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Some remarks on K-lattices and the

Adelic Heisenberg group for CM curves

Francesco D’Andrea and Davide Franco

We define an adelic version of a CM elliptic curve E which is
equipped with an action of the profinite completion of the endo-
morphism ring of E. The adelic elliptic curve so obtained is pro-
vided with a natural embedding into the adelic Heisenberg group.
We embed into the adelic Heisenberg group the set of commen-
surability classes of arithmetic 1-dimensional K-lattices (here and
subsequently, K denotes a quadratic imaginary number field) and
define theta functions on it. We also embed the groupoid of com-
mensurability modulo dilations into the union of adelic Heisenberg
groups relative to a set of representatives of elliptic curves with
R-multiplication (R is the ring of algebraic integers of K). We thus
get adelic theta functions on the set of 1-dimensional K-lattices
and on the groupoid of commensurability modulo dilations. Adelic
theta functions turn out to be acted by the adelic Heisenberg group
and behave nicely under complex automorphisms (Theorems 6.12
and 6.14).

1. Introduction

The aim of this paper is to connect the natural action of the Heisenberg
group on adelic theta functions with the adelic action stemming from the
main theorem of complex multiplication for elliptic curves. We are also in-
terested in defining an embedding of the moduli spaces of arithmetic 1-
dimensional K-lattices (here and subsequently, K denotes a quadratic imag-
inary number field) into the adelic Heisenberg group, in order to define on
them theta functions with a nice behavior under complex automorphisms
(Theorems 6.12 and 6.14).

After the seminal paper [2], many efforts have been devoted in recent
years to the construction of quantum systems incorporating explicit class
field theory for an imaginary quadratic number field K ([6], [10], [8], [4], [7]).
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More specifically, in [6] it is exhibited a quantum statistical mechanical sys-
tem fully incorporating the explicit class field theory. The main ingredients
of [6] was given in terms of commensurability of 1-dimensional K-lattices.
The connection between class field theory and quantum statistical mechanics
is provided by a C∗-dynamical system containing an arithmetic subalgebra
AQ with symmetry group isomorphic to Gal(Kab,K) and a set of fabulous
states sending AQ to Kab. The symmetry group action turns out to be com-
patible with Galois’ one. The arithmetic subalgebra is defined by means of
the modular field, namely by the field of modular function defined over Qab.

This work was intended as an attempt to define canonical adelic theta
functions on commensurability classes of (arithmetic) 1-dimensional K-
lattices and on the groupoid of commensurability modulo dilations. The
main ingredient of our construction is provided by the adelic Heisenberg
group ([15]). Adelic theta functions have a nice behavior under the Galois
action which incorporates all the properties stated in the Main Theorem of
Complex Multiplication (see §§ 5 and 6).

Motivated by a purely algebraic definition of adelic theta function over
an abelian variety and their deformations, David Mumford introduced, in a
celebrated series of papers of the sixties ([14]), the finite Heisenberg group
acting on the sections of an ample line bundle defined on the abelian variety.
This led him to an adelic version of any abelian variety, defined as an exten-
sion of the set of its torsion points by the Barsotti-Tate group ([15], Ch. 3).
It turned out that sections of the pull back of some line bundle on the tower
of isogenies ([15], Definition 4.26), the so called adelic theta functions, are
acted on by an adelic version of the Heisenberg group ([15], Ch.4).

In this work we apply Mumford’s constructions to elliptic curves with
complex multiplication (CM curves for short) and compare it with the mod-
uli spaces of 1-dimensional K-lattices introduced in [6]. We define an adelic
version of a CM elliptic curve E which is equipped with an action of the
profinite completion of the endomorphism ring of E. This is also provided
with a natural embedding into the adelic Heisenberg group. This allows us
to incorporate the endomorphism ring of the CM curve into the definitions
of Heisenberg group and theta functions. We thus get an interpretation by
means of Class Field Theory (Theorems 6.9, 6.11, 6.12 and 6.14) of the usual
nice behavior of theta functions under automorphisms fixing the Hilbert field
of K ([15], Proposition 5.6). One of our main results is an extension of the
Main Theorem of Complex Multiplication ([18] II, Theorem 8.2) involving
the Heisenberg group, which allows us to give a complete description of the
behavior of theta functions under complex automorphisms (Theorem 6.9,
Theorem 6.11).
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Aimed at defining theta functions on them, we embed the set of commen-
surability classes of arithmetic K-lattices into the adelic Heisenberg group
(Notations 3.16). We also embed the groupoid of commensurability modulo
dilations into the union of finitely many adelic Heisenberg groups (indeed
into the union of adelic Heisenberg groups corresponding to a set of repre-
sentatives of elliptic curves with R-multiplication, modulo isomorphisms).
We obtain theta functions on the set of 1-dimensional K-lattices and on the
groupoid of commensurability modulo dilations which are equipped with an
action of the Heisenberg group and exhibiting a nice behavior under complex
automorphisms (Theorems 6.12 and 6.14, Notations 6.13).

The paper is organized as follows. In Section 2 we collect some basic facts
about adèles and adelic elliptic curves that will be needed in the following.
In Section 3 we recall the spaces of 1-dimensional K-lattices introduced
in [6] and compare them with adelic CM curves in order to obtain natu-
ral morphisms into the Heisenberg group. Furthermore, we embed into the
adelic Heisenberg group the set of commensurability classes of arithmetic
1-dimensional K-lattices, and we also embed the groupoid of commensura-
bility modulo dilations into the union of adelic Heisenberg groups relative
to a set of representatives of elliptic curves with R-multiplication (Nota-
tions 3.16). In Section 4 we introduce the Adelic Heisenberg group of a CM
curve and embed the adelic CM curve into it by means of a symmetric line
bundle. We also describe the action of the complex automorphisms fixing
the Hilbert field of K on the Heisenberg group. In Section 5 we state and
prove a version of the Main Theorem of Complex Multiplication ([18] II,
Theorem 8.2) concerning Heisenberg groups (Theorems 5.3 and 5.6). In a
nutshell, what such theorems say is that if two different CM curves are
mapped into each other by a complex automorphism then the embeddings
into their Heisenberg groups can be made coherent with such a map. Finally,
in Section 6 we introduce theta functions and study their behavior under
complex automorphisms.

2. Notations

In this section we collect some basic facts about adèles and adelic elliptic
curves, mainly to fix our notations.

2.1. Completions

Here and subsequently,, K denotes a quadratic imaginary number field and
R denotes the ring of algebraic integers of K. We denote by I = IR the set of
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(integral) ideals of R, by J = JR the group of fractional ideals of R, freely
generated by the primes ([13], p. 91), and by Cl(R) the ideal class group
of R.

As usual

R̂ = lim←−
I∈I

R

I
⊂ A

will be the completion of R, R̂∗ the group of invertible elements of R̂ and
A = AK,f the ring of finite adèles of K. Recall that

I−1 = {x ∈ K | xI ⊂ R} ∈ J

is a fractional ideal s.t. I · I−1 = R . If Λ ∈ J is a fractional ideal of K then
I−1Λ
Λ can be identified with a submodule of K

Λ :

I−1Λ

Λ
=

{
x ∈ K

Λ
� A

Λ̂

∣∣∣∣ xI = 0

}
, Λ̂ := Λ · R̂ ⊂ A.

Remark 2.1. It is well known (see e.g. [18], II Proposition 1.4) that I−1Λ
Λ

is a free R
I -module of rank 1. It is standard to deduce from this fact that,

even though Λ is a projective but usually non-free R-module, the completion

(2.1) Λ̂ � lim←−
I∈I

I−1Λ

Λ

is a free R̂-module of rank 1. We denote by Λ̂∗ ⊂ Λ̂ the set of R̂-module
generators of Λ̂ which is obviously an R̂∗-torsor.

Essentially by the same reason as above, for any pair of fractional ideals
Λ,Γ ∈ J one also gets

HomR

(
K

Λ
,
K

Γ

)
= lim←−

I∈I
HomR

I

(
I−1Λ

Λ
,
I−1Γ

Γ

)
(2.2)

� lim←−
I∈I

HomR

I

(
R

I
,
R

I

)
= R̂,

where the isomorphism can be made explicit through the choice of any pair
of R̂-module generators: λ ∈ Λ̂∗, γ ∈ Γ̂∗.

