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Modularity of open Gromov-Witten
potentials of elliptic orbifolds

Siu-Cheong Lau and Jie Zhou

We study the modularity of the genus zero open Gromov-Witten
potentials and its generating matrix factorizations for elliptic orb-
ifolds. These objects constructed by Lagrangian Floer theory are
a priori well-defined only around the large volume limit. It follows
from modularity that they can be analytically continued over the
global Kähler moduli space.

1. Introduction

The mirror of an elliptic P1 orbifold P1
a,b,c is a Landau-Ginzburg mirror: it

is determined by a polynomial

(1.1) Wmir = xa + yb + zc + σxyz ,

where σ is a complex parameter. Mirror symmetry asserts that symplectic
geometry of P1

a,b,c is reflected from the complex geometry of Wmir, and vice
versa. While the orbifold P1

a,b,c is only of dimension one, its Gromov-Witten
theory is very interesting and receives a lot of attention in the context of
mirror symmetry and integrable systems, see for instance [20, 34, 37, 42–
44, 51, 53, 56, 58].

The paper [16] proposed a systematic construction of Landau-Ginzburg
mirror and a homological mirror functor using Lagrangian Floer theory. For
an elliptic P1 orbifold P1

a,b,c, where
1
a + 1

b + 1
c = 1, the construction produces

a polynomial Wq(x, y, z) whose coefficients are convergent series in the Käh-
ler parameter q of P1

a,b,c. The polynomial Wq can be rearranged to the form
of Wmir by an explicit change of coordinates in (x, y, z). It is called to be
the open Gromov-Witten potential because it is obtained by counting holo-
morphic polygons bounded by a fixed Lagrangian, which is the Lagrangian
immersion constructed by Seidel [55].
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The open Gromov-Witten potential Wq(x, y, z) is a priori defined only
around the point q = 0, the so-called large volume limit of the Kähler moduli
space. In this paper, we show that indeed it can be extended to certain global
moduli space:

Theorem 1.1. Let Wq(x, y, z) be the open Gromov-Witten potential of an
elliptic P1 orbifold P1

a,b,c where (a, b, c) = (3, 3, 3) or (2, 4, 4). The coefficients
of Wq(x, y, z), which are functions in q, are modular forms of certain weight
k for the modular group Γ = Γ(3) or Γ(4) respectively. Hence the potential
extends to be a section of the line bundle K

k

2 over the product C3 × (Γ\H∗),
where K is the pull back of the canonical line bundle of the modular curve
Γ\H∗.

The proof is arithmetic in nature. We explicitly express the open Gromov-
Witten potential in terms of the Dedekind η-function and Eisenstein series,
and use known expressions for modular forms with respect to the groups Γ =
Γ(3) and Γ(4). We expect the same statement holds for the case (a, b, c) =
(2, 3, 6), see Section 3.3 for more details.

Remark 1.2. The theorem also holds for the elliptic orbifold P1
2,2,2,2, namely

the coefficients of the open Gromov-Witten potential of P1
2,2,2,2 are modular

forms for the modular group Γ(2). See Section 3.4. In this case W is defined
on the resolved conifold OP1(−1)⊕OP1(−1) rather than C3, and its critical
locus is the zero section P1 ⊂ OP1(−1)⊕OP1(−1) rather than an isolated
point. Thus we separate this case from the above theorem.

For an elliptic P1 orbifold P1
a,b,c, the mirror functor produces a particular

matrix factorization M of Wq, which is an odd endomorphism δ on ∧∗C3

satisfying δ2 = Wq · Id. This matrix factorization has the important property
that it split generates the derived category of matrix factorizations, and it
is mirror to the Seidel Lagrangian. Using similar arithmetic techniques, we
can express M in terms of modular forms.

Theorem 1.3. Let M be the matrix factorization of the open Gromov-
Witten potentialWq(x, y, z) which is mirror to the Seidel Lagrangian in P1

a,b,c,
where (a, b, c) = (3, 3, 3) or (2, 4, 4). The matrix entries ofM are polynomials
in x, y, z whose coefficients are modular forms of weight k for the modular
group Γ = Γ(3) or Γ(4) respectively.

Why modularity is expected can be explained as follows. The Seidel
Lagrangian in the elliptic orbifold P1

a,b,c = E/Zr, where r = 3, 4, 6 for the
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(a, b, c) = (3, 3, 3), (2, 4, 4), (2, 3, 6) case respectively, can be lifted to r copies
of Lagrangians in the elliptic curve E. Thus the moduli space around the
large volume limit under consideration on the symplectic side is the mod-
uli space of Kähler structure of E together with a particular choice of r
Lagrangians. The mirror is the family of elliptic curves decorated with struc-
tures of r-torsion points, whose moduli space turns out to be the modular
curve Γ\H∗. Mirror symmetry asserts that the A-side moduli is globally iso-
morphic to the B-side moduli. Thus Γ\H∗ should also be the global Kähler
moduli. Our results confirm that the open Gromov-Witten potential, which
is originally just defined around the large volume limit, naturally extend to
this global Kähler moduli space.

Remark 1.4. Modularity of closed Gromov-Witten potentials for elliptic
curves and elliptic orbifolds is derived in a series of works including [19,
21, 27, 36, 42, 46, 53, 56]. For discussions on modularity of some higher
dimensional Calabi-Yau varieties, interested readers are referred to [1, 3–
5, 8, 9, 26, 29, 31, 32, 41, 48] and references therein for details.

Structure of the paper

In Section 2, we review some basic materials on modular forms and ellip-
tic curve families defined over some modular curves. In Section 3, we recall
the construction of the Seidel Lagrangian and prove the modularity for the
potentials W . In Section 4, we prove the modularity for the matrix factor-
izations M . We discuss why modularity is expected from the perspective of
mirror symmetry and give one further example in Section 5.
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2. Preliminaries on modular forms

In this section we give a quick review on some background material about
modular forms and modular curves. They are essential to our study because
global Kähler moduli space of elliptic orbifolds will be identified as modular
curves by using mirror symmetry. The open Gromov-Witten potentials and
matrix factorizations will be written in terms of modular forms, which are
global sections of the corresponding line bundles over modular curves. The
material presented here is largely taken from a joint work [4] of the second
author.

Throughout this paper, we fix q = exp 2πiτ , with τ is the coordinate on
the upper-half plane H. The quantity −2πiτ can be regarded as parametriz-
ing the (complexified) symplectic area of an elliptic orbifold (and so q defines
a local coordinate near the large volume limit q = 0 on the complexified Käh-
ler moduli space of the elliptic orbifold).

2.1. Modular groups and modular forms

The generators and relations for the group SL(2,Z) are given by the follow-
ing:

(2.1) T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, S2 = −I , (ST )3 = −I .

