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We describe a relationship between the representation theory of
the Thompson sporadic group and a weakly holomorphic modu-
lar form of weight one-half that appears in work of Borcherds and
Zagier on Borcherds products and traces of singular moduli. We
conjecture the existence of an infinite dimensional graded module
for the Thompson group and provide evidence for our conjecture
by constructing McKay–Thompson series for each conjugacy class
of the Thompson group that coincide with weight one-half modular
forms of higher level. We also observe a discriminant property in
this moonshine for the Thompson group that is closely related to
the discriminant property conjectured to exist in Umbral Moon-
shine.

1 Introduction 24

2 Traces of singular moduli and coefficients of
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1. Introduction

There appear to be two distinct types of moonshine phenomena in mathe-
matics: Monstrous moonshine involving the modular function

(1.1) J(τ) = q−1 + 196884q + 21493760q2 + · · ·

and the representation theory of the largest sporadic group, the Monster
group (M) [1–3]; and Umbral Moonshine [4, 5] which involves a set of vector-
valued mock modular forms HX(τ), labelled by ADE root systems X with
common Coxeter numbers and total rank 24, which exhibit moonshine for
finite groups GX = Aut(LX)/W (X) where Aut(LX) is the automorphism
group of the Niemeier lattice determined by X and W (X) is the Weyl group
of X. Umbral Moonshine extends and generalizes Mathieu moonshine con-
necting the weight one-half mock modular form

(1.2) H(2)(τ) = 2q−1/8
(−1 + 45q + 231q2 + 770q3 + · · · ) ,

the Mathieu group M24 = GX for X = A24
1 and the elliptic genus of K3

surfaces first observed in [6] and studied extensively since then including
complete computations of the McKay–Thompson series [7–10]. Monstrous
moonshine is now best understood in terms of a central charge c = 24 holo-
morphic conformal field theory (CFT) or vertex operator algebra (VOA),
see [12] for details, and there are related constructions exhibiting moonshine
for the Baby Monster group [13] and the Conway group [14] also based on
CFT constructions. While the existence of the modules predicted by Um-
bral Moonshine has now been proved [15, 16] and there exists an explicit
construction of the modules for the case X = E3

8 [17], it seems fair to say
that much remains to be done to explicate the relationship between Umbral
Moonshine and CFT/VOA structures.

There are hints of connections between these two types of moonshine.
For example the ADE root system X was used to define a set of weight
zero modular functions in [5] and these are also hauptmoduls that appear
as McKay–Thompson series in Monstrous Moonshine, thus giving a corre-
spondence between cases of Umbral Moonshine and conjugacy classes of the
Monster group. Further hints in this direction come from recent work relat-
ing dimensions of representations appearing in Umbral Moonshine when X
is a pure A-type root system to values of the McKay–Thompson series of
Monstrous Moonshine [18].

One of the elements present in Umbral Moonshine that seems to have no
analog in Monstrous Moonshine is the discriminant property, which relates
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the number fields on which the irreducible representations of GX are defined,
and the discriminants of the vector-valued mock modular form HX [4, 5].

In this paper we provide evidence for a moonshine phenomenon that
shares certain features with both Monstrous moonshine and Umbral Moon-
shine, including a discriminant property similar to one observed in Umbral
Moonshine, but involving 1) modular rather than mock modular forms, and
2) the Thompson sporadic group, a group much larger than any of the groups
of Umbral Moonshine and one with a natural connection to the Monster.

To introduce the elements playing a role in our analysis we recall some
of the results from Zagier’s work [19] on weakly holomorphic modular forms,
Borcherds products and traces of singular moduli. Define the Jacobi theta
function

(1.3) θ(τ) =
∑
n∈Z

qn
2

,

with q = e2πiτ , which is holomorphic in the upper half plane h, lives in the
“Kohnen plus-space” of functions with a Fourier expansion at infinity of the
form

∑
c(n)qn with c(n) = 0 unless n ≡ 0, 1 modulo 4, and transforms with

a well known multiplier system under the congruence subgroup Γ0(4). Let
M !

1/2 be the space of functions transforming like θ under Γ0(4) and also live
in the Kohnen plus-space, but are allowed to be meromorphic at the cusps.
In [19] a special basis of M !

1/2 is constructed consisting of functions fd with
d ≡ 0, 3 modulo 4 with Fourier expansions of the form

(1.4) fd(τ) = q−d +
∑
n>0

A(n, d)qn ,

and with f0(τ) = θ(τ). The function f3 can be constructed “by hand” as

(1.5) f3(τ) = − 1

20

(
[θ(τ), E10(4τ)]1

Δ(4τ)
+ 608 θ(τ)

)

where E10 is the weight ten Eisenstein series and Δ is the weight twelve
cusp form. Equation (1.5) involves the first Rankin-Cohen bracket which is
defined for two modular forms f, g of weight k, l respectively as

(1.6) [f, g]1 = kfDg − lgDf

with D = 1
2πi

d
dτ . An effective algorithm for computing the remaining fd is

given in [19], but will not be needed in what follows. Explicit computation
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gives the Fourier expansion

f3(τ) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − 4096248q9(1.7)

+ 44330496q12 − 91951146q13 + 708938752q16 + · · · .

The coefficients of f3 appear to have a close connection to dimensions of
irreducible representations of the sporadic Thompson group Th of order
215 · 310 · 53 · 72 · 13 · 19 · 31 ∼ 9 · 1016. For example, 248, 85995, 1707264 and
44330496 are dimensions of Th irreducible representations while 26752 =
27000− 248 and 4096248 = 4096000 + 248 with 27000 and 4096000 also di-
mensions of Th irreducible representations.

There is a well understood connection between f3 and the Thompson
group arising from the following facts. According to the generalized moon-
shine conjecture of Norton [21], for each pair of commuting elements (g, h)
in M there exists a generalized character Z(g, h, τ) such that Z(1, h, τ) are
the McKay–Thompson series T[h] of [1],

(1.8) Z(gahc, gbhd, τ) = ψ(γ)

(
a b
c d

)
Z(g, h, aτ+b

cτ+d)

for some constant ψ depending on γ =

(
a b
c d

)
∈ SL(2,Z), and such that

the coefficients of the q-expansion of Z(g, h, τ) for fixed g form characters of
a graded representation of a central extension of the centralizer of g in M.
According to [11] the characters Z(g, h, τ) have an interpretation as traces
over representations of the centralizers of g acting in a Hilbert space twisted
by g, that is a twisted module of the Monster vertex operator algebra V �.

