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Self-dual quiver moduli and orientifold

Donaldson-Thomas invariants

Matthew B. Young

Motivated by the counting of BPS states in string theory with ori-
entifolds, we study moduli spaces of self-dual representations of a
quiver with contravariant involution. We develop Hall module tech-
niques to compute the number of points over finite fields of moduli
stacks of semistable self-dual representations. Wall-crossing formu-
las relating these counts for different choices of stability parameters
recover the wall-crossing of orientifold BPS/Donaldson-Thomas
invariants predicted in the physics literature. In finite type exam-
ples the wall-crossing formulas can be reformulated in terms of
identities for quantum dilogarithms acting on representations of
quantum tori.
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1. Introduction

Representations of quivers and the geometry of their moduli spaces have
found applications in many areas of mathematics, such as the theory of quan-
tum groups, derived categories of coherent sheaves and Donaldson-Thomas
(DT) theory. Not unrelated, they have also found applications in quantum
field theory and string theory.

Quiver moduli were originally constructed by King [21] who showed that
the definition of stability arising from geometric invariant theory coincides
with a purely representation theoretic definition, called slope stability. The
latter is modelled on slope stability of vector bundles over curves. More
generally, stability of principal bundles over curves, with structure group a
classical group G, can be understood in terms of slope stability [31]: from the
point of view of the vector bundle associated to the defining representation,
the potentially destabilizing subbundles are required to be isotropic.

The focus of this paper is the study of moduli spaces of quiver theoretic
analogues of G-bundles over curves and their relationship with enumerative
invariants in string theory with orientifolds. To be more precise, we study
moduli spaces of self-dual representations of a quiver with contravariant
involution. These representations were introduced by Derksen and Wey-
man [9]. While the ordinary representation theory of a quiver assigns a
vector space to each node and a linear map to each arrow, the self-dual
representation theory in addition endows the vector spaces with orthogonal
or symplectic forms and imposes symmetry conditions on the linear maps.
From a categorical point of view, the quiver involution can be used to define
an exact contravariant endofunctor S of Repk(Q) and an isomorphism of
functors Θ : 1Repk(Q)

∼−→ S2. This makes Repk(Q) into an abelian category
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with duality and the self-dual representations are recovered as its self-dual
objects.

We introduce a notion of stability for self-dual quiver representations
that is a common generalization of quiver andG-bundle stability. This notion
coincides with the natural definition of stability arising in geometric invari-
ant theory; see Theorem 3.7. Since the stability parameters in the self-dual
theory have less degrees of freedom than their ordinary counterparts, there
are in general many strictly semistable self-dual representations. This causes
the moduli spaces semistable self-dual representations to be highly singular.
Even the stable moduli spaces need not be smooth, having orbifold singu-
larities at non-simple stable self-dual representations. Because of these sin-
gularities it will often be more natural to consider moduli stacks of self-dual
representations.

A powerful tool in the study of quiver moduli is the Hall algebra. Under
assumptions to ensure smoothness, analogous to the coprime assumption for
vector bundles over a curve, Hall algebras can be used to compute Poincaré
polynomials of quiver moduli [32]. This approach uses the Weil conjectures
to relate the number of Fq-rational points of quiver moduli to their Poincaré
polynomials. A key rôle is played by Reineke’s integration map, an algebra
homomorphism from the Hall algebra to a quantum torus. This map is
used to translate categorical identities in the Hall algebra into numerical
identities in the quantum torus. Without any smoothness assumptions the
same techniques, with moduli stacks in place of moduli spaces, can also be
used to study the motivic DT theory of quivers [27], [28]. Generalizations of
the Hall algebra and integration map, some of which remain conjectural, are
central to the motivic DT theory of three dimensional Calabi-Yau categories
[20], [22], [23].

The analogue of the Hall algebra for self-dual representations was intro-
duced in [41]. There the self-dual extension structure of the representation
category, controlling three term sequences consisting of a self-dual represen-
tation, an isotropic subrepresentation and the resulting self-dual quotient,
was used to construct a module over the Hall algebra, called the Hall module.
In this paper we develop Hall module techniques to study self-dual quiver
moduli. The first important result in this direction is the construction of
a Hall module integration map in Theorem 4.1. This is a morphism over
the Hall algebra integration map with values in a naturally defined repre-
sentation of the quantum torus. By modifying arguments of [32], in Theo-
rem 4.3 we solve the Harder-Narasimhan recursion for self-dual representa-
tions. Applying the Hall module integration map leads immediately to an
explicit formula for the number of Fq-rational points of stacks of semistable
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self-dual representations; see Theorem 4.4. This provides a quiver theoretic
analogue of Laumon and Rapoport’s computation of the Poincaré series of
the moduli stack of semistable G-bundles over a curve [25].

One of the primary motivations of this paper is the development of a
mathematical framework for the counting of BPS states in string theory
with orientifolds. In the presence of an orientifold, the D-brane category B
of the parent theory is endowed with a duality structure (S,Θ) [10], [18]. The
functor S is the parity functor, sending a D-brane to its orientifold image,
while Θ : 1B

∼−→ S2 encodes the signs of the orientifold planes. The D-brane
configurations in the orientifold theory are precisely the self-dual configura-
tions of the parent theory. Self-dual quiver representations therefore provide
a relatively simple example of this set-up. The appearance of orthogonal
and symplectic structures reflects the familiar reduction of structure group
of Chan-Paton bundles on D-branes lying on orientifold planes. Not unre-
lated, self-dual quiver representations also arise in the study of worldvolume
gauge theories on D-branes in orientifold backgrounds [12].

The cohomology of moduli spaces of semistable D-branes is closely re-
lated to the BPS states of the theory [17], [8]. Similarly, BPS states in the ori-
entifold theory arise from cohomology of the moduli of orientifold invariant
D-branes and, for particular theories, should provide an orientifold version
of DT invariants. In [38] it is suggested that real Gromov-Witten invari-
ants are related (via a MNOP type formula) to orientifold DT invariants.
Expected properties of orientifold DT invariants for particular models were
discussed from a physical perspective in [24]. However, a basic definition of
the invariants was missing. In this paper, motivated by [22], [23] we define the
orientifold DT series of a quiver with involution as the generating function
counting Fq-rational points of stacks of semistable self-dual representations,
computed in Theorem 4.4 above. The Hall module formalism leads immedi-
ately to a wall-crossing formula, Theorem 4.5, relating orientifold DT series
with different stability parameters. In finite type examples the wall-crossing
formulas can be reformulated as quantum dilogarithm identities holding in
representations of quantum tori. We use these identities to define orientifold
DT invariants of finite type quivers; see Equation (16). These invariants sat-
isfy an orientifold modification of the primitive wall-crossing formula pro-
posed in the physics literature [7]. We take this as strong evidence that
the Hall module framework is indeed applicable to the study of orientifold
BPS states. In Section 4.5 we explain how many of the above results can be
extended to quivers with potential using equivariant Hall algebras.

In [17] it was proposed that the space of BPS states in a quantum field
theory or string theory with extended supersymmetry has the structure of
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an algebra, the product of two states encoding their possible bound states.
Mathematical models for this algebra include variants of the Hall algebra,
most notably its motivic [19], [22] and cohomological [23] versions. See also
[6, §8]. Imposing different structures on the physical theory leads to different
algebraic structures on its space of BPS states. For example, the space of
BPS states in a theory with defects, which can also be thought of as a space of
open BPS states, is expected to form a representation of the algebra of BPS
states of the theory without defects [15]. In some examples these open BPS
modules are modelled using framed objects of theD-brane category [36]. The
Hall modules used in this paper are different, modelling instead the space
of BPS states in a string theory with orientifolds together with an action
of the BPS states of the parent theory. These modules are naturally graded
by the Grothendieck-Witt group of the D-brane category with orientifold
duality, an algebraic version of Atiyah’s KR-theory. This is in agreement
with the physical prediction that charges of D-branes in orientifold theories
are elements of real variants of K-theory [40], [14], [18].

Notation

Throughout this paper k denotes a fixed ground field. The characteristic of
k is assumed to be different from two. We will primarily be interested in the
cases k = C and k = Fq, a finite field with q elements.

Given a variable x and an integer n ≥ 1 define

[n]x = 1 + x+ · · ·+ xn−1.

Set [n]x! =
∏n

i=1[i]x and [0]x! = 1. Then for 0 ≤ k ≤ n define

[
n
k

]
x

=
[n]x!

[k]x![n− k]x!
.

Since each of these expressions lies in Z[x] the variable x can be specialized
to any complex number.

If S is a finite set, then #S ∈ Z≥0 denotes its cardinality.

2. Representation theory of quivers

In this section we recall some preliminary material about (self-dual) repre-
sentations of quivers.
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2.1. Quiver representations

Let Q be a quiver with finite sets of nodes Q0 and arrows Q1. Denote by
ΛQ = ZQ0 the free abelian group generated by Q0. The monoid of dimension
vectors is Λ+

Q = Z≥0Q0.
A k-representation of Q is a finite dimensional Q0-graded vector space

V =
⊕

i∈Q0
Vi together with a linear map Vi

vα−→ Vj for each arrow i
α−→ j ∈

Q1. The dimension vector of V is dimV =
∑

i∈Q0
(dim Vi)i ∈ Λ+

Q and its
dimension is dim V =

∑
i∈Q0

dim Vi ∈ Z≥0.
The category Repk(Q) of k-representations of Q is abelian and heredi-

tary. The Euler form of Repk(Q) is defined by

χ(U, V ) = dim Hom(U, V )− dim Ext1(U, V )

and descends to the bilinear form on ΛQ given by

χ(d, d′) =
∑
i∈Q0

did
′
i −

∑
i

α−→j∈Q1

did
′
j .