We will consider in this paper the following congruence subgroups called
Hecke subgroups of Γ(1) = PSL(2,Z) = SL(2,Z)/{±I}

(2.2) Γ0(N) =

{(
a b
c d

)
∈ Γ(1)

∣∣∣∣ c ≡ 0 mod N

}
< Γ(1) .

Some other groups that we are interested in are the principal congruence
subgroups

(2.3) Γ(N) =

{(
a b
c d

)
∈ Γ(1)

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 1

)
mod N

}
< Γ(1) .

One has Γ(N) < Γ0(N) < Γ(1) = PSL(2,Z).
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A modular form of weight k for the congruence subgroup Γ of PSL(2,Z)
is a function f : H → C satisfying the following conditions:

• f(γτ) = jγ(τ)kf(τ), ∀γ ∈ Γ , where j is called the j-automorphy fac-
tor and is defined by

j : Γ×H → C,
(
γ =

(
a b
c d

)
, τ

)
7→ jγ(τ) := (cτ + d) .

• f is holomorphic on H.

• f is “holomorphic at the cusps" in the sense that the function

(2.4) τ 7→ jγ(τ)−kf(γτ)

is holomorphic at τ = i∞ for any γ ∈ Γ(1).

The second and third conditions in the above can be equivalently described
as saying that f is holomorphic on the modular curve XΓ = Γ\H∗, where
H∗ = H ∪ P1(Q), i.e., H ∪Q ∪ {i∞}. The first condition means that f can
be formulated as a holomorphic section of a line bundle over XΓ.

We will need to be able to take roots of modular forms. For this pur-
pose we introduce the notion of multiplier system. A multiplier system of
weight k for Γ is a function v : Γ→ C such that |v(γ)| = 1 and v(γ1γ2) =
w(γ1, γ2)v(γ1)v(γ2) for some w(γ1, γ2). We then define modular forms of
weight k with the multiplier system v by replacing the j-automorphy factor
in (2.4) by the new automorphy factor v(γ)jγ(τ), see for example [50] for
details. The simplest case is when v depends only on the entry d of γ. In
the following we will be mostly dealing with the case where v is given by a
Dirichlet character χ. The space of modular forms with the multiplier system
χ for Γ forms a graded differential ring and is denoted by M∗(Γ, χ). Simi-
larly we have the ring of even weight modular forms denoted byMeven(Γ, χ).
When χ is trivial, we shall often omit it and simply write M∗(Γ).

Example 2.1. Taking the group Γ to be the full modular group Γ(1) =
PSL(2,Z). ThenM∗(Γ(1)) = C[E4, E6], where E4, E6 are the familiar Eisen-
stein series defined by

E4(τ) = 1 + 240

∞∑
d=1

σ3(d)qd, q = e2πiτ , σ3(d) =
∑
k: k|d

k3 ,

E6(τ) = 1− 504

∞∑
d=1

σ3(d)qd, q = e2πiτ , σ5(d) =
∑
k: k|d

k5 .
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The Eisenstein series E2(τ) = 1− 24
∑∞

d=1 σ1(d)qd is not a modular form,
but a so-called quasi-modular form [27] for Γ(1), since it transforms according
to

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

12

2πi
c(cτ + d), ∀ τ ∈ H, ∀

(
a b
c d

)
∈ Γ(1) .

2.2. Ring of modular forms

Now we consider modular forms (with possibly non-trivial multiplier sys-
tems) for the Hecke subgroups Γ0(N) with N = 2, 3, 4 and the subgroup
Γ0(1∗) which is the unique index two normal subgroup of Γ(1) = PSL(2,Z).
All of them are of genus zero in the sense that the corresponding modular
curves1 X0(N) := Γ0(N)\H∗ are genus zero Riemann surfaces. Each of the
corresponding modular curves XΓ has three singular points: two (equivalence
classes) of cusps2 [i∞], [0], and the third one is a cusp or an elliptic point,
depending on the modular group. It is a quadratic elliptic point [τ ] = [i] for
N = 2, cubic elliptic point [τ ] = [exp 2πi/3] for N = 3 and N = 1∗, and a
cusp [τ ] = [1/2] for N = 4. For a review of these facts, see for instance [50].

We can choose a particular Hauptmodul (i.e., a generator for the ra-
tional function field of the genus zero modular curve) α(τ) for the corre-
sponding modular group such that the two cusps are given by α = 0, 1 re-
spectively, and the third one is α =∞. It is given by α(τ) = Cr(τ)/Ar(τ),
where r = 6, 4, 3, 2 for the cases N = 1∗, 2, 3, 4 respectively. The functions3

A(τ), C(τ) = α(τ)
1

rA(τ), B(τ) = (1− α(τ))
1

rA(τ) are given in Table 1 be-
low. See [7, 10] and also [39, 40] for a review on the modular forms A,B,C.
Throughout this paper we shall write AN , BN , CN for the Γ = Γ0(N) case
for these quantities when potential confusion might arise.

The explicit expressions for these quantities in terms of θ-functions and
q-series can be found in a lot of literature. By using the θ-expansions therein
for these generators, one can easily see that

(2.5) A2
2 = A2

4 + C2
4 , C2

2 = 2A4C4 .

1The N = 1∗ case is anomalous, more details are given in Section 2.3. For further
discussion, see [39].

2Here we use the notation [τ ] to denote the Γ-equivalence class of τ ∈ H∗.
3Throughout this work, when we take factional powers of modular forms and

modular functions, we always take the principal branch of the logarithm.
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N A B C

1∗ E4(τ)
1

4 (E4(τ)
3
2 +E6(τ)
2 )

1

6 (E4(τ)
3
2−E6(τ)
2 )

1

6

2 (26η(2τ)24+η(τ)24)
1
4

η(τ)2η(2τ)2
η(τ)4

η(2τ)2 2
3

2
η(2τ)4

η(τ)2

3 (33η(3τ)12+η(τ)12)
1
3

η(τ)η(3τ)
η(τ)3

η(3τ) 3η(3τ)3

η(τ)

4 (24η(4τ)8+η(τ)8)
1
2

η(2τ)2 = η(2τ)10

η(τ)4η(4τ)4
η(τ)4

η(2τ)2 22 η(4τ)4

η(2τ)2

Table 1: η-expansions of A,B,C for Γ0(N), N = 1∗, 2, 3, 4

The following results are classical:

Meven(Γ0(2)) = C[A2
2, B

4
2 ] ,

M∗(Γ0(3), χ−3) = C[A3, B
3
3 ] ,

M∗(Γ0(4), χ−4) = C[A4, B
2
4 ] .

