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Dy elliptic fibrations: non-Kodaira fibers
and new orientifold limits of F-theory

MBOYO ESOLE, JAMES FULLWOOD AND SHING-TUNG YAU

A D elliptic fibration is a fibration whose generic fiber is mod-
eled by the complete intersection of two quadric surfaces in P3.
They provide simple examples of elliptic fibrations admitting a rich
spectrum of singular fibers (not all on the list of Kodaira) without
introducing singularities in the total space of the fibration, thus
avoiding a discussion of their resolutions. We study systematically
the fiber geometry of such fibrations using Segre symbols and com-
pute several topological invariants.

We present for the first time Sen’s (orientifold) limits for Dj
elliptic fibrations. These orientifolds limits describe different weak
coupling limits of F-theory to type IIB string theory giving a sys-
tem of three brane-image-brane pairs in presence of a Zs orien-
tifold. The orientifold theory is mathematically described by the
double cover the base of the elliptic fibration. Such orientifold the-
ories are characterized by a transition from a semi-stable singular
fiber to an unstable one. In this paper, we describe the first example
of a weak coupling limit in F-theory characterized by a transition
to a non-Kodaira (and non-ADE) fiber. Inspired by string dualities,
we obtain non-trivial topological relations connecting the elliptic
fibration and the different loci that appear in its weak coupling
limit. Mathematically, these are very surprising relations which re-
late the total Chern class of the Dj5 elliptic fibration and those of
different loci that naturally appear in the weak coupling limit. We
work over bases of arbitrary dimension and our results are inde-
pendent of any Calabi-Yau hypothesis.
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Calabi-Yau varieties were first introduced in compactification of string the-
ory to geometrically engineer N/ = 1 supersymmetry in four spacetime di-
mensions [14, 45]. The best understood configurations are perturbative in
nature and have a constant value of the axio-dilaton field. The axio-dilaton
field is a complex scalar particle 7 = Cy +ie~? (i = —1), where the axion
Cy is the Ramond-Ramond zero-form of the D(—1)-brane (the D-instanton)
while the dilaton ¢ determines the string coupling g, via its exponential
gs = €®. Due to the positivity of the string coupling, the axio-dilaton resides
exclusively in the complex upper half-plane. In type IIB string theory, the
S-duality group is the modular group SL(2,7Z) under which the axio-dilaton
field 7 transforms as the period modulus of an elliptic curve C/(Z + 7Z).



586 M. Esole, J. Fullwood and S.-T. Yau

T T4+ 1

0 1
Figure 1: A torus seen as the quotient C/(Z + 77Z).

F-theory [8, 34, 35, 48] provides a description of compactifications of type
IIB string theory on non-Calabi-Yau varieties B endowed with a varying
axio-dilaton field. The power of F-theory is that it elegantly encapsulates
non-perturbative aspects of type IIB string theory compactified on a space B
using the mathematics of elliptic fibrations over B to describe the variation
of the axio-dilaton field and the action of S-duality. As such, type IIB string
theory compactified on a space B with a varying axio-dilaton is geometrically
engineered in F-theory by an elliptically fibered space ¢ : Y — B. When
the base of the fibration is of complex dimension d, it corresponds to a
compactification of (10 — 2d) real dimensional space-time .#1y_24. The most
common cases studied in the literature are compactifications to six and four
spacetime dimensions and they are described respectively in F-theory by
elliptic threefolds and fourfolds.

The non-vanishing first Chern class of the compact space B is balanced
by the presence of (p,q) 7-branes! wrapping non-trivial divisors of B so
that supersymmetry is preserved after the compactification. The presence of
(p, q) 7-branes induces non-trivial SL(2,Z) monodromies of the axio-dilaton
field for which 7-branes are magnetic sources. Although the compactifica-
tion space B seen by type IIB is not Calabi-Yau, the total space Y of the
elliptic fibration ¢ : Y — B is required to be Calabi-Yau [48]. This is most
naturally seen using the M-theory picture of F-theory?. From the type IIB
perspective, we would also like the fibration to admit a section s : B — Y

LA (p,q) 7-brane is a dynamical brane extended in seven space dimensions and
characterized by the fact that (p, ¢) strings (bounds states of p fundamental strings
and ¢ D1 branes with p and ¢ relatively prime integer numbers) can end on it. A
(1,0) 7-brane is the usual D7-brane of perturbative string theory while the other
(p,q) T-branes are non-perturbative solitonic branes that can be obtained from
a DT7-brane by the action of S-duality, which in type IIB is the modular group
SL(2,7Z).

2 M-theory compactified on an elliptic fibration ¢ : Y — B to a spacetime .#y_24
is dual to type IIB compactified on the base B of the elliptic fibration to a spacetime
S1 % My_oq with non-trivial three-form field strength on B x S'. The radius of the
circle S being inversely proportional to the area of the elliptic fiber. As we take
the limit of zero area, we end up with type IIB string theory on B X .#19_24-
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so that the compactification space B is unambiguously identified within the
elliptic fibration itself:

T2 — Y

The existence of a section is not necessary from the point of view of M-
theory. For a review of F-theory, we refer to [17]. The singular fibers of
the elliptic fibration play an essential role in the dictionary between physics
and geometry [49]. For example, one can use elliptic fibrations to geomet-
rically engineer sophisticated gauge theories with matter representations
and Yukawa couplings all specified by the geometry of the elliptic fibration
8, 23, 34, 48].

F-theory and the mathematics of elliptic fibrations. From a math-
ematical point of view, F-theory provides a fresh perspective on the geome-
try of elliptic fibrations with a rich inflow of new problems, conjectures and
perspectives inspired by physics. However, these questions can be attacked
purely mathematically and open new ways to think of elliptic fibrations,
forming strong connections with representation theory and other areas of
mathematics. For example, the duality between F-theory and the Heterotic
string has motivated the study of principle holomorphic G-bundles over el-
liptic fibrations by Freedmann-Morgan-Witten [20, 21]. Since the work of
Kodaira on elliptic surfaces [30], it is well appreciated that ADE-like Dynkin
diagrams appear as singular fibers of an elliptic fibration over codimension-
one loci in the base. F-theory associates with these ADE diagrams specific
gauge theories living on branes wrapped around the location of the singular
fibers in the base [8, 34, 48]. Non-simply-laced Lie groups also appear natu-
rally once we consider the role of monodromies and distinguish between split
and non-split singular fibers [8]. When the base of the fibration is higher di-
mensional, matter representations are naturally associated with certain loci
in codimension-two in the base over which singular fibers enhance [23]. An
analysis on the condition for anomaly cancellations of the gauge theories
described in F-theory leads to surprising relations between representations
of the gauge group and the Chow ring of the elliptic fibration [23].

The description of phenomenological models in F-theory, such as the
SU(5) Grand Unified model [49], has motivated the study of elliptic fibra-
tions that admit a discriminant locus with wild singularities and a rich
structure of singular fibers that enhance to each other as we consider higher
codimension loci in the discriminant locus [19]. Such enhancements often
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violate standard assumptions made by mathematicians studying elliptic fi-
brations [32, 36, 46]. For example, in the SU(5) model the discriminant locus
of the elliptic fibration is not a divisor with normal crossings [19] (which is
a typical assumption in mathematics), and non-flat fibrations can lead to
very interesting physics such as the presence of massless stringy objects
[13]. With the appearence of non-Kodaira fibers in elliptic fibrations over
a higher dimensional base [19], the dictionary between singular fibers and
physics have to be made more precise [23, 31, 33]. Under the more general
conditions considered in physics, there is not yet a classification of the pos-
sible singular fibers of a higher dimensional elliptic fibration. See [19], for
more information.

The connection between F-theory and its type IIB weak coupling limit
uncovers interesting geometric relations involving the elliptic fibration and a
certain double cover of its base. Sen has shown that the weak coupling limit
of F-theory can be naturally described as an orientifold theory[40]. Sen’s
construction is mathematically described by certain degenerations of the
elliptic fibration organized by transitions from semi-stable to unstable sin-
gular fibers [2]. The presence of charged objects in a compact space leads to
cancellation relations in physics known as tadpole conditions. These tadpole
conditions are a sophisticated version of the familiar Gauss theorem in elec-
tromagnetism that ensures that the total charge in a compact space is zero.
Using dualities between F-theory and type IIB string theory, tadpole rela-
tions will induce non-trivial relations between the topological invariants of
different varieties that appear in the description of Sen’s weak coupling limit
[1, 2, 15]. This has motivated the introduction of a new Euler characteristic
inspired by string dualities to deal with some of the singularities[1, 2, 15].

1.2. Synopsys

We would like to explore the physics of the weak coupling limit of F-theory
in the presence of non-Kodaira fibers. This can be easily achieved without
dealing with a resolution of singularities to generate non-Kodaira fibers by
considering certain families of smooth elliptic fibrations that naturally admit
such fibers. In this way we will be able to provide the first example of a weak
coupling limit of F-theory involving non-Kodaira fibers.

Dy elliptic fibrations. In this article, we continue the work started in
[2] and explore aspects of elliptic fibrations beyond the realm of Weierstrass
models. Non-Weierstrass models provide new ways of describing the strong
coupling limit of certain non-trivial type IIB orientifold compactifications
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with brane-image-brane pairs by embedding them in F-theory. We consider
elliptic fibrations whose generic fiber is an elliptic curve modeled by the com-
plete intersection of two quadric surfaces in P3. Such fibrations are referred
to in the physics literature as Dj elliptic fibrations [3, 7, 9, 28]. An equivalent
description of the generic fiber of a D5 elliptic fibration is to see it as the
base locus of a pencil of quadrics in P3. This little change of perspective pro-
vides powerful tools to describe the singular fibers of Dj elliptic fibrations,
since pencils of quadrics are naturally classified by Segre symbols, as we will
review in Section 3. We therefore classify all the singular fibers of a smooth
Dy elliptic fibration using Segre symbols. Singular fibers of an elliptic surface
were classified by Kodaira and are described by what are now referred to
as Kodaira symbols. In the context of Dj elliptic fibrations, Segre symbols
provide a finer description of the singular fibers than the symbols of Kodaira
since they detect the degree of each of the components of a given singular
fiber. In the study of Dj elliptic fibrations, the geometric objects at play are
very classical: quadric surfaces, conics, twisted cubics and elliptic curves. It
follows that the study of Dj elliptic fibrations is reduced to a promenade in
the garden of 19th century Italian school of algebraic geometry, where all
the necessary ingredients are ready for the taking.

For Ds elliptic fibrations, non-Kodaira singular fibers appear innocently
without introducing singularities in the total space thus avoiding any reso-
lution of singularities. We will explore the physical relevance of these non-
Kodaira singular fibers from the point of view of the weak coupling limit
of F-theory[2, 40]. We will analyze some degenerations of these fibrations
and deduce non-trivial topological relations between the total space of the
elliptic fibration and certain divisors in its base. The degeneration we obtain
describes a theory of an orientifold with three brane-image-brane pairs, two
of which are in the same homology class as the orientifold. The cancellation
of the D3 tadpole provides a non-trivial relation between Euler characteristic
of the elliptic fibration and the Euler characteristic of divisors corresponding
to the orientifold and the brane-image-brane pairs. We will prove that the
same relation holds at the level of the total Chern class of these loci. We
will see that the non-Kodaira fibers indicate a certain regime in which the
orientifold and the two brane-image-brane pairs that are in its homology
class coincide.

One might think that F-theory leads only to mathematical results for
Calabi-Yau elliptic fourfolds and threefolds since these are the usually the
varieties for which F-theory is physically relevant. However, many of the
insights gained on the structure of elliptic fibrations coming from F-theory
are true without any assumptions on the dimension of the base and without
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assuming the Calabi-Yau condition [1, 2, 19, 20, 23], providing yet another
example of why string theory is a source of inspiration for geometers. There-
fore, although our considerations are inspired by F-theory, we will not re-
strict ourself to Calabi-Yau elliptic fourfolds or threefolds but will work with
elliptic fibrations over a base of arbitrary dimension and without assuming
the Calabi-Yau condition.

An historical note on pencils of quadrics and Segre symbols. The
classification of pencils of quadrics is indeed a classic among the classics with
contributions from several great mathematicians: everything we need was el-
egantly presented in Segre’s thesis on quadrics [39], where he introduced the
modern notation (Segre symbols) in his classification of collineations and
emphasised the geometrical ideas behind the classification; the main alge-
braic concepts (elementary divisors, normal forms) were developed in the
context of the theory of determinants by Weierstrass and other members of
the Berlin school (Kronecker, Frobenius); several of their results were ob-
tained earlier by Sylvester but in a less general and systematic way; Sylvester
classified nonsingular pencils of conics and quadric surfaces. The modern ref-
erence on the classification of pencils of quadrics is chapter XIII of the second
volume of the book by Hodge and Pedoe [25]. More recently, Dimca has ob-
tained a geometric interpretation of the classification of quadrics based on
the geometry of determinantal varieties and their singularities [18].

