ∗ = TW ∗(x)−
TW ∗(0) where the element TW ∗(0) is equal to 0. The elements T 0

W ∗ and T 1
W ∗

form a basis of T coL
1;x when W runs through the set of Lyndon words.

Lemma 3.9 ([23, Lemma 4.32]). In this basis the cobracket δ1;x is given
by

(ED-T 0) δ1;x(T
0
W ∗) =

∑
U<V

aWU,V T
0
U∗ ∧ T 0

V ∗ +
∑
U,V

bWU,V T
1
U∗ ∧ T 0

V ∗ ,

and

(ED-T 1) δ1;x(T
1
W ∗) =

∑
U<V

a′WU,V T
1
U∗ ∧ T 1

V ∗ +
∑
U,V

b′WU,V T
1
U∗ ∧ T 0

V ∗
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where the coefficients a’s, b’s a′’s and b′’s are given by

(5)
aWU,V = αW

U,V + βW
U,V − βW

V,U for U < V

bWU,V = βW
V,U for any U, V

and

(6)

a′WU,V = −aWU,V for U < V,

b′WU,V = aWU,V + bWU,V for U < V,

b′WV,U = −aWU,V + bWV,U for U < V,

b′WU,U = bWU,U for any U.

>From the explicit description of the coaction, Lemma 3.6 gives explicitly
some of the coefficients α’s and β’s. This translates as

Lemma 3.10 ([23, Lemma 4.33]).

• If W is the Lyndon word 0 or 1, then :

a0U,V = b0U,V = a′0U,V = b′0U,V = 0, a1U,V = b1U,V = a′1U,V = b′1U,V = 0

for any Lyndon words U and V .

• For any Lyndon word W , U and V of length at least 2, one has

aW0,V = a′W0,V = 0, b′WU,0 = b′WU,0 = 0

and

aWU,1 = a′WU,1 = 0, bW1,V = b′W1,V = 0.

Moreover for W a Lyndon word,

aWU,V = bWU,V = a′WU,V = b′WU,V = 0

as soon as the length of U plus the length of V is not equal to the length
of W .
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>From the definition of aWU,V and Lemma 3.6 one sees that aWU,V = γWU,V .
This and Equations (ED-T 0) and (ED-T 1) shows that

δ1;x(TW ∗(1)) = δ1;x(T
0
W ∗ − T 1

W ∗) =
∑
U<V

aWU,V (T
0
U∗ − T 1

U∗) ∧ (T 0
V ∗ − T 1

V ∗)(7)

=
∑
U<V

aWU,V (T
0
U∗(1)) ∧ (T 0

V ∗(1))(8)

3.3. A differential system for cycles

In this subsection we review the cubical complex of quasi-finite cycles
over X computing higher Chow groups of X. This complex has a natural
cdga structure. M. Levine, in [17], proved that the H0 of its bar construction
is the tannakian Hopf algebra of mixed Tate motive over X.

The ground field is Spec(Q). The projective line minus three points
P1 \ {0, 1,∞} is simply denoted by X. A generic smooth quasi-projective
variety will be denoted by Y .

We define �1 to be �1 = P1 \ {1} and �n to be (�1)n. The standard
projective coordinates on �n is [Ui : Vi] on the i-th factor; and ui = Ui/Vi is
the corresponding affine coordinate. A face F of codimension p of �n is given
by uik = εk for k = 1, . . . , p and εk in {0,∞}. Such a face is isomorphic to
�n−p. For ε = 0,∞ and i in {1, . . . , n}, let sεi denote the insertion morphism
of a codimension 1 face

sεi : �n−1 −→ �n

given by the identification

�n−1 � �i−1 × {ε} ×�n−i.

Definition 3.11 ([17, Example 4.1.6]). Let Y be an irreducible smooth
variety.

• Let Zp
q.f.(Y, n) denote the free abelian group generated by irreducible

closed subvarieties

Z ⊂ Y ×�n × (P1 \ {1})p

such that the restriction of the projection on Y ×�n,

p1 : Z −→ Y ×�n,

is dominant and quasi finite (that is of pure relative dimension 0).
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• We say that elements of Zp
q.f.(Y, n) are quasi-finite.

Intersection with codimension 1 faces give morphisms

∂ε
i = (sεi )

∗ : Zp
q.f.(Y, n) −→ Zp

q.f.(Y, n− 1).