Here χ−3(d) =
(−3
d

)
is the Legendre symbol and it gives the non-trivial

Dirichlet character for the modular forms. Similarly, χ−4(d) =
(−4
d

)
. From

these we can derive the following results:

M∗(Γ(3)) = C[A3, C3] ,(2.6)
M∗(Γ(4)) = C[A4, C4, C2]/〈C2

2 − 2A4C4〉 .(2.7)

For the modular group Γ(2), the ring of modular forms is isomorphic to that
for Γ0(4) by using the 2-isogeny which gives an isomorphism between the
modular groups. See for instance [6, 40, 54] and references therein for details
of all these results.

2.3. Geometric moduli in terms of modular forms

In this section, we shall discuss some basic facts about the geometry and
arithmetic of the elliptic curve families of En type4, n = 5, 6, 7, 8. They are
closely related to5 the elliptic orbifolds which are the main focus of this work,
as we shall see in the sequel.

4The names come from the fact that the total spaces of the elliptic curve families
correspond to the En del Pezzo surfaces, see for instance [31] for further explanation.

5In fact, for the n = 6, 7, 8 cases these are, up to reparametrization, the simple
elliptic singularities [52] E(1,1)

6 , E
(1,1)
7 , E

(1,1)
8 and are mirror to the elliptic orbifolds,

see [42].



i
i

“4-JZhou” — 2015/6/10 — 23:40 — page 352 — #8 i
i

i
i

i
i

352 S.-C. Lau and J. Zhou

The equations for the elliptic curve families are given by

n = 5 : P3[1, 1, 1, 1][2, 2] : x2
1 + x2

3 − z−
1

2rx2x4 = 0 ,

x2
2 + x2

4 − z−
1

2rx1x3 = 0 ,

n = 6 : P2[1, 1, 1][3] : x3
1 + x3

2 + x3
3 − z−

1

rx1x2x3 = 0 ,

n = 7 : P2[1, 1, 2][4] : x4
1 + x4

2 + x2
3 − z−

1

rx1x2x3 = 0 ,

n = 8 : P2[1, 2, 3][6] : x6
1 + x3

2 + x2
3 − z−

1

rx1x2x3 = 0 ,(2.8)

where the numbers r are given by 2, 3, 4, 6 for n = 5, 6, 7, 8, respectively.

The j-invariants for these elliptic curve families are summarized here, see
[14, 30, 35, 38] for more details.

(2.9) E5 :

{
x2

1 + x2
3 − z−

1

4x2x4 = 0

x2
2 + x2

4 − z−
1

4x1x3 = 0
, j(z) =

(1 + 224z + 256z2)3

z(1− 16z)4
.

The base of this family of elliptic curves is the modular curve X0(4).
It has three singular points: two cusp classes [i∞], [0] corresponding to z =
0, 1/16 respectively; and the cusp class [1/2] corresponding to z =∞.

(2.10) E6 : x3
1 + x3

2 + x3
3 − z−

1

3x1x2x3 = 0 , j(z) =
(1 + 216z)3

z(1− 27z)3
.

The base of this family of elliptic curves is the modular curve X0(3).
It has three singular points: two cusp classes [i∞], [0] corresponding to z =
0, 1/27 respectively; and the cubic elliptic point [ST−1(ρ)] corresponding to
z =∞, where ρ = exp(2πi/3).

(2.11) E7 : x4
1 + x4

2 + x2
3 − z−

1

4x1x2x3 = 0 , j(z) =
(1 + 192z)3

z(1− 64z)2
.

The base of this family of elliptic curves is the modular curve X0(2).
It has three singular points: two cusp classes [i∞], [0] corresponding to z =
0, 1/64 respectively; and the quadratic elliptic point [(1 + i)/2] = [ST−1(i)]
corresponding to z =∞.

(2.12) E8 : x6
1 + x3

2 + x2
3 − z−

1

6x1x2x3 = 0 , j(z) =
1

z(1− 432z)
.

The base of this family of elliptic curves is the curveX0(1∗) = Γ0(1∗)\H∗,
where Γ0(1∗) is the unique index 2 normal subgroup of Γ(1) = PSL(2,Z).
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It has three singular points: two cusp classes [i∞], [0] corresponding to z =
0, 1/432 respectively; and the cubic elliptic point [ρ] corresponding to z =∞.

The Hauptmodul for the corresponding modular group given in the pre-
vious section is related to the parameter z by α = κNz, where κN is given
432, 64, 27, 16 for n = 8, 7, 6, 5 (i.e., N = 1∗, 2, 3, 4), respectively. For refer-
ence, we now summarize the related quantities in Table 2 below. Here the

n 5 6 7 8
N 4 3 2 1∗

r 2 3 4 6
κN 16 27 64 432

Table 2: Arithmetic numbers

number r is given by r = 12/ν, with ν being the index of the subgroup in
the full modular group PSL(2,Z).

Remark 2.2. The Picard-Fuchs operators of the above elliptic curves of
En type have the form

(2.13) LPicard−Fuchs = θ2 − α
(
θ +

1

r

)(
θ + 1− 1

r

)
, θ = α

∂

∂α
.

Denote A(α) = 2F1(1
r , 1−

1
r , 1;α) to be the regular period at α = 0 of the

elliptic curve family. Then the modular form A(τ) given in the previous
section is actually given by A(α(τ)). One also has τ(α) = i√

N
A(1− α)/A(α).

Therefore, the tripleA(τ), B(τ), C(τ) introduced earlier can be reconstructed
from the periods, see [7, 10, 39]. This fact was used in [4, 59] in studying
modularity in Gromov-Witten theory and mirror symmetry for some non-
compact Calabi-Yau threefolds.

In Section 3 and Section 4 below, we will be mainly working with the
A-model of the elliptic orbifolds, that is, studying the dependence of the
generating functions of genus zero open Gromov-Witten invariants on the
complexified Kähler structure. In Section 5, we will comment on how mirror
symmetry maps the symplectic geometry data of elliptic orbifolds to the
complex geometry data of the elliptic curve families described in this section.
This would then give an explanation of why modularity is expected.
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3. Open Gromov-Witten potentials of elliptic orbifolds

In this section, we study modularity of open Gromov-Witten potentials of
elliptic orbifolds. First let us have a quick glance on the construction of
open Gromov-Witten potentials in [15, 16] using immersed Lagrangian Floer
theory.

Given a Kähler orbifold X, we fix a Lagrangian immersion L, which
is assumed to be oriented and (relatively) spin, and not passing through
the orbifold points of X. Moreover we assumed that it has transverse self-
intersections for simplicity. Let ι : L̃ → X denote the normalization of L. We
assume that L̃ is connected.

We use the deformations and obstructions of L to construct a Landau-
Ginzburg model (V,W ). It is called to be the generalized SYZ construction: it
uses deformations of an immersed Lagrangian to construct the mirror, while
SYZ uses a Lagrangian torus fibration for the same purpose. The detailed
deformation theory for Lagrangian immersion, which is captured by an A∞
algebra (H, {mk}∞k=0), was developed in [2]. Here we only sketch the needed
ingredients.

