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Elliptic genera of Berglund-Hübsch

Landau-Ginzburg orbifolds

Minxian Zhu

Wematch the elliptic genus of a Berglund-Hübsch Landau-Ginzburg
orbifold with the supertrace of yJ[0]qL[0] on a vertex algebra V1,1.
We show that it is a weak Jacobi form and the elliptic genus of one
theory is equal (up to a sign) to the elliptic genus of its mirror.

1. Introduction

Mirror symmetry was originally formulated as a correspondence between the
N = (2, 2) superconformal field theories constructed for a Calabi-Yau n-fold
X and for its mirror partner X∨. On the level of cohomology groups, there is
a 90-degree rotation of the Hodge diamond, i.e. hp,q(X,C) = hn−p,q(X∨,C).
Batyrev’s construction of Calabi-Yau hypersurfaces in Gorenstein Fano toric
varieties associated to a pair of reflexive polytopes ([B]) is a prolific source of
examples of mirror Calabi-Yau varieties. This construction was later gener-
alized by Borisov to Calabi-Yau complete intersections in Gorenstein Fano
toric varieties ([B1]), and further by Batyrev and Borisov to the mirror
duality of reflexive Gorenstein cones ([BB1]). They proved that the string-
theoretic Hodge numbers of (singular) Calabi-Yau varieties arising from their
constructions satisfy the expected mirror duality ([BB2]).

Around the same time, physicists Berglund and Hübsch proposed a way
to construct mirror pairs of (2, 2)-superconformal field theories in the for-
malism of orbifold Landau-Ginzburg theories ([BH]). They considered a non-
degenerate invertible polynomial potential W whose transpose W∨ is again
a non-degenerate invertible potential. They claimed that there exists a suit-
able group H such that the Landau-Ginzburg orbifolds W and W∨/H form
a mirror pair. Recently, Krawitz found a general construction of the dual
group G∨ for any subgroup G of diagonal symmetries of W , and proved an
“LG-to-LG” mirror symmetry theorem for the pair (W/G,W∨/G∨) at the
level of double-graded state spaces ([K]).

Under a certain CY condition, the polynomials W , W∨ define Calabi-
Yau hypersurfacesXW ,XW∨ in (usually different) weighted projective spaces.
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For suitable groups G, the Calabi-Yau orbifolds XW /G, XW∨/G∨ are ex-
pected to be a mirror pair. Indeed, this “CY-to-CY” mirror symmetry the-
orem was proved by Chiodo and Ruan ([CR]) at the level of double-graded
dimensions of the state spaces by first establishing a cohomological LG/CY
correspondence and then invoking Krawitz’s theorem.

Elliptic genera are invariants of oriented (or almost complex) manifolds
that take values in the ring of modular forms. In the present article, we con-
sider a two-variable elliptic genus associated to anN = (2, 2) superconformal
field theory in the physics literature. When the field theory comes from a
smooth Calabi-Yau manifold M , one has a mathematical formula for the
genus in terms of the holomorphic Euler characteristic of the double-graded
bundle

y−
dimM

2 ⊗n≥1 (∧−yqn−1T ∗M ⊗ ∧−y−1qnTM ⊗ SqnT
∗
M ⊗ SqnTM ).

When the manifold is Calabi-Yau, this Euler characteristic is a weak Jacobi
form of weight 0 and index dimM

2 ([BL]), and mirror Calabi-Yau varieties
must have the same elliptic genera.

In [BHe], Berglund and Henningson computed the elliptic genus of an
arbitrary N = (2, 2) Landau-Ginzburg orbifold using physical argument and
showed that the elliptic genera of mirror Berglund-Hübsch LG-orbifolds are
equal by comparing a particular limit of the genera. The main result of
this paper is to give a mathematical proof of this statement using vertex
algebras. We will match their formula with the supertrace of an operator
on a vertex algebra, and then derive the duality by exploring the mirror-
symmetric nature of this vertex algebra.

The idea of interpreting the elliptic genus as the trace of an operator on
a vertex algebra first appeared in [BL]. The starting point is that the elliptic

genus of a smooth variety M is equal to y−
dimM

2 times the supertrace of the
operator yJ [0]qL[0] on the cohomology of the chiral de Rham complex 1 of M .
This interpretation allowed Borisov and Libgober to extend the notion of
elliptic genus to singular varieties, for which the chiral de Rham complexes
have been constructed, e.g. Calabi-Yau hypersurfaces in Gorenstein Fano
toric varieties ([B2]). Using the full force of the machinery developed in [B2],
they proved that the elliptic genera of mirror Calabi-Yau hypersurfaces in
Gorenstein Fano toric varieties are equal up to a sign.

Recently, a vertex algebra approach to Berglund-Hübsch-Krawitz mir-
ror symmetry was developed by Borisov in [B3]. Similar to the toric case, a

1 The chiral de Rham complex is a sheaf of vertex superalgebras introduced by
Malikov, Schechtman, and Vaintrob.
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vertex algebra V1,1 was constructed from the combinatorial data of a non-
degenerate invertible polynomial potential W and a subgroup G of diagonal
symmetries of W . The vertex algebra V1,1 contains the A and B rings of the
Landau-Ginzburg orbifolds (W/G,W∨/G∨) as subspaces. Using the proper-
ties of V1,1, Borisov reproved Krawitz’s result and moreover showed a ring
isomorphism between the A ring of W/G and the B ring of W∨/G∨.

