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Fermat and the number of fixed points

of periodic flows

Leonor Godinho, Álvaro Pelayo and Silvia Sabatini

We compute explicit lower bounds for the number of fixed points
of a circle action on a compact almost complex manifold M2n with
nonempty fixed point set, provided the Chern number c1cn−1[M ]
vanishes. The proofs combine techniques originating in equivariant
K-theory with celebrated number theory results on polygonal num-
bers, stated by Fermat. These lower bounds depend only on n and,
in some cases, are better than existing bounds. If the fixed point set
is discrete, we also prove divisibility properties for the number of
fixed points, improving similar statements obtained by Hirzebruch
in 1999. Our results apply, for example, to a class of manifolds
which do not support any Hamiltonian circle action, namely those
for which the first Chern class is torsion. This includes, for instance,
all symplectic Calabi Yau manifolds.

1. Introduction

Finding the minimal positive number of fixed points of a circle action on
a compact almost complex manifold is, in general, an unsolved problem in
equivariant geometry1. It is also connected with the question of whether
there exists a symplectic non-Hamiltonian S1-action on a compact symplec-
tic manifold with nonempty and discrete fixed point set. Much of the activity
concerning this problem originated in a result by T. Frankel [Fr59] for Kähler
manifolds, in which he showed that a Kähler S1-action on a compact Kähler
manifold M is Hamiltonian if and only if it has fixed points. In this case,
this implies that the action has at least 1

2 dimM + 1 fixed points, since they
coincide with the critical points of the corresponding Hamiltonian function
(a perfect Morse-Bott function). For the larger class of unitary2 manifolds

1In the terminology of dynamical systems, circle actions are regarded as periodic
flows and the fixed points of the action correspond to the equilibrium points of the
flow.

2A unitary (or weakly almost complex) manifold is a smooth manifold endowed
with a fixed complex structure on the stable tangent bundle of M . If S1 acts on a
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(see Remark 2.4), a conjecture in this direction was made by Kosniowski
[K79] in 1979 and is still open in general.

Conjecture 1.1 (Kosniowski ’79). There exists a linear function f(·)
such that, for every 2n-dimensional compact unitary S1-manifold M with
isolated fixed points which is not equivariantly unitary cobordant with the
empty set, the number of fixed points is greater than f(n). In particular,
f(x) = x/2 should satisfy this condition, implying that number of fixed points
is expected to be at least �n/2�+ 1.

Several other lower bounds were obtained in the literature, by retriev-
ing information from a nonvanishing Chern number of the manifold. For
example, Hattori [Ha85] showed that a unitary S1-manifold for which cn1 [M ]
does not vanish (implying that c1 is not torsion), must have at least n+ 1
fixed points (see Theorem 2.3). Since then many other results followed
[PT11, LL10, CKP12, J14]; we review these in Section 2.

It is therefore natural to study the situation in which the first Chern
class is torsion. In the symplectic case this condition automatically implies
that the manifold cannot support any Hamiltonian circle action (see Propo-
sition 2.15), and is, for instance, satisfied by the important family of sym-
plectic Calabi-Yau manifolds, for which we have c1 = 0. Since the existence
of a symplectic manifold admitting a non-Hamiltonian circle action with
discrete fixed point set is still unknown, and there is very little information
on the required topological properties of the possible candidates, our results
shed some light on this problem.

In this note we make the weaker assumption that the Chern number
c1cn−1[M ] of an almost complex S1-manifold M is zero (cf. Section 2.3).
The choice of this Chern number is motivated by its expression in terms of
numbers of fixed points obtained in [GS12, Theorem 1.2] (see Theorem 4.1).
Interestingly, if M is a 6-dimensional compact symplectic manifold satisfy-
ing c1c2[M ] = 0, then M does not admit any Hamiltonian S1-action and, if
c1c2[M ] �= 0, then all symplectic circle actions are Hamiltonian (cf. Propo-
sition 2.14).

Using the expression for c1cn−1[M ] given in Theorem 4.1, we obtain
divisibility results for the number of fixed points |MS1 | of a circle action
on an almost complex manifold with c1cn−1[M ] = 0 when the fixed points
set is nonempty and discrete. Our methods do not generalize to unitary
S1-manifolds (cf. Remark 4.3).

unitary manifold M preserving the given complex structure on the stable tangent
bundle, then M is called a unitary S1-manifold.



Fermat and the number of fixed points of periodic flows 645

Theorem A. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with a J-preserving S1-action with nonempty,
discrete fixed point set MS1

and such that c1cn−1[M ] = 0. Let m be such
that n = 2m (m � 1) when n is even, and n = 2m+ 3 (m � 0) when n is
odd. If r = gcd (m, 12), then

(1.1) |MS1 | ≡ 0 (mod
12

r
) if n is even

and

(1.2) |MS1 | ≡ 0 (mod
24

r
) if n is odd.

Remark 1.2 As usual, we assume gcd (0, a) = a for every positive integer a.

Note that the divisors of |MS1 | that are given by Theorem A are always
factors of 24. The proof of this theorem can be found in Section 7.

When the fixed point set is discrete, the number of fixed points coin-
cides with the Euler characteristic of the almost complex manifold. Coin-
cidently, in a letter to V. Gritsenko, Hirzebruch also obtains divisibility
results for the Euler characteristic of an almost complex manifold M satis-
fying c1cn−1[M ] = 0 [Hi99]. Theorem A gives exactly the same divisibility
factors when dimM ≡ 0 (mod 6) but, when dimM �≡ 0 (mod 6), it adds the
additional information that the Euler characteristic (or equivalently |MS1 |)
must be a multiple of 3, leading to greater divisors (cf. Theorem G in Sec-
tion 9). Under the stronger condition that c1 = 0 in integer cohomology, we
can combine Hirzebruch’s results with ours obtaining, in some cases, greater
divisors for the number of fixed points (see Theorem H in Section 9). For
example, when dimM = 4 and c1 = 0, we prove that the number of fixed
points is always a multiple of 24. This will be true, in general, whenever
dimM ≡ 4 (mod 16) and dimM �≡ 0 (mod 6).

The factors obtained in Theorem A already give us lower bounds d(n)
for the number of fixed points that depend on the dimension of the manifold.
We will see that they can sometimes be improved to lower bounds B(n) =
�(n)d(n), where �(n) is an integer between 1 and 7. These are obtained from
the minimum values of certain integer-valued functions restricted to a set
of integer points in a specific hyperplane. The corresponding minimization
problems are solved in Theorems E and F in Sections 5 and 6, using cele-
brated number theory results on the possible representations of a positive
integer number as a sum of polygonal numbers. We recall that polygonal
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numbers are those of the form

(s− 2)k2 + (4− s)k

2
, with s � 3 and k � 1

(represented by regular polygons as in Figure 1.1). In this paper we will only
use results about squares and triangular numbers (i.e. the numbers obtained
with s = 4 and s = 3).3 These were originally stated by Fermat in 1640 and
proved by Legendre, Lagrange, Euler, Gauss and Ewell (see Section 3).

Pentagonal 
Numbers

Hexagonal 
Numbers

SquaresTriangular 
Numbers

1, 6, 15, 28, ...1, 3, 6, 10, ... 1, 4, 9, 16, ... 1, 5, 12, 22, ...

Figure 1.1: Some Polygonal Numbers.

The lower bounds obtained are summarized in the following theorem
which combines the solutions of the minimization problems listed in Theo-
rems E and F (in sections 5 and 6) with the fact that the number of fixed
points is at least 4 when dimM � 8 (see Theorem 2.8). Its proof can be
found in Section 7. Some examples of the lower bounds obtained are listed
in Table 1.1 and Figure 1.2 shows the lower bounds for dimM � 300.

Theorem B. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with a J-preserving S1-action with nonempty
fixed point set and such that c1cn−1[M ] = 0. Then the number of fixed points
of the S1-action is at least B(n), where B(n) is given as follows.

For n = 2m (m � 1) and r := gcd(m, 12),

(i) if r = 1 then B(n) = 12;

(ii) if r = 2 then
•B(n) = 6 if m �≡ 14 (mod 16),
•B(n) = 12 otherwise;

3In many references, k is allowed to be zero so that 0 is a polygonal number for
every s (see sequences A000290 and A000217 in OEIS).
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(iii) if r = 3 then
•B(n) = 4 if all prime factors of m

3 congruent to 3 (mod 4)
occur with even exponent,

•B(n) = 8 otherwise;

(iv) if r = 4 then
•B(n) = 6 m �= 4k(16t+ 14) ∀k, t ∈ Z�0,
•B(n) = 9 otherwise;

(v) if r = 6 then
•B(n) = 4 if all prime factors of m

3 congruent to 3 (mod 4)
occur with even exponent,

•B(n) = 6 if at least one prime factor of m
3 congruent to

3 (mod 4) occurs with an odd exponent
and m �≡ 14 (mod 16),

•B(n) = 8 otherwise;

(vi) if r = 12 then
•B(n) = 4 if m is a square or all prime factors of m

3 congruent
to 3 (mod 4) occur with even exponent,

•B(n) = 6 if none of the above holds and m �= 4k(16t+ 14)
∀k, t ∈ Z�0,

•B(n) = 7 otherwise.

For n = 2m+ 3 (m � 0) and r := gcd(m, 12),

(i) if r � 4 then B(n) = 24
r ;

(ii) if r = 6 then
•B(n) = 4 if every prime factor of 2

3m+ 1 congruent to
3 (mod 4)occurs with even exponent,

•B(n) = 8 otherwise;

(iii) if r = 12 then
•B(n) = 2 if m = 0,
•B(n) = 4 if m �= 0 and every prime factor of 2

3m+ 1
congruent to 3 (mod 4) occurs with even exponent,

•B(n) = 6 otherwise.

Remark 1.3 It is easy to see that, in many cases, we have some “period-
icity” of B(n). For example, one can easily show that

B(n) = 24 if and only if n ≡ 1 (mod 12) or n ≡ 5 (mod 12)
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n

B(n)

0 20 40 60 80 100 120 140

5

10

15

20

Figure 1.2: Values of B(n) obtained from Theorem B for n � 150.

(note that here B(n) = d(n)). Moreover,

B(n) = 12 if and only if

n ≡ 2 (mod 12), or n ≡ 10 (mod 12), or

n ≡ 7 (mod 24), or n ≡ 23 (mod 24), or

n ≡ 28 (mod 96) or n ≡ 92 (mod 96).