1.3. Weierstrass models in F-theory

Following its early founding papers [8, 34, 48], in F-theory, elliptic fibrations
are traditionally studied using Weierstrass models, i.e., a hypersurface in a
P2-bundle over the Type-IIB base B which in its reduced form is defined as
the zero-scheme associated with the section

Y2z — (2% + frz? + g2%),

where f and g are sections of appropriate tensor powers of a line bundle .
on B. A smooth Weierstrass model admits a unique section and only two
types of singular fibers: nodal cubics (Kodaira fiber of type I;) and cuspidal
cubics (Kodaira fiber of type IT), which in the physical theory correspond to
Abelian gauge groups. It follows that when restricted to Weierstrass models,
to realize non-Abelian gauge groups one must introduce singularities in the
total space of the fibration and then make birational modifications to allow
more interesting singular fibers to appear. As any elliptic fibration endowed
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with a smooth section is birationally equivalent to a (possibly) singular
Weierstrass model [16], the impression seems to be that one does not need
to leave the world of Weierstrass models when working on F-theory. How-
ever, there is much value in exploring non-Weierstrass models in F-theory
since the physics of F-theory is not invariant under birational transforma-
tions (as singular fibers are modified upon a birational modification). More-
over, the M-theory approach to F-theory doesn’t even require a section, so
even elliptic fibrations without a sections are physically relevant. F-theory
with discrete fluxes and/or torsion can be naturally introduced by consid-
ering other models of elliptic curves than Weierstrass models[7, 9]. This
usually requires a non-trivial Mordell-Weil group and can also be analyzed
by considering special Weierstrass models, but their expressions are usually
complicated. For Weierstrass models, singular fibers over codimension-one
loci in the base can be described using Tate’s algorithm without performing
a systematic desingularization. The resulting fibers are those classified by
Kodaira for singular fibers of an elliptic surface. Singular fibers above higher
codimension loci are not necessarily on Kodaira’s list [12, 19, 32, 33, 46] and
can even have components that jump in dimension [13, 32]. The resolution
of singularities of a Weierstrass model is not unique and different resolutions
of the same singular Weierstrass model can have different types of singular
fibers in higher codimension in the base [19, 32, 46]. Recently, this was shown
to occur even for the popular SU(5) GUTs [19]. Considering other models
of elliptic fibrations other than Weierstrass models allows for a rich spec-
trum of singular fibers without introducing singularities in the total space
of the elliptic fibration [2]. In this way, we can have F-theory descriptions
of certain non-Abelian gauge theories without having to deal with singu-
larities and their resolutions. As explained in [2], elliptic fibrations not in
Weierstrass form naturally admit weak coupling limits as well (analogous
to Sen’s orientifold limit of Weierstrass models), and provide descriptions of
systems of seven-branes admitting a type IIB weakly coupled regime consist-
ing of super-symmetric brane-image-brane configurations that would be at
best challenging to describe in the traditional Weierstrass model approach
to F-theory[2].

1.4. Other models of elliptic fibrations

We now broaden our horizons and explore the landscape of F-theory beyond
that of Weierstrass models. Our starting point is to consider the following
families of elliptic curves [26]:
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Type | ord(F') | ord(G) | ord(A) | 5 | Monodromy Fiber
I >0 >0 0 C I Smooth torus

I 0 0 1 00 ((1) 1) (Nodal curve) >Q
I, 0 0 n>1 | oo (1 n) @\.?G}@/(D

006

11 Cuspidial curve <
-1 0
0 1
>
|1 >2 3 |1 (_1 o) X

11 >1 1 2 0

0 1
v | >2 2 4 10 (1 1) %
« -1 -n » _ /®
I 2 >3 | nt6 ool () €3 ®\®
> 2 3 n+6

O-0-0-0-0

v+ >3 4 8 0 (‘11 _01> %

0 —1) @*@@@@*@*@
®

117" 3 > 9 1 (

O-O-CG-O0-6-0-0-®
Ir* >4 5 10 |0 (0 _1> @

®

Table 1: Kodaira Classification of singular fibers of an elliptic fi-
bration. The fiber of type I is special among its family I because its
j-invariant can take any value in C. The j-invariant of a fiber of type I,, or
I* (n > 0) has a pole of order n.

Weierstrass cubic :  2y% = 2 + frz + g23 in P?
Legendre cubic:  zy? = x(x — 2)(x — f2) in P2

Jacobi quartic: y? =zt + fa?z? + 2* in Pill
Hesse cubic: 2 + 2% — 23 —dayz =0 in 2

Jacobi intersection: 22 —y? — 22 =w? —2?2 —dz> =0 in P3
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where [z:y:2] (resp. [z:y:z:w]) are projective coordinates of a (weighted)
P2 (resp. P3). The coefficients f, g and d in the equations above are scalars
which we interpret as sections of a line bundle over a point. We then con-
struct elliptic fibrations by promoting the coefficients of a particular family
of elliptic curves to sections of line bundles over an arbitrary smooth compact
base variety B (of arbitrary dimension). We then consider the following nor-
mal forms of elliptic fibrations associated with the families of elliptic curves
listed above [2, 7, 9, 28|:

Es: 9’z =2+ faz + g8 in P(0oL%® L3
Er: y? =2 + f222% + gr2d + ext in P20 % e 2L?
Ee: v +2° =28 +doyz+exz? + fyz2+g2° in PO L oY)
Ds: 2?2 —y? — z(az + cw)

=w?—2%—2(dz+ex+ fy) =0 in PO s LdYL)

The Eg family is the usual Weierstrass model. A more general form of the
Weierstrass model (the Tate form), will have the fibration obtained from the
Legendre family as a specialization. The Fr, Fg and Dj elliptic fibrations are
respectively obtained from generalizations of the Jacobi quartic, the Hesse
cubic and the Jacobi intersection form. By promoting the scalar coefficients
to sections of line bundles over a positive dimensional base variety B, we
allow more ‘room’ for singular fibers to appear, and a richer geometry nat-
urally emerges. The E7, Fg, and Dsy fibrations are all birationally equivalent
to a singular Weierstrass model and the corresponding birational map is
an isomorphism away from the locus of singular fibers. Each model differs
by the number of rational sections and the type of singular fibers it admits.
This E,, nomenclature follows [2, 28, 29] and is based on an analogy with del
Pezzo surfaces®. All these fibrations have been analyzed in [2] with the ex-
ception of the Ds(~ Es) elliptic fibration. By direct inspection of the results
of [2], we observe the following:

3A del Pezzo surface of degree d admits (—1)-curves that define a root lattice of
type Fg_q4. A del Pezzo surface of degree d can be embedding in a projective space
P? as a surface of degree d. An hyperplane will cut such a del Pezzo surface along
an elliptic curve expressed as a degree d curve. A cone over an elliptic curve of
type E,, will have an elliptic singularity of type E,. A del Pezzo surface of degree
1,2 and 3 can be expressed as an hypersurface in a weighted projective P? while
a del Pezzo surface of degree 4 can be expressed as a complete intersection of two
quadric hypersurfaces in P*. The intersection with a hyperplane gives the model
discussed above. The Eg family is the usual Weierstrass model and the D family
corresponds to F5 = Ds.
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Proposition 1.1 (Fiber geometry of Eg, E; and Eg elliptic fibra-
tions). A general Eg_,, (n =1,2,3) elliptic fibration admits n sections and
its spectrum of singular fibers contains 2n distinct elements, all of which are
Kodaira fibers composed of at most n irreducible rational curves.

1.5. Dy elliptic fibrations

D5 elliptic fibrations have not received much attention in the physics litera-
ture. This is mostly because the generic fiber of a D5 fibration is a complete
intersection while in the case of Eg, E7, Eg , it is simply a hypersurface
in a (possibly weighted) projective plane. In view of the properties of the
FEy_,, elliptic fibrations for n = 1, 2, 3, one might expect that the D5 = Fg_4
elliptic fibration has an even richer geometry. As we will see in this paper,
a Dj elliptic fibration has 4 sections and admits 8 types of singular fibers
composed of up to 4 components. However, only 7 appear on the list of Ko-
daira. We will see that a general Dj elliptic fibration with 4 sections indeed
admits a non-Kodaira fiber composed of four rational curves meeting at a
point. We call such a fiber a fiber of type I;~ since it looks like a Kodaira
fiber I with the central node contracted to a point. We study the physical
significance of their non-Kodaira fibers by exploring weak coupling limits
associated with them.

Type sections Singular fibers

Eg 1 I, I

E~ 2 I, I1, 15, 111

Eg 3 I, I, Iy, II1, 15,1V

Es = Ds 4 I, 11, Iy, II1, I3, IV, 14, I}~ (non-Kodaira)

Table 2: Singular fibers of an elliptic fibration of type E,, with (9 —n) sec-
tions. We denote E5 by Ds as it is familiar with Dynkin diagrams.

1.6. Canonical form for a D5 model with four sections

In this section, we will introduce our canonical form for an elliptic fibration
of type D5 with four sections. We will ensure that the 4 sections are given
by a unique divisor composed of 4 non-intersecting irreducible components.
Each of these components is a Weil divisor and they are two by two disjoint
so that the 4 sections define 4 distinct points on each fiber.
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1.6.1. Notation and conventions. We work over the field C of com-
plex numbers but everything we say is equally valid over an algebraically
closed field k of characteristic zero. We denote by P" the projective space
of dimension n over the field C. Given a line bundle ¥, we denote its dual
by £, its n-th tensorial power by .#™ and the dual of its n-th tensorial
power by £~

1.6.2. Canonical form for a Dy elliptic fibration with four sections.
Let B be a non-singular compact complex algebraic variety endowed with a
line bundle .Z. We consider the rank 4 vector bundle

E=0pd L DL PL,

and its associated projectivization* 7 : P(&) — B. We denote the tautologi-
cal line bundle of P(&") by &/(—1) and its dual by &(1). The vertical coordi-
nates of P(&) are denoted by [x : y : z : w], where z, y, w are all sections of
0(1) ® m*Z while z is a section of €(1). We define a Dj elliptic fibration Y
to be a non-singular complete intersection determined by the vanishing locus
of two sections of €(2) ® 7*.£2. Such a complete intersection determines an
elliptic fibration ¢ : Y — B, whose generic fiber is a complete intersection of
two quadrics in P3. We also assume that the elliptic fibration has a (multi-
)section cut out by z = 0. It follows that the Dj elliptic fibration Y is given
by:

Vo Az, y,w) — zL1 (2, z,y,w) =0
' AQ(ZL',y,'LU)—ZLQ(Z,.I,y,w) =0

where Aj(z,y,w) and As(z,y,w) denote two quadratic polynomials in
Clz,y,w], while Li(z,z,y,w) and La(z,z,y,w) are linear in z,y, z,w with
coefficients that are sections of appropriate powers of 7*.% so that each of
A; — zL; for i = 1,2 is a section of 0(2) ® 7*.£2. We exclude the degener-
ate case where ()1 and Qo are proportional to each other. It follows that
fiberwise, the multisection cut out by z = 0 defines up to four points on the
elliptic fiber, corresponding to the fact each (distinct) solution the system
Ai(z,y,w) = Ag(z,y,w) = 0 determines a section of the elliptic fibration. If
Aq and As intersect transversally, we have exactly four sections. We can also
consider degenerate cases where the intersection is not transverse and would

4Here we take the projective bundle of lines in &.
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therefore lead to intersection points with multiplicities. Using non-transverse
quadrics, we can have one, two or three sections®.

For the remainder of this article, unless otherwise mentioned we only
consider the case where the elliptic fibration admits exactly four distinct
sections. In that case, without loss of generality, the D5 elliptic fibration can

be expressed as follows:

(1.1)

v 22 —y? — z(az + cw) = 0,
| w? — 2% — 2(dz +ex + fy) = 0.

This is our canonical form for a Dj elliptic fibration with four rational
sections. So that each equation defines a section of @(2) ® 7*.22, we take a
and d to be sections of 7*.%? and ¢, e and f to be sections of 7*.%:

T,1, W z ce f a,d

cerZ| o) | s | rL?

1.7. Pencil of quadrics

To study the complete intersection Y : ()1 = @2 = 0 of two quadrics, it is
useful to analyze the pencil of quadrics through Y. It is defined as follows

(1.2) Qxn P AQ1 + A2Qa, [N Xo] € PL.

The variety Y : Q1 = Q2 = 0 could equivalently be defined as the complete
intersection \1Q1 + A2Q2 = 1 Q1 + 2@ = 0 for any choice of A1, Ao, i1, 1o
such that Ajuo — Aspg # 0. The curve Q1 = @2 = 0 is common to all the
quadrics of the pencil. It is referred to as the base locus of the pencil. We
denote the symmetric matrix corresponding to a quadric polynomial ) =
> aijxixj as Q Singular fibers can be characterized by algebraic properties
of the pencil. In particular, the matrix (Ql + 7‘@2) associated with the pencil
Q1 + rQ2 has algebraic invariants known as elementary divisors that can
be used to uniquely characterize the singularities of the base locus. The
elementary divisors are obtained from the roots of the discriminant of the
pencil and the common roots of the minors of order 1,2,...,n. For a pencil
of quadrics in P3, we will consider the first, second and third minors.

® For example (A1, Ap) = (22, w?) gives a unique solution of multiplicity 4, (2 —
y?, w?) gives two solutions of multiplicity 2, and (2% — y?, w? — 2% + zy) gives three
solutions (two of multiplicity one and the other of multiplicity two).
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1.8. Discriminant of the elliptic fibration from the
pencil of quadrics

The complete intersection Q1 = Q2 = 0 defines an elliptic curve if and only
if the determinant of the quadratic form Qi + rQs (with r = :\\—f) is non-
identically zero and does not have multiple roots. In other words, we can
compute the discriminant of the elliptic fibration Y as the discriminant of

the following quartic in r:
(1.3) 4det(@1 + TQQ) = qo + 4q7r + 6gor? + 4gsr® + qurt.