The paper is organized as follows: Section 2 recalls the combinatorial
data of the Berglund-Hübsch-Krawitz construction following [B3] and [CR].
The vertex algebra V1,1 is defined in Section 3. In Section 4, we match
the Berglund-Henningson formula of the elliptic genus of W/G with the
supertrace of an operator yJ [0]qL[0] on V1,1, and show that it is a weak
Jacobi form. Finally we prove that the elliptic genera of W/G and W∨/G∨

coincide up to a sign.
I am deeply indebted to Lev Borisov for introducing me to the vertex

algebra approach to mirror symmetry, and answering my numerous ques-
tions. The author also thanks the referee for helpful suggestions about the
exposition. This work is supported by NSFC grant 11201255, NSFC grant
11531007, and a fellowship from the Thousand Talents Program.

2. The Berglund-Hübsch-Krawitz mirror
symmetry construction

We will use notations from [B3] and [CR]. Consider a non-degenerate poly-
nomial potential

(2.1) W (x1, . . . , xd) =

d∑
i=1

d∏
j=1

x
aij

j

with invertible exponent matrix A = (aij). Suppose the variables xj can be
assigned positive rational degrees qj such that W is homogeneous of degree
1, i.e. we have

(2.2)
∑
j

aijqj = 1

for all i. Since A is invertible, the rational degrees qj are uniquely determined
by W . Non-degeneracy means that the hypersurface W = 0 in Cd is smooth
away from the origin. In fact, Kreuzer and Skarke ([KS]) classified all non-
degenerate potentials; they are sums of decoupled invertible potentials of
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the following types

WFermat = xa(2.3)

Wloop = xa1

1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1(2.4)

Wchain = xa1

1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n .(2.5)

Decoupled means that the set of variables {x1, . . . , xd} is partitioned into
a disjoint union of subsets, and the variables in each subset contribute a
polynomial of one of the above types.

Consider the group Aut(W ) of diagonal automorphisms

(2.6) γ : xj �→ γjxj

that preserve the potential W , that is

(2.7) Aut(W ) =

⎧⎨
⎩γ = (γj) :

∏
j

γ
aij

j = 1 for all i

⎫⎬
⎭

Since the matrix A is invertible, each γj is a root of unity. If we write

(2.8) γj = exp(2πipj)

for some rational number pj (determined up to an integer), then the defining
relation of Aut(W ) translates to

(2.9)

d∑
j=1

aijpj ∈ Z.

This identifies the group Aut(W ) with d-tuple of rational numbers p = (pj)
defined up to Zd such that Ap ∈ Zd. Let ρi be the i-th column of A−1, then
the group Aut(W ) is generated by the ρi-s, and we have q =

∑
i ρi where

q = (qj) is the vector encoding the rational degrees of xj . The corresponding
scaling operator

(2.10) JW : xj �→ exp(2πiqj)xj

is called the exponential grading operator. Other than the subgroup of
Aut(W ) generated by JW , we are also interested in the subgroup SLW =
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SLd ∩Aut(W ) defined as follows:

(2.11) SLW =

⎧⎨
⎩γ ∈ Aut(W ) :

∏
j

γj = 1

⎫⎬
⎭ .

This corresponds to the condition that
∑

j pj ∈ Z for p = (pj) ∈ Aut(W ).
We impose the condition that the subgroup 〈JW 〉 generated by the ex-

ponential grading operator lies in SLW . This translates to the generalized
Calabi-Yau condition ([B3, Remark 2.1.1]): 2

(2.12)

d∑
j=1

qj = k ∈ Z>0.

Let G be a subgroup of Aut(W ) that contains JW and is contained in SLW ,
that is 〈JW 〉 ⊂ G ⊂ SLW . To describe the mirror of the Landau-Ginzburg
orbifold XW /G, we need the notion of dual potential and dual group.

The dual potential W∨ is obtained by transposing the exponent matrix
A, i.e.

(2.13) W∨ =

d∑
i=1

d∏
j=1

x
aij

j

It follows from the classification of [KS] that if W is non-degenerate, then
W∨ is also non-degenerate. In fact, one observes that the dual potential of
each type in (2.3)-(2.5) is a potential of the same type. We also consider the
group Aut(W∨) of diagonal automorphisms that preserve W∨. If identified
with (row) vectors p̄ in Qd/Zd such that p̄A ∈ Zd, Aut(W∨) is generated by
the rows of A−1. Similarly, we define the dual exponential grading operator
JW∨ and the subgroup SLW∨ . Given G such that 〈JW 〉 ⊂ G ⊂ SLW , there
is a natural way of defining a dual group G∨ such that 〈JW∨〉 ⊂ G∨ ⊂ SLW∨

([K]). We will describe this duality in the language of dual lattices ([B3]).

2 k = 1 is the Calabi-Yau condition in [CR]. In this case, W = 0 defines a Calabi-
Yau orbifold XW in the weighted projective space P(mq1, . . . ,mqd) where m is the
smallest positive integer such that mqj ∈ Z for all j. When k > 1, this does not
define a Calabi-Yau hypersurface in the weighted projective space. Nevertheless, in
Borisov’s reformulation of the Berglund-Hübsch-Krawitz construction, k is similar
to the index of a reflexive Gorenstein cone in the Batyrev-Borisov construction. In
good cases, reflexive Gorenstein cones of index k give rise to Calabi-Yau complete
intersections of k hypersurfaces. See [B3] and [BB1] for details.