Each transverse self-intersection point a corresponds to two immersed
generators X0

a , X
1
a of the Floer complex of L. Intuitively they represent the

two ways of smoothings of the self-intersection point. For a formal deforma-
tion

(3.1) b =
∑
a

(x0
aX

0
a + x1

aX
1
a) ∈ H =

⊕
a

SpanC{X0
a , X

1
a} ,

where the sum is over all self-intersection points a, we have the deformed
m0-term

(3.2) mb
0 =

∞∑
k=0

mk(b, . . . , b) =

∞∑
k=0

∑
(a1,...,ak)
(s1,...,sk)

mk(X
s1
a1
, . . . , Xsk

ak
)xs1a1
· · ·xskak

,

which is a singular chain in the fiber product L̃ ×ι L̃. Roughly speaking it is
a sum of the boundary evaluation images of holomorphic polygons bounded
by L (weighted by their symplectic areas) with corners at the immersed
generators.

Then we choose a subspace V of H whose elements b ∈ V have odd
degrees and satisfy the so-called weak Maurer-Cartan equation [22]

(3.3) mb
0 = W (b)1L̃ ,
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where 1L̃ denotes the fundamental class of L̃. Such deformations b are called
to be weakly unobstructed. This defines a function W on V , and we call it
to be the open Gromov-Witten potential of L because coefficients of W are
obtained by counting pseudoholomorphic polygons bounded by the immersed
Lagrangian L.

To construct the open Gromov-Witten potential (or so-called Landau-
Ginzburg mirror) of elliptic P1 orbifolds, we take L to be the Lagrangian
immersion constructed by Seidel [55]. It has three self-intersection points as
depicted in Figure 1. We take the formal deformations b = xX + yY + zZ,
where X,Y, Z are immersed generators of odd degrees as shown in the figure.
By [16, Lemma 7.5], these deformations are weakly unobstructed. Thus we
obtain an open Gromov-Witten potential W (x, y, z).

Figure 1: The Seidel Lagrangian. The two pictures above show the same La-
grangian immersion from different viewpoints. The three dots on the equator
represent orbifold points. The shaded triangle on the right contributes to the
term −qdxyz of the open Gromov-Witten potential, where qd = exp(−A), A
is the symplectic area of the shaded triangle.

Note that the potential W (x, y, z) depends on the Kähler parameter
of the elliptic P1 orbifold, which parametrizes the sizes of the holomorphic
polygons. Thus W can be identified as a map from the Kähler moduli of
the P1 orbifold to the complex moduli of holomorphic functions. We call this
to be the generalized SYZ map because it arises from the generalized SYZ
construction described above.

The explicit expression of W and the generalized SYZ map were com-
puted in [16, Section 6.1] for the elliptic orbifold P1

3,3,3 and in [15, Section 9
and 10] for the elliptic orbifolds P1

2,4,4 and P1
2,3,6. In the rest of this section

we shall study modularity of the coefficients of the open Gromov-Witten
potential.
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Remark 3.1. There is another elliptic orbifold curve which is not listed
above, namely P1

2,2,2,2 which is the Z2-quotient of some elliptic curve. A sim-
ilar construction scheme for its open Gromov-Witten potential can be carried
out, which involves more than one Lagrangian immersions. The details about
the construction of the open Gromov-Witten potential and the mirror func-
tor will be given in a forthcoming work [17]. In this paper, we will state the
result of the open Gromov-Witten potential and discuss its modularity.

3.1. (3, 3, 3) case

Theorem 3.2. [15] The open Gromov-Witten potential for P1
3,3,3 is

(3.4) W = φ(qd)(x3 + y3 + z3)− ψ(qd)xyz ,

where

(3.5) φ(qd) =

∞∑
k=0

(−1)3k+1(2k + 1)q
3(12k2+12k+3)
d ,

and

ψ(qd) = −qd +

∞∑
k=1

(
(−1)3k+1(6k + 1)q

(6k+1)2

d(3.6)

+ (−1)3k(6k − 1)q
(6k−1)2

d

)
.

Here qd = exp(−area(∆)), with ∆ the minimal triangle bounded by the Seidel
Lagrangian.

Consider the elliptic curve Eρ with j(Eρ) = 0, it can be realized, say,
by x3

1 + x3
2 + x3

3 = 0 in P2. Its quotient6 by the Z3 automorphism is P1
3,3,3.

The Kähler parameter q of the elliptic curve is related with qd by q = q24
d .

Here the subscript ‘d’ stands for ‘disk’. Throughout this paper, by abuse of
notation, we will use for example the notation φ(q) to denote the quantity
φ(qd(q)).

An easy computation shows the following.

6For example, this action could be realized as [x1, x2, x3] 7→ [exp(2πi/3)x1, x2, x3]
and should not be confused with the action of the group of 3-torsion points which
moves the origin of the elliptic curve and thus is not an automorphism.
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Theorem 3.3. Both φ and ψ (when expressed in q) are modular forms of
formal weight 3/2 with the same multiplier system for the modular group
Γ(3).

Proof. Simple algebra shows that

φ(qd) =
1

2

∞∑
k=−∞

(−1)k+1(2k + 1)q
9(2k+1)2

d =
∑

r∈Z+ 1

2

(−1)r+
1

2 rq36r2

d .

Recall that for the Jacobi theta function (here v = exp 2πiz)

θ1(v, q) =
∑

r∈Z+ 1

2

(−1)rvrq
1

2
r2 ,

we have

∂v|v=1θ1(v, q) =
∑

r∈Z+ 1

2

(−1)rrq
1

2
r2 .

Therefore, we obtain

(3.7) φ(qd) = i∂vθ1(1, q72
d ) = i∂vθ1(1, q3) .

To compute ψ, we use the identity

ψ(qd)− 3φ(qd) =

∞∑
l=0

(−1)l+1(2l + 1)q
(2l+1)2

d = i∂vθ1(1, q8
d) .

Or alternatively, φ(qd)− ψ(q9
d) = −3φ(q9

d). Hence

(3.8) ψ(qd) = i(∂vθ1(1, q8
d) + 3∂vθ1(1, q72

d )) .

where q8
d = q1/3 and q72

d = q3. The Jacobi theta function θ1 satisfies

2πi(v∂v)|v=1θ1 = ∂z|z=0θ1 = −2πη(q)3 .

That is, ∂v|v=1θ1 = iη(q)3. It follows that φ(q), ψ(q) can be written in terms
of the η–functions as follows:

φ(q) = −η(q3)3 ,(3.9)

ψ(q) = −(η(q
1

3 )3 + 3η(q3)3) .(3.10)
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Remark 3.4. Recall that for the Hesse-Dixon model for elliptic curves:
x3 + y3 + z3 − (γ + 3)xyz = 0, we have

(3.11) γ(τ) + 3 = 3
A3(τ)

C3(τ)
= 3

(
1 +

η(q)12

33η(q3)12

) 1

3

,

where γ is a Hauptmodul for the modular group Γ(3), see for example [39] for
details. The Hauptmodul is also called to be the mirror map since it gives a
map between the Kähler moduli, parametrized by τ , and the complex moduli
parametrized by γ. One can check that (see [11])

(3.12)
ψ(τ)

φ(τ)
= γ(τ) + 3 .

