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A note on the algebra of p-adic

multi-zeta values

Sinan Ünver

We prove that the algebra of p-adic multi-zeta values, as defined
in [4] or [2], are contained in another algebra which is defined
explicitly in terms of series. The main idea is to truncate certain
series, expand them in terms of series all of which are divergent
except one, and then take the limit of the convergent one. The
main result is Theorem 3.12.

1. Introduction

Multi-zeta values were defined by Euler as the sum of the series:

ζ(s1, s2, . . . , sk) :=
∑

0<n1<···<nk

1

ns1
1 ns2

2 · · ·nsk
k

,

for s1, . . . , sk−1 ≥ 1 and sk > 1. The Euler-Kontsevich formula [3] expresses
these numbers in terms of iterated integrals on the thrice punctured line
X := P1 \ {0, 1,∞}. This formula interprets multi-zeta values as real periods
of the mixed Tate motive coming from the unipotent fundamental group of
X [1], [3]. These imply many relations between the multi-zeta values and
the algebra of these values has arithmetic significance as it relates to the
tannakian fundamental group of mixed Tate motives over Z [3].

The p-adic version of these values were defined by Deligne (unpublished,
explained in [4]) coming from the comparison theorem between the de Rham
and the crystalline fundamental group of X. The double shuffle relations for
these values were proved by Furusho and Jafari and the Drinfel’d-Ihara re-
lations were proved by the author. The question of algebraic independence
or even non-vanishing seems to be a more difficult question. We do not even
know that ζp(2k + 1) are non-zero for all primes p, and positive integers k.
This suggests that in order to prove linear independence among these num-
bers one might need a somewhat more explicit description of these numbers
or the algebra generated by these numbers. This paper is a first attempt in
this direction. Our aim in this note is to prove that the algebra of p-adic
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multi-zeta values lie in another algebra that is described only using certain
series. The remaining, but more difficult question is to study these series.

It turns out that the individual truncated series that appear in the ex-
pression for p-adic multi-zeta values are divergent, but their certain linear
combinations converge. The main idea is to consider these divergent series
and express them as linear combinations of a convergent series and other
divergent series and then take the convergent part. We call this process the
regularisation of the series.

In §2, we describe this process. The main point is that there are certain
simple divergent series which we denote by σp(s), which are linearly inde-
pendent under the algebra of power series functions. That these series are
linearly independent is proved in Proposition 2.3; the fact that all the series
we are interested can be expressed in terms of these divergent series is proved
in Proposition 2.7. Next in Proposition 2.14, which forms the basis for the
inductive arguments, we prove that, under conditions that are satisfied by
the series that appear below, if the truncated series that are the coefficients
of a power series are regular then so are the coefficients of its antiderivative
after it is multiplied by one of the forms ωi.

In §3, we apply the above results to the truncated series that appear in
the expressions for p-adic multi-zeta values. The main idea is based on the
results of [4]. Namely, using the standard lifting of frobenius on X, which is
a good choice outside a disc of radius 1 around 1, we obtain a differential
equation (3.2) for g. Next we use [4, Proposition 2] to find an expression
for the value of g at infinity and the relation (3.1) to relate that value to g,
whose coefficients are the p-adic multi-zeta values. The main result is The-
orem 3.12 where we prove that the algebra of p-adic multi-zeta values Z lie
inside the algebra P of values of regularized series. Finally, we prove after
Theorem 3.12 that the above result also implies the same statement for the
p-adic multiple zeta values as defined by Furusho [2], since the algebra that
they generate is the same as Z .

Acknowledgements. The author thanks T. Terasoma for a very short
discussion which became the main inspiration for this note. This paper was
partly written while the author visited H. Esnault’s arithmetic geometry
group at Freie Universitt Berlin supported by a research fellowship of the
Humboldt Foundation.
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2. Iterated sums

Fix a prime p. For s := (s1, . . . , sk), with 0 ≤ si, and m := (m1, . . . ,mk),
with 0 ≤ mi < p, let

σ(s;m)(n) :=
∑ 1

ns1
1 · · ·nsk

k

,

where the sum is over 0 < n1 < n2 < · · · < nk < n with p|(ni −mi). Sim-
ilarly, we let γ(s;m)(n) := n−sk · σ(s′;m′)(n), if p|(n−mk) and 0 other-
wise, where s′ = (s1, . . . , sk−1) and m′ = (m1, . . . ,mk−1). Let σp(s)(n) :=
σ(s; 0)(n), where 0 = (0, . . . , 0). We define the depth as d(s) = k and the
weight as w(s) :=

∑
si.