746 Minxian Zhu

Let M0 and N0 be free abelian groups with bases {ui}, i = 1, . . . , d and
{vj}, j = 1, . . . , d. Define a non-degenerate integral pairing on these lattices
by putting

(2.14) ui · vj = aij ,

where aij are the exponents in the polynomial potential W . Because the
pairing is integral, we have

M0 ⊂ N∨
0 , N0 ⊂ M∨

0

where N∨
0 and M∨

0 are the dual lattices of N0 and M0. It was shown in [B3]
that Aut(W ) is naturally isomorphic to M∨

0 /N0. Indeed, given (pj) ∈ Qd,
form v =

∑
j pjvj , then (2.9) is equivalent to ui · v ∈ Z for all i which implies

v ∈ M∨
0 . Moreover, integer-valued (pj) corresponds to v ∈ N0. The image of

JW under this isomorphism can be represented by

(2.15) deg∨ =

d∑
j=1

qjvj ∈ M∨
0 ,

then

(2.16) ui · deg∨ = 1

for all i. Similarly, the group Aut(W∨) is naturally isomorphic to N∨
0 /M0,

and JW∨ is represented by deg ∈ N∨
0 such that

(2.17) deg · vj = 1

for all j.
Each subgroup G ⊂ Aut(W ) determines a suplattice N ⊃ N0 such that

G ∼= N/N0. The dual group G∨ ⊂ Aut(W∨) is defined to be M/M0 where
M is the dual lattice of N . In particular, the dual of 〈JW 〉 is SLW∨ ; the dual
of SLW is 〈JW∨〉. Indeed, for the entries of (pj) ∈ Aut(W ) to add up to an
integer (the condition of (pj) being in SLW ) is equivalent to (deg ·∑j pjvj)
being an integer. It is now clear that if G sits between 〈JW 〉 and SLW , then
G∨ sits between 〈JW∨〉 and SLW∨ ; the corresponding lattices then satisfy
deg ∈ M and deg∨ ∈ N .

The Berglund-Hübsch-Krawitz mirror symmetry asserts that the Landau-
Ginzburg orbifolds W/G and W∨/G∨ are mirror of each other for 〈JW 〉 ⊂
G ⊂ SLW .
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3. The vertex algebra V1,1

In this section, we define a vertex algebra associated to the above combina-
torial data, and state some results about it. We mostly follow the exposition
of [B2, B3].

Fix dual lattices M and N such that M0 ⊂ M ⊂ N∨
0 , N0 ⊂ N ⊂ M∨

0 ,
deg ∈ M , and deg∨ ∈ N . We define a vertex superalgebra FockM⊕N which
is the tensor product of the lattice vertex algebra associated to M ⊕N and
a vertex superalgebra generated by 2d fermions.

Let

L = M ⊕N.

The non-degenerate pairing between M and N extends to a non-degenerate
bilinear form on L where the only non-zero pairing is between an element
of M and an element of N . L is thus an even lattice, though not positive-
definite. Consider the 2-cocycle

(3.1) c : L× L → {±1}
defined by

(3.2) c((m,n), (m1, n1)) = (−1)m·n1 .

Let VL be the lattice vertex algebra associated to L and this cocycle. We
use A,B to distinguish modes coming from elements of N and M . That is,
we denote

(3.3) m ·B(z) =
∑
k∈Z

m ·B[k]z−k−1, n ·A(z) =
∑
k∈Z

n ·A[k]z−k−1

which have OPE:

(3.4)
m ·B(z)m1 ·B(w) ∼ n ·A(z)n1 ·A(w) ∼ 0,

m ·B(z)n ·A(w) ∼ m · n
(z − w)2

.

As a vector space, VL is isomorphic to the direct sum of infinitely many
polynomial algebras indexed by elements of M and N in infinitely many
variables

⊕m∈M,n∈N C[B[−1], B[−2], . . . , A[−1], A[−2], . . . ] |m,n〉
Here, each B[−k], k ≥ 1 does not stand for one mode, but d linearly inde-
pendent ones corresponding to a basis of M ; the same is true for A[−k].
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Each |m,n〉 is annihilated by m1 ·B[k], n1 ·A[k] for k > 0 and

(3.5) m1 ·B[0] |m,n〉 = m1 · n |m,n〉, n1 ·A[0] |m,n〉 = n1 ·m|m,n〉.

We denote the vertex operators of |m,n〉 by e
∫
m·B(z)+n·A(z). By definition,

it acts on an arbitrary element of VL as follows

e
∫
m·B(z)+n·A(z)

∏
A[· · · ]

∏
B[· · · ]|m1, n1〉

= (−1)m·n1exp

(∑
k<0

(m ·B[k] + n ·A[k])z
−k

−k

)

exp

(∑
k>0

(m ·B[k] + n ·A[k])z
−k

−k

)
zm·n1+n·m1

∏
A[· · · ]

∏
B[· · · ]|m+m1, n+ n1〉.

Let ΛL be the vertex super-algebra generated by the fermionic fields:

m · Φ(z) =
∑
k∈Z

m · Φ[k]z−k−1, n ·Ψ(z) =
∑
k∈Z

n ·Ψ[k]z−k

with OPE:

m · Φ(z) n ·Ψ(w) ∼ m · n
z − w

.

As a vector space, ΛL is isomorphic to the exterior algebra

∧· (⊕k<0Φ[k]⊕⊕k≤0Ψ[k]).