The associated skew-symmetric bilinear form on ΛQ is

〈d, d′〉 = χ(d, d′)− χ(d′, d).

2.2. Self-dual quiver representations

In this section we record some basic material about self-dual representations
of a quiver with contravariant involution.

Definition. An involution σ of a quiver Q is a pair of involutions, Q0
σ−→ Q0

and Q1
σ−→ Q1, such that

1) if i
α−→ j is an arrow, then σ(j)

σ(α)−−−→ σ(i), and

2) all arrows of the form i
α−→ σ(i) are fixed by σ.

Let (Q, σ) be a quiver with involution. There is an induced involution
of ΛQ, again denoted by σ, and we write Λσ

Q for the subgroup of σ-invariant
dimension vectors. There is a canonical map H : ΛQ → Λσ

Q given by d �→
d+ σ(d).

A duality structure on (Q, σ) is a pair of functions, s : Q0 → {±1} and
τ : Q1 → {±1}, such that s is σ-invariant and τατσ(α) = sisj for all arrows

i
α−→ j.
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Definition. A self-dual representation of (Q, σ) (with respect to a fixed
duality structure (s, τ)) is a pair (M, 〈·, ·〉) consisting of a representation M
and a non-degenerate bilinear form 〈·, ·〉 on the total space

⊕
i∈Q0

Mi such
that

1) the vector spaces Mi and Mj are orthogonal unless i = σ(j),

2) the restriction of the form 〈·, ·〉 to Mi +Mσ(i) is si-symmetric,

〈x, x′〉 = si〈x′, x〉, ∀x, x′ ∈Mi +Mσ(i),

and

3) for all arrows i
α−→ j the structure maps of M satisfy

(1) 〈mαx, x
′〉 − τα〈x,mσ(α)x

′〉 = 0, ∀x ∈Mi, x
′ ∈Mσ(j).

The conditions on (s, τ) ensure that the second and third parts of the
definition of a self-dual representation are consistent. Let M be a self-dual
representation. If i = σ(i) then Mi is endowed with an orthogonal or sym-
plectic form. If instead i 
= σ(i), then Mi ⊕Mσ(i) �Mi ⊕M∨

i is endowed
with the canonical hyperbolic orthogonal or symplectic form. The self-dual
representations for τ ≡ −1 and s ≡ 1 or s ≡ −1 recover the orthogonal or
symplectic representations of Derksen and Weyman [9]. Self-dual represen-
tations for more general (s, τ) were studied in [42] where they were called
supermixed representations.

There is a categorical interpretation of self-dual representations that will
be useful below. Given a duality structure, define an exact contravariant
functor S : Repk(Q)→ Repk(Q) as follows. At the level of objects, S(M,m)
is given by

S(M)i = M∨
σ(i), S(m)α = ταm

∨
σ(α).

Here (−)∨ = Homk(−, k) is the linear duality functor on the category of
finite dimensional vector spaces. Given a morphism φ : M →M ′ with com-
ponents φi : Mi →M ′

i , the morphism S(φ) : S(M ′)→ S(M) is defined by
its components S(φ)i = φ∨

σ(i). Write ev for the canonical evaluation isomor-
phism from a finite dimensional vector space to its double dual. The assump-
tions on (s, τ) imply that Θ =

⊕
i∈Q0

si · evi defines a natural isomorphism

from the identity functor 1Repk(Q) to the square S2. Moreover, for each rep-
resentation U the identity S(ΘU ) ◦ΘS(U) = 1U holds.

The above discussion shows that the triple (Repk(Q), S,Θ) is an exam-
ple of an abelian category with duality [2]. In this setting, a self-dual object
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is a pair (M,ψM ), or just M for short, consisting of an object M and an iso-
morphism ψM : M

∼−→ S(M) satisfying S(ψM )ΘM = ψM . An isomorphism
φ : M

∼−→M ′ of self-dual objects is called an isometry if ψM = S(φ)ψM ′φ.
We write M �S M ′ if M and M ′ are isometric. The group of self-isometries
of M is denoted AutS(M).

Given a self-dual object M , the bilinear form 〈x, x′〉 = ψM (x)(x′) gives
M the structure of a self-dual representation. This defines an equivalence
between the groupoids of self-dual objects and self-dual representations,
where the morphisms in each category are the isometries. We will use this
equivalence throughout the paper.

Example. For any representation U , the hyperbolic representation on U
is the self-dual object

H(U) =
(
U ⊕ S(U), ψH(U) =

(
0 1S(U)

ΘU 0

))
.

Let M be a self-dual representation with subrepresentation i : U ↪→M .
The orthogonal U⊥ ⊂M is defined to be the kernel of the composition

M
ψM−−→ S(M)

S(i)−−→ S(U).

The subrepresentation U is called isotropic if U ⊂ U⊥. In this case the self-
dual structure on M induces a canonical self-dual structure on the quotient
U⊥/U , denoted by M//U .

For any representation U and i ≥ 0 the pair (S,Θ) gives Exti(S(U), U)
the structure of a representation of Z2. Decompose this representation into
its trivial and sign subrepresentations,

Exti(S(U), U) = Exti(S(U), U)S ⊕ Exti(S(U), U)−S ,

and define

E(U) = dim Hom(S(U), U)−S − dim Ext1(S(U), U)S .

The function E will play the rôle of the Euler form for the category with
duality (Repk(Q), S,Θ).

It was shown in [41, Proposition 3.3] that E(U) depends only on dimU
and so defines a function E : ΛQ → Z. Explicitly, from loc. cit. we have
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E(d) =
∑
i∈Qσ

0

di(di − si)

2
+

∑
i∈Q+

0

dσ(i)di(2)

−
∑

σ(i)
α−→i∈Qσ

1

di(di + ταsi)

2
−

∑
i

α−→j∈Q+
1

dσ(i)dj .

Here Q0 = Q+
0 �Qσ

0 �Q−
0 is a partition with Qσ

0 consisting of the nodes
fixed by σ and σ(Q+

0 ) = Q−
0 . The partition of Q1 is analogous.

Below we will also use the function Ẽ : ΛQ → Z defined by

Ẽ(d) = E(d)− E(σ(d)).

3. Moduli spaces of self-dual quiver representations

In this section we introduce a notion of stability for self-dual representations
and use geometric invariant theory to construct moduli spaces of self-dual
representations.

3.1. σ-Stability

Fix an element θ ∈ Λ∨
Q = HomZ(ΛQ,Z), called a stability. The slope of a

non-zero representation U with respect to θ is

μ(U) =
θ(U)

dim U
∈ Q.

Here θ(U) is shorthand for θ(dimU).

Definition ([21]). A representation U is semistable if μ(V ) ≤ μ(U) for all
non-zero subrepresentations V � U . If this inequality is strict for all such
V , then U is called stable.

Let (Q, σ) be a quiver with involution. Denote by σ∗ the induced invo-
lution of Λ∨

Q.

Definition. A stability θ ∈ Λ∨
Q is called σ-compatible if σ∗θ = −θ.

If θ is σ-compatible, then μ(S(U)) = −μ(U) for all representations U .
In particular, the slope of a self-dual representation is necessarily zero.
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Lemma 3.1. Let θ be a σ-compatible stability. A representation U is semi-
stable (stable) if and only if S(U) is semistable (respectively, stable).

Proof. The representation U is semistable if and only if μ(U) ≤ μ(W ) for all
quotients U � W . Since the functor S defines a bijection between quotients
of U and subobjects of S(U), the σ-compatibility of θ implies the statement
for semistability. The argument for stability is identical. �

The following definition is motivated by the definition of stability of
principal bundles over a curve with classical structure groups [31].

Definition. A self-dual representation M is σ-semistable if μ(V ) ≤ μ(M)
for all non-zero isotropic subrepresentations V ⊂M . If this inequality is
strict for all such V , then M is called σ-stable.

A priori, σ-semistability is strictly stronger than semistability. However,
we have the following result. See [30, Proposition 4.2] for the analogous
statement for G-bundles over curves.

Proposition 3.2. A self-dual representation is σ-semistable if and only if
it is semistable as an ordinary representation.

Proof. Suppose that M is σ-semistable but not semistable. Let i : U ↪→M
be the strongly contradicting semistability subrepresentation, that is, the
subrepresentation with maximal slope and maximal dimension among such
subrepresentations. Then U , and by Lemma 3.1 also S(U), is semistable
with

μ(S(U)) < μ(M) < μ(U).

This implies that the composition

U
i−→M

ψM−−→ S(M)
S(i)−−→ S(U)

vanishes, being a map between semistable representations of strictly decreas-
ing slope. But then U is isotropic, contradicting the supposed σ-semistability
of M . The converse is immediate. �

From now on we will refer to σ-semistability simply as semistability.
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Proposition 3.3. Every self-dual representation M has a unique filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Ur ⊂M

by isotropic subrepresentations such that the quotients U1/U0, . . . , Ur/Ur−1

are semistable, the self-dual quotient M//Ur is zero or semistable and the
slopes satisfy

μ(U1/U0) > μ(U2/U1) > · · · > μ(Ur/Ur−1) > 0.