Here we also have B(n) = d(n) except when n ≡ 28 or 92 (mod 96), where
B(n) = 2 d(n). All these cases can be easily observed in Figure 1.2.

In some dimensions, the lower bounds obtained are greater than
�n/2�+ 1 (the lower bound proposed by Kosniowski) and, in some cases,
they are even better than n+ 1, the existing lower bound for Hamiltonian
actions and some almost complex S1-manifolds. We give a complete list
of these dimensions in Propositions 8.1 and 8.2. However, since the lower
bounds obtained are at most equal to 24, our results do not support Kos-
niowski’s hypothesis that there should exist a lower bound that depends
linearly on the dimension of the manifold.
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If c1 = 0 in integer cohomology, we can again combine Hirzebruch’s
results with ours obtaining, in some cases, a better lower bound for the
number of fixed points (see Theorem I in Section 9). For example, when
dimM = 4 and c1 = 0 we prove that the number of fixed points is at least 24.
This will be true, in general, whenever dimM ≡ 4 (mod 16) and dimM �≡ 0
(mod 6).

If we restrict to Hamiltonian actions on symplectic manifolds with
c1cn−1[M ] = 0, then we can also use our methods to obtain lower bounds
for the corresponding number of fixed points, which improve the existing
lower bound of 1

2 dimM + 1. These are summarized in the following theo-
rem, whose proof can be found in Section 7.

Theorem C. Let (M,ω) be a 2n-dimensional compact connected symplectic
manifold with c1cn−1[M ] = 0. Then the number of fixed points of a Hamil-
tonian S1-action on M is at least

• (n+ 1)(n+ 2), if n is even;

• n2 + 6n+ 17 +
24

gcd (n−32 , 12)
, if n > 3 is odd.

Remark 1.4 Note that 6-dimensional symplectic manifolds with
c1c2[M ] = 0 do not admit any Hamiltonian S1-action with a discrete fixed
point set (cf. Proposition 2.14). A 4-dimensional example of a Hamilto-
nian S1-action on a symplectic manifold M satisfying c21[M ] = 0 is given in
Example 10.1. Its number of fixed points is 12, the lower bound given by
Theorems B and C.

On the contrary, if we restrict to symplectic actions that are not Hamil-
tonian, then the lower bounds that we obtain by our method remain the
same as those that are listed in Theorem B (cf. Remarks 5.4 and 6.5).

In Section 10, we provide several examples that show how some of the
lower bounds obtained are sharp and illustrate our divisibility results for the
number of fixed points. In particular, we give examples where the number
of fixed points is actually equal to our lower bound B(n) in dimensions
4, 6, 10, 12 and 18. It would be interesting to know the answer to the following
question.

Question 1.5 Does there exist a compact almost complex S1-manifold M
of dimension 8 with c1c3[M ] = 0 and exactly 6 fixed points?
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The existence of such a manifold would also guarantee the existence of a
14 dimensional example with exactly 12 fixed points, the lower bound given
by Theorem B (see Remark 10.4).

In Table 1.1 we illustrate some of the results obtained in this work.
In the first part of the table, almost all the lower bounds B(n) given by
Theorem B and listed in the second column, coincide with the ones obtained
from Theorem A (except for n = 8 and n = 12). This is no longer the case
in the second part of the table.

1
2 dimM

A priori possible values of |MS1 | Kosniowski’s Lower bound
if c1cn−1[M ] = 0 conjectural Ham. actions

lower bound

n general Ham. actions �n/2�+ 1 n+ 1

2 12∗, 24, 36, . . . 12, 24, 36, . . . 2 3
3 2, 4, 6, . . . — 2 4
4 6, 12, 18, . . . 30, 36, 42, . . . 3 5
5 24, 48, 72, . . . 96, 120, 144, . . . 3 6
6 4, 8, 12, . . . 56, 60, 64, . . . 4 7
7 12, 24, 36, . . . 120, 132, 144, . . . 4 8
8 6, 9, 12, . . . 90, 93, 96, . . . 5 9
9 8, 16, 24, . . . 160, 168, 176, . . . 5 10
10 12∗, 24, 36, . . . 132, 144, 156, . . . 6 11
11 6, 12, 18, . . . 210, 216, 222, . . . 6 12
12 4, 6, 8, . . . 182, 184, 186, . . . 7 13
13 24, 48, 72, . . . 288, 312, 336, . . . 7 14
14 12, 24, 36, . . . 240, 252, 264, . . . 8 15
15 4, 8, 12, . . . 336, 340, 344, . . . 8 16
...
18 8, 12, 16, . . . 380, 384, 388, . . . 10 19
28 12, 18, 24, . . . 870, 876, 882, . . . 15 29
99 6, 8, 10, . . . 10414, 10416, . . . 50 100
112 9, 12, 15, . . . 12882, 12885, . . . 57 113
144 6, 7, 8, . . . 21170, 21171, . . . 73 145
252 8, 10, 12, . . . 64262, 64264, . . . 127 253
1008 7, 8, 9, . . . 1019090, 1019091, . . . 505 1009

* if c1 = 0 then, a priori, the possible values of |MS1 | are 24, 48, 72, . . .

Table 1.1: Some of the results obtained in Theorems A, B and C.
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2. Preliminaries

We review some results which are relevant for this article, including some
which we will need in the proofs.

2.1. Origins

It has been a long standing problem to estimate the minimal number of
fixed points of a circle action on a compact almost complex manifold with
nonempty fixed point set. If the manifold is symplectic, i.e. if it admits a
closed, non-degenerate two-form ω ∈ Ω2(M) (symplectic form), we say that
an S1-action on (M,ω) is symplectic if it preserves ω. If XM is the vector
field induced by the S1 action then we say that the action is Hamiltonian if
the 1-form ιXM

ω := ω(XM , ·) is exact, that is, if there exists a smooth map
μ : M → R such that − dμ = ιXM

ω. The map μ is called a momentum map.
If a symplectic manifold is equipped with a Hamiltonian S1-action then the
following fact is well-known.

Proposition 2.1. A Hamiltonian S1-action on a 2n-dimensional compact
symplectic manifold has at least n+ 1 fixed points.

This follows from the fact that, when the fixed point set is discrete, the
momentum map is a perfect Morse function whose critical set is equal to
the fixed point set. The Morse inequalities then become equalities and the
number of fixed points is equal to the sum of the betti numbers. Since the
classes [ωk] ∈ H2k(M,R) are non trivial for k = 0, . . . , n, the number of fixed
points is at least n+ 1.

This lower bound holds on all compact Kähler S1-manifolds with a
nonempty fixed point set [Fr59].
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Theorem 2.2 (Frankel). A Kähler S1-action on a 2n-dimensional com-
pact connected Kähler manifold is Hamiltonian if and only if it has fixed
points, in which case it has at least n+ 1 fixed points.

The same lower bound was obtained by Hattori [Ha85, Corollary 3.8] on
a particular class of unitary manifolds.

Theorem 2.3 (Hattori). If M is a compact 2n-dimensional unitary
S1-manifold such that cn1 [M ] does not vanish, then the number of fixed points
is at least n+ 1.

Remark 2.4 A unitary (or weakly almost complex) manifoldM is a smooth
manifold endowed with a fixed complex structure on the stable tangent
bundle of M [M99]. If the complex structure is given on the tangent bundle,
M is called an almost complex manifold. If S1 acts on a unitary (resp. an
almost complex) manifold preserving the given complex structure on the
stable tangent bundle (resp. tangent bundle), then M is called a unitary
(resp. almost complex) S1-manifold. Hence every S1-symplectic manifold is
an S1-almost complex manifold, and a unitary S1-manifold. Moreover, each
component of the fixed point set of a unitary S1-manifold is again a unitary
S1-manifold of even codimension, and its normal bundle in M is a complex
S1-vector bundle with the complex structure induced from the one on the
stable tangent bundle. In particular, the tangent space TpM at an isolated
fixed point is a complex S1-module. It has two possible orientations: the one
induced from the orientation of M and the other induced from the complex
structure on TpM . They coincide whenever M is almost complex, but may
be different otherwise (see for example [M99, Section 4]).

Let M be a 2n dimensional unitary manifold with stable tangent bundle
E. Since E is a complex vector bundle, one can consider the Chern classes
cj ∈ H2j(M,Z) of E as well as any Chern number (ci11 c

i2
2 · · · cinn )[M ].

Moreover, one says that M is a boundary if it is unitary cobordant with
the empty set, meaning that it can be realized as the oriented boundary of
a unitary oriented 2n+ 1-manifold with boundary W such that the induced
unitary structure of ∂W is isomorphic to the unitary structure of M . In
particular, this is the case if and only if all Chern numbers of M are equal
to zero.

Still working with unitary manifolds, Kosniowski [K79, Theorem 5] ob-
tains the following results.
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Theorem 2.5 (Kosniowski). Let M be a compact unitary S1-manifold
with two fixed points. Then either M is a boundary or dimM is equal to
2 or 6. Moreover, if M is an almost complex S1-manifold with two fixed
points, then dimM is either 2 or 6.

Corollary 2.6 (Kosniowski). If M is a compact almost complex
S1-manifold with dimM � 8 and a nonempty fixed point set, then the num-
ber of fixed points is at least 3.

Kosniowski further proposes the existence of a linear function
f : R → R+ such that, for every 2n-dimensional compact unitary S1-manifold
M with isolated fixed points which does not bound equivariantly, the num-
ber of fixed points is greater than f(n); in particular, he expects that f can
be taken to be f(x) = x

2 , leading to the conjecture that the number of fixed

points is at least
⌊
n
2

⌋
+ 1 (Conjecture 1.1).

Remark 2.7 Since, for an almost complex S1-manifold with non-empty
discrete fixed point set, the Euler characteristic cn[M ] is equal to the number
of fixed points, these manifolds cannot bound, satisfying the conditions in
Kosniowski’s conjecture.

Note that the condition that M bounds cannot be removed as one
can construct examples in any dimension of unitary S1-manifolds that are
boundaries and have exactly two fixed points (see [K79, Theorem 3]). For
example, one can take S2k with the circle action induced from the inclusion
in Ck × R and the unitary structure induced from the further inclusion in
Ck × C. This action has exactly two fixed points but the two possible ori-
entations on the corresponding tangent spaces (as described in Remark 2.4)
agree for one of the fixed points and disagree for the other.