Let us call a function f : N≥n → Qp, for some n, a power series func-
tion, if there exist power series pi(x) ∈ Qp[[x]], which converge on the closed
unit disc D(ri) around 0, for some ri > |p|, for 0 ≤ i < p, such that f(a) =
pi(a− i) for all a ≥ n and p|(a− i). Clearly there is a unique power se-
ries function f with domain Z≥0 such that f restricts to f on N≥n. We
let f(0) := f(0), or more explicitly f(0) = lim k→0

k≥n

f(k). We will identify two

power series functions if they are the same on the intersection of their do-
mains of definition. Note that we have the following [5, Proposition 5.0.5]:

Proposition 2.1. (i) The product and sum of power series functions are
also power series functions. So is the function defined as f(n) = ns, if p � n;
and f(n) = 0, if p|n, for s ∈ Z.

(ii) If f is a power series function, let us define f [1] and f (1) as f [1](n) =
f (1)(n) = (f(n)− f(0))/n, if p|n; f [1](n) = 0, f (1)(n) = f(n)/n, if p � n.
Then both f [1] and f (1) are power series functions.

(iii) If f : N≥n0
→ Qp is a power series function and if we define

F (n) :=
∑

n0≤k≤n
f(k),

then so is F.

The following lemma on power series will be essential while we are prov-
ing the linear independence of the σp’s.

Lemma 2.2. Let f, g ∈ Qp[[z]] be two power series which are convergent
on D(a), for some a > 1. Suppose that g �= 0, and let h := f/g. If there exist
Ci ∈ Qp and n ≥ 1 such that h(z + 1)− h(z) = Cn

zn + · · ·+ C1

z , for infinitely
many z ∈ D(a) then h is constant and Ci = 0, for all i.
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Proof. By the Weierstrass preparation theorem, if the above equality holds
for infinitely many z ∈ D(a) then it holds for all z ∈ D(a), except for the
zeros of the denominators involved. Suppose that f �= 0, then again by the
Weierstrass preparation theorem there are polynomials p, q ∈ Qp[z], and
power series u, v ∈ Qp[[z]], which converge and are nonzero on D(a) such
that f = p · u and g = q · v. Therefore the poles of h(z) and h(z + 1) in
D(a), together with their multiplicities, are exactly those of p(z)/q(z) and
p(z + 1)/q(z + 1). Let P(k) denote the set of poles of k in D(a).

Then

P(h)�(P(h)− 1) ⊆ P

(
Cn

zn
+ · · ·+ C1

z

)
⊆ P(h) ∪ (P(h)− 1),

where Δ denotes the symmetric difference.
If Ci �= 0 for some i, then P(Cn

zn + · · ·+ C1

z ) = {0}, hence P(h) �= ∅. This
implies that P(h) �= P(h)− 1. Since |P(h)| = |P(h)− 1| is finite, this im-
plies that the symmetric difference of P(h) and P(h)− 1 contains at least
two elements. This is a contradiction. Hence Ci = 0, for all i. This implies
that h(z + 1) = h(z). Choosing an α where h does not have a pole and re-
placing h with h := h− h(α), we see that h has infinitely many zeros in
D(a) and hence is 0. �

Let P denote the algebra of power series in Qp which converge on D(r)
for some r > |p|. We will identify these power series with the functions that
they define from pN to Qp. Let σp(∅) := 1. Let Pσ denote the module over
P generated by σp(s) with s ∈ ∪nN

×n. Then by the shuffle product formula
for series, Pσ is an algebra.

Proposition 2.3. The algebra Pσ is free with basis {σp(s)|s ∈ ∪nN
×n} as

a module over P.

Proof. By induction on m we will show the linear independence of the set
Sm := {σp(s)|d(s) ≤ m}. For any function f : pN → Qp, we let δ(f) denote
the function defined by δ(f)(n) := f(n+ p)− f(n). Note that

δσp(α1, . . . , αm+1)(n) =
1

nαm+1
σp(α1, . . . , αm)(n).

