
i
i

“5-Marks” — 2015/6/10 — 23:41 — page 387 — #1 i
i

i
i

i
i

Communications in
Number Theory and Physics
Volume 9, Number 2, 387–411, 2015

Fourier coefficients of three-dimensional

vector-valued modular forms

Christopher Marks

We prove that only a finite number of three-dimensional, irre-
ducible representations of the modular group admit vector-valued
modular forms with bounded denominators. This provides a veri-
fication, in the three-dimensional setting, of a conjecture concern-
ing the Fourier coefficients of noncongruence modular forms, and
reinforces the understanding from mathematical physics that when
such a representation arises in rational conformal field theory, its
kernel should be a congruence subgroup of the modular group.

1. Introduction

It has been understood, at least since the time of Hecke, that modular forms
for congruence subgroups have Fourier coefficients with bounded denomina-
tors. In other words, if G is a congruence subgroup of Γ = SL2(Z) and f
is an integral weight cusp form for G, whose Fourier expansion at infinity
has rational numbers as coefficients, then for some large enough integer M
the Fourier coefficients of Mf are integers (see [20, Thm. 3.52] for a proof).
This is, of course, one of the main reasons that congruence subgroups feature
prominently in the theory of modular forms: when the q-expansions arising
here are integral, these integers represent important quantities in number
theory, geometry, or physics.

A physical example of this phenomenon is found in rational conformal
field theory (RCFT) and its mathematical counterpart, the theory of rational
vertex operator algebras (VOAs). A rational VOA has associated to it a finite

2000 Mathematics Subject Classification: 11F30, 11F99.

387



i
i

“5-Marks” — 2015/6/10 — 23:41 — page 388 — #2 i
i

i
i

i
i

388 Christopher Marks

number of irreducible modules, which are Z-graded complex vector spaces

M (j) =
⊕
n≥0

M (j)
n , 1 ≤ j ≤ d,

whose finite-dimensional summands encode the physical data of the under-
lying RCFT. Each such module defines a graded character

χj = qhj−
c

24

∑
n≥0

dimM (j)
n qn,

where hj ∈ Q is the conformal weight associated to M (j) and c ∈ Q is the
central charge of the theory. Zhu has shown [23] that if the formal variable
q is interpreted as in the theory of modular forms, the χj become holo-
morphic functions on the complex upper half-plane, and their C-linear span
carries a representation of Γ. In other words, this space of functions defines
a d-dimensional vector-valued modular function for Γ. It has long been con-
jectured by physicists [15] that the kernel of the representation arising in
this situation is a congruence subgroup of Γ, so that the χj are congruence
modular functions, and mathematically this is somewhat established [2, 3].

Returning to the general situation, it was already understood by Fricke
and Klein that this bounded denominator property need not hold when the
group of invariance is noncongruence. Indeed, one finds in [5] the example
of

u(τ) =

∫ τ

i∞
η4(z) dz =

∑
n≥0

Ψ(n)

6n+ 1
qn+ 1

6 ,

where η = q
1

24

∏
n≥1(1− qn) denotes Dedekind’s eta function and the integer

Ψ(n) counts integral points on the elliptic curve y2 = −3x3 + n. In this case
the group fixing u is of infinite index in Γ (thus noncongruence), and as
is indicated by the above expansion there are infinitely many primes p ≡ 1
(mod 6) appearing in the denominators of its Fourier coefficients [4]. When
such a form f has rational Fourier coefficients, yet there is no sufficiently
large integerM such that the Fourier coefficients ofMf are integral, one says
that1 f has unbounded denominators. More specifically, if there is a prime
number p which occurs to an arbitrarily high power in the denominators of
the Fourier coefficients of f , then we say that f is p -unbounded.

1This language is, of course, also used in the more general situation, where Q and
Z are replaced by an arbitrary number field and its ring of integers, respectively.
In this article, however, we consider Q-rational Fourier coefficients only.
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Work of Atkin and Swinnerton-Dyer [1] served to rekindle interest in
noncongruence modular forms, and subsequent results by Scholl [18, 19],
Li and Long [9, 10], and Mason [4, 14] support the idea that the bounded
denominator property completely characterizes modular forms on congru-
ence subgroups. This may be formalized in the following

Conjecture 1.1. Suppose f is a modular form for a finite index subgroup
G ≤ Γ, which has bounded denominators. Then f is modular for the congru-
ence closure of G (i.e. the intersection of all congruence subgroups contain-
ing G).

This conjecture extends naturally to the vector-valued setting, and indeed
is profitably studied there. The extension formulated by Mason [14] is

Conjecture 1.2. Suppose F is a vector-valued modular form for a repre-
sentation ρ of Γ, such that the components of F have Fourier expansions
with bounded denominators. Then the kernel of ρ is a congruence subgroup
of Γ.

From this perspective, the group G of Conjecture 1.1 becomes the kernel
of the (finite image) representation ρ in Conjecture 1.2 (or ker ρ is the inter-
section of the conjugates of G if G is not normal in Γ), and the components
of any vector associated to ρ are (by definition) modular forms for G. But
of course ρ need not have finite image, in which case the components of
any associated vector-valued modular form may be a more general type of
function than a traditional “scalar” modular form. For example, from the
above function u one obtains a vector (u, 1)t which transforms according
to a representation ρ : Γ→ GL2(C) whose kernel (the aforementioned fixing

group for u) is the normal closure of
(
1 6

0 1

)
in Γ, which is called ∆(6) by

Wohlfahrt [22] and is of infinite index in Γ.
In light of the modular invariance of graded characters discussed above,

a strong motivation for proving Conjecture 1.2 is that it would provide a
mathematical verification, using only intrinsic properties of modular forms,
of the expectation from RCFT that the representations of Γ arising here have
congruence kernels. There is no doubt that a proof of the above conjectures
will necessarily involve some extremely subtle, and arithmetically rich, ideas
from the theory of Riemann surfaces. It is reasonable to expect that these
ideas would inform physics as well as number theory, in ways that cannot
be fully predicted.