One can show that the the D5 elliptic fibration determined by Q1 = Q2 = 0
has Weierstrass form y?z = 2% + Fz2? + G2% , where

F = —(qoqs — 4q1q3 + 3¢3),

(1.4) B 3 5 5
G = 2(q0q2q4 + 2919293 — ¢5 — 9043 — qiqa)-

This Weierstrass model is the Jacobian of the D5 elliptic fibration. We then
simply compute the discriminant and j-invariant via the formulas

4F3
(1.5) A=4F3+21G?,  j= 1728~

1.9. Birationally equivalent Eg model

We now obtain a birationally equivalent formulation of the fibration in which
the generic fiber is a plane cubic curve. The plane cubic curve is obtained
by projecting the space curve on a plane from a rational point. In order
to proceed, we need to choose a rational point on every fiber of Y. For
example, we can take the rational point P = [1,1,1,0] which is one of the
sections. We perform a translation y — y + x, w — w + x so that in the new
coordinate system, the point P is [1:0:0:0]. It follows that there should
be no terms in 22 in the defining equations. Indeed, after the substitution
(y — y+ x,w+— w+ x) in the defining equations of Y, we can eliminate x.
Geometrically, this is equivalent to projecting Y to the plane x = 0 from the
point P =[1:0:0:0]. The result is the following cubic:

(1.6)  (v*+ a2® + cwz)(2w + ez + f2) + (w® — dz* — fzy)(2y + cz) = 0.

where [y, w, z] are the projective coordinates of the P? defined by x = 0.
This cubic is a section of &(3) ® £3 and z = 0 admits a multisection z = 0
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of degree 3. Indeed, z = 0 cuts the cubic along the following loci
2yw(y +w) =0,

of the P! with projective coordinates [y : w]. This corresponds to the points
[y,w,2) =[0:1:0],[1:0:0]and [1: —1: 0] on the cubic curve. These points
correspond to the sections of the original Dj elliptic fibration with the excep-
tion of the point P used to define the projection. As the new elliptic fibration
is defined by a divisor of class €(3) ® £3 in the P? bundle P(0p @ ¥ & .£)
and admits three sections, we recognize it as an FEjg elliptic fibration.

We still have the same j-invariant and the same discriminant locus.
However, the fiber structure has changed. For example, the non-Kodaira
fiber 15~ located at a =c=d=e = f =0 is now a Kodaira fiber of type
IV, and the I, fiber at a = ¢ = e = 4d — f? = 0 is now a I fiber composed
of a conic and a secant.

1.10. Birationally equivalent Jacobi quartic model

An elliptic curve can also be modeled by the double cover of a P! branched
at four distinct points. For that purpose, we can use a weighted projective
plane IP’%’L1 and write the equation as

y2 = Q4(u7 ’U),

where [y : u : v] are the projective coordinates of IP’%M with y of weight 2
and v and v of weight 1 and Py(u,v) is homogeneous of degree 4 in [u : v].
The quartic Q4 is simply given by the binary quartic polynomial determined
by the polynomial of the pencil of quadrics defining the D5 elliptic fibration,
so the expression is

(1.7) y? = det(u@1 + ng),
which yields
(1.8) y? = qou’ + 4q1uPv + 6g2u”v? + dgzun® + quu’.

This elliptic fibration is then defined as the zero-scheme of a section of
0(4) ® £?, and thus is a hypersurface in the projective bundle P(0p @
Op ® Z). The projective fiber coordinate y is a section of 0'(2) ® £ while
u and v are sections of ¢'(1). Since the generic fiber is modeled by a quartic
in P%J,l’ we have an E7 model. However, compared to E7 fibrations which
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Type General condition Description
I A=0 A nodal curve (Q4 has
one double root)
II F=G=0 A cuspidal curve (Qq

has a triple root)
L | qaqf — ¢G50 = 243 + aiq1 — 3qag3q2 = 0 | A tacnode(Qs has two
double root)

II7 rank <CJ0 EC q3) =1 Two conics tangent at a
S point (@4 has a quadru-

ple root)
2T Go=q=qp=qg3=q4=0 A rational curve (in this

case a projective line) of
multiplicity 2

Table 3: Singular fibers of the elliptic fibration y? = qou® + 4qrudv +
6gouv? + 4gguv® 4+ g4v? birationally equivalent to a Ds elliptic fibration

only admit fibers of type I1,I1,I> and [11, this variant of the E; elliptic
fibration also admits a non-Kodaira fiber composed of a rational curve of
multiplicity 2 located over gy = q1 = g2 = g3 = q4 = 0. In the Dj; case (as we
will see later), this fiber would be the non-Kodaira fiber I;~ composed of four
rational curves meeting at a common point. The singular fibers can easily
be classified by analyzing the factorization of Q4 as reviewed in Table 3. For
another application of quartic elliptic curves in F-theory see [10].

Interestingly, if we introduce [Xp: X7 : X2 : X3] as projective coordi-
nates of a P2, the weighted projective space IP’%L2 is isomorphic to the cone
X1Xo = Xg in P3. The explicit isomorphism is the following:

(1.9) [u:v:y] e [Xo: X1 Xo: X3] = [uv:u? 0?1 g

If we use this map starting from the projective bundle Py 12[0p ® Op ®
£?], we get the following projective bundle P(0p & O ® Op © £?). We
can write it again as a Dj elliptic fibration corresponding to a complete
intersection of a section of ¢ (2) and 0(2) @ .£*:

X1Xs — X2 =0,
(1.10) 2 2 2 2 _
X3 — X7 — 41 X0 X1 — 62 X§ — 43 X0 X2 — qu X5 = 0.

In this expression, the fibration admits a Zs involution given by X3 +— —X3.
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1.11. Classification of singular fibers by Segre symbols

Segre Roots of A and rank of as- | Geometric description
symbol sociated quadric
[1111] 4 simple roots smooth quartic ( Ip)
[112] one double root, rank 3 | nodal quartic (/)
[11(11)] one double root, rank 2 two intersecting conics (I2)
[13] triple root, rank 3 cuspidal quartic (I1)
[1(21)] triple root, rank 2 two tangent conics (I11)
[1(111)] triple root, rank 1 double conic
[4] quadruple root, rank 3 cubic and tangent line (I117)
[(31)] quadruple root, rank 2 conic and 2 lines meeting on the
conic (IV)
[(22)] quadruple root, rank 2 two lines and a double line
[(211)] quadruple root, rank 1 two double lines
[(1111)] quadruple root, rank 0 The two quadrics coincide
[22] 2 double roots, both cubic and secant line (I3)
rank 3
[2(11)] 2 double roots, rank 3 a conic and two lines forming a
and 2 triangle(I3)
[(11)(11)] | 2 double roots, both four lines forming a
rank 2 quadrangle(/4)

Table 4: Classification of non-degenerate pencils of quadrics in P3. In the
second column, A is the discriminant of the pencil of quadrics. In the last
column, when the fiber is in Kodaira’s list, we mention its Kodaira symbol
in parenthesis.

We classify the singular fibers of a smooth Ds elliptic fibration by using
the classification of pencils of quadrics by Segre symbols. When the discrim-
inant det(Ql + TQQ) is not identically zero, we have a non-degenerate pencil
of quadrics in P3. There are 14 different Segre symbols: one corresponds to
a smooth elliptic curve, nine correspond to seven singular fibers of Kodaira
type and four correspond to non-Kodaira fibers. When the discriminant is
identically zero, we have a pencil of quadrics in P2, which admit six different
cases all corresponding to non-Kodaira fibers given by four lines meeting at
a common point. We have described this case in Table 4. When the discrim-
inant is identically zero as well as all the first order minors, we have a pencil
in P!. This gives 3 additional singular fibers in higher dimension. Once we
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have a fibration with a certain number of sections, we have more constraints
on the type of singular fibers that can occur. In particular, a smooth Dj
elliptic fibration with four sections admits eight different types of singular
fibers, including one which doesn’t appear on Kodaira’s list and consists of
four lines meeting at a common point. We will denote such a fiber by I~
since it looks like a Kodaira fiber of type I with the central node contracted
to a point. We will give a detailed classification of all possible fibers of our
canonical D5 model (with four sections) as general conditions on the sec-
tions a, ¢, d, e, f. We use the classification by Segre symbols alluded to above
which is based on the property of the matrix associated with the pencil of
quadrics, the definition of which is given in Table 4.

Figure 2: Singular fibers of a Dy elliptic fibration with four sections. There
are a total of 8 singular fibers. This includes all the Kodaira fibers with
at most 4 components and the fiber Ij~ which is not on Kodaira’s list.
Down arrows represent an increase in the number of components while up
arrows indicate a specialization from a semi-stable to an unstable fiber while
preserving the number of components of the fiber.
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Type | General conditions Descriptions
Nodal quartic
17 FeG—o Cuspidial quartic
[13]
a=c=0 Two conics inter-
or f=4d—e*>=0 secting at two dis-
ore=4(a+d)+c*—f?=0 tinct points [11(11)]
I da + c® + 2c(ere + € =0
1d (e 9 22f) ~0 A twisted cubic and
~(cret ef)" = 2epcf = a secant [22]
&=e&=1, cfe#0
@=c=d=0 Two tangent conics
or f=4d—e®> =4a—e*> =0 [1(21)] &
ore=4a+2+ f2=4d—-c*-2f>=0
qQ 91 492 (g3 . .
rank = 1 which gives
111 <CJ1 q2 g3 C_I4> &
(4a + ) + 32a* +2¢* = 32c*d =0 A twisted cubic and
(4a + 3c¢?)? — 16¢1c%e = 0 a tangent [4]
(4a — c?)? — 16e2cf =0
e2=e=1,cfe£0
a=c=4d—(e£ f)?=0 A conic and two
I3 or f=4d —e?> =4a+ c® +2ec=0 lines meeting as a
or e =4a+c?F2cf =4d — f2F2cf =0 | triangle [2(11)]
a=c=d=ex f=0 A conic meeting
IV |orf=d—a=4d—e>=4a—c*=0 two lines at the
ore=4d—3c> =4a+3*=f+c=0 same point [(31)]
Four lines forming
o A 02 2
Iy a=c= €2f =dd—e" =" =0 a quadrangle [(11)
orda+c-=d=e=f=0 11
(11)]
. L Four lines meeting
To a=c=d=e=f=0 at a point

Table 5: Singular fibers of a Dj elliptic fibration with the canonical form
given in Equation (1.1). Here ¢y = ¢?, ¢1 = %(4(1 — ), o= %(d —a), g3 =
1(—4d — f? 4+ €?) and ¢4 = f2.
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1.12. Non-Kodaira fibers

An attractive feature of the F-theory picture is that it proposes an elegant
dictionary between singular fibers and physical properties of type-1IB com-
pactifications. The dictionary is well understood in codimension-one in the
base where singular fibers determine the gauge group of the gauge theory
living on the seven-branes. More work needs to be done to understand the
meaning of the matter representations and Yukawa couplings. In the road
to a better understanding of the physics of F-theory, there is no hiding
from non-Kodaira singular fibers. As shown in [19], non-Kodaira fibers can
show up very naturally in important models such as the SU(5) Grand Uni-
fied Theory. The physical meaning of non-Kodaira fibers can be explored
in many different ways. One can ask how they modify the matter content
and the Yukawa couplings of the gauge theory associated with a given ellip-
tic fibration. This is the road explored recently by Morrison-Taylor [33] in
the context of F-theory on Calabi-Yau threefolds and by Marsano-Schafer-
Nameki in the context of the small resolution of the SU(5) model [31]. It is
also worthwhile to investigate weak coupling limits of F-theory in presence
of non-Kodaira fibers. A general Dj elliptic fibration may admit many possi-
ble non-Kodaira fibers. Some are higher dimensional fibers for example when
the two quadric surfaces which cut out the fiber coincide. The non-Kodaira
fibers that are one dimensional are presented in Figure 3.

12 ‘2 |1 4
X+

2
[ [(22)] [111] [21] [(A)1] 3] [(21)]

1 1 1
ETEEN
2T T 7

— = =

Figure 3: One dimensional non-Kodaira fibers appearing in Dy elliptic fi-
brations.

1.13. Orientifold limits of D5 elliptic fibrations

The weak coupling limit of F-theory was first introduced by Sen [40] in
the case of a smooth Weierstrass model. Sen’s limit gives a Zo type I1B
orientifold theory. Weak coupling limits for Eg and Er elliptic fibrations were
obtained in [2] where a geometric description of the limit was also presented:
a weak coupling limit is simply defined by a transition between a semi-stable
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fiber and an unstable fiber (semi-stable fibers admit an infinite j-invariant
while the j-invariant of an unstable fiber is “%” and so is undefined).

