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Local Langlands duality and a duality of

conformal field theories

Martin T. Luu

We show that the numerical local Langlands duality for GLn and
the T-duality of two-dimensional quantum gravity arise from one
and the same symmetry principle. The unifying theme is that the
local Fourier transform in both its �-adic and complex incarnation
gives rise to symmetries of arithmetic and geometric local Lang-
lands parameters.

1. Introduction

In the 1990’s physicists gave rigorous mathematical proofs of the T-duality,
also known as p-q duality, of 2D quantum gravity, see [5] and [12]. Recently,
we revisited this topic in [18] and in joint work with Albert Schwarz [19],
giving a proof of this duality based on the complex local Fourier transform
of Bloch-Esnault [2] and Lopez [16]. This transform has an �-adic analogue
and it is then natural to ask if there is arithmetic meaning to this new proof
of the T-duality. In the present work we explain that this is indeed the case:
From a certain perspective the arithmetic analogue is the numerical local
Langlands duality for GLn over local fields.

To describe this passage between physics and arithmetic one should move
along the four pillars of Weil’s augmented Rosetta stone, see [8]: These pillars
are number fields, curves over finite fields, Riemann surfaces, and quantum
physics. The analogies are particularly interesting when comparing various
dualities that exist within the four different frameworks. Before explaining
our results concerning this relation of dualities we recall a global analogue
of the passage.

Consider first the arithmetic duality given by the relation between Ga-
lois representations and automorphic representations. One can say that the
study of this duality started, in its true non-abelian generality, in the work
of Eichler [4]. By now, it is a well studied theme and often called a Langlands
duality. For example in the context of GLn,Q it is a popular conjecture, see
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for example [24], that every irreducible representation

ρ : Gal(Q/Q) −→ GLn(Q�)

that is continuous for the �-adic topology on the target and the profinite
topology on the source and that is unramified at all but finitely many places
and de Rham at � is attached to a cuspidal automorphic representation of
GLn,Q. This has a global geometric analogue: Given a Riemann surface X,
the unramified geometric Langlands duality for GLn associates to every flat
GLn-bundle over X a certain D-module on the moduli stack of GLn-bundles
over X. The fourth aspect of the Rosetta stone, quantum physics, enters
through the work of Kapustin and Witten [14] that relates the geometric
Langlands duality to the S-duality of 4D gauge theories.

In the present work we show that in analogy with the above global pas-
sage between arithmetic and physics, the T-duality of 2D quantum gravity
can be related to dualities in the local incarnations of the first three pillars of
the Rosetta stone. In the first two pillars, the numerical local Langlands cor-
respondence for GLn over local fields has been obtained in work of Henniart
[10]. To move to the third pillar we introduce a local geometric numerical
Langlands correspondence for GLn. Due to classical results of Levelt and
Turrittin one can describe the relevant local geometric Langlands parame-
ters in a very explicit manner. What is interesting is that in this manner
the variety Aj ×Gm plays an important role and in the arithmetic numeri-
cal local Langlands correspondence one knows that the relevant number of
local Langlands parameters is given by the number of Fq-points of precisely
this variety, where Fq is the finite residue field of the local field in ques-
tion. However, in contrast to the geometric case, one arrives at this count
via the properties of Laumon’s local �-adic Fourier functors and a direct
parametrization of the Langlands parameters seems unknown.

We then move to the fourth pillar of the Rosetta stone by explaining how
quantum physics enters the picture: The starting point is the association of
Virasoro constrained τ -functions of the KP hierarchy to suitable local ge-
ometric Langlands parameters. These τ -functions are relevant in quantum
field theory, in particular in 2D quantum gravity where they allow to describe
the partition functions of the various models of the theory. The question then
occurs whether there is an analogue of the local numerical Langlands corre-
spondence in these physical theories. It turns out that, rightly interpreted,
there indeed is and it has the same underlying mechanism as the arithmetic
duality, namely symmetries of local Langlands parameters coming from the
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local Fourier transform. We explain how this viewpoint yields the relation
between the Langlands duality and the T-duality.

2. Numerical local Langlands correspondence

Up to this point, the numerical local Langlands correspondence (numerical
LLC) for GLn has been known for the local incarnations of the first two
pillars of Weil’s Rosetta stone, namely fields of the form Fq((t)) and finite
extension of Qp. After reviewing the precise statement in the arithmetic case,
we develop in this section a version of the correspondence in the context of
the local geometric Langlands correspondence.