Conjecture 1.2 is easily verified when the representation is 1-dimensional,
for here, as is well known, there are only 12 possible representations to
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consider, each of whose kernel is congruence (of level dividing 12). And in
the 2-dimensional setting, Mason [14] has verified Conjecture 1.2 for all but
a finite number of open cases (which have recently been settled [4]). In this
article we shall, in a similiar fashion, verify Conjecture 1.2 in dimension
three. Explicitly, we prove

Theorem 1.3. Up to equivalence of representation, only a finite number of

irreducible ρ : Γ→ GL3(C), with ρ
(
1 1

0 1

)
of finite order, admit vector-valued

modular forms with bounded denominators.

An outline of the remainder of this article is as follows. In the next sec-
tion, we review the necessary topics from the theory of vector-valued mod-
ular forms. In Section 3 we utilize a recursive formula from the Fuchsian
theory of ordinary differential equations, to establish that the generators
for spaces of three-dimensional vector-valued modular forms almost always
have unbounded denominators. This allows us to complete, in Section 4, the
proof of Theorem 1.3. In Section 5, we apply Theorem 1.3 to the classical set-
ting, where the representation ρ has finite image. This application supports
Conjecture 1.1, by exhibiting infinitely many new families of noncongruence
modular forms with unbounded denominators.

2. Background

In this section, we recall material from the theory of vector-valued modular
forms and Fuchsian differential equations needed to establish Theorem 1.3.
For more details regarding the theory of vector-valued modular forms, in
addition to the references listed in this section one may consult the author’s
doctoral dissertation [11]. The facts cited below pertaining to the theory of
Fuchsian differential equations are included in any elementary text on the
subject, e.g. the reference [6] given below.

Let H denote the complex upper half-plane, H the complex linear space
of holomorphic functions f : H→ C, and Γ = SL2(Z) the full modular group
of 2× 2 matrices with integer entries and determinant 1. We denote by

S =
(
0 −1

1 0

)
, T =

(
1 1

0 1

)
the well-known generators of Γ. For each integer k

we write

|k : H× Γ→ H,
(f, γ) 7→ f |kγ
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to denote the kth slash action of Γ on H; thus for each γ =
(
a b

c d

)
∈ Γ, τ ∈ H

we have

f |kγ(τ) = (cτ + d)−kf

(
aτ + b

cτ + d

)
.

A holomorphic function F : H→ Cm is a m-dimensional vector-valued mod-
ular form of weight k ∈ Z if the component functions comprising F satisfy
a moderate growth condition at the cusps of Γ, just as in the classical the-
ory of modular forms, and if the span of these components is an invariant
subspace of H under the |k action of Γ on H. Explicitly, if one writes F as a
column vector F = (f1, . . . , fm)t then the above action of Γ on the span of
the fj takes the form of a matrix representation ρ : Γ→ GLm(C), and we
say that F is a vector-valued modular form of weight k for ρ if the following
conditions are satisfied:

1) The components fj of F are of moderate growth at infinity, i.e. there
is an integer N such that for each j we have |fj(x+ iy)| < yN for any
fixed x ∈ R and y � 0.

2) The functional equation F |kγ = ρ(γ)F is satisfied for each γ ∈ Γ (here
|k is applied componentwise to F ).

We write H(k, ρ) for the complex linear space of all such vectors. Regard-
less of ρ, if k is large enough then H(k, ρ) 6= 0 [7, Cor. 3.12], and there is a
minimal weight k0 ≥ 1−m such thatH(k0, ρ) 6= 0. Furthermore, if ρ is inde-
composable — as shall be the case throughout this article — then it follows
directly from the above definition that ρ(S2) = (−1)k whenever H(k, ρ) 6= 0.
Thus in the indecomposable setting there is a Z-graded space

(2.1) H(ρ) =
⊕
k≥0

H(k0 + 2k, ρ)

containing all holomorphic, integral weight vector-valued modular forms for
ρ. If ρ = 1 is the trivial 1-dimensional representation of Γ, then2 k0 = 0 and
we write

H(1) =M =
⊕
k≥0

M2k

for the graded ring of holomorphic, integral weight modular forms for Γ. As
is well-known, M = C[E4, E6] is a graded polynomial algebra in E4 ∈M4

2More generally, if ρ is unitary then the minimal weight k0 is nonnegative.
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and E6 ∈M6, where for each even integer k ≥ 2 we write

(2.2) Ek(τ) = 1− 2k

Bk

∑
n≥1

σk−1(n)qn

for the normalized Eisenstein series in weight k; here q = q(τ) = e2πiτ , Bk
denotes the kth Bernoulli number, and σk(n) =

∑
1≤d|n d

k. Each space (2.1)
is a graded M-module via componentwise multiplication.

If ρ′ is equivalent to ρ — meaning there is a U ∈ GLm(C) such that
ρ′(γ) = Uρ(γ)U−1 for each γ ∈ Γ — then multiplication by U defines an
isomorphism H(ρ) ∼= H(ρ′) of graded M-modules. This allows one to study
vector-valued modular forms for representations having desirable matrix
forms within their particular equivalence class. In particular, in this arti-
cle we shall be concerned only with those ρ such that ρ(T ) is of finite order.
Thus the above isomorphism allows us to assume that

(2.3) ρ(T ) = diag {e (r1) , . . . , e (rm)}

for some rational numbers 0 ≤ rj < 1; here and throughout we write e (r) =
e2πir for the exponential of r ∈ R. In this case, the moderate growth condi-
tion implies that each F ∈ H(ρ) has a holomorphic q-expansion

(2.4) F (τ) =

 f1(τ)
...

fm(τ)

 =


∑

n≥0 a1(n)qr1+n

...∑
n≥0 am(n)qrm+n

 ,

with aj(n) ∈ C for each j, n. If the aj(n) are rational numbers, then we call
F p -unbounded whenever at least one component of F is.