Since Ds elliptic fibrations admit a wide variety of singular fibers, we
then have many possible ways in which to explore weak coupling limits.
A simple example of a weak coupling limit for Djy elliptic fibrations can
be obtained by considering the transition Is — III. We realize the weak
coupling limit associated with Io — I1] via the following family:

22 —y? —ez(xz +nw) =0

1.11) Y (Ip — III):
(L11) ¥l ) {wQ—x2—z[hz+(¢1+¢2)w+(¢1—¢2)y = 0.
The discriminant and j-invariant then take the following form at leading
order in e:

A~ P (h = ¢) (h — 63) (h® = X°),
(1.12) . h*

TR =) (h =) — )

It is easy to see that at € = 0, the first quadric splits into two planes. Each
of these two planes will cut the second quadric along a conic. The two conics
intersects at two distinct points defining in this way a Kodaira fiber of type
I5. Such a fiber is semi-stable and admits an infinite value for the j-invariant.
At e = h = 0, the two conics are tangent to each other and therefore define
a Kodaira fiber of type 111, which is an unstable fiber with an undefined
j-invariant of type “8”. After a glance at the j-invariant and discriminant
it is immediately clear that at h = 0, we have an orientifold [2, 40]. Taking
the double cover p : X — B, where X is a hypersurface in the total space of
& given by (? = h, we see that the other components h — ¢?, h — ¢3 and
hn? — x? of the discriminant split into brane-image-brane pairs in the double
cover wrapping smooth loci mapped to each other by the Zo involution
¢ — —(. All together we have one orientifold and 3 brane-image-brane pairs
wrapping smooth divisors:

O  (orientifold) : (=0
Brane spectrum at D14 (brane-image-brane) : ¢ £( =0
weak coupling : | Dy (brane-image-brane) : ¢g ¢ =0
D3y (brane-image-brane) : x +({n =0

We note that the orientifold O and the brane-image-brane D14+ and Dsy are
all in the same homology class: [O] = [D14] = [Da+]. The orientifold limit we
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present corresponds to the transition I — I11 when the brane-image-brane
does not coincide with the orientifold. One can think of each ¢; (i = 1,2) as
a modulus controlling the separation between the brane D;, and its image
D;_. When ¢; = 0, D;+ coincides with the orientifold. If we specialize to the
case ¢1 = ¢o = 0 we obtain the following family:

22 —y? —ez(xz +nw) =0
*—\ . ’
(1.13) Ye(Io = I57) {w2—x2—hz2:0.
The discriminant and j-invariant then take the following form at leading
order in e:

h2
e(hn? = x?)

Here, both brane-image-brane pairs D;+ coincide with the orientifold. Inter-
estingly, in that case, the fiber above h = 0 when ¢ = 0 is not of type 111
(two rational curves meeting at a double point) but become the non-Kodaira
fiber I;~ (four lines meeting at a point).

In both cases Iy — I11 and Iy — I, since [O] = [Di4] = [Doy] =L
and [Ds;] = [D3_] = L? we expect a universal tadpole relation of the form
2]

(1.14) A~ e’ =X, G~

puc(Y) = ps (4¢(0) + ¢(D34))

where we recall that ¢ is the elliptic fibration projection and p is the orien-
tifold projection. We verify this relation indeed holds in Section 6.4. Taking
the integral of both sides of the Chern class identity above immediately
yields the numerical relation predicted by tadpole matching between type
1IB and F-theory:

x(Y) = 4x(0) + x(Ds+).

When Y is a Calabi-Yau fourfold, this relation ensures that the D3 brane
tadpole has the same curvature contribution in F-theory as in the type I1B
weak coupling limit.

1.14. Euler characteristic

In F-theory, a ‘Sethi-Vafa-Witten formula’ is an expression of the Euler
characteristic of an elliptic fibration in terms of Chern numbers of its base.
Such formulas are particularly useful in the context of F-theory compactified
on Calabi-Yau elliptic fourfolds since the Euler characteristic of the fourfold
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enters the formula for the D3 tadpole. The first example of such a formula
was actually obtained by Kodaira for an elliptic surface. In [41], Sethi, Vafa
and Witten computed the Euler characteristic of a Calabi-Yau fourfold in
the case of an Eg elliptic fibration over a smooth base[41]:

Sethi-Vafa-Witten : x(Y) = 12¢1(B)c2(B) + 360¢3 (B).

Klemm-Lian-Roan-Yau then obtained general results for Calabi-Yau elliptic
fibrations of type E, (n =8,7,6) over a base of arbitrary dimension [28].
Aluffi and Esole have obtained more general relations without assuming
the Calabi-Yau conditions for F,, (n = 8,7,6) elliptic fibrations of arbitrary
dimension [2]. These relations express the simple geometric fact that the
Euler characteristic of the elliptic fibration is a simple multiple of the Euler
characteristic of a hypersurface in the base. Their general result at the level
of Chern classes is recalled in §5 (Theorem5.2). Sethi-Vafa-Witten formulas
are then immediately obtained by integrating both sides of such formulas. A
similar formula can be written in great generality for a fibration with generic
fiber a plane curve of degree d where the total space of the fibration is a
hypersurface in a P? bundle [22], see also [12]. For Ds elliptic fibrations we
prove the following

Theorem 1.2. Let ¢ : Y — B be a D5 elliptic fibration, then

AL(3+5L)

W“B%

pic(Y) =

d
Z 5+ k)LFey_i(B), d=dimB
k=1

where L = ¢1(Z) and x(Y') denotes the topological Euler characteristic of Y.

In particular, if the Ds elliptic fibration is a Calabi-Yau fourfold, we
recover the result of Klemm-Lian-Roan-Yau [28] for the Euler characteristic
of a Dj elliptically fibered Calabi-Yau fourfold:

x(Y) = 12¢1(B)ea(B) + 36¢3(B).
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2. Geometry of quadric surfaces

In this section, we review some basic facts about the geometry of quadric
surfaces. We will also describe the irreducible curves in such surfaces. We
will pay a special attention to the degeneration of an elliptic curve in a
quadric surface. Some important transitions that we want to describe are the
degenerations of an elliptic curve into two conics or into a twisted cubic and
a generator. Such transitions provide a good geometric insight to understand
the systematic classification by Segre symbols as presented in Table 4.

Definition 2.1. A quadric is a projective variety defined as the vanishing
locus in P of a degree two homogeneous polynomial @) (a quadratic form).
The polynomial () can be given in terms of a (n +1) x (n+ 1) symmetric
matrix Q as Q = xTQx where 27 = [0 : 21 : : Tp] is the transpose of
(the projective coordinates of P™). In this notation, we consider x to be a
column vector.

Degeneration of conics and quadric surfaces. The quadmc hypersur-
face Q = :I:TQ:E is non-singular if and only if the matrix Q is non-singular.
The determinant and the minors of the defining matrix Q can be used to
describe the degenerations of the quadric Q. For example, a quadric in P?
is usually referred to as a conic. It degenerates into a pair of lines if the
determinant of its defining matrix is zero. Furthermore, these two lines co-
incide if all the first minors® of the defining matrix vanish. In the same way,
a non-singular quadric surface in P? is isomorphic to the Hirzebruch surface
Fg = P! x P'. A quadric surface degenerates into a cone if the determinant
of its defining matrix is zero. The quadric surface degenerates into a pair
of planes if all the first minors of its defining matrix are zero and the two
planes coincide if all the second minors vanish as well.

Segre embedding and double ruling . A smooth quadric surface in
P3 is isomorphic to the Hirzebruch surface Fy = P! x PL. It can always be
expressed as

T124 — 2203 = 0,

where [z1 : m2 : x3 : 24] are projective coordinates of P3. The isomorphism
between a quadric surface and the Hirzebruch surface Fy is given explicitly

6The first minors are the determinants of sub-matrices of Q) obtained by removing
one row and one column. See Definition 3.4 on page 611.
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by the Segre embedding. Let us denote the projective coordinates of Fy =
P! x P! as [s:t] x [u: v]. The Segre embedding is then

Fo—P3:[s:t] x[u:v] = [z : 22 23 24] = [s0: s0: tu: to].

A quadric surface admits two different rulings given by each of the two P
factors in Fy. Generators of one these rulings is called a line of the quadric
surface. A generator for the first (resp. second) ruling is given by a linear
equation in [u : v] (resp. [s: t]) and is parametrized by [s: t] (resp.[u : v]).
Two distinct generators in the same ruling do not intersect while two distinct
generators in different rulings intersect at a unique point.

Picard group and bidegree. The Picard group of a nonsingular quadric
surface is Z ® Z and each of its two generators corresponds to a fiber of one
of its two rulings. These two classes intersect at a point and have zero self-
intersection. It follows that curves lying on a nonsingular quadric surface
are classified by their bidegree. A curve of bidegree (p,q) is given by a bi-
homogeneous polynomial of degree p in [s : t] and ¢ in [u : v].

Intersection numbers and genus. A curve of bidegree (p,q) meets a
generator of the first (resp. second) ruling at p (resp. q) points. A smooth
curve of bidegree (p1,q;) intersects a smooth curve of bidegree (p2,q2) at
P1G2 + p2q1 points. A smooth curve of bidegree (p,q) has genus g = (p —
1)(¢ — 1). We see immediately, that rational curves (curves of genus 0) are
those with p =1 or ¢ = 1. All the curves of bidegree (p,q) with p > 2 or
q > 2) are hyperelliptic (genus 2 or higher) while the curves of bidegree
(2,2) are elliptic (genus 1).

Special curves. Certain curves play a central role in our analysis. A line
of P? contained in the quadric surface is a rational curve of bidegree (1,0)
or (0,1). It is called a generator of the quadric surface since it is a fiber of
one of the two rulings of the quadric surface. A rational curve of bidegree
(1,1) is a conic. A rational curve of bidegree (1,2) or (2,1) is a space cubic
also called a twisted cubic. A curve of bidegree (2,2) is an elliptic curve.

An elliptic curve in a quadric surface has bidegree (2, 2). We want to ana-
lyze the possible degeneration of a regular elliptic curve within its homology
class.

Degeneration into Kodaira fibers. If the elliptic curve degenerates
without splitting into several components, it can be a quartic nodal curve
(Kodaira fiber I7) or a quartic cuspidal curve (Kodaira type IT). When the



Ds elliptic fibrations 609

Irreduc1jb le curves in Bidegree Genus | Degree
a quadric surface
Generator (line) (1,0) or (1,0) 0 1
Conic (1,1) 0 2
Twisted cubic (=space cubic) | (1,2) or (2,1) 0 3
Elliptic curve (2,2) 1 4
General rational curve (1,p) or (p,1) 0 p+1
Hyper-elliptic curve p>2andqg>2| g>1| d>14

Table 6: Curves in a smooth quadric surface.

elliptic curve degenerates by splitting into multiple curves, we can use the
bidegree to explore the different options. We recall that a curve of bidegree
(1,1) is a conic, a curve of bidegree (2,1) or (1,2) is a twisted cubic and a
curve of bidegree (1,0) or (0,1) is a generator. We can see from the relations

(2,2) =(1,0) + (1,2), (2,2) =(1,1) +(1,1),

that an elliptic curve can degenerate into a generator and a twisted cubic
or into two conics. In both cases, the configuration consists of two rational
curves meeting at two points (Kodaira fiber I3) or at a double point when
the two rational curves are tangent to each other (Kodaira fiber I17). Since
the twisted cubic could split into a conic and a line and a conic can split
into two lines, the previous system can degenerate further into a triangle
composed of a conic and two generators

(2,2) =(1,1) + (1,0) + (0,1).

This corresponds to a Kodaira fiber of type I3. If the three curves intersect
at a common point we have a Kodaira fiber of type IV. Since a conic can
split into two lines, an elliptic curve can also degenerate into a quadrangle
(Kodaira fiber of type I4) composed of four generators, two from each ruling:

(2,2) =(1,0) + (0,1) + (1,0) + (0, 1).

Non-Kodaira fibers. Using the intersection of two quadrics in P3 to
model an elliptic curve, there are also several non-Kodaira fibers that can
naturally occur. When the elliptic curve degenerates into two conics, the two
conic can coincide giving a double conic. Two generators of the same ruling
in the I, fiber can coincide giving a chain of rational curves with multiplicity
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1 —2 — 1. Such a configuration can specialize further into a multiple fiber of
type 2 — 2. Finally if both quadric surfaces degenerates into cones sharing
the same vertex, we can have a fiber composed of four lines meeting at a
point. For example, the configuration Iy composed of four lines forming a
a chain of four lines can degenerate into four lines meeting at a point ( a
4-star), which we denote by I~ . If some of these four lines coincide we can
have a bouquet of rational curves with multiplicity 1 —1—-2,2—-2,1—3 or
4. The bouquet 2 — 2 could also be obtained in a smooth quadric surface, by
taking the intersection with a double plane tangent to the quadric surface.

Non-equidimensional degeneration. When an elliptic curve is mod-
elled by the intersection of two quadrics in P3, the two quadrics could co-
incide given a double quadric surface as a singular fiber. A further degen-
eration would give two intersecting double planes. Two double planes could
also coincide to give a quadruple plane.

3. Segre’s classification of pencil of quadrics

The classification of pencils of quadrics follows the work of Segre [39] and re-
lies on algebraic methods developed by Weierstrass in his studies of quadratic
forms. We refer to [11] and chapter XTI of [44] for a pedagogic and geometric
introduction. A purely algebraic approach is presented in chapter XIII of the
second volume of the classical book by Hodge and Pedoe[25]. The proofs of
the classical results on quadric surfaces stated in this section may be found
in these references.

Definition 3.1 (Pencil of quadrics). Given two quadrics @1 and Q2 in
P", we can consider the pencil Q := A1 Q1 + A\aQ2 where [\ : Xo] € PL.

The vanishing of the minors of the defining matrix of the pencil @ also
have a nice geometric interpretation given by the following lemmas:

Lemma 3.2 (Characterization of singularities of the complete in-
tersection of two quadrics). If the intersection of two distinct quadrics
Q1 and Q2 has a singular point p, then either

e the determinant of their pencil is identically zero and both quadrics are
singular at p

e or the determinant of their pencil is identically zero and there is a
unique quadric of the pencil that is singular at p
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e or the determinant of their pencil is not identically zero and there is
a unique quadric (A1 Q1 + XoQ2) that is singular at p and (A1 : Ao| is
a multiple root of the determinant det(A\ Q1 + AaQ2).

In order to describe the singularity of a pencil of quadrics, it is useful to
introduce the following definitions.

Definition 3.3 (s-Cones). A variety C' in P" is said to be a cone with
vertex O if for any point o in O and any point x in C, the line ox joining the
two is contained in C. When a cone admits a vertex which is a linear space
of dimension s, the cone is said to be an s-cone. It is common to abuse the
expression by simply calling a 0-cone a cone.