In particular, the character Z(g, 1, τ) for g in the 3C class of M is the
Borcherds lift [20] of f3:

Z(3C, 1, τ) = j(τ)1/3 = q−1/3
∏
n>0

(1− qn)A(n2,3)(1.9)

= q−1/3 + 248q2/3 + 4124q5/3 + 34752q8/3 + · · · .(1.10)

As a result the Thompson group has a natural action on the 3C-twisted
module of the Monster module V �, see [22] for further details. Note however
that the lift involves only the coefficients A(n, 3) with n a perfect square, and
thus this connection does not provide an explanation for why the coefficients
of non-square powers of q in f3 also exhibit a connection with the Thompson
group.
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k c(4k) c(4k + 1)

-1 0 2 · 1
0 248 0
1 2 · 27000 -2 · 85995
2 2 · 1707264 -2 · 4096000
3 2 · 44330496 -2 · 91951146
4 2 · 708939000 -2 · 1343913984
5 2 · 8277534720 -2 · 14733025125
6 2 · 77092288000 -2 · 130880765952
7 2 · 604139268096 -2 · 988226335125
8 2 · 4125992712192 -2 · 6548115718144

Table 1: Coefficients in the Fourier expansion of F3 .

The Thompson moonshine structure, as well as a closer similarity to
elements of Umbral moonshine, is brought out by considering instead of f3
the function

(1.11) F3(τ) = 2f3(τ) + 248θ(τ) =

∞∑
m=−3

m≡0,1 mod 4

c(m)qm

which is also an element of M !
1/2. The coefficients c(m) are given in Ta-

ble 1 for −3 ≤ m ≤ 33. We then observe using the character table for the
Thompson group provided in Tables B4–B7 that each coefficient c(m) for
m ≤ 12 can be interpreted, up to sign, as the dimension of either a single
real irreducible representation (with multiplicity) or a representation of the
form V ⊕ V where V is an irreducible representation and V is the conjugate
representation. The coefficients of higher powers of q have more compli-
cated decompositions into irreducible representations with positive integer
coefficients which will be determined later and can be found tabulated in
Tables B8 and B9.

To be more specific, label the irreducible representations of Th as diVi,
i = 1, . . . , 48 with di the dimension of the irreducible representation, a list
of which can be inferred from the character table of the Thompson group
provided in Tables B4–B7, and abbreviate this at times to Vi. The Fourier
coefficients of F3 up to q12 then imply the relationship to the irreducible
representations of Th summarized in Table 2.
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c(k) Decomposition

c(-3) 2 ·1 V1

c(0) 248V2

c(4) 27000V4 ⊕ 27000V5

-c(5) 85995V9 ⊕ 85995V10

c(8) 1707264V17 ⊕ 1707264V18

-c(9) 4096000V22 ⊕ 4096000V23

c(12) 2 · 44330496V40

Table 2: Connection between the coefficients c(k) of F3 and Thompson
representations for k ≤ 12.

As usual in the study of moonshine, this observation suggests that there
exists an infinite dimensional Z-graded module for the Thompson group

(1.12) W =

∞⊕
m≥−3

m≡0,1 mod 4

Wm

where we demand that the module be compatible with the Fourier coeffi-
cients of F3 in the sense that |c(m)| = dimWm .

It is natural to associate the alternating signs exhibited by the coeffi-
cients c(m) to a superspace structure. A superspace is a Z/2Z graded vector
space V = V (0) ⊕ V (1) with V (0), V (1) the even and odd elements of V re-
spectively. The supertrace of a linear operator L on V that preserves the
Z/2Z grading is then defined to be strV L = trV (0)L− trV (1)L. If we take Wm

for m ≥ 0 and m = 0 mod 4 to have vanishing odd part, Wm for m ≥ 0 and
m = 1 mod 4 to have vanishing even part, and W−3 to have vanishing odd
part then we demand that c(m) = strWm

1 for all m. Note that the “wrong”
sign of the coefficient of the singular q−3 term is similar to the structure
exhibited by the mock modular forms HX

r of Umbral moonshine which have
a singular term −2q−1/2m with a negative coefficient in the r = 1 component
of HX

r with m the Coxeter number of X while all the other coefficients are
positive integers.

It is natural to also consider the decomposition of each component of

the supermodule Wm = W
(0)
m ⊕W

(1)
m into irreducible representations of the
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Thompson group,

W (a)
m =

⊕48
i=1 b

(a)
m,i · Vi(1.13)

with b
(a)
m,i ∈ N0 for a = 0, 1. The Fourier coefficients of F3 alone are not

enough to determine this decomposition; for instance, on the basis of di-

mension, one can trivially decompose each W
(a)
m into dimW

(a)
m copies of the

trivial representation. However, the fact that the c(m) for small values of m
can be written so nicely in terms of the dimensions of non-trivial irreducible

representations of Th suggests that the W
(a)
m are non-trivial and that there

is some structure associated to the choice of representations.
To test this idea we follow a procedure that is now standard and consider

McKay–Thompson series for each conjugacy class [g] in the Thompson group
by replacing c(m) = strWm

1 in the Fourier development of F3 by strWm
(g)

where g is any representative of [g]. We thus define the 48 McKay–Thompson
series corresponding to each conjugacy class [g] by

(1.14) F3,[g](τ) =

∞∑
m=−3

m≡0,1 mod 4

strWm
(g)qm .

For an arbitrary choice of decomposition in Eqn. (1.12) there is no reason to
expect that the F3,[g] exhibit interesting modular properties. Conversely, if
the F3,[g] do exhibit interesting modular properties this should be regarded
as evidence for an interesting relation between the Thompson group and a
class of weakly holomorphic weight one-half modular forms. In Monstrous
and Umbral moonshine the analogous McKay–Thompson series are modular
forms for the congruence subgroups Γ0(o(g)) with o(g) the order of the
associated group element, often with a non-trivial multiplier system. Thus
to test our proposed moonshine connection between F3 and the Thompson
group we need to generalize F3 to weakly holomorphic modular forms at
level N for N that are orders of Th or multiples of orders of Th.