2.1. The arithmetic theory

Fix a non-archimedean local field K with finite residue field of size q and
residue field characteristic p. For n ≥ 1 let A0(n) denote the set of isomor-
phism classes of supercuspidal representations of GLn(K) and let G0(n) de-
note the set of isomorphism classes of n-dimensional Weil-Deligne represen-
tations (r,N) of the Weil group WK with r irreducible. The local Langlands
correspondence predicts a bijection between A0(n) and G0(n) that preserves
interesting arithmetic data such as the conductor. A natural approach to
test this bijection is to put more and more constraints on both sets, until
one obtains finite sets. These should then have the same size and this is the
idea of the numerical local Langlands correspondence. This correspondence
plays a crucial role in the original proof of the local Langlands correspon-
dence for GLn over a p-adic field K by Harris-Taylor [11] since it reduces the
task of constructing a suitable bijection between the relevant Weil-Deligne
representations and smooth representations to the task of constructing an
injection. This is a significant simplification:

Suppose π̃ is a smooth admissible representation of GLn(K) which is
supercuspidal. Due to work of Clozel it can be realized as local component
of a suitable global object, an automorphic representation π over a global
field F , which factors as a restricted tensor product

π ∼= ⊗′
vπv

such that there is a finite place v0 of F such that Fv0
∼= K and πv0

∼= π̃.
As a consequence of the local-global compatibility philosophy for Langlands
correspondences, a candidate for the local Langlands correspondence is given
in the following manner: For the choice of auxiliary prime � one associates
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to π̃ the Weil-Deligne representation of WFv0
associated to ρπ,�|Gal(F v0

/Fv0
)

where ρπ,� is a suitable �-adic representation attached to π. However, it is not
clear from the construction what the image of this correspondence is. The
great use of the numerical local Langlands correspondence is that it makes
it unnecessary to understand the image: Henniart [10] used the numerical
correspondence to show that any injection

G0(n) ↪→ A0(n)

that is compatible with twists by unramified characters and preserves con-
ductors has to be a bijection. We now recall the statement of the numerical
local Langlands correspondence:

For d ≥ 1 and k ≥ 0 let Gd,k denote the set of isomorphism classes of
Weil-Deligne represenations (r, 0) ∈ G0(d) such that r|IK is irreducible and
sw(σ) = k where IK denotes the inertia subgroup of WK and sw(−) denotes
the Swan conductor. Define the set

C(n, j)arith =
⋃
d|n

⋃
k·n

d
≤j

(Gd,k)/∼

where the equivalence relation ∼ identifies representations that differ by a
twist by an unramified character. This set of equivalence classes is known
to be a finite set by work of Koch and hence it makes sense to define the
number

c(n, j)arith := |C(n, j)arith|.
The following was conjectured by Koch, in a slightly different but equivalent
form:

Arithmetic Numerical LLC. Let n ≥ 1 and j ≥ 0 be two integers. Then

c(n, j)arith = (q − 1)qj

where q denotes the size of residue field of K.

This is one of several ways to formulate the numerical local Langlands
correspondence, see [17] for relevant background and history. After long
and laborious calculations, Koch [13] was able to prove the conjecture if
the residue characteristic p of Fq divides n at most linearly. Henniart used
completely different methods in [10] to prove the general case. This shift
in the approach to the conjecture involves the local Fourier functors and is
crucial for us to make the connection with quantum duality.
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2.2. The geometric theory

Our aim is now to obtain a numerical local geometric Langlands correspon-
dence. We start by describing arithmetic and geometric local Langlands
parameters in a unified manner.

• Let K be a non-archimedean local field and let WK be the corre-
sponding Weil group. An arithmetic local Langlands parameter L for
GLn with trivial monodromy operator is a pair (V, ρ) where V is an
n-dimensional C-vector space and ρ is a homomorphism

ρ : WK −→ GL(V )

with open kernel.

• A geometric local Langlands parameter L for GLn is simply a connec-
tion (V,∇) on the formal punctured disc, see [7]. After choosing a local
coordinate, this consists of the data of an n-dimensional C((t))-vector
space M together with a C-linear map

∇ : M −→ M

such that

∇(f ·m) = f · ∇(m) +
df

dt
·m

for all f ∈ C((t)) and all m ∈ M .