Definition 3.4 (s-minors). A s-minor (or a minor of order s) of a matrix
M is the determinant of a matrix obtained by removing s rows and s columns
from M.

When the determinant of the pencil is not identically zero, the pencil
is said to be non-degenerate. The singular fibers defined by non-degenerate
pencils can be characterized using the following lemma:

Lemma 3.5 (s-cones in a pencil of quadrics). The discriminant of a
non-degenerate pencil of quadrics in P™ has in general (n + 1) distinct roots,
each corresponding to a 0-cone. Assume that a root r; of the determinant of
the pencil is also a root of all its minors up to order s; (where s; >0) but
does not vanish for at least one minor of order (s; + 1). In such a case, the
quadric is a s;-cone with vertex a s;-dimensional linear space and directrix
a smooth quadric in a linear subspace of dimension (n — 2 — s;).

Lemma 3.5 is central to the classification of pencils of non-degenerate
quadrics in P". In order to describe the classification of non-degenerate pen-
cils, we first introduce some notations that organize the essential data con-
tained in the previous lemma. Given a pencil of quadrics determined by a
matrix A\ Q1 + X2Qa, we denote by £;; the minimal multiplicity of a common
root r; of the determinant and all the minors of )\1Q1 + )\2@2 up to order
Jj < (n+1) . We denote by s; > 0 the smallest integer such that ¢; s, = 0.
Following Weierstrass, it is more efficient to introduce the differences e;; of
successive £;;:

eij="Vlijo1—V0i; >0, j=1,...,8;.
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We have m; = Z;i? e;; and

p
(3.15) A, = det(MQ1 + XaQ2) = H()\l)\l,i — Ao )™
=1
P s
= [T T A — Aadai)ee.
=1 j=1

In order to classify pencils of quadrics, following Weierstrass, it is useful
to introduce the concept of elementary divisors and characteristic numbers.
Segre symbols provide an organizational tool for characteristic numbers of
a pencil:

Definition 3.6 (Elementary divisors, characteristic numbers and
Segre symbols). The factors (r — ;)¢ are called elementary divisors and
the exponents e;; are called the characteristic numbers. They are efficiently
organized using Segre symbols:

(3.16) T014rQ. — [(e1s; - 761751) T (ep,lv T 76177513)]7

where €;1 < e;2---¢e;5,. All the characteristic numbers associated with the
same root are enclosed in parentheses while the set of all roots is enclosed in
square brackets. The sum of the characteristic number enclosed in the same
parentheses gives the multiplicity of the corresponding root.

The following theorem provides the classification of non-degenerate pen-
cils of quadrics using Segre symbols (we list in Table 4 the classification of
non-degenerate pencils of quadrics in P?). The proof can be found in [25].

Theorem 3.7 (Characterization of pencils of quadrics by Segre
symbols). Two non-degenerate pencils of quadrics in P™ are projectively
equivalent if and only if they have the same Segre symbol and there is an au-
tomorphism of P' identifying their roots of identical characteristic numbers.

In order to analyze the singular fibers of Dj elliptic fibrations, we need to
determine when the determinant of the pencil of quadrics has multiple roots
and we need to determine the rank of the matrix associated with the pencil
as well. The determinant of the pencil is a quartic. It admits a double root
if and only if its discriminant A vanishes. It admits a triple root if and only
if I and G both vanish. Finally, the quartic admits a quadruple root if and
only if (g4, 3, q2,q1) is proportional to (g3, q2,q1,q0). The quartic has two
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double roots if and only if it is the square of a quadric, which implies that
q4q% — q%qo = 2q§’ + qul — 3q4q3q2 = 0. These classical results are proven for

example in chapter 1 of [6],

which are summarized in Table 7.

Multiple roots

General conditions

One double root

A=0

One triple root

F=G=0

Two double roots

9193 — 4390 = 2¢3 + qiq1 — 3qaq3q2 = 0

One quadruple root

rank <q4 @ q1>:1
g3 42 q1 q0

Table 7: Multiple roots for the quartic qo + 4qir + 6qor? + 4qzr® + qur?.

4. Analysis of the Djs elliptic fibrations with four sections

The matrix of the pencil describing our canonical choice for a Dj elliptic
fibration with four sections is

M—X 0 0 — 2

P) (&

A A 0 —A\ 0 —22f

(4.17) AMQ1 + A2Q2 = 0 0 Ay o
—2e —Rf L\ —MNa-\d

Computing the discriminant, we get
(4.18) 4det(A\Q1 + A2Q2) = qoA] + 4q1 AT A2 + 6g2ATA3 + 4gsAi A3 + qu)s,

where

2 1

9
Qo=c, q= Z(4a—02), @ =3(d-a),

(4.19) 1
q3 = Z(—4d—f2+62)7 a1 = f>.

The rank of the matrix (A1Q1 + )\QQQ) of the pencil will be useful to de-
termine the singular fibers. It is given by the following lemma which is also
summarized in Table 8. The proof of this lemma is by direct computation
of the cofactors of different order.

Lemma 4.1 (Rank of the pencil of quadrics). The rank of the matriz
in Equation (4.17) is never less than 2. The matriz has rank 3 for a general
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Rank of Qr General conditions
3 A=0
e=4(a+d)+—f2=0 (A —A=0)
2 or a=c¢c=0 (A2 =0)
or f=4d—e?>=0 (A1 =0)
Oorl never

Table 8: Rank of the pencil of quadrics.

point of A = 0. The rank is 2 whene =4(a+d)+c2 — f2=0o0ora=c=0
or f =4d — e? = 0 and the corresponding roots are respectively A1 — Ao, Aa
and 1.

Remark 4.2 (Absence of fibers with components of higher mul-
tiplicity or dimension). With our choice of canonical model for a Ds
elliptic fibration with four sections, we have seen that the rank is never
lower than 2. It follows from a direct inspection of Table 4 that no sin-
gular fibers of our model admit Segre symbols of type [1(111)], [(211)] or
[(1111)]. They correspond respectively to a double conic, two double lines
and a double quadric and they all have rank 2 or lower. Moreover, we cannot
have type [(22)] since it never happens that all the minors of order 2 have a
double root. The symbol [(22)] corresponds to two lines and a double line.
All these fibers ([1(111)], [(211)], [(1111)] and [(22)]) are those that are of
higher dimension or that have components with multiplicities. We see that
our choice of fibration has eliminated them from the spectrum of singular
fibers.

4.1. Kodaira symbols vs Segre symbols

Following the previous remark, we are then left with the 9 symbols [112],
[11(11)], [13], [1(21)], [22], [(11)(11)] , [4], [(31)] and [(211)]. Some of these
symbols lead to the same type of Kodaira fibers. This is because in P? a
line, a plane conic and a twisted cubic are all rational curves (birationally
equivalent to a P!):

a line ~ conic ~ twisted cubic ~ P'.
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For example type [22] and type [11(11)] both give Kodaira type Iz (two
rational curves intersecting at two distinct points):

22], [11(11)] = I

For [22] the two rational curves consist of a twisted cubic and a line and
for [11(11)], the two rational curves are both conics. In both cases, when
the two rational curves become tangent to each other, we have a fiber of
Kodaira type II1. In terms of Segre symbols, it corresponds to type [1(21)]
and [4], respectively for two tangent conics and the twisted cubic and its
tangent line.

[1(21)), [4] = III.

All the remaining fibers can be simply understood by further degenerations
of the two conics. If one of the conic degenerates into two lines crossing away
from the other conic, we have type Kodaira type I3 (three rational curves
intersecting as a triangle). If the two lines intersect on the conic, we have
Kodaira type IV (three rational curves meeting at a point). If both conics
degenerate into two lines, we obtain a fiber of Kodaira type I (four rational
curves intersecting as a quadrangle).

4.2. Pencils of rank 3

There are four types of pencils of rank 3. Two of them correspond to ir-
reducible fibers: the nodal quartic (Segre symbol [112]) and the cuspidal
quartic (Segre symbol [13]). The two others are composed of two irreducible
components (Segre symbol [22] and [4]): a twisted cubic and a projective
line. The different between the two reducible fibers of rank 3 is the way the
two components intersect: when they intersect at two points, we have the
Segre symbol [22] and when the line is tangent to the twisted cubic we have
the Segre symbol [4].

4.3. Pencils of rank 2

When the quadric Q1 + r@Q2 has rank 2, it means that all the first minors are
zero but at least one second order minor is non-zero. When the rank is two for
r =T9, it is useful to use @1 + roQ2 as one generator of the quadric and @
or Q2 as the other. Since for r # 0 we have Q, = 1/rQ1 + Q2 = Q1 + rQ2,
therefore we define QD as Q2. Using our choice of elliptic fibration, we have
seen that rank(Q,) =2 if and only if r =0 or r =00 or » = 1. In these
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three cases, we can take the defining equation of the elliptic fibration to be
Q1=Q2=0 (for r=0o0r r=o00) and Q1 + Q2 = Q1 =0 for r = 1. In all
these cases, each of the two planes will cut the second quadric along a conic
and the two conics will intersect at two points. That is type I3 on Kodaira’s
list while the Segre symbol is [11(11)]. If the two intersecting points coincide,
it means that the line defined by the intersecting of the two planes intersects
the second conic at double points. This is only possible if it is tangent to
the conic. The corresponding Segre symbol is [1(21)]. The two conics are
then also tangent to each other and we have Kodaira type I11. If one of the
conic splits into two lines, it means that one of the plane is defined by two
directrices passing by the same point of the second quadric. This corresponds
to the Segre symbol [2(11)] and Kodaira type I3 since the second conic and
the two directrices form a triangle. When the second conic and the two
directrices intersect at the same point, we have the Segre symbol [(31)] and
Kodaira type IV (a conic and two lines meeting at a point). When the two
quadrics split into planes, we have the Segre symbol [(11)(11)]: four screw
lines forming a quadrangle. This corresponds to Kodaira type 1. We could
consider cases, where some of these lines coincide, but it does not happen
in our case. The ultimate case, is the singular case where all of the lines
intersect at the same point. This is not degenerate pencil and it is not in
Kodaira list. We denote it by ;.

5. Sethi-Vafa-Witten formulas

In F-theory, the Euler characteristic of an elliptic fibration ¢ : Y — B plays
an important role in the cancellation of the D3 tadpole in the case of com-
pactification with Calabi-Yau fourfolds [41]. It also appears in the condi-
tion for the cancellation of anomalies of six dimensional theories result-
ing from a compactification of F-theory on a Calabi-Yau threefold [23]. By
the Poincaré-Hopf (or Gauss-Bonnet) theorem, the Euler characteristic of a
smooth variety may be computed as the degree of its total Chern class, i.e.,
x(Y) = [¢(Y). As such integrals are invariant under proper pushforward of
the integrand, we can compute the Euler characteristic Y solely in terms of
Chern classes on the base B once a proper pushforward ¢.c(Y) is computed,

. )= [ e = [ euetr)

An expression of the Euler characteristic of the fibration in terms of topo-
logical numbers of the base is commomly referred to as a Sethi- Vafa- Witten
formula in the F-theory literature since these three authors produced the
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first example of such a formula in their analysis of elliptically fibered Calabi-
Yau fourfolds of type Eg [41]. Klemm-Lian-Roan-Yau have obtained general
results for Calabi-Yau elliptic fibrations of type E, (n = 8,7,6) over a base
of arbitrary dimension [28]. In the case of elliptic fourfolds, they obtained
the following

Theorem 5.1 ([28, 41]). Let Y — B an elliptically fibered Calabi-Yau
fourfold respectively of type Eg, Er7, Eg and Ds, then

Es: x(Y) = 12¢1(B)ca(B) + 360c3 (B),
E7: x(Y) = 12¢1(B)ca(B) + 144¢3(B),
Ee: x(Y) = 12¢1(B)ca(B) + 72¢3(B),
Ds: x(Y) = 12¢1(B)e2(B) + 36¢3(B).

It was later emphazised by Aluffi-Esole [1, 2] that it is much more effi-
cient to consider Sethi-Vafa-Witten formulas for the Euler characteristic as
numerical avatars of a much more general relation valid at the level of the
total homology Chern classes. In that form, the Sethi-Vafa-Witten formula
for E,, (n =6,7,8) fibrations takes a particular compact form valid over a
base of arbitrary dimension and void of any Calabi-Yau hypothesis [2]. From
these relations one can easily glean the simple geometric fact that the Euler
characteristic of E, (n = 6,7,8) elliptic fibrations is but a simple multiple
of the Euler characteristic of a hypersurface in the base:

Theorem 5.2 ([1, 2]). Let ¢ :Y — B be an elliptic fibration of type E,
(n =6,7,8). Such an elliptic fibration is the zero locus of a section of the line
bundle 0(m) @ T L™ on the total space of the (weighted) projective bundle
7 : P(&) — B, where m is respectively (3,4,6) for (Eg, E7, Eg). Then

mL
1 —I—mLC

puc(Y) = (10 —n) (B) = (10 = n)e(Zm),

where Zy, is a smooth hypersurface in the base defined as the zero locus of a
section of the line bundle L™ . Moreover, the elliptic fibration is Calabi- Yau,
if and only if c1(Z) = c1(B).

We then immediately arrive at the following

Corollary 5.3. Let ¢:Y — B be an elliptic fibration of type E, (n =
6,7,8) over a base of dimension d. Then
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d
x(Y) = (10 — n) Z DAY mL)e ey, 1 (B),
k=1

where m = 3,4,6 respectively for the Eg, E7 and Eg cases.