Define a vertex super-algebra

FockM⊕N = VL ⊗ ΛL.

Consider the following two bosonic fields in FockM⊕N with normal or-
dering implicit:

J(z) = −
d∑

i=1

mi · Φ(z)ni ·Ψ(z)− deg ·B(z) + deg∨ ·A(z),(3.6)

L(z) =

d∑
i=1

mi ·B(z)ni ·A(z)(3.7)

−
d∑

i=1

mi · Φ(z)∂z ni ·Ψ(z)− ∂zdeg ·B(z),
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where {mi}, {ni} are dual bases in M and N . Write

J(z) =
∑
k∈Z

J [k]z−k−1, L(z) =
∑
k∈Z

L[k]z−k−2.

The eigenvalues of J [0] and L[0] equip FockM⊕N with a double grading.
Explicitly, given an element

∏
A[· · · ]

∏
B[· · · ]

∏
Φ[· · · ]

∏
Ψ[· · · ]|m,n〉 ∈ FockM⊕N ,

J [0] counts the number of occurrences of Ψ minus the number of occurrences
of Φ, plus (deg∨ ·m− deg · n), while L[0] counts the opposite of the sum of
indices in [ ], plus m · n+ deg · n.

Switching the roles of M and N , we obtain

J∗(z) = −
d∑

i=1

ni ·Ψ(z)mi · Φ(z)− deg∨ ·A(z) + deg ·B(z)(3.8)

= −J(z)

L∗(z) =
d∑

i=1

ni ·A(z)mi ·B(z)(3.9)

−
d∑

i=1

ni ·Ψ(z)∂z mi · Φ(z)− ∂zdeg
∨ ·A(z)

= L(z)− ∂zJ(z).

In particular

J∗[0] = −J [0], L∗[0] = L[0] + J [0]

This is important to us because we will use (J [0], L[0]) to compute the
elliptic genus of W/G and use (J∗[0], L∗[0]) to compute the elliptic genus of
W∨/G∨.

Denote by � the set (ui) and by �∨ the set (vj). Define the cones KM

in M and KN in N by

KM := M ∩
∑
i

Q≥0ui, KN := N ∩
∑
j

Q≥0vj .

Since ui · deg∨ = 1 for all i and deg∨ ∈ N , (ui) are the primitive generators of
the rays in KM , so are (vj) primitive generators of the rays in KN . Consider
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the following operators

D1,0 = Resz=0

∑
m∈�

m · Φ(z)e
∫
m·B(z),

D0,1 = Resz=0

∑
n∈�∨

n ·Ψ(z)e
∫
n·A(z),

D1,1 = D1,0 +D0,1.

They all commute with J [0] and L[0]. It is straightforward to check that
D1,0 and D0,1 are both differentials, and they anticommute, hence D1,1 is
also a differential. Introduce a bi-grading on FockM⊕N by the eigenvalues of

deg∨ ·A[0] and deg ·B[0].

Then D1,0 and D0,1 change the (deg
∨ ·A[0], deg ·B[0])-grading by (1, 0) and

(0, 1) respectively, hence (FockM⊕N , D1,0, D0,1) form a double complex.
Define the vertex super-algebra V1,1 as the cohomology of FockM⊕N with

respect to the total differential D1,1. The (J [0], L[0])-grading on FockM⊕N
descends to a (J [0], L[0])-grading on the cohomology of FockM⊕N with re-
spect to the operators D1,0, D0,1, and D1,1.

We need the following results from [B2, B3].

Proposition 3.1. [B3, Theorem 5.2.3] The cohomology of FockM⊕N with
respect to D1,1 is equal to the cohomology of FockM⊕KN

with respect to D1,1.

Proposition 3.2. [B3, Theorem 6.2.1] For fixed eigenvalues of J [0] and
L[0], the corresponding eigenspace in V1,1 is finite-dimensional.

We are interested in computing the supertrace of the operator yJ [0]qL[0]

on V1,1. Supertrace means that we subtract the dimension of the odd part
from the dimension of the even part of the corresponding eigenspaces. By
the previous proposition, this gives a well-defined double series in y and q.
To compute this invariant, we first describe the cohomology of FockM⊕KN

with respect to D0,1.

Proposition 3.3. [B2, Proposition 9.3] Denote by (v∨j ) the dual basis of
(vj) in N∨

0 . For each i, define

bi(z) = e
∫
v∨
i ·B(z),

φi(z) = (v∨i · Φ(z))e
∫
v∨
i ·B(z), ψi(z) = (vi ·Ψ(z))e−

∫
v∨
i ·B(z)

ai(z) =: (vi ·A(z))e−
∫
v∨
i ·B(z) : + : (v∨i · Φ(z))(vi ·Ψ(z))e−

∫
v∨
i ·B(z) :
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These fields generate a vertex subalgebra VAKN ,N∨
0

inside FockN∨
0 ⊕0. Con-

sider all elements from VAKN ,N∨
0
whose A[0] eigenvalues lie in M . Denote

the resulting algebra by VAKN ,M .
Let Box(KN ) be the set of all elements n ∈ KN such that n− vj /∈ KN

for all j. Equivalently, Box(KN ) = {∑j pjvj ∈ KN : 0 ≤ pj < 1}. For ev-
ery n ∈ Box(KN ), consider the following set of elements of FockM⊕n. For
every v =

∏
A[· · · ]∏B[· · · ]∏Φ[· · · ]∏Ψ[· · · ]|m, 0〉 that lies in VAKN ,M ⊂

FockM⊕0, consider v′ =
∏

A[· · · ]∏B[· · · ]∏Φ[· · · ]∏Ψ[· · · ]|m,n〉 which is
obtained by applying the same modes of A,B,Φ, and Ψ to |m,n〉 instead of

|m, 0〉. We denote this space by VA(n)
KN ,M .