We know the linear independence for the set S0 = {1}. Assuming that
we know the linear independence for Sm, we will prove it for Sm+1. Let us
suppose that {σp(α1, . . . , αm+1)} ∪ Sm is linearly dependent over P. Then
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we have an expression of the form

σp(α1, . . . , αm+1) =
∑

d(α)≤m
aασp(α),

with aα in the fraction field of P.
Applying δ to the last equation we get

1

zαm+1
σp(α1, . . . , αm) =

∑
d(α)=m

δ(aα)σp(α) +
∑

d(α)<m

bασp(α),

with bα in the fraction field of P.
The induction hypothesis implies that 1

zαm+1 = δ(aα1···αm
), and this con-

tradicts the lemma above.
Next we do an induction on the number of elements σp(α) with d(α) =

m+ 1, and aα �= 0. Suppose that we have a non-trivial equation∑
d(α)≤m+1

aασp(α) = 0.

By the induction assumption on m, there is a β = (α1, . . . , αm+1) such that
aβ �= 0. Dividing by this and rearranging we get

σp(β) +
∑

d(α)=m+1

α �=β

bασp(α) =
∑

d(α)≤m
bασp(α),

where bα are in the fraction field of P. Applying δ to this equation and using
induction on the number of bα �= 0 with d(α) = m+ 1 we obtain δ(bα) = 0
for all α with d(α) = m+ 1, hence these bα are constant and equal to, say
cα.

So the last equation can be rewritten as

σp(β) +
∑

d(α)=m+1

α �=β

cασp(α) =
∑

d(α)≤m
bασp(α),

applying δ we obtain that

1

zαm+1
+

∑
k∈N

k �=αm+1

c(α1,...,αm,k)
1

zk
= δ(b(α1,...,αm)).

The above lemma again gives a contradiction. �
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Let F denote the algebra of power series functions and ι ∈ F denote the
function that sends n to n. Let F (1ι ) be the algebra obtained by inverting ι.
Note that ι is already invertible on the components i+ pN with 0 < i < p.
Let Fσ be the module over F generated by σp(s) with s ∈ ∪nN

×n. Then
by the shuffle product formula for series, Fσ is an algebra. Let Fσ(

1
ι ) =

Fσ ⊗F F (1ι ).

Corollary 2.4. The algebra Fσ (resp. Fσ(
1
ι )) is free with basis {σp(s)|s ∈

∪nN
×n} as a module over F (resp. F (1ι )).

Proof. For a set S let F (S,Qp) denote the algebra of functions from S to
Qp. We have the following decomposition

F (N,Qp) = ⊕1≤i≤pF (pN,Qp),

where we send f ∈ F (N,Qp) to the element on the right hand side whose
i-th component is fi ∈ F (pN,Qp), defined by

fi(k) = f(k − p+ i),

for k ∈ pN. We have σp(s)i = σp(s), for all 1 ≤ i ≤ p, where we abuse the
notation and denote by σp(s) both the function on the left hand side of the
equality whose domain is N and also the function on the right hand side of
the equation which is its restriction to pN. By the definition of the power
series functions, the above decomposition gives the following decompositions:

F = ⊕1≤i≤pP

and

Fσ = ⊕1≤i≤pPσ.

Using this, the freeness of Fσ over F follows from Proposition 2.3 and
the statement for Fσ(

1
ι ) follows by localization. �

Definition 2.5. Let r : Fσ → F denote the projection with respect to the
above basis. We will denote the projection Fσ(

1
ι ) → F (1ι ) by the same

notation. Similarly, let s : F (1ι ) → F denote the projection that has the
effect of deleting the principal part of the Laurent series expansion for the
component pN, and is identity on the components i+ pN with 0 < i < p.

Let s := (s1, . . . , sk), and t := (t1, . . . , tl). We write t ≤ s if there exists
an increasing function j : {1, . . . , l} → {1, . . . , k} such that ti ≤ sj(i), for all i.
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Lemma 2.6. Let f be a power series function and let g be defined as

g(n) =
∑

0<a<n

f(a)σp(s)(a)

for some s := (s1, . . . , sk). Then

g =
∑
t≤s

ftσp(t),

for some power series functions ft. Similarly, if h is defined as

h(n) :=
∑

0<a<n

p|a

f(a)

as
σp(s)(a),

for some s ≥ 1 then

h =
∑
t≤s′

ftσp(t),

for some power series functions ft, where s′ := (s1, . . . , sk, s).

Proof. We will prove this by induction on d(s). Suppose that d(s) = 0 and
hence σp(s) = 1. Then for g the assertion follows from Proposition 2.1. Let
f(z) =

∑
0≤i biz

i, for |z| ≤ |p|, then

h(n) = b0σp(s)(n) + · · ·+ bs−1σp(1)(n) +
∑

0<a<n

p|a

f(a),

where f(z) := bs + bs+1z + · · · . Again the statement follows from Proposi-
tion 2.1.