5.1. Sethi-Vafa-Witten for Dj elliptic fibrations

In this subsection, we obtain a Sethi-Vafa-Witten formula at the level of the
total Chern class for a smooth Dj elliptic fibration without any Calabi-Yau
hypothesis and over a base of arbitrary dimension. We start by computing
the pushforward of the total Chern class of the Dy elliptic fibration:

Theorem 5.4. Let ¢:Y — B be a Ds elliptic fibration and L = ¢1(Z).
Then

AL(3+5L)

(5.20) oY) = eI

C(B) = 60<Z2) — 6(2272),

where Za denotes a divisor in the base of class 2L and Zso denotes a codi-
mension 2 subvariety of the base of class (2L)2.

Proof. Let H = ¢1(0(1)) and let L denote both ¢;(.Z) and 7*¢;(.Z). Using
adjunction along with the exact sequences

0 — Tpeyp = TP(E) - 7°TB — 0
0— ﬁ]p(g) > ER0O(1) — T[p(g)/B —0

we get that

(1+H)1+H+ L)?
(1+2H +2L)2
 (1+H)(1+ H+ L)*(2H + 2L)?

B (1+2H + 2L)?

ive(Y) = *(TB)N[Y]

m*c(B),

where i : Y < P(&) is the inclusion. Thus
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(1+H)(1+H+ L)*2H + 2L)2> «(B)

(5.21) pxc(Y) = m, < (1+2H + 2L)?

by the projection formula. Then by the pushforward formula of [22] we get
that

(5.22) (1+ H)(1+H+ L)*(2H +2L)*\  4L(3+5L)
. T =
(14+2H +2L)? (14 2L)?
_ 6 2L 412
O 1+2L (1+2L)2
from which the theorem follows. |

Exploiting the fact that [, ¢(Y) = [5 p«c(Y), we obtain the following

Corollary 5.5. The Euler characteristic of a smooth Ds elliptic fibration
over a base of dimension d is

M&

(5.23) X(Y) = 6x(Z2) — x(Z2,2) "5+ k)LFcq_i(B).

In particular

dim B=1, x(Y)=12L,
(5.24) dim B =2, x(Y)=12Lc; — 28L2,
dim B =3, x(Y)=12Lcy — 28L%c; + 64L3.

To recover the formula for the Euler characteristic of a D5 Calabi-Yau
fourfold as given in Theorem 5.1 and more generally consider the physical
relevance of Djs fibrations, we need the following

Proposition 5.6. Let ¢:Y — B be a Ds elliptic fibration. Then Y is
Calabi-Yau if and only if c1(£) = c1(B).

Proof. Again, using adjunction and the exact sequences listed at the outset
of the proof of Proposition 5.4, we get that

(5.25) Ky =7 (L — c1(B)),

where L = ¢1(%). Thus Ky =0 if and only if L = ¢1(B). O
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Using the well known fact any Calabi-Yau fourfold Y has arithmetic genus
xo(Y) =2 = Leci1(B)ea(B) (as we will see more explicitly in the next subsec-
tion), we obtain the following simplification of the formula for the topological
Euler characteristic of a D5 Calabi-Yau fourfold:

(5.26) x(Y) = 288 + 36¢1(B)>.

Thus x(Y") only depends on the first Chern class of the anti-canonical bundle
of B. Moreover, if ¢§(B) is odd, x(Y) is divisible by 12 but not by 24.

5.2. Todd class of a Dj5 elliptic fibration

In the case Y is a projective variety, the following proposition provides a
simple expression for the Todd class of an elliptic fibration of type Ds:

Proposition 5.7. Let ¢ : Y — B be a Ds elliptic fibration and let Z be a
hypersurface in B such that Op(Z) = £. Then

(5.27) 0.Td(Y) = (1—e I)Td(B) = x(Z,0%).

Proof. As Todd classes are multiplicative with respect to exact sequences
just as Chern classes are, we proceed as in the proof of Proposition 5.4.
Similar considerations yield

H(H + L)3(1 o 6(_2H_2L)2)
(1—e )1 —eH-L)3

i Td(Y) = 7 Td(B)

where i : Y < P(&) is the inclusion. So again, computing ¢, 7'd(Y) amounts
to computing

. (H(H HLP(1 - e<—2H-2”2>> (1)

(1—eH)(1—eH-L)3

The first equality of the proposition follows by the pushforward formula of
[22]. Keeping in mind that L = [D], the second equality (1 — e *)Td(B) =
X(Z,0z) follows from the Hirzebruch-Riemann-Roch theorem. More pre-
cisely, the structure sheaf sequence 0 — Op(—2) — Op — Oz — 0 gives a
locally free resolution of &y . The Hirzebruch-Riemann-Roch formula then
gives

X(Za ﬁZ) = X(B7 ﬁB) - X<B7 ﬁ(_Z))
=Td(B) — e AITd(B) = (1 — e 5)Td(B). O
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Remark 5.8. The relation we obtained for the pushforward of the Todd
class of a Dj elliptic fibration actually is valid for the E,, (n =6,7,8) cases
as well, which can be used to check directly that c¢;(B)ca(B) =24 for a
Calabi-Yau fourfold of type D5, Eg, E7 and Eg. In Appendix A, we present
a more general derivation valid for any flat genus-g curve fibration using the
Grothendieck-Riemann-Roch theorem, from which the D5, Eg, E7 and Eg
cases will be but a corollary.

5.3. Relations for the Hodge numbers

Again, using the pushforward formula of [22] and the fact that ¢ (B)ca(B) =
24 for the base of a Calabi-Yau E,, fourfold, one easily obtains Sethi-Vafa-
Witten formulas for the arithmetic genera y; and y2 of Calabi-Yau F,
fourfolds thus giving us linear relations on the non-trivial Hodge numbers
of such a fourfold Y by Hirzebruch-Riemann-Roch:

x1(Ds) = —40 — 6¢1(B)3,  x2(Ds 04 + 24c1(B)3,

(Ds) (B) (D5) =2
(5.28) x1(Eg) = —40 — 12¢1(B)3,  x2(Fg) = 204 + 48¢1(B)3,
X1 (E7) = —40 — 2401(3)3, XQ(E7) =204 + 9681(3)3,
x1(Eg) = —40 — 60c1(B)?, x2(Es) = 204 + 240¢; (B)?3,
where
x1(Y) = rV2(Y) = BMH(Y) — 1A(Y)
and

x2(Y) = h**(Y) = 2hM2(Y)

by Hirzebruch-Riemann-Roch. We note that since Y is a Calabi-Yau four-
fold, we have h10(Y) = h20 = p39 = pA0(Y) — 1 = 0 and therefore h!1(Y)
=by(Y) and 2hM2(Y) = b3(Y) (where b;(Y) denotes the ith Betti number).
As such, all that is needed to compute the Hodge numbers of such a fibra-
tion are its second and third Betti numbers along with the formulas above.
So if the second and third Betti numbers can be computed as functions of
topological numbers of the base B, all non-trivial Hodge numbers would
then be dependent solely on the topology of the base.

6. Weak coupling limits

The weak coupling limit of F-theory was first introduced by Sen[40], estab-
lishing a clear connection between F-theory and type I1B orientifold theories.
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The procedure involved smoothly deforming the F-theory elliptic fibration
until all the fibers become singular. In particular, the fibers consisted only
of nodal curves over a dense open subset U of the base B, and cuspidal
curves on the (closed) complement B ~\ U which was where the type 1IB
orientifold was to be placed. As nodal curves have j-invariant of co (which
are a special case of semi-stable curves in algebro-geometric parlance), and
cuspidal curves have an undefined j-invariant of “%” (which are said to be
unstable curves), in [2] a purely geometric description of a weak coupling
limit for an arbitrary elliptic fibration was abstracted from the special case
of Sen’s limit by choosing a specialization from a semi-stable fiber to an
unstable fiber, and then deforming the elliptic fibration until the stable fiber
lies over a dense open subset of the base and the unstable fiber lies over
the complement. Thus the more singular fibers an elliptic fibration admits
the more possibilities you have to choose from for semi-stable to unstable
specializations, and so more potential weak coupling limits to explore (for
a detailed description of this program, we again refer the interested reader
to[2]). Ds fibrations with their rich structure of singular fibers admit a total
of ten stable to semi-stable transitions, providing potentially ten avenues in
which to pursue weak coupling limits. In particular, in the case of D5 we
obtain for the first time a weak coupling limit involving a non-Kodaira fiber,
and show that it leads to a type IIB orientifold theory with three (distinct)
pairs of brane-image-branes. We also verify the “universal tadpole relation”
corresponding to this type IIB configuration, which is a Chern class iden-
tity involving the Chern classes of the elliptic fibration, and Chern classes
of divisors in the base corresponding to the orientifold and D-branes. As in
[1, 2], the identity holds without any Calabi-Yau hypothesis and over a base
of arbitrary dimension. Furthermore, we show that the type IIB orientifold
configuration with three brane-image-brane pairs is the only configuration
satisfying the universal tadpole relation in the Dj case.

6.1. Sen’s limit

In the seminal work of Sen[40], the weak coupling limit of F-theory was first
introduced as an orientifold limit of a smooth elliptic fibration in Weierstrass
form (or an Eg fibration):

Y i y? =2+ faz? + 28

Here, Y sits in a P2-bundle and f and g are appropriate sections of line bun-
dles over the base. Such a fibration has nodal fibers over a generic point of
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the discriminant hypersurface A : (43 + 27¢% = 0) and the nodal curve spe-
cializes to a cusp over f = g = 0. To obtain a degenerate fibration in which
all fibers are singular (and so realize the type IIB scenario), we parameterize
the discriminant using the traditional normalization of the cusp:

he (f,9) = (—3h% —21%),
leading us to define the degenerate fibration
Yy, : v =a® — 3h%x — 203,

The fibers of Y}, over points O : (h = 0) are all cuspidal type II fibers (and
so unstable), and the fibers over B \. O are all nodal type I; fibers (and so
semi-stable). To obtain Y}, as a smooth deformation of Y, we perturb f and
g by adding independent sections multiplied by a (complex) deformation
parameter € to obtain a family of generically smooth fibrations Y}, (¢) in such
a way that Y}, is the flat limit of Y} (€) as e — 0:

Vi(e) 1 y?z = 2% + foz? + g2°
(I = I1){ f = —3h>+en
g = —2h3 + ehn + >x.

Sen’s Weak

(6.29) coupling limit :

We can associate with this limit a double cover of the base
(6.30) X:¢*~h=0,

which is branched over the hypersurface O : h = 0. The discriminant and
j-invariant take the following form at leading order in e:

h4

6.31 A ~ Eh%(n? + 12k o~
(6.31) eh*(n” +12hx),  j Z0E + 12y

We then pullback the limiting discriminant Ay, : h?(n? 4+ 12hy) = 0 via the
projection p : X — B of the double cover to obtain divisors in X correspond-
ing to the orientifold and the D7-brane:

(6.32) p* A i +12¢%x) = 0.

The orientifold is then located at O : { =0 and the D7-brane wraps the
locus D : % + 12¢%x = 0. Tadpole matching between F-theory and type IIB
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predicts that
(6.33) 2x(Y) = 4x(0) + x(D),

where the LHS of Equation (6.33) corresponds to the F-theory tadpole and
the RHS of (6.33) corresponds to the type IIB tadpole. As D has generalized
Whitney umbrella singularities (in [1] it was descriptively referred to as a
Whitney D7-brane), its Euler characteristic must be defined in an appropri-
ate manner, as singular varieties admit several generalizations of topological
Euler characteristic. Let 7 : D — B be the normalization of D composed
with the projection to B and let .S : ( =71 = x = 0 be the pinch locus of D
in X. Then taking

(6.34) X(D) = x(D) — x(9)

turns out to be a notion of Euler characteristic which satisfies (4.5), as shown
in [1]. Furthermore, it was also shown in [1] that the tadpole relation holds
at the level of total homology Chern classes (with pinch locus correction
as in 6.34), without any Calabi-Yau hypothesis on Y and over a base of
arbitrary dimension. Indeed, the physical considerations leading to (6.34)
provide a powerful ansatz from a purely geometric perspective, as it is not
at all obvious why such a general Chern class identity should hold.

6.2. Geometric generalization

Weak coupling limits were generalized to other fibrations not in Weierstrass
form such as E7 and Ejg fibrations in [2]. In the weak coupling limit, the
discriminant factorizes as follows

A=h"T"A Ay Ay, G~ R (A A Ay), 0<n <4

where h is a section of .Z2. One can also define a double cover of the base
branched over h = 0. This is the variety ¢ : X — B such that X : (% = h.
This is known as the orientifold limit of F-theory. The orientifold is the
invariant locus of X under the involution { — —(. This is the divisor ( = 0 in
the double cover and it projects to A = 0 in the base. If n = 0 the spectrum
is composed of an orientifold and D7-branes wrapping the divisors A,;. If
n > 0, we have a bound state of an orientifold and n brane-image-brane
pairs wrapping the same divisor ( =0 in the double cover and there are
also branes wrapping the divisors A;. The divisors can take the following
particular shapes:
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1) An invariant brane. When A; does not depend on h.

2) A Whitney brane. When A; : > — hx = 0, it has the structure of
a cone. But in the double cover, its pullback has the structure of a
Whitney umbrella p*A : n? — (?x = 0. Such a divisor has double point
singularities along the codimension one loci n = ¢ = 0. The singularity
enhances to a cuspidal-like singularity at the codimension two loci
¢ =n = x = 0. In F-theory, the Euler characteristic of such a singular
divisor is defined in [1, 15]. One first normalize the divisor and then
takes its stringy Euler characteristic.