The outline of the rest of the paper is as follows. In the second sec-
tion we recall results relating traces of singular moduli to coefficients of
weakly holomorphic modular forms and more generally to the coefficients of
Maass-Poincaré series and Rademacher series, both at level 1 and at level N
following [19, 23, 25, 26]. The third section provides evidence for the mod-
ularity of the McKay–Thompson series by comparing their q-expansions to
those of weakly holomorphic weight one-half modular forms at level N . We
construct the required modular forms using both traces of singular moduli
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and coefficients of Rademacher series twisted by multiplier systems similar
to those appearing in [4, 5]. In the fourth section we discuss a discriminant
property that relates the discriminant of the quadratic forms that appear
in the computation of the coefficients of F3 in terms of traces of singular
moduli to the fields over which the representations of Th attached to these
coefficients are defined. We compare and contrast this discriminant property
with the discriminant property observed in Umbral moonshine in [4, 5]. An
appendix deals with details of the expressions for coefficients of the weight
one-half weakly holomorphic forms appearing here in terms of the compu-
tation of traces of singular moduli at level N .

2. Traces of singular moduli and coefficients of
Poincaré series

Here we recall results of Zagier [19] that express the coefficients c(m) as
traces of singular moduli and results of Bringmann and Ono [23] derived
from a study of Maass-Poincaré series that give explicit expressions for the
c(m) in terms of Kloosterman sums. We then extend these results to level
N following [25, 26].

2.1. Notation and preliminaries

In what follows we often use the notation e(x) = e2πix and we write q = e(τ)
with τ in the upper half plane, τ ∈ h. We define the group Γ0(n) to be the
set of elements

(2.1)

(
a b
c d

)
∈ SL(2,Z) with c ≡ 0 mod n

and also let
(
m
n

)
denote the Kronecker symbol.

For w ∈ R and Γ a subgroup of SL(2,R) containing ±I and commensu-
rable with SL(2,Z) we call a function ψ : Γ→ C a multiplier system for Γ
with weight w if

(2.2) ψ(γ1)ψ(γ2)j(γ1, γ2τ)
w/2j(γ2, τ)

w/2 = ψ(γ1γ2)j(γ1γ2, τ)
w/2

for each γ1, γ2 ∈ Γ, where j(γ, τ) = (cτ + d)−2. We will deal almost exclu-
sively with multiplier systems which depend only on the bottom row of
matrices in Γ and will thus take the liberty of abusing notation slightly by
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setting

(2.3) ψ(c, d) ≡ ψ

( ∗ ∗
c d

)
.

There is the standard (ψ,w)-action of Γ on holomorphic functions f : h→ C

on the upper-half plane given by

(2.4) (f |ψ,wγ) (τ) ≡ f(γτ)ψ(γ)j(γ, τ)w/2

which allows us to define a weakly holomorphic modular form of weight w
and multiplier system ψ over Γ as a function f which is invariant under this
action and holomorphic in the interior of h, but is allowed to be meromorphic
at the cusps. We will typically restrict ourselves to w = 1/2, Γ = Γ0(4N) and
refer to the multiplier system associated with θ as

(2.5) ψ0(γ) =
( c

d

)
εd

where

(2.6) εd ≡
{
1, d = 1 mod 4

i, d = 3 mod 4.

We use the symbol χ both for genus characters of quadratic forms and
for the characters of the Thompson group, but the context should clear up
any possible ambiguity.

2.2. Weakly holomorphic weight one-half modular forms
at level one

First we describe the relation of the coefficients A(n, 3) appearing in Equa-
tion (1.4) for d = 3 to traces of singular moduli following [19]. Let

(2.7) J(τ) = q−1 + 196884q + 21493760q2 + · · ·

be the normalized hauptmodul for SL(2,Z), let d be a positive integer with
d ≡ 0, 3 mod 4 and denote by Qd the set of positive definite binary quadratic
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forms

(2.8) Q(X,Y ) = [a, b, c] = aX2 + bXY + cY 2, a, b, c ∈ Z

with discriminant b2 − 4ac = −d. We can define an action of the full modular
group SL(2,Z) on quadratic forms in the usual way

(2.9) Q|γ(X,Y ) = Q(pX + qY, rX + sY )

for γ =

(
p q
r s

)
∈ SL(2,Z) and call two quadratic forms Γ-equivalent if they

are equivalent under the group action Γ inherits from the full modular group.
Since d > 0, each Q ∈ Qd has a unique root αQ ∈ h. The value of J(αQ)

depends only on the SL(2,Z) equivalence class of Q. The modular trace
function t(d) is defined as the sum of J(αQ) over SL(2,Z)-equivalence classes
weighted by a factor wQ which is the order of the stabilizer of Q in PSL(2,Z)
and is 3 if Q is SL(2,Z)-equivalent to [a, a, a], 2 if Q is SL(2,Z)-equivalent
to [a, 0, a] and 1 otherwise:

(2.10) t(d) =
∑

Q∈Qd/Γ

1

wQ
J(αQ) .

Theorem 1 of [19] gives A(1, 3) = t(3) = −248 which is, up to a sign, the
dimension of an irreducible representation of Th.

The coefficients A(n, 3) when n > 1 is a fundamental discriminant are
also given by a modular trace function that involves quadratic forms of
discriminant −3n. One considers the trace twisted by a genus character
χn,−3 which assigns to a quadratic form Q of discriminant −3n the value
±1 determined by

(2.11) χn,−3(Q) =

(
n

p

)

where p is any prime represented by Q and not dividing 3n. If in addition
n and 3 are coprime then

(2.12) A(n, 3) =
1√
n

∑
Q∈Q3n/Γ

χn,−3(Q)J(αQ) .

If n, d = 3 are not coprime, then according to Remark 2 following Theorem 6
of [19] the same formula holds but with χn,−3 replaced by 0 for imprimitive
forms Q which are divisible by 3 which also divides n.
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Example 2.1. (from [19]) Take n = 5, d = 3. There are two SL(2,Z)-
equivalence classes of quadratic forms with discriminant −15, Q1 = [1, 1, 4]
and Q2 = [2, 1, 2]. Their roots αQ1

, αQ2
∈ h occur at αQ1

= (1 + i
√
15)/2 and

αQ2
= (1 + i

√
15)/4 and are mapped by J as

J(α1) = (−191025− 85995
√
5)/2− 744(2.13)

J(α2) = (−191025 + 85995
√
5)/2− 744 .