Then the cohomology of FockM⊕KN
with respect to D0,1 is equal to

(3.10) FockM⊕KN
/D0,1 = ⊕n∈Box(KN )VA(n)

KN ,M .

Basically, the differential D0,1 preserves FockM⊕(n+∑
j Nvj) for each n ∈

Box(KN ). The cohomology FockM⊕(n+∑
j Nvj) with respect to D0,1 for vari-

ous n all look like the cohomology of FockM⊕∑
j Nvj

with respect to D0,1.

4. Elliptic genera of Berglund-Hübsch orbifolds

We aim to derive a formula for the supertrace of yJ [0]qL[0] on the cohomology
of FockM⊕KN

with respect to D0,1. By (3.10), it is sufficient to compute

the supertrace of yJ [0]qL[0] on each summand VA(n)
KN ,M . For n = 0, VAKN ,M

consists of those from VAKN ,N∨
0
whose A[0]-eigenvalue lies in M . The vertex

superalgebra VAKN ,N∨
0
is generated by the 2d bosonic fields bi(z), ai(z), and

2d fermionic fields φi(z), and ψi(z) with the following OPE

ai(z)b
j(w) ∼ δij

z − w
, φi(z)ψj(w) ∼ δij

z − w

(all other OPEs vanish). These fields (by the state-field correspondence)
admit the following (J [0], L[0])-eigenvalues:

J [0] L[0]
ai(z) −deg∨ · v∨i 1
bi(z) deg∨ · v∨i 0
φi(z) deg∨ · v∨i − 1 1
ψi(z) −deg∨ · v∨i + 1 0
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Note that deg∨ =
∑d

j=1 qjvj (see (2.15)), hence deg
∨ · v∨i = qi. The previous

table becomes

J [0] L[0]
ai(z) −qi 1
bi(z) qi 0
φi(z) qi − 1 1
ψi(z) −qi + 1 0

Now, the supertrace of yJ [0]qL[0] on VAKN ,N∨
0
can be computed as follows:

(4.1) STVAKN,N∨
0
yJ [0]qL[0] =

d∏
i=1

∏
k≥0(1− y−qi+1qk)

∏
k≥1(1− yqi−1qk)∏

k≥0(1− yqiqk)
∏

k≥1(1− y−qiqk)

The infinite products on the numerator come from the modes of φi(z)
and ψi(z); the products on the denominator come from the modes of ai(z)
and bi(z). This expression involves rational powers of y and q. To extract the
supertrace of yJ [0]qL[0] on the subalgebra VAKN ,M ⊂ VAKN ,N∨

0
from (4.1),

we need to insert certain roots of 1 to eliminate the terms contributed by
those in VAKN ,N∨

0
whose A[0]-eigenvalue lies outside M .

Recall the finite abelian group G = N/N0. As a set, G is isomorphic to
Box(KN ). For any n1 ∈ N , we define

(4.2) θj(n1) = v∨j · n1.

Consider the group algebra C[N∨
0 ] = C[x±11 , . . . , x±1d ]. The variables (xj) cor-

respond to the basis (v∨j ) of N
∨
0 . The group G acts on C[N∨

0 ] as follows: for
any n1 ∈ N/N0, m ∈ N∨

0 , we have

n1·[m] = exp(2πi(n1 ·m)) [m].

Then the G-invariant of C[N∨
0 ] is C[M ], i.e. C[N∨

0 ]
G = C[M ]. There is an

“averaging over G” operation from C[N∨
0 ] to C[M ] that we can use to obtain

the supertrace of yJ [0]qL[0] on VAKN ,M , that is to insert 1
|G|

∑
n1∈G exp(2πim ·

n1) in front of the term contributed by element

∏
A[· · · ]

∏
B[· · · ]

∏
Φ[· · · ]

∏
Ψ[· · · ]|m, 0〉 ∈ VAKN ,N∨

0
.
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Hence, we have

STVAKN,M
yJ [0]qL[0](4.3)

=
1

|G|
∑
n1∈G

d∏
j=1

∏
k≥0(1− y−qj+1qke−2πiθj(n1))∏

k≥0(1− yqjqke2πiθj(n1))∏
k≥1(1− yqj−1qke2πiθj(n1))∏
k≥1(1− y−qjqke−2πiθj(n1))

In general for n ∈ Box(KN ), the supertrace of yJ [0]qL[0] on VA(n)
KN ,M is given

by

STVA(n)
KN,M

yJ [0]qL[0](4.4)

= (y−1q)deg·n
1

|G|
∑
n1∈G

d∏
j=1

∏
k≥0(1− y−qj+1qk−θj(n)e−2πiθj(n1))∏

k≥0(1− yqjqk+θj(n)e2πiθj(n1))∏
k≥1(1− yqj−1qk+θj(n)e2πiθj(n1))∏
k≥1(1− y−qjqk−θj(n)e−2πiθj(n1))