2.2. Adelic elliptic curves with complex multiplication

As above let K be a quadratic imaginary number field and let Λ ⊂ K be a
fractional ideal of K. Then E = EΛ := C

Λ is an elliptic curve with End(E) =
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R ([18], p. 99). Following [18] p. 102, for a ∈ R we denote by E[a] the (a)-
torsion points of E:

E[a] := {x ∈ E | ax = 0} � (a)−1Λ

Λ

(compare with [18], Proposition 1.4). It is a standard fact that the Barsotti-
Tate module

T (E) := lim←−E[a]

is a free R̂-module of rank 1. Similarly, we denote by T (E)∗ the R̂∗-torsor
of R̂-module generators of T (E).

Now we imitate [15] Definition 4.1 to define an adelic version of E taking
into account its complex multiplication structure.

Definition 2.2. We define the adelic elliptic curve associated to E as

V (E) :=
{
(xa)a∈R

∣∣∣ a
b
xa = xb, if b | a, x1 ∈ Etor

}
.

This is equipped with projections

νb : V (E) → Etor, (xa)a∈R → xb.

By [15], pp. 48-49, we have

(2.3) V (E) � T (E)⊗Z Q

and

(2.4) 0 −→ T (E) −→ V (E)
ν1−→ Etor −→ 0.

Remark 2.3.

1) If we fix an R̂-module generator u ∈ T (E)∗ then (2.2) implies that any
morphism φ ∈ HomR

(
K
R ,

K
Λ

)
can be represented by an element ψ ∈

R̂. Then the multiplication by ψ gives rise by (2.3) and (2.4) to a
commutative diagram:

0 R̂ A K
R 0

0 T (E) V (E) K
Λ 0

ψ ψ φ
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By the snake lemma φ is an isomorphism iff ψ belongs to T (E)∗.
2) In particular, any choice of a R̂-module generator u ∈ T (E)∗ gives rise

to a commutative diagram of R̂-modules:

0 R̂ A K
R 0

0 T (E) V (E) Etor 0
ν1

3. The moduli space of K-lattices.

Let us recall the following (see [6], Def. 4.1):

Definition 3.1.

1) A 1-dimensional K lattice (Λ, φ) is a finitely generated R-submodule
Λ ⊂ C s.t. Λ⊗R K � K, together with an R-morphism φ : K

R → KΛ
Λ .

2) An invertible 1-dimensional K lattice (Λ, φ) is a finitely generated R-
submodule Λ ⊂ C s.t. Λ⊗R K � K, together with an R-isomorphism
φ : K

R → KΛ
Λ .

Since for any finitely generated R-submodule Λ ⊂ C there exists k ∈ C

s.t. kΛ ⊂ K ([5], Lemma 3.111), we also give the following:

Definition 3.2. An arithmetic (invertible) 1-dimensional K lattice (Λ, φ)
is a finitely generated R-submodule Λ ⊂ K s.t. Λ⊗R K � K, together with
a R-morphism (isomorphism) φ : K

R → K
Λ .

The following result is an immediate consequence of Remark 2.3.

Theorem 3.3. Any morphism φ ∈ HomR

(
K
R ,

K
Λ

)
gives rise to map of short

exact sequences:

0 R̂ A K
R 0

0 T (E) V (E) K
Λ 0

where E := C
Λ . The corresponding K-lattice is invertible iff the vertical maps

are isomorphisms. In particular any φ ∈ HomR

(
K
R ,

K
Λ

)
corresponds to a point
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of xφ ∈ T (E) (the image of 1 ∈ R̂) and the corresponding K-lattice is invert-
ible iff xφ belongs to T (E)∗.

Following [18], pag 98, we denote by ELL(R) the moduli space of elliptic
curves with End(E) � R. Then ([18], II Proposition 1.2) ELL(R) is a Cl(R)-
torsor.

Definition 3.4.

1) Let ρ ∈ A∗ be an idèle. Recall that the ideal of ρ ([18] p. 119) is the
fractional ideal

(ρ) :=
∏
p

pordpρp ∈ J

(where the product is over all the primes of R) and the multiplication
by ρ map is defined as

ρ : J −→ J , Λ −→ (ρ)Λ.

By an abuse of notations, we use the same symbol for the correspond-
ing map on Cl(R)

ρ : Cl(R) −→ Cl(R), [Λ] −→ ρ[Λ] := [(ρ)Λ],

and on ELL(R)

ρ : ELL(R) −→ ELL(R), E[Λ] −→ Eρ[Λ].

2) We denote by A (A∗) the set of (invertible) arithmetic K-lattices and
by L (L∗) the set of (invertible) K-lattices modulo dilations. Fix an
idèle ρ ∈ A∗ and a fractional ideal Λ ∈ J . The multiplication by ρ
map on K

R is defined by the commutativity of the following diagram
(compare with [18] p. 159)

K
R

K
ρR

⊕
p

Kp

Rp

⊕
p

Kp

ρpRp

ρ

⊕pρp·

and it can be viewed as an element of HomR

(
K
R ,

K
ρR

) � R̂ (compare
with (2.2)), hence as a lattice Φρ ∈ A (we also define Ψρ := [φρ] ∈ L).
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Obviously such a lattice is invertible as the inverse of ρ : K
R → K

ρR is

provided by ρ−1 ∈ A∗, thus Φρ belongs to A∗ (Ψρ ∈ L∗).

Theorem 3.5.

1) The map Φ just defined

Φ : A∗ −→ A∗, ρ −→ Φρ

is bijective.

2) A∗ � R̂×R̂∗ A∗ � R̂×R̂∗ A
∗.

Proof. (1) Surjectivity: the multiplication map

ρ : A∗ −→ J , ρ −→ (ρ)R

is obviously surjective. Furthermore, any two invertible lattices in
HomR

(
K
R ,

K
ρR

)
differ (by Theorem 3.3) by an element of T (E)∗, which is

an R̂∗-torsor (compare with Section 2.2).
Injectivity: if Φρ = Φρ′ then ρR = ρ′R := Λ and ρ

ρ′ = id ∈ HomR

(
K
Λ ,

K
Λ

)
,

hence ρ
ρ′ = 1 ∈ A∗ because of Theorem 3.3.

(2) Just combine (1) with Proposition 4.6 of [6]. �
Taking quotients by K∗ in the theorem above we also have

Corollary 3.6.

1) The map

ψ : A∗/K∗ −→ L∗, [ρ] −→ ψρ,

defined on the idèle class group A∗/K∗ ([11] p. 142), is bijective and
the projection L∗ → Cl(R) coincides with the usual Class Field map
([11], p. 224).

2) L � R̂×R̂∗ L∗ � R̂×R̂∗ (A
∗/K∗).

Lemma 3.7. Consider an arithmetic 1-dimensional K lattice (Λ, φ). Any
1-dimensional K lattice which is commensurable to (Λ, φ) is arithmetic.

Proof. Assume that (Λ′, ψ) is commensurable to (Λ, φ). Then both the nat-
ural projections Λ → Λ ∩ Λ′, Λ′ → Λ ∩ Λ′ have finite index hence the same
happens for Λ + Λ′ → Λ ∩ Λ′. So there exists an integer n s.t. n(Λ + Λ′) ⊂
Λ ∩ Λ′. The thesis follows since nΛ′ ⊂ n(Λ + Λ′) ⊂ Λ ∩ Λ′ ⊂ K. �
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Notations 3.8. We denote by S the set of non-archimedean places of K
([3], p. 189). For any v ∈ S we denote by pv ⊂ R the prime ideal correspond-
ing to v and we choose a prime element πv ∈ pv ([3], p. 42).