There will be two important integer parameters n and j associated to such
arithmetic and geometric Langlands parameters: For an arithmetic Lang-
lands parameter L = (V, ρ) let

n(L) = dimC V

j(L) = sw(ρ)

where sw(−) is the Swan conductor. For a geometric Langlands parameter
L = (∇, V ) define

n(L) = dimC((t)) V

j(L) =
∑

slopes of ∇.

The integer j(L) is called the irregularity of the connection.
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For n, j ∈ Z>0 let LLarith(n, j) denote the set of isomorphism classes of
arithmetic local Langlands parameters of dimension n and Swan conductor
j, and let LL◦

arith(n, j) denote the subset of irreducible parameters. The geo-
metric analogue is the set LLgeom(n, j) of isomorphism classes of irreducible
geometric local Langlands dimension n and irregularity j and the subset
LL◦

geom(n, j) consisting of irreducible connections.
Our aim is now to find a set of isomorphism classes of local geomet-

ric Langlands parameters for GLn that is defined in a similar manner to
C(n, j)arith and to show that its suitably interpreted size is closely related
to c(n, j)arith. Recall that on the arithmetic side one considers a union

C(n, j)arith =
⋃
d|n

⋃
k·n

d
≤j

· · ·

of equivalence classes of arithmetic local Langlands parameters. The rea-
son one lets d and k vary in the above manner is that this corresponds to
counting suitable discrete series representations rather than supercuspidal
representations. It turns out that this simplifies matters when combined
with the local Jacquet-Langlands correspondence. In the arithmetic setting
it is thus a fact that the “discrete series count” gives a simpler formula than
the “supercuspidal count” if we make the following notational conventions:

• discrete series count: all pairs (d, k) such that d
∣∣n and k ≤ j · d

n

• supercuspidal count: all pairs (d, k) such that d = n and k ≤ j

Under the analogies of Weil’s Rosetta stone, the geometric residue field

kg := C

of C((t)) corresponds to the arithmetic residue field

ka := Fq

of K. Hence one might expect that a geometric analogue of C(n, j)arith
should be described via suitable parameters in the residue field C. Further-
more, given the formula

c(n, j)arith = (q − 1)qj

it is natural to try to relate this to a point count of a variety over a fi-
nite field. It seems unknown if there is indeed a variety whose points count
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the set C(n, j)arith in a natural manner. However, after the fact, meaning
with the above formula in hand, the arithmetic numerical local Langlands
correspondence can be phrased as follows:

Arithmetic Numerical LLC. Let K be a non-archimedean local field with
finite residue field ka. Let n ≥ 1 and j ≥ 0 be two integers. Then there is a
bijection

C(n, j)arith
1:1 ��

(
Aj ×Gm

)
(ka)�� .

The occurrence of the variety Aj ×Gm might seem artificial but some-
thing interesting occurs when moving to the geometric pillar of the Rosetta
stone: We now show that the same variety occurs in a natural analogue of
the numerical local Langlands duality.

Geometric Numerical LLC. Let K = C((t)) and let kg = C denote its
residue field. Let n ≥ 1 and j ≥ 0 be two integers.

(i) Define the subspace U of Aj = Spec C[x1, . . . , xj ] given by complement
of the subspaces defined via

xi1 = · · · = xir = 0

where n and the elements of {1, 2, . . . , j}\{i1, . . . , ir} have non-trivial
gcd. There is a set C(n, j)cuspgeom of local geometric Langlands parameters
for GLn whose definition is modeled on the supercuspidal count such
that there is a bijection

C(n, j)cuspgeom
1:1 �� (U ×Gm)(kg)/∼��

where ∼ indicates that

(a1, . . . , aj , x) ∼ (a1ζn, . . . , ajζ
j
n, x)

whenever ζn is an n’th root of unity.

(ii) There is a set C(n, j)discgeom of local geometric Langlands parameters for
GLn whose definition is modeled on the discrete series count such that
there is a bijection

C(n, j)discgeom
1:1 �� (Aj ×Gm)(kg)/∼��

where ∼ is as before.
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Proof. For the proof of both parts of the theorem it will be useful to recall
how the classical results of Levelt and Turrittin allow to describe irreducible
n-dimensional connections on the formal punctured disc: Given a map

ρ : C[[t]] −→ C[[u]]

which takes t to some element in uC[[u]] one can define associated push-
forward and pull-back operations on the categories of connections on the
formal punctured disc with local coordinate t and u respectively. See for
example [21] for more details. For i ∈ Z≥1, denote by [i] the map ρ that
takes t to ui. For a Laurent series f ∈ C((t1/n)) define the C((t))-connection

E(f, t1/n, n) := [n]∗
(
C((t1/n)),

d

dt1/n
+ n · f

t1/n

)
.