That is, the generalized SYZ map is identical to the mirror map, as has been
deduced in Theorem 6.5 of [16] in a different way. This will be explained
further in Section 5, where we see that actually the geometry defined by the
open Gromov-Witten potential W coincides with the Hesse-Dixon model.

Using the results in Section 2, we know that η(q3)3 = 3−
9

8B
3

8

3 (τ)C
9

8

3 (τ)
is a modular form for Γ0(3) with possibly non-trivial multiplier system. In
particular, it is so for Γ(3). Therefore, this is also true for η(q

1

3 )3 since γ(τ)
is modular with respect to Γ(3) according to the above remark. Moreover,
φ, ψ must have the same multiplier system since γ has a trivial one. Hence
the conclusion follows. �

3.2. (2, 4, 4) case

Theorem 3.5. [15] The open Gromov-Witten potential of P1
2,4,4 is

(3.13) W = q6
dx

2 − qdxyz + dy(qd)y4 + dz(qd)z4 + dyz(qd)y2z2,

where

dy(qd) = dz(qd) =
∑
0≤r

(2r + 1)q
16(2r+1)2−4
d(3.14)

+
∑

0≤r<s
(2r + 2s+ 2)q

16(2r+1)(2s+1)−4
d ,
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dyz(qd) =
∑

r≥1,s≥1

(
− (4r + 4s− 2)q

16(2r−1)2s−4
d(3.15)

+ (2r + 2s)q64rs−4
d

)
.

The parameter qd = exp(−area(∆)), where ∆ is the minimal disc bounded
by the Seidel Lagrangian in P1

2,4,4, is related to the Kähler parameter q of
the elliptic curve by q = q32

d .
We can rewrite dy and dyz in terms of the Eisenstein series E2(q) as

follows. First we recall that

(3.16)
∑
m,n≥1

mqmn =

∞∑
n=1

σ1(n)qn =
1

24
(1− E2(q)) .

This identity implies that

∑
m,n even

mqmn = 2
∑
a,b

aq4ab =
1

12
(1− E2(q4)) .

∑
m odd
n even

mqmn =
∑
m

n even

mqmn −
∑
m even
n even

mqmn

=
1

24
(1− E2(q2))− 1

12
(1− E2(q4))

=
1

24
(−1− E2(q2) + 2E2(q4)) .∑

m even
n odd

mqmn =
∑
m even
n

mqmn −
∑
m even
n even

mqmn

=
1

12
(1− E2(q2))− 1

12
(1− E2(q4))

=
1

12
(E2(q4)− E2(q2)) .∑

m odd
n odd

mqmn =
∑
m,n

mqmn −
∑
m odd
n even

mqmn −
∑
m even
n odd

mqmn −
∑
m even
n even

mqmn

= −E2(q)

24
+

1

8
E2(q2)− 1

12
E2(q4) .

where the sums are all over positive integers. Therefore,
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dy(qd) =
1

2

∑
r,s≥0

(2r + 2s+ 2)q
16(2r+1)(2s+1)−4
d(3.17)

=
1

2
q−4

d

∑
m,n odd

(m+ n)q16mn
d

= q−4
d

∑
m,n odd

mq16mn
d

= q−
1

8

(
−E2(q

1

2 )

24
+

1

8
E2(q)− 1

12
E2(q2)

)
,

and

dyz(qd) =
∑

r≥1,s≥1

(
− (4r + 4s− 2)q

16(2r−1)2s−4
d + (2r + 2s)q64rs−4

d

)
(3.18)

= −2q−4
d

∑
m odd
n even

(m+ n)q
mn

2 + q−4
d

∑
m,n even

(m+ n)q
mn

2

= −2q−
1

8

(
− 1

24
− E2(q)

8
+
E2(q2)

6

)
+

1

6
q−

1

8 (1− E2(q2))

= q−
1

8

(
1

4
+
E2(q)

4
− E2(q2)

2

)
.

We now apply the results for modular forms of the group Γ0(2) in Sec-
tion 2.2. For this case, it is easy to see (for example, by dimension reasons)
that

A2
2(q) = 2E2(q2)− E2(q) .

It is the generator for M2(Γ0(2)). Moreover, by using the η-expressions for
the modular forms A2, B2, C2, we get, see e.g., [40],

A2
2(q2) =

1

4
(A2

2(q) + 3B2
2(q)) ,

C2
2 (q2) =

1

4
(A2

2(q)−B2
2(q)) ,

A4
2(q) = B4

2(q) + C4
2 (q) .



i
i

“4-JZhou” — 2015/6/10 — 23:40 — page 361 — #17 i
i

i
i

i
i

Modularity of open Gromov-Witten potentials 361

Thus, we obtain

dy(q) =
q−

1

8

24

(
A2

2(q
1

2 )−A2
2(q)

)
=

1

8
q−

1

8 · C2
2 (q) ,(3.19)

dyz(q) = q−
1

8

(
1

4
− A2

2(q)

4

)
.(3.20)

Using the θ-expansions for the modular forms of N = 2, 4 cases and the re-
sults on M∗(Γ(4)), we know that both A2

2 = A2
4 + C2

4 and C2
2 = 2A4C4 are

modular forms of Γ(4). On can redefine the variables x, y, z suitably to get
rid of the constant 1/4 and the multiplicative factor q−

1

8 . Then the quantities
dy, dyz become true modular forms.

Under the following change of coordinates in (x, y, z)

x 7→ q−3
d (x+

q−2
d

2
d
− 1

4
y d

− 1

4
z yz), y 7→ d

− 1

4
y y, z 7→ d

− 1

4
z z ,

the potential W in (3.13) can be rewritten as

(3.21) W = x2 + y4 + z4 + σ(qd)y2z2 ,

where the generalized SYZ map is

(3.22) σ(qd) :=
dyz(qd)− (4q4

d)−1

dy(qd)
= −2A2

2(q)

C2
2 (q)

.

Explicitly σ(qd) is the series

σ(qd) = − 1

4q16
d

− 5q16
d +

31q48
d

2
− 54q80

d +
641q112

d

4
(3.23)

− 409q144
d +

1889q176
d

2
+ · · ·

We now show that σ(qd(q)), which comes from generating functions of
polygon counting, is the inverse mirror map of the elliptic curve obtained by
settingW = 0 in (3.13) (again see Section 5 for explanation). We can express
the inverse mirror map of the elliptic curve explicitly in terms of η-functions
as follows. By the result on elliptic curve families of E7 type in Section 2.3,
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the inverse mirror map (as the inverse of the map a 7→ exp 2πiτ(a)) for

(3.24) x2 + y4 + z4 + axyz = 0

is

(3.25) a(q) = 2
3

2
A2(q)

C2(q)
.