Lemma 3.9. Consider two fractional ideals Λ, Λ′, assume Λ ⊂ Λ′ and set

Λ =
∏

v∈S p
e(v)
v · Λ′. For any γ ∈ T ( C

Λ′ )
∗ there exists δ ∈ T (CΛ)

∗ s.t. the natu-
ral map HomR

(
K
R ,

K
Λ

) → HomR

(
K
R ,

K
Λ′
)
induced by projection is represented,

via isomorphisms stated in (2.2), by the multiplication by
∏

v∈S π
e(v)
v .

Proof. Fix δ′ ∈ T (CΛ)
∗ and assume that the map in HomR

(
K
Λ ,

K
Λ′
)
induced by

projection is represented by α ∈ R̂ via (2.2). SinceKer(α) � Λ′

Λ � ∏
v∈S p

e(v)
v ,

we may assume α =
∏

v∈S π
e(v)
v α′, with α′ ∈ R̂∗. In order to conclude it suf-

fices to choose δ = δ′ · α′. �
We recall the following fact observed in the proof of Proposition 4.5

of [6]:

Lemma 3.10. Two invertible 1-dimensional K lattices are commensurable
iff they coincide.

Furthermore, we get

Lemma 3.11. A non-invertible arithmetic 1-dimensional K lattice is com-
mensurable to an invertible one.

Proof. Any arithmetic lattice is represented by means of (2.2) by an element
ρ ∈ R̂ which can be written as ρ = α · ρ′, where α is a suitable product of
prime elements and ρ′ ∈ R̂∗. Lemma 3.9 implies that ρ′ ∈ R̂∗ can be inter-
preted as an invertible lattice for some Λ′ ⊂ Λ. �

Corollary 3.12. The set F of arithmetic 1-dimensional K lattices modulo
commensurability can be identified with

⋃
Λ T (EΛ)

∗.

Proof. Just combine Lemmas 3.10 and 3.11. �

Definition 3.13. Consider two fractional ideals Λ and Λ′ and set Γ = Λ +
Λ′. Denote by p : HomR

(
K
R ,

K
Λ

) → HomR

(
K
R ,

K
Γ

)
and by q : HomR

(
K
R ,

K
Λ′
) →

HomR

(
K
R ,

K
Γ

)
the natural projection and consider the corresponding ρ and

ρ′ obtained by means of Lemma 3.9. Then the lattices (Λ, φ) and (Λ′, φ′)
are commensurable iff p(φ) = p′(φ′) so that the set of such commensurable
lattices can be identified with the fiber product FΛ,Λ′ ⊂ T (EΛ)× T (EΛ′)
arising from the Cartesian square:
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FΛ,Λ′ T (EΛ)

T (EΛ′) T (EΓ)

q p

In the notations of Definition 3.13, Corollary 3.12 implies the following:

Theorem 3.14. Fix a set of representatives Λi of Cl(R), 1 ≤ i ≤ �Cl(R).
Set E = {1, 2, . . . , �Cl(R)} × J . Then the groupoid of commensurability mod-
ulo dilations can be identified with:

⋃
(Λi,Λ)∈E

FΛi,Λ ⊂
⋃

(Λi,Λ)∈E
T (EΛi

)× T (EΛ).

Proof. If Λ and Λ′ are commensurable, Lemma 3.7 implies that there exists
k ∈ C s.t. kΛ = Λi and kΛ′ ∈ Cl(R). Then we may conclude by means of
Corollary 3.12 and Definition 3.13. �

We recall the following (compare with [15], Definition 4.21 and Lemma 4.22
and remind that we are working with fields of characteristic 0):

Definition 3.15. Consider two elliptic curves E and E′. A Q-isogeny from
E to E′ is a triple (Z, f1, f2), where Z is an elliptic curve and f1 : Z → E, f2 :
Z → E′ are isogenies. Two Q-isogenies (Z, f1, f2), (W, g1, g2) are equivalent
if there is an elliptic curve C and isogenies a : C → Z, b : C → W so that fi ◦
a = gi ◦ b, i = 1, 2. Any Q-isogeny α = (Z, f1, f2) induces an isomorphism
V (α) : V (E) → V (E′) and equivalent Q-isogenies induce the same map.

Equivalent classes ofQ-isogenies from E to E′ for a fixed E are in 1-1 cor-
respondence with open subgroups of V (E) (the open subgroup V (α)−1T (E′)
⊂ V (E) corresponding to the Q-isogeny α = (Z, f1, f2)).

Notations 3.16.

1) Consider two fractional ideals Λ, Λ′ of R, then there is an obvious Q-
isogeny αΛ,Λ′ := (EΛ∩Λ′ , p1, p2) from EΛ to EΛ′ , where p1 and p2 are
the natural projections. Recalling Definition 3.15, we have a natural
morphism

V (αΛ,Λ′)
−1 : T (EΛ′)

∗ → V (EΛ).
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2) Gluing the morphisms V (αΛ,Λ′)
−1 just defined we get a natural map

from the set of arithmetic 1-dimensional K lattices modulo commen-
surability, F (compare with Corollary 3.12), to V (EΛ):

ρΛ : F =
⋃
Λ′

T (EΛ′)
∗ → V (EΛ), ρΛ |T (EΛ′ )∗ := V (αΛ,Λ′)

−1.

3) With notations as in Definition 3.13 and in Theorem 3.14 we can define
a natural map

ξ :
⋃

(Λi,Λ)∈E
T (EΛi

)× T (EΛ) −→
⋃
Λi

V (EΛi
),

acting on each T (EΛi
)× T (EΛ) as

ξ : T (EΛi
)× T (EΛ) → V (EΛi

), (x, y) → V (αΛi,Λ)
−1(y) · x.

By Theorem 3.14, such a map restricts to a map from the groupoid of
commensurability modulo dilations

ξ :
⋃

(Λi,Λ)∈E
FΛi,Λ −→

⋃
Λi

V (EΛi
), ξ |FΛi,Λ

: (x, y) → V (αΛi,Λ)
−1(y) · x.

4. The Adelic Heisenberg group.

Notations 4.1.

1) Let L ∈ Pic(E) be a line bundle on an elliptic curve E with projection
map pL : L −→ E. We assume the curve E to be uniformized as

πΛ : C −→ C

Λ
� E.

By [1], Proposition 2.1.6 and Lemma 2.1.7, the first Chern class of L,
c1(L), can be identified with an alternating form

C× C −→ R, (z, w) −→ rIm (zw),

s.t. rIm (ΛΛ) ⊂ Z.
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If we fix an integral basis of the lattice Λ: λ := lx + ily, μ := mx + imy

s.t. Im (λμ) > 0 then, in order to have rIm (ΛΛ) ⊂ Z, we must have

(4.1) r =
d

lxmy − lymx

where d is the degree of L (compare with [9], §12.2).
2) As in [1], §2.4, we denote by tx the translation by x ∈ E and define:

K(L) := {x ∈ E | t∗xL � L}, Λ(L) := π−1
Λ (K(L)).

By [1], §2.4,

(4.2) Λ(L) = {z ∈ C | rIm (zΛ) ⊂ Z} � 1

d
Λ,

hence we have:

(4.3) K(L) � 1/dΛ

Λ
� E[d].

Remark 4.2. Assume that End(E) � R and fix a ∈ R. Then E
a−→ E has

degree |a|2 ([17] §5, Proposition 2.3, [9] §12, Proposition 1.3) hence (4.3)
implies:

(4.4) K(a∗L) = E[|a|2d]

Definition 4.3. Let x ∈ E, then a biholomorphic map φ : L −→ L is called
an automorphism of L over x, if the diagram

L L

Y X

pL pL

φ

tx

commutes ([1], 6.1). This of course forces x to belong to K(L). We denote
by G(L)x the set of automorphisms of L over x and set

G(L) :=
⋃

x∈K(L)

G(L)x.
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Then G(L) is a group via composition of automorphisms, the Heisenberg
group of L, which is known to be a central extension of K(L):

0 −→ C∗ −→ G(L) gL−→ K(L) −→ 0

(compare with [15], §1 and with [1], §6). As for any central extension of an
abelian group we can define a commutator map:

eL : K(L)×K(L) −→ C∗

eL(x, y) := x̃ỹx̃−1ỹ−1,

where gL(x̃) = x and gL(ỹ) = y. If z, w ∈ C are chosen in such a way that
πΛ(z) = x and πΛ(w) = y, then ([1], Proposition 6.3.1) we have

(4.5) eL(x, y) = exp{−2πirIm (zw)} ∈ μ,

which obviously takes values in the group of roots of unity μ.