The lower bound of Corollary 2.6 can be further improved.

Theorem 2.8. If M is a compact almost complex S1-manifold with dimM�8
and a nonempty fixed point set, then the number of fixed points is at least 4.

Proof. When the manifold is symplectic, this result is an immediate conse-
quence of Theorem 1.1 of [J14]. To prove this particular part, Jang uses an
analog of Theorem 2.5 for symplectic manifolds, the fact that the total sum
of the isotropy weights at all fixed points is zero [Ha85, Proposition 2.11]
and the Atiyah-Bott and Berline-Vergne localization formula in equivariant
cohomology. Since all these results still hold for almost complex manifolds,
the claim follows. �
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2.2. Other recent contributions

Following Kosniowski’s conjecture and the theorems of Frankel, Hattori
and Kosniowski, many results have appeared in recent works for symplec-
tic S1-manifolds and for almost complex S1-manifolds, which can be easily
extended to unitary S1-manifolds.

Using the Atiyah-Bott and Berline-Vergne localization formula in equiv-
ariant cohomology, Pelayo and Tolman [PT11] proved the following result

Theorem 2.9 (Pelayo-Tolman). Let M2n be a compact symplectic S1-
manifold and let cS

1

1 (M) : MS1 → Z be the map given by the sum of the
weights of the S1-isotropy representation at TpM . If cS

1

1 (M) is somewhere
injective4, then the S1-action has at least n+ 1 fixed points.

Remark 2.10 In [PT11] the map cS
1

1 (M) : MS1 → Z is called the Chern
class map and can be naturally identified with the restriction of the first
S1-equivariant Chern class of TM to each fixed point p ∈ MS1

. Note that it
can also be defined when M is unitary, if one takes the first S1-equivariant
Chern class of the stable tangent bundle ofM . Similarly, one can define other
maps cS

1

� (M) : MS1 → Z for � = 1, . . . , n, by considering the restrictions of
the S1-equivariant Chern classes cS

1

� of TM at each fixed point p ∈ MS1

.

Following this result, Ping Li and Kefeng Liu generalized Theorem 2.3
[LL10].

Theorem 2.11 (Li-Liu). Let M be a compact almost-complex manifold of
dimension 2mn. If there exist positive integers λ1, . . . , λu with

∑u
i=1 λi = m

such that the corresponding Chern number (cλ1
· · · cλu

)n[M ] is nonzero, then
any S1-action on M must have at least n+ 1 fixed points.

This was further generalized by Cho, Kim and Park [CKP12] to include
other non vanishing Chern numbers.

Theorem 2.12 (Cho-Kim-Park). Let M be a compact 2n-dimensional
unitary S1-manifold and let i1, i2, . . . , in be non-negative integers satisfying
i1 + 2 i2 + · · ·+ n in = n. If M does not bound equivariantly and
ci11 c

i2
2 · · · cinn [M ] �= 0, then M must have at least max {i1, . . . , in}+ 1 fixed

points.

4Let f : X → Y be a map between sets then f is somewhere injective if there
exists y ∈ Y such that f−1({y}) is a singleton.
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All these results use the Atiyah-Bott and Berline-Vergne localization
formula. The crucial hypothesis for the establishment of the lower bound is
the existence of non-negative integers i1, i2, . . . , in and a value k of one of
the maps cS

1

� (M), for which

∑
p∈MS1

cS
1

� (M)(p)=k

∏
j �=� c

ij
j (M)(p)

Λp
�= 0,

where Λp is the product of the weights in the isotropy representation TpM .
This is trivially achieved with � = 1 and i2 = · · · = in = 0, whenever the
Chern class map is somewhere injective [PT11] or when cn1 [M ] �= 0; when
ci11 c

i2
2 · · · cinn [M ] �= 0 with i1 + 2i2 + · · ·+ nin = n, then it is true, for example

for � such that i� = max{i1, . . . , in} (giving Theorems 2.11 and 2.12). These
techniques can be generalized to unitary S1-manifolds as in [CKP12].

2.3. The hypothesis c1cn−1[M ] = 0

In contrast with the results in Section 2.2, in this paper we will focus on the
situation in which a particular Chern number vanishes. Moreover, we do not
use the Atiyah-Bott and Berline-Vergne localization formula and most of the
techniques used will only hold for almost complex S1-manifolds and cannot
be generalized to unitary manifolds (see Remark 4.3). Therefore, from now
on, we will always assume to be working with almost complex S1-manifolds.

The only known expressions of Chern numbers in terms of number of
fixed points concern cn[M ] (which equals this number and the Euler char-
acteristic, when the fixed point set is discrete) and c1cn−1[M ] [GS12, Theo-
rem 1.2] (see Theorem 4.1). Thus the natural candidate is c1cn−1[M ] = 0.

Note that c1cn−1[M ] = 0 is satisfied under the stronger condition that c1
or cn−1 are torsion in integer cohomology. In particular, in the case in which
c1 is torsion, Theorem 2.3 cannot be applied; moreover, the same holds for
Theorem 2.9 as we can see from the following lemma.

Lemma 2.13. Let (M,J) be a compact almost complex manifold such that
c1 is a torsion element in H2(M,Z). If M admits a J-preserving circle action
with a discrete fixed point set, then the Chern class map cS

1

1 (M) : MS1 → Z

is identically zero.

Proof. Since c1 is a torsion element inH2(M,Z), there exists k ∈ Z such that
kc1 = 0. Then the restriction of the equivariant extension k cS

1

1 ∈ H2
S1(M,Z)
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to the fixed point set is constant, implying that the Chern class map is
constant. Since cS

1

1 (M)(p) coincides with the sum of the isotropy weights at
p ∈ MS1

, and the total sum of all the isotropy weights at all fixed points is
equal to zero [Ha85, Proposition 2.11], we have∑

p∈MS1

cS
1

1 (M)(p) = 0,

and so this constant must be zero. �

Note that, if M is a 6-dimensional compact connected symplectic man-
ifold, the action is Hamiltonian if and only if c1c2[M ] �= 0. Indeed, we have
the following proposition.

Proposition 2.14. Suppose that S1 acts symplectically on a compact con-
nected 6-dimensional symplectic manifold M with nonempty discrete fixed
point set. Then the S1-action is Hamiltonian if and only if c1c2[M ] �= 0.

Proof. This follows from a result of Feldman [Fe01] which states that the
Todd genus associated to M is either 1 or 0, according to whether the action
is Hamiltonian or not, and the fact that, when dim(M) = 6, one has

Todd(M) =

∫
M

c1c2
24

.

�

In general, if the manifold is symplectic and c1 is torsion in integer
cohomology, then, necessarily, the action is non-Hamiltonian. We thank one
of the anonymous referees for suggesting the proof of this result in the case
of non isolated fixed points.

Proposition 2.15. Let (M,ω) be a compact symplectic manifold such that
c1 is torsion in integer cohomology. Then M does not admit any Hamiltonian
circle action.

Proof. The case of isolated fixed points follows immediately from Feldman’s
result [Fe01] and the fact that, for unitary S1-manifolds with isolated fixed
points, if c1 is torsion, then the Todd genus is zero [Ha85, Proposition 3.21].
Alternatively, this is also an easy consequence of Lemma 2.13 since, if the
action is Hamiltonian, then cS

1

1 (M)(p) �= 0 at both the minimum and the
maximum points of the momentum map.
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If the fixed point set is not discrete and the action is Hamiltonian, con-
sider the S1-equivariant map i : S2 → M whose image is a gradient sphere
from the minimum to the maximum of the moment map. Then the integral
of i∗(c1) on S2 would be non-zero by the Atiyah-Bott and Berline-Vergne
localization formula in equivariant cohomology. However, if c1 is torsion, this
integral should vanish. �

Therefore, the lower bounds we obtain, naturally apply to a class of
compact symplectic manifolds that do not support any Hamiltonian circle
action with isolated fixed points, namely symplectic manifolds whose first
Chern class is torsion. For example, these results apply to symplectic Calabi
Yau manifolds, i.e. symplectic manifolds with c1 = 0 [FP09].

We finish this section with a property which gives a way of producing
infinitely many manifolds with c1cn−1[M ] = 0 (see Section 10).

Lemma 2.16. Let M2m and N2n be compact almost complex manifolds
satisfying c1cm−1[M ] = c1cn−1[N ] = 0. Then c1cm+n−1[M ×N ] = 0.

Proof. This follows from the fact that if, for any almost complex manifold
M2m with cm[M ] �= 0, we set

γ(M) :=
c1cm−1[M ]

cm[M ]
,

we have γ(M ×N) = γ(M) + γ(N) (see [S96, Section 3]). �

3. Fermat’s statements

In 1640 Fermat stated (without proof) that every positive integer can be
represented as a sum of 4 squares and as a sum of 3 triangular numbers,
where square and triangular numbers are those respectively described by k2

and k(k+1)
2 , with k = 0, 1, 2, 3, . . . (here we consider 0 to be a square, as well

as a triangular number).
Lagrange, in 1770, proved the part of Fermat’s theorem regarding squares,

obtaining his celebrated Four Squares Theorem [D52, p. 279].

Theorem 3.1 (Lagrange’s Four Squares Theorem). Every nonnega-
tive integer can be represented as the sum of 4 (or fewer) squares.

In 1798 Legendre proved a much deeper statement which described
exactly which numbers needed all four squares [D52, p. 261].
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Theorem 3.2 (Legendre’s Three Squares Theorem). The set of pos-
itive integers that cannot be represented as sums of three (or fewer) squares
is the set {

m ∈ Z>0 : m = 4k(8t+ 7), for some k, t ∈ Z�0

}
.

After this, it was natural to think which numbers could be written as a
sum of two squares. A complete answer to this question was given by Euler
[D52, p. 230].

Theorem 3.3 (Euler). A positive integer m > 1 can be written as a sum
of two squares if and only if every prime factor of m which is congruent to
3 (mod 4) occurs with even exponent.

Example 3.4 The integer m = 245 = 5 · 72 can be written as a sum
of two squares. In particular, 245 = 4 · 72 + 72 = 142 + 72. As the number
m = 105 is not divisible by 4 and is congruent to 1 (mod 8), one concludes
that it can be written as the sum of 3 or fewer squares. However, since
105 = 3 · 5 · 7 has a prime factor congruent to 3 (mod 4) occurring with
odd exponent, it cannot be written as a sum of 2 squares. For instance, we
have 105 = 102 + 22 + 12. Since m = 60 = 4 · 15 = 4 · (8 + 7), we know from
Theorem 3.2 that it cannot be represented as a sum of 3 or fewer squares so
we really need 4 squares. For example, 60 = 62 + 42 + 22 + 22.