To change (3.24) to the form of (3.21), we replace x by x− a
2yz in (3.24)

and obtain

(3.26) x2 + y4 + z4 − a2

4
y2z2 = 0 ,

and so the inverse mirror map is

(3.27) − a2(q)

4
= −2A2

2(q)

C2
2 (q)

.

This coincides with σ(qd(q)) in (3.22). As a result, we conclude that

Corollary 3.6. The generalized SYZ map equals to the inverse mirror map
for P1

2,4,4.

Remark 3.7. We can express everything in terms of the Dedekind η-
function

η(q) = q
1

24

(
1 +

∞∑
n=1

(−1)n
(
q

n(3n−1)

2 + q
n(3n+1)

2

))
.

More precisely, from the η-expansions in Section 2, we have

A2(q) =
(26η(q2)24 + η(q)24)

1

4

η(q)2η(q2)2
,

C2(q) = 2
3

2
η(q2)4

η(q)2
.

Thus

(3.28) σ(qd(q)) = −2

(
1 +

η(q)24

26η(q2)24

) 1

2

.
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3.3. (2, 3, 6) case

Theorem 3.8. [15] The open Gromov-Witten potential W for P1
2,3,6 is

W = q6
dx

2 − qdxyz + cy(qd)y3 + cz(qd)z6(3.29)
+ cyz2(qd)y2z2 + cyz4(qd)yz4 ,

where

A(n, a, b, c) :=

(
n+ 2

2

)
−
(
a+ 1

2

)
−
(
b+ 1

2

)
−
(
c+ 1

2

)
,(3.30)

cy(qd) =
∑
a≥0

(−1)a+1(2a+ 1)q
48A(a−1,0,0,0)+9
d ;(3.31)

cyz2(qd) =
∑

n≥a≥0

(
(−1)n−a(6n− 2a+ 8)q

48A(n,a,0,0)−4
d(3.32)

+ (2n+ 4)q
48A(n,a,n−a,0)−4
d

)
;

cyz4(qd) =
∑

a,b≥0,n≥a+b

(−1)n−a−b(6n− 2a− 2b+ 7)q
48A(n,a,b,0)−17
d ;(3.33)

cz(qd) =
∑

(−1)n−a−b−c
(

6n− 2a− 2b− 2c+ 6

η(n, a, b, c)

)
(3.34)

· q48A(n,a,b,c)−30
d .

The summation in the expression of cz(qd) is taken over (n, a, b, c) ∈ T1
∐

T2
∐
T3
∐
T6,

T6 ={(3a, a, a, a) : a ≥ 0},

T3 ={(n, a, a, a) : n > 3a ≥ 0},

T2 ={(a+ b+ c, a, b, c) : a, b, c ≥ 0 such that a < min(b, c) or a = c < b},

T1 ={(a+ b+ c+ k, a, b, c) : k ∈ Z>0, a, b, c are distinct non-negative
integers such that a < min(b, c) or a = c < b},

and η(n, a, b, c) = i for (n, a, b, c) ∈ Ti.



i
i

“4-JZhou” — 2015/6/10 — 23:40 — page 364 — #20 i
i

i
i

i
i

364 S.-C. Lau and J. Zhou

By the change of coordinates in (x, y, z),

x 7→ q−3
d

(
x+

1

2
q−2
d c
− 1

3
y syz +

s3(1− 4q4
dcyz2)

24q6
dcy

z3

)
,

y 7→ c
− 1

3
y

y + s2 1− 4q4
dcyz2

12q4
dc

2

3
y

z2

 , z 7→ sz ,

where

s = 864
1

6 q2
dc

1

3
y

(
− 1 + 12q4

dcyz2 − 48q8
dc

2
yz2 + 72q8

dcycyz2 + 64q12
d c

3
yz2

− 288q12
d cycyz2cyz4 + 864q12

d c
2
ycz
)− 1

6 ,

the open Gromov-Witten potential in (3.29) can be written as

(3.35) x2 + y3 + z6 + σ(qd)yz4 ,

where the generalized SYZ map is

σ(qd) =

(
cyz4(qd)−

c2
yz2(qd)

3cy(qd)
− (48q8

dcy(qd))−1 +
cyz2(qd)

6q4
dcy(qd)

)
c
− 1

3
y (qd)

(3.36)

·

(
cz(qd) +

2c3
yz2(qd)

27c2
y(qd)

− cyz2(qd)cyz4(qd)

3cy(qd)
− (864q12

d c
2
y(qd))−1

+
cyz2(qd)

72q8
dc

2
y(qd)

−
c2
yz2(qd)

18q4
dc

2
y(qd)

+
cyz4(qd)

12q4
dcy(qd)

)− 2

3

.

By direct computation, σ(q) := σ(qd(q)) takes the form

σ(q) = − 3

22/3
·
(
1 + 576q + 235008q2 + 109880064q3i(3.37)

+ 53449592832q4 + 26574124961664q5 + · · ·
)

and so σ(q) = − 3
22/3 at q = 0.

We now show that σ(qd(q)) is the inverse mirror map for the elliptic curve
defined by setting W in (3.35) to be zero, where q = q48

d . We also give an
explicit expression of the inverse mirror map in terms of modular functions.
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First, by the results in Section 2.3 the inverse mirror map for

(3.38) x2 + y3 + z6 + axyz

is

(3.39) a = −(432)
1

6 · E
1

4

4((
E

3

2

4 − E6

)
/2
) 1

6

.

where E4 and E6 are the Eisenstein series. Again as before we are now
considering the elliptic curve family given byW = 0. Then we apply a change
of coordinates in (x, y, z) to change (3.38) to the form in (3.35). This is
achieved by first replacing x by x− a

2yz to change the term xyz to y2z2,
and then replacing y to y + a2

12z
2 to replace the term y2z2 to yz4. As a

result, (3.38) is changed to

(3.40) x2 + y3 + z6 − 3a4

2
2

3 (864− a6)
2

3

yz4 .

By substituting a in (3.39) into the above expression, we obtain that the
inverse mirror map for the elliptic curve x2 + y3 + z6 + syz4 given by

(3.41) s(q) =
−3E3

4(q)

2
2

3E2
6(q)

.

One can do a computational check that s(q) has the same expression in (3.37)
as σ(q).