Remark 4.4. Combining (4.1), (4.3) and (4.5) one can recognize in eL the
inverse of the Weil Pairing on E[d] ([9], §12):

eL(x, y) = W (x, y)−1

From now on we assume that Λ is a fractional ideal of K (so End(E)
� R).

Lemma 4.5. Assume that ay = x ∈ E, then we have:

1) if x ∈ K(L) then y ∈ K(a∗L);
2) if y ∈ K(a∗L) then

x ∈ K(L) ⇔ ea
∗L |Ax

≡ 1,

where Ax := a−1(x)× a−1(x).

Proof. (1) Combining (4.3) with Remark 4.2 we find

K(L) = E[d] ⊂ E[|a|2d] = K(a∗L).

(2) We have a commutative diagram:
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C C

E E

πΛ πaΛ

id

a

showing that (recall (4.2))

Λ(L) = {z ∈ C | rIm (zΛ) ⊂ Z}(4.6)

⊂ {z ∈ C | rIm (zaΛ) ⊂ Z} = Λ(a∗L).

Choose a set of representatives of Λ
aΛ : vi ∈ Λ, 1 ≤ i ≤ |a|2.

If z ∈ Λ(a∗L) then (4.6) shows that

(4.7) z ∈ Λ(L) ⇔ rIm (zvi) ∈ Z, 1 ≤ i ≤ |a|2.

If z ∈ C projects on both x and y, and if ea
∗L |Ax

≡ 1 then (4.5) implies

rIm (zvi) = rIm (z(z + vi)) ∈ Z, 1 ≤ i ≤ |a|2.

Conversely, if rIm (zvi) ∈ Z, 1 ≤ i ≤ |a|2, then we have

rIm ((z + vi)(z + vj)) ∈ Z, 1 ≤ i, j ≤ |a|2

hence ea
∗L |Ax

≡ 1. �

Consider now the pull-back commutative diagram

a∗L L

E E

q p

ã

a

where we put q := pa∗L and p := pL in order to ease the notations. The
following Lemma relates the automorphisms of L over a point x to the
automorphisms of a∗L over any point y, s.t. ay = x.

Lemma 4.6. Assume that ay = x ∈ E and fix φ ∈ G(L)x. Then there exists
a unique ψ ∈ G(a∗L)y s.t. ã ◦ ψ = φ ◦ ã.
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Proof. It is an easy application of the universal property of pull-back dia-
grams. Since ay = x, we also have tx ◦ a = a ◦ ty, and

a ◦ ty ◦ q = tx ◦ a ◦ q = tx ◦ p ◦ ã = p ◦ φ ◦ ã

hence f := ty ◦ q : a∗L −→ E and g := φ ◦ ã : a∗L −→ L satisfy a ◦ f = p ◦
g. By the universal property of pull-back diagrams there exists a unique
ψ : a∗L −→ a∗L such that f = q ◦ ψ and g = ã ◦ ψ, which amounts to say
ψ ∈ G(a∗L)y and ã ◦ ψ = φ ◦ ã. �

Definition 4.7. Following [15], Definition 4.5 we will say that the auto-
morphism ψ ∈ G(a∗L)y defined in Lemma 4.6 covers φ over ty. We will also
say that φ is covered by ψ over ty.

Theorem 4.8. Assume that ay = x ∈ E, and that y ∈ K(a∗L), TFAE:

1) ea
∗L |Ax

≡ 1;

2) x ∈ K(L);

3) for any ψ ∈ G(a∗L)y there exists φ ∈ G(L)x s.t. ã ◦ ψ = φ ◦ ã;
4) there are ψ ∈ G(a∗L)y and φ ∈ G(L)x s.t. ã ◦ ψ = φ ◦ ã.

Proof. (1) ⇔ (2) follows by Lemma 4.5.
(2) ⇒ (3) follows by Lemma 4.6.
(3) ⇒ (4) is obvious.
(4) ⇒ (2) follows because if φ ∈ G(L)x then x ∈ K(L). �

Remark 4.9.

1) Under the hypotheses of either Lemma 4.6 or Theorem 4.8 we have a
bijective map

G(L)x ↔ G(a∗L)y
defined by the relation

φ ↔ ψ ⇔ ã ◦ ψ = φ ◦ ã.

2) It is immediate to check that the bijective maps just defined preserve
the composition of automorphisms, so they glue to give a group mor-
phism

δa,L : G(a∗L) |a−1(K(L))−→ G(L).
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Definition 4.10. Let x = (xa)a∈R ∈ V (E) so that x1 ∈ Etor. Set

Ix := {a ∈ R | ax1 ∈ K(L)}

and

Jx := {a ∈ R | xa ∈ K(a∗L)}.

Lemma 4.11. Let x = (xa)a∈R ∈ V (E) so that x1 ∈ Etor and choose k ∈ K

s.t. πΛ(k) = x1. Then we have

Ix = Jx � 1

kd
Λ ∩R.

Proof. Ix � 1
kdΛ ∩R : by (4.2), for any a ∈ R we have:

ax1 ∈ K(L) ⇔ ak ∈ 1

d
Λ, ⇔ a ∈ 1

kd
Λ ∩R.

Jx � 1
kdΛ ∩R : Choose ka ∈ K s.t. aka = k and πΛ(ka) = xa. Combining

(4.2) and (4.3) with Remark 4.2, for any a ∈ R we have:

xa ∈ K(a∗L) ⇔ ka ∈ 1

aad
Λ, ⇔ k = aka ∈ 1

ad
Λ, ⇔ a ∈ 1

kd
Λ ∩R.

�

Remark 4.12. If x ∈ V (E) and a, b ∈ Jx then by Remark 4.9 we have
canonical isomorphisms:

G(a∗L)xa
� G((ab)∗L)xab

� G(b∗L)xb

in the sense that any φa ∈ G(a∗L)xa
(φb ∈ G(b∗L)xb

) is covered by a unique
element φab ∈ G((ab)∗L)xab

over txab
:

b̃ ◦ φab = φa ◦ b̃, ã ◦ φab = φb ◦ ã.

By the previous remark we can give the following

Definition 4.13.

1) We denote by Ĝ(L) the adelic Heisenberg group i.e. the group of
α = (x, (φa)a∈Jx

) s.t. x ∈ V (E), φa ∈ G(a∗L)xa
with φab covering φa

over txab
, ∀a ∈ Jx. Any collection of elements (φa)a∈Jx

, φa ∈ G(a∗L)xa

with φab covering φa over txab
will be called a coherent system of au-

tomorphisms defined over x.
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2) Using the (rather cumbersome) notations of Remark 4.9 (2), if (φa)a∈Jx

is a coherent system of automorphisms then

δb,a∗L(φab) = φa, ∀a ∈ Jx, ∀b ∈ R.

3) Consider the closed subgroup Va := ν−1
a (K(a∗L)) ⊂ V (E). Obviously

a ∈ Jx ∀x ∈ Va so it is well defined a group morphism

γa : Ĝ(L) |Va
−→ G(a∗L), (x, (φb)b∈Jx

) −→ φa.

Theorem 4.14.

1) We have an exact sequence:

1 → C∗ → Ĝ(L) g→ V (E) → 0.

2)

Ĝ(L) |Va
� ν∗aG(a∗L).

3)

Ĝ(L) |T (E)� ν∗1C,

so there exists a morphism σL : T (E) → Ĝ(L) providing a section of
the restriction to T (E) of the sequence above (σ(x) is defined as the
unique element of Ĝ(L) lifting the identity).