The genus characters are χn,−3(Q1) = 1 and χn,−3(Q2) = −1 so we have

(2.14) A(5, 3) =
J(αQ1

)− J(αQ2
)√

5
= −85995 .

which is also the negation of the dimension of a complex conjugate pair of
irreducible representations of Th, 85995V9 and 85995V10. In a manner that
will be generalized in the next example, we suggestively write this in terms
of characters of the identity conjugacy class of Th as

(2.15) A(5, 3) = −χ9(1A) = −χ10(1A)

Alternate proofs of Zagier’s results appear in [23] utilizing results on
Maass-Poincaré series and their generalizations due to Niebur [24] which
have the benefit of providing direct formulae for the Fourier coefficients
of the fd, as well as those of weakly holomorphic forms of weight λ+ 1

2 for
several values of λ, in terms of Kloosterman sums. In particular, Theorem 2.1
of [23] with λ = 0 and m = 3 gives an expression for the coefficients A(n, 3)
with n > 0 (denoted by b0(−3;n) in [23])

A(n, 3) = −24δ�,nH(3) + π
√
2(3/n)

1

4 (1− i)(2.16)

×
∑
c>0

c≡0 mod 4

(1 + δodd(c/4))
Kψ0

(−3, n, c)
c

I 1

2

(
4π
√
3n

c

)
.

In this formula H(d) is the Hurwitz-Kronecker class number with H(3) =
1/3,

(2.17) δ�,m =

{
1 if m is a square

0 otherwise

and I�(x) is the Bessel function of the first kind. In addition, for c a positive
multiple of 4 and λ an integer, the weight 1

2 Kloosterman sum with multiplier
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ψ is given by

(2.18) Kψ(m,n, c) =
∑
d

∗
ψ(c, d)e

(
md+ nd

c

)

where the sum runs over primitive residue classes mod c, d is the inverse of
d mod c, and for any integer k,

(2.19) δodd(k) ≡
{
1 k odd

0 otherwise.

Note that the standard θ-multiplier ψ0 is used in the definition of A(n, 3);
its explicit form can be found in the previous section.

We now note an ambiguity that we will utilize later. In [19] and [23]
the constant term in the Fourier expansion of the fd is chosen to be zero,
and in particular A(0, 3) = 0. However adding a multiple of θ to fd does not
change the modular properties or the singular terms in fd. This ambiguity
is reflected in the trace formulation through the freedom to add a constant
to the J-function. Since the genus character is trivial when n is a square,
adding such a constant changes only the coefficients of the square powers
of q and in fact corresponds precisely to adding a multiple of θ to fd. In
Equation (2.16) such a change corresponds to changing the coefficient of the
δ�,n term.

2.3. Weakly holomorphic weight one-half modular forms
at level N

We now extend the results of the previous subsection to level N . With Γ
as defined earlier, we let Γ∞ denote the subgroup of Γ consisting of upper-
triangular matrices and define the width of Γ at infinity to be the smallest

positive integer h for which Γ∞ = 〈T h,−I〉 where T =

(
1 1
0 1

)
and I is

the identity matrix. For example the width of Γ0(N) at infinity is easily seen
to be 1. For a given multiplier system ψ, we let α be the the real number
given by

(2.20) ψ
(
T h

)
= e(α).

The multiplier systems we will consider all have α = 0. In [26], Cheng and
Duncan exposit a method which was pioneered by Poincaré and later refined
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by Rademacher for constructing functions symmetric under Γ. One begins
with a function of the form qμ = e(μτ), which is Γ∞-invariant if hμ+ α ∈
Z, and constructs a function which is invariant under the full group Γ by
summing the images of qμ under the (ψ,w)-action of coset representatives
of Γ∞ in Γ:

(2.21) P
[μ]
Γ,ψ,w(τ) =

∑
γ∈Γ∞\Γ

qμ|ψ,wγ.

In general, if w ≤ 2 such a series does not converge locally uniformly in τ ,
and one does not obtain a modular function holomorphic on the upper-half
plane. Rademacher was thus led to attempt to regularize these Poincaré
series by defining

(2.22) R
[μ]
Γ,ψ,w(τ) =

1

2
δα,0cΓ,ψ,w(μ, 0) + lim

K→∞

∑
γ∈Γ∞\ΓK,K2

r[μ]w (γ, τ)qμ|ψ,wγ

where

(2.23) ΓK,K2 =

{(
a b
c d

)
∈ Γ | |c| < K, |d| < K2

}
.

serves to specify the order in which the sum is taken, 1
2cΓ,ψ,w(μ, 0) specifies a

correction to the constant term in case α=0, and r
[μ]
w (γ, τ) is a factor which

regularizes the sum in the case that w < 1, see [26] for exact expressions.
Indeed, this regularized expression has been proven to extend conver-

gence to weights w > 1. In general convergence is poorly understood when
0 ≤ w ≤ 1, but for specific cases of w = 0 and w = 1/2 relevant to Mon-
strous moonshine and Umbral moonshine convergence has been proven in
[33] and [34] respectively. We will assume here that the particular series we
deal with, all at w = 1/2, are in fact convergent; this is supported by nu-
merical evidence and also, as we will see in the next section, by the fact that
the resulting Rademacher series are easily identified with the conjectured
McKay–Thompson series of Thompson moonshine.

One can derive Fourier expansions for these Rademacher sums in terms
of Rademacher series with coefficients cΓ,ψ,w(μ, ν) as

(2.24) R
[μ]
Γ,ψ,w(τ) = qμ +

∑
hν+α∈Z

ν≥0

cΓ,ψ,w(μ, ν)q
ν
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where expressions for cΓ,ψ,w(μ, ν) as well as a more detailed discussion of
the convergence properties of Rademacher sums can be found in [26].

We will now specialize to the case Γ = Γ0(4N), w = 1/2 and μ = −3
and define a family of weakly holomorphic weight one-half forms on Γ0(4N)
with multiplier system ψ and Fourier expansion

(2.25) Z
(1,3)
N,ψ (τ) = q−3 +

∑
n≥0

n≡0,1 mod 4

A
(1,3)
N,ψ (n)qn .

These agree with the forms defined in [25] when ψ = ψ0 and N is odd and we

have Z
(1,3)
1,ψ0

= f3 + 4θ(τ). The superscripts (1, 3) label the function f3 whose
coefficients are expressed as traces of singular moduli for SL(2,Z) = Γ0(1)
and anticipate possible generalizations to some of the other forms treated in
[19]. When Γ0(N) is genus zero, the authors of [25] show that the coefficients

A
(1,3)
N,ψ0

can be computed either in terms of coefficients of Rademacher series
as given below or in terms of traces of singular moduli.

The explicit form of the Fourier coefficients is

(2.26) A
(1,3)
N,ψ (0) = 4π

√
m(1− i)

∑
c>0

c≡ mod 4N

(1 + δodd(c/4))
Kψ(−3, 0, c)

c
3

2

for n = 0 and

A
(1,3)
N,ψ (n) = π

√
2(m/n)

1

4 (1− i)(2.27) ∑
c>0

c≡0 mod 4N

(1 + δodd(c/4))
Kψ(−3, n, c)

c
I 1

2

(
4π
√
3n

c

)

for n > 0. These expressions agree with [26] after projection to the Kohnen
plus space and generalize the result (2.16) to level N and generic multiplier
system, but use a convention in which the constant term in the Fourier
expansion is non-zero.