Then

dimC((t))E(f, t1/n, n) = n.

The Levelt-Turrittin classification implies that the gauge equivalence class of
the connection E(f, t1/n, n) depends on f precisely up to adding an arbitrary
element of

1

n
Z+ t1/nC[[t1/n]]

and up to substituting ζnz for z where ζn is an n’th root of unity, see for
example [9].

Furthermore, this connection is irreducible if and only if f is not in
C((t1/m)) for some 0 < m < n. Every irreducible n-dimensional connection
over C((t)) is isomorphic to some E(f, t1/n, n). Note that if

f =
∗

tj/n
+ higher order terms

with ∗ ∈ C× and j ≤ 0, then the irregularity is given by

j(E(f, t1/n, n)) = j.

We now apply these considerations to prove both parts of the geometric
numerical local Langlands correspondence.

We start with part (i) of the theorem, the supercuspidal count. Hence we
are considering n-dimensional connections of irregularity at most j. We now
discuss geometric analogues of the other constraints involved in the definition
of C(n, j)arith. First consider the process of identifying representations that
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differ by a twist by an unramified character. A natural geometric analogue
is the process of tensoring a connection with a holomorphic one-dimensional
connection. However, this does not change the isomorphism class of the con-
nection. Hence, given an irreducible connection E(f, t1/n, n) we can reduce
to the case where f is of the form

f =
∑
i≤0

ait
i/n.

The condition that the irregularity is at most j corresponds to

ai = 0 for all i < −j.

Given a Weil-Deligne representation (r,N), the condition that r restricted to
inertia is irreducible we simply translate to the condition that E(f, t1/n, n)
is irreducible. As indicated before, this is equivalent to the fact that f ∈
C((t1/n)) is not in fact an element of C((t1/m)) for 0 < m < n. In other words
one needs that the j-tuple (a−1, . . . , a−j) is not an element of the set

{(b−1, . . . , b−j) ∈ Cj | bi = 0 except possibly for i in a set of indicies

whose gcd with n is non-trivial}.

With all these conventions we obtain the geometric analogue of C(n, j)arith
as

C(n, j)cuspgeom :=
⋃
k≤j

LL◦
geom(n, k).

Due to the Levelt-Turrittin classification and the isomorphism

exp(2π
√−1n−) : C/ 1

nZ
∼ �� C×

one obtains the desired bijection

C(n, j)cuspgeom ←→ ({(a−1, . . . , a−j) ∈ U} ×Gm(kg))/∼

where U is as in the statement of the theorem and the ai’s are the coefficients
of f as before.
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Now we consider part (ii) of the theorem, the discrete series count. In
analogy with the structure of arithmetic Weil-Deligne represenations asso-
ciated to discrete series representations we define

C(n, j)discgeom := { indecomposable L ∈ LLgeom(n, k) for k ≤ j }

We start to describe such parameters in more detail. For i ≥ 1 let Ni

denote the i-dimensional connection over C((t)) with connection map given
by

∂t +

⎡
⎢⎢⎢⎣
0 1

0 1
. . . 1

0

⎤
⎥⎥⎥⎦ 1

t
.

With this notation, every indecomposable n-dimensional connection is of
the form

V ⊗Nd

where d|n and V is an irreducible n/d-dimensional connection, see for ex-
ample [1]. Therefore, in order to count C(n, j)discgeom one can simply count
the representations V . Note that in analogy to the arithmetic conductor
constraints we impose

j(V ) · d ≤ j.