The symmetric group Sp acts on Zp
q.f.(Y, n) by permutation of the factors

of (P1 \ {1})p. Let Symp
P1\{1} denotes the projector corresponding to the

symmetric representation.
The symmetric group Sn acts on Zp

q.f.(Y, n) by permutation of the fac-
tor �1, and (Z/2Z)n acts on Zp

q.f.(Y, n) by ui 	→ 1/ui on the �1. The sign
representation of Sn extends to a sign representation

Gn = (Z/2Z)n �Sn −→ {1,−1}.

Let Altn ∈ Q[Gn] be the corresponding projector.

Definition 3.12. Let N qf, k
Y (p) denote

N qf, k
Y (p) = Symp

P1\{1} ◦Alt2p−k

(
Zp
q.f.(Y, 2p− k)⊗Q

)
.

• The intersection with codimension 1 faces of �2p−k induces a differen-
tial

∂Y =

2p−k∑
i=1

(−1)i−1(∂0
i − ∂∞

i )

of degree 1.

• The complex of quasi finite cycles is defined by

N qf, •
Y = Q⊕

⊕
p�1

N qf, •
Y (p).

Concatenation of factors �n and of factors P1 \ {1} followed by the pull-
back by the diagonal ΔY : Y → Y × Y induces a product structure to N qf, •

Y .
This product is graded commutative and N qf, •

Y is a cdga ([17, Section 4.2]).
Thanks to [27, Chapter IV and VI], the cohomology of N qf, •

Y agrees with
higher Chow groups of Y tensored with Q (one can also see [17, Lemma 4.2.1]).
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In [23], the author defined two weight 1 degree 1 cycles L1
0 and L0

1 in
N qf, 1

X as

L1
0 = Sym1

P1\{1} ◦Alt1(Z0) and L0
1 = Sym1

P1\{1} ◦Alt1(Z1)

where Z0 and Z1 are the irreducible varieties defined respectively by:

Z0 ⊂ X ×�1 × (P1 \ {1}) : (U − V )(A−B)(U − xV ) + x(1− x)UV B = 0

and

Z1 : (U − V )(A−B)(U − (1− x)V ) + x(1− x)UV B = 0

where x denotes the standard affine coordinate on X = P1 \ {0, 1,∞}, [U :
V ] the projective coordinates on �1 and [A : B] that on P1 \ {1}.

Starting with these two cycles, the author built in [23] two families of
degree 1 elements in N qf, •

X whose differential are given by the cobracket in
T coL
1;x .

Let j be the inclusion P1 \ {0, 1,∞} = X ↪→ A1. The differential on N qf, •
X

is simply denoted by ∂.

Theorem 3.13 ([23]). For any Lyndon word of length p � 2, there exist
two cycles L0

W and L1
W in N qf, 1

X (p) such that:

• There exist cycles L0
W , L1

W in N qf, 1
A1 (p) such that

L0
W = j∗(L0

W ) and L1
W = j∗(L1

W ).

• The restriction of L0
W (resp. L1) to the fiber t = 0 (resp. t = 1) is

empty.

• The cycle L0
W and L1

W satisfy the following differential equations in
N qf, •

X :

(ED-L0) ∂(L0
W ) = −

⎛
⎝∑

U<V

aWU,V L0
UL0

V +
∑
U,V

bWU,V L1
UL0

V

⎞
⎠

and

(ED-L1) ∂(L1
W ) = −

⎛
⎝∑

U<V

a′WU,V L1
UL1

V +
∑
U,V

b′WU,V L1
UL0

V

⎞
⎠
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where coefficients a’s, b’s, a′’s and b′’s are the ones of equations (ED-T 0)
and Lemma 3.9.

One will write generically a cycle in the above families as Lε
W with ε in

{0, 1} when working over X = P1 \ {0, 1,∞} and Lε
W when working over A1.

The above equations differ from the cobracket in T coL
1;x given at equations

(ED-T 0) and (ED-T 1) by a global minus sign. This is due to a shift in the
degree. Hence the above cycles Lε

W differ from the ones defined in [23] by a
global minus sign.

Remark 3.14. The extension Lε
W of the cycle to N qf, •

A1 satisfies the same
differential equations as Lε

W by considering the Zariski closure of the product
in the R.H.S. of (ED-L0) and (ED-L1). However, this Zariski closure is not
decomposable: terms of the form L1

0L0
V are not products in N qf, •

A1 because
L1
0 is not in N qf, 1

A1 ; it is not quasi-finite over 0 (cf proof of Proposition 6.3
in [23]).