Proof. If M is semistable, then 0 ⊂M is the desired filtration. So assume
that M is not semistable and proceed by induction on dim M . The case
dim M = 1 is vacuous since M is semistable. Let U1 ⊂M be the (non-zero)
strongly contradicting semistability subrepresentation, which is isotropic by
the proof of Proposition 3.2. The inductive hypothesis implies that M//U1

has a unique filtration with the required properties. Pulling this back by the
quotient morphism U⊥

1 � M//U1 gives the desired filtration of M . Unique-
ness follows from the uniqueness of the strongly contradicting semistability
subrepresentation. �

The filtration given in Proposition 3.3 is called the σ-Harder-Narasimhan
(HN) filtration of M . In fact, the σ-HN filtration coincides with the positive
half (according to slope) of the HN filtration of M , viewed as an ordinary
representation.

We now turn to σ-stability. Recall that a stable k-representation U is
called absolutely stable if its base change U ⊗k k is a stable k-representation.
Absolutely σ-stable representations are defined analogously. A σ-stable rep-
resentation is called regular if it is also stable as an ordinary representation.

Lemma 3.4. Every σ-stable self-dual representation is isometric to an
orthogonal direct sum of regular σ-stable self-dual representations.

Proof. The proof of [30, Proposition 4.2, Remark 4.3(ii)] can be applied
without change in the quiver setting with no restriction on the ground field.

�

Let M be a polystable k-representation, that is, a direct sum of stable
representations of the same slope. Then the base changeM ⊗k k is polystable
and Aut(M ⊗k k) is a product of general linear groups. If M admits a self-
dual structure, then AutS(M ⊗k k) is a product general linear, symplectic
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and orthogonal groups; suppose there are r orthogonal factors. If the field k
is finite, then the Galois cohomology of the isometry group is

H1(k,AutS(M ⊗k k)) � Zr
2,

each factor being identified with the choice of discriminant εi ∈ k×/k×2 �
Z2 of the corresponding orthogonal form. It follows that there are 2r k-
forms of the self-dual representation M ⊗k k. The k-form associated to
ε ∈ H1(k,AutS(M ⊗k k)) will be denotedM ε. See [34, Chapter III] for back-
ground results on Galois cohomology.

Proposition 3.5. Assume that k is finite or algebraically closed. A self-
dual representation is σ-stable if and only if it is isometric to an orthogonal
direct sum of the form

⊕
l M

⊕ml,εl
l , where Ml are pairwise non-isomorphic

regular σ-stable representations and ml = 1 or (if k is finite) ml = 2 and
M⊕2,εl

l is non-hyperbolic.

Proof. Suppose first that k is finite. Let M be σ-stable. Note that M has
no hyperbolic summands. By Lemma 3.4 there are pairwise non-isomorphic
regular σ-stable representations Ml such that M =

⊕
l M

⊕ml,εl
l . If ml ≥ 3

for some l, then there exists a discriminant ε′l so that

M⊕ml,εl
l �S H(Ml)⊕M

⊕(ml−2),ε′l
l ,

contradicting σ-stability of M . It follows that ml = 1 or ml = 2 and M⊕2,εl
l

is non-hyperbolic.
Conversely, consider M =

⊕
l M

⊕ml,εl
l as in the statement of the propo-

sition. A slope zero subrepresentation U ⊂M is necessarily a direct sum
of copies of the Ml. The assumptions on ml and εl imply that Ml does not
appear as an isotropic subrepresentation ofM⊕ml,εl

l . Hence U is not isotropic
and M is σ-stable.

When k = k the same proof applies. The isometryM⊕2
l �S H(Ml) implies

that ml = 1 for all l. �

Proposition 3.6. Assume that k is finite or algebraically closed.

1) A σ-stable representation M is absolutely σ-stable if and only if, in the
notation of Proposition 3.5, each Ml is absolutely stable and ml = 1.

2) If M is an absolutely σ-stable representation with r regular summands,
then AutS(M) � Zr

2.
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Proof. When k = k the first statement is Proposition 3.5. So assume that k is
finite and, in the notation of Proposition 3.5, write a σ-stable representation
as M =

⊕
l M

⊕ml,εl
l . Then

M ⊗k k �S

⊕
l

(Ml ⊗k k)
⊕ml .

By Proposition 3.5 M ⊗k k is σ-stable if and only if ml = 1 and the sum-
mands are pairwise non-isomorphic regular σ-stable representations. By
Hilbert’s Theorem 90 the summands Ml ⊗k k are pairwise non-isomorphic
if and only if the Ml are. Also, Ml ⊗k k is regular σ-stable if and only if Ml

is absolutely stable. This proves the first part of the proposition.
For the second statement, writing M =

⊕r
l=1Ml as above (omitting εl

from the notation), Schur’s lemma gives End(M) =
⊕r

l=1End(Ml). Hence
AutS(M) =

⊕r
l=1AutS(Ml). Since each Ml is absolutely stable, End(Ml) �

k and AutS(Ml) � Z2. The statement follows. �

3.2. GIT stability and moduli spaces

The affine variety of k-representations of Q of dimension vector d ∈ Λ+
Q is

Rd =
⊕

i
α−→j

Homk(k
di , kdj ). The algebraic k-group GLd =

∏
i∈Q0

GLdi
acts

by simultaneous base change on Rd and its set of orbits is in bijection with
the set of isomorphism classes of representations of dimension vector d.

Assume that k is algebraically closed. Fix d ∈ Λσ,+
Q and assume that di

is even if i ∈ Qσ
0 with si = −1. Up to isometry, there is a unique self-dual

structure 〈·, ·〉 on the trivial representation of dimension vector d. Denote
by Rσ

d ⊂ Rd the subspace of structure maps satisfying Equation (1) with
respect to 〈·, ·〉. Explicitly,

Rσ
d �

⊕
i

α−→j∈Q+
1

Homk(k
di , kdj )⊕

⊕
i

α−→σ(i)∈Qσ
1

Bilsiτα(kdi).

Here Bilε(V ) denotes the vector space of symmetric (ε = 1) or skew-
symmetric (ε = −1) bilinear forms on a vector space V . The isometry group
of 〈·, ·〉 is the reductive k-group Gσ

d =
∏

i∈Q+
0
GLdi

×∏
i∈Qσ

0
Gsi

di
where Gsi

di

is an orthogonal or symplectic group:

Gsi
di

=

{
Odi

, if si = 1

Spdi
, if si = −1.
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The group Gσ
d acts on Rσ

d through the embedding Gσ
d ↪→ GLd given on fac-

tors by Gsi
di

↪→ GLdi
for i ∈ Qσ

0 and

GLdi
→ GLdi

×GLdσ(i)
, gi �→ (gi, (g

−1
i )T )

for i ∈ Q+
0 . Isometry classes of self-dual representations of dimension vector

d are in bijection with the set of Gσ
d -orbits of R

σ
d .

If k is finite, the bilinear form 〈·, ·〉 need not be uniquely defined. Indeed,
for each i ∈ Qσ

0 with si = 1 there are two inequivalent choices for the restric-
tion of 〈·, ·〉 to Mi, labelled by a discriminant εi ∈ Z2. Fixing a choice ε of
these discriminants, there is an associated algebraic group Gσ,ε

d and a Gσ,ε
d -

representation Rσ,ε
d . As a vector space Rσ,ε

d is independent of ε. Isometry
classes of self-dual representations of dimension vector d are in bijection
with the set of Gσ,ε

d -orbits of Rσ,ε
d as ε varies over all choices.

Each stability θ ∈ Λ∨
Q defines a character

χθ : GLd → k×, ({gi}i∈Q0
) �→

∏
i∈Q0

(det gi)
−θi

and by restriction also a character of Gσ
d . Note that σ-symmetric stabilities,

σ∗θ = θ, restrict to the trivial character of the identity component of Gσ
d

and so are not interesting from the point of view of GIT with respect to Gσ
d .

In fact up to a factor of one half, which is irrelevant for GIT, the characters
of the identity component of Gσ

d can be identified with the σ-compatible
stabilities.

Recall the definition of stability in GIT [29], [21]. Assume that k = k and
let V be a representation of a (not necessarily connected) reductive group
G with kernel Δ ⊂ G. Fix a character χ : G→ k×.

Definition. A point v ∈ V is χ-semistable if there exists n ≥ 1 and

f ∈ k[V ]G,χn

= {h ∈ k[V ] | h(g · v′) = χ(g)nh(v′), ∀g ∈ G, v′ ∈ V }

such that f(v) 
= 0. If, in addition, the stabilizer StabG/Δ(v) is finite and
the action of G on {v′ ∈ V | f(v′) 
= 0} is closed, then v is called χ-stable.

The χ-(semi)stable points for the action of G and its identity component
coincide [29, Proposition 1.15]. In particular, we can apply the usual Hilbert-
Mumford criterion to test stability regardless of the connectivity of G.
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Theorem 3.7. Assume that k = k and let θ be a σ-compatible stability.
A self-dual representation M ∈ Rσ

d is σ-(semi)stable if and only if it is χθ-
(semi)stable.

Proof. We follow the strategy of [21, §3] where the analogous statement for
ordinary representations is proven. We will prove the statement for stability.
The argument for semistability is the same.