We now present the generalization from [25] of (2.12) for traces of singu-
lar moduli at odd level N when the multiplier system is the standard one,
ψ0. To present their result we first define the genus character of an inte-
gral binary quadratic form Q(X,Y ) = aX2 + bXY + cY 2 for a fundamental
discriminant D1 as

χD1
(Q) ≡

⎧⎨
⎩

0, (a, b, c,D1) > 1(
D1

r

)
, (a, b, c,D1) = 1, Q represents r,

and (r,D1) = 1.
(2.28)
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Then forD2 a nonzero integer with (−1)λD2 ≡ 0, 1 mod 4 and (−1)λD1D2 <
0 the twisted trace of a function f on the upper half plane invariant under
the action of Γ0(N) is given by

(2.29) TrN,D1
(f ;D2) ≡

∑
Q∈Q|D1D2|/Γ0(N)

a≡0 mod N

χD1
(Q)f(αQ)

ωQ

where ωQ is the order of the stabilizer of Q in Γ0(N)/{±1} 1. A method for
computing representatives of the space Qd/Γ0(N) as well as ωQ is provided
in the appendix. In terms of this trace, the coefficient of qn for n > 0 and n

not a square in the expansion of Z
(1,3)
N,ψ0

in the case that Γ0(N) is genus zero
is given by

(2.30) A
(1,3)
N,ψ0

(n) =
TrN,−3(TN ;n)√

n

where TN is the hauptmodul for Γ0(N)2. For n a square the coefficients
can also be expressed in terms of traces of singular moduli, but the precise
formula will in general involve adding a constant to the hauptmodul in the
trace.

Example 2.2. Here we generalize the previous example and illustrate the
relation to traces of singular moduli at higher level by taking N = 3 and using
the hauptmodul T3B(τ) = η(τ)12/η(3τ)12 + 12. To compute the coefficient of

q5 in Z
(1,3)
3,ψ0

, we sum over representatives of the space Q15/Γ0(3). Again,
using standard reduction theory we find that every binary quadratic form
in Q15 is equivalent to [1, 1, 4] or [2, 1, 2] under the action of SL(2,Z), and
it is easily deduced that a complete set of representatives of the quotient
Q15/Γ0(3) can be found in the set

(2.31) R =
{
Q|γ : Q = [1, 1, 4], [2, 1, 2], γ ∈ Γ0(3)

}
.

The elements of R with a ≡ 0 mod 3 are Q1 = [3,−3, 2] and Q2 = [6, 3, 1]
and these are inequivalent under the action of Γ0(3). These are trivially

1This corrects a typographical error in the description of Equation (1) in [25].
2Equation (2.30) follows from [25] when N is odd, but the case where N is even

appears to hold numerically as well.
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stabilized in Γ0(3) and have

(2.32) χ−3(Q1) = −1, χ−3(Q2) = 1

so that

(2.33) A
(1,3)
3,ψ0

(5) =
T3B (αQ2

)− T3B (αQ1
)√

5
= 27 .

We note that this is the negative of the character of the 3B conjugacy class
in Th for both irreducible representations of dimension 85995:

(2.34) A
(1,3)
3,ψ0

(5) = −χ9(3B) = −χ10(3B).

A more detailed method for the computation of these coefficients is provided
in Appendix A.

The previous two examples highlight a possible connection between the

coefficients of Z
(1,3)
N,ψ0

and twisted versions F3 obtained by replacing its coeffi-
cients, thought of as characters of the identity class, with characters of other
conjugacy classes. Indeed, this observation allows us to obtain the McKay–
Thompson series of F3 by considering more general multiplier systems as
detailed in the next section.

3. McKay–Thompson series for the Thompson group

As in Monstrous moonshine and Umbral moonshine, after associating super-
modules to the Fourier-coefficients in the q-expansion of F3, we can twist
F3 by Th conjugacy classes [g] to obtain the McKay–Thompson series

(3.1) F3,[g](τ) =

∞∑
m=−3

m≡0,1 mod 4

strWm
(g)qm.

Our main goal in this section is to exhibit a weight one-half weakly holo-
morphic modular form for each [g] and decompositions for the components
of each Wm into irreducible representations of Th with positive integer mul-
tiplicity such that the above trace function recovers the corresponding mod-
ular form.
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As a simple example consider the 3B McKay–Thompson series with lead-
ing terms

(3.2) F3,3B(τ) = 2q−3 + 5 + 54q4 + 54q5 − 108q8 + 16q9 + 12q12 + · · ·

where we have used the decompositions of coefficients of qm for m ≤ 12
appearing in Table 2. The Rademacher series at level N = 3 and multiplier
system ψ0 is given by

Z
(1,3)
3,ψ0

(τ) = q−3 − 1/2− 5q + 22q4 + 27q5 − 54q8 + 3q9 + 6q12 + · · ·

and since the group Γ0(3) is genus 0 with hauptmodul T3 we can compute
traces of singular moduli and find agreement amongst the coefficients of qm

with m not a square. As mentioned earlier, the coefficients of square powers
of q depend on the choice of constant term in the hauptmodul in the trace
formulation and this is reflected in the Rademacher series by the possibil-
ity to add terms involving theta functions without changing the modular
properties. We can use this to make the identification

(3.3) F3,3B(τ) = 2Z
(1,3)
3,ψ0

(τ) + 6θ(τ)

which suggests that F3,3B is modular for Γ0(12). Computation to higher
order in the q-expansion confirms this identification.

Although [25] do not prove that the trace formulation agrees with the
Rademacher series coefficients for even values of N , we find nonetheless that
similar computations lead to agreement between the trace formulation and

Rademacher coefficients for Z
(1,3)
4,ψ0

(τ) and Z
(1,3)
8,ψ0

(τ) (see Eqn. (2.25)) and
that these can be matched onto the 4A and 4B twists of F3 with Fourier
expansions

F3,4A(τ) = 2q−3 + 8 + 16q4 + 42q5 − 84q13 + · · ·(3.4)

F3,4B(τ) = 2q−3 − 22q5 + 108q13 + · · ·(3.5)

as

(3.6) F3,4A(τ) = 2
(
Z

(1,3)
4,ψ0

(τ) + 4θ(4τ)
)

(3.7) F3,4B(τ) = −2
(
Z

(1,3)
4,ψ0

(τ)− 2Z
(1,3)
8,ψ0

(τ)
)
.