Despite the above remark, Theorem 3.13 and the proof of Theorem 5.8 in
[23] give two other but related families of cycles with decomposable boundary
in N qf, 1

A1 . They are described below.
Let W be a Lyndon word of length greater than 2. We define L0−1

W to be
the difference

L0−1
W = L0

W − L1
W .

The geometric situation relates P1 \ {0, 1,∞}, A1 and the point {1} as fol-
lows:

X = P1 \ {0, 1,∞} A1

{1}

j

p1 i1

where j is the open inclusion, p1 is the projection onto {1} and i1 the closed
inclusion (or the 1-section). We define the constant cycle L0

W (1) as

L0
W (1) = p∗1 ◦ i∗1(L0

W ) = p∗1(L0
W |x=1)

where L0
W |x=1 denotes the fiber at 1 of the cycle L0

W . Its restriction to X is
denoted by L0

W (1).
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Lemma 3.15. For any Lyndon word of length p � 2 the cycle L0−1
W satisfies

(ED-L0−1) ∂
(
L0
W − L1

W

)
= −

( ∑
0<U<V <1

aWU,V

(
L0
U − L1

U

)(
L0
V − L1

V

))
.

The differential of L0
W (1) is given by

(9) ∂
(
L0
W (1)

)
= −

( ∑
0<U<V <1

aWU,V L0
U (1)L0

V (1)

)

The above equation also holds for L0
W (1) and i∗1(L0

W ).

Proof. The combinatoric being the same as in T coL
1;x , the first part follows

from Equation (7). The second part is a consequence of Lemma 3.10 because
products of the form L1

UL0
V have an empty fiber at 1. �

The rest of this section shows that each cycle attached to one of the above
family of “differential system” gives rise to an element in the corresponding
bar constructions.

Let BX , BA1 and B{1} denote the bar construction over N qf, •
X , N qf, •

A1

and N qf, •
Spec(Q) respectively. Let QX , QA1 and Q{1} be the corresponding set

of indecomposable elements. By an abuse of notation, we will write dB, Δ,
x and δQ the natural operation in the corresponding spaces. When required
by the context, we will precise the “base” space by the subscript X, A1 and
{1} respectively.

Note that the geometric relation between X = P1 \ {0, 1,∞}, A1 and {1}
gives rise to morphisms of cdga between the corresponding cycles algebras:

N qf, •
X N qf, •

A1

N qf, •
Spec(Q)

p∗
1 i∗1

which then induce morphisms between bar construction and sets of indecom-
posable elements. These morphisms are also denoted j∗, p∗1 and i∗1.

Theorem 3.16 (bar elements). For any Lyndon word W of length p there
exists an element LB

W , in the bar construction BX satisfying:



A relative basis for MTM(P1 \ {0, 1,∞}) 119

• Its image under the projection onto the tensor degree 1 part π1 : BX −→
N qf, •

X is π1(LB
W ) = L0

W .

• It is in the image of the projector px ; hence it is in QX .

• It is of bar degree 0 and its image under dB is 0. Thus it induces a
class in H0(BX) and in H0(QX) = QH0(BX).

• Its image under δQ is given by the differential equations (ED-L0) with-
out the minus sign

δQ(L0
W ) =

∑
U<V

aWU,V L0
UL0

V +
∑
U,V

bWU,V L1
UL0

V .

A similar statement holds for L1
W , L0−1

W and L0
W (1) with Equation (ED-L0)

replaced by equation (ED-L1), (ED-L0−1) and (9) respectively.

Proof. The main point is the relation between T coL
1;x and the above family of

algebraic cycles and to use the unit of the adjunction cobar/bar.
As in Section 2.3, ΩcoL(T coL

1;x ) = Sgr(sT coL
1;x ) denotes the cobar construc-

tion over the Lie coalgebra T coL
1;x concentrated purely in degree 0 (hence with

0 as differential). Let

ψ : ΩcoL(T coL
1;x ) −→ N qf, •

X

be the morphism of cdga induced by

sT 0
W ∗ 	−→ L0

W , sT 1
W ∗ 	−→ L1

W

for any Lyndon word W of length p � 2 together with

ψ(sT 1
0∗) = L1

0, ψ(sT 0
1∗) = L0

1 and ψ(sT 0
0∗) = ψ(sT 1

1∗) = 0

where the prefix s denotes the suspension.
The morphism ψ is compatible with the differential because of equations

(ED-L0) and(ED-L1) and Lemma 3.10. The overall minus sign difference be-
tween equations (ED-L0) and (ED-T 0) (and similarly for Equation (ED-L1))
makes it possible to define ψ without sign (cf Section 2.3).