Given M ∈ Rσ
d and a cocharacter λ : k× → Gσ

d define

Ma
i =

{
x ∈Mi | λ(z) · x = zax, ∀z ∈ k×

}
, a ∈ Z, i ∈ Q0.

For each arrow i
α−→ j the structure map mα decomposes into a collec-

tion of linear maps ma,b
α : Ma

i →M b
j satisfying λ(z) ·ma,b

α = zb−ama,b
α . Then

lim
z→0

λ(z) ·M exists if and only if ma,b
α = 0 for all a > b and α ∈ Q1. The

latter condition is equivalent to the direct sum

M(w) =
⊕
i∈Q0

⊕
a≥w

Ma
i

being a subrepresentation ofM for each w ∈ Z. Then {M(w)}w∈Z is a decreas-
ing filtration of M stabilizing at 0 for w � 0 and at M for w � 0.

Let x ∈Ma
i and x′ ∈M b

σ(i). Since λ acts by isometries we have

〈x, x′〉 = 〈λ(z)x, λ(z)x′〉 = za+b〈x, x′〉.

Therefore 〈x, x′〉 = 0 whenever a 
= −b, implying M⊥
(w) = M(−w+1). In par-

ticular, M(w) is isotropic if w > 0.
Writing (·, ·) for the canonical pairing between characters and cocharac-

ters, we compute

(χθ, λ) =
∑
w∈Z

θ(M(w))

=
∑
w>0

θ(M(−w+1)) +
∑
w>0

θ(M(w))

=
∑
w>0

(
θ(M//M(w)) + θ(M(w))

)
+

∑
w>0

θ(M(w))

= 2
∑
w>0

θ(M(w)).

In the last line we used that θ vanishes on Λσ
Q.
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If M is σ-stable, from the previous calculation we see that (χθ, λ) < 0
for all cocharacters λ. By the Hilbert-Mumford criterion (in the form of [21,
Proposition 2.5]) M is χθ-stable. Conversely, suppose that M is χθ-stable.
A non-zero isotropic subrepresentation U ⊂M defines a filtration

(3) U ⊂ U⊥ ⊂M.

There exists a cocharacter λ : k× → Gσ
d whose limit limz→0 λ(z) ·M exists

and whose associated filtration is (3); take λ to have weight −1 on U , weight
zero on a vector space complement of U in U⊥, and weight 1 on a complement
of U⊥. The Hilbert-Mumford criterion implies 2θ(U) = (χθ, λ) < 0, proving
that M is σ-stable. �

For each σ-compatible stability θ and dimension vector d ∈ Λσ,+
Q , define

the moduli space of semistable self-dual representations as the GIT quotient

Mσ,θ
d = Proj

⎛
⎝⊕

n≥0

k[Rσ
d ]

Gσ
d ,χ

n
θ

⎞
⎠ .

It is an irreducible normal quasi-projective variety parameterizing S-
equivalence classes of semistable self-dual representations. More precisely,
each semistable self-dual representation M has a σ-Jordan-Hölder filtration

0 = U0 ⊂ U1 · · · ⊂ Ur ⊂M,

with subquotients U1/U0, . . . , Ur/Ur−1 stable of slope zero and self-dual quo-
tient M//Ur zero or σ-stable. The associated graded self-dual representation
is

GrS(M) =

r⊕
i=1

H(Ui/Ui−1)⊕M//Ur.

Two semistable self-dual representations M1 and M2 are S-equivalent if
GrS(M1) �S GrS(M2). Using this and the self-dual generalization of [9,
Theorem 2.6] we conclude that the forgetful map Mσ,θ

d →Mθ
d to the moduli

space of ordinary representations is injective.
There is an open subvariety Mσ,θ-st

d ⊂Mσ,θ
d parameterizing isometry

classes of σ-stable representations. While Mσ,θ-st
d in general has orbifold

singularities (see Proposition 3.6) the regular σ-stable representations are
smooth points. If non-empty, Mσ,θ-st

d is of dimension −E(d). This can be
seen either by direct calculation or by identifying the tangent space of the
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moduli stack of self-dual representations at M with Ext1(M,M)S and the
infinitesimal isometries of M with Hom(M,M)−S .

Example. Let Q be the following orientation of the A2n Dynkin diagram:

-n -2 -1 1 2 n

The involution swaps nodes i and −i, fixes the middle arrow and swaps
the remaining arrows. If a representation is orthogonal (symplectic) then,
along with other conditions, the map assigned to the middle arrow is skew-
symmetric (respectively, symmetric).

For stability θi = −i the stable representations coincide with the inde-
composable representations, which are in bijection with the positive roots
of A2n. There are no σ-stable orthogonal representations. The semistable
orthogonal representations are hyperbolic sums of σ-symmetric indecom-
posables. The symplectic case depends on the ground field. When k = k the
regular σ-stable symplectic representations are precisely the σ-symmetric
indecomposables. When k is finite each σ-symmetric indecomposable admits
two distinct symplectic structures and this give all the regular σ-stables.
There is also a unique σ-stable symplectic structure on the twofold direct
sum of each σ-symmetric indecomposable. After base change to k this rep-
resentation is hyperbolic and so is not absolutely σ-stable.

Example. Let Kn be the n-Kronecker quiver

−1 1
×n

with the involution that swaps the nodes and fixes the arrows. Symplectic
representations have symmetric structure maps. Fix the stability θi = −i
and identify Gσ

d with GLd1
. A symplectic representation of dimension vector

(1, 1) is semistable if and only if it is σ-stable if and only if not all of its
structure maps are zero. Hence Msp,θ

(1,1) � Pn−1, arising as the coarse moduli

space of a Z2-gerbe over Pn−1. For n > 2, Msp,θ
(2,2) is in general singular.

Moduli spaces ofK2-representations can be described explicitly. For each
d ≥ 1, using Jordan-Hölder filtrations and taking symmetric products gives
isomorphisms

(4) Msp,θ
(d,d) � SymdMsp,θ

(1,1) � Pd.
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From Proposition 3.5 Msp,θ-st
(d,d) is the complement of the big diagonal in (4).

This contrasts the situation for ordinary representations, where Mθ-st
(d,d) is

empty if d > 1.

4. Orientifold Donaldson-Thomas theory of quivers

In this section we introduce the orientifold Donaldson-Thomas series of a
quiver with duality structure. We use Hall algebras and their representations
to study the basic properties of these series, including their wall-crossing.

4.1. Quantum torus and coisotropics

Fix a finite field k = Fq of odd characteristic and let Q be a quiver. The

quantum torus T̂Q attached to RepFq
(Q) is the Q(q

1

2 )-vector space with
topological basis {xd}d∈Λ+

Q
and multiplication

(5) xd · xd′ = q
1

2
〈d,d′〉xd+d′ .

The algebra T̂Q, or rather the algebra generated by {xd}d∈ΛQ
with the same

multiplication, is a quantization of the Poisson algebra of regular functions
on the algebraic torus TQ = Λ∨

Q ⊗Z C× with Poisson structure determined
by the skew-symmetrized Euler form 〈·, ·〉 [22].

In the self-dual setting, let ŜQ be the Q(q
1

2 )-vector space with topological

basis {ξe}e∈Λσ,+
Q

. Define an action of T̂Q on ŜQ by the formula

(6) xd � ξe = q
1

2
(〈d,e〉−Ẽ(d))ξH(d)+e.

Using the identity

E(d+ d′) = E(d) + E(d′) + χ(σ(d), d′)

it is verified that this gives ŜQ the structure of a T̂Q-module.

The module ŜQ has the following geometric interpretation.1 The invo-
lution σ : ΛQ → ΛQ induces an anti-Poisson involution σ∗ : TQ → TQ whose
fixed point locus is a coisotropic subtorus T σ

Q ⊂ TQ. The algebra of regular
functions on T σ

Q, and more generally the space of sections of a vector bundle
over T σ

Q, inherits the structure of a C[TQ]-module. From this point of view,

1Again, for this interpretation we should use the module generated by {ξe}e∈Λσ
Q
.
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ŜQ is a quantization of the C[TQ]-module of sections of the trivial vector
bundle of rank 2#Qσ

0 over T σ
Q.

4.2. Hall algebras, Hall modules and integration maps

Let HQ be the Hall algebra of RepFq
(Q) [33]. Its underlying Q-vector space

is generated by symbols [U ] indexed by isomorphism classes of Fq-
representations of Q and its multiplication is

[U ] · [V ] =
∑
X

FX
U,V [X]

with structure constants the Hall numbers

FX
U,V = #{Ũ ⊂ X | Ũ � U, X/Ũ � V }.

Then HQ is a Λ+
Q-graded associated algebra.

In [32, Lemma 6.1] (see also [27, Proposition 1]) Reineke showed that
the map ∫

H
: HQ → T̂Q, [U ] �→ q

1

2
χ(dimU,dimU)

#Aut(U)
xdimU

is a Q-algebra homomorphism. The map
∫
H is a one dimensional version

of the (partially conjectural) integration maps central to the motivic DT
theory of three dimensional Calabi-Yau categories [22].

We want to construct a lift of the homomorphism
∫
H to the self-dual

setting. To do this, we first recall the definition of the Hall module MQ

associated to the category RepFq
(Q) with fixed duality structure [41]. It is

the Q-vector space generated by symbols [M ] indexed by isometry classes
of self-dual Fq-representations of Q. The HQ-module structure of MQ is
defined by

[U ] � [M ] =
∑
N

GN
U,M [N ]

with structure constants self-dual versions of Hall numbers,

GN
U,M = #{Ũ ⊂ N | Ũ � U, Ũ is isotropic, N//Ũ �S M}.

