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Wonderful compactifications in

quantum field theory

Marko Berghoff

In [3] it was shown how so-called wonderful compactifications can
be used for renormalization in the position space formulation of
quantum field theory. This article aims to continue this idea, using
a slightly different approach; instead of the subspaces in the ar-
rangement of divergent loci, we use the poset of divergent sub-
graphs as the main tool to describe the whole renormalization
process. This is based on [16] where wonderful models were stud-
ied from a purely combinatorial viewpoint. The main motivation
behind this approach is the fact that both, perturbative renormal-
ization and the model construction, are governed by the combi-
natorics of this poset. Not only simplifies this the exposition con-
siderably, but also allows to study the renormalization operators
in more detail. Moreover, we explore the renormalization group in
this setting by studying how the renormalized distributions behave
under a change of renormalization points.
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1. Introduction

Quantum Field Theory (QFT), the unification of quantum mechanics and
special relativity, is the last century’s most successful physical theory. Al-
though plagued with infinities and ill-defined quantities all over the place,
perturbative calculations are in astonishing agreement with data obtained
from particle physics experiments. The art of taming those mathemati-
cal monsters, i.e. extracting physical sensible data from a priori divergent
expressions, is called renormalization. Over the years it has turned from a
“black magic cooking recipe” into a well-established and rigorous formulated
theory, at the latest since the 90’s when Kreimer discovered a Hopf algebra
structure underlying renormalization. The main implication is that (pertur-
bative) QFT is governed by the combinatorics of Feynman diagrams. This
has proven to be a very powerful tool, both in computational problems as
well as in improving our understanding of QFT in general. In addition, it
has revealed surprising connections to deep questions in pure mathematics,
for example in number theory and algebraic geometry [25].

The mathematical reason for divergences arising in perturbative calcu-
lations is that quantum fields are modeled by operator-valued distributions
for which products are in general not well-defined. In the position space
formulation of QFT renormalization translates directly into the problem of
extending distributions as shown by Epstein and Glaser in [15]. Although
they formulated and solved the renormalization problem already in the early
70’s, since then no real progress has been made in this direction. This is
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mainly due to two reasons: Firstly, their approach was mathematical precise
but conceptually difficult. It involved a lot of functional analysis, in some
sense disguising the beauty and simplicity of the idea. Secondly, it is not
applicable to calculations at all. Only recently, in a first approximation to
quantum gravity, physicists have started to study quantum fields on general
spacetimes and in this setting one is naturally forced to work in position
space [10].

In [3] another, more geometric approach to the renormalization problem
was presented. In position space, Feynman rules associate to a graph G
a pair (XG, vG) where XG is a product of the underlying spacetime and
vG : XG → R a rational function. One would like to evaluate this to

(
XG, vG

)
=

∫
XG

vG,

but this fails in general as the integrand need not be an element of L1(XG).
If vG does not vanish fast enough at infinity this is called an infrared diver-
gence. The problem is circumvented by viewing vG as a distribution on the
space of compactly supported test functions. On the other hand, ultraviolet
divergences arise from vG having poles along certain subspaces of XG. These
subspaces are determined by D, the set of (ultraviolet-)divergent subgraphs
of G, and form the divergent arrangement XG

D . In this setting renormaliza-
tion translates into the problem of finding an extension of vG onto XG

D . In
[3] this is solved with a geometric ansatz: The idea is to resolve the divergent
arrangement into a normal crossing divisor and then define canonical renor-
malization operators that extend vG to a distribution defined on the whole
space XG. Such a model, also called a compactification of the complement
of XG

D , is provided by the wonderful model construction by DeConcini and
Procesi [12], based on techniques from Fulton and MacPherson’s seminal
paper [17]. What makes it so well-suited for renormalization is the fact that
the whole construction is governed by the combinatorics of the arrangement
which translates directly into the subgraph structure of G.

The idea of employing a resolution of singularities to extend distributions
is not new. It is based on a paper by Atiyah [1] that highlighted the usefulness
of Hironaka’s famous theorem in seemingly unrelated areas of mathematics.
In addition, the same technique was applied in Chern-Simons perturbation
theory independently by Kontsevich [24] as well as Axelrod and Singer [2].
For an application of this idea to renormalization in parametric space see [6].

The present article aims to continue the work of [3] emphasizing a slightly
different point of view. We use another language to formulate the wonder-
ful construction and the renormalization process; instead of the subspaces
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in the divergent arrangement, we express the central notions in terms of
the poset D, formed by all divergent subgraphs of G, partially ordered by
inclusion. This is inspired by [16] where the wonderful model construction is
studied from a combinatorial point of view. Not only does this simplify the
definitions and proofs immensely, it also highlights the combinatorial flavour
in the construction of both, the wonderful models and the renormalization
operators. In addition, instead of the vertex set of G we use adapted spanning
trees t to define coordinates on XG, naturally suited to the problem. This
is also mentioned in [3], but not used to its full extent. The main point is
that such spanning trees are stable under certain graph theoretic operations
like contraction of divergent subgraphs and therefore provide a convenient
tool to formulate the wonderful construction. It allows to treat the definition
of the renormalization operators in more detail ([3] focuses mainly on the
model construction for arrangements coming from graphs) and to study the
renormalization group, a powerful tool (not only) in QFT, that allows even
for statements beyond perturbation theory. The main result is a formula for
the change of renormalization points, the parameters involved in defining
the renormalization operators. It relates a so-called finite renormalization of
the renormalized distribution R[vG] to a sum of distributions determined
by the divergent subgraphs of G.

The presentation is organized as follows. The first section covers some
topics of distribution theory that will be needed later; it finishes with a
definition of Feynman rules, i.e. how QFT associates distributions to Feyn-
man diagrams, and an analysis of the divergent loci of these distributions.
The next section is devoted to the two other central objects in this article,
smooth models and posets. It starts with an exposition of the wonderful
model construction as in [12], then, following [16], we introduce the neces-
sary combinatorial language to review this construction from a purely com-
binatorial viewpoint; special emphasis is given to the case of arrangements
coming from graphs via Feynman rules. After these mostly preliminary steps
we come to the main part, the wonderful renormalization process. We first
study the pole structure of the pullback of a Feynman distribution onto an
associated wonderful model and then define two renormalization operators.
This definition requires some choices to be made and a natural question, con-
sidered in Section 5, is to ask what happens if one varies these parameters.
We derive and proof a formula for these so-called finite renormalizations.
The last section finishes the wonderful renormalization process by showing
that it is physical reasonable, i.e. it satisfies the Epstein-Glaser recursion
principle, in other contexts known as locality of counterterms. After that
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we discuss the connection between the renormalization operation for sin-
gle graphs presented here and the Epstein-Glaser method. We finish with
an outlook to further studies: The treatment of amplitudes and the role of
Fulton-MacPherson compactifications in this setting, and the Hopf algebraic
formulation of wonderful renormalization.

2. Distributions

In this section we collect some preliminary material about distributions.
Although crucial in the definition of QFT (see for example [30]), in most
textbooks the distributional character of the theory is largely neglected. This
is fine as long as one works in momentum space, but in position space they
play a central role in every aspect. We start by defining distributions on
manifolds. Then we state the extension problem and study its solution in
a toy model case. The section finishes with a definition of Feynman distri-
butions, i.e. distributions associated to graphs via Feynman rules, and an
analysis of the corresponding divergent loci.

Let X ⊆ Rd be open and denote by D(X) := C∞
0 (X) the space of com-

pactly supported smooth functions on X. We write D′(X) for the space of
continuous linear functionals on D(X) and 〈u|ϕ〉 for the value of u ∈ D′(X)
at ϕ ∈ D(X). By (the usual) abuse of notation we use the same symbol f
for a function and the functional uf it represents. In the latter case we refer
to f as the kernel of uf . The locus where u cannot be given by a function is
called the singular support of u.

For X ⊆ Rd open it seems natural to define the space of distributions
as above, D′(X) :=(D(X))∗. To generalize this to the manifold case there
are two possibilities, depending on whether distributions should generalize
functions or measures (cf. [22]). In the following let {ψi : Ui → Ũi ⊆ Rd}i∈I
be an atlas for a smooth manifold X.

Definition 2.1. A distribution u on X is given by a collection of distribu-
tions {ui ∈ D′(Ũi)}i∈I such that for all i, j ∈ I

uj = (ψi ◦ ψ−1
j )∗ui in ψj(Ui ∩ Uj).

The space of distributions on X is denoted by D′(X).

This is the way to define distributions as generalized functions on X
(every u ∈ C0(X) defines a distribution by setting ui := u ◦ ψ−1

i ). If we start
from the point of view that they are continuous linear forms on D(X), we
arrive at generalized measures on X, also called distribution densities:
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Definition 2.2. A distribution density ũ on X is a collection of distribu-
tions {ũi ∈ D′(Ũi)}i∈I such that for all i, j ∈ I

ũj =
∣∣det D(ψi ◦ ψ−1

j )
∣∣(ψi ◦ ψ−1

j )∗ũi in ψj(Ui ∩ Uj).

The space of distribution densities on X is denoted by D̃′(X).

Because of their transformation properties, distribution densities are also
called pseudoforms. They generalize differential forms in the sense that they
can be integrated even on non-orientable manifolds. For more on pseudo-
forms and integration on non-orientable manifolds we refer to [27]. Note
that if X is orientable, there is an isomorphism D′(X) ∼= D̃′(X) via u 
→ uν
for ν a strictly positive density (i.e. a volume form) on X. In particular, on
Rd such a density is given by the Lebesgue measure ν = |dx| and we write
ũ for u|dx| with u ∈ D′(Rd).

For later purposes we introduce two operations on distributions and
densities, the pullback and pushforward along a smooth map f : X → X ′.

Definition 2.3 (Pushforward). Let X ⊆ Rm and X ′ ⊆ Rn be open and
f : X→X ′ be surjective and proper (if u is compactly supported this require-
ment can be dropped). For a distribution u on X the pushforward f∗u ∈
D′(X ′) is defined by

〈f∗u|ϕ〉 = 〈u|f∗ϕ〉 for all ϕ ∈ D(X ′).

For X and X ′ manifolds with atlantes (ψi, Ui)i∈I and (ψ′
j , U

′
j)j∈J we define

the pushforward f∗ũ ∈ D̃′(X ′) of ũ ∈ D̃′(X) by

(f∗u)j := (ψ′
j ◦ f ◦ ψ−1

i )∗ui in U ′
j ∩ (ψ′

j ◦ f ◦ ψ−1
i )(Ui).

The question under what conditions the pullback of distributions is
defined is more delicate, see [22] for a detailed exposition. We state only one
special case where it is possible to define a pullback: Let X,X ′ be open sub-
sets of Rn and f : X → X ′ a smooth submersion. Then there exists a unique
linear operator f∗ : D′(X ′) → D′(X) such that f∗u = u ◦ f if u ∈ C0(X ′). If
X,X ′ are manifolds and ũ is a density on X ′, then f∗ũ ∈ D̃′(X) is defined
by

(f∗u)i := (ψ′
j ◦ f ◦ ψ−1

i )∗uj in U ′
j ∩ (ψ′

jfψ
−1
i )(Ui).
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2.1. Extension of distributions

We present the theory of extending distributions by studying a toy model,
distributions on R \ {0} given by kernels having an algebraic singularity at
0, following the exposition in [18]. Applying this toy model to the extension
problem for Feynman distributions is precisely the idea behind wonderful
renormalization.

Definition 2.4 (Extension problem). Let X be a smooth manifold and
Y ⊆ X an immersed submanifold. Given a density ũ ∈ D̃′(X \ Y ) find an
extension of ũ onto X, i.e. find a density ũext ∈ D̃′(X) with

〈ũext|ϕ〉 = 〈ũ|ϕ〉 for all ϕ ∈ D(X \ Y ).

In this very general formulation the problem is not always solvable.
Moreover, if there is a solution, it need not be unique since by definition
two extension may differ by a distribution supported on Y . Therefore, addi-
tional conditions are sometimes formulated to confine the space of solutions.
Usually one demands that the extension should have the same properties as
u, for example scaling behaviour, Poincare covariance or solving certain dif-
ferential equations.

The toy model: Let u ∈ D′(R \ {0}) be defined by the kernel x 
→ |x|−1.
A priori u is only defined as a distribution on the space of test functions
vanishing at 0. The first step in the process of extending u is to regularize
it by introducing a complex parameter s ∈ C. Raising u to a complex power
us is known as analytic regularization. It justifies the following calculations:

〈us|ϕ〉 =
∫
R

dx
1

|x|sϕ(x)

=

∫
[−1,1]

dx
ϕ(x)− ϕ(0)

|x|s + ϕ(0)

∫
[−1,1]

dx
1

|x|s +

∫
R\[−1,1]

dx
ϕ(x)

|x|s

=

∫
[−1,1]

dx
ϕ(x)− ϕ(0)

|x|s +
2ϕ(0)

1− s
+

∫
R\[−1,1]

dx
ϕ(x)

|x|s

where the last term is defined for all s ∈ C, the second term for s �= 1 and
the first one for Re(s) < 3. We have thus found a way to split the regularized
distribution us = u∞(s, ·) + u♥(s, ·) into a divergent and a convergent part.
The divergent part is the principal part of the Laurent expansion of the
meromorphic distribution-valued function s 
→ us in a punctured disc around
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1 in C:

〈u∞(s, ·)|ϕ〉 = 2ϕ(0)

1− s
,

〈u♥(s, ·)|ϕ〉 =
∫
R

dx
ϕ(x)− θ(1− |x|)ϕ(0)

|x|s .

To continue the process of extending u we have to get rid of the divergent
part in some sensible way (in physics this is the choice of a renormalization
scheme) and take the limit s → 1. The most straightforward way to do so
is by subtracting the pole (minimal subtraction) and set

û = r1[u
s]|s=1 :=

(
us − 2δ

1− s

) ∣∣∣∣
s=1

= u♥(1, ·).

Obviously this technique can be generalized to extend distributions u with
higher negative powers of |x| — one simply subtracts a higher order Taylor
polynomial from ϕ.

Another renormalization scheme, subtraction at fixed conditions, is given
by

〈rν [us]|ϕ〉 := 〈us|ϕ〉 − 〈us|ϕ(0)ν〉
where ν ∈ D(R) is a smooth cutoff function with ν(0) = 1. Another way to
formulate the subtracted distribution is

〈us|ϕ(0)ν〉 = 〈(p0)∗(νus)|δ0[ϕ]〉.

Here p0 : R → {0} is the projection onto the divergent locus and δ0 is inter-
preted as an operator D(R) → D(0) mapping test functions on R onto test
functions supported on the divergent locus. From this it is also clear that the
difference between two such renormalization operators rν and rν′ is given
by a distribution supported on {0}, i.e. a linear combination of δ and its
derivatives. This formulation will turn out to be very useful.

A nice feature of these renormalization operators r is that they commute
with multiplication by smooth functions, r[fu] = fr[u] for f ∈ C∞(R). In
addition, r belong to the class of Rota-Baxter operators, a fact extensively
used in the Hopf algebraic formulation of renormalization (see for exam-
ple [14]).

Later we will work with distributions given by kernels

us(x) =
1

|x|1+d(s−1)
.
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In this case us splits into

(1) us = −2

d

δ0
s− 1

+ u♥(s)

with u♥(s) holomorphic for Re(s) < 2+d
d .

2.2. Feynman distributions

Feynman diagrams are convenient book-keeping devices for the terms in
the perturbative expansion of physical quantities. The map that assigns
to every Feynman diagram its corresponding analytical expression is called
Feynman rules and denoted by Φ. In position space the map Φ assigns to
every diagram G a pair (XG, ṽG) where ṽG is a differential form on the space
XG, a cartesian product of the underlying spacetime M . We would like to
evaluate (

XG, ṽG
) 
−→ ∫

XG

ṽG,

but this is in general not possible due to the problem of ultraviolet and
infrared divergences. While we avoid the infrared problem by viewing ṽG as
a distribution density, the ultraviolet problem translates into an extension
problem for ṽG. The ultraviolet divergences of ṽG are assembled in a certain
subspace arrangement that we will describe at the end of this section, after
the definition of Φ.

We consider a massless scalar quantum field in d-dimensional Euclidean
spacetime M := Rd. The case of fields with higher spin differs only by nota-
tional complexity. On the other hand, the massive case is much harder
because already the simplest examples have special functions arising as prop-
agators of the free theory. Working in the Euclidean metric is justified by
the technique of Wick rotation (see [32]) that allows one to do calculations
in Rd and transform the results back to Minkoswki spacetime. The position
space propagator of a massless scalar field is given by the Fourier transform
of the momentum space propagator,

�(x) = F
(
k 
→ 1

k2

)
(x) =

1

xd−2
, x ∈ M.

LetG be a connected graph. By a graph we mean the following combinatorial
object:
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Definition 2.5. A graph G is an ordered pair G = (V,E) of a finite set V
of vertices and a finite multiset E of unordered distinct (we do not allow
loops, i.e. edges connecting a vertex with itself) pairs of elements of V .

Example. The dunce’s cap graph (Figure 1) will serve as main example
later throughout the text. Here V = {v1, v2, v3} and E = {e1 = (v1, v2), e2 =
(v1, v3), e3 = (v2, v3), e4 = (v2, v3)}.

v1

v2

v3

e1

e2
e3 e4

Figure 1: Dunce’s cap

Definition 2.6. A subgraph g of G, denoted by g ⊆ G, is determined by a
subset E(g) ⊆ E(G). Usually one defines the vertex set of g to be the set of
vertices of V (G) that are connected to edges of g, so that g is a graph itself,
g = (V (g), E(g)). For our purposes it is more convenient to allow also for
isolated vertices. Therefore we define a subgraph g ⊆ G to be an equivalence
class under the relation

g ∼ g′ ⇐⇒ E(g′) = E(g).