Remark 3.9. Similar to the other cases, we expect the quantities cy, cyz2,
cyz4, cz to be modular forms up to addition and multiplication by some
factors which are not essential, so that the generalized SYZ map in (3.36)
coincides with the expression given in (3.41). This is true for cy. In fact, we
have

cy(qd) = q9
d

∑
a≥0

(−1)a+1(2a+ 1)q
24a(a+1)
d(3.42)

= q3
d

∑
a≥0

(−1)a+1(2a+ 1)q
24(a+ 1

2
)2

d

= 2q
1

16

∑
r≥0,r∈Z+ 1

2

(−1)r+
1

2 rq
1

2
r2

= q
1

16 i∂vθ1|v=1 = −q
1

16 η(q)3 .
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Also the second term in cyz2 (which counts parallelograms) is

q−4
d

∑
n≥a≥0

(2n+ 4)q
48(a+1)(n−a+1)
d(3.43)

= q−4
d

∑
a≥0,b≥0

(2(a+ b) + 4)q
48(a+1)(b+1)
d

= 2q−4
d

∑
a≥1,b≥1

(a+ b)q48ab
d

= 2q−4
d ·

1

12
(1− E2(q48

d ))

=
1

6
q−

1

12 (1− E2(q)) .

We conjecture that the rest are quasi-modular forms as introduced by [27]
and the overall coefficients are modular forms. See Section 4.3 for further
discussions.

3.4. (2, 2, 2, 2) case

The remaining case of elliptic orbifolds is P1
2,2,2,2. It can be constructed as a

quotient of an elliptic curve E by Z2, where 1 ∈ Z2 acts by [z] 7→ [−z] ∈ E.
The generalized SYZ mirror construction in this case is rather different,
namely it involves more than one reference Lagrangians. The construction is
given in [17], here we quote the result below. It turns out that the mirror is
not an isolated singularity, and hence Saito’s theory of primitive forms does
not apply directly to this case.

Theorem 3.10. [17] The open Gromov-Witten potential of P1
2,2,2,2 is

(3.44) W = φ(qd)((xy)2 + (xw)2 + (zy)2 + (zw)2) + ψ(qd)xyzw

defined on the resolved conifold OP1(−1)⊕OP1(−1) = (C4 − Z)/C×, where
(x, y, z, w) are the standard coordinates of C4, Z = {x = z = 0}, C× acts by
λ · (x, y, z, w) = (λx, λ−1y, λz, λ−1w), and

φ(qd) =

∞∑
k,l≥0

(4k + 1)q
(4k+1)(4l+1)
d +

∞∑
k,l≥0

(4k + 3)q
(4k+3)(4l+3)
d ,

ψ(qd) =

∞∑
k,l≥0

(k + l + 1)q
(4k+1)(4l+3)
d .
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The parameter qd = exp(−area(∆)), where ∆ is a certain holomorphic
square in P1

2,2,2,2, is related to the Kähler parameter q of the elliptic curve
E by q = q8

d.
By direct computation, the critical locus of W is the zero section P1 ⊂

OP1(−1)⊕OP1(−1) instead of a point. The Frobenius structure on the uni-
versal deformation space ofW is unclear since Saito’s theory is not yet known
for non-isolated singularities. Nevertheless, we can consider the mirror ellip-
tic curve family to obtain the flat coordinate for marginal deformations, and
compare it with the generalized SYZ map ψ/φ.

To be more precise, W descends to the quotient of OP1(−1)⊕OP1(−1)
by Z2, which is the total space of canonical line bundle KP1×P1 . The critical
locus of W in KP1×P1 is the elliptic curve {W = 0} ⊂ P1 × P1 which is the
mirror of E, where (x : z, y : w) are the standard homogeneous coordinates
on P1 × P1. It can also be embedded into P3 via Segre embedding

x1 = xy, x2 = xw, x3 = zw, x4 = zy.

Then the mirror of E is the elliptic curve given as the complete intersection

{x1x3 = x2x4} ∩ {φ(qd)(x
2
1 + x2

2 + x2
3 + x2

4) + ψ(qd)x1x3 = 0} ⊂ P3.

The j-invariant of the elliptic curve family

{((xy)2 + (xw)2 + (zy)2 + (zw)2) + σxyzw = 0} ⊂ P1 × P1

can be obtained by using the algorithm provided in [18], which is

(3.45) j(σ) =

(
σ4 − 16σ2 + 256

)3
σ4 (σ2 − 16)2 .

Comparing this with the j-invariant for the E5 elliptic curve family discussed
in Section 2.3, we are led to

(3.46) σ = 2 · 1 + α
1

2

α
1

4

,

where α is the Hauptmodul for Γ0(4).
Now we consider the generalized SYZ map ψ/φ. We can rewrite φ(qd)

and ψ(qd) in terms of η-products as follows. Using the computations used in
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deriving (3.17), we find

(3.47) ψ(qd) + 4φ(qd) =
η(q4

d)
8

η(q2
d)

4
.

This identity implies that

(3.48) ψ(qd)− 4φ(qd) =
η(q4

d)
8

η(−q2
d)

4
=
η(q8

d)
4η(q2

d)
4

η(q4
d)

4
.

Solving for φ(qd), ψ(qd) from the above two identities, we obtain

(3.49) φ(qd) =
η(q8

d)
2η(q16

d )4

η(q4
d)

2
, ψ(qd) =

η(q8
d)

14

η(q4
d)

6η(q16
d )4

.

Now using the η-expansions of the modular forms for Γ0(4) in Table 1, we
get (recall qd = q

1

8 )

(3.50) φ =
1

23
A4(q

1

2 )
1

2C4(q
1

2 )
3

2 , ψ =
1

2
A4(q

1

2 )
1

2C4(q
1

2 )
1

2 .

Since Γ0(4) is isomorphic to Γ(2) via τ 7→ 2τ , we know that if f(τ) is a mod-
ular form for Γ0(4), then f( τ2 ) is so for Γ(2). This tells that φ, ψ are modular
forms for Γ(2).

It follows that the generalized SYZ map is

(3.51)
ψ(qd(q))

φ(qd(q))
= 4

A4(q
1

)

C4(q
1

2 )
=

η(q)12

η(q2)8η(q
1

2 )4
.

Using the η-expansions of the modular forms for Γ0(4) in Table 1, we
see that the generalized SYZ map in (3.51) produced by Lagrangian Floer
theory is identical to the modular function given by (3.46). As a result, the
generalized SYZ map equals to the inverse mirror map for P1

2,2,2,2.

4. Modularity of matrix factorizations

In [16], an A∞ functor was constructed from the Fukaya category of La-
grangian branes in a symplectic manifold X to the category of matrix fac-
torizations of the open Gromov-Witten potential W . The construction of W
was reviewed in the beginning of Section 3. ForW ∈ R = C[z1, . . . , zn], a ma-
trix factorization is simply an odd endomorphism δ on a Z2-graded R-module



i
i

“4-JZhou” — 2015/6/10 — 23:40 — page 369 — #25 i
i

i
i

i
i

Modularity of open Gromov-Witten potentials 369

M = M0 ⊕M1 which satisfies δ2 = W · Id. Such a functor is motivated from
the celebrated homological mirror symmetry conjecture [33].