Proof. (1) By Lemma 4.11 the map Ĝ(L) → V (E) is surjective because
1
kdΛ ∩R = Jx �= ∅, ∀x ∈ V (E), so there are coherent systems of automor-
phisms defined over any x ∈ V (E). Furthermore, for any x ∈ V (E), Re-
mark 4.9 implies that any coherent system of automorphisms (φa)a∈Jx

,
φa ∈ G(a∗L)xa

, is uniquely determined by any of its components, so we have:

Ĝ(L)x � G(a∗L)xa
� C∗, ∀a ∈ Jx.

(2) Consider the pull-back diagram

ν∗aG(a∗L) G(a∗L)

Va K(a∗L)

ga∗L

νa
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Obviously the morphisms ga∗L ◦ γa and νa ◦ g coincide on Ĝ(L) |Va
so, by the

universal property of pull-back, there is a unique morphism ι : Ĝ(L) |Va
−→

ν∗aG(a∗L) s.t.

Ĝ(L) |Va
ν∗aG(a∗L)

Va Va

ι

id

commutes. Finally, ι is an isomorphism because it is bijective on the fibers
(both isomorphic to C∗) of the vertical maps of the last diagram.
(3) This is a particular case of (2). �

Lemma 4.15. Let (x, (φa)a∈Jx
), (y, (φa)a∈Jy

) ∈ Ĝ(L) and a, b ∈ Jx ∩ Jy, then

ea
∗L(xa, ya) = eb

∗L(xb, yb)

Proof. We argue as in the proof of Lemma 4.5. We have commutative dia-
grams

C C

E E

πbΛ πabΛ

id

a

and

C C

E E

πaΛ πabΛ

id

b
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so if we choose z, v ∈ C s.t.

πabΛ(z) = xab, πabΛ(v) = yab

then

πaΛ(z) = xa, πaΛ(v) = ya, πbΛ(z) = xb, πbΛ(v) = xb.

Finally, (4.5) implies

ea
∗L(xa, ya) = exp{−2πirIm (zv)} = eb

∗L(xb, yb).

�

Remark 4.16. Similarly as above (compare with Definition 4.3), we can
define a commutator map:

ẽL : V (E)× V (E) → C1, ẽL(x, x′) = yy′y−1y′−1

where y, y′ ∈ Ĝ(L) are chosen in such a way that g(y) = x, g(y′) = x′. By
Lemma 4.15 we have

(4.8) ẽL(x, x′) = ea
∗L(xa, x

′
a) ∈ μ, ∀a ∈ Jx ∩ Jx′ .

with values in the group of the roots of unity.

Theorem 4.17. Let xa ∈ Etor and set

Ãxa
:= ν−1

a (xa)× ν−1
a (xa) ⊂ V (E)× V (E).

Then the restriction ẽL(·, ·) |Ãxa
is constant iff xa ∈ K(a∗L) = E[|a|2d].

Proof. If xa ∈ K(a∗L) = E[|a|2d] then 4.8 implies

ẽL(x, x′) = ea
∗L(xa, xa) = 1, ∀(x, x′) ∈ Ãxa

.

Conversely, assume that ẽL(·, ·) |Ãxa
≡ 1 and fix b ∈ R s.t. bxa ∈ K(a∗L). By

Lemma 4.11

xab ∈ K((ab)∗L), ∀x ∈ ν−1
a (xa)

which means that

(4.9) ab ∈ Jx, ∀x ∈ ν−1
a (xa).

Consider r, s ∈ b−1(xa) and choose x, x′ ∈ ν−1
a (xa) s.t. xab = r and x′ab = s.

Then (x, x′) ∈ Ãxa
and combining 4.8 with the hypothesis ẽL(·, ·) |Ãxa

≡ 1
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we find

e(ab)
∗L(r, s) = ẽL(x, x′) = 1, ∀r, s ∈ b−1(xa).

We are done by means of Theorem 4.8. �

Remark 4.18. Despite the strong link with the Weil Pairing noticed in
Remark 4.4, last Theorem shows that the commutator map ẽL(·, ·) |Ãxa

can-

not be constant if xa �∈ K(a∗L). This proves that the bilinear form ẽL(·, ·)
on V (E) cannot be induced by any bilinear form on Etor (such as the Weil
pairing) via projection

νa × νa : V (E)× V (E) → Etor × Etor.

Assume now that L is symmetric: (−1)∗L � L. Correspondingly we have
an involution i : G(L) → G(L). By an abuse of notations, we use the same
symbol for the corresponding morphism of Ĝ(L):

i : Ĝ(L) → Ĝ(L).

We recall the following ([15], p. 58):

Definition 4.19. Fix x ∈ V (E), y ∈ Ĝ(L) s.t. 2g(y) = x. Then τ(x) ∈ Ĝ(L)
defined as τ(x) := yi(y)−1 does not depend of the choice of y, so we have a
map:

τ : V (E) → Ĝ(L),
providing a section of the exact sequence of Theorem 4.14.

Proposition 4.20.

τ(x)τ(y) = ẽL(x2 , y)τ(x+ y)

Proof. Observe that, for any pair x′ ∈ Ĝ(L), y′ ∈ Ĝ(L) s.t. 2g(x′) = x and
2g(y′) = y we have x′y′ = ẽL(x2 ,

y
2 )y

′x′, 2g(i(x′)−1) = x and 2g(i(y′)−1) = y
(and so i(x′)i(y′) = ẽL(x2 ,

y
2 )i(y

′)i(x′)). Then we get

τ(x)τ(y) = x′i(x′)−1y′i(y′)−1 = ẽL(x2 ,
y
2 )x

′y′i(x′)−1i(y′)−1

= ẽL(x2 , y)x
′y′i(y′)−1i(x′)−1 = ẽL(x2 , y)x

′y′i(x′y′)−1

= ẽL(x2 , y)τ(x+ y).

�
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5. The Main Theorem of Complex Multiplication
for Adelic Curves

In this section we are going to study the behavior of the Adelic Heisenberg
Group previously defined under the action of field automorphisms of C. We
begin with some technical Lemmas which will be needed in the following.

Lemma 5.1. Consider two normalized ([18] §II, Proposition 1.1) elliptic
curves E, E′ s.t. End(E) � End(E′) � R, equipped with line bundles L →
E, L′ → E′. Assume there are bijective maps σ : E → E′, σ̃ : L → L′ making
commutative the following diagram

L L′

E E′

p q

σ̃

σ

with σ commuting with any a ∈ R. Then for any a ∈ R there exists a unique
bijective σ̃a : a∗L → a∗L′ satisfying qa ◦ σ̃a = σ ◦ pa and ã ◦ σ̃a = σ̃ ◦ ã (pa :
a∗L → E, qa : a∗L′ → E′ denote the natural projections). Furthermore, we
have

(5.1) ã ◦ σ̃ab = σ̃b ◦ ã : (ab)∗L → b∗L′, ∀a, b ∈ R.

Proof. Consider the maps σ ◦ pa : a∗L → E′, σ̃ ◦ ã : a∗L → L′. Since σ com-
mutes with a, we have

a ◦ σ ◦ pa = σ ◦ a ◦ pa = σ ◦ p ◦ ã = q ◦ σ̃ ◦ ã,

and the Universal Property implies there exists a unique σ̃a : a∗L → a∗L′

s.t. qa ◦ σ̃a = σ ◦ pa and ã ◦ σ̃a = σ̃ ◦ ã.
In order to prove 5.1 it suffices show that

1) b̃ ◦ ã ◦ σ̃ab = b̃ ◦ σ̃b ◦ ã,
2) qb ◦ ã ◦ σ̃ab = qb ◦ σ̃b ◦ ã.

(1) from b̃ ◦ σ̃b = σ̃ ◦ b̃ and ãb ◦ σ̃ab = σ̃ ◦ ãb we have

b̃ ◦ ã ◦ σ̃ab = σ̃ ◦ b̃ ◦ ã = b̃ ◦ σ̃b ◦ ã.
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(2) from qb ◦ σ̃b = σ ◦ pb and qab ◦ σ̃ab = σ ◦ pab we have

qb ◦ σ̃b ◦ ã = σ ◦ pb ◦ ã = σ ◦ a ◦ pab = a ◦ σ ◦ pab = a ◦ qab ◦ σ̃ab = qb ◦ ã ◦ σ̃ab.