The next result provides the desired lift of
∫
H.
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Theorem 4.1. The map

∫
M

:MQ → ŜQ, [M ] �→ q
1

2
E(dimM)

#AutS(M)
ξdimM

is a

∫
H
-morphism. More precisely, the diagram

HQ ⊗QMQ MQ

T̂Q ⊗Q(q
1
2 )

ŜQ ŜQ

∫
H
⊗
∫
M

∫
M

commutes, where the horizontal maps are the module structure maps.

Proof. By linearity it suffices to show that

∫
M
([U ] � [M ]) =

(∫
H
[U ]

)
�

(∫
M
[M ]

)

for all representations U and self-dual representations M . A direct calcula-
tion shows that this is equivalent to the identity

∑
N

GN
U,M

#AutS(N)
=

q−χ(dimM,dimU)−E(dimU)

#Aut(U) ·#AutS(M)
.

Using [41, Lemma 2.2] this is in turn equivalent to the identity proven in
[41, Theorem 2.9]. �

Write ĤQ for the completion of HQ with respect to its Λ+
Q-grading and

M̂Q for the corresponding completion of MQ. Both integration maps
∫
H

and
∫
M and Theorem 4.1 extend to these completions.

Remark. Theorem 4.1 holds more generally if RepFq
(Q) is replaced with

an exact subcategory of a hereditary finitary abelian category. The duality
need only be defined on the exact subcategory. An example of this type is
the category of vector bundles over a smooth projective curve over Fq with
its standard duality.



Self-dual quiver moduli and orientifold DT invariants 457

4.3. Orientifold DT series

Define characteristic functions of (self-dual) representations of a fixed dimen-
sion vector d in Λ+

Q or Λσ,+
Q by

1d =
∑

dimU=d

[U ] ∈ HQ, 1σd =
∑

dimM=d

[M ] ∈MQ.

The sums run over the finitely many isomorphism (isometry) classes of (self-
dual) representations of dimension vector d. Given a (σ-compatible) stability
θ, there are similarly defined characteristic functions of semistable represen-
tations with fixed dimension vector d or slope μ:

1θd ∈ HQ, 1θμ ∈ ĤQ, 1σ,θd ∈MQ, 1σ,θ ∈ M̂Q.

As self-dual representations have zero slope we have written 1σ,θ for 1σ,θμ=0.
Applying the appropriate integration map to each characteristic function
gives a stack generating function, denoted by A with the corresponding
sub/superscripts. For example,

(7) Aσ,θ
d =

∫
M

1σ,θd =
∑

dimM=d
M is s.s

q
1

2
E(d)

#AutS(M)
ξd ∈ ŜQ.

In analogy with [23] we call

Aσ,θ =
∑

d∈Λσ,+
Q

Aσ,θ
d ∈ ŜQ

the orientifold Donaldson-Thomas series of (Q, σ) with its given duality
structure and stability.

Let n ≥ 0 and put (y)n =
∏n

i=1(1− yi). For each d ∈ Λ+
Q and e ∈ Λσ,+

Q

define

(y)d =
∏
i∈Q0

(y)di
, (y)σe =

∏
i∈Qσ

0

(y2)
 ei
2
� ×

∏
i∈Q+

0

(y)ei

where � ei2 � is the greatest integer less than or equal to ei
2 .

Proposition 4.2. Fix d∈Λ+
Q, e∈Λσ,+

Q and let θ be a σ-compatible stability.
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1) The following identities hold:

Ad =
q−

1

2
χ(d,d)

(q−1)d
xd, Aσ

e =
q−

1

2
E(e)

(q−1)σe
ξe.

2) The quantity Aσ,θ
e is equal to q

1

2
E(e) times the number of Fq-points of

the stack of semistable self-dual representations of dimension vector e:

Aσ,θ
e = q

1

2
E(e) ·#[Rσ,ε,θ-ss

e /Gσ,ε
e ](Fq)ξe.

Proof. The identity for Ad is known [27]. In the self-dual case we have

Aσ
e =

∑
ε

q
1

2
E(e)#Rσ,ε

e

#Gσ,ε
e

ξe.

Denote the function on ΛQ given by the first two sums (last two sums) in
Equation (2) by E0 (respectively, E1). By direct inspection #Rσ,ε

e = q−E1(e).
If i ∈ Q+

0 then Gσ,ε
ei = GLei and

1

#Gσ,ε
ei

=
q−E0(ei(i+σ(i)))

(q−1)ei
.

If i ∈ Qσ
0 then Gσ,εi

ei is an orthogonal or symplectic group. The cardinalities
of the finite classical groups are given by

#Oεi
2n(Fq) =

2#GLn(Fq2)

qn + εi
,

#Sp2n(Fq) =
1

2
#Oεi

2n+1(Fq) = qn#GLn(Fq2),

with εi ∈ {−1, 1}. See for example [39, §§3.5 and 3.7]. Using this we find

∑
εi

1

#Gσ,εi
ei

=
q−E0(eii)

(q−2)
 ei
2
�
.

These calculations together with Burnside’s lemma give the identity for Aσ
e .

Turning to the second part of the proposition, the number of Fq-points

of the stack [Rσ,ε,θ-ss
e /Gσ,ε

e ] is by definition

#[Rσ,ε,θ-ss
e /Gσ,ε

e ](Fq) =
∑

η∈Iso[Rσ,ε,θ-ss
e /Gσ,ε

e ](Fq)

1

#Aut(η)
.
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The objects of the groupoid [Rσ,ε,θ-ss
e /Gσ,ε

e ](Fq) are in bijection with the set

Rσ,θ-ss
e (Fq)×H1(Fq, G

σ,ε
e (Fq)).

The cohomology H1(Fq, G
σ,ε
e (Fq)) is identified with the set of inequivalent

choices of ε′ with ε as the base point. Morphisms in the groupoid are the
transporter groups

Hom[R/Gσ](Fq)

(
(r′, ε′), (r′′, ε′′)

)
= δε′,ε′′TransGσ,ε′

e (Fq)
(r′, r′′).

Hence the automorphism group of (r′, ε′) is the stabilizer of r′ ∈ Rσ,ε′,θ-ss
e (Fq)

under the action of Gσ,ε′
e (Fq), or in other words, AutS(r

′). The proposition
follows after using Equation (7). �

Our next goal is to describe the characteristic function 1σ,θd for a given
σ-compatible stability θ. We will say that (d1, . . . , dn) ∈ (Λ+

Q)
n has strictly

decreasing slope if μ(d1) > · · · > μ(dn). Similarly, (d1, . . . , dn; d∞) ∈ (Λ+
Q)

n ×
Λσ,+
Q has strictly decreasing slope if (d1, . . . , dn) does and μ(dn) > 0.
As iterated products in the Hall algebra count filtrations of representa-

tions, the existence of unique HN filtrations implies the following identity in
HQ (see [32]):

(8) 1d =
∑
d•

1θd1 · · ·1θdn .

The sum is over all n ≥ 1 and d• = (d1, . . . , dn) ∈ (Λ+
Q)

n with strictly decreas-

ing slope and weight d =
∑n

i=1 d
i. Equation (8) gives a recursion for 1θd in

terms of 1d′ with dim d′ ≤ dim d. This recursion was solved by Reineke [32,
Theorem 5.1].

Using Proposition 3.3, similar reasoning gives an identity in MQ:

(9) 1σd =
∑

(d•;d∞)

1θd1 · · ·1θdn � 1σ,θd∞ .

The sum is now over all n ≥ 0 and (d•; d∞) ∈ (Λ+
Q)

n × Λσ,+
Q with strictly

decreasing slope and σ-weight d =
∑n

i=1H(di) + d∞. Note that d∞ may be
zero but that di 
= 0 if i 
= 0. We write l(d•) = n if d• ∈ (Λ+

Q)
n.

Definition (cf. [32, Definition 5.2]). Let (d•; d∞) ∈ (Λ+
Q)

n × Λσ,+
Q .
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1) For a possibly empty subset I = {s1 < · · · < sk} ⊂ {1, . . . , n}, the I-
coarsening of (d•; d∞) is the element of (Λ+

Q)
#I × Λσ,+

Q given by

cI(d
•; d∞) =

(
d1 + · · ·+ ds1 , . . . , dsk−1+1 + · · ·+ dsk ;

H(dsk+1 + · · ·+ dn) + d∞
)
.

2) The I-coarsening cI(d
•; d∞) is called σ-admissible if

a) it has strictly decreasing slope,
b) for each i = 1, . . . , k and j′ = si−1 + 1, . . . , si − 1 the inequality

μ

⎛
⎝ j′∑

j=si−1+1

dj

⎞
⎠ > μ

⎛
⎝ si∑

j=si−1+1

dj

⎞
⎠

holds, and
c) for each j′ = sk + 1, . . . , n− 1 the inequality μ(

∑j′

j=sk+1 d
j) > 0 holds.

We now solve the recursion (9) for 1σ,θd .