Now assume the statement for all s with d(s) ≤ k and fix s := (s1, . . . ,
sk+1). Let F be as in Proposition 2.1, then

g(n) = F (n− 1)σp(s)(n)−
∑

0<nk+1<n

p|nk+1

F (nk+1)

n
sk+1

k+1

σp(s1, . . . , sk)(nk+1)

and the statement follows from the induction hypothesis on h.
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On the other hand,

h(n) =
∑

0<a<n

p|a

(
b0
as

+ · · ·+ bs−1
a

+ f(a)

)
σp(s)(a)

= b0σp(s, s)(n) + · · ·+ bs−1σp(s, 1)(n) +
∑

0<a<n

p|a

f(a)σp(s)(a)

and the statement follows by the statement that we just proved on g. �

Proposition 2.7. For any s and m, σ(s;m) ∈ Fσ.

Proof. We will prove this by induction on d(s). If d(s) = 1, then σ(s,m) =
σp(s) if m1 = 0; and σ(s,m) ∈ F otherwise by Proposition 2.1. Suppose we
know the result for d(s) ≤ k, and fix s with d(s) = k + 1.

Let s = (s1, . . . , sk+1), s
′ = (s1, . . . , sk), m = (m1, . . . ,mk+1), and m′ =

(m1, . . . ,mk). Since

σ(s;m)(n) =
∑

0<a<n

p|(a−mk+1)

σ(s′;m′)(a)
ask+1

,

using the induction hypothesis we realize that we only need to show that
functions of the form ∑

0<a<n

p|(a−m)

f(a)

as
σp(t)(a),

with f a power series function, are in Fσ and this is exactly the statement
of the previous lemma. �

In fact, from the proof above it follows that σ(s;m) is an F -linear com-
bination of σp(t) with t ≤ s.

Definition 2.8. For a function f ∈ Fσ, let f̃ := r(f) ∈ F . We call f̃ the
regularization of f. Since by the previous proposition σ(s;m) ∈ Fσ, we let
σ̃(s;m) ∈ F its regularization and σ(s;m) = limn→0 σ̃(s;m)(n).

For a function f : N → Qp and 0 ≤ m < p, let f[m] denote the function
which is equal to f for values n which are congruent to m modulo p and
is 0 otherwise. Recall that γ(s;m)(n) := n−sk · σ(s′;m′)[mk](n). We will de-
fine the regularized version γ̃(s;m) of γ(s;m) as follows. If mk �= 0, then
it is defined by γ̃(s;m)(n) = n−sk · σ̃(s′;m′)[mk](n). If mk = 0, and p(z) =
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a0 + a1z + · · · is such that σ̃(s′;m′)(n) = p(n) for p|n, then γ̃(s;m)(n) =
ask + ask+1n+ · · · , if p|n and 0 otherwise. Finally we let γ(t;m) =
limn→0 γ̃(t;m)(n).

Another way to describe this is as follows. For any s and m, γ(s;m) ∈
Fσ(

1
ι ), and γ̃(s;m) := s ◦ r(γ(s;m)).

Remark 2.9. Note that σ̃(s;m)(n)(0) = −n! · σ(s, n;m, 0) = n! · γ(s, n;
m, 0). The first identity follows from the fact that if Pk(z) is the polynomial
such that Pk(n) is the sum of the k-th powers of the first n positive integers
then (z + 1)|Pk(z), for k ≥ 1.

Definition 2.10. Let Pw (resp. Sw, resp. S̃w) denote the Q-space spanned
by the σ(s;m) (resp. γ(s;m), resp. γ̃(s;m)), with w(s) = w, and P :=∑

w Pw (resp. S :=
∑

w Sw, resp. S̃ :=
∑

w S̃w).

Let ωi := dlog(z − i), for i = 0, 1 and ωp := dlog(zp − 1).

Lemma 2.11. Let f(z) =
∑

1≤n anz
n, such that df = ω

∑
1≤n γ(s;m)(n)zn.

If ω = ω0 then an = γ((s1, . . . , sk + 1);m)(n).
If ω = ω1 then an = −∑

0≤i≤p−1 γ(s, 1;m, i)(n).
If ω = ωp then an = −pγ(s, 1;m,mk)(n).

Proof. Elementary computation. �

Corollary 2.12. Suppose that f(z) =
∑

1≤n q(n)z
n, such that

df = ωi

∑
1≤i

α(n)zn,

with i = 0, 1 or p and α ∈ Sw. Then q ∈ Sw+1.