Let us now see what happens with triangular numbers. The part of
Fermat’s statement regarding these numbers was first proved by Gauss [D52,
p. 17].

Theorem 3.5 (Gauss). Every nonnegative number can be written as the
sum of three (or fewer) triangular numbers.

After this result, Ewell [E92] gave a simple description of the numbers
that are sums of two triangular numbers.

Theorem 3.6 (Ewell). A positive integer m can be represented as a sum
of two triangular numbers if and only if every prime factor of 4m+ 1 which
is congruent to 3 (mod 4) occurs with even exponent.

Example 3.7 Taking m = 106 one obtains 4m+ 1 = 425 = 52 · 17 and
so m can be written as a sum of two triangular numbers. For instance,



Fermat and the number of fixed points of periodic flows 659

106 = 105 + 1 = 14·15
2 + 1·2

2 . On the other hand, if one takes m = 59, then
4m+ 1 = 237 = 3 · 79 and so, by Theorem 3.6, m cannot be written as a
sum of 2 triangular numbers. For instance we have 59 = 28 + 21 + 10 =
7·8
2 + 6·7

2 + 4·5
2 .

4. A minimization problem

4.1. Tools

Let us then see how to obtain a lower bound for the number of fixed points of
a J-preserving circle action on an almost complex manifold (M,J) satisfying
c1cn−1[M ] :=

∫
M c1cn−1 = 0, where c1 and cn−1 are respectively the first and

the (n− 1) Chern classes of M .
The first result that we need is the expression of c1cn−1[M ] in terms of

numbers of fixed points, see [GS12].

Theorem 4.1 (Godinho-Sabatini). Let (M,J) be a 2n-dimensional com-
pact connected almost complex manifold equipped with an S1-action which
preserves the almost complex structure J and has a nonempty discrete fixed
point set. For every i = 0, . . . , n, let Ni be the number of fixed points with
exactly i negative weights in the isotropy representation TpM . Then

(4.1) c1cn−1[M ] =

n∑
i=0

Ni

(
6i(i− 1) +

5n− 3n2

2

)
.

Remark 4.2 If M is a compact 2n-dimensional symplectic S1-manifold
and the S1-action is Hamiltonian, then the number Ni of fixed points with
exactly i negative weights in the corresponding isotropy representations coin-
cides with the 2i-th Betti number b2i(M) ofM . Consequently, the expression
for c1cn−1[M ] given in (4.1) becomes

(4.2) c1cn−1[M ] =

n∑
i=0

b2i(M)

(
6i(i− 1) +

5n− 3n2

2

)
.

For example, if dimM = 4, Equation (4.2) gives

(4.3) c21[M ] = 10b0(M)− b2(M),

where we used the fact that b0(M) = b4(M).
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Remark 4.3 The equality in (4.1) is obtained by considering the expression
(in Theorem 2 of [S96]) of c1cn−1[M ] in terms of derivatives of the Hirzebruch
genus, noting that the coefficients of this genus are equal to the numbers
Nk of fixed points with exactly k negative isotropy weights. Although the
S1-equivariant Hirzebruch genus can be generalized to unitary S1-manifolds
to a rigid equivariant elliptic genus, the coefficients of the corresponding
(non-equivariant) genus will no longer be the numbers Nk (as in the case of
almost complex S1-manifolds). Instead, they will be the numbers hk defined
in [HM05, Section 3] which depend on the choice of orientations of the
tangent spaces TpM of the fixed points with k negative weights [HM05,
Proposition 3.8] (note that hk = Nk when the manifold is almost complex).
Even if the expressions of the Chern numbers cn[M ] and c1cn−1[M ] in terms
of derivatives of the Hirzebruch genus hold for unitary manifolds, they will
depend on the numbers hk and cannot be used when counting the total
number of fixed points. Indeed, even the absolute value of hk can be different
from Nk as the contribution of one fixed point with k negative weights might
be canceled with one of opposite orientation.

4.2. The minimization problem

For each m ∈ Z�0 let us consider the functions F1, F2, G1, G2 : Z
m+1 → Z

defined by

F1(N0, . . . , Nm) := Nm + 2

m∑
k=1

Nm−k;(4.4)

F2(N0, . . . , Nm) := 2

m∑
k=0

Nm−k;(4.5)

G1(N0, . . . , Nm) := −mNm + 2

m∑
k=1

(6k2 −m)Nm−k;(4.6)

G2(N0, . . . , Nm) := 2

m∑
k=0

(
6k(k + 1)− (m− 1)

)
Nm−k.(4.7)

Moreover, for i ∈ {1, 2}, let

(4.8) Zi :=
{
(N0, . . . , Nm) ∈ (Z�0)

m+1 \ {0} | Gi(N0, . . . , Nm) = 0
}
.

Then Theorem 4.1 can be restated as follows.
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Theorem 4.4. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with an S1-action which preserves the almost
complex structure J and has a nonempty discrete fixed point set. For every
i = 0, . . . , n, let Ni be the number of fixed points p with exactly i negative
weights in the isotropy representation TpM . Moreover, let G1, G2 : Z

m+1 →
Z be the functions defined in (4.6) and (4.7). Then

(4.9) c1cn−1[M ] =

⎧⎨⎩
G1(N0, . . . , Nm) if n is even;

G2(N0, . . . , Nm) if n is odd,

where c1 and cn−1 are respectively the first and the (n− 1) Chern classes
of M .

Proof. Consider the map g : Z× Z → Z defined by

g(i, n) = 6i(i− 1) +
5n− 3n2

2
.

In [Ha85, Proposition 2.11] Hattori shows that Ni = Nn−i for every i ∈ Z.
Hence, by (4.1), if n = 2m, we have

c1cn−1[M ] =

n∑
i=0

Ni g(i, n)

= −mNm +

m∑
k=1

(
g(m− k, 2m) + g(m+ k, 2m)

)
Nm−k

= −mNm + 2

m∑
k=1

(6k2 −m)Nm−k = G1(N0, . . . , Nm).

Analogously, if n = 2m+ 1, we have

c1cn−1[M ] =

n∑
i=0

Ni g(i, n)

=

m∑
k=0

Nm−k
(
g(m− k, 2m+ 1) + g(m+ k + 1, 2m+ 1)

)
= 2

m∑
k=0

(
6k(k + 1)−m+ 1

)
Nm−k = G2(N0, . . . , Nm).

�
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Using this, one obtains the following minimization problem.

Theorem D. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold such that c1cn−1[M ] = 0, equipped with a J-preserving
S1-action with nonempty, discrete fixed point set.

For m :=
⌊
n
2

⌋
, let F1, F2 : Z

m+1 → Z be the functions defined respec-

tively in (4.4) and (4.5), and let Z1,Z2 be the sets given in (4.8). Then the
S1-action has at least B(n) fixed points, where

B(n) :=
⎧⎨⎩

minZ1
F1 if n is even;

minZ2
F2 if n is odd.

Proof. Let Ni be the number of fixed points with exactly i negative weights
in the corresponding isotropy representations. Since the total number of
fixed points is

n∑
k=0

Nk

and Ni = Nn−i for every i ∈ Z [Ha85, Proposition 2.11], it follows that
F1(N0, . . . , Nm) and F2(N0, . . . , Nm) count the total number of fixed points
when n = 2m and n = 2m+ 1 respectively. Moreover, since the fixed point
set is nonempty, we must have (N0, . . . , Nm) �= 0.

Since we are assuming that c1cn−1[M ] = 0, the constraints G1 = 0 and
G2 = 0 are obtained from Theorem 4.4, according to whether n is odd or
even. �

5. A lower bound when n is even

Here we compute the minimal value B(n) of the function F1 restricted to
Z1, obtaining a lower bound for the number of fixed points of the S1-action
when n is even.

Theorem E. Let n = 2m (m � 1) be an even positive integer and let B(n)
be the minimum of the function F1 restricted to Z1, where F1 and Z1 are
respectively defined by (4.4) and (4.8). Then B(n) can take all values in the
set {2, 3, 4, 6, 7, 8, 9, 12}. In particular, if r := gcd

(
n
2 , 12

)
(= gcd (m, 12)),

we have that:

(i) if r = 1 then B(n) = 12;
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(ii) if r = 2 then
•B(n) = 6 if m �≡ 14 (mod 16),
•B(n) = 12 otherwise;

(iii) if r = 3 then
•B(n) = 4 if all prime factors of m

3 congruent to 3 (mod 4)
occur with even exponent,

•B(n) = 8 otherwise;

(iv) if r = 4 then
•B(n) = 3 if m is a square,
•B(n) = 6 if m is not a square and m �= 4k(16t+ 14)

∀k, t ∈ Z�0,
•B(n) = 9 otherwise;

(v) if r = 6 then
•B(n) = 2 if m

6 is a square,
•B(n) = 4 if m

6 is not a square and all prime factors of m
3

congruent to 3 (mod 4) occur with even exponent,
•B(n) = 6 if m

6 is not a square, at least one prime factor of m
3

congruent to 3 (mod 4) occurs with an odd exponent
and m �≡ 14 (mod 16),

•B(n) = 8 otherwise;

(vi) if r = 12 then
•B(n) = 2 if m

6 is a square,
•B(n) = 3 if m is a square,
•B(n) = 4 if none of the above holds and all prime factors of m

3
congruent to 3 (mod 4) occur with even exponent,

•B(n) = 6 if none of the above holds and m �= 4k(16t+ 14)
∀k, t∈Z�0,

•B(n) = 7 otherwise.

Proof. A point (N0, . . . , Nm) ∈ (Z�0)
m+1 \ {0} is in Z1 if and only if

G1 := −mNm + 2

m∑
k=1

(6k2 −m)Nm−k = 0,

which is equivalent to

(5.1) Nm = 2

m∑
k=1

(
6k2

m
− 1

)
Nm−k.
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Hence, to find minZ1
F1, we start by substituting (5.1) in (4.4), obtaining

(5.2) F1 =
12

m

m∑
k=1

k2Nm−k.