We now count such representations. Every irreducible n/d-dimensional con-
nection V can be written as [n

d

]
∗
E(f, td/n, 1)

for some f ∈ C((td/n)) and the isomorphism class of this push-forward de-
pends on f precisely up to adding an element in Z+ td/nC[[td/n]] and substi-
tuting ζtd/n for td/n where ζ is an n/d’th root of unity. To such an isomor-
phism class of connections we associate f . Due to our irregularity constraints
one sees that as d varies f is precisely an element of C((t1/n)) of the form

f =
∑

r≤i≤0

ait
i/n

with |r| ≤ j. To incorporate the gauge equivalence of connections in this
description one identifies f ’s that differ from one another by an integer on
the constant term and by substituting ζnt

1/n for t1/n where ζn is an n’th root
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of unity. Via the coefficients of f one obtains a bijection to (Aj ×Gm)(kg)/∼
as desired. �
Note that the similarity between the arithmetic and geometric numerical
LLC in particular gives a complex shadow of the structure of the abelian
part of the inertia group of a local field.

One can also observe from the above proof a crucial difference between
the arithmetic and geometric side: In the latter, all irreducible parameters
are obtained from one-dimensional ones via push-forward. In the former,
the question of which parameters of WK are obtained by induction from
a parameter of WK′ for some finite extension K ′/K is subtle. Indeed, for
example in the local Langlands correspondence for GL2 over p-adic fields, a
crucial case is GL2(Q2), precisely since in this case there exist non-induced
parameters.

Consider for example for an odd c ≥ 3 the set of isomorphism classes of
Weil-Deligne representations ofWK that are induced from a proper subgroup
of WK and that have Artin conductor c and trivial determinant on a choice
of uniformizer. Here K is a p-adic field and we denote by q the size of the
residue field of K. Work of Tunnell [25] shows that this set has size

2(q − 1)2qc−3(1−X(c))q−[(c+1)/6]

where the function X(c) depends on how c compares to 6 · valK(2) + 1 and
also on the congruence of c modulo 3. As an application of the local Jacquet-
Langlands correspondence one sees that there is no such subtlety for the
smooth representations of GL2 over p-adic fields. It follows that on the Galois
side the number of local Langlands parameters that are not induced also has
a subtle behavior that offsets the subtle count of induced parameters.

3. Quantum physics

The work of Henniart and Laumon [10], [15] in conjunction with the dis-
cussion of the previous section implies the existence of a numerical local
Langlands duality for the first three pillars of Weil’s Rosetta stone. The
question then arises whether there exists a version of this duality in the
fourth pillar, quantum physics. Furthermore, if it does, what is its relation
to known dualities in quantum field theory? As a first step towards our
answer, we now explain how quantum physics enters the picture at all, for-
getting for now about the desired duality. As a particular case we discuss
how one can describe 2D quantum gravity via local geometric Langlands
parameters. This is not an obvious consequence of the original formulations
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of this quantum field theory but its importance has recently been stressed
in [18], [19], [22]. The relation between the local parameters and quantum
field theory is given via τ -functions of the KP hierarchy of partial differential
equations and hence we briefly recall some important aspects of this theory.

Consider a Lax operator

L(t1, t2, . . . ) = ∂t1 + u−1(t1, t2, . . . )∂
−1
t1 + · · ·

depending on the infinite set t1, . . . of time variables. This is a pseudo-
differential operator and the Lax equations are given by

∂

∂ti
L = [Li

+, L]

where Li
+ denotes the part of Li that does not involve negative powers of

∂t1 . This yields constraints for the coefficients u−1, u−2, . . . . For example,
u−1 has to satisfy the KP equation

∂t1
(
4∂t3u−1 − 12u−1∂t1u−1 − ∂3

t1u−1

)
= 3∂2

t2u−1.

This type of equation was introduced in the theory of water waves and is a
generalization in one higher dimension of the KdV equation. A τ -function
of the hierarchy allows to describe the coefficients of the Lax operator in a
concise manner, one has for example

u−1 = ∂2
t1 ln τ

u−2 =
1

2
(∂3

t1 + ∂t1∂t3) ln τ

...

The relation with quantum physics comes from the fact that partition func-
tions of certain quantum field theories are expected to be expressible in
terms of special KP τ -functions. For example, the work of Kontsevich shows
that the partition function of topological gravity is the square of a 2-reduced
KP τ -function that satisfies certain Virasoro constraints:

The Virasoro algebra is given by Vir := 〈Ln〉n∈Z ⊕ 〈c〉 with c a central
element and

[Lm, Ln] = (m− n)Ln+m +
m3 −m

12
δm+n,0 · c.
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Consider the differential operators

Ln =
1

2

∑
i+j=−n

ijtitj +
∑

i−j=−n

iti∂j +
1

2

∑
i+j=n

∂i∂j .