For subgraphs g, h ⊆ G we introduce the following operations:

1) Union and intersection: g ∪ h and g ∩ h are the subgraphs of G defined
by the corresponding operations on the edge sets of g and h.

2) Deletion: For g ⊆ h the deletion h \ g is the graph h with all edges of
g removed.

3) Contraction: For g ⊆ h the contraction h/g is the graph h with all
edges e in E(g) removed and for every e ∈ E(g) the two vertices con-
nected to e identified.

As shown in [3], Feynman rules are determined by the topology of G:
Pick a labelling V = {v0, . . . , vn} of the vertices of G and an orientation
on the edges of G. For a finite set F let RF denote the vector space with
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(fixed) basis the elements of F . The cohomology of the simplicial complex
G = (V,E) gives rise to an exact sequence,

0 −→ R
σ−→ RV δ−→ RE −→ H1(G,R) −→ 0.

Here the map σ sends 1 to v0 + · · ·+ vn and δ is given by δ(v) =
∑

e∈E(v :
e)e with (v : e) = ±1 if e starts/ends at v and 0 otherwise. Fix a basis of
coker(σ) by an isomorphism ϕ : V ′ := V \ {v0} → coker(σ). This defines an
inclusion ι = δ ◦ ϕ : RV ′ ∼= coker(σ) ↪→ RE . Doing this component-wise on
the spaceXG := MV ′

= (Rd)V
′
we obtain an inclusion I := ι⊕d : XG ↪→ ME

and define a rational function vG := I∗(�⊗E(G)) : XG → R by

vG :
∑
v∈V ′

xvv 
−→
∏
e∈E

�
(∑

v∈V ′

(v : e)xv

)
.

Every edge e ∈ E defines a linear form ωe := e∗ ◦ ι on RV ′
and a linear

subspace of (XG)∗ by

Ae := 〈ωe〉⊕d =

{
(x1, . . . , xn) 
→

d∑
i=1

αiωe(x
i
1, . . . , x

i
n), αi ∈ R

}
.

For a subgraph g ⊆ G we define Ag :=
∑

e∈E(g)Ae. Every family P of sub-

graphs of G gives then rise to a subspace arrangement in (XG)∗,

AP := {Ag | g ∈ P}.

Note that two subgraphs g, h ⊆ G may define the same subspace, Ag = Ah.
Therefore, we consider only subfamilies of G(G), the set of saturated sub-
graphs of G. Saturated subgraphs are maximal with respect to the property
of defining their corresponding subspaces. A precise definition is given in
Section 3.13. Two arrangements are especially important for our purposes,
the singular arrangement

AG(G) := {Ag | g ⊆ G is saturated},

and the arrangement coming from the family D(G) of divergent subgraphs
of G,

AD(G) = {Ag | g ⊆ G is divergent}.
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Definition 2.7. Let h1(·) denote the first Betti number. Define the super-
ficial degree of divergence ω of G by

ω(G) := dh1(G)− 2|E|.

Then G is called divergent if ω(G) ≥ 0. G is at most logarithmic if ω(g) ≤ 0
holds for all g ⊆ G. If D(G) = {∅, G}, then G is called primitive.

Lemma 2.8. Let G be at most logarithmic and d > 2. Then

g ∈ D(G) =⇒ g is saturated.

Proof. SupposeAg = Ag∪e ⊆ (MV ′
)∗ for some e ∈ E(G \ g). Thus, g ∪ e con-

nects the same set of vertices as g and adding e to g must produce a new,
independent cycle, h1(g ∪ e) = h1(g) + 1. Therefore, ω(g ∪ e) = ω(g) + d−
2 > 0, a contradiction to G at most logarithmic. �

As shown in the next proposition, the divergent arrangementAD(G) describes
exactly the locus where extension is necessary.

Proposition 2.9. Let G = (V,E) be connected and at most logarithmic.
Set

XG
s :=

⋃
e∈E

A⊥
e and XG

D :=
⋃

g∈D(G)

A⊥
g .

Then vG is a well-defined distribution on XG \XG
D and the singular support

of vG is XG
s \XG

D .

Proof. Let V = {v0, . . . , vn}, V ′ = V \ {v0}. Wherever defined, we have

vG(x1, . . . , xn) = I∗
(
�⊗|E|

)
(x1, . . . , xn) =

∏
e∈E

�
(

n∑
i=1

(vi : e)xi

)
.

Since sing supp(�) = {0}, the singular support of �⊗E is the set where at
least one xe ∈ M vanishes. But this is precisely the image of A⊥

e under I.
Thus, sing supp(vG) ⊆ XG

s .
For K ⊆ XG compact and χK the (smooth approximation of the) char-

acteristic function of K we need to show that 〈vG|χK〉 = ∫K dx vG(x) < ∞
as long as K is disjoint from XG

D . Assume the contrary, K ∩XG
D �= ∅; more

precisely, K intersects A⊥
g for some g ∈ D(G), but no other divergent loci.

Moreover, assume that g is connected — otherwise A⊥
g = A⊥

g1 ∪A⊥
g2 and a
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smaller K will intersect only one of these subspaces. Then vG splits into two
factors

vG(x) =
∏

e∈E(g)

�
(

n∑
i=1

(vi : e)xi

) ∏
e∈E\E(g)

�
(

n∑
i=1

(vi : e)xi

)
,

with the second factor being smooth on A⊥
g \⋃g�g′ A⊥

g′ . Now we need some
power counting: The integral

∫
K dx vG(x) is over a dn-dimensional space.

Since Ag is the sum over all Ae with e ∈ E(g), it is already spanned by the
edges in a spanning tree t of g (a spanning tree is a subgraph without cycles
meeting every vertex exactly once — see Definition 3.29). A spanning tree
of a connected graph with n vertices has necessarily n− 1 edges, therefore
dimAg = d(|V (g)| − 1). Adding an edge to t produces an independent cycle,
so that h1(g) = |E(g)| − |V (g)|+ 1. We conclude that dimAg = d(|E(g)| −
h1(g)). Each �(x) is of order O(x2−d) as x → 0 and there are |E(g)| products
in the first factor expressing vG. Thus, the whole product scales with (2−
d)|E(g)| as x approaches A⊥

g in XG,

∫
dx vG(x) ∝

∫
dr rdimAg−1+(2−d)|E(g)|

and the integral converges if and only if

dimAg + (2− d)|E(g)| > 0 ⇐⇒ d(|E(g)| − h1(g)) + (2− d)|E(g)| > 0

⇐⇒ ω(g) < 0

⇐⇒ g /∈ D(G).
�

In Section 3.2 we will employ a more practical point of view. We use
coordinates on XG not given by the vertex set V ′, but by the edges of an
adapted spanning spanning tree t. Since every spanning tree of G must have
|V | − 1 vertices, reformulating everything in coordinates given by edges of t
is just a change of basis for MV ′

. The point here is that although it might
seem to be more intuitive and “positional” to work with the vertex set of
G, the formulation with t is more convenient because the combinatorics of
renormalization show up in the subgraph structure of G and subgraphs are
determined by subsets of E, not of V .
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3. Compactifications

To systematically renormalize distributions vG coming from Feynman dia-
grams we want to arrange the loci of divergences in a “nice” way by resolv-
ing their singularities. This means, we are looking for a compactification of
X \XD, or, in other words, a smooth model for the divergent arrangement in
X. This section consists of two parts: First we study compactifications from
a geometric point of view, then we focus on the underlying combinatorics.

3.1. Geometry

The problem of resolving singularities has been a major topic in algebraic
geometry since the time of Newton who solved the problem of resolving
curves in the complex plane. In its most basic form the problem can be
formulated as follows.

Definition 3.1. Let X be an algebraic variety over a field k. Then a non-
singular variety Y is a resolution for X if there exists a proper and surjective
rational map β : Y −→ X.

There are various types of resolutions, depending on additional condi-
tions on Y and β. Here we demand that β is the composition of blow-ups
along smooth subvarieties of X. This allows for an explicit description of the
manifold Y . Hironaka showed in his celebrated work [21] that for fields of
characteristic zero a resolution always exists; for fields of non-trivial char-
acteristic this is still an open problem. He gave a constructive proof using a
sequence of blow-ups. The difficulty lies in the fact that one cannot proceed
by just blowing up all singularities in X, but must choose a specific order in
doing so. For an extensive treatment of this topic, including a comparison
of different resolutions, we refer to [23].

3.1.1. Blow-ups. What is meant by blowing up a subvariety of a variety
X? First, we define the blow-up of the origin in X = Rn, following [20]. The
idea is to replace the origin by the space of all possible directions entering
it, in such a way that all directions are disjoint. To do so set E := P(X) with
homogeneous coordinates [y1 : · · · : yn] and define Y ⊆ X × E by

Y :=
{(

x1, . . . , xn, [y1 : · · · : yn]
) | xiyj = xjyi for all i �= j

}
.

The map β : Y → X is then simply the projection onto the first factor. Since
the defining equations are smooth, Y is a smooth submanifold of X × E . To
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define an atlas for Y let for i = 1, . . . , n the maps ρi : R
n → X × E be given

by

(x1, . . . , xn) 
→
(
y1, . . . , yn, [y1 : · · · : yn]

)
where

yk =

{
xi if k = i,

xixk if k �= i.

Set Ui = ρi(R
n) and κi := ρ−1

i . Then the collection of charts (Ui, κi)i∈{1,...,n}
forms an atlas for Y . The submanifold E , called the exceptional divisor,
is locally given by {xi = 0} and covered by induced charts (Vi, φi)i∈{1,...,n}
where Vi := ρ̂i(R

n−1) and φi := ρ̂−1
i with

ρ̂i := ρi|xi=0 : R
n−1 −→ {0} × E ⊆ Y.

Blowing up a submanifold S of Rn is done similarly by replacing S by the
projectivization of its normal bundle. More precisely, if S is locally given by
{x1 = · · · = xk = 0}, then one proceeds as above but restricts the defining
equation to these coordinates,

Y :=
{(

x1, . . . , xn, [y1 : · · · : yk]
) | xiyj = xjyi for all i �= j ∈ {1, . . . , k}}.

Note that this construction is independent of the chosen coordinates. It can
be generalized to the case where S is a subvariety of a smooth variety X:
Blow up locally, then globalize by patching together the local blow-ups.

If S′ ⊆ X is another submanifold that is distinct from S, then S′ is
essentially unaffected by the blow-up process. However, if it has nonempty
intersection with S, then S′ has two “preimages” in Y : The strict transform
of S′ is defined as the closure of β−1(S′ \ S) in Y , while the preimage β−1(S′)
is called the total transform of S′. Loosely speaking, the blow-up makes
degenerate intersections transversal and transversal ones disjoint. Therefore,
if building a resolution consists of multiple blow-ups, the order of blowing
up is important!

We introduced here the algebro-geometric version of blowing up. There
is also a differential-geometric equivalent, where one replaces the locus to be
blown up by its normal spherebundle (as used in [2]). Both cases have draw-
backs: Using the projective normal bundles leads to Y being non-orientable
in general, while the differential-geometric blow-up produces a manifold with
boundary.
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3.1.2. Wonderful models. The general setup is the following: Let X be
a finite dimensional smooth variety over a field k of characteristic zero. An
arrangement A in X is a finite family of smooth subvarieties of X. LetM(A)
denote the complement of the arrangement, M(A) := X \ ∪A∈AA.

Definition 3.2. A smooth model for the arrangement A is a pair (YA, β)
where YA is a smooth variety and β : YA −→ X is a proper surjective map
with the following properties:

1) β is an isomorphism outside of E := β−1(X \M(A)).

2) E is a normal crossing divisor, i.e. there exist local coordinates such
that it is given by E = {(x1, . . . , xn) | x1 · · ·xk = 0}.

3) β is a composition of blow-ups along smooth centers.

Recall that β is proper if and only if β−1(K) is compact for all compact
sets K ⊆ X; this is why smooth models are sometimes also called compact-
ifications. From [21] we know that such a model always exists, even in much
more general situations. In their seminal paper [17] Fulton and MacPherson
constructed a compactification of the configuration space

Fn(X) := {(x1, . . . , xn) ∈ Xn | xi �= xj for all i �= j}

for non-singular varieties X. This is just an example of a smooth model for
the arrangement given by all diagonals DI in Xn,

A =
{
DI | I ⊆ {1, . . . , n}} where DI = {xi = xj | ∀i, j ∈ I}.

Inspired by the techniques used in [17], DeConcini and Procesi developed
a systematic way to construct smooth models for general linear arrange-
ments. Since their technique is local, it can be generalized to arrangements
in smooth varieties (see [26]), but we do not need this here and stick to the
notation of [12].

Let V be a finite dimensional k-vector space (here k = R) and A be
a linear arrangement in the dual V ∗, i.e. a finite family {A1, . . . , Ak} of
linear subspaces of V ∗ (for the DeConcini-Procesi construction it is more
convenient to work in the dual). We first give an abstract definition of a
smooth model YA for A, then we construct it explicitly.

Definition 3.3 (Wonderful definition I). Let A be a linear arrange-
ment in V ∗. For every A ∈ A the projection πA : V −→ V/A⊥ −→ P(V/A⊥)
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is a well-defined map outside of A⊥. Doing this for every element in the
arrangement we obtain a rational map

πA : M(A) −→
∏
A∈A

P(V/A⊥).

The graph Γ(πA) of this map, a closed subset of M(A)×∏A∈A P(V/A⊥),
embeds as locally closed subset into V ×∏A∈A P(V/A⊥). The wonderful
model YA is defined as the closure of the image of this embedding.

The second way of defining YA is to explicitly construct it by a sequence
of blow-ups (this sequence is actually completely determined by the combi-
natorics of the intersection poset P (A), a point we will use extensively in
the following sections). For the wonderful construction we need to introduce
some terminology. The first notion is based on the fact that YA is also a
wonderful model for arrangements A′, as long as A ⊆ A′ is a building set for
A′. The idea is that an arrangement may carry too much information and
in this case one needs only a subfamily B ⊆ A to encode this information.
While the choice of a building set controls the geometry of the wonderful
model, more precisely of the exceptional divisor E , certain subsets of B,
the B-nested sets, and the choice of a B-adapted basis of V are the crucial
elements in the explicit construction of an atlas for YA. We cite the main
definitions and results from DeConcini and Procesi; for the proofs we refer
the reader to [12].

Definition 3.4 (Building sets). Let A be an arrangement in V ∗. A sub-
family B ⊆ A is a building set for A if

1) Every A ∈ A is the direct sum A = B1 ⊕ · · · ⊕Bk of the maximal ele-
ments of B contained in A.

2) This decomposition property also holds for all A′ ∈ A with A′ ⊆ A,
i.e. A′ = (B1 ∩A′)⊕ · · · ⊕ (Bk ∩A′).

There are two important examples, the maximal building set, given by
all elements of A, and the minimal building set I(A). The latter consists of
all A ∈ A that do not allow for a non-trivial decomposition. Note that every
other building set B satisfies I(A) ⊆ B ⊆ A. In [12] it is shown that for every
building set B ⊆ A the variety YB as defined above is a smooth model for
A. Moreover, the exceptional divisor E is the union of smooth irreducible
components EB, one for each B ∈ B.
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Definition 3.5 (Nested sets). Let B be a building set. N ⊆ B is B-
nested if the following holds: For all subsets {A1, . . . , Ak} ⊆ N of pairwise
incomparable elements their direct sum does not belong to B.

Nested sets are one main ingredient in the description of YB, the second
one being markings of an adapted basis of V ∗. While nested sets reflect
the combinatorics of the stratification of E , the markings are related to the
dimension of each submanifold in this stratification. Together they describe
all components of the exceptional divisor.

Definition 3.6 (Adapted bases). A basis B of V ∗ is N -adapted if for
all A ∈ N the set B ∩A generates A. A marking of an N -adapted basis is
for every A ∈ N the choice of an element bA ∈ B with p(bA) = A. Here p =
pN is the map assigning to x ∈ V ∗ \ {0} the minimal element of N ∪ {V ∗}
containing x (it exists because N is nested).

The map p and a marking define a partial order on B,

b � b′ ⇐⇒ p(b) ⊆ p(b′) and b′ is marked.

This partial order defines a map ρ = ρN ,B : RB → V as follows: For every
x =

∑
b∈B xbb ∈ RB the image ρ(x) is an element of V = hom(V ∗,R) given

by

B � b 
→
{∏

p(b)⊆A xbA if b is marked,

xb
∏

p(b)⊆A xbA else.

Viewing the elements of B as nonlinear coordinates on V and setting xA :=
xbA we can write ρ as

ρ(x)b = ρ(x)(b) =

{∏
p(b)⊆A xA if b is marked,

xb
∏

p(b)⊆A xA else.

The next proposition shows that ρ has all the properties of a local description
of a composition of blow-ups.

Proposition 3.7. For every nested set N and an adapted and marked basis
B the map ρ = ρN ,B is a birational morphism with the following properties:
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It maps the subspace defined by xA = 0 onto A⊥ and it restricts to an
isomorphism

V \
⋃
A∈N

{xA = 0} ∼=−→ V \
⋃
A∈N

A⊥.

Furthermore, every v in V ∗ \ {0} with p(v) = A ∈ N is mapped by ρ(x) to

ρ(x)(v) = Pv(x)
∏
bA
b

vbxb

where Pv is a polynomial, depending only on {xb}b≺bA and linear in each
variable.