Since F1 is integer valued on Zm+1, we have

12

m

m∑
k=1

k2Nm−k ∈ Z.

As N0, . . . , Nm−1 ∈ Z, this is equivalent to having

m∑
k=1

k2Nm−k ≡ 0 (mod
m

r
),

with r := gcd (m, 12) = gcd (n2 , 12) ∈ {1, 2, 3, 4, 6, 12}. This implies that

(5.3) F1 ≡ 0 (mod
12

r
).

Remark 5.1 Condition (5.3) proves Theorem A when n is even.

We then want to find the smallest positive value of

m∑
k=1

k2Nm−k

which is a multiple of m
r and such that

(5.4)

m∑
k=1

(
6k2

m
− 1

)
Nm−k � 0,

so that the expression on the right-hand-side of (5.1) is a non-negative inte-
ger. Then, by (5.2), the minimum B(n) of F1 on Z1 is obtained by multi-
plying this value by 12

m .

Remark 5.2 Note that, when m � 6, condition (5.4) is always satisfied.
Hence, the smallest multiple of m

r that satisfies all the required conditions

is m
r itself (taking for instance Nm−1 = m

r , Nm = 2(6−m)
r and all other Ni’s
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equal to 0), leading to

B(n) = m

r
· 12
m

=
12

r
, whenever n = 2m with m � 6.

In general, we see that (5.4) is equivalent to

m∑
k=1

k2Nm−k � m

6

m∑
k=1

Nm−k,

so our goal is to find the smallest positive multiple of m
r which can be written

as
m∑
k=1

k2Nm−k

and is greater or equal to

m

6

m∑
k=1

Nm−k.

In other words, for each m, we want to find the smallest value of � ∈ Z>0

such that

(5.5) � · m
r

=

m∑
k=1

k2Nm−k � m

6

m∑
k=1

Nm−k.

Note that the first sum in (5.5) is a sum of squares, possibly with repetitions
(whenever one of the Nm−ks is greater than 1), and that the sum on the
right hand side of (5.5) is precisely the number of squares used in this
representation of � · m

r as a sum of squares. We then want to find the smallest
value of � ∈ Z>0 such that

(5.6)

m∑
k=1

Nm−k � 6�

r
,

where
∑m

k=1Nm−k is the smallest number of squares that is needed to rep-
resent the positive integer � · m

r as a sum of squares of numbers smaller or
equal than m. We can then use the results in Section 3.
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When r = 1, condition (5.6) becomes

(5.7)

m∑
k=1

Nm−k � 6�.

This can be achieved with � = 1 since, by Theorem 3.1, the positive integer
m
r = m can be written as a sum of 4 or fewer squares (necessarily of numbers
� m), and then

m∑
k=1

Nm−k � 4 � 6 = 6�.

We conclude that, when r = 1, we always have B(n) = 12
m · m

r = 12.
When r = 2, condition (5.6) becomes

(5.8)

m∑
k=1

Nm−k � 3�.

Hence, if m
r = m

2 can be written as a sum of 3 or fewer squares (necessarily
of numbers � m), (5.8) can be achieved with � = 1. Otherwise � = 2 suffices,
since then, by Theorem 3.1, the number 2m

r = m can be written as a sum
of 4 or fewer squares (necessarily of numbers � m) and then

m∑
k=1

Nm−k � 4 � 6 = 3�.

Note that, since r = 2, the number m
2 cannot be a multiple of 4 and so the

condition

m

2
�= 4k(8t+ 7) for all k, t ∈ Z�0

in Theorem 3.2 is, in this situation, equivalent to

m

2
�= 8t+ 7 for all t ∈ Z�0

which, in turn, is equivalent tom �≡ 14 (mod 16). Hence, by Theorem 3.2, we
conclude that, when r = 2, we have B(n) = 12

m · m
2 = 6 if m �≡ 14 (mod 16)

and B(n) = 12
m · 2m

2 = 12 otherwise.
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When r = 3, condition (5.6) becomes

(5.9)

m∑
k=1

Nm−k � 2�.

Hence, if m
r is a square or a sum of 2 squares (necessarily of numbers � m),

(5.9) can be achieved with � = 1. Otherwise � = 2 suffices, since then, by
Theorem 3.1, the number 2m

r = 2m
3 can be written as a sum of 4 or fewer

squares (necessarily of numbers � m). Hence, by Theorem 3.3, we conclude
that, when r = 3, B(n) = 12

m · m
3 = 4 if all prime factors of m

3 congruent to
3 (mod 4) occur with even exponent and B(n) = 12

m · 2m
3 = 8 otherwise.

When r = 4, condition (5.6) becomes

(5.10)

m∑
k=1

Nm−k � 3�

2
.

Hence, if m
r = m

4 is a square (or, equivalently, if m is a square), (5.10) can be
achieved with � = 1. Otherwise, if 2m

r = m
2 can be written as a sum of 3 or

fewer squares (necessarily of numbers � m), (5.10) can be achieved with � =
2. Otherwise, � = 3 suffices since then, by Theorem 3.2, the number 3m

3 = 3m
4

can be written as a sum of 4 or fewer squares (necessarily of numbers � m).
Hence, by Theorem 3.2, we conclude that, when r = 4, we have B(n) =

12
m · m

4 = 3 if m is a square, B(n) = 12
m · 2m

4 = 6 if m is not a square and
m
2 �= 4k(8t+ 7) for all k, t ∈ Z�0, and B(n) = 12

m · 3m
4 = 9 in all other cases.

When r = 6, condition (5.6) becomes

(5.11)

m∑
k=1

Nm−k � �.

Hence, if m
r = m

6 is a square, then (5.11) can be achieved with � = 1. Oth-
erwise, if 2m

r = m
3 is a square or a sum of 2 squares (necessarily of numbers

� m), (5.11) can be achieved with � = 2.
If this is not the case and 3m

r = m
2 is a sum of 3 or fewer squares (nec-

essarily of numbers � m), then (5.11) can be achieved with � = 3. If this
also does not hold, then � = 4 suffices since then, by Theorem 3.1, the num-
ber 4m

r = 2m
3 can be written as a sum of 4 or fewer squares (necessarily of

numbers � m).
Note that, since r = 6, the number m

2 cannot be a multiple of 4. Hence,
condition

m

2
�= 4k(8t+ 7) for all k, t ∈ Z�0
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in Theorem 3.2 is, in this situation, equivalent to

m

2
�= 8t+ 7 for all t ∈ Z�0

which, in turn, is equivalent to m �= 14 (mod 16). Hence, by Theorems 3.2
and 3.3, we conclude that, when r = 6, we have B(n) = 12

m · m
6 = 2 if m

6 is
a square; otherwise B(n) = 12

m · 2m
6 = 4 if all prime factors of m

3 congruent
to 3 (mod 4) occur with even exponent; if none of these holds then B(n) =
12
m · 3m

6 = 6 if m �= 14 (mod 16) and B(n) = 12
m · 4m

6 = 8 otherwise.
When r = 12, condition (5.6) becomes

(5.12)

m∑
k=1

Nm−k � �

2
.

Hence, even if m
r were a square, condition (5.12) could never be achieved

with � = 1. If 2m
r = m

6 is a square, (5.12) can be achieved with � = 2. If this
is not the case and 3m

r = m
4 is a square (or, equivalently, if m is a square),

then (5.12) can be achieved with � = 3. (Note that if m
4 is a square then

m
6 is not a square.) If this also does not hold and 4m

r = m
3 is a square or a

sum of two squares, then (5.12) can be achieved with � = 4. In none of the
above holds and 5m

r = 5m
12 is a square or a sum of two squares then (5.12)

could be achieved with � = 5. Note, however, that if m
3 is not a square nor

a sum of two squares then, by Theorem 3.3, at least one prime factor of m
3

is congruent to 3 (mod 4) and occurs with odd exponent. Then, since 5 �= 3
(mod 4), the number 5m

12 also has this prime factor occurring with the same
odd exponent and so, in this situation, 5m

12 cannot be written as a sum of 2
or fewer squares, implying that this case is impossible.

If none of the above conditions are true but 6m
r = m

2 is a sum of 3 or
fewer squares, then (5.12) can be achieved with � = 6. If still 6m

r = m
2 cannot

be written as a sum of 3 or fewer squares then 7m
r = 7m

12 can, and so � = 7
suffices. Indeed, if m

2 cannot be written as a sum of 3 or fewer squares, then

m

2
= 4k(8t+ 7) for some k, t ∈ Z�0,

and k � 1 (since m is multiple of 4); then

7m

12
=

14

3
· 4k−1(8t+ 7),
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and so 8t+ 7 = 0 (mod 3), implying that t = 1 (mod 3). Hence,

7m

12
=

14

3
· 4k−1(24 t′ + 15) = 14 · 4k−1(8t′ + 5)

= 4k−1(8t′′ + 70) = 4k−1(8t′′′ + 6)

for some t′, t′′, t′′′ ∈ Z�0 and so, by Theorem 3.2, the number 7m
12 can be

represented by a sum of 3 or fewer squares (necessarily of numbers � m).
We conclude, by Theorems 3.2 and 3.3 that, when r = 12, we have

B(n) = 12
m · 2m

12 = 2 if m
6 is a square, B(n) = 12

m · 3m
12 = 3 if m is a square,

and B(n) = 12
m · 4m

12 = 4 if neither m
6 nor m are squares and all prime factors

of m
3 congruent to 3 (mod 4) occur with even exponent. If none of these

conditions hold then B(n) = 12
m · 6m

12 = 6, if m
2 �= 4k(8t+ 7) (or, equivalently,

m �= 4k(16t+ 14)) for any k, t ∈ Z�0, and B(n) = 7 otherwise. �

Remark 5.3 In the Appendix we provide examples that show that all the
cases listed in Theorem E are possible.

Remark 5.4 Note that, in Theorem E, the minimum value of F1 in Z1 can
always be attained with sums of squares of numbers strictly smaller than m,
so that the minimal value can always be obtained with N0 = 0. Hence, if we
restrict to symplectic non-Hamiltonian circle actions, the resulting fact that
N0 = 0 [MD88] does not give lower bounds for the number of fixed points
that are better than in the general case.

6. A lower bound when n is odd

Here we compute the minimal value B(n) of the function F2 restricted to
Z2, obtaining a lower bound for the number of fixed points of the S1-action
when n is odd.