These yield a representation of the Virasoro algebra with central charge 1 on
the space C[[t1, t2, . . . ]]. In particular, this yields an action on the τ -functions
of the KP hierarchy. By a Virasoro constrained τ -function τ(t1, t2, . . . ) of
the KP hierarchy we mean a τ -function annihilated by suitable operators
Ln as above.

Let p and q be two positive co-prime integers. For every ordered pair
(p, q) there is a corresponding model of 2D quantum gravity, see for example
[5], with associated partition function denoted by Zp,q(t1, . . . , tp+q). On the
level of rigor of physics, it is defined to be

Zp,q(t1, . . . , tp+q) =
∑
h

∫
g
exp(. . . )

where the exponential term is derived from the equations of general relativity
and one sums over all possible values of the genus h of the surface and
integrates over all metrics g. This is crucial since in quantum gravity the
metric is supposed to become dynamical. It is a crucial insight that the
partition function satisfies

Zp,q(t1, . . . ) = τ2p,q(t1, . . . )

where τp,q is a τ -function of the KP hierarchy that satisfies certain Virasoro
constraints. Hence to describe the partition function of the (p, q) models of
2D gravity it suffices to describe the point Wp,q of the Sato Grassmannian
whose associated τ -function equals τp,q.

There are two ways that local geometric Langlands parameters enter
this picture. The first way is as follows: It is known that there is such a
parameter such that out of its flat sections one can construct the desired
point Wp,q. This is a subtle procedure that depends on the parameter itself
and not just the gauge equivalence class and the construction is related to
the quantization of the pair (∂p

x, ∂
q
x) of commuting differential operators as

described by Schwarz in [23].
Before explaining the second way that local Langlands parameters are

important in this context we give some details for the above arguments:
Let Gr be the big-cell of the Sato Grassmannian. It is the set of complex

subspaces of C((1/z)) whose projection onto C[z] is an isomorphism. By
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results of Sato, to every such point one has an associated τ -function of the
KP hierarchy. In terms of the Sato Grassmannian the function τp,q can be
described by a point Wp,q(t1, . . . , tp+q) of Gr such that

zpWp,q(t1, . . . , tp+q) ⊆ Wp,q(t1, . . . , tp+q)(
1

pzp−1

d

dz
+

1− p

2p

1

zp
− 1

p

p+q∑
i=1

itiz
i−p

)
Wp,q(t1, . . . , tp+q)⊆Wp,q(t1, . . . , tp+q).

We now explain how one can construct the point Wp,q via a suitable local
geometric Langlands parameter.

Let t be given by

zp = t

Suppose given an irreducible connection

L = (C((t))p,
d

dt
+A) ∈ LL◦

geom(p, j)

for A ∈ glp(C((t))). By the Levelt-Turrittin classification it follows that after
extending scalars from C((t)) to C((t1/p)) one can gauge transform A via
some g ∈ glp(C((t

1/p))) into a diagonal connection matrix D. The beautiful
observation described in much more detail by Schwarz in [23] is that for
suitable A’s each column u of g gives rise to a Virasoro constrained KP
τ -function in the following manner:

The equation

g−1Ag + g−1 d

dt
g =

⎡
⎢⎣
d1

. . .

dp

⎤
⎥⎦

implies that
d

dt
u+ λ(z)u = Au

for some Laurent series λ(z). Let ui denote the i’th component of u and for
0 ≤ i ≤ p− 1 let vi = ziui. If ui = constant + lower order terms, then the
C-subspace of C((1/z)) given by

V := spanC {zpjvi | 0 ≤ i ≤ p− 1 and j ≥ 0}
is a point of the big cell Gr. The point V satisfies

zpV ⊆ V,

(
1

pzp−1
· d

dz
−
∑

ciz
i

)
V ⊆ V
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where the ci’s can be explicitly described in terms of the di’s. In this manner
it is known that one can construct the point Wp,q of the Grassmannian that
describe the partition function of the (p, q) model of 2D quantum gravity.
Note that whether or not the assumption on the shape of the ui’s holds
depends not just on the gauge equivalence class of the connection. There
is however a gauge invariant way in which local Langlands parameters are
related to the (p, q) models. We now describe this.