Definition 3.8 (Wonderful definition II). Let N be a B-nested set for
a building set B ⊆ A and B an adapted, marked basis. Define ZA ⊆ RB by
ZA = {Pv = 0, v ∈ A}, the vanishing locus of all Pv for v ∈ A. Then for every
A ∈ B the composition of ρ with the projection πA : V \A⊥ → P(V/A⊥) is
well-defined outside of ZA. Composing the map ρ with Γ(πB) : M(B) →
V ×∏A∈B P(V/A⊥) defines an open embedding

(Γ(πB) ◦ ρ)N ,B : RB \
⋃
A∈B

ZA −→ YB.

Set UN ,B := im
(
(Γ(πB) ◦ ρ)N ,B

)
and κN ,B := (Γ(πB) ◦ ρ)−1

N ,B. Varying over
all B-nested sets N and adapted, marked bases B, we obtain an atlas
(UN ,B, κN ,B) for the wonderful model YB. The map β is just the projec-
tion onto the first factor, in local coordinates given by ρ.

That this really defines a smooth model for the arrangement A follows
from

Theorem 3.9 (Geometry of the wonderful model). Let B be a building
set for A. The wonderful model YB has the following properties:

1) The exceptional divisor E is normal crossing, i.e.

E := β−1

(⋃
A∈B

A⊥
)

loc.
=

{∏
A∈N

xA = 0

}
.

2) E is the union of smooth irreducible components EA where A ∈ B and
β(EA) = A⊥. A family of these components EA1

, . . . , EAk
has non-empty
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intersection if and only if {A1, . . . , Ak} is a B-nested set. In this case
the intersection is transversal and irreducible.

3) For A minimal in B \ I(A) let A = A1 ⊕ · · · ⊕Ak be its irreducible
decomposition. Set B′ = B \ {A}. Then YB is obtained from YB′ by
blowing up EA = EA1

∩ · · · ∩ EAk
.

4) For A minimal in B = I(A) set B′ = B \ {A}. Then YB is obtained
from YB′ by blowing up the proper transform of A⊥.

As stated before, the most famous example of a wonderful model is the
Fulton-MacPherson compactification of the configuration space Fn(X) in
the case where X is a linear space. It is the minimal wonderful model for
the arrangement of all (poly-)diagonals in Xn,

A = {Dπ | π is a partition of {1, . . . , n}},
Dπ = {xi = xj | i, j lie in the same partition block of π }.

Here the minimal building set consists of all simple diagonals in the n-fold
product ofX. The wonderful model for the maximal building set was studied
by Ulyanov in [31] and called a polydiagonal compactification of configura-
tion space. The main difference, apart from the geometry of the exceptional
divisor, is the blowup sequence in the construction. In [31] the model is
obtained by successively blowing up (the strict transforms of) all elements
of the building set by increasing dimension, but in the minimal case one has
to proceed with care; some strict transforms of diagonals to be blown up
in the next step might still have nonempty intersection and in this case the
result depends on the order of blowups. To separate them before proceeding
requires additional blow-ups, exactly those given by the additional elements
in the maximal building set. These are the polydiagonals, obtained by inter-
secting simple diagonals. The interested reader is encouraged to study the
example Fn(X) for X = R and n > 3 (for smaller n minimal and maxi-
mal models coincide). It is a well studied object, the real rank n− 1 braid
arrangement, see for example [16].

The next step is to adapt this construction to the case of the divergent
arrangement associated to a Feynman graph G. In [3] this is done by exam-
ining the special structure of the elements of the arrangement AD(G) = {Ag |
g ⊆ G divergent}. These properties can be directly formulated in graph the-
oretical terms. Here we will focus even more on this combinatorial flavour
and express everything with the help of the poset of divergent subgraphs
of G.
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3.2. Combinatorics

We reformulate the central objects of the last section in terms of a poset
associated to A. We focus on arrangements coming from graphs via Feyn-
man rules, but note that from every given arrangement we can form the
intersection poset to study its combinatorics.

Definition 3.10. A poset (P,≤) is a finite set P (we consider here only
finite graphs and posets) endowed with a partial order ≤.

We say that p covers q if p > q and there is no r ∈ P with p > r > q. The
closed interval [p, q] = P[p,q] is defined as the set of elements r ∈ P satisfying
p ≤ r ≤ q . The open interval (p, q) = P(p,q) and the subsets P<p, P≤p, P>p,

P≥p are defined similarly. We denote by 0̂ and 1̂ the unique minimal and
maximal elements of P if they exist.

A poset is best visualized by drawing its Hasse diagram, a directed graph
with its vertices given by the elements of P and edges between every pair of
elements p, q ∈ P such that p covers q. Another way to encode the data of P
is the order complex Δ(P). It is the abstract simplicial complex defined by
its k-faces being the linearly ordered k + 1-element subsets of P. The order
complex stores all the combinatorial information of P as is demonstrated by
Theorem 3.12 taken from [19].

Definition 3.11 (Intersection lattice). Let V be an n-dimensional real
vector space and let A := {A1, . . . , Am} be an arrangement in V . Every
arrangement gives rise to a poset (actually a lattice, defined below) with its
underlying set consisting of all possible intersections of elements in A,

P = P(A) =

{⋂
i∈I

Ai

∣∣∣∣ I ⊆ {1, . . . ,m}
}
,

partially ordered by reverse inclusion. It is called the intersection poset/lattice
of A. In addition, P(A) is equipped with a ranking, i.e. a map r : P(A) → N

mapping each element of P(A) to the codimension of the corresponding
intersection in V .

Theorem 3.12. (Goresky, MacPherson) Let H denote the (singular) hom-
ology functor. Let A be an arrangement in V and let M(A) denote the
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complement. Then

Hk(M(A),Z) ∼=
⊕

A∈P(A)

Gk(A)

where

(2) Gk(A) :=

⎧⎪⎨⎪⎩
H−k(point,Z) if A = 0̂,

Hr(A)−k−1(point,Z) if A covers 0̂,

H̃r(A)−k−2
(
Δ(P(0̂,A)),Z

)
otherwise.

Recall from Section 2 the definition of the singular and divergent arrange-
ments of a graph G. They give rise to corresponding intersection posets, but
we can also define them directly in terms of G.

Definition 3.13. To a graph G we associate the (saturated) graph poset
(G(G),⊆) consisting of the set of all saturated subgraphs of G, partially
ordered by inclusion. A connected subgraph g ⊆ G is saturated if the follow-
ing holds:

∀t span. tree of g : ∀e ∈ E(G \ g) : t is not a spanning for g ∪ e.

If g has more than one connected components, it is saturated if every com-
ponent is.

In terms of the singular arrangement a saturated subgraph g is the max-
imal subgraph of G defining Ag ∈ AG(G). This means, that adding an edge
to a saturated graph necessarily enlarges the space Ag, while removing an
edge might still define the same subspace of (XG)∗.

Example. Let K3 be the complete graph on 3 vertices. The saturated
subgraphs are the three single-edged subgraphs and K3 itself.

Definition 3.14. The divergent graph poset D(G) is given by the subset
of G(G) formed by all divergent subgraphs, partially ordered by inclusion.

As already seen in Proposition 2.9, G and D (from now on we drop the
index G) carry all the information necessary for renormalization. Note that
both posets have an unique minimal element, the empty graph, which we
denote by o. In our convention o is defined by E(o) = ∅.

For the divergent arrangement of a connected and at most logarithmic
graph G, Theorem 3.12 allows us to compute the homology of M(XG

D ),
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Figure 2: K3 and the Hasse diagram of G(K3)

the complement of the divergent loci in XG. It is determined by the set of
atoms of D, the minimal elements in D>o. These elements are precisely the
primitive subgraphs of G.

Proposition 3.15. Let G be connected and at most logarithmic. Define ni

to be the number of atoms g ∈ D with r(g) = dimAg = di (i.e. the primitive
subgraphs on i+ 1 vertices). Let α ∈ Nl be a multi-index with αi ≥ αj for
1 ≤ i < j ≤ l and ||α||1 = l. The homology of M(XG

D ) is then given by

(3) Hk(M(XG
D ),Z) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if k = 0,

Zni if k = di− 1,

Z(
ni
2 ) if k = 2di− 2,

Zni1
ni2 if k = d(i1 + i2)− 2,

· · ·
Z

∏l
j=1 (

nij
αj
)

if k = d
∑l

j=1 αjij − l,

· · ·

Proof. The atoms of D determine the topology of the complement because
the corresponding subspaces A⊥

g contain all other divergent subspaces. Ab-

breviate Hk(M(XG
D ),Z) by Hk. Using Theorem 3.12 we have H0 = Z. More-

over, there is a generator in Hk with k = r(g)− 1 = di− 1 for every atom
g such that r(g) = di. For an element γ that is given by the union of
atoms we have to use the third row in Equation (2): If γ is the union of
two atoms g and h, the subcomplex Δ(D(o,γ)) consists of 2 disconnected
points (representing the two atoms). Therefore we have

(
ni

2

)
generators in

dimension k = 2di− 2 if r(g) = r(h) = di and ni1ni2 generators in dimen-
sion k = d(i1 + i2)− 2 if r(g) = di1 and r(h) = di2. If γ is the union of l > 2
atoms, the interval (o, γ) consists of these atoms and all unions thereof. It is
the face poset of the standard (l − 1)-simplex �l−1 with interior removed.
Thus, Δ(D(o,γ)) = Δ(F(∂�l−1)) ∼= ∂�l−1 ∼= Sl−2. Since H̃k(Sl−2) equals Z
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if k = l − 2 and is trivial else, we conclude that there are generators in Hk

coming from such elements γ if k = r(γ)− l. Let α ∈ Nl with αi ≥ αj for

1 ≤ i < j ≤ l and ||α||1 = l. If r(γ) = d
∑l

j=1 αjij then such γ can be formed

out of l atoms in
∏l

j=1

(
nij
αj

)
possible ways and (3) follows. �

3.2.1. The divergent graph lattice. We continue studying the graph
poset G in more detail. As it turns out it has extra structure, it is a lattice.

Definition 3.16 (Lattices). Let (P,≤) be a poset and p, q ∈ P. A least
upper bound or join of p and q is an upper bound r for both elements such
that every other upper bound s satisfies r ≤ s. If the join of p and q exists,
it is unique and denoted by p ∨ q. Dually one defines a greatest lower bound
or meet of two elements p and q in P, denoted by p ∧ q.

P is called a join-semilattice (meet-semilattice) if for all p, q ∈ P the join
p ∨ q (the meet p ∧ q) exists. P is called a lattice if it is both a join- and a
meet-semilattice.

For any arrangement A the intersection poset P(A) is a lattice: If one
orders the elements of P(A) by reverse inclusion, the join operation is just
given by set theoretic intersection. The statement then follows from the fact
that every finite join-semilattice with 0̂ (represented by the empty intersec-
tion, the ambient space V ) is a lattice (Proposition 3.3.1 in [29]). Regarding
the definition of the partial order by inclusion or reverse inclusion there are
different conventions used in the literature. Both have their advantages and
can be converted into the other since the dual of any lattice, i.e. the lattice
with reversed order, is a lattice as well. We use reverse inclusion because it
matches the convention in [12] using arrangements in the dual and it fits
with the natural partial order on subgraphs.

Since G is the intersection poset of the (dual) singular arrangement AG
in XG, it is a lattice. Clearly, if P ⊆ G is closed under union and intersection,
it is the intersection lattice of some corresponding arrangement. This is the
case for the set of divergent subgraphs:

Proposition 3.17. Let G be at most logarithmic. Then (D,⊆) is a lattice.

Proof. For g, h ⊆ G divergent subgraphs we define the join and meet oper-
ations in D by

g ∨ h := g ∪ h,

g ∧ h := g ∩ h.
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Suppose g and h have k shared edges and abbreviate h1(g ∩ h) by l. Let m
be the number of “new cycles” created by uniting g and h. In formulae

E(g ∪ h) = E(g) + E(h)− k

h1(g ∪ h) = h1(g) + h1(h) +m− l.

From this we conclude that the superficial degree of divergence of g ∪ h is
given by

ω(g ∪ h) = d(h1(g) + h1(h) +m− l)− 2(E(g) + E(h)− k)

= d(m− l) + 2k
!≤ 0.

Split k = kl + k0 into edges in the generators of H1(g ∩ h) and those that
are not. Then dl ≤ 2kl and

0 ≥ ω(g ∪ h) ≥ dm+ 2k0 ≥ 0,

thus m = k0 = 0 and

0 = ω(g ∪ h) = dl − 2kl = ω(g ∩ h).

Therefore g ∪ h and g ∩ h are both divergent subgraphs of G. Clearly, they
are the minimal (maximal) elements of D bounding g and h from above
(below). �
With the methods used in the above proof we are able to show another
property of G and D. They are graded lattices.

Definition 3.18. A poset (P,≤) is graded if it is equipped with a map
τ : P → N that has the following two properties: τ is order preserving with
respect to the natural order on N and if there are p, q ∈ P with p covering
q, then τ(p) = τ(q) + 1.

Proposition 3.19. For any connected graph G the graph lattice G is graded.

Proof. The map τ sends every saturated subgraph g ⊆ G to d−1 dimAg =
V (g)− cg (cg denoting the number of connected components of g, cf. the
proof of Proposition 2.9). Clearly, τ is order preserving and τ(p) = τ(q) + 1
holds for p covering q because of the saturated condition. �

Proposition 3.20. Let G be at most logarithmic. Then D is a graded lat-
tice.
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To prove this we use Proposition 3.3.2 from [29].

Proposition 3.21. Let L be a finite lattice. The following two conditions
are equivalent:

1. L is graded and the map τ satisfies τ(x) + τ(y) ≥ τ(x ∧ y) + τ(x ∨ y)
for all x, y ∈ L.

2. If x and y both cover x ∧ y, then x ∨ y covers both x and y.

Proof of Proposition 3.20. We argue by contradiction: Let g, h ⊆ G be diver-
gent and suppose there is a γ ∈ D with g < γ < g ∨ h, i.e. g ∨ h does not
cover both g and h. First, note that γ ∩ h �= ∅ because otherwise γ would
not be a subgraph of g ∨ h. From Proposition 3.17 we know that γ ∩ h is
divergent. But then g ∧ h < γ ∧ h < h, which means h is not covering
g ∧ h. �

We will not use this here but for the sake of completeness we mention one
additional property of D which actually implies gradedness and modularity
(L is modular if one of the properties in the previous proposition holds for
both L and its dual). From a combinatorial viewpoint distributive lattices are
important because this extra structure allows one to prove many powerful
theorems, for example Birkhoff’s famous Representation Theorem [5].

Proposition 3.22. Let G be at most logarithmic. Then D is a distributive
lattice:

f ∨ (g ∧ h) =(f ∨ g) ∧ (f ∨ h),

f ∧ (g ∨ h) =(f ∧ g) ∨ (f ∧ h),

for all f, g, h in D.

Proof. Since one of the properties implies the other, we will only proof the
first one. Moreover, the proof works exactly the same in the second case.
Let f, g, h ⊆ G be divergent. Compare the edge set of the graphs on the left
and the right:

E
(
f ∨ (g ∧ h)

)
=E
(
f ∪ (g ∩ h)

)
= E(f) ∪ E(g ∩ h)

=
(
E(f) ∪ E(g)

) ∩ (E(f) ∪ E(h)
)

=E(f ∪ g) ∩ E(f ∪ h) = E
(
(f ∪ g) ∩ (f ∪ h)

)
=E
(
(f ∨ g) ∧ (f ∨ h)

)
. �



Wonderful compactifications in quantum field theory 503

3.2.2. Wonderful models revisited. We reformulate wonderful models
in terms of the graph lattice G. This is based on [16] where a combinatorial
version of the wonderful model construction is developed for any (finite)
lattice L. In general we can associate to every arrangement the corresponding
intersection lattice defined in the previous section. It is the combinatorics of
this lattice that reflect the topological properties of the wonderful models as
seen for example in Theorem 3.12. Another example is the following theorem
by Feichtner that relates combinatorial and geometric wonderful models via
a combinatorial blow-up (Definition 3.5 and Theorem 3.6 in [16]).

Theorem 3.23. Let L be an intersection lattice, B a combinatorial building
set in L, and B1, . . . , Bt a linear order on B that is non-increasing with
respect to the partial order on L. Then consecutive combinatorial blowups in
B1, . . . , Bt result in the face poset of the nested set complex ΔN (L,B),

BlGt
(· · · (BlG2

(BlG1
))) = F (ΔN (L,B)) .

Although the following definitions apply to any lattice L, to connect with
Section 2.2 think of L as being given by the singular or divergent arrange-
ment of a connected and at most logarithmic graph G. In the (equivalent)
combinatorial formulation below, building sets and nested sets are certain
subposets of L (a subposet of a poset (P,≤) is a subset of P with the induced
partial order). In some cases these subsets are even lattices, although not nec-
essarily sublattices since the meet and join operations need not be induced
by the corresponding operations on L.

Definition 3.24 (Combinatorial building sets). Let L be a lattice. A
non-empty subset B of L is a combinatorial building set for L if the following
holds: For all p ∈ L>0̂ and {q1, . . . , qk} = max B≤p there is an isomorphism
of posets

(4) ϕp :

k∏
i=1

[0̂, qi] −→ [0̂, p]

with ϕp(0̂, . . . , qj , . . . , 0̂) = qj for j = 1, . . . , k.

This defines combinatorial building sets which are more general than
the building sets introduced in Section 3.1. To get the notion according to
DeConcini and Procesi we have to demand an additional geometric compat-
ibility condition.
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Definition 3.25 (Geometric building sets). We call B a geometric
building set for L if it is a combinatorial building set and

dimAp =

k∑
i=1

dimAqi .