�

Lemma 5.2. Keep the hypothesis of Lemma 5.1 and assume additionally
that L and L′ are obtained via pull-back of the hyperplane bundle by means of
embeddings a : E → P(Cn), b : E′ → P(Cn) and that σ̃ is induced by a map
σ̃ : (Cn)∗ → (Cn)∗, obtained by acting on each coordinate with σ ∈ Aut(C).
Then we have an isomorphism

G(L) ↔ G(L′), φ ↔ φσ := σ̃ ◦ φ ◦ σ̃−1.

Proof. The proof is immediate since any φ ∈ G(L) correspond by a matrix
U ∈ GL(Cn) via canonical representation ([1], §6.4) and it is immediate to
check that φσ is represented by σ(U). �

First of all we would like to study the behavior of the Adelic Heisenberg
Group under the action of field automorphisms of C fixing E.

Consider an elliptic curve E with complex multiplication by R, em-
bedded in P2 = P(C3) by means of the Weierstrass model and assume it
is defined over a field L. Denote by σ a field automorphisms of C fixing
K · L. By [18] §II, Theorem 4.1, σ fix also H, the Hilbert field of K, and may
be interpreted as an element σ ∈ Gal(H,H). Consider also a normalization
E � C

Λ ([18], §II.1) with Λ a fractional ideal of K and denote by L the line
bundle providing the embedding C

Λ → P2. Observe that L is symmetric so
all the results of Section 4 can be applied.

Theorem 5.3. The field automorphism σ acts as automorphism of Ĝ(L)
and we have: τ(σ(x)) = σ(τ(x)) ∈ Ĝ(L), ∀x ∈ V (E).

Proof. Since σ fixes L, it provides a bijection of Etor which is induced
(compare with Lemma 5.2), via embedding E ⊂ P2, by the bijective map
σ̃ : C3 ↔ C3 (acting as σ in any coordinate). Such a map pull-back to L via
uniformization in such a way that we have a commutative diagram

L L

E E

p p

σ̃

σ
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Moreover, by [18], Theorem 2.2 (b), the multiplication map by any a ∈
R is still defined over K · L so a ◦ σ = σ ◦ a, ∀a ∈ R and we may apply
Lemma 5.1.
First of all we observe that σ extend to an automorphism

σ : V (E) → V (E)

because, if x = (xa)a∈R belongs to V (E) then also σ(x) := (σ(xa))a∈R stays
in V (E) since

aσ(xab) = σ(axab) = σ(xb).

Furthermore, we have

ay ∈ K(L) = E[d] ⇔ ady = 0 ⇔ σ(ady) = adσ(y) = 0 ⇔ aσ(y) ∈ K(L),

so (compare with 4.11)

Ix = Iσ(x), Jx = Jσ(x), ∀x ∈ V (E).

If φ ∈ G(a∗L) define φσ := σ̃a ◦ φ ◦ σ̃−1
a ∈ G(a∗L). Fix α = (x, (φa)a∈Jx

) ∈
Ĝ(L) and set ασ = (σ(x), (φσ

a)a∈Jx
). Then 5.1 implies

ã ◦ φσ
ab = ã ◦ σ̃ab ◦ φab ◦ σ̃−1

ab = σ̃b ◦ ã ◦ φab ◦ σ̃−1
ab = σ̃b ◦ φb ◦ ã ◦ σ̃−1

ab

= σ̃b ◦ φb ◦ σ̃−1
b ◦ ã = φσ

b ◦ ã

so we have ασ ∈ Ĝ(L) and we have the desired extension of σ to an auto-
morphism of Ĝ(L)

σ : Ĝ(L) → Ĝ(L).
In order to conclude the proof we have

τ(σ(x)) = σ(y)i(σ(y))−1, ∀y ∈ V (E) | 2g(y) = x,

since 2g(σ(y)) = σ(2g(y)) = σ(x) and τ(σ(x)) does not depend on y′

s.t. 2g(y′) = σ(x). Finally, we have

τ(σ(x)) = σ(y)i(σ(y))−1 = σ(yi(y)−1) = σ(τ(x)),

because σ : Ĝ(L) → Ĝ(L) is a morphism commuting with i. �
What we are going to do now is to study the behavior of the Adelic

Heisenberg Group under the action of any field automorphisms of C. Con-
sider again an elliptic curve E with complex multiplication by R, embedded
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in P2 = P(C3) by means of the Weierstrass model and assume it is defined
over a field L. Recall the Main Theorem of Complex Multiplication ([18] II,
Theorem 8.2, see also [19], Ch. 5 and [12], Ch. 10):

Theorem 5.4. Let σ ∈ Aut(C) fixing K and let s be an idèle of K corre-
sponding to σ via Artin map. Fix a complex analytic isomorphism:

f :
C

Λ
→ E(C),

where Λ is a fractional ideal. Then there exists a unique complex analytic
isomorphism:

g :
C

s−1Λ
→ Eσ(C),

so that the following diagram commutes:

K
Λ

K
s−1Λ

E(C) Eσ(C)

s−1

σ

f g

The main purpose of the rest of this section is to lift such a commutative
diagram to adelic Heisenberg groups. To the ease notations we put E′ = Eσ.
We may assume E(C) and E(C)′ both embedded P2(C) = P(C3) by means
of Weierstrass models and we define L := f∗OP2(1), L′ := g∗OP2(1). Like in
Lemma 5.2, σ : E → E′ is induced by σ̃ : (C3)∗ → (C3)∗ pulling back to a
map L → L′ and providing a commutative diagram

L L′

E E′

p q

σ̃

σ

Lemma 5.5.

1) aσ = a, ∀a ∈ R;

2) if x, y ∈ E are s.t. ay = x then aσ(y) = σ(x);

3) σ extends to an isomorphism

σ : V (E) → V (E), x = (xa)a∈R → σ(x) := (σ(xa))a∈R = s−1x.
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4)

Ix = Iσ(x), Jx = Jσ(x), ∀x ∈ V (E).

Proof. (1) First proof: since E and E′ are normalized by the maps f and g
of Theorem 5.4, the statement follows directly from [18] II, Theorem 2.2.

Second proof: even more directly, Theorem 5.4 implies

aσ(x′) = σ ◦ a ◦ σ−1(x′) = σ(asx′) = ax′, ∀x′ ∈ Etor.

(2) ay = x ⇒ σ(ay) = σ(x) ⇒ aσ(y) = σ(x) thanks to (1).
(3) It follows just combining (2) with Theorem 5.4 since σ acts as the mul-
tiplication by s−1 on each component xa.
(4) We get

ax1 ∈ K(L) = E[d] ⇔ adx1 = 0 ⇔ σ(adx1) = adσ(x1) = 0

⇔ aσ(x1) ∈ K(L′),

hence Ix = Iσ(x), ∀x ∈ V (E) and we are done by Lemma 4.11. �

Theorem 5.6. The isomorphism: s−1 : V (E) → V (E′) lifts to an isomor-
phism of adelic Heisenberg groups

σ : Ĝ(L) → Ĝ(L′)

commuting with the sections τ : V (E) → Ĝ(L) and τ ′ : V (E′) → Ĝ(L′):

σ(τ(x)) = τ ′(σ(x)), ∀x ∈ V (E).

Proof. Combining Lemmas 5.1, 5.2 and 5.5 the proof is very similar to that
of Theorem 5.3.

By Lemma 5.5, (1) we can apply Lemma 5.1 to L and L′ so for any a ∈ R
there exists a unique bijective σ̃a : a∗L → a∗L′ satisfying qa ◦ σ̃a = σ ◦ pa
and ã ◦ σ̃a = σ̃ ◦ ã and

(5.2) ã ◦ σ̃ab = σ̃b ◦ ã : (ab)∗L → b∗L′, ∀a, b ∈ R.