Theorem F. Let n = 2m+ 1 (m � 1) be an odd positive integer and let
B(n) be the minimum of the function F2 restricted to the set Z2, where
F2 and Z2 are respectively defined by (4.5) and (4.8). Then B(n) can take
all values in the set {2, 4, 6, 8, 12, 24}. In particular, if r = gcd

(⌊
n
2

⌋− 1, 12
)

(= gcd (m− 1, 12)), we have:

(i) if r � 4 then B(n) = 24
r ;

(ii) if r = 6 then
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•B(n) = 4 if every prime factor of 2
3(m− 1) + 1 congruent to

3 (mod 4) occurs with even exponent,
•B(n) = 8 otherwise;

(iii) if r = 12 then
•B(n) = 2 if 1

12(m− 1) is a triangular number,

•B(n) = 4 if 1
12(m− 1) is not a triangular number and every

prime factor of 2
3(m− 1) + 1 congruent to 3 (mod 4)

occurs with even exponent,
•B(n) = 6 otherwise.

Remark 6.1 As usual, we assume that gcd (0, 12) = 12. Note also that we
consider 0 to be a triangular number.

Proof. A point (N0, . . . , Nm) ∈ (Z�0)
m+1 \ {0} is in Z2 if and only if we

have

(6.1) G2 := (1−m)Nm +

m∑
k=1

(
6k(k + 1)− (m− 1)

)
Nm−k = 0.

If m = 1 this is equivalent to 12N0 = 0 and so the minimum of F2 :=
2N1 on Z2 is B(3) = 2 (attained with N0 = 0 and N2 = 1). Note that here
m−1
12 = 0 is a triangular number and r := gcd (m− 1, 12) = gcd (0, 12) = 12.

If m �= 1 then (6.1) is equivalent to

(6.2) Nm =

m∑
k=1

(
6k(k + 1)

m− 1
− 1

)
Nm−k.

Hence, to find minZ2
F2, we start by substituting (6.2) in (4.5), obtaining

(6.3) F2 =
24

m− 1

m∑
k=1

k(k + 1)

2
Nm−k.

Since F2 is even and integer valued and Nm ∈ Z, we have

12

m− 1

m∑
k=1

k(k + 1)

2
Nm−k ∈ Z.
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Since N0, . . . , Nm−1 ∈ Z, this is equivalently to having

m−1∑
k=1

k(k + 1)

2
Nm−k ≡ 0 (mod

m− 1

r
),

with r :=gcd (m−1, 12) = gcd
(⌊

n
2

⌋−1, 12
) ∈ {1, 2, 3, 4, 6, 12}. This implies

that

(6.4) F2 ≡ 0 (mod
24

r
).

Remark 6.2 Condition (6.4) proves Theorem A when n is odd.

We then want to find the smallest positive value of

m∑
k=1

k(k + 1)

2
Nm−k

which is a multiple of m−1
r and such that

(6.5)

m∑
k=1

(
6k(k + 1)

m− 1
− 1

)
Nm−k � 0,

so that the expression on the right hand side of (6.2) is a non-negative
integer. Then, by (6.3), the minimum B(n) of F2 on Z2 is obtained by
multiplying this value by 24

m−1 .

Remark 6.3 Note that, when m � 13, condition (6.5) is always satisfied.
Hence, the smallest multiple of m−1

r that satisfies all the required conditions
is m−1

r itself, leading to

B(n) = m− 1

r
· 24

m− 1
=

24

r
, whenever n = 2m+ 1 with m � 13.

In general, we see that (6.5) is equivalent to

m∑
k=1

k(k + 1)

2
Nm−k � m− 1

12

m∑
k=1

Nm−k,

so our goal is to find the smallest positive multiple of m−1
r which can be

written as
m∑
k=1

k(k + 1)

2
Nm−k
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and is greater or equal to

m− 1

12

m∑
k=1

Nm−k.

In other words, for each m, we want to find the smallest value of � ∈ Z>0

such that

(6.6) � · m− 1

r
=

m∑
k=1

k(k + 1)

2
Nm−k � m− 1

12

m∑
k=1

Nm−k.

Note that the first sum in (6.6) is a sum of triangular numbers, possibly with
repetitions (whenever one of the Nm−ks is greater than 1), and that the sum
on the right hand side of (6.6) is precisely the number of triangular numbers
used in this representation of � · m−1

r as a sum of triangular numbers. We
then want to find the smallest value of � ∈ Z>0 such that

(6.7)

m∑
k=1

Nm−k � 12 �

r
,

where
∑m

k=1Nm−k is the smallest number of triangular numbers k(k+1)
2 that

is needed to represent the positive integer � · m−1
r as a sum of triangular

numbers with k � m. We can therefore use the results in Section 3 concern-
ing these numbers.

Since, by Theorem 3.5, we know that every positive integer can be writ-
ten as a sum of 3 or fewer triangular numbers, condition (6.7) can be achieved
with � = 1 whenever r � 4 and then B(n) = 24

m−1 · m−1
r = 24

r . Note that in

all these cases the triangular numbers k(k+1)
2 are such that k � m.

When r = 6, condition (6.7) becomes

(6.8)

m∑
k=1

Nm−k � 2�.

Hence, if m−1
r = m−1

6 can be written as a sum of 2 or fewer triangular num-
bers (necessarily � m, yielding k � m), (6.8) can be achieved with � = 1.
Otherwise we need � = 2, since then, by Theorem 3.5, the number 2m

r = m
3

can be written as a sum of 3 or fewer triangular numbers (necessarily � m)
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and so
m∑
k=1

Nm−k � 3 � 4 = 2�.

By Theorem 3.6, we conclude that B(n) = 24
m−1 · m−1

6 = 4 if every prime

factor of 4
(
m−1
6

)
+ 1 congruent to 3 (mod 4) occurs with even exponent

and B(n) = 24
m−1 · 2(m−1)

6 = 8 otherwise.
When r = 12, condition (6.7) becomes

(6.9)

m∑
k=1

Nm−k � �.

Hence, if m−1
r is a triangular number, then (6.9) can be achieved with � = 1.

Otherwise, if 2(m−1)
r = m−1

6 can be written as a sum of 2 or fewer triangular
numbers (necessarily� m), (6.9) can be achieved with � = 2. If this is not the

case, � = 3 suffices since then, by Theorem 3.5, the number 3(m−1)
12 = m−1

4
can be written as a sum of 3 or fewer triangular numbers (necessarily � m).

By Theorem 3.6, we conclude that B(n) = 24
m−1 · m−1

12 = 2, if m−1
12 is a

triangular number, B(n) = 24
m−1 · 2(m−1)

12 = 4, if every prime factor of 2
3(m−

1) + 1 congruent to 3 (mod 4) occurs with even exponent, and B(n) = 24
m−1 ·

3(m−1)
12 = 6 in all other cases. �

Remark 6.4 In the Appendix we provide examples that show that all the
cases listed in Theorem F are possible.

Remark 6.5 Note that, in Theorem F, the minimum value of F2 in Z2 can
always be attained with sums of triangular numbers k(k+1)

2 with k strictly
smaller than m so that the minimal values can always be obtained with
N0 = 0. Hence, if we restrict to symplectic non-Hamiltonian circle actions,
the resulting fact that N0 = 0 does not give lower bounds for the number of
fixed points that are better than in the general case.

7. Proofs of Theorems A, B and C

Proof. (of Theorem A) This result follows immediately from (5.3) and (6.4)
in the proofs of Theorems E and F in Sections 5 and 6, since the functions F1

and F2 count the total number of fixed points respectively when n is even or
odd. Note that, in Theorem A, we write n = 2m+ 3 instead of n = 2m+ 1,
when n is odd, to simplify the statement. �
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Proof. (of Theorem B) This follows from Theorems E and F in Sections 5
and 6, using the lower bound in Theorem 2.8.

In particular, in Theorem E, if r � 4, then dimM � 16, and so the num-
ber of fixed points must be� 4 by Theorem 2.8. Hence, when r = 4, the lower
bound of 6 holds even if m is a square since, by Theorem A, we know that
|MS1 | is a multiple of 3 (note that, if m is a square, then m �= 4k(16t+ 14)
for every k, t ∈ Z�0). When r = 6 or r = 12, the lower bound of 4 holds even
if m

6 is a square; note that, if m
6 is a square, all prime factors of m

3 that are
congruent to 3 (mod 4) occur with even exponent. When r = 12, the lower
bound of 4 also holds if m is a square.

In Theorem F, if r = 12 and m �= 1, then dimM � 50 and so, by Theo-
rem 2.8, the number of fixed points must be � 4. Hence the lower bound of 4
holds even if 1

12(m− 1) is a triangular number; note that, if this is the case,

and k is such that 1
12(m− 1) = k(k+1)

2 , then the number 2
3(m− 1) + 1 =

(2k + 1)2 is a square and so all its prime factors occur with even exponent.
Again we write n = 2m+ 3 to simplify the statement of the theorem. �

Proof. (of Theorem C) The S1-action is now Hamiltonian, implying that
each Ni, the number of fixed points with exactly i negative isotropy weights,
coincides with the Betti number b2i(M). Hence, since the classes [ωk] ∈
H2k(M,R) are non trivial, we have Ni � 1 for all i = 0, . . . ,m. Moreover,
since M is connected and the fixed point set is discrete, there is only one
fixed point of index 0 (where the Hamiltonian function is minimal), and so
N0 = 1. Consequently, we now want to minimize the functions Fi defined
in (4.4) and (4.5), respectively on the sets

(7.1) Z̃i :=
{
(N0, . . . , Nm) ∈ (Z�1)

m+1 | Gi(N0, . . . , Nm) = 0, N0 = 1
}
.

When n is even the proof follows easily from (5.2), knowing that Nm−k � 1
for all k = 1, . . . ,m. Indeed, in this case, the smallest positive integer value
of F1 on Z1 is attained when N0 = · · · = Nm−1 = 1, yielding

m∑
k=1

k2Nm−k =

m∑
k=1

k2 =
m(m+ 1)(2m+ 1)

6
,

and

F1 = 2(m+ 1)(2m+ 1) = (n+ 2)(n+ 1).
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Note from (5.1), that this value is achieved with

Nm = 2

m∑
k=1

(
6k2

m
− 1

)
Nm−k =

12

m

m∑
k=1

k2 − 2m = 2(2m2 + 2m+ 1) � 1.