Note that if L ⊆ G, since dimAg = d(|V (g)| − 1) (or d(|E(g)| − h1(g)) if
g is divergent), we can express this geometric condition also purely in graph
theoretic terms.

Example. For every lattice L itself is a building set, the maximal building
set. The minimal building set is given by the irreducible elements of L. It
is formed by all p ∈ L for which there is no product decomposition of the
interval [0̂, p] as in (4). We denote this building set by I(L).

The geometric condition gives a handy criterion to check whether a given
element is irreducible or not.

Lemma 3.26. Let L ⊆ G be a lattice. Let g ∈ L be the union of irre-
ducible subgraphs g = g1 ∪ · · · ∪ gk with non-empty overlap h = g1 ∩ · · · ∩ gk.
W.l.o.g. assume that the gi are maximal with this property. Then g is irre-
ducible.

Vice versa, for every reducible element g ∈ L \ I(L) we have that g is
the union of some g1, . . . , gk ∈ I(L) with

k⋂
i=1

gi =
⋃
v∈V ′

v ∼ o

for some vertex set V ′ ⊆ V (G).

Proof. Write d(g) for dimAg. If g would be reducible, then d(g) =
∑k

i=1 d(gi)
because the gi form the set max I(L)≤g. On the other hand, d(g) =∑k

i=1 d(gi)− d(h) — the sum can not be direct because of the overlap h.
Thus, d(h) = 0, i.e. Ah = {0} which means h = o.

The second statement follows from the same argument. The geomet-
ric condition for reducibility d(g) =

∑k
i=1 d(gi) cannot hold if the gi have

common edges. �
Recall that the choice of a building set B determines the structure of

the exceptional divisor E in the wonderful model; the elements of B control
the number of components of E and how they intersect. To construct YB
explicitly we needed another family of sub(po)sets of B, the B-nested sets.
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Definition 3.27 (Nested sets). Let B be a building set in a lattice L.
A subset N ⊆ B is B-nested if for all subsets {p1, . . . , pk} ⊆ N of pairwise
incomparable elements the join (in L!) p1 ∨ · · · ∨ pk exists and does not
belong to B.

With nested sets we can build another abstract simplicial complex,
the nested set complex ΔN (L,B). Its k-faces consist of the B-nested sets
with k + 1 elements. It is the generalization of the order complex for non-
maximal building sets. For the maximal building set B = L a subset is
nested if and only if it is linearly ordered in B, so that in this case we have
Δ(L) = ΔN (L,B). By Theorem 3.9 it contains all the information about the
stratification of the exceptional divisor E in YB.

Since D is a graded lattice, we have proven here a little conjecture (in the
case G at most logarithmic) that appears in many texts on Hopf algebraic
renormalization (for example [7]):

Corollary 3.28. Every maximal forest of a graph G has the same cardi-
nality.

Proof. In the language of posets this translates into the fact that every
maximal nested set has equal cardinality. But this is equivalent to D being
graded because the grading map τ forbids maximal linearly ordered subsets
of different length. �

Remark. This property also seems to hold for the minimal building set
I(D), but not for intermediate building sets as these are built from I(D) by
successively adding maximal elements of D \ I(D).

Example. Here are some examples, all in d = 4:

0

1 2

3

5

4 2n− 3

2n− 4 2n− 1

2n− 2

Figure 3: The n-bubble graph

1) Let Gn be the graph in Figure 3. Here the index n stands for the
number of atoms, the fish subgraphs on two edges with one cycle, and
the numbering of vertices is chosen to match the most “natural” choice
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of an adapted spanning tree t (see Definition 3.30). Let gkl denote the
full subgraph of Gn given by the vertex set V (gkl ) = {2l−2, . . . , 2l−
2+2k−1}. From the fact that D(Gn+1) contains two copies of D(Gn),
given by the intervals [o, gn1 ] and [o, gn2 ], and Lemma 3.26 it follows by
induction that

I(D(Gn)) = {gkl ⊆ Gn | k = 1, . . . , n and l = 1, . . . , n− k + 1}.

0

1 3

2

5

4 n− 2

n− 1

n

Figure 4: The n-insertions graph

2) Next we look at the graph Gn, depicted in Figure 4, constructed by a
sequence of n insertions of the fish into itself. Here minimal and max-
imal building set coincide because all divergent subgraphs are nested
into each other:

D(Gn) = I(D(Gn)) = {g1, g2, . . . , gn = Gn}

where gi is the full subgraph of Gn corresponding to the vertex set
{0, . . . , i}. The partial order is a total order. Thus, the D(Gn)-nested
sets are all non-empty subsets of the power set P (D(Gn)).

3) Let Gn,m be the graph obtained by inserting n bubbles on the left and
m bubbles on the right into the fish graph (Figure 5). Here

I(D(Gn,m)) = {g1, . . . , gn, h1, . . . , hm, Gn,m}

where gi is the fish subgraph on the vertex set {i− 1, i} for i ∈ {1, . . . ,
n} and hj is the fish subgraph on the vertex set {n+ j, n+ j + 1}
for j ∈ {1, . . . ,m}. All subgraphs in I(D(Gn,m)) \ {Gn,m} have dis-
joint edge sets. Therefore, as in the previous example, the I(D(Gn,m))-
nested sets are all non-empty subsets of P (I(D(Gn,m))).

4) For n > 0 let G = Kn+1 be the complete graph on n+ 1 vertices. By
induction it follows that saturated subgraphs are either disjoint unions
or complete subgraphs on their respective vertex set. Thus, if n = 2
then G = I(G). For n = 3 (Figure 6) the three subgraphs given by
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0

1

2

n− 1

n

n+m+ 1

n+m

n+ 2

n+ 1

Figure 5: The n,m-bubble graph

the disjoint union of edges a ∪̇ c, b ∪̇ d and e ∪̇ f are reducible while
the four embeddings of K3 given by a ∪ b ∪ f etc. are irreducible
(|[o, a ∪ b ∪ f ]| = 5 is not divisible by two). In general, I(G(Kn+1))
consists of all subgraphs that are embeddings of Ki into Kn+1 for
i = 1, . . . , n while the reducible subgraphs are the disjoint unions of
embeddings of Ki and Kj for i+ j ≤ n+ 1. These disjoint unions
represent the polydiagonals that make the difference in the blow-
up sequence of the Fulton-MacPherson compactification M [n] and
Ulyanov’s polydiagonal compactification M〈n〉.

a

d

b

c
e

f

Figure 6: K4

It remains to define the combinatorial version of adapted bases. For this
we need adapted spanning trees.

Definition 3.29. Let G be a connected graph. A spanning tree for G is a
simply-connected subgraph t ⊆ G with V (t) = V (G). If G is not connected,
G = G1 ∪̇ · · · ∪̇Gn, a spanning n-forest for G is the disjoint union t = t1 ∪̇
· · · ∪̇ tn of n spanning trees ti for Gi.
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Definition 3.30 (Adapted spanning trees). Let G be a graph and
P ⊆ G a family of subgraphs of G. A spanning tree t of G is P-adapted
if for each g ∈ P the graph tg, defined by E(tg) := E(t) ∩ E(g) is a spanning
tree for g. More precisely, if g is not connected, then we demand tg to be a
spanning forest for g.

Example. For dunce’s cap an D-adapted spanning tree (d = 4) is given by
E(t) = {e1, e3} or E(t) = {e2, e4}, while t with E(t) = {e1, e2} is spanning
but not adapted.

Proposition 3.31. A D-adapted spanning tree always exists for G at most
logarithmic.

Proof. We construct t using the fact that divergent graphs can be built
from primitive ones using the insertion operation. Moreover, this process is
reversible, i.e. in the dual process of contracting subgraphs no information
is lost. Start with the primitive subgraphs of G and let G1 be the graph
obtained from G by contracting all primitive subgraphs. G1 might have
primitive subgraphs itself (the g ∈ D with coradical degree equal to two, cf.
[25]). Repeat the process. After a finite number of steps Gk will be free of
subdivergences. Now choose a spanning tree t1 for Gk and spanning trees for
all subgraphs contracted in the step from Gk−1 to Gk. Then t2, the union of
all these spanning trees, is a tree in Gk−1 visiting every vertex exactly once.
Thus, it is a spanning tree for Gk−1. Repeat this process until after k steps
we have an D-adapted spanning tree t = tk of G. �

Remark. An interesting question arising here is for which families P ⊆ G
does such a P-adapted spanning tree exist? For a counterexample just take
P = G or I(G): In the first case every edge of G lies in G, so there cannot
exist a G-adapted spanning tree. For the second case consider the example
K4; there is no spanning tree that generates all four irreducible “triangle”
subgraphs.

Another question is for which class of graphs this holds, i.e. if the assump-
tion of G being at most logarithmic can be dropped?

With adapted spanning trees we are able to define N -adapted bases of
(XG)∗ in combinatorial terms. If the divergent lattice is considered, a D-
adapted spanning tree will automatically be N -adapted for any nested set
of any building set in D. This allows us to fix a convenient basis from the
beginning on. Every spanning tree t of G has |V | − 1 edges (otherwise it
would contain a cycle, contradicting simply-connectedness). Therefore, for
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every spanning tree t of G (with the same orientation) we have a linear map
ψt : M

E(t) → MV ′
defined by

(5) e 
→
{
vj − vi if e starts at vi and ends vj ,

±vk if e connects v0 to vk.

Pulling back vG along ψt amounts to a linear change of coordinates on XG

(as well as altering the numbering of the vertices of G, its orientation or the
choice of a different (adapted) spanning tree). Any automorphism of XG

will not change the topology of the arrangement and, as is shown in [12],
induces an isomorphism on the corresponding wonderful models. Therefore
the wonderful construction and renormalization do not depend on these
choices and we can work in a convenient basis given by an adapted spanning
tree. In this basis vG is given by

vG({xe}e∈E(t)) =
∏

e∈E(t)

�(xe)
∏

e∈E(G\t)
�
⎛⎝ ∑

e′∈E(te)

σt(e
′)xe′

⎞⎠
where te is the unique path in t connecting the source and target vertices of e
and σt : E(t) → {−1,+1} is determined by the chosen orientation of G. The
point is that for the divergent poset D in these coordinates x =

∑
e∈E(t) xee

we have A⊥
g = {xe = 0 | e ∈ E(tg)} for all g ∈ D. Dually this means that the

elements in B|e∈E(tg), defined below, form a basis of Ag. In other words, we
have an adapted basis in the sense of DeConcini-Procesi! By duality B also
defines a basis of XG and by abuse of notation we will denote both bases
by B - the meaning should always be clear from the context. This choice of
basis will be important when we study the pullback of vG onto the wonderful
model in the next section.

For G and other lattices there need not be an adapted spanning tree,
but we can always find N -adapted spanning trees and bases for any nested
set N .

Proposition 3.32. Let N be nested for some building set B in some lattice
L ⊆ G. Then there exists an N -adapted spanning tree.

Proof. The idea is the same as in Proposition 3.31. Start with the set M
of maximal elements in N and contract all other elements. Pick a spanning
tree for the resulting graphs. Proceed in the same manner with N \M
and repeat the process until all of N has been exhausted. This produces
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a spanning forest t for ∪γ∈Nγ, except if there are g, h in N that are non-
comparable and have non-empty intersection. In this case we argue like in
the proof of Lemma 3.26 to see that the join g ∨ h must also be in B. But
this is impossible since N is B-nested. In a last step contract all elements of
N in G and pick a spanning tree t′ for the resulting graph. The union t ∪ t′

is then an N -adapted spanning tree for G. �

Definition 3.33. Let G be at most logarithmic and N a B-nested set
for some building set B in a lattice L ⊆ G. Given an N -adapted spanning
tree t define the map ψt as in (5). With the linear forms ωe introduced in
Section 2.2 we define an N -adapted basis of (XG)∗ by

B := {bie := (ωe ◦ ψt)
i | e ∈ E(t), i = 1, . . . , d}.

In such a basis the map p : (XG)∗ → N ∪ {G} from Definition 3.6 is then
given by

p : x =
∑

e∈E(t)
i=1,...,d

xieb
i
e 
−→ min{g ∈ N ∪ {G} | xie = 0 for all e ∈ E(t \ tg)}.

A marking of an adapted basis is for every g ∈ N the choice of a b
ig
g ∈ B

with p(b
ig
g ) = g. Equivalently, we can view it as a labelling on the elements

of N :

g 
−→ bje for e ∈ E(t ∩ (g \ N<g)) and some j ∈ {1, . . . , d}.

Here g \ N<g := g \ (h1 ∪ · · · ∪ hk) for {h1, . . . , hk} = {h ∈ N | h < g} de-
notes the graph g with all its lower bounds in N removed. The partial
order � on B that determines the local blow-up ρN ,B is given by

bie � bje′ ⇐⇒ e ∈ E(tg), e
′ ∈ E(tg′) with g ⊆ g′ and bje′ is marked.

This finishes all necessary definitions and from here on we could repeat
the construction of a wonderful model in purely combinatorial terms. In the
divergent case we thus conclude that all ingredients are already determined
by the topology and subgraph structure of G. Therefore, there is really no
need for purely geometric data to build an atlas for YB. However obtained,
now after the planting has been done, it is time to reap the fruits and see
what a wonderful model can do for us.
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4. Wonderful renormalization

Having constructed the wonderful models (YA, β) for general arrangements
A, we now focus on the divergent and singular arrangements A = AD,AG
of a connected and at most logarithmic graph G. We study the pullback of
vG onto the model and the pole structure of its Laurent expansion, then
define (local) renormalization operators. The first two sections follow the
exposition in [3], especially the proofs of Proposition 4.1 and Theorem 4.4.
The difference lies in the emphasis on the combinatorics of D and the role
of adapted spanning trees in our formulation. We correct some minor flaws
and fill out missing details in the proofs.

Since YA is non-orientable, we use from now on distribution densities
(cf. Section 2). As charts for YA are indexed by nested sets N and markings
of adapted bases B we will abbreviate this data by an underlined letter,
i = (N , B). Adapted bases are here always given by the choice of an adapted
spanning tree t. We write x = {xe}e∈E(t) for a point in X = ME(t) with xe =

(x1e, . . . , x
d
e). A marking of B assigns individual coordinates to the elements

of a nested set of graphs. We denote the marked elements by N � g 
→ x
ig
g .

If a vector xg is marked in this way, let x̂g denote xg with ig-th coordinate
equal to 1.

4.1. The pullback of vG onto the wonderful model

Let (Y, β) be a wonderful model for G or D and v = vG the Feynman distri-
bution associated to a graph G. We start the renormalization program by
disassembling the pullback of v onto Y into a regular and a singular part.

Proposition 4.1. Let N be B-nested for a building set B of D (or G)
and B an adapted, marked basis. In local coordinates on Ui, i = (N , B), the
pullback of ṽs := vs|dx| onto the wonderful model is given by

(6) w̃s
i := (β∗ṽs)i = f s

i

∏
g∈N

u−1+dg+s(2−d)|E(g)|
g |dx|

where ug(x
ig
g ) = |xigg |−1 and dg := dimAg = d(|E(g)| − h1(g)).

The map fi : κi(Ui) −→ R is in L1
loc(κi(Ui)) (or in C∞(κi(Ui)) if the

singular arrangement is considered) but smooth in the variables x
ig
g , g ∈ N .
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Proof. The crucial point here is that locally β is given by the map

ρi : X −→ X,

d∑
i=1

∑
e∈E(t)

xieb
i
e 
→

d∑
i=1

∑
e∈E(t)

∏
xi
e
xk

e′

xke′b
i
e.

Recall the choice of coordinates given by t in (5). In these coordinates

β∗vs(x) = vs(ρi(x)) =
(
ρ∗i
(
I∗�s⊗|E(G)|

))
(x)

= ρ∗i

⎛⎝ ∏
e∈E(t)

�s(xe)
∏

e∈E(G\t)
�s

⎛⎝ ∑
e′∈E(te)

σt(e
′)xe′

⎞⎠⎞⎠
=
∏

e∈E(t)

�s

⎛⎝ ∏
p(xe)⊆g

xigg x̂e

⎞⎠ ∏
e∈E(G\t)

�s

⎛⎝ ∑
e′∈E(te)

∏
p(xe′ )⊆g

xigg σt(e
′)x̂e′

⎞⎠

where x̂e := (x1e, . . . ,

ig︷︸︸︷
1 , . . . , xde) if xe has a marked component. Since �

is homogeneous of degree (2− d), we can pull out all the factors x
ig
g in the

first product of �’s, so that the kernel of w̃s
i (x) is given by

∏
e∈E(t)

⎛⎝ ∏
p(xe)⊆g

xigg

⎞⎠s(2−d)

�s(x̂e)
∏

e∈E(G\t)
�s

⎛⎝ ∑
e′∈E(te)

∏
p(xe′ )⊆g

xigg σt(e
′)x̂e′

⎞⎠ .

In the second factor we can pull out x
ig
g if it appears in every term in the

sum, i.e. if te is a subgraph of some g ∈ N . But this is equivalent to e ∈ E(g)

because t is an adapted spanning tree. Thus, x
ig
g appears exactly |E(g)|-times

and we conclude

ws
i (x) = f s

i (x)
∏
g∈N

(xigg )
s(2−d)|E(g)|.

Under the coordinate transformation ρi every dxe =
∧

i=1,...,d dx
i
e transforms

into

ρ∗i dxe =

{
(x

ig
g )d−1dxe if xe contains a marked component,

(x
ig
g )ddxe if xe has no marked component.
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How many xe are scaled by the same x
ig
g ? As many as there are edges in

E(g). Therefore, there are in total (dimAg − 1) factors and the measure

|dx| =
∣∣∣∣∣∣

∧
e∈E(t),i=1,...,d

dxie

∣∣∣∣∣∣
transforms into

ρ∗i |dx| =
∏
g∈N

|xigg |dimAg−1|dx|.