Furthermore, Lemma 5.2 implies that for any a ∈ R we have an isomor-
phism

G(a∗L) ↔ G(a∗L) φ ↔ φσ := σ̃a ◦ φ ◦ σ̃−1
a .
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Since Ix = Iσ(x), ∀x ∈ V (E) (compare with Lemma 5.5, (4)), for any α =

(x, (φa)a∈Jx
) ∈ Ĝ(L) we define ασ = (σ(x), (φσ

a)a∈Jx
). Then 5.2 implies

ã ◦ φσ
ab = ã ◦ σ̃ab ◦ φab ◦ σ̃−1

ab = σ̃b ◦ ã ◦ φab ◦ σ̃−1
ab = σ̃b ◦ φb ◦ ã ◦ σ̃−1

ab

= σ̃b ◦ φb ◦ σ̃−1
b ◦ ã = φσ

b ◦ ã

so we have ασ ∈ Ĝ(L) and we have the desired extension of σ to an auto-
morphism of Ĝ(L)

σ : Ĝ(L) → Ĝ(L).
In order to conclude the proof we have

τ ′(σ(x)) = σ(y)i(σ(y))−1, ∀y ∈ V (E) | 2g(y) = x,

since 2g(σ(y)) = σ(2g(y)) = σ(x) and τ(σ(x)) does not depend on y′

s.t. 2g(y′) = σ(x). Finally, we have

τ ′(σ(x)) = σ(y)i(σ(y))−1 = σ(yi(y)−1) = σ(τ(x)),

because σ : Ĝ(L) → Ĝ(L) is a morphism commuting with i. �

6. Adelic Thetas

What we are going to do in this section is to show that canonical represen-
tations ρ̃a defined in 6.1, fit for different a ∈ R to give a representation U
(Proposition 6.5) of the adelic Heisenberg group Ĝ(L) into the direct limit
(Definition 6.3)

Ĥ0(L) � lim−→
a∈R

H0(a∗L).

This allows us to define adelic theta functions θs, for any s ∈ Ĥ0(L) (Defini-
tion 6.6), on V (E) by means of the lifting τ : V (E) → Ĝ(L) defined in 4.19
(in all this section the line bundle L is assumed to be symmetric). We ob-
tain in such a way (Proposition 6.8) a vector space of functions over which
Ĝ(L) is represented by means of translations and characters (as it usually
happens in canonical representations).

Combining all that with the properties of the adelic action on V (E) stem-
ming from the main theorem of complex multiplication for elliptic curves
(proved in §5) we find a nice intertwining between theta functions and C-
automorphisms (Theorems 6.9 and 6.11).

Last but not least, composing theta functions with the embeddings de-
fined in Notations 3.16, we are going to define theta functions exhibiting a
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nice behavior under C-automorphisms on commensurability classes of arith-
metic 1-dimensional K-lattices (Theorem 6.12) and on the groupoid of com-
mensurability modulo dilations (Notations 6.13, Theorem 6.14).

Definition 6.1. By an abuse of notations, for any ψ ∈ G(a∗L)x we still
denote by ψ its image via canonical representation ([1], 6.4):

ρ̃a : G(a∗L) → GL(H0(a∗L)), ψ = ρ̃a(ψ) : s → ψ ◦ s ◦ t−x.

If s ∈ H0(a∗L) and b ∈ R then b ◦ id = b = id ◦ b = pa ◦ s ◦ b so, by uni-
versal property, there exists b̂(s) ∈ H0((ab)∗L) s.t. b̃(b̂(s)) = s ◦ b. We find a
linear map

b̂ : H0(a∗L) ↪→ H0((ab)∗L).

Lemma 6.2. Consider ψ ∈ G((ab)∗L) and φ ∈ G(a∗L) s.t. b̃ ◦ ψ = φ ◦ b̃.
Then we have a commutative square:

H0(a∗L) H0((ab)∗L)

H0(a∗L) H0((ab)∗L)

b̂

b̂

φ ψ

Proof. For any s ∈ H0(a∗L), b̂(s) ∈ H0((ab)∗L) is characterized by b̃ ◦ b̂(s) =
s ◦ b so we are left to prove that b̃ ◦ ψ(b̂(s)) = φ(s) ◦ b, ∀s ∈ H0(a∗L). We
have

b̃ ◦ ψ(b̂(s)) = b̃ ◦ ψ ◦ b̂(s) ◦ t−bx = φ ◦ b̃ ◦ b̂(s) ◦ t−x

= φ ◦ s ◦ b ◦ t−x = φ ◦ s ◦ t−bx ◦ b = φ(s) ◦ b.

�

Definition 6.3.

1) Set

Ĥ0(L) � lim−→
a∈R

H0(a∗L), ιa : H0(a∗L) → Ĥ0(L),

with ιa denoting the canonical inclusion. For any α = (x, (φa)a∈Jx
) ∈

Ĝ(L), define

Uα : Ĥ0(L) → Ĥ0(L), Uα |H0(a∗L)= ρ̃a(φa), ∀a ∈ Jx.
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Such a Uα is well defined by Lemma 6.2.

2) For any a ∈ R we denote by GLa the group

GLa := {(φr)r∈(a) | φb ∈ GL(H0(b∗L)), φab ◦ ĉ = ĉ ◦ φabc ∀b, c ∈ R}.

3) If a | b then (b) ⊂ (a) and there an obvious injective group morphism
GLa ↪→ GLb. So can define the limit group

GL(Ĥ0(L)) := lim−→
a∈R

GLa.

Remark 6.4. Observe that Lemma 6.2 implies that Uα defined in 6.3, (1)
belongs to GL(Ĥ0(L)). The following Proposition shows that the correspon-
dence α → Uα is indeed a representation of Ĝ(L) in GL(Ĥ0(L)).

Proposition 6.5. Let L be very ample, choose a section s ∈ H0(L) and
assume everything defined over some field L. The map defined in 6.3, (1)

U : Ĝ(L) → GL(Ĥ0(L)), α → Uα

is a group morphism. Furthermore, we have:

Uτ(x) ◦ Uτ(y)(s) = ẽ(x2 , y)Uτ(x+y)(s).

Proof. Fix α=(x, (φa)a∈Jx
)∈Ĝ(L) and β=(x, (φa)a∈Jy

)∈Ĝ(L). If a∈Jx ∩
Jy, then α and β belong to Ĝ(L) |Va

(compare with Definition 4.13, (3)).
What we are going to prove is that

U : Ĝ(L) |Va
→ GL(Ĥ0(L))

is a group morphism. Theorem 4.14, (2) implies

Ĝ(L) |Va
� ν∗aG(a∗L).

Moreover, U : ν∗aG(a∗L) → GL(Ĥ0(L)) obviously factorizes through GLa

U : ν∗aG(a∗L) → GLa ⊂ GL(Ĥ0(L))

and we have a commutative diagram (compare with Definition 6.1):
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ν∗aG(a∗L) GLa

G(a∗L) GL(H0(a∗L))

U

ρa

i.e. the map U |Ĝ(L)|Va
factorizes through ρa and must be a morphism since

ρa it is. Finally,

Uτ(x) ◦ Uτ(y)(s) = ẽ(x2 , y)Uτ(x+y)(s)

follows from Proposition 4.20. �
Recall [15], Definition 5.5:

Definition 6.6. Fix x ∈ V (E), s ∈ ιb(H
0(b∗L)) ⊂ Ĥ0(L) and assume l ∈

L(0)∗, also defined on L. We define the adelic theta function associated to s:

θs : V (E) → L,

in such a way that

θs(x) = l
(
φ−1
ab

(
â
(
s
)(
xab)

)
, ∀a | ab ∈ Jx,

if τ(x) =
(
x, (φc)c∈Jx

)
.

Such a theta function is well defined in view of the following:

Lemma 6.7. If both ab and cb belong to Jx then

φ−1
ab (â(s)(xab)) = φ−1

cb (ĉ(s)(xcb)) = φ−1
acb(âc(s)(xacb)).

Proof. We prove

φ−1
ab (â(s)(xab)) = φ−1

acb(âc(s)(xacb)).