A fundamental fact concerning the M-module structure of (2.1) is

Theorem 2.1. If ρ is indecomposable and ρ(T ) has finite order, then H(ρ)
is a free M-module of rank equal to the dimension of ρ.

See [13, Thm. 1] for a proof, or [7] for a more general result.
Recall that the modular derivative in weight k ∈ Z is the operator

Dk : H → H,

Dkf =
1

2πi

df

dτ
− k

12
E2f,(2.5)
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with E2 as in (2.2). It is well-known [8, Sec. 10.5] that this derivative is
covariant with respect to the slash action of the modular group, so that

(Dkf)|k+2γ = Dk(f |kγ)

for any meromorphic f : H→ C, γ ∈ Γ, and k ∈ Z. This covariance helps
establish the important fact that Dk takes (quasi-)modular forms of weight
k to those of weight k + 2, and in particular we have

(2.6) D2E2 = − 1

12
[E2

2 − E4], D4E4 = −1

3
E6, D6E6 = −1

2
E2

4 .

This generalizes to higher dimension and yields a weight two operator D,
which acts (componentwise) on each graded space (2.1) of vector-valued
modular forms by acting as Dk on H(k, ρ). One defines for any n ≥ 2 the
composition

(2.7) Dn
k = Dk+2(n−1) ◦ · · · ◦Dk

and in this way powers of D are well-defined operators on (2.1). This allows
one to define a skew polynomial ringR, which as an additive group is just the
polynomial ring in one variableM[d], and whose multiplication is defined by
the identity dM = Md+DM for each M ∈M. Each space (2.1) of vector-
valued modular forms is then a graded left R-module (finitely generated
thanks to Theorem 2.1), where M again acts by componentwise multipli-
cation, and dn acts as the nth power of the modular derivative, i.e. dn acts
as (2.7) on H(k, ρ).

A modular differential equation is simply an equation L[f ] = 0 with L ∈
R homogeneous by weight. A very special case — which includes the setting
of the present article — occurs when L is monic, so that

(2.8) L[f ] = Dm
k f +M4D

m−2
k f + · · ·+M2mf = 0

for some m ≥ 1, k ∈ Z, and Mj ∈Mj for each j. From the covariance of the
modular derivative, it follows that the space of solutions of (2.8) is invariant
under the |k action of Γ, thus such equations yield candidates for vector-
valued modular forms. Because E2 and the Mj are holomorphic in H, one
sees from (2.6) and (2.7) that the only singular point of (2.8) is i∞, i.e.
q = 0. Using the change of variable 1

2πi
d
dτ = q ddq , one obtains from (2.8) an
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equation

(2.9) qm
df

dqm
+ gm−1(q)qm−1 df

dqm−1
+ · · ·+ g0(q)f = 0

for some functions

(2.10) gj(q) =
∑
n≥0

Gj(n)qn ∈ C[E2, E4, E6]

which are holomorphic in the disk |q| < 1. One sees from (2.9) that in fact
q = 0 is a regular singular point in the sense of Fuchs [6, Chs. 5,9], so that
solutions of (2.9) may be obtained by employing the well-known recursive
formula of Fuchs and Frobenius. To implement this method, a normalized
series solution of the form

(2.11) f(q) = qr

1 +
∑
n≥1

a(n)qn


is assumed and evaluated according to (2.9). Since the resulting function
L[f ] must be identically zero, one obtains an infinite set of conditions which
must be satisfied by r and the a(n). The first condition is known classically
as the indicial equation φ(r) = 0 with

φ(r) = r(r − 1) · · · (r − (m− 1))(2.12)

+Gm−1(0)r(r − 1) · · · (r − (m− 2))

+ · · ·+G1(0)r +G0(0),

and it determines the leading exponents of the solutions of (2.9) uniquely;
these values of r are called the indicial roots of (2.9). Continuing on, one
finds at the nth step that the condition

(2.13) a(n) =
a(n− 1)φ1(r + (n− 1)) + · · ·+ a(1)φn−1(r + 1) + φn(r)

φ(r + n)

must be satisfied, where

φj(r) = Gm−1(j)r(r − 1) · · · (r − (m− 2))

+Gm−2(j)r(r − 1) · · · (r − (m− 3))

+ · · ·+G1(j)r +G0(j).
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Thus (2.13) defines each coefficient of (2.11) recursively, so long as there does
not exist an n ≥ 1 such that P (r + n) = 0. In other words, so long as no two
indicial roots of (2.9) differ by an integer one derives from this method a
basis {f1, . . . , fm} of formal solutions of (2.9), each of the form (2.11), and

[6, Sec. 9.1] for each j the ratio fj(q)
qrj converges to a holomorphic function in

the open disk |q| < 1.
The upshot of the above discussion is that if the indicial roots r1, . . . , rm

of (2.9) are nonnegative real numbers which are distinct (mod Z), then there
is a representation ρ : Γ→ GLm(C) and a vector-valued modular form F ∈
H(k, ρ) of the form (2.4), with aj(0) = 1 for each j, such that the fj form a
fundamental system of solutions (i.e. a basis of the solution space) of (2.9).
Note that this choice of basis implies that ρ(T ) is diagonal as in (2.3), so that
the indicial roots of (2.8) may be taken as the exponents of the eigenvalues
of ρ(T ).