Note that because 4 is a square, we are free to add a multiple of θ(4τ) to
a weakly holomorphic weight one-half modular form over Γ0(16) or Γ0(32)
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while retaining the Kohnen plus condition on its Fourier coefficients and
without altering its modular properties.

Continuing in this way, we find relations of the form

(3.8) F3,[g](τ) = 2Z
(1,3)
o(g),ψ0

(τ) +
∑
m>0

m2|o(g)

κm,gθ
(
m2τ

)

for the conjugacy classes [g] of Th labelled as 2A, 3B, 4A, 5A, 6C, 7A, 9A,
9B, 10A, 12C, 13A, and 18A in Tables B4–B7. The constants κm,g are as
specified in Table B1. In addition we have

F3,4B(τ) = −2
(
Z

(1,3)
4,ψ0

(τ)− 2Z
(1,3)
8,ψ0

(τ)
)

(3.9)

F3,8A(τ) = −2
(
Z

(1,3)
8,ψ0

(τ)− 2Z
(1,3)
16,ψ0

(τ)
)
.(3.10)

Furthermore, we find for these cases, all of which involve o(g) such that
Γ0(o(g)) is genus zero and whose hauptmoduls are tabulated in Table 3, that
the trace formulations and Rademacher coefficients agree for coefficients of
non-square powers of q.

We mentioned earlier that the results of [25] that we have used do not
strictly apply for N even. However the fact that very similar results were
shown to extend to N = 2 in [29], the fact that the results for even N when
Γ0(N) is genus zero coincide with the McKay–Thompson series above, and
the fact that the results of [25] for these values of N coincide with numerical
results obtained from the computation of coefficients of Rademacher series
suggest to us that it is possible that the results of [25] can be extended to
at least some even N for which Γ0(N) is genus zero.

This construction involving traces of singular moduli for genus zero
Γ0(N) and Rademacher series with multiplier ψ0 is not sufficient to gen-
erate candidate forms for all the McKay–Thompson series of Thompson
moonshine. However the expressions for the coefficients in Equations (2.26)
and (2.27) can be modified to obtain weight one-half weakly holomorphic
modular forms at level 4Nh by simply changing the multiplier system ψ
used in the Kloosterman sums Kψ(−3, n, c). We will work with multiplier
systems of the form

(3.11) ψN,v,h(γ) = ψ0(γ)e

(
−v cd

Nh

)

with v, h ∈ Z and h dividing 4× 24, see [26] for a general discussion including
the fact that the last factor in (3.11) is actually a character for Γ0(4N).
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Monster class Γ0(N) TN

2B Γ0(2) η(τ)24/η(2τ)24 + 24
3B Γ0(3) η(τ)12/η(3τ)12 + 12
4C Γ0(4) η(τ)8/η(4τ)8 + 8
5B Γ0(5) η(τ)6/η(5τ)6 + 6
6E Γ0(6) η(τ)5η(3τ)/η(2τ)η(6τ)5 + 5
7B Γ0(7) η(τ)4/η(7τ)4 + 4
8E Γ0(8) η(τ)4η(4τ)2/η(2τ)2η(8τ)4 + 4
9B Γ0(9) η(τ)3/η(9τ)3 + 3
10E Γ0(10) η(τ)3η(5τ)/η(2τ)η(10τ)3 + 3
12I Γ0(12) η(τ)3η(4τ)η(6τ)2/η(2τ)2η(3τ)η(12τ)3 + 3
13B Γ0(13) η(τ)2/η(13τ)2 + 2
16B Γ0(16) η(τ)2η(8τ)/η(2τ)η(16τ)2 + 2
18D Γ0(18) η(τ)2η(6τ)η(9τ)/η(2τ)η(3τ)η(18τ)2 + 2
(25Z) Γ0(25) η(τ)/η(25τ) + 1

Table 3: The McKay–Thompson series for the monster which are haupt-
moduls for genus 0 congruence subgroups, Γ0(N). The hauptmoduls are
normalized to have leading singularity q−1 at the cusp at infinity and van-
ishing constant term.

We thus assign to each element g of Th a pair (vg, hg) depending only
on the class [g] with the requirement that hg divides 2o(g) and find that we
can make the identification

(3.12) F3,[g](τ) = 2Z
(1,3)
o(g),ψ(τ) +

∑
m>0

m2|o(g)hg

κm,gθ
(
m2τ

)
, ψ = ψo(g),vg,hg

where the quantity on the right hand side is, modulo issues of convergence,
a weakly holomorphic weight one-half modular form on Γ0(4o(g)hg). The
pairs (vg, hg) specifying the multiplier systems as well as the κm,g may be
found in Table B1.

Given this identification of the McKay–Thompson series we can solve

for the multiplicities b
(a)
m,i that specify the multiplicity of the representation

Vi in the decomposition of W
(a)
m . These are tabulated in Tables B8 and B9

for m ≤ 32. We have in fact verified that the b
(a)
m,i are positive integers for

m ≤ 52.
We summarize the discussion here and in the previous sections with the

following.
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Conjecture 3.1. We conjecture that there exists a naturally defined Z–
graded supermodule for the Thompson sporadic group

(3.13) W =

∞⊕
m≥−3

m≡0,1 mod 4

Wm ,

with Wm for m ≥ 0 and m = 0 mod 4 having vanishing odd part, Wm for
m ≥ 0 and m = 1 mod 4 having vanishing even part, and W−3 having van-
ishing odd part, such that the graded dimensions of Wm are related to the
weight one-half weakly holomorphic modular form F3 by

(3.14) F3(τ) =

∞∑
m=−3

m≡0,1 mod 4

strWm
(1)qm ,

and such that the weight one-half weakly holomorphic modular forms F3,[g]

described above and in Table B2 are related to W via graded supertrace
functions via

(3.15) F3,[g](τ) =

∞∑
m=−3

m≡0,1 mod 4

strWm
(g)qm .