Putting everything together we conclude

w̃s
i (x) = f s

i (x)
∏
g∈N

|xigg |−1+dg+s(2−d)|E(g)||dx|.

For the divergent lattice the exponents of |xigg | are given by −1 + dg(s−
1) because d|h1(g)| = 2|E(g)| and dg = dimAg = d(|E(g)| − h1(g)) (cf. the
proof of Proposition 2.9).

It remains to show that fi ∈ L1
loc(κi(Ui)) or C∞(κi(Ui)), respectively.

Recall the definition of Ui = X \ ∪γ∈BZγ where Zγ is the vanishing locus
of the polynomials Pv for v ∈ X∗ such that p(v) = γ (note that p, Pv and
therefore also Zγ depend on i!). For the singular arrangement every build-
ing set B must contain all subgraphs consisting of a single edge. But for
these elements of B the Zγ = Ze are precisely the sets where an entire sum∑

e′∈E(te)
σt(e

′)xe′ expressing an edge e of G vanishes. Since all functions
� are smooth off the origin it follows that fi is a smooth function. The
same reasoning works for the divergent arrangement: Every building set of
D must contain all irreducible subgraphs. In addition, every element of D
is built out of elements of I(D) by the join operation (i.e. using ∪). There-
fore, as in the singular case, it follows that linear combinations expressing
edges in any divergent subgraph can not vanish on Ui. The map fi fails to
be smooth only at propagators of edges that do not lie in some element of
B. But by the proof of Proposition 2.9 we know that there fi is still locally

integrable, hence fi ∈ L1
loc(κi(Ui)). Smoothness in the marked elements x

ig
g ,

g ∈ N , follows from the simple fact that in the definition of fi already all
marked elements have been pulled out of the linear combinations expressing
edges in G. If one such expression would vanish at x

ig
g = 0, then all xe′ were

scaled by x
ig
g and this factor would have been absorbed into the exponent of

ug. Therefore no argument in the product of �’s can vanish at x
ig
g = 0. �
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4.2. Laurent expansion

From now on we consider the divergent lattice D only. In this case we define
usg(x

ig
g ) := |xigg |−1+dg(1−s) and for a finite product of maps Fi, i ∈ I, we write

FI :=
∏

i∈I Fi. Then, under the assumptions of Proposition 4.1,

w̃s
i = f s

i

∏
g∈N

usg|dx| = f s
i u

s
N |dx|.

To define local renormalization operators we need a better understanding of
the pole structure of w̃s. As it turns out, this structure is already encoded
in the geometry of the exceptional divisor E and reflects the structure of the
divergent lattice D.

Consider first the case of primitive graphs. Then Y is the blow-up of the
origin in X, covered by charts Ui where i runs from 1 to dn (corresponding
to all possible markings of an adapted basis). We already know from the
extension theory for distributions that the Laurent expansion around s = 1
of w̃s has a simple pole with its residue given by

ã−1
loc.
= − 2

dG
fiδEi.

Here δE is a density on Y , the delta distribution centered on E (cf. [18]),
locally in Ui given by the delta distribution in the marked coordinate xi, i.e.

〈δE |ϕ〉 loc.
=

∫
dx δ(xi)ϕ(x).

Pairing ã−1 with the characteristic function χ of Y produces a projective
integral

〈ã−1|χ〉 = − 2

dG

∫
E
f.

Recall from Section 3.1.1 the definition of induced charts (Vi, φi) for E . Since
any such chart covers E up to a set of measure zero, it suffices to do this
integral in one of them. Thus,∫

E
f =

∫
dx̂fi(x̂),

where dx̂ = dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxnd for some i ∈ {1, . . . , dn}.
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Definition 4.2 (Period of a primitive graph). Let G be primitive. The
period P(G) of G is defined as the integral

P(G) := 〈ã−1|χ〉 = − 2

dG

∫
E
f.

For more on periods see the overview in [28]. Until recently it was
believed that all periods in massless φ4-theory (i.e. d = 4 and all vertices
of the Feynman diagram corresponding to G are 4-valent) are rational com-
binations of multiple zeta values. But counterexamples [9] have proven this
false, relating a better understanding of these periods to deep questions in
algebraic geometry [8].

For general G the Laurent expansion of w̃s will contain terms corre-
sponding to contracted graphs. Since we work in local coordinates indexed
by B-nested sets, we need a more sophisticated (local) contraction operation
on graphs:

Definition 4.3. Let g ⊆ G and P ⊆ D. The contraction relative to P is
defined as

g//P :=

{
g/(
⋃

γ∈P<g
γ) if g ∈ P,

g/(g ∩⋃γ∈P:γ∩g<g γ) else.

Especially important will be the contraction relative to nested sets. The
reader should think of it as a local version of the contraction in the definition
of the coproduct in the Hopf algebra of Feynman graphs. It will show up
in all formulae that include the coproduct in their usual formulation, say
in momentum space. Note that for g ⊆ G the “normal” contraction G/g is
included in this definition as contraction of G with respect to the nested set
N = {g,G}. Moreover, if N is nested and g ∈ N or all elements of N are
contained in g, then g//N is at most logarithmic as well. For a general dis-
cussion of which classes of graphs are closed under the contraction operation
we refer the reader to [7].

Theorem 4.4. Let Y be a wonderful model for some building set B of D.
Let w̃s = β∗ṽs be the pullback of the density ṽs ∈ D̃′(X) onto Y . Then:

1) The Laurent expansion of w̃s at s = 1 has a pole of order N where N
is the cardinality of the largest B-nested set.
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2) The coefficients ãk in the principal part of the Laurent expansion,

w̃s =
∑

−N≤k≤−1

ãk(s− 1)k,

are densities with supp ãk =
⋃

|N |=−k EN , where EN :=
⋂

γ∈N Eγ .
3) Consider the irreducible elements I(D) as building set. Assume G ∈

I(D). Let N be a maximal nested set and denote by χ the constant
function on the wonderful model YI(D). Then for N = |N |

〈ã−N |χ〉 =
∑

|M|=N

∏
γ∈M

P(γ//M).

Proof. 1. This follows from the local expression for w̃s. Using Formula (1)
we have

w̃s loc.
= f s

i u
s
N |dx| = f s

i

∏
g∈N

(
− 2

dg
δg(s− 1)−1 + usg♥

)
|dx|.

Since usg♥ is regular in s, the highest pole order is given by |N |.
2. Expand us♥ ∈ D′(R) into a Taylor series at s = 1,

us♥ =

∞∑
k=0

uk(s− 1)k

where the distributions uk are given by

(7) uk : ϕ 
→
∫

dx |x|−1 logk(|x|)(ϕ(x)− θ(1− |x|)ϕ(0)).
In the following we write θg for the map x

ig
g 
→ θ

(
1− |xigg |

)
in all coefficients

of the expansion of the regular part of usg. Expanding f s gives

f s = exp(log(f s)) = f exp
(
(s− 1) log(f)

)
= f

∞∑
k=0

logk(f)

k!
(s− 1)k.

Fix a B-nested set N with a corresponding marking B and set i = (N , B).
To determine the lower pole parts in the local expression for w̃s we multiply
all series usg♥ for g ∈ N and reorder the sum. Denote by (ug)l the l-th order
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coefficient of the expansion of usg. Then for n ∈ {1, . . . , N} the kernel of ã−n

is given by

N−n−1∑
k=0

fi log
k(fi)

k!

⎛⎜⎜⎜⎝
N−n−1∑
j=k

∑
L⊆N

|L|=n+j

∏
γ∈L

(
− 2

dγ

)
δγi

∏
η∈N\L

{lη∈N|∑η∈N\L lη=j−k}

(uη)lη

⎞⎟⎟⎟⎠(8)

+
fi log

N−n(fi)

(N − n)!

∏
γ∈N

(
− 2

dγ

)
δγi,

with δγ := δEγ
. Recall that locally Eg is given by x

ig
g = 0 and EI ⊆ EJ for

J ⊆ I ⊆ N . Therefore, the support of ã−n is given by the (k = j = 0)-
summand in (8), carrying the product of n δ-distributions in the marked
coordinates of an n-element subset of N . Varying over all B-nested sets N
(and the markings) the same holds for all n-element subsets of any nested
set. Thus, from the expansion formula (8) we conclude that the densities
ã−n are supported on

⋃
|N |=n

⎛⎝⋂
γ∈N

Eγ
⎞⎠ =

⋃
|N |=n

EN .

3. This follows essentially from two assertions: First, if we view the pair-

ing of a product of delta distributions (δg
loc.
= δ(x

ig
g )) with a function ϕ as an

operator δN , locally given by

δN i : ϕ ∈ D(κi(Ui)) 
−→
⎛⎝∏

γ∈N
δγi

⎞⎠ [ϕ] ∈ D(κi(Ui ∩ EN )),

then for f = fi the regular part of the pullback β∗ṽs we have

(9) δN [f ] =
∏
γ∈N

fγ//N .

Here fg//N is obtained from f by setting all marked elements corresponding
to graphs in N<g to zero. It equals the regular part of the pullback of ṽsg//N
onto the wonderful model for the graph g//N in charts corresponding to the
nested set {g//N} (g//N is primitive!). For a precise definition and the proof
of this assertion we refer to Section 5, Theorem 5.3, where this is elaborated
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in a much more general case. The important point here is that δN [f ] is a
product of maps fg//N , each one depending only on the set of variables {xe}
with e in E(tg) \ E(N<g) without all marked elements.

The second assertion is that in every maximal I(D)-nested set all con-
tracted graphs g//N are primitive. Note that if G is divergent and irre-
ducible, it must be contained in every maximal nested set. To prove the
assertion let g ∈ N and assume g//N is not primitive. This means there
is an h ∈ D with either h ⊆ g//N or h//N ⊆ g//N . In both cases we can
assume that h is irreducible (if not, then h is the union of irreducible ele-
ments and we do the following for every irreducible component of h). Then
the set N ′ = N ∪ {h} is also nested if h satisfies the following property: For
all g′ in N that are incomparable to g the join h ∨ g′ = h ∪ g′ must not lie
in I(D). But if there is g′ ∈ N , incomparable to g, with h ≤ g′ then g and g′

have both h as common subgraph. By Lemma 3.26 this implies that g ∨ g′ is
irreducible, showing that g and g′ cannot both lie in N because N is I(D)-
nested. If g//N ′ is still not primitive, repeat the process until all contracted
graphs are primitive. The resulting nested set N ′ is then really maximal; if
adding another graph does not violate the property of being nested, then
it must necessarily be disjoint from all g ∈ N ′ (otherwise some g//N is not
primitive) and this is impossible due to G being in N ′.

For G ∈ I(D) all edges of G lie in some divergent subgraph (if not, say
for one edge e, then contract all divergent subgraphs. The resulting graph
is primitively divergent and contains e). Thus, in every maximal nested set
N all edges of an adapted spanning tree t correspond to some element of N
and by Definition 3.8 we have UN ,B = X for all maximal nested sets N . Let
N be such a maximal nested set. Using 2. and the first assertion we have
locally in Ui = UN ,B

〈ã−N |χ〉 loc.
=

∫
κi(Ui)

dx
∏
γ∈N

(
− 2

dγ

)
δγi[fi] =

∏
γ∈N

(
− 2

dγ

)∫
κi(Vi)

dx̂ δN i[fi]

=

∫
κi(Vi)

dx̂
∏
γ∈N

(
− 2

dγ

)
(fγ//N )i.

Here x̂ denotes {xe}e∈E(t) without all marked elements and Vi is the chart
domain for local coordinates on EN , obtained by restriction of the chart κi
(cf. Section 3.1.1). Since it covers EN up to a set of measure zero (cf. Defini-
tion 4.2), integration in a single chart suffices. Moreover, two components of
the exceptional divisor EN and EM have non-empty intersection if and only
if N ∪M is nested. But this is impossible due to maximality of N . There-
fore we can sum the contributions from charts given by different maximal
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nested sets to obtain the global result

〈ã−N |χ〉 =
∑
i

∫
κi(Vi)

dx̂
∏
γ∈N

(
− 2

dγ

)
(fγ//N )i

where the sum is over all maximal nested sets with some marking. Since all
(fγ//N )i depend on mutually disjoint sets of variables, the integral factorizes
and since restricting κi|Vi

further to {x̂e}e∈E(tγ) is a local chart for Eγ//N ,
we conclude that∑

i

∫
κi(Vi)

dx̂
∏
γ∈N

(
− 2

dγ

)
(fγ//N )i =

∑
N

∏
γ∈N

∫
Eγ//N

(
− 2

dγ

)
fγ//N

=
∑
N

∏
γ∈N

P(γ//N ).

�
This theorem is a first hint at the Hopf algebraic formulation of the renormal-
ization group (see [25], [13]). It shows that the poles of w̃s are not arbitrary
densities but reflect the combinatorics of D in a special way. The highest
order pole is completely determined by the structure of D. For the poles
of lower order the same holds in a weaker version; they are supported on
components of E whose stratification is given by the combinatorial structure
of D as well.

4.3. Renormalization

With the main result of the previous section we are now able to tackle
the renormalization problem. Since all poles of w̃s live on the components
of the exceptional divisor, we can get rid of them using local subtractions
depending on the direction such a pole is approached. These directions are
encoded by nested sets, so that we will employ local versions of the previously
defined renormalization maps r1 and rν , depending on the chosen coordinate
system given by B-nested sets and markings of an adapted basis B.

Definition 4.5 ((Local) minimal subtraction). Let R1 denote the col-
lection of renormalization maps {Ri

1} where i runs through all B-nested sets
N and marked, adapted bases B (more precisely, the markings since the
basis is fixed). R

i
1 removes the poles in the coordinates associated to the

marked elements, i.e.

R1[w̃
s]

loc.
= R

i
1[f

s
i ũ

s
N ] := f s

i

∏
g∈N

r1[u
s
g]|dx|.
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Recall from Section 2 that r1[u
s
g] = (usg)♥, so there are no poles anymore

and we can take the limit s → 1 to obtain a well defined density on Y .
The next definition introduces a renormalization operator that produces a
density for s in a complex neighborhood of 1. It should be thought of as a
smooth version of minimal subtraction.

Definition 4.6 ((Local) subtraction at fixed conditions). Let Rν

denote the collection of renormalization maps {Ri
ν} where i runs through

all B-nested sets N and markings of B. The symbol ν = {νig}g∈N stands

for a collection of smooth functions on κ(Ui). Each ν
i
g depends only on the

coordinates xe with e ∈ E(t) ∩ E(g \ N<g) and satisfies ν
i
g|xig

g =0
= 1. Fur-

thermore, it is compactly supported in all other directions. Similarly to R1

the operator Rν is defined by

Rν [w̃
s]

loc.
= Ri

ν [f
s
i ũ

s
N ] := f s

i

∏
g∈N

rνi
g
[usg]|dx|.

In contrast to the definition of rν given in Section 2 the maps ν
i
g depend

not only on the marked coordinates x
ig
g , but on all {xe}e∈E(t)∩E(g\N<g). This

is to ensure that all terms are well-defined densities in a neighborhood of
s = 1. There is some ambivalence in defining them, so it pays of to be careful
at this point.

We introduce another useful expression for Rν . Locally in Ui,

(10) Ri
ν [w̃

s
i ] =

∑
K⊆N

(−1)|K|νiK · (w̃s)EKi.

Here νK :=
∏

γ∈K νγ and EK =
⋂

γ∈K Eγ ⊆ E . This is to be understood in the
following way: First restrict the regular part f s

i of w̃s
i and the test function

ϕ to κi(Ui ∩ EK), then pull this product back onto κi(Ui), then multiply by

usN and ν
i
K and finally integrate. In formulae〈

ν
i
K · (w̃s)EKi|ϕ

〉
=
〈
(pKi)∗(ν

i
Ku

s
N |dx|)|δKi[f

s
i ϕ]
〉
.

Here pK is the (canonical) projection pK : Y → EK and δK is the correspond-
ing map D(Y ) → D(EK). For K = {g1, . . . , gk} they are locally given by

pKi : x 
→ (
x11, . . . , x̂

ig1
g1 , . . . , x̂

igk
gk , . . . , xdn

)
,

δKi : ϕ 
→ ϕ|
x
ig1
g1 ,...,x

igk
gk

=0
.
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Note that δKi[f
s
i ϕ] remains compactly supported in the coordinates asso-

ciated to G \ ∪γ∈KN<γ . On the other hand, ν
i
K is compactly supported in

the coordinates associated to G ∩ (∪γ∈K(γ \ N<γ)). But these sets cover G

and therefore the counterterms ν
i
K · (w̃s)EKi are well-defined densities in all

coordinates except the marked elements (cf. the proof of Theorem 12). The
notation is chosen to suggest that (w̃s)EK can be thought of as the “restric-
tion” of w̃s onto EK and the symbol “·” in νK · (w̃s)EK is used to highlight
the fact that this expression differs from the usual product of distributions
and smooth functions. We call it “product” as it is linear and multiplicative
in ν.

Lemma 4.7. Let g, h ∈ D. The maps pg,h and δg,h both fulfill the following
“commutation rules”:

pg,h = pgg,h ◦ pg = phg,h ◦ ph,
δg,h = δgg,h ◦ δg = δhg,h ◦ δh,

where pgg,h : Eg −→ Eg,h is locally given by(
x11, . . . , x̂

ig
g , . . . , x

d
n

) 
→ (
x11, . . . , x̂

ig
g , . . . , x̂

ih
h , . . . , xdn

)
and δgg,h : D(Eg) 
→ D(Eg,h) by

ϕ |
x
ig
g =0


→ ϕ |
x
ig
g =x

ih
h =0

.