It is of fundamental importance for the analysis undertaken in this article
that the space (2.1) associated to any irreducible ρ : Γ→ GL3(C) with ρ(T )
as in (2.3) is a cyclic R-module [13, Thm. 3], whose generator F has com-
ponents spanning the solution space of a monic differential equation (2.8).
Furthermore, if ρ(T ) has finite order (i.e. the indicial roots of (2.8) are ratio-
nal numbers), then the Fourier coefficients of F will be rational numbers as
well. In this setting one may exploit the recursive formula (3.9) to find suffi-
cient conditions on the indicial roots so that F will have unbounded denom-
inators. Because the generators of (2.1) as M-module are F,DF,D2F , and
using the fact that the Eisenstein series (2.2) have bounded denominators,
one may deduce the unboundedness of the denominators of an arbitrary
vector-valued modular form in (2.1) from that of F . This is the strategy
employed below.

Following Wohlfahrt [22], we refer to the order of ρ(T ) in ρ(Γ) as the
level of ρ. If ρ is of finite level N then ker ρ is a normal subgroup of Γ that
contains TN , thus it also contains the normal closure ∆(N) of the subgroup
of Γ generated by TN . It is proven in loc. cit. that if N < 6 then ∆(N) is
the principal congruence subgroup Γ(N), so ker ρ is necessarily a congruence
subgroup of level N in this case; in particular, the components of any vector-
valued modular form for a representation of level less than six are congruence
modular forms, and consequently have bounded denominators. On the other
hand, it is also proven in loc. cit. that ∆(N) is of infinite index in Γ(N) when
N ≥ 6, so in this setting the image of ρ may be finite or infinite.
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3. Three-dimensional vector-valued modular forms

In this section we analyze the Fourier coefficients of the minimal weight
vector-valued modular form (3.6) associated to a generic three-dimensional
representation of the modular group. This analysis forms the core of the
proof of Theorem 1.3, which will be completed in Section 4.

Suppose that

(3.1) ρ : Γ→ GL3(C)

is irreducible such that ρ(T ) has finite order. Up to equivalence of represen-
tation, we may and shall now assume that ρ(T ) is diagonal as in (2.3). It
follows directly from [13, Thm. 1] (or see [12, Thm. 4.1] for a proof) that
the space (2.1) of holomorphic vector-valued modular forms for ρ is a cyclic
R-module

(3.2) H(ρ) = RF0 =MF0 ⊕MDF0 ⊕MD2F0,

and by [13, Thm. 3] the components of the generator F0 form a fundamental
system of solutions of a modular differential equation

(3.3) L[f ] = D3
k0f + α4E4Dk0f + α6E6f = 0.

Here k0 =4r−2 ∈ Z, with r=r1+r2+r3 the sum of the exponents in (2.3)
(which are also the indicial roots of (3.3)), Ek is the Eisenstein series (2.2),
and the complex numbers α4, α6 are uniquely determined by the rj ; cf. [12,
Lemma 2.3], or see (3.13) for the explicit formulae. Note also that the rj are
distinct by [13, Thm. 3]. Denoting the order of ρ(T ) by N , we have

(3.4) ρ(T ) = diag
{
e
(
A
N

)
, e
(
B
N

)
, e
(
C
N

)}
,

where the integers A,B,C are distinct and satisfy

(3.5) 0 ≤ A,B,C ≤ N − 1, (A,B,C,N) = 1.

Knowing this, we may now assume that the minimal weight vector F0 ∈
H(k0, ρ) has a Fourier expansion of the form

(3.6) F0 =

q
A

N +
∑

n≥1 a(n)q
A

N
+n

q
B

N +
∑

n≥1 b(n)q
B

N
+n

q
C

N +
∑

n≥1 c(n)q
C

N
+n

 .
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Using (2.5),(2.6), and (2.7), one obtains from (3.3) an equation (2.9) with
m = 3 and

g2(q) =
∑
n≥0

G2(n)qn = 3 + (3k0 + 6)P,

g1(q) =
∑
n≥0

G1(n)qn(3.7)

= 1 + (3k0 + 6)P + (3k2
0 + 9k0 + 6)P 2

+ (3k0 + 2 + 144α4)Q,

g0(q) =
∑
n≥0

G0(n)qn

= k0(3k0 + 2 + 144α4)PQ+ k0(k0 + 1)(k0 + 2)P 3

+ (k0 − 432α6)R;

here we set

(3.8) P = − 1

12
E2, Q =

1

144
E4, R = − 1

432
E6.

Using this notation (and setting a(0) = 1), we may write the Fuchsian recur-
sive relation (2.13) for the coefficients of the first component of (3.6) as

(3.9) a(n) = − 1

φ
(
A
N + n

) n−1∑
j=0

a(j)φn−j

(
A

N
+ j

)
,

where

φj(λ) = G2(j)λ(λ− 1) +G1(j)λ+G0(j),(3.10)

φ(λ) = λ(λ− 1)(λ− 2) + φ0(λ).

The exponents A
N ,

B
N ,

C
N in (3.4) are the solutions of the indicial equation

φ(λ) = 0 associated to (3.3), and from this one obtains directly

G2(0) = 3− σ

N
,

G1(0) = G2(0) +
ω

N2
− 2,

G0(0) = − $

N3
,
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where we set

σ = A+B + C, ω = AB +AC +BC, $ = ABC.

Using this information, it is now straightforward to compute and find

(3.11) φ

(
A

N
+ n

)
=
nλ(n)

N2
,

where for each n ≥ 1 we set

(3.12) λ(n) = Nn[Nn+ (A−B) + (A− C)] + (A−B)(A− C).