It induces a morphism on the bar construction (for the associative case)

ψB : B(ΩcoL(T coL
1;x )) −→ BX = B(N qf, •

X )

compatible with projection on tensor degree n part (for any n) and with the
projector px onto the indecomposable elements.
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Hence we obtain the following commutative diagram (of vector space)

ΩcoL(T coL
1;x ) N qf, •

X

B(ΩcoL(T coL
1;x )) BX

T coL
1;x Bcom(ΩcoL(Lc)) QX

υ

ψ

ψB

ψQ

π1 π1

where the morphisms in the bottom line are morphisms of dg Lie algebras
and where υ is the unit of the bar/cobar adjunction.

The bar element LB
W is then defined by

LB
W = ψQ ◦ υ(T 0

W ∗).

Similarly we define L1,B
W and L0−1,B

W .
In order to define LB

W (1), one considers only the sub Lie coalgebra T coL
1

of T coL
1;x and the morphism

ψ : sTW ∗(1) 	−→ L0
W (1)

when W has length p � 2 and sending sT0∗(1) and sT1∗(1) to zero. �
Over A1 a similar statement holds:

Proposition 3.17. For any Lyndon word W of length p � 2, there exists
an element L0−1,B

W in the bar construction BA1 satisfying

• π1(L0−1,B
W ) = L0−1

W = L0
W − L1

W .

• It is in the image of the projector px ; hence in QA1 .

• It is of bar degree 0 and its image under dB is 0; hence it gives a class
in H0(BX) and in H0(QX).

• Its image under δQ is given by Equation (ED-L0−1) without the minus
sign.

• j∗(L0−1,B
W ) = LB

W − L1,B
W .
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A similar statement holds for L0
W (1) and i∗1(L0

W ) = i∗1(L0
W (1)) with equa-

tion (ED-L0−1) replaced by (9). The corresponding bar elements are denoted

LB
W (1) and LB

W,x=1

respectively. We have the appropriate compatibilities with p∗1 and j∗.

Proof. The proof goes as in Theorem 3.16 above but using only the sub
Lie coalgebra T coL

1 and equations (ED-L0−1) and (9). The coefficients aWU,V
appearing in the differential equation for the cycles are equal to coefficients
γWU,V giving the cobracket of the element TW ∗(1) (cf. Lemma 3.6).

The relations between bar elements over {1}, A1 and X = P1 \ {0, 1,∞}
follow because i∗1, p∗1 and j∗ are morphisms of cdga algebra. �

Lemma 3.18. In BQ the following relation holds :

i∗1(L0−1,B
W ) = i∗1(LB

W (1)) = LB
W,x=1.

Proof. It follows from equations (7) and (8) which holds for the cycle on A1

and because in the cycle setting one has in N qf, •
Q :

i∗1(L0−1
W ) = i∗1(L0

W (1)) = L0
W |x=1

for any Lyndon word W . �

4. A relative basis for mixed Tate motive over P1 \ {0, 1,∞}

4.1. Relations between bar elements

A motivation for introducing cycles L1
W in [23] was the idea of a corre-

spondence

L0
W − L0

W (1) ↔ L1
W

In this section, we prove that this relation is an equality in the H0 of the bar
construction modulo shuffle products; that is

LB
W − LB

W (1) = L1,B
W in H0(QX).

A key point in order to build cycles L0
W and L1

W in [23] is a pull-back by
the multiplication. More precisely, the usual multiplication A1 × A1 −→ A1
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composed with the isomorphism A1 ×�1 � A1 × A1 gives a multiplication

m0 : A
1 ×�1 −→ A1

sending (t, u) to t
1−u . Twisting m0 by θ : t 	→ 1− t gives a “twisted multipli-

cation”
m1 = (θ × id ) ◦m0 ◦ θ : A1 ×�1 −→ A1.