Theorem 4.3. For each d ∈ Λσ,+
Q , Equation (9) is solved by

1σ,θd =
∑

(d•;d∞)

(−1)n1d1 · · ·1dn � 1σd∞

where the sum is over all n ≥ 0 and (d•; d∞) ∈ (Λ+
Q)

n × Λσ,+
Q which are equal

to (∅; d) or satisfy μ(
∑j

i=1 d
i) > 0 for j = 1, . . . , n and have σ-weight d.

Proof. Using the resolution of the HN recursion (8) from [32] and substi-
tuting the claimed expression for 1σ,θd into Equation (9) gives for 1σd the
expression

(10)
∑

(d•;d∞)

∑
(d1,•,...,dn,•;d∞,•)

(−1)
∑n

i=1(li−1)+l∞

⎛
⎝

−→∞∏
i=1

−→
li∏

j=1

1di,j

⎞
⎠ � 1σd∞,∞ .

The outer sum is over all (d•; d∞) with strictly decreasing slope and σ-weight
d while the inner sum is over all (d1,•, . . . , dn,•; d∞,•) with dk,• ∈ (Λ+

Q)
lk of
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weight dk satisfying

μ

(
l∑

i=1

dk,i

)
> μ(dk), l = 1, . . . , lk − 1

and d∞,• ∈ (Λ+
Q)

l∞ × Λσ,+
Q of σ-weight d∞ satisfying

μ

(
l∑

i=1

d∞,i

)
> 0, l = 1, . . . , l∞.

Let (e•; e∞) be the concatenation of d1,•, . . . , dn,• and d∞,•,

(e•; e∞) =
(
d1,1, . . . , dn,ln , d∞,1, . . . , d∞,l∞ ; d∞,∞

)
.

Then (d•; d∞) is a σ-admissible coarsening of (e•; e∞). Since

n∑
i=1

(li − 1) + l∞ = l(e•)− l(d•)

the order of summation in (10) can be swapped to give for 1σd the expression

∑
(e•;e∞)

(−1)l(e•)
∑

(d•,d∞)

(−1)l(d•)1e1 · · ·1el(e•) � 1σe∞ .

The range of the outer sum is as in the statement of the theorem while the
inner sum is over all σ-admissible coarsenings of (e•; e∞).

To complete the proof it suffices to show that for fixed (e•; e∞) equal to
(∅; d) or satisfying the inequality in the statement of the theorem we have

(11)
∑

(d•;d∞)

(−1)l(d•) =

{
1, if (e•; e∞) = (∅; d)

0, otherwise
,

the sum being over all σ-admissible coarsenings of (e•; e∞). This is a self-dual
analogue of [32, Lemma 5.4]. If l(e•) = 0, then (e•; e∞) = (∅; d) and Equa-
tion (11) is trivially true. For l(e•) ≥ 1 we proceed by induction. If l(e•) = 1,
then (e•; e∞) = (e1; e) with μ(e1) > 0. This has σ-admissible coarsenings
I = ∅ and I = {1} and Equation (11) again holds. For l(e•) ≥ 2 we can fol-
low the proof of [32, Lemma 5.4], distinguishing the cases μ(e1) < μ(e2) and
μ(e1) ≥ μ(e2). This allows to complete the induction step. �



462 Matthew B. Young

For d• ∈ (Λ+
Q)

n and e ∈ Λσ,+
Q introduce the notation

χ(d•) =
∑

1≤i<j≤n

χ(dj , di), χ(e, d•) =
n∑

i=1

χ(e, di), E(d•) = E
(

n∑
i=1

di

)
.

By applying the Hall module integration map to the expression for 1σ,θd from
Theorem 4.3 and then using Theorem 4.1 and Proposition 4.2 we obtain the
following result.

Theorem 4.4. For any d ∈ Λσ,+
Q and σ-compatible stability θ, the coeffi-

cient of ξd in Aσ,θ
d is equal to

q
1

2
E(d) ∑

(d•;d∞)

(−1)l(d•)q−χ(d•)−χ(d∞,d•)−E(d•)

⎛
⎝l(d•)∏

i=1

q−χ(di,di)

(q−1)di

⎞
⎠ q−E(d∞)

(q−1)σd∞
,

where the range of summation is as in Theorem 4.3.
In particular, there exists a rational function aσ,θd (t) ∈ Z(t

1

2 ) that spe-

cializes to Aσ,θ
d (Fq) at every odd prime power q.

For an acyclic quiver Q and a sufficiently generic stability θ, the ordinary
moduli space Mθ

d, over k = C say, is a smooth projective variety. In [32] the
Weil conjectures are used to show that the function aθd, specializing to Aθ

d

at each prime power, satisfies

aθd(v
2) = vχ(d,d)(v2 − 1)−1PMθ

d
(v),

giving an effective way to the compute the Poincaré polynomial PMθ
d
(v).

In the self-dual case, the requirement that θ be σ-compatible means that
it cannot be chosen generically, except in some low dimensional examples.
This leads to the existence of strictly semistable self-dual representations,
meaning that aσ,θd is not obviously related to the Poincaré polynomial of

Mσ,θ
d . Instead, aσ,θd can be interpreted as the Poincaré series of the moduli

stack [Rσ,θ
d /Gσ

d ]. For similar interpretations in the case of G-bundles over
curves and ordinary quiver representations see [1], [25] and [16] respectively.

The functions aθd also have string theoretic importance, regardless of
whether or not θ is generic. In [26] it was proposed that the functions aθd
determine the Higgs branch expression for the index of multi-centred BPS
black holes in N = 2 supergravity. Using the explicit computation of aθd from
[32] this proposal was tested in a number of examples. It would be interesting
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to test a similar relationship between aσ,θd and a Coulomb branch formula
for indices of BPS black holes in the presence of an orientifold [7].

Example. For the n-Kronecker quiver with stability θi = −i we have

asp,θ(1,1)(t) = t
1

2
E(1,1) tn − 1

t− 1
= t

1−n

2 [n]t.

Indeed, there are 2[n]q isometry classes of semistable symplectic Fq-
representations of dimension vector (1, 1), each having isometry group Z2.
These representations are absolutely σ-stable. The moduli space is Msp,θ

(1,1) �
Pn−1 and we recover its Poincaré polynomial via

asp,θ(1,1)(v
2) = vE(1,1)PMsp,θ

(1,1)
(v).

In general asp,θ(d,d) is rational, even after multiplication by t−
1

2
E(d,d). For

example, using Theorem 4.4 we compute

asp,θ(2,2)(t) = t
1

2
E(2,2) tn−1[2n]t − [n]t

t+ 1
.

When n = 2 this becomes asp,θ(2,2)(t) = t
1

2
E(2,2)(t3 + t− 1). After multiplica-

tion by t−
1

2
E(2,2) this is polynomial in t but fails to recover the Poincaré

polynomial of Msp,θ
(2,2) � P2 because of strictly semistable symplectic repre-

sentations.

We now describe a class of quivers with involution whose ordinary and
self-dual representation theories differ rather mildly. This is partially moti-
vated by [8, §5.2.1]. Let Q be an acyclic quiver and let Q� be the disjoint
union of Q with its opposite Qop. Then Q� has a canonical involution σ that
swaps the nodes and arrows of Q and Qop. Let Q′ be a quiver obtained from
Q� by adjoining arrows from Qop to Q in such a way that σ can be extended
to Q′. The σ-compatible stabilities of Q′ are of the form θ′ = θ − σ∗θ with
θ ∈ Λ∨

Q. Given d ∈ Λ+
Q pick stabilities θ0, θ− ∈ Λ∨

Q satisfying θ0(d) = 0 and
θ−(d) < 0. Assume that θ0 and θ− are generic in the sense that all semistable
representations of Q of dimension vector d are stable.

Fix a duality structure on Q′. Any self-dual representation of dimension
vector d′ = H(d) can be written uniquely as a Lagrangian extension

(12) 0→ U → N → S(U)→ 0

with U a representation of Q of dimension vector d.
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The representation N is θ′0-semistable if and only if U is θ0-semistable.
In this case the σ-Jordan-Hölder filtration of N coincides with the Jordan-
Hölder filtration of U . This implies that the map

M
σ,θ′

0

d′ (Q′)→Mθ0
d (Q), N �→ U

is an isomorphism. It is straightforward to verify that the Lagrangian exten-
sions (12) are parameterized by the vector space Ext1(S(U), U)S . Since
Hom(S(U), U) is trivial, we have dimExt1(S(U), U)S = −E(d). Using this
we compute

a
σ,θ′

0

d′ (v2) = vE(d
′) v

−2E(d)

v2 − 1
P
M

σ,θ′
0

d′ (Q′)
(v).

On the other hand, in some examples M
σ,θ′

−
d′ (Q′) is a fibration over

M
σ,θ′

0

d′ (Q′) with fibres weighted projective spaces of dimension −E(d)− 1.

Example. As an example of the previous discussion, let Q be the n-
Kronecker quiver on nodes {−2,−1} and let Q′ be the quiver

-2 -1 1 2
×n ×m ×n

A symplectic representation of Q′ of dimension vector d′ = (d2, d1, d1, d2) is
a tuple

(A,B) ∈ Hom(kd2 , kd1)⊕n ⊕ (Sym2kd1)⊕m.

Suppose that d1 = 1. For stability θ0 = (d2,−1) the representation (A,B)
is semistable if and only if A 
= 0. From the discussion above

M
sp,θ′

0

d′ (Q′) �Mθ0
(d2,1)

(Q) � Gr(d2,C
n)

and

a
sp,θ′

0

d′ (v2) = vE(d
′) v2m

v2 − 1

[
n
d2

]
v

.