Remark 2.13. If g(z) =
∑

1≤n k(n)z
n, with k ∈ Fσ(

1
ι ), then we let

r(g)(z) :=
∑

1≤n r(k)(n)z
n. Similarly if k ∈ F (1ι ), then we let s(g)(z) :=∑

1≤n s(k)(n)z
n. Clearly, we have r(g′) = r(g)′. On the other hand, in gen-

eral s(g′) �= s(g)′. For example for g(z) =
∑

1≤n
zn

n , the left hand side is∑
0≤n z

n, on the other hand the right hand side is
∑

0≤n

p�(n+1)

zn. However, if

s(g′) = f ′ for some f =
∑

1≤n t(n)z
n, with t ∈ F , then s(g′) = s(g)′. This

follows from the basic observation that if k(z) is a Laurent series such that
s(zk(z)) = zt(z) for some power series t(z), then the coefficient of 1/z in
k(z) is 0 and hence s(zk(z)) = zs(k(z)).
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Proposition 2.14. Suppose that f(z) =
∑

1≤n q(n)z
n, such that

(2.1) df = ω0

∑
1≤n

α(n)zn + ω1

∑
1≤n

β(n)zn + ωp

∑
1≤n

γ(n)zn,

with α, β, γ∈∑
a+b=w Pa ·S̃b. If limn→0 q(n) exists then q∈∑

a+b=w+1 Pa ·S̃b.

Proof. We have

nq(n) = α(n)−
∑

1≤k<n

β(k)− p
∑

1≤k<n

p|(n−k)

γ(k).

By Proposition 2.1, the function nq(n) is a power series function and hence
so is the function q(n) when restricted to N \ pN. Let r(z) :=

∑
0≤i biz

i be
the power series such that nq(n) = r(n) for all p|n. The assumption on the
limit implies that limn→0

b0
n exists. Hence b0 = 0 and q ∈ F .

By Corollary 2.12, there is F (z) =
∑

1≤n s(n)z
n such that s ∈ ∑

a+b=w+1

Pa · Sb and s ◦ r(F ′)dz is equal to the right hand side of (2.1), and hence
s ◦ r(F ′) = f ′. Let g = r(F ). Then s(g′) = s(r(F )′) = s(r(F ′)) = f ′. Since we
proved above that q ∈ F , we conclude by Remark 2.13 that s(g′) = s(g)′.
Therefore s(g)′ = f ′, and f = s(g) = s ◦ r(F ). Hence q is of the form as
stated above. �

Proposition 2.15. P is a Q-algebra.

Proof. The statement follows from the shuffle product formula since this
implies that Pa · Pb ⊆ Pa+b. �

3. p-adic multi-zeta values

In this section we follow the notation of [4] with a few modifications. For
the convenience of the reader we briefly recall this. For the details we refer
the reader to [4]. Let X be the thrice punctured line P1 \ {0, 1,∞} over Qp.

The category of unipotent vector bundles with connection on X is a tan-
nakian category with a canonical fiber functor ω(dR) called the de Rham
fiber functor [4, §4.1]. The corresponding tannaka group is called the de
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Rham fundamental group of X and denoted by π1,dR(X). This is a pro-
unipotent pro-algebraic group over Qp. The Qp valued points of this pro-
algebraic group are the group-like elements in the Hopf algebra of non-
commutative power series Qp〈〈e0, e1〉〉 in e0 and e1. Here ei are the deriva-
tions of ω(dR) which associate to a unipotent vector bundle with connec-
tion on X/Qp its residue at the point i, for i = 0, 1. The coalgebra map on
Qp〈〈e0, e1〉〉 is determined by the property that Δ(ei) = 1⊗ ei + ei ⊗ 1, for
i = 0, 1.

For distinct i, j ∈ {0, 1,∞}, tij denotes the unit tangent vector at the
point i pointing towards the point j, e.g. t01 is the tangent vector 1 at 0, t10 is
the tangent vector -1 at 1. There is an action F∗ of the crystalline frobenius
on the fundamental groupoid of paths between any two of the tangential
basepoints tij . Furthermore there is a canonical identification of the fiber
functors at the tangential basepoints tij and the fiber functor ω(dR). This
last fact provides a path, called the de Rham path, from tij to tkl. We
denote this path by tkl

e(dR)tij . The composition t01e(dR)t10F∗(t10e(dR)t01)
is then a path at t01 and under the identification of the fiber functor at
t01 with ω(dR), we get an element in π1,dR(X)(Qp) and hence a group-like
element g in Qp〈〈e0, e1〉〉. This element is our main object of study. We define
h ∈ Qp〈〈e0, e1〉〉 similarly, starting with t01e(dR)t∞0

F∗(t∞0
e(dR)t01).