Proposition 4.1 ([23]). For ε = 0, 1 the morphism mε induces a linear
morphism

m∗
ε : N qf, k

A1 −→ N qf, k−1
A1

giving a homotopy

∂A1 ◦m∗
ε +m∗

ε ◦ ∂A1 = id −p∗ε ◦ i∗ε

where pε : A
1 −→ {ε} is the projection onto the point {ε} and iε its inclusion

in A1.

From this homotopy property, one derives the following relation between
m∗

0 and m∗
1.

Lemma 4.2. One has:
(10)

m∗
1 = m∗

0 − p∗1 ◦ i∗1 ◦m∗
0 − ∂A1 ◦m∗

1 ◦m∗
0 +m∗

1 ◦m∗
0 ◦ ∂A1 +m∗

1 ◦ p∗0 ◦ i∗0

and a similar expression for m∗
1.

In particular, when b ∈ N qf, k
A1 satisfies ∂A1(b) = 0 and i0(b) = 0, one has:

m∗
1(b) = m∗

0(b)− p∗1 ◦ i∗1(m∗
0(b)) + ∂A1(m∗

0 ◦m∗
1(b))

Proof. Let b be in N qf, k
A1 . We treat only Equation 10. Using the homotopy

property for m∗
0, one writes

b = ∂A1 ◦m∗
0(b) +m∗

0 ◦ ∂A1 + p∗0 ◦ i∗0(b).

Computing m∗
1(b), the homotopy property

m∗
1 ◦ ∂A1(m0(b)) = m∗

0(b)− p∗1 ◦ i∗1(m0(b))− ∂A1 ◦m∗
1(m

∗
0(b)),

gives the desired formula. �
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Writing AW the A1-extension of the right hand side of Equation (ED-L0),
cycles L0

W are obtained in [23] as

L0
W = m∗

0(AW )

and similarly for L1
W .

An explicit computation in low weight [23, 24] shows that

L0
01 = −m∗

0(L1
0 L0

1) and L1
01 = −m∗

1(L1
0 L0

1).

Using Lemma 4.2, one gets

(11) L1
01 = L0

01 − L0
01(1)− ∂A1(m∗

1 ◦m∗
0(L0

0 L0
1)).

Remark 4.3. In [24, Example 5.5], the author gave a parametrized equidi-
mensional cycle over A1, C01 relating L0

01 and L1
01 defined in terms of equidi-

mensional cycles. Up to a global minus sign and a reparametrization, the
cycle C01 agrees with the expression

−m∗
1 ◦m∗

0(L0
0 L0

1).

Thus, L0
01 − L0

01(1) and L1
01 differs only by a boundary. The differential of

L0
01(1) is zero and one can compute explicitly the corresponding bar elements:

L0−1,B
01 = [L0

01]− [L1
01], LB

01(1) = [L0
01(1)].

Lemma 4.4. In B(N qf, •
A1 ), one has the following relation

(12) L0−1,B
01 − LB

01(1) = dB([m
∗
1(L0

01)]).

Thus in H0(BA1) as in H0(QA1) one has the equality

L0−1,B
01 − LB

01(1) = 0.

Taking the restriction to P1 \ {0, 1,∞}, one obtains in H0(QX)

(13) LB
01 − L1,B

01 = j∗(L0−1,B
01 ) = LB

01(1).
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For W a Lyndon word of length p � 2, the explicit comparison between
LB
W and L1,B

W is in general much more complicated as

∂A1(L0
W − L1

W ) = −
∑

0<U<V <1

aWU,V (L0
U − L1

U )(L0
V − L1

V ) 
= 0.

However, working at the bar construction level in H0(QA1) allows to use
an induction argument.

Theorem 4.5. For any Lyndon word W of length p � 2 the following rela-
tion holds

(14) L0−1,B
W = LB

W (1) in H0(QA1) = QH0(BA1 ).

The restriction to X = P1 \ {0, 1,∞} gives in H0(QX) = QH0(BX)

(15) LB
W − L1,B

W = j∗(L0−1,B
W ) = LB

W (1).

Proof. From Lemma 4.4 above it is true for p = 2 as there is then only one
Lyndon word to consider W = 01.

Now we assume that the theorem is true for all Lyndon words of length
k with 2 � k � p− 1. Let W be a Lyndon word of length p.

From Proposition 3.17, one has in QA1 and in particular in H0(QA1):

δQ(L0−1,B
W ) =

∑
0<U<V <1

aWU,V (L0−1,B
U ) ∧ (L0−1,B

V )

and
δQ(LB

W (1)) =
∑

0<U<V <1

aWU,V (LB
U (1)) ∧ (LB

V (1)).