Furthermore, comparing the above formulae for theGj(0) with those obtained
directly from (3.7) yields

(3.13) k0 =
x0

N
, α4 =

x4

(12N)2
, α6 =

x6

(12N)3
,

where we define the integers

x0 = 4σ − 2N,

x4 = 144ω + x0(12N − 3x0) + 8N2,(3.14)

x6 = x0x4 + x0(x0 + 2N)(x0 + 4N)− 1728$.

A final round of elementary computations yields

G2(1) =
24σ

N
,

G1(1) =
240ω − 48σ(2σ −N)

N2
,

G0(1) =
504$ +

(
2σ −N

)(
8σ(4σ −N)− 120ω

)
N3

,

and from this it is trivial to verify the following

Lemma 3.1. For each n ≥ 0 we have φ1

(
A
N + n

)
= zn

N3 , where

zn = 24[10ωNn+ σ(A+Nn)(A+N(n− 1))](3.15)

+ 8[2σ −N ][σ(4σ −N)− 15ω − 6σ(A+Nn)]

+ 240Aω + 504$.
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It is easy to see that the xj in (3.14) satisfy 2 |x0, 4 |x4, 8 |x6, and this
will be used to prove

Lemma 3.2. For j = 2, 3 set

δj =

{
0 j |N,
1 j -N.

Then for each n ≥ 2 the following hold:

1) G2(n) ∈ Z.

2) G1(n) ∈ 1
3δ3N2Z.

3) G0(n) ∈ 1
2δ23δ3N3Z.

Proof. Since the minimal weight k0 is an integer, one sees from (3.13), (3.14)
that N |4σ. Furthermore, from (3.7) and (2.2) we obtain

G2(n) =
24σ

N
σ1(n)

for each n ≥ 1. This implies statement (1). For statements (2) and (3), it
is sufficient to verify the analogous statement for the coefficients of each
summand of g1 and g2, respectively. This amounts to a routine verification
and we omit the proof. We do note, however, that in addition to the 2-adic
properties of the xj mentioned above, we also have that 3 |x4 iff 3 |N , and
3 |N implies 3 |x0, 9 |x6; these observations are all that is required to fill in
the remaining details. �

For each prime p we write νp to denote the p-adic valuation of Q; thus
if x = pkv is an integer with (v, p) = 1 then νp(x) = k, and if x

y ∈ Q then

νp

(
x
y

)
= νp(x)− νp(y). The most important step in the proof of Theo-

rem 1.3 is the determination of νp(zn) for various primes p, and we turn
now to this task.

Proposition 3.3. Let p be a prime dividing the level N of (3.1). After
relabeling (if needed) the indicial roots A

N ,
B
N ,

C
N of (3.3), the following state-

ments hold for all n ≥ 0:

1) If p > 7, then νp(zn) = 0.

2) If p = 7 and 7 |$, then ν7(zn) = 0.

3) If p = 7 and 7 -$, 72 |N , then one of the following holds:
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a) 7 |ω and ν7(zn) = 1.
b) 7 -ω and ν7(zn) = 0.

4) If p = 5 and 5 -$, then ν5(zn) = 0.

5) If p = 5 and 5 |$, 52 |N , then ν5(zn) = 1.

6) If p = 3 and 32 |N , 3 -ω, then ν3(zn) = 1.

7) If p = 3 and 33 |N , 3 |ω, then ν3(zn) = 2.

8) If p = 2 and 25 |N , then ν2(zn) = 4.

Proof. From the formula (3.13) for k0, it follows that if p ≥ 3 is a prime
dividing N then νp(σ) ≥ νp(N) > 0, and if p = 2 then ν2(σ) ≥ νp(N)− 2.
On the other hand, it is seen from (3.15) that if p divides both N and σ,
then νp(zn) > 0 iff p divides

(3.16) 240Aω + 504$ = 24A[10A(B + C) + 31BC].

By assuming, as we may, that p -AB, it is clear that if p |C and p > 5, then p
does not divide (3.16); this implies statement (2) and part of statement (1)
of the proposition.

Assume now that νp(N) = k ≥ 1 with 5 ≤ p -$. Then (3.16) shows that
νp(zn) > 0 iff p |10A(B + C) + 31BC. Transposing A and B throughout the
calculations which led to (3.15) will yield the analogue yn of (3.15) for
the numerator of φ1

(
B
N + n

)
, and one finds similarly that νp(yn) > 0 iff

p |10B(A+ C) + 31AC. Noting the fact we also have νp(σ) ≥ k in this con-
text, a trivial calculation shows that for any 1 ≤ m ≤ k we have

10A(B + C) + 31BC ≡ −(10A2 + 31AB + 31B2) (mod pm),

10B(A+ C) + 31AC ≡ −(10B2 + 31AB + 31A2) (mod pm),

so a necessary condition for νp(zn) ≥ m and νp(yn) ≥ m to both hold is that
pm divides the difference

(3.17) 10A2 + 31AB + 31B2 − (10B2 + 31AB + 31A2) = 21(B2 −A2).

Note that p - (B +A), since p | σ and p - C, so pm | (B2 −A2) iff A ≡ B
(mod pm). Furthermore, if this holds then it follows immediately that

(3.18) 10A(B + C) + 31BC ≡ −72A2 (mod pm),

and because we are assuming 5 ≤ p -A, this cannot be. In particular, this
implies that p does not divide (3.18) if p = 5 or p > 7. Taking m = 1 and
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relabeling (if needed) then completes the proof of statement (1) of the Propo-
sition and yields statement (4) as well. On the other hand, assuming p = 7,
k ≥ 2, m = 2 makes it clear that ν7(zn) ≤ 1 (after relabeling if needed), and
from this and (3.16) statement (3) follows immediately.