Let U denote the rigid analytic space obtained by deleting from the
projective line the open unit disc of radius 1 centered at 1. Let A denote the
ring of rigid analytic functions on U . The map F(z) = zp provides a good
lifting of frobenius on U and thus gives, through various identifications, a
group-like element g(z) in A〈〈e0, e1〉〉 [4, §5.1], where the last Hopf algebra
is defined as above. In this paper we denote g(z) by g.

Since g is defined at ∞ it can be evaluated there. In fact, we have
g(∞) = h. The fundamental equation [4, (2) p.135] that connects g and h
takes the form:

(3.1) (e0 + e1)h = h(e0 + g−1e1g)

and the fundamental differential equation [4, (1) p.133] takes the form:

(3.2) dg = p(e0g− ge0) · ω0 + e1g · F∗ω1 − pg(g−1e1g) · ω1.

For every eI , let g[eI ] denote the coefficient of eI in g and g{eI} de-
note the function that sends n to the coefficient of zn in g[eI ]. If I =
ei10 e

j1
1 · · · eik0 ejk1 , let d(I) := |{jt|jt �= 0, 1 ≤ t ≤ k}| and w(I) :=

∑
(it + jt).
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Theorem 3.1. For each I, g{eI} ∈ ∑
a+b=w(I) Pa · S̃b and g[eI ] ∈ Pw(I).

Proof. We will prove the statement by induction on d(I).

Lemma 3.2. The statement above is true for g{eI}, with d(I) ≤ 1; for
g{e1es0e1}, with any s ≥ 0; and for g[eI ], with d(I) ≤ 1.

Proof. We proved on [4, p. 138] that g{es−10 e1}(n) = ps

ns , if p � n and 0 oth-

erwise. Hence g{es−10 e1} = ps
∑

1≤i<p γ(s; i) ∈ S̃s, since γ(s; i) = γ̃(s; i), for

i �= 0. The statement for g{eI}, with d(I) ≤ 1, then follows from the fact
that g is group-like.

Similarly, we proved on [4, p. 139] that g{e1es−10 e1} =

ps+1

(
(−1)s+1

( ∑
0≤i,j<p

i �=0

γ(s, 1; i, j)

)
−

∑
0<i<p

i �=0

γ(s, 1; i, i)

)
.

Clearly, when i, j �= 0, γ(a, b; i, j) = γ̃(a, b; i, j). Note that for i �= 0, γ(s, 1;
i, 0)(n) = n−1σ(s; i)(n), if p|n, and is 0 otherwise. Note that σ(s; i) is a power
series function such that limn→0 σ(s; i)(n) = 0 [4, p. 139]. This implies that,
for p|n, σ(s; i)(n) =

∑
1≤i ain

i, for some ai ∈ Qp. Therefore γ(s, 1; i, 0) =

γ̃(s, 1; i, 0). Combining these, we deduce that g{e1es−10 e1} ∈ S̃s+1.
Finally, on [4, p. 140], we proved that g[e1] = 0 and

g[es−10 e1] =
ps

s− 1

∑
0<i<p

σ(s− 1; i)(1)(0),

for s ≥ 1. Since σ(s− 1; i) = σ̃(s− 1; i), the claim follows from Remark 2.9.
To deduce the statement for all I with d(I) ≤ 1, we use the fact that g is
group-like [4]. �

We will prove the result in several steps. Assume that we know the
statement for:

(i) g{eI}, with d(I) ≤ k;
(ii) g{e1esk0 e1 · · · es10 e1}, for all 0 ≤ si; and
(iii) g[eI ], with d(I) ≤ k.

Lemma 3.3. For d(I) ≤ k + 1, g{eI} ∈ ∑
a+b=w(I) Pa · S̃b.

Proof. By (ii), we know the statement for I = e1e
sk
0 e1 · · · es10 e1. It suffices to

prove the statement for e
sk+1

0 e1e
sk
0 e1 · · · es10 e1, and we will do this by induction
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on sk+1. Assume that g{em0 e1e
sk
0 e1 · · · es10 e1} ∈ ∑

a+b=w Pa · S̃b. Comparing

the coefficient of em+1
0 e1e

sk
0 e1 · · · es10 e1 on both sides of (3.2), and using the

inductive hypothesis, together with (i), (iii) and Proposition 2.15, we see
that dg[em+1

0 e1e
sk
0 e1 · · · es10 e1] is of the form as in the statement of Propo-

sition 2.14. Furthermore, we note that limn→0 g{em+1
0 e1e

sk
0 e1 · · · es10 e1}(n)

exists [4, Proposition 2]. Therefore we can apply Proposition 2.14 to finish
the proof. �

Proposition 3.4. If d(I) ≤ k + 1 then h[eI ] ∈ Pw(I).