Since φ−1
acb(âc(s)(xacb)) ∈ (acb)∗L |0 and any c̃ acts as the identity on the

zero-fiber, we have

φ−1
acb(âc(s)(xacb)) = c̃(φ−1

acb(âc(s)(xacb)))

= φ−1
ab (c̃(ĉ ◦ â(s)(xacb))) = φ−1

ab (â(s)(cxacb)) = φ−1
ab (â(s)(xab)),

because c̃(ĉ(s)) = s ◦ c, ∀s ∈ H0((ab)∗L) (compare with Definition 6.1). �
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We recall some properties of adelic theta functions (see [15], Chap. 5):

Proposition 6.8.

1) θs(x) = l(Uτ(−x)s)

2) θUτ(y)s(x) = ẽ(y, x2 )θs(x− y)

Proof. (1) Assume that τ(x) = (x, (φa)a∈Jx
). By Proposition 6.5, we have

Uτ(x) ◦ Uτ(−x) = ẽ(x2 ,−x)Uτ(0) = id

so U−1
τ(x)=Uτ(−x) with τ(−x)=(−x, (φ−1

a )a∈Jx
). In order to ease the nota-

tions, if s ∈ ιb(H
0(b∗L)) ⊂ Ĥ0(L) we set sab = â(s), if ab ∈ Jx, so we have:

Uτ(−x)s = φ−1
ab sab(xab), and θs(x) = l(φ−1

ab sab(xab)) = l(Uτ(−x)s).

(2) It follows combining (1) with Proposition 6.5:

θUτ(y)s(x) = l(Uτ(−x)◦τ(y)s) = ẽ(y, x2 )l(Uτ(y−x)s) = ẽ(y, x2 )θs(x− y).

�

Theorem 6.9.

1) As in Theorem 5.3, consider an elliptic curve E with complex multi-
plication by R, embedded in P2 = P(C3) by means of the Weierstrass
model and assume it is defined over a field L. Denote by σ a field au-
tomorphisms of C fixing K · L. Consider also a normalization E � C

Λ
([18], §II.1) with Λ a fractional ideal of K and denote by L the line
bundle providing the embedding C

Λ → P2. Fix a section s ∈ H0(L) cor-
responding to a line of P2 also defined on K · L. Then we have:

σ(θs(x)) = θs(σ(x)) = θs(l · x),
where l ∈ A∗ is the idèle of K corresponding to σ : Etor → Etor (ac-
cording to §2).

2) Keep notations as in Theorems 5.4 and 5.6, define l ∈ A∗ as the in-
verse of the idèle corresponding to σ via Artin map, consider E(C)
and E(C)′ both embedded P2(C) by means of Weierstrass models and
define L := f∗OP2(1), L′ := g∗OP2(1). Fix sections s ∈ H0(E,L) and
s′ ∈ H0(E′, L′) corresponding to the same line in P2(K). Then we have:

σ(θs(x)) = θs′(σ(x)) = θs′(l · x).
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Proof. We are going to prove (2) as the proof of (1) runs the same way. By
Theorem 5.6, τ ′(σ(x)) = σ(τ(x)) ∈ Ĝ(L′), ∀x ∈ V (E) so τ ′(σ(x)) = (σ(x),
(φσ

a)a∈Jx
). Then we have:

θs′(σ(x)) = l((φσ
a)

−1(s′a(σ(xa)))) = l((φσ
a)

−1(σ(sa(xa)))),

by definition of s and s′,

l((φσ
a)

−1(σ(s(xa)))) = l(σ((φa)
−1(s(xa))))

by definition of σ : G(a∗L) → G(a∗L′), and finally

l(σ((φa)
−1(s(xa)))) = σ(l((φa)

−1(s(xa)))) = σ(θs(x))

since l is defined over K. �
We have furthermore the important Corollary (see [15], Proposition 5.6):

Definition 6.10. (Compare with [18], Theorem 8.2) Fix an automorphism
of the complex numbers σ, and assume σ |Kab= [t,K], σ |Qab= [r,Q] via Artin
maps:

[ · ,K] : A∗
K → Gal(Kab,K), [ · ,Q] : A∗

Q → Gal(Qab,Q).

We define:

χσ = V (E)× V (E) → Q
1
, χσ(x, y) =

r−1ẽ(x, y)

ẽ(s−1x, s−1y)
.

We state our main result concerning the behaviour of adelic theta func-
tions under automorphisms:

Theorem 6.11.

1) With notations as in Theorem 6.9 (1), let t and r be ideles of K and
Q corresponding to σ via Artin maps. Then we have:

σ(θUτ(y)s(x)) = χσ(y,
x
2 )θUτ(t−1y)s(t

−1x).

2) With notations as in Theorem 6.9 (2), let t and r be ideles of K and
Q corresponding to σ via Artin maps. Then we have:

σ(θUτ(y)s(x)) = χσ(y,
x
2 )θUτ(t−1y)s

′(t−1x).
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Proof. We are going to prove (2) as the proof of (1) runs the same way. By
Proposition 6.8, θUτ(y)s(x) = ẽ(y, x2 )θs(x− y), so Theorem 6.9 implies:

σ(θUτ(y)s(x)) = σ(ẽ(y, x2 )θs(x− y))

= r−1ẽ(y, x2 )θs′(σ(x− y)) = r−1ẽ(y, x2 )θs′(t
−1(x− y)),

and we conclude by applying Proposition 6.8 once again. �
Finally, we may apply our results to the set of arithmetic 1-dimensionalK

lattices modulo commensurability and to the groupoid of commensurability
modulo dilations.

Theorem 6.12. Keep notations as in Theorem 6.9 (1) and let l ∈ A∗ be
an idèle of K corresponding to σ : Etor → Etor (according to §2). Recall the
map

ρΛ : F → V (EΛ), ρΛ |T (EΛ′ )∗ := V (αΛ,Λ′)
−1,

defined in 3.16 and acting on the set of arithmetic 1-dimensional K lattices
modulo commensurability F . Set

(6.1) θ̃s := θs ◦ ρΛ : F −→ L.

Then we have

σ(θ̃s(x)) = θ̃s(l · x).

Proof. Recall that F =
⋃

Λ′ T (EΛ′)
∗ by Corollary 3.12. By 3.16 (2) and 6.1,

then

θ̃ |T (EΛ′ )∗= θs ◦ V (αΛ,Λ′)
−1.

Then it follows from Theorem 6.9 that

σ(θ̃s(x)) = σ(θs(V (αΛ,Λ′)
−1(x))) = θs(l · V (αΛ,Λ′)

−1(x)))

= θs(V (αΛ,Λ′)
−1(l · x))) = θ̃s(l · x), ∀x ∈ T (EΛ′)

∗

(the third equality depends on the fact that V (αΛ,Λ′)
−1 is just the multi-

plication by an idèle once one has fixed an element in T (E)∗). We are done
because of F =

⋃
Λ′ T (EΛ′)

∗. �

Notations 6.13. Like in Theorem 3.14 fix a set of representatives Λi of
Cl(R), 1 ≤ i ≤ �Cl(R), and define Ei :=

C
Λi
. Let σ ∈ Aut(C) fixing K and

let s be an idèle of K corresponding to σ via Artin map. Set moreover E′
i :=

σ(Ei) like in Theorems 5.4 and 5.6, consider E(C) and E(C)′ both embedded
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P2(C) by means of Weierstrass models and define Li := f∗
i OP2(1), L′

i :=
g∗iOP2(1). Fix sections si ∈ H0(Ei, Li) and s′i ∈ H0(E′

i, L
′
i) corresponding to

the same line in P2(K). Recall (compare with 3.16) that we defined a map
from the groupoid of commensurability modulo dilations S to

⋃
Λi

V (EΛi
):

ξ : S =
⋃

(Λi,Λ)∈E
FΛi,Λ −→

⋃
Λi

V (EΛi
), ξ |FΛi,Λ

: (x, y) → V (αΛi,Λ)
−1(y) · x.

The following Theorem can be proved just as Theorem 6.12

Theorem 6.14. Keeping notations as above, define

Θ,Θ′ : S → L

by

Θ |FΛi,Λ
:= θsi ◦ ξ, Θ′ |FΛi,Λ

:= θs′i ◦ ξ.
Then we have

σ(Θ(x, y)) = Θ′(s−1x, y).
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