The above is understood as a Laurent series in y, q with rational powers
and non-negative powers of q. Indeed, each θj(n) lies in [0, 1). The powers
of q that appear on the denominator are all non-negative, hence when the
reciprocal of the denominator terms are expressed as a power series, only
non-negative powers of q appear. On the numerator, the only term that
could have a negative power of q is when k = 0 in the first infinite product.
However, we have an extra term qdeg·n in the front, and the fact that deg ·
n =

∑
j θj(n) takes care of it. This double series converges absolutely when

|q| < |yqjqθj(n)| < 1 for all j. In fact, we can write it in terms of the theta
function. Let

(4.5) Θ(ν, τ) = iq
1

8 e−iπν(1− ei2πν)

∞∏
n=1

(1− qn)(1− qnei2πν)(1− qne−i2πν)

be Jacobi’s theta function where q = ei2πτ . It is a holomorphic function
for ν ∈ C, τ ∈ H where H is the upper-half plane. If we fix τ ∈ H, then
Θ(ν, τ), as a function of ν, has single zeroes at all the lattice points in
Zτ + Z. Multiplying both the numerator and the denominator of (4.4) by
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∏∞
n=1(1− qn), we obtain

STVA(n)
KN,M

yJ [0]qL[0](4.6)

= qdeg·n
1

|G|
∑
n1∈G

d∏
j=1

y−θj(n)
eiπ{(1−qj)z−θj(n)τ−θj(n1)}

eiπ{qjz+θj(n)τ+θj(n1)}

Θ((1− qj)z − θj(n)τ − θj(n1), τ)

Θ(qjz + θj(n)τ + θj(n1), τ)

= qdeg·n
1

|G|
∑
n1∈G

eiπz(d−2
∑

j qj)e−i2πτ
∑

j θj(n)e−i2π
∑

j θj(n1)

d∏
j=1

e−i2πzθj(n)
Θ(· · · )
Θ(· · · )

where y = ei2πz, q = ei2πτ . Note that qdeg·n cancels with e−i2πτ
∑

j θj(n). More-
over,

∑
j θj(n1) = deg · n1 ∈ Z because deg ∈ M , n1 ∈ N , and M and N are

dual lattices, hence e−i2π
∑

j θj(n1) = 1. We have

STVA(n)
KN,M

yJ [0]qL[0](4.7)

= y
1

2
(d−2∑j qj)

1

|G|∑
n1∈G

d∏
j=1

e−i2πzθj(n)
Θ((1− qj)z − θj(n)τ − θj(n1), τ)

Θ(qjz + θj(n)τ + θj(n1), τ)
.

Note that

(4.8) qj = v∨j · deg∨ = θj(deg
∨)

for deg∨ ∈ N . The number

(4.9) ĉ = d− 2
∑
j

qj = d− 2 deg · deg∨

is the central charge of the N = 2 structure on V1,1 ([B3]).

Theorem 4.1. The elliptic genus of the Berglund-Hübsch Landau-Ginzburg
orbifold W/G calculated in [BHe] is equal to y−

1

2
ĉSuperTraceV1,1

yJ [0]qL[0].

Proof. Consider the double complex (FockM⊕KN
, D1,0, D0,1) with bi-grading

(deg∨ ·A[0], deg ·B[0]). It lies in the upper half plane because deg ·B[0] has
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non-negative eigenvalues on KN . The vertex algebra V1,1 is the cohomol-
ogy of the total complex. Consider the filtration of the total complex such
that the E0 terms of the associated spectral sequence is the cohomology
of FockM⊕KN

with respect to the (vertical) differential D0,1. The filtration
is bounded below and exhaustive, so the spectral sequence converges to
the cohomology of the total complex. The cohomology of FockM⊕KN

with
respect to D0,1 is described in Proposition 3.3. The deg ·B[0]-grading on

FockM⊕KN
/D0,1 is bounded by d. Indeed, each summand VA(n)

KN ,M in (3.10)
has the deg ·B[0]-grading equal to deg · n which is < d because n lies in
the Box(KN ). Hence, the spectral sequence degenerates after finitely many
steps. Since the differentials of the spectral sequence change parity and com-
mute with J [0] and L[0], they have no effect on the supertrace. We have

SuperTraceV1,1
yJ [0]qL[0] = SuperTraceFockM⊕KN

/D0,1
yJ [0]qL[0].

Finally, we sum up (4.7) over n ∈ Box(KN ) ∼= G. When multiplied with
y−

1

2
ĉ, it matches with the formulae (2.6), (2.7), and (2.14) of [BHe]. �

We denote the elliptic genus of W/G by

Ell(W/G, z, τ)(4.10)

=
1

|G|
∑

n,n1∈G

d∏
j=1

e−i2πzθj(n)
Θ((1− qj)z − θj(n)τ − θj(n1), τ)

Θ(qjz + θj(n)τ + θj(n1), τ)
.

Our next goal is to show that this is a weak Jacobi form. First, we establish
the holomorphicity.

Theorem 4.2. Ell(W/G, z, τ) is a holomorphic function of two variables
for all z ∈ C, τ ∈ H.

Proof. We will show explicitly with appeal to the classification of non-
degenerate potentials that the zeroes of the theta functions on the denomi-
nator of (4.7) cancel with (some of) the zeroes of the theta functions on the
numerator. Then it follows that the double series (4.4) converge absolutely
to holomorphic functions for all y ∈ C∗, |q| < 1.