3) A brane-image-brane. A; : n? — hyy? = 0. This is a specialization of
the Whitney brane with y = ¢2. In such a case, when we go to the
double cover, we have a brane-image-brane pair ¢*A; = D;y + D;_
with D;1 : n+ (¥ = 0. Such a brane-image-brane pair is not in the
same homology class as the orientifold. If A; = h — 7%, we obtain in
the double cover a brane-image-brane pair p*A : D; + D;_ with D;y :
n £ & = 0. Such a brane-image-brane is in the same homology class as
the orientifold and coincide with it when n = 0.

Given a weak coupling limit, the physics of D-branes requires that

8[0] =) _[Dy].

k

This condition is naturally satisfied with an elliptic fibration since A is a
section of .#12. Moreover, comparing the contribution of curvature to the
D3 tadpole in type IIB and in F-theory, we have the tadpole relation

2x(Y) = 4x(0) + > _ x(Dy).
k

In the case of E,, (n =8,7,6), this physical requirement was shown in [1, 2]
to be related to a more general relation true at the level of the total Chern
class:

20.¢(Y) = 4p,c(0) + Y _ puc(Dy).
k

In the next section, we will present the first example of a weak coupling
limit of a Dj elliptic fibration.
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6.3. A Ds limit

D5 elliptic fibrations with four sections have a total of 8 types of singular
fibers with a rich structure of enhancement. It is easy to see (e.g. by glancing
at Figure 1) that they naturally lead to 4 43 + 2 + 1 = 10 different types
of transitions from stable to semi-stable fibers:

(6.35) I — I I IV, I,
(6.36) Iy = II1,1V, 1§,
(6.37) Is = 1V, Iy,

(6.38) I — I

As we have expressed the fiber by their Kodaira notation, it is important
to keep in mind that some of these Kodaira fibers (namely, Iy and II7)
correspond to several non-equivalent Segre symbols.

We will present a limit defined by the specialization Iy — I'I1, which
enhances further to an I~ fiber, i.e., the non-Kodaira fiber consisting of a
bouquet of four P's meeting at a point. A fiber of type I» can be realized
by two conics intersecting at two distinct points (Segre symbol [11(11)]) or
by a twisted cubic meeting at secant [22]. In the same way, a fiber of type
I11 can be realized by two conics tangent at a point (Segre symbol [1(21)])
or by a twisted cubic and a tangent line (Segre symbol [4]). In the case at
hand, the fiber I is realized by two conics meeting at two points and the
fiber 111 is realized when the two conics become tangent to each other. To
be specific, the two conics will be obtained by allowing the quadric Q1 to
degenerate into two planes. The intersection of each of these planes with
Q2 will give one of the two conics. The intersection of the two planes is a
line which generally intersects the second quadric at two points, which are
the points of intersection of the two conics. However, when the line becomes
tangent to the second quadric surface, the two conics are tangent to each
other and gives a fiber of type III (Segre symbol [1(21)]). The degeneration
can be simply expressed by the following conditions

a=¢ex, c=en d=h, e=¢1+ ¢, [f=¢1— P2,

where € is the deformation parameter. We obtain the following family of
fibrations:

22 —y? — ze(xz +nw) =0

(6.39) Yi(e) : {w2 — 2% — z[hz + (¢1 + ¢2)x + (¢1 — ¢P2)y] = 0.
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In the flat limit of Y}, (¢) as € — 0, we obtain a degenerate fibration Y}, whose
fibers over B . (h = 0) are of type I5 (realized by the Segre symbol [11(11)]:
two conics meeting transversally at two points), the fibers above O : (h = 0)
are generically of type III (realized by the Segre symbol [1(21)]: two conics
tangent at a point), and the fiber enhances further (inside O) to an I~ fiber
(i.e., the non-Kodaira fiber consisting of a “bouquet” of four P's meeting
at a point) when ¢; = ¢o = 0, satisfying necessary conditions for a weak
coupling limit as established in [2]. The discriminant and j-invariant then
take the following form at leading order in e:

A~ ER2(h— ) (h — ¢3) (h> — P,
(6.40) , ht
A=) (h =) (hm® —x2)

We see from this expression that as € — 0, the j-invariant will diverge to
infinity, which ensures that the generic fibers will be semi-stable.

This tells us that A = 0 is the location of an orientifold in the base and
(h — %), (h — ¢3) and (hn? — x?) will pullback to brane-image-brane pairs
in a double cover of the base. We then consider the double cover of the base
p: X — B, where X is a hypersurface in the total space of .Z given by

X :¢2=h,

where ¢ is a section of .Z. The fact that j ~ h* tells us we have a pure
orientifold residing at O : (( = 0). To locate the varieties upon which the
D7-branes wrap, we pullback the limiting discriminant Ay, : (h2(h — ¢3)(h —
$3)(hn? — x?) = 0) via p to obtain the location of the D7-branes:

PFAR  CHCH+ 1) (¢ — d1) (¢ + B2)(C — d2)(Cn + x)(¢n — x) = 0.

We then see that we have three pairs of brane-image-branes intersecting
the orientifold O : (¢ = 0):

Dip:Cx¢1 =0, Dar:(Et¢p2=0, Dsr:(nEtx=0.
We note that Dyt and Do are in the same homological class as the orien-

tifold O while D3y are in the class 2[O]. Tadpole matching between F-theory
and type IIB predicts the following relation

(6.41) 2x(Y) = 4x(0) + 4x(D) + 2x(D3) = 8x(0) + 2x(Ds),
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where D and D3 are divisors in X of class [D] = [D14+] = [D2+| = L and
[D3] = [D34] = 2L. Not only does relation (4.12) indeed hold, we show in
the next subsection that relation (4.12) can be obtained by integrating both
sides of the following Chern class identity:

(6.42) puc(Y) = pu(4¢(0) + e(D3)).
6.4. Universal tadpole relations

As the Chern class identity (4.13) holds without any Calabi-Yau hypothesis
on our Dj elliptic fibration ¢ : Y — B or any restrictions on the dimension
of B, in [2], such an identity was coined a “universal tadpole relation”. We
classify such universal tadpole relations corresponding to configurations of
smooth branes arising from the weak coupling limit of a D5 model and find
that there is only one such relation, namely (4.13), corresponding to an ori-
entifold and three brane-image-brane pairs. Intersetingly, in [2], it was shown
that FE; fibrations admit a unique universal tadpole relation corresponding
to an orientifold and one brane-image-brane pair and FEg fibrations admit
a unique universal tadpole relation corresponding to an orientifold and two
brane-image-brane pairs. The fact that D5 fibrations seem to stand next in
line to the E7 and Fjg cases respectively as they admit a unique universal tad-
pole relation corresponding to an orientifold and three brane-image-branes
is compelling, as E7, Eg and Ds fibrations admit 2=14+1, 3 =2+ 1 and
4 = 3 + 1 sections respectively.

A universal tadpole relation for an elliptic fibration is generically of the
form:

(6.43) 20.c(Y) = ps (Z C(Dz)> )

where the D;s are divisors of class a;L in X corresponding to orientifolds
and/or D-branes, and L = p*c1(%). As the (pullback) of the discriminant

locus is of class 12L, we necessarily have Z a; = 12. Now a general divisor
D of class aL (a € Z) has Chern class

al alL 1+ L
6.44 D) = X) = *c(TBYN[X
(6.44) (D) = 37X 1+aL<1+2LPC( ) H)’
thus

aL(1+L) 2aL(1+ L)

(6.45) puc(D) = c¢(TB)N2[B] = ¢(B)

(1+aL)(1 +2L) (1+aL)(1 +2L)
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by the projection formula. Since we know ¢.c(Y) by Proposition 5.4, a
universal tadpole relation (after canceling factors of ¢(B)) for a D5 model
then takes the following form:

AL(3+5L) 1+1L 2a;L

6.46 pu— .
(6.46) (1+20)2 ~ 1+2L 4 1+al

To classify all such relations (if they exist), we retrieve the 77 partitions of
the number 12 and simply plug them into (4.17) and hope for the best. It
turns out that only one partition does the job, namely 14+1+1+1+ 1+
1+ 1+ 1+ 2+ 2, which corresponds precisely to the universal tadpole rela-
tion arising from the weak coupling limit we found in the previous subsection
([O] = [D] = L and [D3] = 2L):

(6.47) 20.c(Y) = pi(4c(O) + 4¢(D) + 2¢(D3)).

Integrating both sides of (4.18) yields the numerical relation (4.12) predicted
by tadpole matching between F-theory and type IIB. We record our findings
in the following

Proposition 6.1. Let o : Y — B be a D5 elliptic fibration. Then Y admits
a unique universal tadpole relation corresponding to the Chern class iden-
tity (4.18). Furthermore, the universal tadpole relation is realized via the
specialization Io — I11.

Remark 6.2. With the exception of the four transitions I} — (II,I11,
IV, I;™), all other transitions are specializations of Iy — I1I. So we can
expect to find other weak coupling limits satisfying the tadpole condition as
well. We present some examples for each case.

6.5. A Weak coupling limit with a non-Kodaira fiber

By specializing the limit Iy — 111, we can define a configuration correspond-
ing to the transition Iy — I~ . The specialization is ¢ = ¢ = 0, and gives

h2
I = I : Ao hé(hn? — 2 o~ .
2 0 € ( n X )7 J 62(h772_X2)
We see that two of the brane-image-brane pairs that we had in the case
Iy — II1 are now wrapping the same divisor as the orientifold. For that
specialization, in the weak coupling limit € — 0, the generic fiber is of type
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I5 and it specializes to a fiber of type Ij~ over the orientifold. All together
we have an orientifold and 2 pairs of brane-image-branes on top of it and an
additional pair of brane-image-brane on &1+ x = 0.

If we let only one of the two brane-image-brane pairs to coincide with
the orientifold (say we specialize to ¢1 = 0), we have a transition Iy — I'V.

h3
e(hn? = x?)’
At weak coupling we have a brane-image-brane pair on top of the orientifold

(D1£ =0 :£=0) and two other brane-image-brane pairs, namely Doy :
Exgpo=0and D3 :EnEtx =0

L= IV:Axhh— ¢ (> —x?), j~

6.6. Other limits

6.6.1. Io — III. We will have the same discussion if we consider the
following limits which are also of the type Iy — II1, but involve different
choices of what the rational curves that form the fiber I5 are:

P a=3(f?—c—4d) + 5x,
1 1
= 1(¢1 + 2), ¢ = 3(61+ ¢2),
(6.48) :%624—6)(, d:%(02+2f2—h),
e=3(d1—d2), f=2em,  |e=en [=3(d1— ).

Both lead to the same limit as before
A oc h?€(h— ¢7)(h — 63) (h” = X*),
. h*
J~ .
€2(h — ¢1)(h — ¢3)(hn? — x?)

We can then perform a specialization to Io — IV and I — I .
6.7. Weak coupling limits, an overall look

The brane configurations at weak coupling limit satisfy the condition 8[O] =
> [D;] and the tadpole matching conditions that compare the contribution
of curvature in type IIB and in F-theory: 2x(Y) = 4x(0) + >_, D;. When
this condition holds, the G-flux in F-theory should be completely accounted
for by the D7-brane fluxes in the weak coupling limit. Fluxes are present in
the orientifold limit for example in presence of a brane-image-brane away
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from the orientifold. A brane-image-brane coincides with the orientifold only
if they are in the same homology class. It is interesting to look at the results
of the weak coupling limits of Dj fibrations in the continuity of the weak
coupling limits of E, (n =8,7,6) fibrations. One will see a pattern. For
example, a E, (n=28,7,6,5 and E5 = Dj) elliptic fibration can describe
up to (n — 8) brane-image-brane pairs, it has (9 —n) sections and admits
singular fibers with up to (9 —n) components. In particular, one of them
is a fiber of type Ig_,. Their weak coupling limits that satisfy the tadpole
condition are:

Model Type Whitney brane | Brane-Image-brane
Eg Il — .[2 8[0]
E7 I — 11 6[0] [O]
Er Io — II1 4[0]
Eg Iy — 111 [0], 3]0]
E6 I2 — IV [O], 3[0}
Ds | I, —=III [0], [0], 2[0]
Ds Ih —» IV 0], [0], 2[0]
Ds | I —1; 0], [0], 2[0]

Table 9: Geometric weak coupling limit and spectrum. In this table [O]
is the homology class of the orientifold in the double cover of the base of
the elliptic fibration. In the two column, the branes are identified by their
homology class. The Whitney branes are always singular with an equation
of the type n? — (?x = 0. The brane-image-brane are obtained as the factors
of a Whitney brane with y = 1?. So they are given by 1 £ 19 = 0. When
1 is just a constant, the brane-image-brane pair is constituted of branes in
the same homology class as the orientifold.

Eg (I; — II): This is the original example of a weak coupling limit
obtained by Sen. The configuration satisfying the tadpole condition
corresponds to an orientifold and a Whitney brane D (in the homology
class 8[0]). To satisfy the tadpole condition, the singularities of the
Whitney brane have to be taken into account. The appropriate way
to do it is to introduce new Euler characteristic x,(D) [1, 15]. The
tadpole condition is 2x(Y) = 4x(O) + x,(D).

E; (Ia — IIT): An orientifold and a brane-image-brane pair Dy with
each branes in the homology class 4]0O]. Each brane is smooth and the
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configuration satisfies the tadpole condition. This is the only configu-
ration that satisfies the tadpole relation with only smooth branes. The
tadpole condition is x(Y) = 2x(0) + x(D).