When n = 2m+ 1 > 3 is odd, we may no longer be able to take all Ni = 1 for
i = 0, . . . ,m− 1 as we do in the even case, since the corresponding value of
F2 (given by (6.3)) may not be an integer. Hence we take Ñm−k := Nm−k −
1 ∈ Z�0 for k = 0, . . . ,m− 1 and then, from (6.2) and (6.3), we have that

on Z̃2,

Nm =

m∑
k=1

(
6k(k + 1)

m− 1
− 1

)
+

m−1∑
k=1

(
6k(k + 1)

m− 1
− 1

)
Ñm−k(7.2)

=
2m(m+ 1)(m+ 2)

m− 1
−m+

m−1∑
k=1

(
6k(k + 1)

m− 1
− 1

)
Ñm−k

and

F2 =
24

m− 1

(
m∑
k=1

k(k + 1)

2
+

m−1∑
k=1

k(k + 1)

2
Ñm−k

)
(7.3)

=
24

m− 1

(
m(m+ 1)(m+ 2)

6
+

m−1∑
k=1

k(k + 1)

2
Ñm−k

)
.

Here we used the fact that the sum of the first m consecutive triangular
numbers (starting at 1) is m(m+1)(m+2)

6 .

Since F2 is even and integer valued and Ñm−k ∈ Z, we have

m(m+ 1)(m+ 2)

6
+

m−1∑
k=1

k(k + 1)

2
Ñm−k ≡ 0 (mod

m− 1

r
),

with r := gcd(m− 1, 12).
We then want to find the smallest multiple of m−1

r greater or equal than
m(m+1)(m+2)

6 , which can be written as

m(m+ 1)(m+ 2)

6
+

m−1∑
k=1

k(k + 1)

2
Ñm−k,
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and such that

12

m− 1

(
m(m+ 1)(m+ 2)

6
+

m−1∑
k=1

k(k + 1)

2
Ñm−k

)
− (1 +m) �

m−1∑
k=1

Ñm−k

so that the expression on the right hand side of (7.2) is � 1. Then, by (7.3),
the minimum of F2 on Z̃2 is obtained by multiplying this value by 24

m−1 .
In other words, we want to find the smallest value of � ∈ Z>0 such that

� · m− 1

r
=

m(m+ 1)(m+ 2)

6
+

m−1∑
k=1

k(k + 1)

2
Ñm−k(7.4)

� m− 1

12

(
m−1∑
k=1

Ñm−k + (1 +m)

)
,

i.e. we want to find the smallest value of � ∈ Z>0 such that

(7.5) � · m− 1

r
� m(m+ 1)(m+ 2)

6

and

(7.6)

m−1∑
k=1

Ñm−k � 12 �

r
− (1 +m),

where
∑m−1

k=1 Ñm−k is the smallest number of triangular numbers that is
needed to represent the nonnegative integer

A := � · m− 1

r
− m(m+ 1)(m+ 2)

6

as a sum of triangular numbers k(k+1)
2 with k � m− 1.

Now the smallest integer � that verifies (7.5) is

� =

⌈
rm(m+ 1)(m+ 2)

6(m− 1)

⌉
=

r(m2 + 4m+ 6)

6
+

⌈
r

m− 1

⌉
=

r(m2 + 4m+ 6)

6
+ 1.

Note that r(m2 + 4m+ 6) = rm(m+ 4) + 6r ≡ 0 (mod 6) since rm is always
even and rm(m+ 4) ≡ 0 (mod 3) (if r �≡ 0 (mod 3) thenm− 1 �≡ 0 (mod 3),
implying that either m or m+ 4 is a multiple of 3).
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For this value of � we have A < m−1
r � m− 1 and so, by Theorem 3.5,

A can be represented as a sum of at most three triangular numbers k(k+1)
2

with k � m− 1. Condition (7.6) can then be achieved with this value of �
as

12 �

r
− (1 +m) > 3.

Hence the minimum of F2 on Z̃2 is

24

m− 1
· �(m− 1)

r
= 4(m2 + 4m+ 6) +

24

r
= n2 + 6n+ 17 +

24

r
.

�

8. Comparing with other bounds

Although our lower bound B(n) does not, in general, increase with n, there

are some values of n for which B(n) is better than the lower bound
⌊
n
2

⌋
+ 1

proposed by Kosniowski [K79] and some for which it is greater than n and
we recover the lower bound for Kähler (Hamiltonian) actions. These are
listed in the following results which are easy consequences of Theorem B.

Proposition 8.1. Let B(n) be the lower bound for the number of fixed
points of a J-preserving circle action on a 2n-dimensional compact connected
almost complex manifold (M,J) with c1cn−1[M ] = 0 obtained in Theorem B.
Then, if

dimM ∈ {4, 6, 8, 10, 12, 14, 18, 20, 22, 26, 28, 34, 44, 46, 50, 58, 74, 82},

we have B(n) �
⌊
n
2

⌋
+ 1. In particular, the lower bound proposed by Kos-

niowski is valid for these dimensions, whenever c1cn−1[M ] = 0.

Proposition 8.2. Let B(n) be the lower bound for the number of fixed
points of a J-preserving circle action on a 2n-dimensional compact connected
almost complex manifold (M,J) with c1cn−1[M ] = 0 obtained in Theorem B.
Then, if

dimM ∈ {4, 8, 10, 14, 20, 26, 34},
we have B(n) � n+ 1.
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9. Divisibility results for the number of fixed points

In a letter to V. Gritsenko, Hirzebruch [Hi99] obtains divisibility results for
the Chern number cn[M ] (the Euler characteristic of the manifold) under the
assumption c1cn−1[M ] = 0 (or under the stronger assumption that c1 = 0 in
integer cohomology). In particular, he proves the following result.

Theorem 9.1 (Hirzebruch). Let M be a 2n-dimensional unitary mani-
fold. If c1cn−1[M ] = 0 then

• if n ≡ 1 or 5 (mod 8), the Chern number cn[M ] is divisible by 8;

• if n ≡ 2, 6 or 7 (mod 8), the Chern number cn[M ] is divisible by 4;

• if n ≡ 3 or 4 (mod 8), the Chern number cn[M ] is divisible by 2.

If an almost complex manifold is equipped with an S1-action preserving
the almost complex structure with a nonempty discrete fixed point set, we
know that cn[M ] is equal to the number of fixed points of the action (see for
example [GS12, Section 3]). Therefore, we can also obtain divisibility results
for cn[M ] from Theorem A.

When n ≡ 0 (mod 3) the divisibility factors of cn[M ] (or |MS1 | ) obtained
from Theorem A are exactly those of Hirzebruch. However, when n �≡ 0
(mod 3), Theorem A implies that cn[M ] (or |MS1 | ) is a multiple of 3, and
so we can improve Hirzebruch’s result.

Theorem G. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with a J-preserving S1-action with nonempty,
discrete fixed point set MS1

. If c1cn−1[M ] = 0 and n �≡ 0 (mod 3) then

• if n ≡ 0 (mod 8), then |MS1 | is divisible by 3;

• if n ≡ 1 or 5 (mod 8), then |MS1 | is divisible by 24;

• if n ≡ 2, 6 or 7 (mod 8), then |MS1 | is divisible by 12;

• if n ≡ 3 or 4 (mod 8), then |MS1 | is divisible by 6.

Proof. If n = 2m is even, we can write n ≡ 2k (mod 8) with k ∈ {0, 1, 2, 3}
and m ≡ k (mod 4). Moreover, n �≡ 0 (mod 3) implies that m �≡ 0 (mod 3).
Hence, if r := gcd (m, 12), we have

r = 4 if k = 0,
r = 1 if m is odd (i.e. if k = 1 or 3),
r = 2 if k = 2.
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The result for even values of n then follows from Theorem A.
If n=2m+3 is odd, we can write n≡2k+3 (mod 8) with k∈{0, 1, 2, 3}

and m ≡ k (mod 4). Moreover, n �≡ 0 (mod 3) implies that m �≡ 0 (mod 3).
Hence, if r := gcd (m, 12), we have

r = 4 if k = 0,
r = 1 if m is odd (i.e. if k = 1 or 3),
r = 2 if k = 2.

The result for odd values of n then follows from Theorem A. �

Remark 9.2 When n ≡ 0 (mod 3), the divisibility factors of cn[M ] (or
|MS1 | ) obtained from Theorem A are exactly those proved by Hirzebruch
and listed in Theorem 9.1.

Indeed, if n = 2m, then we can write n ≡ 2k (mod 8) with k ∈ {0, 1, 2, 3}
and m ≡ k (mod 4). If n ≡ 0 (mod 3), then m ≡ 0 (mod 3) and so, if
r := gcd (m, 12),

(9.1)
r = 12 if k = 0,
r = 3 if m is odd,
r = 6 if k = 2.

If n = 2m+ 3, we can write n ≡ 2k + 3 (mod 8) with k ∈ {0, 1, 2, 3} and
again m ≡ k (mod 4). If n ≡ 0 (mod 3), then m ≡ 0 (mod 3), and we get
the same values of r := gcd (m, 12) as in (9.1). In all cases we recover Hirze-
bruch’s divisibility factors in Theorem 9.1.

In summary, we obtain the divisibility factors listed in Table 9.1.
Under the stronger condition that c1 = 0 in integer cohomology, Hirze-

bruch was able to improve his divisibility factor for cn[M ] in some situations
[Hi99].

Proposition 9.3 (Hirzebruch). If M is a 2n-dimensional unitary man-
ifold with c1 = 0 and even n = 2m with m ≡ 1 (mod 4), then cn[M ] ≡ 0
(mod 8).

Knowing this, we are also able to further improve the divisibility factor
for |MS1 | under this condition.

Theorem H. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with a J-preserving S1-action with nonempty,



680 L. Godinho, Á. Pelayo and S. Sabatini

n (mod 8) |MS1 | is divisible by

0
1 if n ≡ 0 (mod 3)
3 otherwise

1
8 if n ≡ 0 (mod 3)
24 otherwise

2
4 if n ≡ 0 (mod 3)
12 otherwise

3
2 if n ≡ 0 (mod 3)
6 otherwise

4
2 if n ≡ 0 (mod 3)
6 otherwise

5
8 if n ≡ 0 (mod 3)
24 otherwise

6
4 if n ≡ 0 (mod 3)
12 otherwise

7
4 if n ≡ 0 (mod 3)
12 otherwise

Table 9.1: Divisibility factors of |MS1 |.

discrete fixed point set MS1

, and such that n ≡ 2 (mod 8) and c1 = 0. If
n �≡ 0 (mod 3), then |MS1 | is divisible by 24.