Any non-degenerate potential W is a sum of decoupled potentials of
three types: Fermat, loop, and chain. It is sufficient to prove the holomor-
phicity for W of each type. If W = xa, a > 2 is of the Fermat type, then
q = 1/a and θ(n) ∈ (1/a)Z for all n ∈ G = Za. The zeroes of Θ(qz + θ(n)τ +
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θ(n1), τ) correspond to those z, τ such that

qz + θ(n)τ + θ(n1) ∈ Zτ + Z.

When this is true, multiplying with a− 1, we get

(1− q)z + (a− 1)θ(n)τ + (a− 1)θ(n1) ∈ Z(a− 1)τ + Z(a− 1).

Since aθ(n), aθ(n1) ∈ Z, it follows that (1− q)z − θ(n)τ − θ(n1) ∈ Zτ + Z,
hence they are also zeroes of the numerator.

If W = xa1

1 x2 + xa2

2 x3 + · · ·+ x
ak−1

k−1 xk + xak

k x1 is of the loop type, then
we have

aiqi + qi+1 = 1 for 1 ≤ i ≤ k − 1,

akqk + q1 = 1

aiθi(n) + θi+1(n) ∈ Z for 1 ≤ i ≤ k − 1, n ∈ Box(KN )

akθk(n) + θ1(n) ∈ Z for n ∈ Box(KN ).

The same arguments apply as in the Fermat case: the zeroes of Θ(qjz +
θj(n)τ + θj(n1), τ) cancel with the zeroes of Θ((1− qj+1)z − θj+1(n)τ −
θj+1(n1), τ) for 1 ≤ j ≤ k − 1, and the zeroes of Θ(qkz + θk(n)τ + θk(n1), τ)
cancel with the zeroes of Θ((1− q1)z − θ1(n)τ − θ1(n1), τ).

If W = xa1

1 x2 + xa2

2 x3 + · · ·+ x
ak−1

k−1 xk + xak

k is of the chain type, then

aiqi + qi+1 = 1 for 1 ≤ i ≤ k − 1,

akqk = 1

aiθi(n) + θi+1(n) ∈ Z for 1 ≤ i ≤ k − 1, n ∈ Box(KN )

akθk(n) ∈ Z for n ∈ Box(KN ).

The previous argument fails to cancel the zeroes of Θ(qkz + θk(n)τ +
θk(n1), τ). Instead, we will “distribute” its zeroes to each term of the numer-
ator. Here is the mechanism of how this works, isolated. Suppose we have a
ratio of theta functions

(4.11)
1

Θ( k
mlz + α3τ + β3, τ)

Θ( k
mz + α1τ + β1, τ)

Θ( 1
mz + α2τ + β2, τ)

wherem, k, l are integers, αi, βi are rational numbers, (m, k) = 1, andmα2 ∈
Z,mβ2 ∈ Z. Moreover, kα2 ≡ α1 (mod Z), kβ2 ≡ β1 (mod Z), lα3 ≡ α1 (mod
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Z), lβ3 ≡ β1 (mod Z). The zeroes of the first theta function on the denomi-
nator lie on the lines

k

ml
z + α3τ + β3 = pτ + q, p, q ∈ Z

which is equivalent to

(4.12)
k

m
z + lα3τ + lβ3 = plτ + ql, p, q ∈ Z.

By assumption, this family of lines belong to the set of lines containing
the zeroes of the numerator. Similarly, the second theta function on the
denominator has zeroes on the lines

(4.13)
k

m
z + kα2τ + kβ2 = p′kτ + q′k, p′, q′ ∈ Z.

These lines again coincide with some of the lines containing the zeroes of
the numerator. If the two families of lines (4.12) and (4.13) have no inter-
section, then the zeroes of the denominator are all cancelled by the zeroes
from the numerator, the ratio is therefore holomorphic. Otherwise, we have
gcd(k, l)|(kα2 − lα3), gcd(k, l)|(kβ2 − lβ3). The lines in (4.13) that are not
“eliminated” by the lines from the numerator are those with (p′, q′) such
that

(4.14) l|(p′k − kα2 + lα3), l|(q′k − kβ2 + lβ3).

Fix such a pair (p′, q′), then every other such pair (p′′, q′′) satisfies that

p′′ − p′, q′′ − q′ ∈ l

gcd(k, l)
Z.

Hence, we have the following lines remaining

1

m
z + α2τ + β2 = (p′ +

l

gcd(k, l)
s)τ + (q′ +

l

gcd(k, l)
t), s, t ∈ Z

or

gcd(k, l)

ml
z +

gcd(k, l)

l
(α2 − p′)τ +

gcd(k, l)

l
(β2 − q′) = sτ + t, s, t ∈ Z.
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Set

mnew =
ml

gcd(k, l)
, αnew

2 =
gcd(k, l)

l
(α2 − p′),

βnew
2 =

gcd(k, l)

l
(β2 − q′),

then it is clear that mnewαnew
2 , mnewβnew

2 ∈ Z. The ratio (4.11) has the same
poles as

(4.15)
1

Θ( 1
mnew z + αnew

2 τ + βnew
2 , τ)

.

Finally, consider Θ((1− k
ml )z − α3τ − β3, τ). We have

(4.16) 1− k

ml
=

ml
gcd(k,l) − k

gcd(k,l)

ml
gcd(k,l)

=:
knew

mnew
, (knew,mnew) = 1.