Next we assume 52 |N , 5 |C, say C = 5X for some integer X. Then it
follows directly from (3.16) that ν5(zn) ≥ 1, and ν5(zn) ≥ 2 iff 5 |(2A+X).
As in the previous paragraph, we pursue an identical analysis for the integer
yn which is the numerator of φ1

(
B
N + n

)
, and find this time that 52 |yn iff 5 |

(2B +X). Thus 52 necessarily divides the difference 2(A−B) of these terms
if 52 divides the numerators of both a(1) and b(1), which is to say 5 |(A−B).
But 5 |C, 5 |σ imply that 5 |(A+B), thus 5 -(A−B) since (A,B,C) = 1 and
5 |C. This proves Statement (5) of the proposition.

Now assume that ν3(N) = k ≥ 1, 3 -A. Statement (6) of the Proposition
follows immediately from (3.16) by assuming k ≥ 2. On the other hand, if
k ≥ 3 and 3 |ω, then (3.16) makes it clear that ν3(zn) ≥ 2. But examining
the calculations which led to (3.18), one sees that this logic remains valid
for the prime 3, and taking m = 3 shows that, up to relabeling, we have
ν3(zn) ≤ 2, and this implies statement (7) of the proposition.

Finally, assume that ν2(N) ≥ 4. Then ν2(σ) ≥ 2, and this implies ν2($) ≥
1. Note that 2 -ω since 2 |$. If ν2($) ≥ 2, then we may assume that 2 -A,
22 |BC, and this makes it clear that the first two terms of (3.15) are divisible
by 25, whereas the last term is divisible only by 24. On the other hand, if
ν2($) = 1, then we may assume that ν2(A) = 1, 2 -BC, and in this case we
find that 26 divides the first two terms of (3.15), but the last term is divisible
by only 24. Thus statement (7) holds, and this completes the proof of the
proposition. �

It follows immediately that if p is a prime satisfying one of conditions
(1)− (8) in Proposition 3.3 then the difference

(3.19) δ = δ(p) = νp(zn)− νp(N) < 0

is well-defined, independently of the integer n ≥ 0. With this notation, we
may now prove

Proposition 3.4. Suppose p is a prime satisfying one of conditions (1)−
(8) of Proposition 3.3, and assume furthermore that νp(N) > 2νp(z0). Then
for all n ≥ 1 we have

(3.20) νp(a(n)) = nδ − νp

(
n∏
k=1

kλ(k)

)
,
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with λ(k) as in (3.12). In particular, νp(a(n)) is a strictly decreasing, neg-
ative function of n, and (3.6) is p -unbounded.

Proof. The proof will be made by induction on n. Since

a(1) = − N2

λ(1)
· φ1

(
A

N

)
= − z0

Nλ(1)

with zn as in Lemma 3.1, it is clear from Proposition 3.3 that if p is a prime
satisfying the hypothesis of the current proposition, then (3.20) holds for
n = 1. Now assume that n ≥ 2 and (3.20) holds for all 1 ≤ j ≤ n− 1. Then
(3.9), (3.11), and basic properties of νp imply that

νp(a(n)) = νp(N
2)− νp(nλ(n)) + νp

(
a(n− 1)φ1

(
A

N
+ (n− 1)

))
= nδ − νp

(
n∏
k=1

kλ(k)

)

and the proposition is proved, so long as we have

(3.21) νp

(
a(n− 1)φ1

(
A

N
+ (n− 1)

))
< νp

(
a(j)φn−j

(
A

N
+ j

))
for all 0 ≤ j ≤ n− 2. Now Lemma 3.2 and (3.10) imply that for each such
j, there is a yj ∈ Z such that φn−j

(
A
N + j

)
= yj

2δ23δ3N3 , and we note that
the definition of the δj in Lemma 3.2 implies that νp(2

δ23δ3) = 0 for any p
dividing N . By the induction hypothesis, it is then sufficient to prove that

(n− (j + 1))δ + νp(zn) = (n− j)νp(zn)− (n− (j + 1))νp(N) < 0

for 0 ≤ j ≤ n− 2. It is now apparent that the additional assumption νp(N) >
2νp(zn) in the statement of the proposition is enough to ensure that (3.21)
holds for each n, and this completes the proof. �

Corollary 3.5. Suppose there is a prime p which divides N
(N,28·34·52·72) .

Then (3.6) is p -unbounded.

Proof. This amounts to checking the statement of Proposition 3.3 to see
that any such prime p also satisfies the condition νp(N) > 2νp(zn) in Propo-
sition 3.4. �

With this corollary in hand, we are now well-situated to complete the
proof of Theorem 1.3.
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4. Proof of main theorem

We now complete the proof of Theorem 1.3, by establishing some general
facts about cyclic R-modules of vector-valued modular forms.

Assume that ρ : Γ→ GLd(C) is an irreducible representation of arbitrary
dimension d, with ρ(T ) as in (2.3), such that the graded space

H(ρ) =

d−1⊕
j=0

MDjF0 = RF0

of holomorphic vector-valued modular forms for ρ is a cyclic R-module with
generator F0. We set

H(ρ)Q = {F ∈ H(ρ) | F has rational Fourier coefficients},
MQ = {f ∈M | f has rational Fourier coefficients}.

Then H(ρ)Q is clearly an MQ-module, and we have

Lemma 4.1. If F0 ∈ H(ρ)Q, then

H(ρ)Q =

d−1⊕
j=0

MQD
jF0

is a free MQ-module of rank d.