By applying the Boson-Fermion correspondence, the above described
stabilization property of V translates to Virasoro constraints for the as-
sociated KP τ -function, see for example [6]. Note that the two previously
described differential operators stabilizing V have commutator equal to 1.
In other terminology, they are solutions to the string equation. As a conse-
quence one can attach a D-module on the formal punctured disc to these
Virasoro constraints. See [19] for details and in particular for the relation
to the previously described way Langlands parameters play a role in the
construction of Wp,q.

The parameters associated to the Virasoro constraints give rise to a well
defined gauge equivalence class of connections and this is the second way
that local geometric Langlands parameters enter the picture. In fact, one
can write down the parameter that is associated to the (p, q) model of 2D
quantum gravity. It is given by

Lp,q := [p]∗

(
C((z)),

d

dz
+ zp−1

(
1− p

2

1

zp
−

p+q∑
i=1

itiz
i−p

))
.

The gauge equivalence class of the connection Lp,q carries enough informa-
tion about the (p, q) model of 2D quantum gravity to allow a description of
the T-duality in terms of such local geometric Langlands parameters.

4. Duality: symmetries of Langlands parameters

In the previous section it was explained how the fourth pillar of Weil’s
Rosetta stone, quantum physics, enters the picture through Virasoro con-
strained τ -functions of the KP hierarchy. We now explain that from this
point of view, the numerical local Langlands correspondence does indeed
correspond to a quantum duality, namely to the well studied T-duality of
2D quantum gravity. We refer to [5] for a detailed description of this quan-
tum field theory and we focus on a description of the T-duality.

The starting point is the matter content of the theory before gravity is
introduced into the picture. This matter content is chosen to be a minimal
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model conformal field theory. It has central charge

c(p, q) = 1− 6
(p− q)2

pq

for positive co-prime integers p and q. Note that under this constraint on
p and q the value of c(p, q) determines p and q up to exchanging p and q.
It is known that there is an associated rational conformal field theory. To
introduce gravity one couples this (p, q) minimal model to Liouville gravity.

To explain the duality there is now a crucial observation. Let Σ be a sur-
face with a metric gij of scalar curvature R. The un-renormalized Liouville
action functional is given by

φ �→
∫
Σ

√
g

(
1

2
gij∂iφ∂jφ+Rφ+ exp(μφ)

)

for a suitable μ. In contrast, the renormalized Liouville action functional is
given by

φ �→ 1

4π

∫
Σ

√
g
(
gij∂iφ ∂jφ+QRφ+ 4πμ exp(2bφ)

)
where b is the coupling constant and the background charge Q satisfies
Q = b+ b−1 and is related to the central charge cL of the Liouville theory
by

cL = 1 + 6Q2.

These quantities, and in particular the value of b, can be related to the
central charge c(p, q) of the matter content by an anomaly cancellation cal-
culation and one obtains

cL + c(p, q) = 26.

Hence

Q =

(
4 +

(p− q)2

pq

)1/2

.

This means that the coupling constant b satisfies the quadratic equation

b2 − p+ q

(pq)1/2
· b+ 1 = 0

and the two roots are

b1 =

(
q

p

)1/2

, b2 =

(
p

q

)1/2

.
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The duality of the (p, q) minimal model coupled to gravity can be interpreted
as an invariance of the theory with respect of choosing either one of the two
values of the coupling constant. Note however that the resulting theories are
not identical but rather dual, meaning that one can be expressed in terms
of the other one. There is hence an expected duality

b �−→ b−1

that corresponds to the switch of p and q and hence is sometimes called the
p-q duality. Due to the way the coupling constant enters the Lagrangian this
is also called the T-duality of 2D quantum gravity, see [3].

In the discretized framework one can rigorously prove this duality, as
was done first by Fukuma-Kawai-Nakayama [5] and Kharchev-Marshakov
[12] in the early 90’s.

To make the relation with the numerical local Langlands duality, one has
to recast the initial formulations, both on the arithmetic and the quantum
side: Koch’s direct approach to the Langlands duality had to be modified by
Laumon by introducing the local �-adic Fourier transforms. On the physics
side, the previous approaches had to be modified in order to phrase the
duality in terms of D-modules, as was done by Schwarz and the author
in [18], [19]. To put it differently, in order to be able to switch from the
arithmetic duality to the quantum duality one should look at the underlying
reason that the arithmetic numerical local Langlands correspondence holds:
It comes from the symmetries of local Langlands parameters coming from the
local Fourier transform. This transform has complex and �-adic incarnations
and this gives the bridge between the dualities.