Proof. Note that h[eI ] = g[eI ](∞) = limn→0 g{eI}(n). The statement then
follows from Lemma 3.3, Remark 2.9, and Proposition 2.15. �

The following simple lemma is crucial in what follows.

Lemma 3.5. For si ≥ 0, g−1[e1e
sk+1

0 · · · e1es10 ] + g[e
sk+1

0 e1 · · · es10 e1] ∈ Pw,
where w = w(e1e

sk+1

0 · · · e1es10 ) .

Proof. Let us compare the coefficient of e1e
sk+1

0 · · · e1es10 e1 on both sides
of (3.1).

The left hand side is h[esk+1
0 · · · e1es10 e1], which is in Pw by the Proposi-

tion 3.4. The right hand side is (g−1e1g)[e1e
sk+1

0 · · · e1es10 e1], which is a sum
of the expression in the statement of the lemma and sums of products of the
form g−1[eI1 ]g[eI2 ] with d(Ij) ≤ k, and w(I1) + w(I2) = w. The statement
then follows from (iii) and Proposition 2.15. �

Lemma 3.6. For si ≥ 0, h[e
sk+1

0 e1e
sk
0 e1 · · · es10 e21] + g[e

sk+1+1
0 e1 · · · es10 e1] ∈

Pw+1, with w as above.

Proof. Let us look at the coefficient of e
sk+1+1
0 e1e

sk
0 e1 · · · es10 e21 with si ≥ 0

in (3.1). The induction hypothesis, the fact that h[e0] = 0, and Proposi-
tion 3.4, imply that h[e

sk+1

0 e1e
sk
0 e1 · · · es10 e21] = g−1[esk+1+1

0 e1e
sk
0 e1 · · · es10 e1] +

(terms in Pw+1). Then using Lemma 3.5 we have the statement. �

Lemma 3.7. For every si ≥ 0 there exist t(αk+1, . . . , α1) ∈ Q, such that

h[e
sk+2

0 e1 · · · es10 e1]−
∑

t(αk+1, . . . , α1)h[e1e
αk+1

0 e1 · · · eα1

0 e1]

is in Pw, where w = w(e
sk+2

0 e1 · · · es10 e1) and the sum is over α = (αk+1, . . . ,
α1) with w(α) =

∑
si.
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Proof. There is nothing to prove if sk+2 = 0, so we assume that sk+2 > 0.
Looking at the coefficient of e

sk+2

0 e1 · · · es10 e1e0 on both sides of (3.1), and
using the induction hypotheses together with the fact that h[e0] = g[e0] = 0,
we find that

h[e
sk+2−1
0 e1 · · · es10 e1e0]− h[e

sk+2

0 e1 · · · es10 e1] ∈ Pw.

Next using the shuffle formula for 0 = h[e
sk+2−1
0 e1 · · · es10 e1]h[e0], and the

above fact, we obtain that

(sk+2 + 1)h[e
sk+2

0 e1 · · · es10 e1] +
∑

1≤i≤k+1

(si + 1)h[e
sk+2−1
0 e1 · · · esi+1

0 e1 · · · es10 e1]

is in Pw. From this the assertion follows by induction on sk+2. �

Lemma 3.8. For si ≥ 0, g{e1esk+1

0 e1e
sk
0 e1 · · · es10 e1} ∈ S̃w, where we have

w = w(e1e
sk+1

0 e1e
sk
0 e1 · · · es10 e1).

Proof. Let us look at the coefficient of e1e
sk+1

0 e1e
sk
0 e1 · · · es10 e1 in the differ-

ential equation (3.2) which gives dg[e1e
sk+1

0 e1 · · · es10 e1] =

g[e
sk+1

0 e1 · · · es10 e1] · F∗ω1 − p(g(g−1e1g))[e1e
sk+1

0 e1e
sk
0 e1 · · · es10 e1] · ω1.