E; (I) — II): This is the another configuration that satisfies the
tadpole condition for a FE; elliptic fibration. It corresponds to the
transition of a nodal curve to a cusp, just like the original Sen’s
limit. However, with the E7 fibration, it leads to an orientifold O,
a brane-image-brane pair Di+ with each brane in the same homol-
ogy class as the orientifold ([D;] = [O]) and a Whitney brane Dj in
the homology class [Ds] = 6[O]. The tadpole condition is 2x(Y) =
4x(0) 4+ 2x(D1) + Xo(D2).

Eg (Is — IIT): The fiber I3 is constituted by a conic in P? and a secant
line. The fiber 11 is the limit in which the secant line becomes tan-
gent to the conic. At the weak coupling limit, we get an orientifold and
two brane-image-branes pairs, one pair consists of two branes D4 in
the same homology class as the orientifold and the other pairs involv-
ing two branes Doy in the homology class [Dsy] = 3[O]. The tadpole
condition is x(Y) = 3x(O) + x(D2).

E¢ (I — IV): This is the specialization of the previous configura-
tion when over the orientifold, the fiber II1 is replaced by a fiber
1V obtained by a degeneration of the conic into two lines. Physi-
cally, this happens when the brane-image-brane pair D+ composed
of two branes in the same homology class as the orientifold coin-
cide with the orientifold. The tadpole condition is unchanged x(Y) =

3x(0) + x(Da).

Ds (Io — III): This configuration was obtained by using two conics
meeting at two points and becoming tangent to each other in the
orientifold limit. In view of the many ways we can define the two conics
there are at least 3 different ways to obtain this configuration. It leads
to an orientifold and three brane-image-branes pairs D4, Do+ and
D3y with D14 and Doy constituted of branes in the same homology
class as the orientifold and the third pair is constituted of branes D34
in the homology class [D3] = 4[O]. The tadpole relation is x(Y) =

4x(0) + x(Ds).
Ds (I3 — IV'): This is a specialization of the previous configuration

when one of the brane-image-brane pairs D14 or Do, coincides with
the orientifold. The fiber IV is constituted by a conic and two lines all
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meeting at a common point. It can be seen as the limit of the previous
case when over the orientifold, one of the conic splits into two lines.
The tadpole condition is unchanged: x(Y') = 4x(O) + x(D3).

Ds (I — I ): This is the first example of a weak coupling limit
involving a non-Kodaira fiber. It is a specialization of the previous
configuration when the two brane-image-branes pairs D14 and Doyt
which are in the same cohomology class as the orientifold actually
coincide with it. The tadpole condition is unchanged: x(Y) = 4x(0O) +

X(Ds).

7. Conclusion

In this paper, we have studied the structure of elliptic fibrations ¢ : Y — B
of type D5 with a view toward F-theory. The generic fiber of a Dj elliptic
fibration is a smooth quartic space curve of genus one modeled by the com-
plete intersection of two quadrics in P2. In the canonical model we consider,
the elliptic fibration is endowed with a divisor intersecting every fiber at four
distinct points. These four points defines naturally four (non-intersecting)
sections of the elliptic fibration.

A generic smooth Dj elliptic fibration admits a rich spectrum of singular
fibers composed at most of four intersecting rational curves as summarized
in Figure 2. The classification of these singular fibers is a well studied prob-
lem of classical algebraic geometry that is more efficiently reformulated in
terms of pencils of quadrics in P? and their corresponding Segre symbols
as reviewed in Section 3 and sumarized in Table 4. A Ds elliptic fibration
admits fibers that are not in the list of Kodaira. We have reviewed them
in Figure 3. These non-Kodaira fibers are always located over loci in codi-
mension two or higher in the base. In our canonical model, there is only
one non-Kodaira fiber, namely the fiber that we call Ij~ composed of four
lines meeting at a common point. We have also computed several topological
invariants of Dj elliptic fibrations like the Euler characteristic, their total
Chern class and the Todd class over a base of arbitrary dimension void of
any Calabi-Yau hypothesis.

We have also analyzed birational equivalent models of the Ds elliptic
fibration leading to Fj elliptic fibrations and a modified version of the Fr
elliptic fibration. While the Fg birational equivalent model has only its usual
I, 11,15, 111 and IV Kodaira singular fibers [2], the E7 birational equiva-
lent model admits on top of its usual Iy, II, I, I1] Kodaira fiber (see [2])
an additional fiber which is not in Kodaira list and which is composed of a
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double conic. An E7 model can always be expressed as a Dj elliptic fibra-
tion with one of the two quadric surfaces being rigid. In that framework,
the non-Kodaira singular fiber corresponds to a Segre symbol [1(111)] (see
Figure 3). The non-Kodaira fiber I~ of our canonical D5 model is mapped
through the birational equivalence to a fiber of type IV of the Eg model
and the double conic of the new E7; model. This illustrates how birationally
equivalent models can have different fiber structures.

The classification of the singular fibers of a Ds elliptic model can be
used to define interesting gauge theories. This will require specializing the
model in order to have certain singular fibers with multiple nodes appearing
over codimension-two loci in the base. If the base is at least of dimension
two, this will automatically imply the presence of enhancement of singular
fibers in codimension two and three. Such enhancements do not necessarily
increase the rank of the fiber as can be seen by analyzing Figure 2. In view
of the singular fibers, the candidate non-Abelian gauge groups are SU(2),
SU(3) and SU(4).

The list of singular fibers can also be used to determine different weak
coupling limits for Ds elliptic fibrations. Indeed, weak coupling limits are
characterized by a transition from a semi-stable fiber to an unstable one
[2]. In the case of our canonical model, such transitions can be seen in
Figure 2. Following the point of view started in [1, 2], we work over a base
of arbitrary dimension and without imposing the Calabi-Yau condition. In
this regard, one can consider the physics of F-theory as an inspiration to
study surprising aspects of the geometry of elliptic fibrations that would be
hard to think of otherwise. It is an impressive fact that conditions that are
used to understand the physics of elliptic fibered Calabi-Yau fourfolds and
threefolds and the properties of seven branes end up being true for elliptic
fibrations over arbitrary bases and without actually requiring the Calabi-
Yau condition. The most fascinating example is probably the geometry of
the weak coupling limit of Ds elliptic fibrations.

In the Ds case, we have presented explicit weak coupling limits lead-
ing to a type IIB orientifold theory with a Zs orientifold and three brane-
image-brane pairs, two of which are in the same homological class as the
orientifold. We have shown how to construct cases for which a brane-image-
brane pair coincides with the orientifold, and in the extreme case where both
of the brane-image-brane pairs coincide with the orientifold we obtain a non-
Kodaira fiber I;~ on top of the orientifold. In every case, we have shown
that a universal tadpole relation holds for the defining elliptic fibration over
a base of arbitrary dimension without imposing the Calabi-Yau condition.
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Tadpole conditions in F-theory come from equating the curvature contribu-
tion of the D3 branes in type IIB and in F-theory. When tadpole relations
are satisfied, the G flux in F-theory corresponds to the flux in the type I1B
orientifold theory. In recent works on phenomenological applications of F-
theory, models admitting a non-trivial Abelian sector in their gauge group
are the center of much attention. Such models are expected to be generated
by brane-image-brane configurations living in the same homology class as
the orientifold.

There are many interesting aspects of the physics of Dj elliptic fibra-
tions that we have not discussed in this paper and that we hope to address
soon. For example, the specialization to non-trivial Mordell-Weil groups has
interesting connections with extra U(1)s in the gauge group. As Dj elliptic
fibrations admit multiple sections, one can easily model non-Abelian gauge
theories with a non-Abelian sector of type SU(4) x SU(2). It would be inter-
esting to study these gauge theories in detail for theories both in four and
six space-time dimensions. In the case of a compactification to a six dimen-
sional theory, the cancellation of anomalies in the presence of a non-trivial
Mordell-Weil group would be an interesting case to analyze in detail. Ds
elliptic fibrations provide simple yet non-trivial models to study such gauge
theories.
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Appendix A. Pushforward of the Todd class

In this appendix, we compute the pushforward of the Todd class of a fibration
p:Y—B

of genus g curves via Grothendieck-Riemann-Roch. Though we have com-
puted this more directly in the case of a Dj elliptic fibration, the power of
Grothendieck-Riemann-Roch will enable us to compute the pushforward of
the Todd class for any genus-g curve fibration (modulo assumptions made
below) ¢ : Y — B from which the case of a D5 fibration is but a corollary.
A special role will be played by the relative dualizing sheaf of the fibration
wy/B.

To invoke Grothendieck-Riemann-Roch (as well as Grothendieck dual-
ity), we assume that the fibration ¢ :Y — B is given by a map that is
both proper (i.e. closed varieties map to closed varieties) and flat (which
ensures that all fibers are of constant dimension and constant arithmetic
genus). The varieties Y and B are assumed to be smooth. We first recall
Grothendieck-Riemann-Roch:

Theorem A.1 (Grothendieck-Riemann-Roch). Let ¢:Y — B be a
proper map between smooth varieties and F be a coherent sheaf on'Y . Then

(A1) @« (ch(F) Td(Y)) = ch(p1 F)Td(B),

where Td(X) is Todd class of a variety X and ch(F) is the Chern character
of the sheaf F.

We will prove the following

Theorem A.2 (Todd class of a genus g curve fibration). Lety:Y —
B be a proper and flat morphism between smooth projective varieties such
that the generic fiber of ¢ is a curve of genus g. Then

(A.2) . Td(Y) = (1 - chlpuy, ) Td(B),

where wy/p = wy @ *wY, is the relative dualizing sheaf of the fibration.
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Proof. As we wish to compute ¢, Td(Y) for Y fibration of genus-g curves,
we take F = Oy since ch(Oy) = 1. Then by GRR we get

(A.3) 0. Td(Y) = ch(g) 6y)Td(B).

By definition, 0y = >_,<o(—1)"Rip.(Oy ), where R'p, denotes the higher
direct image functors 7. Since fibers of ¢ are curves, by the relative di-
mensional vanishing theorem we get that Ri¢,0y = 0 for i > 1. For a flat
fibration of genus g curves, R'¢ 0y is a locally free sheaf (and so coherent) of
rank g. Moreover, by definition RVp,0y := ¢.(0y) = Op (any function on
Y is necessarily constant on the fibers as the fibers are projective varieties),
thus

(A.4) 0. Td(Y) = ch(Op — R'p.0y)Td(B).

Since Ry, Oy is a locally free sheaf of finite rank and ¢ is flat, we can use
Grothendieck duality to get that

(A5) R'e.0y = [R¢.(0y ® WYlB)]V = p.(Oy ® WY/B)V = [SD*WY/B]va

where wy,p is the relative dualizing sheaf of the map ¢ : Y — B and the
second equality follows from the definition of R". The theorem then follows:

(A.6) o Td(Y) =ch(Op — Lp*w}\ﬁ/B)Td(B)
=(1- ch(go*w}\ﬁ/B)Td(B). 0

When the total space Y is smooth, the relative dualizing sheaf is given
by the formula wy/p =wy @ [gp*wB] Y In particular, for D5, Eg, E7 and Eg
fibrations® we have wy = ¢*(.Z ® wp) (or equivalently Ky = ¢*(c1(L) —
c1(B)) so that wy g = ¢*.Z, thus the pushforward of their respective Todd

"Rip,F is the right derived functor for ¢,. It is defined as the sheaf associated
with the presheaf U — H' (o™ (U), Fl,o-1(1)-

8More concretely, in the F; cases the total space of the fibration is a hypersurface
in a projective bundle of the form 7 : P[0 & L* & £*2] — B, with Y the zero
locus of a section of 0(3) ® 7*.£™. Using the adjunction formula, we get that
wy/p = LM%, I, Er and Eg fibrations correspond to the cases (a1, az,m) =
(2,3,6), (a1,a2,m) = (1,2,4) and (a1, a2, m) = (1,1, 3) respectively. So in all these
cases, we have m — a; — az = 1 and therefore wy, g = &£ for E; (i = 8,7,6) elliptic
fibrations. In the Dj case, we have a projective bundle P[0 ¢ ¥ & ¥ & Z] and YV
is the complete intersection of two divisors given by sections of @(2) ® 7*.Z2. It
follows that wy,p is also Z.
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classes will all be equal. More generally, we can say that for any elliptic
fibration Y such that Ky = ¢*(c1(%) — c1(B)) we necessarily then have
that wy,p = ¢*Z, giving us that R, 0y = £V by arguments given above.
Putting things all together we get that

(A7) 0. Td(Y) = ch(0p — £V)Td(B) = (1 — e 1)Td(B)

Remark A.3. It isimportant to notice that the line bundle . that appears
in the D5, Fg, Bz and Eg elliptic fibration is closely related to the structure
of the elliptic fibration. If the fibration admits a section, we can consider the
birationally equivalent Weierstrass model zy? = x3 + Fxz? + G23 written in
the projective bundle P[0p & .£? @ .¢3] and F and G are sections of .£*
and .Z0 respectively. The discriminant locus of the fibration is then a section
of 2. When there is no torsion class in the Picard group Pic(B) of the
base B, this is enough to define .Z uniquely for a given elliptic fibration
¢ Y — B admitting a section. The Picard group is torsion free if and only
if Hy(B,Z) is trivial. For example, when B is a Fano threefold, Pic(B) does
not admit any torsion.

We can interpret this result geometrically by introducing a divisor Z of
B such that . = Op(Z). Using the exact sequence 0 — Op(—Z2) — Op —
Oz — 0 along with additivity of the Chern character on exact sequences, we
get that ch(0p — £V) = ch(0z). Using Hirzebruch-Riemann-Roch, we get
ch(0z)Td(B) = x(Z,0z) and therefore

(A.8) e Td(Y) = x(Z,07).
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