For every point x of P1 there exists an arithmetic local Fourier trans-

form F (x,∞)
arith and a geometric version F (x,∞)

geom . On the geometric side, these
transforms relate connections on various formal punctured discs on the Rie-
mann sphere. For example, the geometric F (∞,∞) transform is described in
Figure 1.

In the following statements we suppress the subscripts for local Lang-
lands parameters indicating whether they are arithmetic or geometric. The
reason is that one obtains the same statement in both cases: The F (0,∞)

local Fourier transform gives rise to a map

LL(n, j) −→ LL(j + n, j)

and for j > n the F (∞,∞) local Fourier transform gives rise to a map

LL(n, j) −→ LL(j − n, j).
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∞
Katz extension

∞

F (∞,∞) Fglob

∞

Restriction

∞

Figure 1: The local Fourier transform F (∞,∞) and its relation to the global
Fourier transform Fglob of D-modules on the plane P1\{∞}.

See [15] (Théorème 2.4.3) for the arithmetic case and [2] (Proposition 3.14)
for the geometric case. These symmetries are very powerful:

On the arithmetic side, Henniart [10] used them to prove the numerical
local Langlands correspondence for GLn(K) where K is a non-archimedean
local field. We outline his arguments: First he reduces to the case

char(K) = p > 0

and

n = pr

with r bigger than the power of p dividing j. In this case the properties of the
local Fourier transform quickly lead to the desired size count of c(n, j)arith.
Namely, one can show that the properties of the transform F (0,∞) imply the
symmetry

c(n, j)arith − c(n, j − 1)arith = c(n+ j, j)arith − c(n+ j, j − 1)arith.
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A double induction on j and the power of p dividing n then shows that

c(n, j)arith = (q − 1)(qj − qj−1 + qj−1) = (q − 1)qj ,

as desired. This amazingly concise argument should be contrasted with
Koch’s [13] laborious explicit computations that could only treat the case
where the residue characteristic p divides n at most linearly. Henniart’s
approach via the Fourier transform is completely different: The transform
gives rise to a hidden symmetry of local Langlands parameters that allows
to count them without having an explicit handle on them. One can sum up
Henniart’s result as follows: For p a positive integer and q ≥ −p, the map

F (0,∞)
arith : LLarith(p, p+ q) −→ LLarith(2p+ q, p+ q)

of arithmetic Langlands parameters gives rise to the arithmetic numerical
local Langlands duality.

Concerning the T-duality, it follows from our work [18], [19] that when
translated to the geometric setting one obtains the duality of 2D quantum
gravity. Namely, for p and q positive co-prime integers, the (p, q) model of
2D quantum gravity can be described via the local geometric Langlands
parameter Lp,q described earlier in such a way that the map

F (∞,∞)
geom : LLgeom(p, p+ q) −→ LLgeom(q, p+ q)

realizes the T-duality of 2D quantum gravity. We refer to [19] for a detailed
statement involving control of the dynamics of the KP flows. In particular,
Lp,q does not get mapped to Lq,p but to a variant L′

q,p whose definition
involves some non-trivial KP time dynamics.

A unified treatment of the above arithmetic and quantum dualities
emerges. The local Fourier transforms, in their �-adic and complex version,
are a source of symmetries of local Langlands parameters. In the arithmetic
setting these symmetries imply the numerical local Langlands duality and
in the geometric setting they allow to describe the T-duality:
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F (0,∞)P1 Numerical local Langlands duality

F (∞,∞) T-duality

Lp,qL′
q,p

0

∞

In this sense, the two dualities are simply specific incarnations of the
same symmetry principle.

Acknowledgments. It is a great pleasure to thank Andrei Jorza, Albert
Schwarz, Zhiwei Yun for helpful exchanges. I am very grateful to the referee
for important comments and corrections, in particular for pointing out the
nice geometric version of the discrete series count.

References

[1] A. Beilinson, S. Bloch, P. Deligne, and H. Esnault, Periods for irregular
connections on curves, Preprint.

[2] S. Bloch and H. Esnault, Local Fourier transforms and rigidity for D-
modules, Asian J. Math., 8 (2004), 587–606.

[3] C.-T. Chan, H. Irie, and C.-H. Yeh, Duality constraints on string
theory: Instantons and spectral networks, Preprint, available at
arXiv:1308.6603.
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