4. A discriminant property for Thompson moonshine

We now describe a discriminant property of the moonshine connection be-
tween the Thompson group and F3. We start with a quick review of the
discriminant property of Umbral moonshine, concentrating for simplicity on

the cases where the Niemeier lattice X is of pure A-type, X = A
24/(�−1)
�−1 ,

with �− 1 a divisor of 12 as discussed in [4].
The main ingredients for the A-type examples of Umbral moonshine are

�− 1 component vector-valued mock modular forms H(�) and a finite group

(4.1) G(�) = Aut
(
L(�)/W (�)

)

with L(�) the Niemeier lattice with root system A
24/(�−1)
�−1 and W (�) the Weyl

group of L(�) generated by reflections in the roots. The r-th component H
(�)
r
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of H(�) has a Fourier expansion of the form

(4.2) H(�)
r (τ) =

∑
k∈Z

c(�)r (k − r2/4�)qk−r
2/4�

with c
(�)
r (k − r2/4�) the dimension of a G(�) module K

(�)
r,k−r2/4�. One says

that an integer D is a discriminant of H(�) if there exists a term q−D/4� with
non-vanishing Fourier coefficient in at least one of the components of H(�).

The main results relating the number fields over which the irreducible
representations of G(�) are defined and the discriminants of H(�) are stated
in Propositions 5.7 and 5.10 of [4] which we state here for completeness.

Proposition 4.1. (Proposition 5.7 of [4]) If n > 1 is an integer satisfying

1) there exists an element of G(�) of order n, and

2) there exists an integer λ that is co-prime to n such that D = −nλ2 is
a discriminant of H(�),

then there exists at least one pair of irreducible representations � and �∗ of
G(�) and at least one element g ∈ G(�) such that tr�(g) is not rational but

(4.3) tr�(g), tr�∗(g) ∈ Q(
√−n)

and n divides o(g).

A representation ρ of G(�) is said to be of type n if n is an integer
satisfying the two conditions of Proposition 4.1 and the character values
of ρ generate Q[

√−n]. A connection between discriminants of H(�) and
representations of type n is then described by

Proposition 4.2. (Proposition 5.10 of [4]) Let n be one of the integers
satisfying the two conditions of Proposittion 4.1 and let λn be the small-
est positive integer such that D = −nλ2

n is a discriminant of H(�). Then

K
(�)
r,−D/4� = �n ⊕ �∗n where �n and �∗n are dual irreducible representations of

type n. Conversely, if � is an irreducible representation of type n and −D
is the smallest positive integer such that K

(�)
r,−D/4� has � as an irreducible

constituent then there exists an integer λ such that D = −n
lambda2.

The latter was extended to the following two conjectures in [4]
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Conjecture 4.1. (Conjecture 5.11 of [4] ) If D is a discriminant of H(�)

which satisfies D = −nλ2 for some integer λ then the representation K
(�)
r,−D/4�

has at least one dual pair of irreducible representations of type n arising as
irreducible constituents.

Conjecture 4.2. Conjecture 5.12 of [4] ) For � ∈ Λ = {2, 3, 4, 5, 7, 13} the

representation K
(�)
r,−D/4�is a doublet if and only if D = nλ2 for any integer

λ for any n satisfying the conditions of Proposition 5.7.

In the above a G-module V is a doublet if it is isomorphic to the direct
sum of two copies of a single representation of G.

For � = 2 these conjectures are proved in [27]. Further details of the
discriminant structure and the extension to general Niemeier root systems
X can be found in [4, 5].

We now describe an analogous structure in Thompson moonshine. We
first note that it follows from the results of [19], summarized in section 2, that
the coefficient c(m) of qm in F3 can be computed in terms of traces of singular
moduli which are determined by the root of a quadratic form of discriminant
−3m (i.e. a Heegner point of discriminant −3m). We will say that −3m is a
discriminant of F3 if there exists a term qm in the Fourier expansion of F3

with non-zero coefficient. Any discriminant can be written uniquely in the
form D0λ

2 with λ a positive integer and D0 a fundamental discriminant.
Thus for each m > 0 with m = 0, 1 mod 4 we have a unique decomposition
−3m = D0(m)λ2 with D0(m) a negative fundamental discriminant.

We now state a proposition relating the discriminants of F3 to properties
of the characters of Th.

Proposition 4.3. If D0(m) is a negative fundamental discriminant satis-
fying

1) there exists an element of Th of order |D0(m)|, and
2) there exists a positive integer λ such that −3m = D0(m)λ2 is a dis-

criminant of F3 and (λ, 3) = 1,

then there exists at least one pair of irreducible representations V and V of
Th and at least one element g ∈ Th such that trV (g) is not rational but

(4.4) trV (g), trV (g) ∈ Q

[√
D0(m)

]
and |D0(m)| divides o(g).
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D0 (V, V )

−15 (V9, V10), (V35, V36)
−24 (V17, V18)
−39 (V14, V15)

Table 4: Irreducible representations of Th of type D0.

The negative fundamental discriminants obeying the two conditions of
Proposition 4.3 are −3, −15,−24, and −39 and inspection of the character
table of Th shows that Proposition 4.3 is true since the pairs of irreducible
representations 27000V4,

27000V5,
85995V9,

85995V10,
1707264V17,

1707264V18 and
779247V14,

779247V15 have characters in Q
[√

D0

]
for elements g of Th with

|D0| dividing o(g) for D0 = −3,−15,−24,−39 respectively.
We will say that a representation V of Th is of typeD0 ifD0 is a negative

fundamental discriminant satisfying the two conditions of Proposition (4.3)
and the character values of V generate the ring of algebraic integers in
Q
[√

D0

]
over Z. The latter condition excludes representations defined over

Q
[√−3] and leaves the list of irreducible representations of type D0 is given

in Table 4.
There is also a connection between the discriminants of F3 and the fields

over which the representations Wm attached to the coefficient of qm in F3

are defined which we state as

Proposition 4.4. Let D0(m) be one of the fundamental discriminants sat-
isfying the two conditions of Proposition 4.3 and let λm be the smallest
positive integer such that −3m = D0(m)λ2

m is a discriminant of F3. Then
Wm = V ⊕ V where V and V are dual irreducible representations defined
over Q

[√
D0(m)

]
.

Remark 4.1. Since the Schur index of all irreducible representations of
Th is one [28], it follows that Th representations of type D0 can be realized
over Q

[√
D0

]
.

Conjecture 5.11 of [4] also predicts properties of the representations at-
tached to discriminants of the mock modular forms HX to arbitrary powers
in their Fourier expansion. The natural generalization of Conjecture 5.11 to
our situation is
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Conjecture 4.3. Whenever −3m is a discriminant of F3 with −3m =
D0(m)λ2 with |D0(m)| an order of Th and (λ, 3) = 1 then the representation
Wm has at least one pair of irreducible representation of type D0 arising as
irreducible constituents.

Evidence for this conjecture can be seen from an inspection of the mul-
tiplicities of representations appearing in Tables B8 and B9.

Finally we have a conjecture that is similar in nature to conjecture 5.12
of [4] regarding the presence of decompositions with odd multiplicities of
representations of type D0(M).