Proof. Clear from the definition of both maps. �
Obviously this property generalizes to the case where instead of {g, h}

a finite subset of a nested set is considered, e.g.

pg1,...,gk = pg1,...,gk−1
g1,...,gk ◦ · · · ◦ pg1g1,g2 ◦ pg1

and similarly for δg1,...,gk .
Both renormalization operations produce well-defined densities at s = 1

as is shown in the next proposition.

Proposition 4.8. Let (Y, β) be a wonderful model for a building set of the
divergent lattice D. Then R1[w̃

s]|s=1 defines a density on Y , while Rν [w̃
s] is

a density-valued holomorphic function for all s in a neighborhood of 1 in C.

Proof. Note that from the proof of Theorem 4.4 it follows in particular
that w̃s is really a density on Y . By the same argumentation we are able
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to conclude from (10) that all counterterms in Rν are densities for s in a
neighborhood of 1: Every subtraction term has the same combination of
usN and f s, transforming under a change of coordinates according to the
definition of densities.

In the case of minimal subtraction, by Theorem 4.4 and the definition
of r1, all poles of w̃s have been discarded. Therefore, R1[w̃

s]|s=1 is a finite
density. From the Taylor expansion of us♥ in (7) it follows that R1[w̃

s] fails
to be a density for s �= 1 because the usg do not transform correctly under a
change of coordinates.

It remains to show finiteness of Rν [w̃
s]. We argue by induction on the

cardinality of nested sets. First consider the case where the nested set con-
sists of a single graph, N = {g} for some g ⊆ G. Let x

ig
g denote the marked

element. By Definition 4.6

〈Ri
ν [w̃

s
i ]|ϕ〉 = 〈w̃s

i |ϕ〉 − 〈νi · (w̃s)Egi|ϕ〉,

νi = ν
i
g depending on all xe with e ∈ E(tg). We expand both summands into

their Laurent series (focusing on the principle part only) to get

〈w̃s
i |ϕ〉 =

∫
dx |xigg |−1+dg(1−s)f s

i (x)ϕ(x)

=

∫
dxigg |xigg |−1+dg(1−s)

∫
dx̂ f s

i (x
ig
g , x̂)ϕ(x

ig
g , x̂)

=:

∫
dxigg |xigg |−1+dg(1−s)F (s, xigg ).

Using Formula (1) from Section 2,

〈w̃s
i |ϕ〉 = − 2

dg
F (s, 0)(s− 1)−1

+

∫
dxigg |xigg |−1+dg(1−s)

(
F (s, xigg )− θg(x

ig
g )F (s, 0)

)
.

For the counterterm we have

〈νi · (w̃s)Egi|ϕ〉 =
∫

dx |xigg |−1+dg(1−s)νi(xtg)
(
f s
i (x)ϕ(x)

)|
x
ig
g =0

=

∫
dxigg |xigg |−1+dg(1−s)

∫
dx̂ νi(xtg)f

s
i (0, x̂)ϕ(0, x̂)

=:

∫
dxigg |xigg |−1+dg(1−s)Gν(s, x

ig
g ).
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In the same way as above we get

〈νi · (w̃s)Egi|ϕ〉 = − 2

dg
Gν(s, 0)(s− 1)−1

+

∫
dxigg |xigg |−1+dg(1−s)(Gν(s, x

ig
g )− θg(x

ig
g )Gν(s, 0)).

Since νi(xtg)|xig
g =0

= 1, F (s, 0) = Gν(s, 0) and the pole cancels in the dif-

ference. Therefore, 〈Ri
ν [w̃s

i ]|ϕ〉 is finite for all ϕ ∈ D(κi(Ui)). Now let N be
nested and h ⊆ G such that N ′ := N ∪ {h} is also nested. For K ⊆ N set
K′ := K ∪ {h}. Assume h to be minimal inN ′ (if not choose another minimal

element). We want to show finiteness of R
i′
ν [w̃s

i′ ] in κi′(Ui′) for i′ = (N ′, B)
with B marked for N plus an additional marking for the element h (since
h is minimal, all markings of N ′ are of this form). By induction hypothesis
R

i
ν [w̃s

i ] is a well-defined density on κi(Ui) for all s in a neighborhood of 1
in C. In [12] it is shown that Ui′ is the blow-up of the proper transform of
A⊥

h in Ui. By minimality of h this blow-up βh is locally given by ρh, i.e. by
scaling all {xe}e∈E(th) with xihh . Moreover, the chart κi′ is just the inverse

of the composition of ρh with Γ(πB) ◦ ρN . The pullback of R
i
ν [w̃s

i ] along

this blow-up has an additional divergence in the coordinate xihh , one more
subtraction is needed to obtain a finite density on Ui′ :

rνh

[
ρ∗hR

i
ν [w̃

s
i ]
]
= rνh

⎡⎣ρ∗h ∑
K⊆N

(−1)|K|νiK · (w̃s)EKi

⎤⎦ =: ∗

Here minimality of h is crucial. It means that ν
i
γ = ν

i′
γ =: νγ for all γ ∈ N ,

so that R
i
ν commutes with ρ∗h. We compute the pullbacks locally in Ui,

the power counting that produces ush works exactly like in the proof of
Proposition 4.1.

〈ρ∗h(νK · (w̃s)EKi)|ϕ〉 =
∫

(ρ∗hdx)(νK ◦ ρh)(usN ◦ ρh)p∗KiδKi[(f
s
i ◦ ρh)ϕ]

=

∫
dx νKusNushp

∗
Ki′δKi′ [f

s
i′ϕ]

= 〈νK · (w̃s)EKi′ |ϕ〉.
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Thus,

∗ =
∑
K⊆N

(−1)|K|νK · (w̃s)EKi′ − νh ·
∑
K⊆N

(−1)|K|νK · (w̃s)EK∪{h}i′

=
∑

K⊆N ′

(−1)|K|νK · (w̃s)EKi′

= Ri′
ν [w̃

s
i′ ],

where we used minimality of h again,

〈νh · (νK · (w̃s)EK)Ehi′ |ϕ〉 =
∫

dxusN ′νhνK|xih
h =0

(
f s
i′ϕ
) |

x
iK
K =x

ih
h =0

=

∫
dxusN ′νK′

(
f s
i′ϕ
) |

x
iK
K =x

ih
h =0

= 〈νK′ · (w̃s)EK′ i′ |ϕ〉.

We see that both densities coincide and the proposition is proven. �
Both renormalization operators have another property that every sen-

sible renormalization should have; they commute with multiplication by
smooth functions.

Lemma 4.9. Let f ∈ C∞(κi(Ui)), then

R
i
1[w̃

s
i f ] = fR

i
1[w̃

s
i ], Ri

ν [w̃
s
i f ] = fRi

ν [w̃
s
i ].

Proof. Clear from the definition of both operators. The regular part of the
density is treated as a test function, the same happens in the definition of
multiplication of densities by smooth functions. �

Finally, we are able to state a solution of the renormalization problem.

Definition 4.10 (Renormalized Feynman rules). Let R denote one
of the renormalization operators R1 or Rν on a wonderful model (Y, β) for
the divergent arrangement of an at most logarithmic graph G. Define the
renormalized Feynman distribution by

R[vG] := β∗R[w̃G]|s=1.

Then the renormalized Feynman rules are given by the map

ΦR : G 
−→ (XG,R(vG)).
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The pair (XG,R(vG)) can now be evaluated at ϕ ∈ D(XG),

(evalϕ ◦ ΦR) (G) = 〈R[vG]|ϕ〉 = 〈β∗R[w̃G]|s=1 | ϕ〉
= 〈R[w̃G]|s=1 | β∗ϕ〉.

To carry out the evaluation at ϕ we choose a partition of unity {χi}i∈{(N ,B)}
on Y , subordinate to the covering {Ui}i∈{(N .B)}. Write πi for χi ◦ κ−1

i . Then

〈
R[w̃s

G]|s=1 | β∗ϕ
〉
=
∑
i

〈
πi(R[w̃s

G])i|s=1 | ϕ ◦ ρi
〉
.

To see that this definition does not depend on the chosen partition of unity
let {χ′

j} denote another partition, also subordinate to the {Uj}j∈{(N ,B)}.
Then ∑

i

〈
πi(R[w̃G])i|s=1 | ϕ ◦ ρi

〉
=
∑
i

∫
supp(πi)

dx
∑
K⊆N

(−1)|K|uN ν
i
KδKi[fi(ϕ ◦ ρi)πi]

=
∑
i

∫
supp(πi)

dx
∑
K⊆N

(−1)|K|uN ν
i
KδKi

⎡⎣fi(ϕ ◦ ρi)πi
∑
j

π′
j

⎤⎦
=
∑
i

∑
j

∫
supp(πi)∩supp(π′

j)
dx
∑
K⊆N

(−1)|K|uN ν
j

KδKj

[
fj(ϕ ◦ ρj)πiπ′

j

]

=
∑
j

∫
supp(π′

j)
dx
∑
K⊆N

(−1)|K|uN ν
j

KδKj

⎡⎣fj(ϕ ◦ ρj)π′
j

∑
i

πi

⎤⎦
=
∑
j

〈
π′
j(R[w̃G])j |s=1 | ϕ ◦ ρj

〉
.

This finishes the process of wonderful renormalization. From a mathe-
matical point of view we are done, but for a physicist it is not clear yet that
we have constructed a reasonable renormalization. In addition to produc-
ing finite distributions both schemes have to fulfill another condition that is
dictated by physics. It is called the locality principle (see [15]) and, roughly
speaking, assures that the renormalized distributions still obey the laws of
physics. There are various equivalent formulations of this; we will use a ver-
sion for single graphs from [3], more about this in Section 6. Before that
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we turn our attention to the dependence of the operators R on the renor-
malization points, i.e. we study what happens if we change the collection of
maps {ν} or the cutoff in the definition of us♥, respectively.

5. Renormalization group

In this section we take a closer look at the renormalized distribution den-
sities. First we consider (local) subtraction at fixed conditions. The case
of minimal subtraction then follows by similar arguments since it can be
thought of as a “non-smooth” version of the former. What happens if we
change the cutoff functions in the definition of the operator Rν? Clearly,
for primitive graphs the difference is a density supported on the exceptional
divisor E , its push-forward to X will then be supported on the origin. To
get an idea what happens in the general case it is useful to start with an
example. Throughout this section we drop the index i in all local expres-
sions; to keep track of the counterterms in the renormalization operators we
write RN

ν for R
i
ν .

Example. Let G be the dunce cap graph (Figure 1). Locally (in d = 4
dimensions and N = {g,G}, g denoting the divergent fish subgraph) we
have for ϕ ∈ D(κ(U))

〈
RN

ν [w̃s]|ϕ〉 = ∑
K⊆N

(−1)|K|〈νK · (w̃s)EK |ϕ〉

= 〈w̃s|ϕ〉 − 〈(pG)∗(νGusN |dx|)|δG[f sϕ]
〉

− 〈(pg)∗(νgusN |dx|)|δg[f sϕ]
〉

+
〈
(pg,G)∗(νgνGusN |dx|)|δg,G[f sϕ]

〉
.

Changing the renormalization point {ν}, by linearity the difference of
the two renormalized expressions is again a sum of this form. However, it
will contain a mixture of ν and ν ′ as renormalization points. But we can
express the terms with ν ′ again by ν-terms only and obtain a finite sum of
ν-renormalized expressions. Another way to see this is by Taylor expansion
using the calculus of variations,
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d

dt
|t=0

〈
RN

ν+tμ[w̃
s]|ϕ〉 = −〈(pg)∗(μgu

s
N |dx|)|δg[f sϕ]

〉
− 〈(pG)∗(μGu

s
N |dx|)|δG[f sϕ]

〉
+
〈
(pg,G)∗

(
(νgμG + νGμg)u

s
N |dx|)|δg,G[f sϕ]

〉
,

d2

dt2
|t=0

〈
RN

ν+tμ[w̃
s]|ϕ〉 = 2

〈
(pg,G)∗(νgνGusN |dx|)|δg,G[f sϕ]

〉
,

dk

dtk
|t=0

〈
RN

ν+tμ[w̃
s]|ϕ〉 = 0 for all k > 2.

Thus, for μγ := ν ′γ − νγ , γ ∈ {g,G}, using Lemma 4.7,

〈
RN

ν′ [w̃s]−RN
ν [w̃s]|ϕ〉 = − 〈R{G}

νG
[μg · (w̃s)Eg

]|ϕ〉− 〈R{g}
νg

[μG · (w̃s)EG
]|ϕ〉

+ 〈νgνG · (w̃s)Eg,G
|ϕ〉.

We see, as expected, that the difference is a sum of densities supported on
the components of the exceptional divisor, given by subsets of the nested set
N . Since μγ = 0 for x

iγ
γ = 0, they are finite, except if a point approaches the

intersection of two components EJ ∩ EK for J ,K ⊆ N . But in this case the
necessary subtractions are already provided by the counterterms associated
to the set J ∪ K.

Proposition 5.1. Let {ν} and {ν ′} be two collections of renormalization
points on a wonderful model for the divergent arrangement. Locally in U =
UN ,B the difference between the operators Rν′ and Rν acting on w̃s is given
by

(Rν′ −Rν)[w̃
s]

loc.
=

∑
∅�=K⊆N

(−1)|K|RN\K
ν [μK · (w̃s)EK ]

with R∅
ν := idD̃′(κ(U)).

Proof. Induction on n = |N |. The statement holds in the cases n = 1 and 2
(see example above). Let N be a nested set of cardinality n and h /∈ N an
additional divergent subgraph such that N ′ = N ∪ {h} is also nested. For
K ⊆ N set K′ := K ∪ {h}.
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(
RN ′

ν′ −RN ′
ν

)
[w̃s] =

∑
∅�=K⊆N

(−1)|K|(ν ′K − νK) · (w̃s)EK

+
∑
K⊆N

(−1)|K
′|(ν ′K′ − νK′) · (w̃s)EK′

=: A+B.

By induction hypothesis

A =
∑

∅�=K⊆N
(−1)|K|RN\K

ν [μK · (w̃s)EK ].

Using
n∏

i=1

(ai + bi)−
n∏

i=1

ai =
∑

∅�=J⊆{1,...,n}
bJa{1,...,n}\J

we expand B into two parts, depending on whether ν or μ carries an index h,

B = B1 +B2 =
∑
K⊆N

(−1)|K
′| ∑
J⊆K

μJ ′νK\J · (w̃s)EK′

+
∑

∅�=K⊆N
(−1)|K

′| ∑
∅�=J⊆K

μJ νK′\J · (w̃s)EK′ .

Note that in A all densities μL · (w̃s)EL have an additional, not yet renor-
malized divergence corresponding to the subgraph h ∈ N ′. In order to renor-
malize them we have to add the counterterms associated to h, i.e. all terms
in B containing νh. For non-empty L ⊆ N fixed

(−1)|L|RN\L
ν [μL · (w̃s)EL ] +

∑
L⊆J⊆N

(−1)|J
′|μLνJ ′\L · (w̃s)EJ′

=(−1)|L|
∑

I⊆N\L
(−1)|I|

(
μLνI · (w̃s)EL∪I − μLνI′ · (w̃s)EL∪I′

)
=(−1)|L|

∑
I⊆N ′\L

(−1)|I|μLνI · (w̃s)EL∪I

=(−1)|L|RN ′\L
ν [μL · (w̃s)EL ]

is then a finite expression. Doing this for every non-empty L ⊆ N covers the
whole sum B2 because every term μLνI′ · (w̃s)EL∪I′ appears exactly once and
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the signs match since

∑
I⊆N\L

(−1)|L|+|I|+1μLνI′ · (w̃s)EL∪I′ =
∑

∅�=K⊆N ,L⊆K
(−1)|K

′|μLνK′\L · (w̃s)EK′ .

The same argumentation works for B1. Fix L ⊆ N and consider all terms
in B1 containing μL′ :

∑
K⊆N ,L⊆K

(−1)|K
′|μL′νK\L · (w̃s)EK′ =

∑
I⊆N\L

(−1)|L
′|+|I|μL′νI · (w̃s)EL′∪I

= (−1)|L
′|RN ′\L′

ν [μL′ · (w̃s)EL′ ].

Putting everything together we have shown that locally the difference be-
tween two renormalization operators Rν′ and Rν is expressible as a sum of
densities, supported on the components EK for K ⊆ N and renormalized in
the remaining directions according to subsets of N \ K. �

This is a nice formula showing that a finite renormalization (i.e. a change
of renormalization points) amounts to adding a density supported on the
exceptional divisor, as expected from the toy model case on R (or Rd for
homogeneous distributions). But we can do even better and physics tells us
what to expect: The Hopf algebraic formulation of the renormalization group
predicts that the densities appearing in (Rν′ −Rν)[w̃

s] should correspond
to graphs showing up in the coproduct of G (for more on this see [13] and
[25]). In the local formulation presented here the coproduct translates into
local contractions, i.e. contractions with respect to nested sets N .

Example. Turning back to the example at the beginning of this section
where we calculated 〈RN

ν′ [w̃s]−RN
ν [w̃s]|ϕ〉 to be

−〈R{G}
νG

[μg · (w̃s)Eg
]|ϕ〉− 〈R{g}

νg
[μG · (w̃s)EG

]|ϕ〉+ 〈νgνG · (w̃s)Eg,G
|ϕ〉,

we now examine the individual terms in more detail. Eventually we are
interested in the pairing with test functions ϕ that are pullbacks of test
functions onX. Recall that locally β is given by the scaling map ρ. In κ(U) =
X = M2, corresponding to N = {g,G}, an adapted spanning tree chosen as
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in the example in Section 3.2.2 and marked elements xG, yg (x, y ∈ R4),〈
R{G}

νG
[μg · (w̃s)Eg

]|ϕ〉
=

∫
M2

d4xd4y μg|xG|7−8s|yg|3−4s (δg[f
sϕ]− νGδg,G[f

sϕ])

= cg

∫
M

d4x |xG|7−8s

(
ψ(xGx̂, 0)

x̂4s
− νG(x)ψ(0, 0)

x̂4s

)
= cg

〈
R{G/g}

νG
[w̃s

G/g]|δg[ϕ]
〉
.