Proof. It follows directly from (2.2) and (2.5) that DjF0 ∈ H(ρ)Q for any
integer j ≥ 0, so clearly the free MQ-module

⊕d−1
j=0MQD

jF0 is contained
in H(ρ)Q. On the other hand, suppose

F =

f1
...
fd

 =


∑

n≥0 c1(n)qr1+n

...∑
n≥0 cd(n)qrd+n

 ∈ H(ρ)

has rational Fourier coefficients. Then there are unique Mj ∈M such that

F =
∑d

j=1MjD
j−1F0, and we need to show that in fact Mj ∈MQ for each

j. A simple inductive argument shows that

Djfi =
∑
n≥0

βij(n)qri+n,
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where

βij(0) =

j−1∏
k=0

(
ri −

k0 + 2k

12

)
,

and k0 ∈ Z denotes the weight of F0. Writing Mj =
∑

n≥0 αj(n)qn for each
j, we obtain the formula c1(0)

...
cd(0)

 = B

α1(0)
...

αd(0)


for the leading Fourier coefficients of F ; here B denotes the d× d matrix
whose (i, j) entry is βij(0). Noting that each of these entries is rational, as
are the cj(0), one observes that the invertibility of B would imply αj(0) ∈
Q for each j. Now βi1(0) = 1 for each i, and for 1 < k ≤ d− 1 there are
polynomials pk ∈ Q[k0] such that

βij(0) = rji +

j−1∑
k=1

pkr
j−k,

thus B reduces to the d× d Vandermonde matrix Vd, whose (i, j) entry is
rj−1
i . It is well-known that

det(Vd) =
∏

1≤i<j≤d
(rj − ri),

and by [13, Thm. 3] the rj are distinct, so det(Vd) = det(B) 6= 0 and we have
αj(0) ∈ Q for each j. Continuing in this way, one arrives at the formulac1(n)

...
cd(n)

 = B

α1(n)
...

αd(n)

+ ~vn,

for the nth Fourier coefficients of F , where the ith entry of ~vn is a Q-linear
combination of the αj(k), 1 ≤ j ≤ d− 1, 0 ≤ k ≤ n− 1. Assuming induc-
tively that these entries are rational shows that the αj(n) are also, and the
Lemma is proved. �

For a prime number p, we write Bp ≤ H(ρ)Q for theMQ-submodule of p-
bounded vectors in H(ρ)Q, i.e. the vectors which are not p -unbounded. Note
that if F0 ∈ Bp, then clearly DjF0 ∈ Bp for any j ≥ 0, so by the previous
Lemma we have
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Corollary 4.2. If F0 ∈ Bp, then Bp = H(ρ)Q is a freeMQ-module of rank d.

On the other hand, we have

Proposition 4.3. Suppose there is a prime p such that the Fourier coeffi-
cients of the first component of (3.6) satisfy (3.20). Then Bp = {0}.

Proof. Let 0 6= g =
∑

n≥0 α(n)qn ∈MQ, so that

gf1 =
∑
n≥0

β(n)qr1+n, β(n) =

n∑
j=0

α(j)a(n− j).

For any given n ≥ 0, we have by (3.20) that

(4.1) νp(β(n)) = νp(α(0)) + nδ − νp

(
n∏
k=1

kλ(k)

)

so long as νp(α(0)a(n)) < νp(α(j)a(n− j)) for all 1 ≤ j ≤ n. Using (3.20)
again, it is seen that this inequality will hold if

(n− j)δ − νp

 n∏
k=n−j+1

kλ(k)

 < νp(α(j))− νp(α(0))

for each 1 ≤ j ≤ n. Since g ∈MQ, there is an integerM such that νp(α(k)) ≥
M for all k ≥ 0, so for any integer m ≥ 0 satisfying m > νp(α(0))−M , by
setting n = pm in (4.1) we obtain

(n− j)δ − νp

 n∏
k=n−j+1

kλ(k)

 ≤ −m < M − νp(α(0))

≤ νp(α(j))− νp(α(0)),

for any 1 ≤ j ≤ pm. Thus for any such m we have νp(β(n)) < −m, so
lim
m→∞

νp(β(pm)) = −∞. Since g was arbitrary, we have MQF0 ∩ Bp = {0}.
Now suppose F ∈ Bp. Since DjF ∈ Bp for any j ≥ 0, we obtain from

Lemma 4.1 a relation  F
...

Dd−1F

 = A

 F0
...

Dd−1F0

 ,
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with A = (αij) ∈Matd(MQ). Now, if A were invertible, then we could write
A−1 = det(A)−1C, where det(A) and the entries of the cofactor matrix C
lie in MQ. But this would yield a relation

C

 F
...

Dd−1F

 = det(A)

 F0
...

Dd−1F0

 ,

whose left hand side lies in Bp, and whose right hand side, by the work of the
previous paragraph, does not. This contradiction implies that A is therefore
not invertible, and consequently there is a relation

M1D
d−1F + · · ·+MdF = 0,

where at least one of the Mj ∈MQ is nonzero. Thus each of the d com-
ponents of F satisfies the same Fuchsian differential equation of order less
than d. In particular, the d components must be linearly dependent, so the
irreducibility of ρ forces F = 0, and the proof is complete. �

We are now able to complete the proof of Theorem 1.3. Consider once
again an irreducible, three-dimensional representation (3.1) with ρ(T ) as
in (3.4). By [21, Thm. 2.9], the eigenvalues e