Conjecture 4.4. If −3m is a discriminant of F3 with −3m = D0(m)λ2

with (λ, 3) = 1 and D0(m) ∈ {−15,−24,−39} then the representation Wm

contains a pair V ⊕ V̄ of irreducible representations of type D0 with odd
multiplicity.

Remark 4.2. According to Corollary 1.2 of [18], the coefficients of q−D/4�

appearing in the discriminant property of Umbral Moonshine for X of pure
A-type are also related to traces of singular moduli evaluated at Heegner
points of discriminant D.
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Appendix A. Computing traces of singular moduli

We present methods for computing representatives for the quotient space
Qd/Γ0(N) as well as a generalized reduction theory of integral binary quad-
ratic forms, which is similar to the one found in [32]. Our algorithms rely
on knowledge of Qd/SL(2,Z) from reduction theory and the structure of
Γ0(N)\SL(2,Z).

The basic idea is this. Let X be a well-ordered set on which a group G
acts from the left with finitely many orbits and H be a subgroup of G with
finite index. We assume that the stabilizer of any element in X is finite.
Then once one fixes a set of orbit and right coset representatives, (X/G)rep

and (H\G)rep, the finite set

(A.1) R = {g · x | x ∈ (X/G)rep, g ∈ (H\G)rep}

contains a complete set of representatives for the space X/H. However, the
existence of non-trivial stabilizers associated to the group action of G implies
that there may be two elements in R which are equivalent under H. To this
end, we will prescribe a method for testing whether or not two elements are
equivalent under the action of H and filter elements out of R until we have
a true set of representatives for the quotient X/H.

Eventually, we will apply this toX = Qd,G = SL(2,Z), andH = Γ0(N),
and to this end, we state some facts from computational group theory. These
results also hold for right actions and left coset representatives.

A.1. Reducing to fundamental domain of subgroup

Fix a fundamental domain (X/G)rep and a set of right coset representatives
(H\G)rep. Define the reduction function

RG : X → X ×G(A.2)

x �→ (xG, gx)(A.3)

which computes the unique representative of x in (X/G)rep as well as some
group element which connects them, gx · x = xG. Note in general that gx is
not unique. If xG is stabilized by {s1, . . . , sm}, then the reduction function
could have returned sigx for i = 1, . . . ,m as the group element connecting x
to xG. In fact, one can see that these are the only group elements connecting
x to its reduction xG. We thus give an algorithm for computing RH in terms
of RG which copes with the existence of non-trivial stabilizers.
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Let (xG, gx) = RG(x) and StabG(xG) = {s1, . . . , sm}. Then for each k =
1, . . . ,m, it is easy to see that there is a unique coset representative gk ∈
(H\G)rep for which gkskgx ∈ H. We can use the ordering on X to define
h = gkskgx using the k which minimizes (gkskgx) · x. Then we let

(A.4) RH(x) = (h · x, h).

This definition of RH ensures that every pair of elements x and y in X which
are equivalent under the action of H are mapped onto the same reduced
element, by perscribing a canonical way to choose amongst the m different
group elements skgx which connect x to xG.

Example A.1. Let X = Q3 with lexicographic order, defined as Q1 =
[a1, b1, c1] < Q2 = [a2, b2, c2] if a1 < a2 or a1 = a2 and b1 < b2 or a1 = a2,
b1 = b2 and c1 < c2. Further let G the full modular group SL(2,Z), and H
the congruence subgroup Γ0(2). We would like to compute RΓ0(2)(Q) where
Q = 3X2 + 3XY + Y 2.

From reduction theory, we get that

(A.5) RSL(2,Z)(Q) = (QSL(2,Z),M) ≡
(
X2 +XY + Y 2,

(
0 −1
1 2

))
.

We can choose left coset representatives

(Γ0(2)\SL(2,Z))rep = {M1,M2,M3}(A.6)

=

{(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 0
1 1

)}

and note that

StabPSL(2,Z)(QSL(2,Z)) = {S1, S2, S3}(A.7)

=

{(
1 0
0 1

)
,

( −1 −1
1 0

)
,

(
0 1

−1 −1
)}

.

Then, the matrices MS1M2, MS2M3, and MS3M1 all lie in Γ0(2). Acting
with these matrices from the right on Q gives the binary quadratic forms
X2 −XY + Y 2, 3X2 + 3XY + Y 2, and X2 +XY + Y 2 respectively. The
least of these lexicographically is the first, and so we have that

(A.8) RΓ0(2)(3X
2 + 3XY + Y 2) =

(
X2 −XY + Y 2,

(
1 0
2 1

))
.
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A.2. Representatives for quotient by a subgroup

It is easy to see that once we have a true “reduction algorithm” we can
easily test whether or not two elements are equivalent under the action of
the group.

Claim A.1. For two elements x and y of X, let (xh, gx) = RH(x) and
(yh, gy) = RH(y). These are equivalent under the action of H if and only if
xh = yh.

Remark A.1. This claim also allows us to implicitly define a fundamental
domain of X under the group action of H as (π1 ◦RH)(X) where π1 : X ×
G→ X denotes the projection onto the first factor.

Now that we are able to test equivalence, we can carry out the procedure
suggested at the beginning of this section.

Example A.2. We would like to compute the space Q4/Γ0(3). From re-
duction theory we know that every form with discriminant −4 is equivalent
under the action of the full modular group to X2 + Y 2. Acting on this form
with the coset representatives of Γ0(3)\SL(2,Z), we get that a full set of
representatives of Q4/Γ0(3) must be contained in

(A.9) {X2 + Y 2, 2X2 − 2XY + Y 2, 5X2 + 4XY + Y 2}.

However, we find that

RΓ0(3)(5X
2 + 4XY + Y 2) = 5X2 + 4XY + Y 2(A.10)

= RΓ0(3)(2X
2 − 2XY + Y 2)

while X2 + Y 2 and 2X2 − 2XY + Y 2 are inequivalent under Γ0(3), and so
we have that

(A.11)
(Q4/Γ0(3)

)rep
= {X2 + Y 2, 2X2 − 2XY + Y 2}.
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Appendix B. Tables

In this appendix we provide tables giving the multiplier systems and coef-
ficients of theta functions used in specifying the McKay–Thompson series,
the Fourier expansions of all the McKay–Thompson series F3,g up to or-
der q32, the character table of the Thompson group and a table providing

the decomposition into irreducible representations of the modules W
(0)
m and

W
(1)
m . The character table was computed using the GAP4 computer algebra

package [31].
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