Here w̃s
G/g is the density associated to the contracted graph G/g (more

precise, its local expression in UN ′,B′ with B′ spanned by x = {xie}e∈E(t)\E(g)

andN ′ = {G/g} - the exponent 7− 8s in |xG| does not match but we neglect
this little technical problem here; see below for the general argument). The
coefficient cg is given by

cg =

∫
M

d4y
|yg|3−4s

ŷ4s
(
ν ′g(y)− νg(y)

)
=
〈
R{g}

νg
[w̃s

g]|ν ′g
〉

because ν ′g|yg=0 = 1. In the same manner we calculate〈
R{g}

νg
[μG · (w̃s)EG

]|ϕ〉 = cGψ(0, 0) = cG〈δG|ϕ〉

with

cG =

∫
M2

d4xd4y μG|xG|7−8s|yg|3−4s

(
1

x̂2sŷ4s(x̂+ ygŷ)2s
− νg(y)

x̂4sŷ4s

)
=
〈
RN

νg,νG
[w̃s

G] |ν ′G
〉
.

The last term 〈[νgνG · w̃s]Eg,G
|ϕ〉 evaluates to cg,Gψ(0, 0) with

cg,G =
〈
R{g}

νg
[w̃s

g]|ν ′g
〉〈
R{G}

νG
[w̃s

G/g]|ν ′G
〉
.

To formulate this in the general case we define the contraction operation
// not only on single graphs but also on nested sets.

Definition 5.2. Let N be a nested set for some building set B ⊆ D and
let J ⊆ N . The contraction N//J is defined as the poset with underlying
set

N//J := {g//J | g ∈ N},
partially ordered by inclusion. Since the inclusion operation differs from the
one in N (contracted graphs may not be subgraphs of G anymore, although
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we can identify them with subgraphs via their edge sets), we denote this
partial order by �.

The partial order � is most easily understood by looking at the Hasse
diagram of N . Replace every g ∈ N by g//J , remove all lines that connect
elements of J to “above” and draw a new line from o to every element that
became disconnected in the process. Note that in particular all elements
of J have become maximal in N//J . In addition, we denote by abuse of
notation the corresponding contractions on adapted spanning trees by the
same symbol, i.e. we define

t//J := t/tJ where tJ :=
⋃
γ∈J

tγ ,

tg//J := tg//J<g.

Example. Let G be the graph shown in Figure 7. Denote by γ1, γ2 and
γ3 the three fish subgraphs from left to right, and let g and h be the full
subgraphs on the vertex sets V (g) = {0, 1, 2, 3} and V (h) = {2, 3, 4, 5}. In
Figure 7 we depict an I(D(G))-nested set N = {γ1, γ2, γ3, g, G} and the
poset (N//J ,�) for J = {γ1, γ3, g}.

0

1 2

3

5

4

o

γ1 γ2 γ3

g

G

o

γ1 γ2 γ3
G//J

g//J

Figure 7: The graph G and Hasse diagrams for N and N//J

Theorem 5.3. Consider renormalization operators Rν for two sets of sub-
traction points {ν ′} and {ν}. Let N be nested for a building set B ⊆ D and
B marked accordingly. Then the local expression for the difference (Rν′ −
Rν)[w̃

s] applied on a test function ϕ = β∗ψ for ψ ∈ D(β(U)) is given by

(11)
〈
(RN

ν′ −RN
ν )[w̃s]|ϕ〉 = ∑

∅�=K⊆N
cK
〈
Rν [w̃

s
G//K]|δK[ϕ]

〉
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where

(12) cK =
∏
γ∈K

〈
Rν [w̃

s
γ//K]|ν ′γ

〉
and 〈Rν [w̃

s
∅]|δG[ϕ]〉 is to be understood as 〈δ|ψ〉 = ψ(0).

Define H := ∪γ∈KHγ with Hγ := {h ∈ N | h//K ∈ (N//K)�γ//K}. Then
the indices for Rν in (11) are given by N \ (K ∪H). Likewise, in (12) Hγ ∪
{γ} is the index in the factor associated to γ ∈ K.

Proof. Using Proposition 5.1 we examine all terms in 〈(RN
ν′ −RN

ν )[w̃s]|ϕ〉
separately. The proof consists of two steps. First we study how δK acts on
the maps f and ϕ = β∗ψ. This allows then in the second step to show that
the integral arising in the evaluation of 〈(RN

ν′ −RN
ν )[w̃s]|ϕ〉 factorizes into a

product of integrals according to (11) and (12).

Claim: For J ⊆ N the map δJ operates on f and ϕ = β∗ψ loc.
= ψ ◦ ρ by

ϕ 
→ δJ [ϕ] = ϕ|xJ=0,

f 
→ δJ [f ] =
∏

γ∈J∪{G}
fγ//J .

Here fg//J is defined as follows: Contracting tg with respect to J defines an
adapted spanning tree for g//J (contracting graphs in N and t accordingly
does not change the properties of t being spanning and adapted - cf. the
construction in Proposition 3.31). Define

(13) Xg//J :=
{
(xe1 , . . . , xek) | {e1, . . . , ek} = E(tg//J )

}
with adapted basis B′ := B|e∈E(tg//J ). The set N ′ := N//J �g//J is nested
for the building set B′ := {γ//J | γ ∈ B and γ ≤ g} in the divergent arrange-
ment of g//J . Mimicing the wonderful construction in this case, we obtain
an open set UN ′,B′ that is a local piece of a wonderful model for the graph
g//J . The function f s

g//J is then the regular part of the pullback of ṽsg//J in
this chart. The factor fG//J collects all the remaining parts and is defined in
the same way, except for one special case: If G does not lie in N , or even not
in D (locally in UN ,B this is the same!), and G//J is primitive, then N ′ = ∅
and we do not have a local model to pullback ṽsG//J onto. But in this case
vG//J = fG//J is already regular and no model is required. Also note that if
G ∈ N , the operation deltaG does not alter f since it does not depend on
the variable xiGG .
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Recall that in coordinates given by an adapted spanning tree the distri-
bution kernel v is a product of factors (ye)

2−d with e ∈ E(G) and

ye =

{
xe if e is an edge of t,∑

e′∈E(te)
σt(e

′)xe′ if e is an edge in G \ t.

Moreover, the blow-down β is locally given by the map ρ = ρN ,B that scales

all xe with e ∈ E(tg) and g ∈ N by x
ig
g . To prove the claimed properties of

δJ we argue in the same manner as in the proof of Theorem 4.4:
1. Since ϕ = ψ ◦ ρ, we have that δJ [ϕ] is equivalent to ϕ|{xih

h =0} for h

in maxJ , the set of maximal elements of J . This means that the resulting
map only depends on the variables xe with e ∈ E(t ∩N>maxJ ). All other
vectors are scaled by the xihh and therefore vanish after δJ is applied. Another
way to put this is that δJ [ϕ] depends only on the xe with e ∈ E(t//J ). In
particular, if G ∈ J then δJ [ϕ] is just a constant, δJ [ϕ] = 〈δ|ψ〉 = ψ(0).

2. For the second claim start with J = {g} consisting only of a single
subgraph g � G. The part of f that depends only on the vectors associated
to edges of g is unaffected by setting x

ig
g = 0 because all xe with e ∈ E(tg)

get scaled and so the factor x
ig
g pulls out (it is already absorbed into the

definition of usg). On the other hand, the remaining part of f depends on
xe with e ∈ E(tg) only through special linear combinations. These linear
combinations express vectors representing edges e′ that do not lie in g but
are connected to a vertex of g such that E(te′) ∩ E(tg) �= ∅. They become

independent of xe after setting x
ig
g to zero. Therefore, δJ [f ] splits into a

product of two factors depending on the mutual disjoint sets of vectors
{xe}e∈E(tg) or {xe}e∈E(t/tg), i.e.

δg[f ] = fgfG/g = fg//J fG//J .

Adding another graph h �= G from N to J and using Lemma 4.7 we can
express δJ as

δJ [f ] = δgg,h[δg[f ]] = δh[fgfG/g].

There are three possible cases (due to Lemma 3.26 there cannot be two
incomparable g, h with non-empty overlap in any nested set):

1) g and h are incomparable. Then fg does not depend on any xe with
e ∈ E(th) and

δh[fgfG/g] = fgδh[fG/g] = fg//J δh[fG/g].
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2) h is contained in g; h � g. Then all {xe}e∈E(th) are scaled by x
ig
g and

fG/g is independent of these. Thus, only fg is affected by contracting h,

δh[fgfG/g] = δh[fg]fG/g = δh[fg]fG//J .

3) h contains g; g � h. Then all {xe}e∈E(tg) are scaled by xihh and fg is

not affected by setting xihh = 0. Therefore,

δh[fgfG/g] = fgδh[fG/g] = fg//J δh[fG/g].

In all three cases we argue like in the first step to carry out the operation
of δh and conclude

δJ [f ] = fg//J fh//J fG//J .

For general J ⊆ N we repeat this procedure for a finite number of steps to
show

δJ [f ] =
∏

γ∈J∪{G}
fγ//J .

With the help of these two assertions we are now able to examine the
integrals

(14)
〈
RN\K

ν [μK · (ws)EK ]|ϕ
〉
=

∫
κ(U)

dxusNμK
∑

J⊆N\K
(−1)|J |νJ δK∪J [f sϕ]

in detail. Note that fg//J depends only on the variables xe associated to
edges of E(tg \ th1∪···∪hk

) with {h1, . . . , hk} = maxJ<g (not on the marked

element x
ig
g though!). This is exactly the set of coordinates on which the

maps νg depend. Therefore divergences corresponding to elements g//J ∈
N//J are also renormalized by the subtraction points νg associated to g ∈
N . To simplify notation, for K ⊆ N write g̃ for the K-contracted graph
g//K. Let K = {g1, . . . , gn} (if G ∈ K assume gn = G) and define the subsets
Hi ⊆ N by

Hi := {h | h̃ � g̃i} for i = 1, . . . , n.

We want to show that the integral∫
κ(U)

dxusN
n∏

i=1

(ν ′gi − νgi)
∑

J⊆N\K
(−1)|J |νJ

∏
γ∈K∪J∪{G}

f s
γ̃//J δK∪J [ϕ]

factorizes into a product of integrals according to (11) and (12). To see this
split the sum into two parts, the first one summing over subsets I ⊆ N \ K
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that contain an element of H1, i.e. I ∩ H1 �= ∅, the second one over subsets
J ⊆ N \ K with J ∩H1 = ∅. The first sum can then be written as∑

J⊆N\K
J∩H1=∅

(−1)|J | ∑
∅�=L⊆H1

(−1)|L|νJ νLδK∪J∪L[f s]δK∪J∪L[ϕ].

We have δK∪J∪L[ϕ] = δK∪J [ϕ], because all g ∈ L satisfy g̃ � g̃1 and from this
follows g ≤ g1 for the partial order on N . Therefore, all g ∈ L are scaled by

x
ig1
g1 which is set to zero by δK. Again, since all elements of L are smaller

than g1,

δK∪J∪L[f s] = fG̃//J∪L
∏

γ∈(K∪J∪L)\{G}
fγ̃//J∪L

= fG̃//J
∏

γ∈K\{G}
fγ̃//J∪L

∏
ξ∈J\{G}

fξ̃//J∪L
∏

η∈L\{G}
fη̃//J∪L

= fG̃//J fg̃1//L
∏

γ∈K\{g1,G}
fγ̃//J

∏
ξ∈J\{G}

fξ̃//J
∏

η∈L\{G}
fη̃//L.

In the last line we have used that g̃1 is immune to contraction by elements
lying outside of H1. Thus, the factor∑

∅�=L⊆H1

(−1)|L|νL fg̃1//L
∏

η∈L\{G}
f s
η̃//L

can be pulled out of the first sum. In the second sum over the subsets J ⊆
N \ K with J ∩H1 = ∅ the factor f s

g̃1
appears in every summand because

f s
g̃1

is not affected by δJ . Recall that δK[ϕ] depends only on the coordinates
{xe}e∈E(t//K) to conclude that∫

κ(U)
dxusN

n∏
i=1

(ν ′gi − νgi)
∑

J⊆N\K
(−1)|J |νJ δK∪J [f s] δK∪J [ϕ]

=

∫
V1

dxusg1u
s
H1

(ν ′g1 − νg1)

⎛⎝ ∑
∅�=L⊆H1

(−1)|L|νL
∏

η∈L\{G}
f s
η̃//L f s

g̃1//L + f s
g̃1

⎞⎠
×
∫
V2

dxusN\(H1∪{g1})
n∏

i=2

(ν ′gi − νgi)
∑

J⊆N\K
J∩H1=∅

(−1)|J |νJ δK\{g1}∪J [f
s] δK∪J [ϕ]

=
〈
RH1∪{g1}

ν [w̃g1//K]|ν ′g1
〉 ∫ · · · .
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Here we have changed the domain of integration from κ(U) to V1 × V2 with
Vi constructed as follows: Pick a linear extension of the partial order on K =
{g1, . . . , gn} and let g1 = g̃1 be the minimal element (the proof works also
without this assumption, but this simplifies it considerably). Define X g̃1 as
in (13) and XG′

similarly for G′ := G/g̃1. Recall the wonderful construction
from Definition 3.8 and set for every g in B

Z1
g := Zg ∩ (X g̃1 × {0}) and Z2

g := Zg ∩ ({0} ×XG′
).

Define V1 := X g̃1 \ ∪γ∈BZ1
γ and V2 := XG′ \ ∪γ∈BZ2

γ . Then V1 is a local chart
domain for the wonderful model for g̃1 with respect to the nested set H1 ∪
{g1} and adapted basis B|E(tg̃1 )

. The same holds for G′ with respect to
N \ (H1 ∪ {g1}) and B|E(tG/g̃1

). For the original chart on Y we have

κ(U) = XG \ (∪γ∈BZγ) ⊆ V1 × V2,

and the difference is an union of linear subspaces, i.e a set of measure zero.
Moreover, the integrand is finite because all divergences associated to the
elements of K get “damped” by μK, the remaining divergences coming from
elements ofN \ K are renormalized and ψ ∈ D(β(UN ,B)) vanishes in a neigh-
borhood of all Zγ , which covers the divergences of B \ N . Thus, changing
the domain is justified and by Fubini’s theorem the integral factorizes into
the desired product. The last equality holds because of

(ν ′g1 − νg1)

⎛⎝ ∑
∅�=L⊆H1

(−1)|L|νL
∏
η∈L

f s
η̃//L f s

g̃1//L + f s
g̃1

⎞⎠
= f s

g̃1ν
′
g1 − νg1(f

s
g̃1ν

′
g1)|xig1

g1 =0
+

∑
∅�=L⊆H1

(−1)|L|νL
∏

η∈L∪{g1}
f s
η̃//Lν

′
g1

−
∑

∅�=L⊆H1

(−1)|L|νLνg1

⎛⎝ ∏
η∈L∪{g1}

f s
η̃//Lν

′
g1

⎞⎠ |
x
ig1
g1 =0

= f s
g̃1ν

′
g1 +

∑
∅�=L⊆H1∪{g1}

(−1)|L|νLδL[f s
g̃1ν

′
g1 ].

A technical detail: If g1 had another divergent subgraph h ∈ B \ N , the
renormalization by Rν would not take care of this and the integral would
still diverge. But in this case all variables {xe}e∈E(th) are set to zero by δK.
Then the whole summand associated to K in (11) vanishes because δK[ϕ] =
δK[ψ ◦ ρ] = 0 since supp(ψ) ⊆ κ(U) is disjoint from {xe = 0 | e ∈ E(th)}.
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The remaining integral is of the same structure as the one we started
with, so we can repeat the process for g2 ∈ K (notice how this relies heavily
on K ⊆ N being nested and the stability of t under contractions). After a
finite number of steps we obtain a product of renormalized densities, each
factor representing an element of K, possibly times a last remaining factor,∫

V2

dz usN\(∪n
i=1Hi∪{gi})

∑
J⊆N\K

J∩(∪iHi)=∅

(−1)|J |νJ f s
G̃//J

∏
γ∈J\{G}

f s
γ̃//J δK∪J [ϕ].

If G lies in K, then δK[ϕ] = ψ(0) is constant and the procedure ends before
this last step since the Hi cover N . If G is not in K, then G//K could
have remaining divergences, given by elements of N \ (K ∪H1 ∪ · · · ∪ Hn).
In this case the integral is 〈Rν [w̃

s
G//K]|δK[ϕ]〉, the renormalized expression

for w̃s
G//K, applied to the test function δK[ϕ], because∑

J⊆N\K
J∩(∪iHi)=∅

(−1)|J |νJ f s
G̃//J

∏
γ∈J\{G}

f s
γ̃//J δK∪J [ϕ]

=
∑

J⊆N\(K∪H1∪···∪Hn)

(−1)|J |νJ δJ [f s
G//KδK[ϕ]].