For θ− = (d2 + 1,−1) the representation (A,B) is semistable if and only if

neither A nor B is zero. ThenM
sp,θ′

−
d′ (Q′) is a Pm−1-fibration overM

sp,θ′
0

d′ (Q′)
and

a
sp,θ′

−
d′ (v2) = vE(d

′)[m]v

[
n
d2

]
v

= vE(d
′)P

M
sp,θ′−
d′ (Q′)

(v).

Note that the computation of a
sp,θ′

−
d′ takes into account the non-trivial Z2-

gerbe structure of the fibres.
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4.4. Wall-crossing of orientifold DT invariants

We begin this section by describing the expected wall-crossing behaviour of
counts of σ-stable self-dual objects in RepC(Q). Näıvely, these numbers are
the orientifold DT invariants. A more precise approach to wall-crossing is
described below.

If θ is generic in the sense that all semistable representations of dimension
vector d are stable, then Mθ

d is smooth and the numerical DT invariant is
the topological Euler characteristic

Ωθ
d = (−1)dimMθ

dχ(Mθ
d) ∈ Z.

The definition of Ωθ
d for general θ and d is more involved; see [20], [22], [23]

and Equation (15) below. Under similar generic conditions we define the
numerical orientifold DT invariant by

Ωσ,θ
e = (−1)dimMσ,θ

e χ(Mσ,θ
e ).

By convention we set Ωσ,θ
0 = 1 for all θ.

To study the θ dependence of Ωσ,θ fix an object U and a self-dual object
M with dimU = d and dimM = e. Assume that d, σ(d) and e are distinct
and primitive. Let θ−, θ0 and θ+ be nearby σ-compatible stabilities such
that U and M are stable with respect to all three and

μθ−(U) < 0, μθ0(U) = 0, μθ+(U) > 0.

For stability θ− we can obtain new σ-stable self-dual representations
from U and M through non-trivial self-dual extensions of the form

0→ U → N ��� M → 0,

presentingM as a quotient of U⊥ ⊂ N by U . On the other hand, for stability
θ+ the representation N is destabilized by U whereas non-trivial self-dual
extensions of M by S(U) may now be σ-stable. Since U , S(U) and M are
stable and pairwise non-isomorphic, Schur’s lemma implies that there are no
non-zero morphisms between them. In this case the sets of self-dual exten-
sions can be decomposed as

Ext1s.d.(M,U) � Ext1(M,U)× Ext1(S(U), U)S

and

Ext1s.d.(M,S(U)) � Ext1(M,S(U))× Ext1(U, S(U))S .
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Roughly, the first factor in Ext1s.d.(M,U) describes the extension class of
U⊥ while the second factor describes the self-dual representation N as an
extension of S(U) by U⊥. See [41, §2.3] for details.

If indeed all non-trivial self-dual extensions described above are σ-stable,
in passing from stability θ− to θ+ we therefore expect to gain2 PExt1s.d.(M,
S(U)) and lose PExt1s.d.(M,U) worth of σ-stable representations of dimen-
sion vector H(d) + e, leading to a change in χ(Mσ

H(d)+e) of

χ(PExt1s.d.(M,S(U)))− χ(PExt1s.d.(M,U)) = 〈M,U〉+ Ẽ(U).

Let I : ΛQ × Λσ
Q → Z be the function defined by the expression on the right

hand side of this equation. As U and M vary over their respective moduli
spaces the total change in Ωσ

H(d)+e is

(13) ΔΩ
σ,θ−→θ+
H(d)+e = (−1)I(d,e)−1I(d, e)Ωθ0

d Ωσ,θ0
e .

Note that this equation is already non-trivial in the Lagrangian case, where
e = 0. In this specialization the above argument can be made more precise
by a slight modification of [37, §4.3].

Equation (13) is an orientifold modification of the primitive wall-crossing
formula for BPS indices in four dimensional theories with N = 2 supersym-
metry [8]. A physical derivation of Equation (13) was given in the setting
of four dimensional N = 2 supergravity in an orientifold background [7].
Physically, the function I is a parity twisted Witten index [5], counting
orientifold invariant open string states between an arbitrary D-brane con-
figuration of charge d ∈ ΛQ, its orientifold image and an orientifold invariant
D-brane configuration of charge e ∈ Λσ

Q. The charge of the orientifold plane
is implicit in I.

Example. Consider again the quiver Q′, a modification of Q�. When

M
σ,θ′

−
d′ (Q′) is indeed a weighted P−E(d)−1-bundle over Mθ0

d (Q) we have

χ(M
σ,θ′

−
d′ (Q′)) = −E(d) · χ(Mθ0

d (Q)).

As M
σ,θ′

+

d′ (Q′) is empty (the representation U in (12) destabilizes N), this
agrees with the Lagrangian specialization of Equation (13).

2These are weighted projective spaces: the natural action of C× on
Ext1s.d.(M,S(U)) has weight one on Ext1(M,S(U)) and weight two on
Ext1(U, S(U))S . Since the topological Euler characteristics is not affected by the
weighting it suffices to think of them as ordinary projective spaces.
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We now return to the finite field setting and discuss a more rigorous
approach to wall-crossing. We first prove a general wall-crossing formula for
orientifold DT series and then specialize it to the finite type case where it
becomes much more explicit and can be compared with Equation (13).

Theorem 4.5. For any two σ-compatible stabilities θ and θ′, the identity

←−∏
μ∈Q>0

Aθ
μ � Aσ,θ =

←−∏
μ∈Q>0

Aθ′
μ � Aσ,θ′

holds in ŜQ.

Proof. Writing Equation (9) in terms of semistable characteristic functions
with fixed slope gives the following equalities in M̂Q:

(14)

←−∏
μ∈Q>0

1θμ � 1σ,θ = 1σ =

←−∏
μ∈Q>0

1θ
′

μ � 1σ,θ
′
.

Applying
∫
M and using Theorem 4.1 gives the desired identity. �

The quantum dilogarithm is the series

Eq(x) =
∑
n≥0

q
n2

2

(qn − 1) · · · (qn − qn−1)
xn ∈ Q(q

1

2 )�x�.

We recall one way in which Eq(x) arises in DT theory. Fix a σ-compatible
stability θ and a rigid absolutely stable representation U with dimU = d.
The subcategory of RepFq

(Q) generated by U consists of semistable repre-
sentations {U⊕n}n≥1 with Aut(U⊕n) � GLn(Fq). The contribution to

∫
H 1

generated by U is then

Aθ
U =

∫
H

∞∑
n=0

[U⊕n] =

∞∑
n=0

q
n2

2

#GLn(Fq)
xnd = Eq(xd).

Suppose now that U � S(U). Under the Z2-action determined by (S,Θ),
End(U) is either the sign or the trivial representation. In the former case
a self-dual structure on U⊕n is a non-singular skew-symmetric element in
End(U⊕n). The self-dual representations generated by U are {H(U⊕n)}n≥1.
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These are semistable with AutS(H(U⊕n)) � Sp2n(Fq) so that the contribu-
tion to

∫
M 1σ generated by U is

Asp,θ
U =

∫
M

∞∑
n=0

[H(U⊕n)] =

∞∑
n=0

q
n(2n+1)

2

qn#GLn(Fq2)
ξ2nd = Eq2(q

− 1

2xd) � ξ0.

When End(U) is the trivial representation, a self-dual structure on U⊕n is
a non-singular symmetric element in End(U⊕n) so that the self-dual repre-
sentations generated by U are {U⊕n,ε}n≥1,ε∈{±}. These are semistable with
AutS(U

⊕n,ε) � Oε
n(Fq). The contribution is

Ao,θ
U =

∫
M

∞∑
n=0

∑
ε∈{±}

[U⊕n,ε]

=

∞∑
n=0

q
n(2n−1)

2 qn

#GLn(Fq2)
ξ2nd +

∞∑
n=0

q
n(2n+1)

2 q−n

#GLn(Fq2)
ξ(2n+1)d

= Eq2(q
1

2xd) � ξ0 + Eq2(q
− 1

2xd) � ξd.

In these calculations the factors Eq2(q
•xd) represent the contributions

of the hyperbolics H(U⊕n) to
∫
M 1σ. The simple form of Asp,θ

U reflects the
fact that all self-dual representations generated by U are hyperbolic. In
particular, there are no σ-stable representations. The form of Ao,θ

U is more
interesting, consisting of two terms. The first includes contributions from
the hyperbolicsH(U⊕n) and the non-split representationsH(U⊕n)⊕ U⊕2,−.
Note that over Fq the latter are also hyperbolic. The second term consists of
contributions from H(U⊕n)⊕ U ε. It is this term that contains information
about the absolutely σ-stable representations.

We now turn to the simplest case of Theorem 4.5.

Example. Let Q be the A2 Dynkin quiver

−1 1

The wall-crossing formula for ordinary quiver representations is the pentagon
identity in T̂Q:

Eq(x1) · Eq(x−1) = Eq(x−1) · Eq(x(1,1)) · Eq(x1).

It is the simplest instance of the primitive wall-crossing formula for DT
invariants [11], [23]. The stabilities are θi = i and θ′i = −i on the left and
right hand side of this equation respectively.