Moreover,

(4.17) knewαnew
2 = m(α2 − p′)− k(α2 − p′)

l
≡ −α3( mod Z)

because mα2 ∈ Z by assumption and (4.14). Similarly, we have

(4.18) knewβnew
2 = m(β2 − q′)− k(β2 − q′)

l
≡ −β3( mod Z)

All of (4.15)–(4.18) will be the beginning of another round of the same
arguments.

Now, let us see how this applies to prove the holomorphicity of Ell(W/
G, z, τ) for W of the chain type. We need to examine

· · · · · ·Θ((1− qk−1)z − θk−1(n)τ − θk−1(n1), τ)

Θ(qk−1z + θk−1(n)τ + θk−1(n1), τ)

Θ((1− qk)z − θk(n)τ − θk(n1), τ)

Θ(qkz + θk(n)τ + θk(n1), τ)
.

Recall that qk = 1
ak

and akθk(n), akθk(n1) ∈ Z. It is clear that the ratio of
the last theta function on the numerator and the last two theta functions on
the denominator satisfy the assumptions of the above discussion. We apply
the above arguments finitely many times from right to left, in the end, we
are able to cancel all zeroes of the denominator. �
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Theorem 4.3. Ell(W/G, z, τ) is a weak Jacobi form of weight 0 and in-
dex ĉ

2 .

Weak here means that it obeys the transformation laws of the Jacobi
forms, however at the cusp we require that only non-negative powers of
q appear ([EZ]). Also, when ĉ is odd, the definition of the Jacobi form is
modified to allow a character.

Proof. The condition at the cusp holds because (4.4) has no negative pow-
ers of q. It is now enough to verify the following modular properties of
Ell(W/G, z, τ):

Ell(W/G, z, τ + 1) = Ell(W/G, z, τ)(4.19)

Ell(W/G, z + 1, τ) = (−1)ĉEll(W/G, z, τ)(4.20)

Ell(W/G, z + τ, τ) = (−1)ĉe−iπĉ(τ+2z)Ell(W/G, z, τ)(4.21)

Ell

(
W/G,

z

τ
,−1

τ

)
= e

iπĉz2

τ Ell(W/G, z, τ)(4.22)

We need the following identities of the theta function:

Θ(ν, τ + 1) = Θ(ν, τ)(4.23)

Θ(ν + 1, τ) = −Θ(ν, τ)(4.24)

Θ(ν + τ, τ) = −e−i2πν−iπτΘ(ν, τ)(4.25)

Θ

(
ν

τ
,−1

τ

)
= −i

√
τ

i
e

iπν2

τ Θ(ν, τ).(4.26)

(4.19) follows from (4.23) and the change of variable nn1 → n1 in (4.10).
(4.20) follows from (4.24), e−i2π

∑
j θj(n) = 1 (because

∑
j θj(n) = deg · n ∈

Z), and the change of variable deg∨ n1 → n1 (note that qj = θj(deg
∨) and

deg∨ ∈ G). Also,
∑

j qj ∈ Z, hence ĉ = d (mod 2). (4.21) follows from (4.25),∑
j θj(n1) ∈ Z, and the change of variable deg∨ n → n. (4.22) follows from

(4.26) and change of variables n → n−11 , n1 → n. �

Remark 4.4. It was shown in [BHe] that the elliptic genus Ell(W/G)
satisfy modular transformation properties with respect to (z, τ) → (z, τ +
1), (z, τ) → ( zτ ,− 1

τ ) (same as here), and (z, τ) → (z + L, τ), (z, τ) → (z +
Lτ, τ), where L is the smallest integer such that gL = id for all g ∈ G. The
modularity here appears to be stronger. The reason is that we made the
assumption 〈JW 〉 ⊂ G, i.e. deg∨ ∈ N , so that we can combine qj = θj(deg

∨)
with θj(n) and do a change of variable. We also assumed that G ⊂ SLW , or
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equivalently deg ∈ M , then
∑

j θj(n) ∈ Z for all n ∈ G. This enables us to

reduce terms
∏

j e
i2πθj(n) to 1.

We now prove that the elliptic genera of mirror Berglund-Hübsch Landau-
Ginzburg orbifolds are equal up to a sign.

Theorem 4.5. Ell(W/G, z, τ) = (−1)ĉEll(W∨/G∨, z, τ).

Proof. The Fock space FockM⊕N and the differential D1,1 are both sym-
metric with respect to the switching of M and N . The discrepancy of the
cocycle (3.1) and its counterpart with the role of M and N switched can
be resolved by multiplying |m,n〉 by (−1)m·n. However, to obtain the el-
liptic genus of the dual theory W∨/G∨ from the double-graded superdi-
mension of V1,1, we need to consider a different bi-grading (J∗[0], L∗[0]) =
(−J [0], L[0] + J [0]). Then by Theorem 4.3, we have

Ell(W∨/G∨, y, q) = y−
ĉ

2SuperTraceV1,1
yJ

∗[0]qL
∗[0]

= y−
ĉ

2SuperTraceV1,1
(y−1q)J [0]qL[0]

= y−
ĉ

2 (y−1q)
ĉ

2Ell(W/G, y−1q, q)

= y−ĉq
ĉ

2Ell(W/G, y−1q, q).

It remains to use the following transformation property of Ell:

Ell(W/G,−z + τ, τ) = (−1)ĉe−iπĉ(τ−2z)Ell(W/G, z, τ).

�
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[B3] L. A. Borisov, Berglund-Hübsch mirror symmetry via vertex algebras.
Comm. Math. Phys., 320 (2013), no. 1, 73–99.
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