Proof. By Theorem G and Proposition 9.3, we have that |MS1 | ≡ 0 (mod 12)
and |MS1 | ≡ 0 (mod 8) so the result follows. �
Using these two results, we can improve, in some situations, the lower bound
for the number of fixed points given by B(n).

Theorem I. Let (M,J) be a 2n-dimensional compact connected almost
complex manifold equipped with a J-preserving S1-action with nonempty,
discrete fixed point set MS1

, and such that c1 = 0 and n ≡ 2 (mod 8). Then
the number of fixed points is at least 24 if n �≡ 0 (mod 3) and at least 8
otherwise.

Remark 9.4 If n = 2m, n ≡ 2 (mod 8) and n �≡ 0 (mod 3), then, from
Theorem B, we always have B(n) = 12, since gcd (m, 12) = 1 (m is odd and
is not a multiple of 3); if n ≡ 0 (mod 3), then B(n) is either 4 or 8, since
gcd (m, 12) = 3 (m is odd and a multiple of 3). For example, if n = 54, we
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have B(54) = 4 (since m
3 = 32) but, since m = 27 ≡ 0 (mod 3), we know

that, if c1 = 0, then the number of fixed points is at least 8 (c.f. Theorem I).

10. Examples

We will now show that some of the lower bounds obtained in Theorem B
for the number of fixed points are sharp.

Example 10.1 There exists a 4 dimensional almost complex manifold
(N4, J) with c21[N ] = 0 that admits a J-preserving circle action with 12
fixed points (note that, since n = 2, we have gcd (n2 , 12) = 1 and B(2) = 12).
Indeed, from (4.3) we can just take

N4 = CP
2#9CP

2
,

the 9-point blow-up of CP2 since

b2(N) = 10 and b0(N) = b4(N) = 1,

so that, by (4.3),

c21[N ] = 10 b0(N)− b2(N) = 0 and b0(N) + b2(N) + b4(N) = 12.

Taking a standard Hamiltonian circle action on CP2 (with 3 isolated fixed
points) and blowing up successively at index 2 fixed points, we can obtain
a Hamiltonian circle action on N with exactly 12 fixed points.

Example 10.2 For dimM = 6 we can take M = S6 with the almost com-
plex structure induced by a vector product in R7 and equipped with the
S1-action induced by the action on R7 = R⊕ C3 given by

λ · (t, z1, z2, z3) = (t, λnz1, λ
mz2, λ

−(n+m)z3), λ ∈ S1,

with t ∈ R, z1, z2, z3 ∈ C, m,n ∈ Z \ {0} and n+m �= 0. This action has
exactly 2 fixed points and N1 = N2 = 1 (note that B(3) = 2).
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Example 10.3 In any dimension, since we can write every even positive
integer 2n � 4 as

2n = 2(2k + 3�) = 4k + 6�,

for some k, � ∈ Z�0, we can take

M = (N4)k × (S6)�,

where N4 is the S1-manifold in Example 10.1 and S6 has the action in
Example 10.2, to obtain an example of dimension 2n. By Lemma 2.16 this
almost complex manifold satisfies

c1cn−1[M ] = 0,

and the diagonal circle action preserves the almost complex structure and
has 2� × 12k fixed points.

If k = � = 1 then dimM = 10 and the action has a minimal number of
fixed points. Indeed, it has 24 fixed points and B(5) = 24.

If k = 0 and � = 2 then dimM = 12 and the action has exactly 4 fixed
points so it also has a minimal number of fixed points (since B(6) = 4).

If k = 0 and � = 3 then dimM = 18 and the action has 8 fixed points
which is also a minimal number (B(9) = 8).

Remark 10.4 It would be very interesting to find out if there exists an
8 dimensional almost complex manifold (M8, J) satisfying c1c3[M ] = 0 and
with a J preserving circle action with exactly B(4) = 6 fixed points. If this
example could be constructed, then M8 × S6 would give us a minimal exam-
ple with B(7) = 12 fixed points.

Example 10.5 Returning to Example 10.3, we see that, although the
S1-manifolds (N4)k × (S6)� do not always have a minimal number of fixed
points, |MS1 | = 2� × 12k, is always consistent with Theorems 9.1 and G in
Section 9.

Indeed, if n is even and k �= 0, then |MS1 | is a multiple of 12. If n is even
and k = 0, then necessarily n ≡ 0 (mod 3). Since n = 3� is even, we have
� > 1, and so |MS1 | is a multiple of 4.

If n is odd, then necessarily � > 1. If k �= 0, then |MS1 | is a multiple
of 24. If k = 0, then necessarily n ≡ 0 (mod 3). We then have n = 3� and
2� fixed points. If � = 1, then n ≡ 3 (mod 8) and |MS1 | is divisible by 2; if
� = 2, then n ≡ 6 (mod 8) and |MS1 | is divisible by 4; if � � 3, then |MS1 |
is a multiple of 8.



Fermat and the number of fixed points of periodic flows 683

Remark 10.6 If M2n is an almost complex S1-manifold satisfying
c1cn−1[M ] = 0, then M × S6, where S6 has the action in Example 10.2,
satisfies c1cn−1[M × S6] = 0 (see Lemma 2.16). Then, by Theorem B, we
have

2
∣∣MS1∣∣ = ∣∣ (M × S6

)S1 ∣∣ � B(n+ 3),

and so B(n+ 3)/2 is also a lower bound for the number of fixed points of
M . It is easy to check that B(n), the lower bound for

∣∣MS1
∣∣ obtained in

Theorem B, is better, i.e.

(10.1) B(n) � B(n+ 3)

2
,

for every n. In particular, (10.1) trivially holds if B(n) is equal to 24 or 12
since B(n+ 3) � 24 in all cases; the other possibilities are listed in Table 10.1.

B(n) n r = gcd (m, 12) B(n+ 3)/2

9 n = 2m 4 3 n+ 3 = 2m+ 3

8
n = 2m 3 or 6 � 4 n+ 3 = 2m+ 3

n = 2m+ 3 3 or 6 � 4
n+ 3 = 2(m+ 3) and
gcd (m+ 3, 12) = 3, 6 or 12

7 n = 2m 12 � 3 n+ 3 = 2m+ 3

6
n = 2m 2, 4, 6 or 12 � 6 n+ 3 = 2m+ 3

n = 2m+ 3 4 or 12 � 6
n+ 3 = 2(m+ 3) and
gcd (m+ 3, 12) = 1 or 3

4
n = 2m 3, 6 or 12 � 4 n+ 3 = 2m+ 3

n = 2m+ 3 6 or 12 � 4
n+ 3 = 2(m+ 3), m+ 3 odd
gcd (m+ 3, 12) = 3

2 n = 3 12 2

Table 10.1: Possible values of B(n) and B(n+ 3)/2 (non trivial cases).

Similarly, it is also easy to check that

(10.2) B(n) � B(n+ k)

B(k)
for all k � 3. If k > 3, we just need to rule out the possibility of hav-
ing B(n) = B(k) = 4 and B(n+ k) = 24, since all other cases trivially sat-
isfy (10.2). Note that n+ k must be odd if B(n+ k) = 24.



684 L. Godinho, Á. Pelayo and S. Sabatini

In this situation, if n = 2m is even, then k is odd and so k = 2a+ 3
for some a � 1. Then, since B(k) = 4, we have gcd (a, 12) equal to 6 or 12,
implying that a is a multiple of 6. But then, since n+ k = 2(m+ a) + 3 and
gcd (m+ a, 12) = 1 (since B(n+ k) = 24), we have that m is odd and m �≡ 0
(mod 3), leading to gcd (m, 12) = 1, contradicting the fact that B(n) = 4.

If n = 2m+ 3 is odd, then k = 2a for some a � 2. Then, since B(k) = 4,
we have gcd (a, 12) equal to 3, 6 or 12, implying that a is either even or
a multiple of 3. Since B(n) = 4, we have that gcd (m, 12) is equal to 6 or
12, and so m must be an even multiple of 3. But then gcd (m+ a, 12) �= 1
contradicting the fact that B(n+ k) = 24 (since n+ k = 2(m+ a) + 3).

Appendix A. Tables

n m r = gcd (m, 12) B(n)
26 13 1 12

20 10 2 6 10 �≡ 14 (mod 16)

28 14 2 12

54 27 3 4 m
3 = 32

18 9 3 8 m
3 = 3

32 16 4 3 m = 42

40 20 4 6
m is not a square and
m = 4 · 5 �= 4k(16t+ 14), ∀k, t ∈ Z�0

112 56 4 9 m = 56 is not a square and m = 4 · 14
108 54 6 2 m

6 = 32

60 30 6 4 m
6 = 5 is not a square and m

3 = 2 · 5
180 90 6 6

m
6 = 15 is not a square, m

3 = 2 · 3 · 5
and m = 16 · 5 + 10

252 126 6 8
m
6 = 21 is not a square, m

3 = 2 · 3 · 7
and m = 16 · 7 + 14

48 24 12 2 m
6 = 22

72 36 12 3 m
6 = 6 is not a square and m = 62

24 12 12 4 m
6 , m are not squares and m

3 = 22

144 72 12 6
m
6 = 12 and m = 72 are not squares,
m
3 = 23 · 3 and m = 4(16 + 2)

1008 504 12 7
m
6 = 84, m = 504 are not squares,
m
3 = 23 · 3 · 7 and m = 4(16 · 7 + 14)

Table A1: Examples that illustrate all values of B(n) obtained from Theo-
rem E in Section 5 when n := 1

2 dimM is even (by increasing order of r).
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n = 2m+ 1 m− 1 r = gcd (m− 1, 12) B(n)
39 18 6 4 2

3(m− 1) + 1 = 13

63 30 6 8 2
3(m− 1) + 1 = 3 · 7

75 36 12 2 m−1
12 = 2·3

2

51 24 12 4 2
3(m− 1) + 1 = 17

99 48 12 6
1
12(m− 1) = 4 is not triangular
and 2

3(m− 1) + 1 = 3 · 11
Table A2: Examples that illustrate the possible values of B(n) obtained
from the nontrivial cases (r = 6 or 12) of Theorem F in Section 6, when
n = 1

2 dimM is odd.
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