Self-dual quiver moduli and orientifold DT invariants 469

For orthogonal representations Theorem 4.5 gives the ŜQ-identity

Eq(x1) � ξ0 = Eq(x−1) � A
o,ss,

the stabilities as above. The factor Ao,ss is generated by the non-simple inde-
composable. As this representation does not admit an orthogonal structure
we have Ao,ss = Eq2(q

− 1

2x(1,1)) � ξ0. The wall-crossing formula for orthogonal
representations therefore reads

Eq(x1) � ξ0 = Eq(x−1) · Eq2(q
− 1

2x(1,1)) � ξ0.

On the other hand the non-simple indecomposable does admit a sym-
plectic structure, making it absolutely σ-stable. The symplectic wall-crossing
formula then takes the form

Eq(x1) � ξ0 = Eq(x−1) ·
(
Eq2(q

1

2x(1,1)) � ξ0 + Eq2(q
− 1

2x(1,1)) � ξ(1,1)

)
.

According to Theorem 4.5 the product

←−∏
μ∈Q>0

Aθ
μ � Aσ,θ

is independent of θ. We will say that a σ-compatible stability θ is σ-generic
if μ(d) = μ(d′) implies 〈d, d′〉 = 0 and if d is a semistable dimension vector
of slope zero, then d ∈ Λσ,+

Q , cf. [20], [27] in the ordinary case. For such θ

the DT series Aθ
μ encodes the slope μ motivic DT invariants through the

factorization

(15) Aθ
μ =

∏
μ(d)=μ

∏
n∈Z

Eq((−q 1

2 )nxd)
(−1)nΩθ

d,n .

See [11], [23]. We would like to have an analogue of Equation (15) in which
the orientifold DT invariants are defined by factorizations of Aσ,θ. Theo-
rem 4.5 would then give a wall-crossing formula for these invariants.

Let (Q, σ) be of Dynkin type A or a disjoint union of a quiver of Dynkin
type ADE with its opposite; all other finite type quivers with involutions are
disjoint unions of these. Then Ωθ

d,n = 0 if n 
= 0 so we write Ωθ
d for Ωθ

d,0. In

fact Ωθ
d is non-zero only if d is a positive root of the root system attached to

Q, in which case it is zero or one depending on θ. Note that all stable repre-
sentations are absolutely stable and that any duality structure is equivalent
to either the orthogonal or symplectic duality.
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Let U be as above and let M be an absolutely σ-stable representa-
tion with dimM = e and r regular summands. Proposition 3.6 implies
AutS(M) � Zr

2. When E(U) = 1 or U is a summand of M , a modification
of the previous calculations shows the contribution of {H(U⊕n)⊕M}n≥0 to∫
M 1σ to be

Aσ,θ
U,M =

1

2r
Eq2

(
q

1

2
−χ(e,d)−E(d)xd

)
� ξe.

If E(U) = 0 and U is not a summand of M , the same formula instead
gives the contribution of {U⊕2n,ε ⊕M}n≥0,ε∈{±} to

∫
M 1σ. Here U⊕2n,+ and

U⊕2n,− are the hyperbolic, respectively non-hyperbolic self-dual structures
on U⊕2n. Since E(d) is zero or one when U does or does not admit a self-
dual structure, respectively, this formula specializes to those derived above.
Varying U and M over all absolutely (σ-)stable representations (including
the 2r Fq-forms of M ⊗Fq

Fq) shows that we can write

(16) Aσ,θ =
∑

e∈Λσ,+
Q

Aθ
μ=0

(
q, {q 1

2
−χ(e,d)−E(d)xd}d

)
� Ωσ,θ

e ξe

for some non-negative integers Ωσ,θ
e . We summarize our calculations as fol-

lows.

Theorem 4.6. Let Q be a finite type quiver with involution and let θ be a
σ-generic stability. The orientifold DT series Aσ,θ admits a factorization of
the form (16). Explicitly,

1) for hyperbolic duality structures (disjoint unions, symplectic represen-
tations of A2n+1 and orthogonal representations of A2n) Ω

σ,θ
e = δe,0 for

all e ∈ Λσ,+
Q , and

2) for non-hyperbolic duality structures Ωσ,θ
e = 1 if e = 0 or e = e1 + · · ·+

ek for pairwise distinct ei ∈ Λσ,+
Q with Ωθ

ei = 1. Otherwise Ωσ,θ
e = 0.

Remarks. 1) The invariant Ωσ,θ
e defined by Equation (16) is equal to

the stacky number of absolutely σ-stable self-dual Fq-representations

of dimension vector e. Alternatively, Ωσ,θ
e is equal to the Euler char-

acteristic of the moduli space of σ-stable representations of dimension
vector e, which is either empty or consists of single point.

2) The invariants Ωσ,θ
e satisfy the primitive wall-crossing formula (13).

The most basic instance of this is seen in the A2 example above.
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3) The form of Equations (15) and (16) reflects the difference between
the ordinary and σ-Jordan-Hölder filtrations: in the latter there is only
one self-dual factor, leading to the linear structure of Equation (16).

4) The factorization of Aσ by Theorem 4.5 and Equations (15) and (16)
encodes all ordinary and orientifold DT invariants and can be regarded
as a way of extracting the pure orientifold invariants from Aσ. This is
similar to the definition of BPS invariants in topological string theory
with orientifolds, cf. [35], [4], [38], where the free energy is decomposed
into its ordinary and orientifold contributions.

4.5. Quivers with potential

We consider briefly the extension of the Hall module formalism to quivers
with potential. A potential is an element W ∈ kQ/[kQ, kQ] and a repre-
sentation of (Q,W ) is a finite dimensional module over the Jacobian alge-
bra JQ,W = kQ/〈∂W 〉. For each d ∈ Λ+

Q the potential induces a trace func-
tion w : Rd → k. Given a duality structure on Repk(Q), the potential W
is called S-compatible if its trace w is S-invariant. In this case there is an
induced duality structure on the abelian category of finite dimensional JQ,W -
modules. As the homological dimension of this category is generally greater
than one, Hall algebra techniques cannot be applied directly to study its DT
theory. Instead, we use the equivariant approach of Mozgovoy [28].

Suppose we are given a weight map wt : Q1 → Z≥0. This defines a k×-
action on Rd as follows. Given M ∈ Rd and t ∈ k×, the representation t ·
M has the same underlying vector space as M but with structure maps
twt(α)mα. Assume that W is homogeneous of weight one with respect to
wt, that is, w(t ·M) = t · w(M). If Q has an involution σ, we additionally
assume that wt is σ-invariant. This implies that Rσ

d ⊂ Rd is k×-stable.

Example. The quiver for C3 is a single node with three loops α, β, γ and
potential W = αβγ − αγβ. Give α weight one and the other arrows weight
zero. Consider the trivial involution and fix a duality structure. Then W is
S-compatible if and only if τατβτγ = −1. Self-dual representations describe
moduli of vacua of N = 4 or N = 2 supersymmetric gauge theories on the
worldvolume of D3-branes placed on O3- or O7-planes. These are gauge the-
ories with orthogonal or symplectic gauge groups and matter in the symmet-
ric or exterior square of the defining representation. More generally, examples
arise from quivers with potential associated to consistent brane tilings that
admit an orientifold action, such as the conifold and C3/Z3 quivers [13].
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Let k = Fq. The equivariant Hall algebra [28] is the subalgebraHeq
Q ⊂ HQ

spanned by elements f =
∑

U aU [U ] satisfying aU = at·U for all representa-
tions U and t ∈ F×

q . For each t ∈ Fq denote by ft =
∑

w(U)=t aU [U ]. In [28,
Proposition 5.12] it was shown that the map∫ eq

H
: Heq

Q → T̂Q, f �→
∫
H
f0 −

∫
H
f1

is an algebra homomorphism. Analogously, we define the equivariant Hall
moduleMeq

Q , a Heq
Q -submodule ofMQ, and an equivariant integration map∫ eq

M :Meq
Q → ŜQ, a

∫ eq
H -morphism. Define the orientifold DT series of a quiver

with S-compatible potential and σ-compatible stability by

Aσ,θ =

∫ eq

M
1σ,θ ∈ ŜQ.

As in [28], this definition is motivated by the approach to DT theory via
motivic vanishing cycles [3], extended to non-generic stabilities.

Repeating the proofs from the sections above with equivariant instead of
ordinary integration maps, we find a recursive expression for Aσ,θ in terms
of Ad and Aσ

d and a wall-crossing formula relating the DT series {Aθ
μ}μ∈Q>0

and Aσ,θ for different σ-compatible θ.

Acknowledgements

The author thanks Wu-yen Chuang, Zheng Hua, Daniel Krefl, Michael Mov-
shev and Graeme Wilkin for helpful conversations and BIOSUPPORT at the
University of Hong Kong for computational support. The author would also
like to thank an anonymous referee for a number of helpful comments. The
author acknowledges the Institute for Mathematical Sciences at the National
University of Singapore for support and hospitality during the program ‘The
Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles’, where
this work was completed.

References

[1] M. Atiyah and R. Bott, The Yang-Mills equations over Riemann sur-
faces. Philos. Trans. Roy. Soc. London Ser. A, 308(1505):523–615, 1983.

[2] P. Balmer, Witt groups. In: Handbook of K-theory, Vol. 2, pages 539–
576, Springer, Berlin, 2005.



Self-dual quiver moduli and orientifold DT invariants 473

[3] K. Behrend, J. Bryan and B. Szendrői, Motivic degree zero Donaldson-
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