Last but not least, we need to take care of the exponents in usg not
matching the ones provided by the definition of w̃s

G/K and w̃s
g//K. This would

not happen if we had defined subgraphs g ⊆ G as given by there edge set
E(g) ⊆ E(G) but with V (g) = V (G) (we chose not to do so because in the
formulation presented here, X is spanned by variables associated to edges of
an adapted spanning tree, not by the elements of V ′ like in [3]). However, we
can also just rescale the complex regularization parameter s = 1− dg̃

dg
(1− s̃)

without affecting the whole construction to obtain the correct exponent in
usg̃. On the other hand, this discrepancy does not show up in the limit s → 1
which we are allowed to take because this proof shows that every term in (11)
and (12) is well-defined at s = 1. Putting everything together we arrive at
the desired formula. �

The case of (local) minimal subtraction works in the same manner as
above. This is already clear if we think of R1 as a non-smooth version of
Rν by making the (forbidden) substitution νg(xg) = θ(1− |xigg |). Let N be
a B-nested set. Locally the minimal subtraction operator R1 is given by

w̃s(x) =
∏
γ∈N

usγ(x
iγ
γ )f s(x)|dx| R1
−→

∏
γ∈N

(
usγ(x

iγ
γ )
)
♥f

s(x)|dx|,
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where (· · · )♥ denotes the regular part

〈(usg)♥|ϕ〉 := ∫ dx |x|−1+dg(1−s)
(
ϕ(x)− θ(1− |x|)ϕ(0))

and the factor f s is treated as test function. If instead θc(x) := θ(c− |x|)
with c > 0 is used as cutoff, the principal part of the Laurent expansion does
not change while the regular part (usg)♥c

gets an additional δ-term,

2
∑
k≥0

dkg log
k+1(c)

k + 1!
(s− 1)kδ.

Therefore the whole Laurent series for usg is given by

〈usg|ϕ〉 =
2

dg
〈δ|ϕ〉(1− s)−1 +

∑
k≥0

〈 1
k!

(|x|−1 logk(|x|))♥c
|ϕ〉(1− s)k

=
2

dg
〈δ|ϕ〉(1− s)−1 +

∑
k≥0

〈 1
k!

(|x|−1 logk(|x|))♥|ϕ〉(1− s)k

+
∑
k≥0

1

k + 1!
dkg log

k+1(c)〈δ|ϕ〉(1− s)k.

Write N = {g1, . . . , gn} and for k ∈ {1, . . . , n} let xikk denote the associated
marked element. Write x̂ for the collection of all other coordinates. For a
test function ϕ ∈ D(κ(U)) set

φs(x
i1
1 , . . . , x

in
n ) :=

∫
dx̂ f s(x)ϕ(x).

By expanding the successive application of the regular parts (usg)♥ and
reordering the sum we see that R1 is expressed by a formula similar to
the one for subtraction at fixed conditions:〈

RN
1 [w̃s]|ϕ〉 = 〈(usg1)♥|〈(usg2)♥| · · · 〈(usgn)♥|φs〉 · · · 〉

〉
=
〈
(usg1)♥|〈(usg2)♥| · · ·

∫
dxinn |xinn |−1+dn(s−1)

× (φs(x
i1
1 , . . . , x

in
n )− θ1(xinn )φs(x

i1
1 , . . . , x

in−1

n−1 , 0)
)〉 · · · 〉

=
∑
K⊆N

(−1)|K|
∫

dx

n∏
j=1

usgj (x
ij
j )
∏
γ∈K

θγ(x
iγ
γ ) δK[f sϕ](x).
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We do the same for the regular parts obtained by cutting off at c,

〈
RN

c [w̃s]|ϕ〉 = ∑
K⊆N

(−1)|K|
∫

dx

n∏
j=1

usgj (x
ij
j )
∏
γ∈K

θcγ(x
iγ
γ ) δK[f sϕ](x),

and write θc
′
(x) = θc(x) + ϑc,c′(x) with

ϑc,c′(x) =

{
1 for c < |x| < c′,
0 else.

Then we can express the difference between two minimal subtraction oper-
ators RN

c′ and RN
c , applied to w̃s, by the density

ϕ 
−→
∑

∅�=K⊂N
(−1)|K|

∫
dxusNΘc′,c

K δK[f sϕ].

Here Θc′,c
K :=

∏
γ∈K θc

′
(x

iγ
γ )−∏γ∈K θc(x

iγ
γ ) is a “multidimensional cutoff”,

supported on

{
x ∈ R|K| | c < |xi| < c′ for all i ∈ {1, . . . , |K|}}.

Expanding Θc,c′

K and reordering the sum, we have

Θc′,c
K =

∏
γ∈K

(θcγ + ϑc,c′
γ )−

∏
γ∈K

θcγ

=
∑

∅�=J⊆K

⎛⎝∏
γ∈J

ϑc,c′
γ

⎞⎠⎛⎝ ∏
η∈K\J

θcη

⎞⎠ =
∑

∅�=J⊆K
ϑc,c′

J θcK\J .

Putting everything together, we find that a change of the renormalization
point c is expressed by a sum of densities supported on components of the
exceptional divisor given by subsets K ⊆ N ,

〈
(RN

c′ −RN
c )[w̃s]|ϕ〉 = ∑

∅�=K⊆N
(−1)|K| ∑

∅�=J⊆K

∫
dxusNϑc,c′

J θcK\J δK[f
sϕ].
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We can repeat the argumentation from the case of subtraction at fixed
conditions to arrive at the formulae of Proposition 5.1 and Theorem 5.3:〈

(RN
c′ −RN

c )[w̃s]|ϕ〉 = ∑
∅�=K⊆N

(−1)|K|〈RN\K
c [ϑc,c′

K · (w̃s)EK ]|ϕ
〉
,

〈
(RN

c′ −RN
c )[w̃s]|ϕ〉 = ∑

∅�=K⊆N
(−1)|K|cK

〈
Rc[w̃

s
G/K]|δK[ϕ]

〉
.

Viewing the maps θc
′
γ as test functions, the constants cK are exactly the same

as in (12). They are given by densities of K-contracted graphs, evaluated at
their respective renormalization points, cγ =

∏
γ∈K〈Rc[w̃

s
γ//K]|θc

′
γ 〉.

Eventually one would like to apply the formulae presented here not on
distributions given by single graphs but on the formal sum of all graphs
expressing a given interaction (an amplitude). The study of the behaviour
of amplitudes under a change of renormalization points allows in best cases
even to derive statements beyond perturbation theory. The main idea is that
physical observables do not depend on the choices made in fixing a renor-
malization scheme. This leads to a differential equation, the renormalization
group equation (cf. [11]), or in the language of the renormalization Hopf
algebra, to (combinatorial) Dyson-Schwinger equations (cf. [25]). So far we
have not used any differential methods, but to explore these objects within
the wonderful framework it seems that subtraction at fixed conditions is
then the way to go. This is reserved for future work.

6. Back to physics

This section connects the geometric method of extending distributions pre-
sented here to physics. We show that wonderful renormalization satisfies
the locality principle of Epstein and Glaser [15]. After that we finish with an
outlook of how to relate our approach to the method of Epstein-Glaser, i.e.
to the renormalization of amplitudes, and how Hopf algebras can be utilized
to describe the wonderful renormalization process.

6.1. Connection to the Epstein-Glaser method

The Epstein-Glaser locality principle is the position space analogue of local-
ity of counterterms. It decides whether a given theory is renormalizable, i.e.
if adding counterterms to renormalize the Lagrangian keep its form invari-
ant. In [3] this principle is formulated in a version for single graphs.
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Definition 6.1 (Locality principle). Let G be a connected graph. Let
R denote a renormalization operator. R satisfies the locality principle of
Epstein and Glaser if

(15) R[vG] = R[vg]R[vh]vG\(g∪h) on XG \XG\(g∪h)
s

holds for all disjoint pairs g, h of connected and divergent subgraphs of G.

This is to be understood in the sense of distributions. For all test func-
tions ϕ ∈ D(XG) with support disjoint fromX

G\(g∪h)
s the renormalization of

vG is already determined by the renormalized distributions vg and vh. Note

that vg and vh depend on disjoint sets of variables and, outside of X
G\(g∪h)
s ,

vG\(g∪h) is regular in the coordinates associated to G \ (g ∪ h). Therefore,
the product on the right hand side of (15) is well-defined. Another way
to formulate the locality principle is that for causal disconnected regions
(g, h disjoint) the renormalized distribution is given by “lower order” (i.e.
subgraph-)distributions. In the Epstein-Glaser method this is one of the
main ingredients in the construction; it allows to recursively construct the
n-th order term Tn in the formal series for the S-matrix up to the small
diagonal in Mn.

Theorem 6.2. Let R be given by minimal subtraction or subtraction at
fixed conditions on the minimal wonderful model for the divergent arrange-
ment of a connected and at most logarithmic graph. Then R satisfies the
locality principle (15).

Proof. We follow the lines of [3] but correct the proof by adding some essen-
tial details missing there.

Let Yg, Yh and Y denote minimal wonderful models for g, h and G.
Let t be D(G)-adapted and set X− := XG−

= {{xe} | e ∈ E(t ∩G−)} for
G− := G \ (g ∪ h). In the language of wonderful models the theorem states
that Y ′ := Yg × Yh ×X− is a (minimal) wonderful model for the divergent

arrangement of the graph g ∪ h in S := X \XG\(g∪h)
s . Let B denote the

minimal building set in the divergent arrangement. The proof is based on
two claims: Every B(g ∪ h)-nested set is given by a disjoint union Ng ∪̇
Nh of B(g)- and B(h)-nested sets (one of them possibly empty). Secondly,
β−1(S) ⊆ Y is covered by the open sets UN ,B with N = Ng ∪̇ Nh as above
and B marked accordingly.

Proof of first claim: Since g and h are disjoint, Lemma 3.26 implies B(g ∪
h) = B(g) ∪ B(h). This shows that if Ng and Nh are nested with respect to



542 Marko Berghoff

B(g) and B(h), then Ng ∪Nh is B(g ∪ h)-nested. On the other hand, every
subset of a nested set is nested itself. With B(g ∪ h) = B(g) ∪ B(h) the claim
follows.

Proof of second claim: If γ is an element of B(G) \ B(g ∪ h), then it must
contain an edge e in E(tγ \ tg). From

A⊥
γ =

⋂
e′∈E(tγ)

A⊥
e′ ⊆ A⊥

e

and e ∈ E(G−) it follows that Eγ ∩ β−1(S) = ∅.
Now let x ∈ S and set y := β−1(x). We are looking for N = Ng ∪̇ Nh

and a marking of B such that y ∈ UN ,B. Consider the B(G)-nested set N :=
{γ, η} where γ ∈ B(g) and η ∈ B(h) (one of them possibly the empty graph
o). Let B be marked accordingly and let x̂γ and x̂η denote the collection of

coordinates {xe}e∈E(tγ) and {xe}e∈E(tη) where the marked elements x
iγ
γ and

x
iη
η are set to 1. The map ρN ,B scales x̂γ by x

iγ
γ , x̂η by x

iη
η and leaves all

other coordinates unaltered - it does not “mix” coordinates because g and
h are disjoint. Recall that ρN ,B is the essential part in the definition of the
chart

κ−1
N ,B : X \

⋃
ξ∈B(G)

Zξ −→ UN ,B, x 
−→ (
xiγγ x̂γ , . . . , x

iη
η x̂η; [x̂γ ], . . . , [x̂η]

)
.

If ξ is in B(G) \ B(g ∪ h), the Zξ are given by {xe = 0 | e ∈ E(tξ)} which is
a subset of X \ S. Similarly, for ξ ∈ B(g ∪ h) with either ξ < γ or ξ < η we
have Zξ = {xe = 0 | e ∈ E(tξ)}. If ξ ∈ B(g ∪ h) and either ξ > γ or ξ > η,

then Zξ = {xiγγ = 0, xe = 0 | e ∈ E(tξ \ tγ)} or with γ replaced by η. Finally,
Zγ = Zη = ∅. From this description it is clear how to find UN ,B containing
y: Pick an appropriate pair γ, η and a marking of B such that x does not lie
in one of the Z’s, then find the local preimage of x under ρN ,B by solving a
trivial system of linear equations.

The previous discussion also shows that for nested sets N = Ng ∪̇ Nh

and B marked accordingly the map ρN ,B restricts to the identity on X−,
ρN ,B = ρNg,Bg

× ρNh,Bh
× id. Moreover, we have a diffeomorphism

UN ,B
∼= UNg,Bg

× UNh,Bh
×X− \

⋃
γ∈B(G)\B(g∪h)

Zγ .

A similar decomposition holds for the charts κN ,B = κNg,Bg
× κNh,Bh

× id.
Thus, on β−1(S) both models Y and Y ′ locally look the same and we can
find a partition of unity χN ,B = χNg,Bg

⊗ χNh,Bh
⊗ 1, subordinate to the sets
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UN ,B ∩ β−1(S). With the notation introduced in the proof of Theorem 5.3
we have f = fgfhfG− , so that in every such chart

〈RN ,B
ν [w̃G]|ψ〉 =

∑
K⊆N

(−1)|K|〈νK · (w̃G)EK |ψ〉

=
∑

Kg∪̇Kh⊆N
(−1)|Kg|+|Kh|

∫
dxuN νKg

νKh
δKg∪Kh

[fψ]

=

∫
dx

∑
Kg⊆Ng

(−1)|Kg|uN νKg
δKg

[fg]

×
∑

Kh⊆Nh

(−1)|Kh|νKh
δKh

[fh]δKg∪̇Kh
[fG− ]δKg∪̇Kh

[ψ]

=
〈
RNg,Bg

ν [w̃g]⊗RNh,Bh
ν [w̃h] | 〈w̃G− |ψ〉〉.

Applying this to ψ = (χN ,B ◦ κ−1
N ,B)ρ

∗
N ,Bϕ and summing over all nested sets

and corresponding markings shows (15). The case of minimal subtraction
works in the same way (cf. the discussion in Section 5). This finishes the
proof. �

To connect the graph by graph method presented in this thesis with the
Epstein-Glaser construction we need to renormalize the sum of all graphs
with a fixed vertex order. Thus, we need a space that serves as a universal
wonderful model for all at most logarithmic graphs on n vertices. There are
two obvious candidates, the minimal and the maximal wonderful models of
the graph lattice G for the complete graph Kn. Since every divergent sub-
graph of a graph is saturated, the set G(Kn) contains all possible divergences
of such a graph. In other words, these two models are universal in the sense
that for every graph G on n vertices there exist canonical proper projections

pGmax : YG(Kn) −→ YD(G),(16)

pGmin : YI(G(Kn)) −→ YI(D(G)).(17)

This follows from Definition 3.3. The theorem above suggests to focus on
minimal building sets. Let G be a connected and at most logarithmic graph
on n vertices. The idea is to compose the projection pGmin with the blow-
down β of the wonderful model YI(D(G)) and consider the pullback w̃G of
vG under this map, then proceed as before to obtain a renormalized density
on YI(G(Kn)). A detailed description is left for future work, but we make
one further observation that highlights the connection between wonderful
renormalization and the Epstein-Glaser method. Recall that the wonderful
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model YI(G(Kn)) is equivalent to the Fulton-MacPherson compactification of
the configuration space Fn(M), for which the structure of I(G(Kn))-nested
sets is encoded by rooted trees [17]. As shown in [4], Epstein-Glaser renor-
malization can also be formulated in terms of rooted trees. On the other
hand, the Hopf algebra of rooted trees Hrt satisfies an universal property
in the category of renormalization Hopf algebras [25], as does the Fulton-
MacPherson compactification in the category of (minimal) wonderful models
(cf. Equation (16))!

6.2. Connection to renormalization Hopf algebras

As shown in [3], the renormalization Hopf algebra of Feynman graphs is
encoded in the stratification of the exceptional divisor E of a wonderful
model associated to a graph G. We sketch the arguments and finish with a
discussion of a Hopf algebraic formulation of wonderful renormalization.

Let H be the free algebra on the vector space spanned by (isomorphism
classes) of connected, divergent (at most logarithmic) graphs. The multi-
plication on H is given by disjoint union, the empty graph being the unit
element. In [7] it is shown that H endowed with a coproduct Δ given by

Δ(G) :=
∑
γ∈D

γ ⊗G//γ

is indeed a Hopf algebra. To cope with the case of minimal building sets, i.e.
irreducible graphs, we can mod out by the ideal I generated by all irreducible
decompositions as defined in Section 3.2. On H̃ := H/I it is the antipode
S : H̃ → H̃ that disassembles G into parts determined by its irreducible
divergent subgraphs and prepares so the renormalization process. In terms
of contraction relative to nested sets S is given by

S(G) =
∑
N

(−1)|N | ∏
γ∈N

γ//N

where the sum is over I(D(G))-nested sets containing G. This is the starting
point of Hopf algebraic renormalization. The goal is then to formulate the
whole wonderful renormalization process in terms of the convolution prod-
uct of a twisted antipode with Feynman rules, similar to renormalization in
momentum or parametric space. This is not straightforward due to the local
formulation of the renormalization operators, but motivated by another,
more direct approach: The combinatorial character of Zimmermann’s forest
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formula is a first hint at a Hopf algebra structure underlying renormaliza-
tion. Our locally defined wonderful renormalization operators resemble the
classical formula for subtracting divergences only in certain charts. To con-
nect with the forest formula and translate it into Hopf algebraic terms we
could use the idea that if a graph has only subdivergences nested into each
other, then local subtractions resemble the forest formula correctly. Working
modulo primitive elements of H, or H̃, every graph can be written as a sum
of graphs that behaves like an element with purely nested subdivergences
[7]. This shows that in principle wonderful renormalization fits into the Hopf
algebraic framework. Of course, it is worthwhile to establish the connection
on a more abstract level using geometrical methods. Once this is achieved,
the whole world of renormalization Hopf algebras can be explored and used
in the position space setting.
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