(
A
N

)
, e
(
B
N

)
, e
(
C
N

)
of ρ(T )

uniquely determine the equivalence class of irreducible representations to
which ρ belongs. If the level N of ρ satisfies the hypothesis of Corollary 3.5,
then the minimal weight vector (3.6) of H(ρ) is p -unbounded for some
prime p dividing N , thus by Proposition 4.3 every nonzero F ∈ H(ρ)Q is
p -unbounded. On the other hand, it is clear that the hypothesis of Corol-
lary 3.5 will be satisfied by all but a finite number of positive integers N ,
and for each such N there are only a finite number of triples (A,B,C) satis-
fying the conditions (3.5). Thus there are only a finite number of equivalence
classes of finite level, irreducible representations ρ : Γ→ GL3(C) that admit
vector-valued modular forms with bounded denominators, and Theorem 1.3
is proved. �

5. Finite image representations

In this final section, we consider Theorem 1.3 in the classical setting. Here
the representation ρ has finite image and, accordingly, the components of
its associated vector-valued modular forms are modular for the finite index
subgroup ker ρ ≤ Γ. As we now demonstrate, the application of Theorem 1.3
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to this setting yields infinite families of modular forms with unbounded
denominators, in support of Conjecture 1.1.

We will utilize [17, Thm. 2.1], which gives a complete determination
of finite image, irreducible representations ρ : Γ→ GL3(C). The classifica-
tion of [17] groups the representation classes into primitive and imprimitive
types; in the present setting, ρ is imprimitive if and only if it is monomial,
and otherwise is primitive. We first discuss the primitive setting.

As mentioned in Section 2, every representation of level less than six
has a congruence subgroup as kernel, and according to loc. cit. the only
additional primitive cases yielding finite image are of level seven. From
that article and the discussion in Section 3 it follows that four equivalence
classes appear here, with {A,B,C} in (3.5) equal to one of {0, 1, 6}, {0, 3, 4},
{1, 2, 4}, {3, 5, 6}. In any event, Corollary 3.5 does not apply in this situ-
ation so we will have nothing further to say about these representations,
other than to note that [17] implies that the first two in the above list are
infinite image (thus noncongruence) whereas one may verify that the kernel
of each of the last two is congruence of level 7.

Studying the imprimitive representations with finite image amounts to
assuming that ρ = IndΓ

G(χ) is induced from a finite image character (i.e. 1-
dimensional representation) χ : G→ C× of an index three subgroup G ≤
Γ. There are only four subgroups of index three in Γ: Γ3, which is the
normal subgroup generated by {γ3 |γ ∈ Γ}, and the conjugate subgroups
(ST )jΓ0(2)(ST )−j , j = 0, 1, 2, where Γ0(2) denotes the subgroup of matri-
ces in Γ that are upper-triangular (mod 2).

We consider first the subgroup Γ3. It is known [16, pg 36] that the
commutator subgroup (Γ3)′ is congruence of level 12, and is normal in Γ.
Thus for any character χ : Γ3 → C× we have that kerχ ≥ (Γ3)′ (since C× is
an abelian group), and furthermore that the kernel of the representation of
Γ induced from χ is equal to kerχ (since the intersection of the conjugates of
kerχ in Γ is equal to kerχ). Thus the vector-valued modular forms associated
to such representations have bounded denominators.

Finally, we consider the three conjugates of Γ0(2). Since inducing char-
acters from conjugate subgroups yields equivalent representations, it is suf-
ficient to consider only the characters of G = Γ0(2). This group has the two
cusps ∞ and 0, with stabilizers generated by ±T , ±ST 2S−1 respectively,
and a single elliptic point i−1

2 , with stabilizer generated by (ST )S(ST )−1.
This yields the Fuchsian presentation

G ∼= 〈E,P1, P2 | E4 = EP1P2 = 1〉,

with the identifications
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E ↔ (ST )S(ST )−1,

P1 ↔ ST 2S−1,

P2 ↔ T

giving an isomorphism. Thus a character χ of G is determined e.g. by any
choice of integer 0 ≤ x ≤ 3 and c ∈ C×, so that χ(E) = e

(
x
4

)
, χ(P2) = c.

Using the coset decomposition Γ = ∪2
j=0G(ST )j , we obtain the induced rep-

resentation ρ = IndΓ
G(χ), with ρ(γ)i,j = χ((ST )i−1γ(ST )1−j) for each γ ∈ Γ

(as is customary, here we extend the definition of χ so that χ(g) = 0 for any
g /∈ G). In particular we have

ρ(T ) =

 χ(T ) 0 0
0 0 χ((ST )T (ST )−2)
0 χ((ST )2T (ST )−1) 0

 ,

and from this it follows that the eigenvalues of ρ(T ) are χ(P2) = c and the
two square roots of χ(P1) = c−1e

(
−x

4

)
.

Assume χ has finite image, so that the first eigenvalue is λ1 = c = e
(
A
M

)
,

with 0 ≤ A < M and (A,M) = 1. Then the other eigenvalues are

λ2 = e
(
−4A+Mx

8M

)
= −λ3,

and the level of ρ is N := 8M
(4,Mx) which, since M ≥ 1 is arbitrary, may be

any positive even integer. Since χ has finite image, so does ρ, and we have
ker ρ ≤ kerχ ≤ G. If ρ is irreducible (generically this will be the case), then
(again by [21, Thm. 2.9]) we may assume that ρ is of the form analyzed in
Section 3, and from this and Corollary 3.5 we obtain

Proposition 5.1. Suppose ρ : Γ→ GL3(C) is as in (3.1), such that the
integers A,B,C,N in (3.5) satisfy the additional constraints N = 2M , C =
B +M for some M ≥ 2. Then ρ has finite image. If, furthermore, there is
a prime p satisfying the hypothesis of Corollary 3.5, then the corresponding
component of (2.4) is a modular form for the noncongruence subgroup ker ρ,
and is p−unbounded. �

This result gives infinitely many new examples of noncongruence mod-
ular forms with unbounded denominators.
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