Using the induction hypothesis, one has in H0(QA1)

δQ(L0−1,B
W ) =

∑
0<U<V <1

aWU,V (LB
U (1)) ∧ (LB

V (1))

and thus
δQ

(
L0−1,B
W − LB

W (1)
)
= 0 in H0(QA1).

Let CW be the class of L0−1,B
W − LB

W (1) in H0(QA1) and sCW its image in

ΩcoL(H
0(QA1)) = Sgr(sQ⊗H0(QA1)).

where the above equality is in terms of commutative algebras.
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As δQ(CW ) = 0, dΩ,coL(sCW ) = 0 and sCW gives a class in

H1(ΩcoL(H
0(QA1))) � H1(N qf, •

A1 );

where the above isomorphism is given by Bloch and Kriz in [1, Corollary
2.31] after a choice of a 1-minimal model in the sense of Sullivan. Using the
comparison between H1(N qf, •

A1 ) and the higher Chow groups, this class can
be represented by p∗1(C) in N qf, 1

A1 with C a cycle in N qf, 1
Q .

The cycle p∗1(C) satisfies ∂A1(p∗1(C)) = 0 and [p∗1(C)] gives a degree 0 bar
element CB in BA1 whose bar differential and reduced coproduct are equal
to 0.

>From this, one gets a class C̃W = CW − CB in H0(QA1). Its image sC̃W

in ΩcoL(H
0(QA1)) also gives a class in

H1(ΩcoL(H
0(QA1)))

which is 0 by construction.
As the differential dΩ,coL is zero on the degree 0 part of ΩcoL(H

0(QA1)),
one obtains that sC̃W = 0 in sQ⊗H0(QA1). Thus C̃W is zero in H0(QA1) =
QH0(BA1 ). The above discussion shows that:

0 = C̃W = CW − CB = CW − [p∗1(C)]

So far one has obtained that in BA1 :

(16) L0−1,B
W − LB

W (1)− [p∗1(C)] = dB(b) modulo x products

with b in the degree −1 part of BA1 = B(N qf, •
A1 ).

Because taking the fiber at 1 commutes with products and differential,
one gets modulo shuffles

i∗1(L0−1,B
W )− i∗1(LB

W (1))− [C] = dB(i
∗
1(b)).

Lemma 3.18 insures that i∗1(L0−1,B
W )− i∗1(LB

W (1)) = 0. Thus one has

−[C] = dB(i
∗
1(b)) + shuffle products.

This shows that [p∗(C)] is zero in H0(BA1) modulo shuffles. Hence Equa-
tion (16) can be written has

L0−1,B
W − LB

W (1) = 0 in QH0(BA1 ) = H0(QA1)
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Finally, taking the restriction to P1 \ {0, 1,∞}, one has LB
W − L1,B

W =

j∗(L0−1,B
W ) which concludes the proof.

�

The main consequence of Equation (15) in the previous theorem is that in
QH0(BX) one can replace the bar avatar of the geometric differential system
(ED-L0) by a bar avatar of the differential system (ED-T) coming from Ihara
action by special derivations.

Corollary 4.6. In QH0(BX), the following holds for any (non-empty) Lyn-
don word W :

(ED-QX) δQ(LB
W ) =

∑
U<V

αW
U,V LB

U ∧ LB
V +

∑
U,V

βW
U,V LB

U ∧ LB
V (1).

Proof. Let W be a Lyndon word. The statement holds when W has length
equal 1 and one can assume that W has length greater or equal to 2. One
begins with the formula giving δQ(LB

W ) from Theorem 3.16:

δQ(LB
W ) =

∑
U<V

aWU,V LB
U ∧ LB

V +
∑
U,V

bWU,V LB
U ∧ L1,B

V .

Then using the relations given by Equation (15), one has

δQ(LB
W ) =

∑
U<V

aWU,V LB
U ∧ LB

V +
∑
U,V

bWU,V LB
U ∧

(
LB
V − LB

V (1)
)
.