By the induction all the terms contribute to give a term in the form that we
are seeking except possibly the term −pω1(g

−1[e1e
sk+1

0 · · · e1es10 ] +
g[e

sk+1

0 e1 · · · es10 e1]). But this is also in the form that we were looking for
by Lemma 3.5. �

Corollary 3.9. For si ≥ 0, h[e1e
sk+1

0 e1 · · · es10 e1] ∈ Pw, where we have w =
w(e1e

sk+1

0 e1 · · · es10 e1).

Proof. Clear using the fact that h = g(∞). �

Lemma 3.10. For si ≥ 0 and w = w(e
sk+1+1
0 e1 · · · es10 e1), g[e

sk+1+1
0 e1 · · ·

es10 e1] ∈ Pw.

Proof. This follows from combining Lemma 3.6, Lemma 3.7, and Corol-
lary 3.9. �

Lemma 3.11. We have g[e1e
sk
0 e1 · · · es10 e1]∈Pw, with w=w(e1e

sk
0 · · · es10 e1).
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Proof. If all si = 0, then the expression is 0. Otherwise let j := max{i|si �=
0}. Then applying Lemma 3.5 several times we see that it is sufficient to
prove that g[e

sj
0 e1 · · · es10 ek+2−j

1 ] ∈ Pw, which we did in the previous propo-
sition. �

This finishes the proof of the theorem. �

Recall that the p-adic multi-zeta values ζp(sk, . . . , s1) were defined as

(3.3) g[esk−10 e1 · · · es1−10 e1] = p
∑

siζp(sk, . . . , s1)

in [4, Definition 3].
Let Z denote the Q-space generated by the p-adic multi-zeta values. By

the shuffle product formula this is an algebra.

Theorem 3.12. We have the inclusion Z ⊆ P .

Proof. This is a consequence of Theorem 3.1 and (3.3). �

Furusho defined p-adic multiple-zeta values using Coleman’s theory of
iterated p-adic integrals, which is equivalent to studying the frobenius in-
variant path between the tangential basepoints t01 and t10. Our approach
in [4] and here is based on Deligne’s theory of the comparison isomorphism
between the de Rham and the crystalline fundamental group. However, the
Q-space that these two different definitions generate are the same [2, Theo-
rem 2.8, Examples 2.10] and hence the p-adic multiple-zeta values as defined
by Furusho also lie in P .

For the convenience of the reader, we will describe the relation between
Furusho’s definition and our definition using the notation above. Let γ de-
note the frobenius invariant path from t01 to t10. Let ω := t10e(dR)t01 de-
note the canonical de Rham path from t01 to t10, and let f = ω−1γ. With
this notation, we have g = ω−1F∗(ω). Note that g and f can be seen as
group-like elements in Qp〈〈e0, e1〉〉. We denote the corresponding elements
of Qp〈〈e0, e1〉〉 by g(e0, e1) and f(e0, e1). Since we have F∗(e0) = pe0 and
F∗(e1) = pg−1e1g [4, p. 131],

F∗f(e0, e1) = f(pe0, pg
−1e1g).

Applying F∗ to the identity f = ω−1γ, the invariance of γ under frobenius
and the definition of g gives f = gF∗(f) and hence

(3.4) f(e0, e1) = g(e0, e1)f(pe0, pg
−1e1g).
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Furusho defines the p-adic multiple zeta value ζfp (k1, . . . , km), with km >
1, as (−1)m times the coefficient of ekm−1

0 e1 · · · ek1−1
0 e1 in f [2, p. 1121]. As

usual, by the shuffle product formula we see that all the other coefficients
of f can be expressed as Q-linear combinations of these p-adic multiple zeta
values. Let Z ′ denote the Q-space generated by the ζfp (k1, . . . , km)’s. This
is also the space generated by all the coefficients of f, just as Z is the space
generated by all the coefficients of g. Let Z≤w and Z ′≤w denote the subspaces

generated by the coefficients of the terms eI in g and f of weight less than
or equal to w.

Lemma 3.13. For any w, we have Z≤w = Z ′≤w. Hence Z = Z ′.

Proof. We will prove the statement by induction on w. Comparing the co-
efficients of eI on both sides of equation (3.4) and letting w = w(I), we
have

f [eI ] = g[eI ] + pwf [eI ] + ε,

where

ε ∈
∑

1≤a≤w−1
Za · Z ′w−a.

The induction hypothesis implies that ε ∈ Z≤w and ε ∈ Z ′≤w. This together
with the last identity implies that f [eI ] ∈ Z≤w and g[eI ] ∈ Z ′≤w, which fin-
ishes the proof. �
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