Expanding terms as LB
U ∧

(
LB
V − LB

V (1)
)
, we conclude the proof using the ex-

pression of coefficients a’s and b’ in terms of α’s and β’s given at Lemma 3.9.
�

4.2. A basis for the geometric Lie coalgebra

This section shows that the image of the family of bar elements LB
W

in Deligne-Goncharov motivic fundamental Lie coalgebra is a basis of this
coLie coalgebra. Hence the family LB

W induced a basis of the tannakian coLie
coalgebra of mixed Tate motives over P1 \ {0, 1,∞} relatively to the one for
mixed Tate motives over Q.

For X = P1 \ {0, 1,∞}, M. Levine in [17][Theorem 5.3.2 and beginning of
the section 6.6] shows that one can identify the Tannakian group associated
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with MTM(X) with the spectrum of H0(BX):

GMTM(X) � Spec(H0(BX)).

Then, he uses a relative bar-construction in order to relate GMTM(X) to
the motivic fundamental group πmot

1 (X,x) of Goncharov and Deligne (see
[4] and [5]).

Let x be a Q-point of X = P1 \ {0, 1,∞}.

Theorem 4.7 ([17][Corollary 6.6.2]). There is a split exact sequence:

1 πmot
1 (X,x) Spec(H0(B(NX))) Spec(H0(B(NQ))) 1

p∗

x∗

where p is the structural morphism p : P1 \ {0, 1,∞} −→ Spec(Q).

Theorem 4.7 can be reformulate in terms of Lie coalgebras, looking at
indecomposable elements of the respective Hopf algebras.

Proposition 4.8. There is a split exact sequence of Lie coalgebras:

0 QH0(BQ) QH0(BX) Qgeom 0
p̃ φ

x̃

where Qgeom is the set of indecomposable elements of O(πmot
1 X,x) and is

isomorphic as Lie coalgebra to the graded dual of the Lie algebra associated
to πmot

1 (X,x). Hence Qgeom is isomorphic as Lie coalgebra to the graded dual
of the free Lie algebra on two generators Lie(X0, X1).

Considering the family of bar elements LB
W for all Lyndon words W in

this short exact sequence of Lie coalgebra, ones gets:

Theorem 4.9. The family φ(LB
W ) for any Lyndon words W is a basis of

the Lie coalgebra Qgeom. Hence the family LB
W is a basis of QH0(BX) relatively

to QH0(BQ).
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Proof. The above short exact sequence being a sequence of Lie coalgebra,
one has:

0 QH0(BQ) ∧QH0(BQ) QH0(BX) ∧QH0(BX) Qgeom ∧Qgeom 0

0 QH0(BQ) QH0(BX) Qgeom 0.
p̃ φ

δQ,Q δQ,X δgeom

p̃ ∧ p̃ φ ∧ φ

As δQ,X(LB
0 ) = δQ,X(LB

1 ) = 0, weight reasons show that φ(LB
0 ) and φ(LB

1 )
are dual to the weight 1 generators of Lie(X0, X1).

In order to show that the family φ(LB
W ) is a basis of Qgeom, it is enough

to show that the elements φ(LB
W ) satisfy:

δgeom(φ(LB
W )) =

∑
U<V

αW
U,V φ(LB

U ) ∧ φ(LB
V )

because δgeom is dual to the bracket [ , ] of Lie(X0, X1).
As φ commutes with the cobracket, it is enough to compute (φ ∧ φ) ◦

δX(LB
W ) :

δgeom(φ(LB
W )) =(φ ∧ φ) ◦ δX(LB

W )

=(φ ∧ φ)

⎛
⎝∑

U<V

αW
U,V LB

U ∧ LB
V +

∑
U,V

βW
U,V LB

U ∧ LB
V (1)

⎞
⎠

=
∑
U<V

αW
U,V φ(LB

U ) ∧ φ(LB
V ) +

∑
U,V

βW
U,V φ(LB

U ) ∧ φ(LB
V (1))

By construction φ(LB
V (1)) is zero. Thus one obtains the expected formula

for δgeom(φ(LB
W )). �

Note that δX gives the coaction of QH0(BQ) on Qgeom described in [2]
in relation with Goncharov motivic coproduct Δmot. In this context, Equa-
tion (ED-QX)

δQ(LB
W ) =

∑
U<V

αW
U,V LB

U ∧ LB
V +

∑
U,V

βW
U,V LB

U ∧ LB
V (1)

is nothing but another expression for Goncharov motivic cobracket 1
2(Δ

mot −
τ ◦Δmot). This new expression has the advantage that it is stable under the
generating family LB

W .
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