Let us review very briefly the functor in the object level. Given a spin
oriented Lagrangian L which intersects the reference Lagrangian L (fixed
in the beginning of Section 3) transversely, define M = ⊕pR · p where the
sum is over all intersection points p ∈ L ∩ L, and R · p has odd (or even)
degree if p has odd (or even) degree. Then δ is defined to be m(b,0)

1 (which
automatically has odd degree), which is roughly speaking counting pseudo-
holomorphic strips with one side bounded by (L, b) and another side bounded
by L. Since the formal deformation b is assumed to be weakly unobstructed,
it follows from the A∞ relation

(4.1) (m
(b,0)
1 )2 = m2(mb

0, ·) = m2(mb
0, ·) = m2(W (b)1L̃, ·) = W (b) · Id

that δ is a matrix factorization.
In particular, the Seidel Lagrangian of an elliptic P1 orbifold can be

transformed to a matrix factorization of the open Gromov-Witten potential
W . They are split generators of the derived Fukaya category and the derived
category of matrix factorizations respectively. In this section, we study the
modularity of the matrix factorizations constructed from the potential W
for the elliptic orbifolds.

4.1. (3, 3, 3) case

The matrix factorization mirror to the Seidel Lagrangian in P1
3,3,3 was com-

puted in [15, Section 7.7]. In the following we check that their coefficients
are modular forms with possibly non-trivial multiplier systems.

Theorem 4.1. The matrix factorization mirror to the Seidel Lagrangian
in P1

3,3,3 is M = (∧∗C3, δ) where δ = (xX + yY + zZ) ∧ ·+ wxιX + wyιY +
wzιZ , and wx, wy, wz are the following polynomials whose coefficients are
modular forms:

wx = (−η(q3)3)x2 +

(
−1

3
η(q

1

3 )3 + η(q3)3 − 2

3
η(q)

)
yz,

wy = (−η(q3)3)y2 +

(
−1

3
η(q

1

3 )3 + η(q3)3 +
1

3
η(q)

)
xz,

wz = (−η(q3)3)z2 +

(
−1

3
η(q

1

3 )3 + η(q3)3 +
1

3
η(q)

)
xy.
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Proof. From the result of [15, Section 7.7], the matrix factorization is (M, δ)
defined above where

wx = x2
∞∑
k=0

(−1)k+1(2k + 1)q
(3(2k+1))2

d

+ yz

(
−qd +

∞∑
k=1

(−1)k+1
(

(2k + 1)q
(6k+1)2

d − (2k − 1)q
(6k−1)2

d

))
,

wy = y2
∞∑
k=0

(−1)k+1(2k + 1)q
(3(2k+1))2

d

+ xz

∞∑
k=1

(−1)k+1
(

2kq
(6k+1)2

d − 2kq
(6k−1)2

d

)
,

wz = z2
∞∑
k=0

(−1)k+1(2k + 1)q
(3(2k+1))2

d

+ xy

∞∑
k=1

(−1)k+1
(

2kq
(6k+1)2

d − 2kq
(6k−1)2

d

)
.

The coefficient of x2 in wx (or that of y2 in wy, or that of z2 in wz) equals
to φ(qd) = i∂vθ1(q3, 1). The coefficient of yz in wx is

− qd +

∞∑
k=1

(−1)k+1
(

(2k + 1)q
(6k+1)2

d − (2k − 1)q
(6k−1)2

d

)
(4.2)

=

∞∑
k=−∞

(−1)k+1(2k + 1)q
(6k+1)2

d

=
1

3

∞∑
k=−∞

(−1)k+1(6k + 3)q
(6k+1)2

d

=
ψ(qd)

3
+

2

3

∞∑
k=−∞

(−1)k+1q
(6k+1)2

d

=
1

3
ψ(qd)− 2

3
η(q24

d ) ,

where we have used the identity that

η(q) = q
1

24

∞∑
k=−∞

(−1)kq
3k2−k

2 .
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Written in terms of the parameter q, this is

(4.3)
1

3
ψ(q)− 2

3
η(q) .

The coefficient of xz in wy (or that of xy in wz) is

∞∑
k=1

(−1)k+1
(

2kq
(6k+1)2

d − 2kq
(6k−1)2

d

)
(4.4)

=

∞∑
k=−∞

(−1)k+1(2k) · q(6k+1)2

d

=
1

3

∞∑
k=−∞

(−1)k+1(6k + 1)q
(6k+1)2

d − 1

3

∞∑
k=−∞

(−1)k+1q
(6k+1)2

d

=
1

3
ψ(qd) +

1

3
η(q24

d ).

Written in terms of the parameter q, this is

(4.5)
1

3
ψ(q) +

1

3
η(q) .

All mentioned earlier in Section 3, both φ, ψ are modular forms with respect
to Γ(3), hence all the coefficients studied here are modular forms, and they
have the explicit expressions as stated in the theorem. �

Remark 4.2. It is easy to check that xwx + ywy + zwz = W by straight-
forward calculation.

4.2. (2, 4, 4) case

Theorem 4.3. The matrix factorization mirror to the Seidel Lagrangian of
P1

2,4,4 is M = (∧∗C3, δ) where

δ = (xX + yY + zZ) ∧ ·+ wxιX + wyιY + wzιZ ,

and wx, wy, wz are the following polynomials whose coefficients are modular
forms (up to a multiple by a power of q):
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wx = q
3

16x− q
1

32 yz,

wy =

(
1

8
q−

1

8 · C2
2 (q)

)
y3 +

(
q−

1

8

8

(
1−A2

2(q)
))

yz2,

wz =

(
1

8
q−

1

8 · C2
2 (q)

)
z3 +

(
q−

1

8

8

(
1−A2

2(q)
))

y2z.

Proof. It is a direct computation as in [15, Section 7.7] that the mirror matrix
factorization is (M, δ) defined above, where

wx = q6
dx− qdyz ,

wy =

∑
0≤r

(2r + 1)q
16(2r+1)2−4
d +

∑
0≤r<s

(2r + 2s+ 2)q
16(2r+1)(2s+1)−4
d

 y3

+

 ∑
r≥1,s≥1

(
− (2r + 2s− 1)q

16(2r−1)2s−4
d + 2rq64rs−4

d

) yz2 ,

wz =

∑
0≤r

(2r + 1)q
16(2r+1)2−4
d +

∑
0≤r<s

(2r + 2s+ 2)q
16(2r+1)(2s+1)−4
d

 z3

+

 ∑
r≥1,s≥1

(
− (2r + 2s− 1)q

16(2r−1)2s−4
d + 2sq64rs−4

d

) y2z .

The coefficient of y3 in wy (or that of z3 in wz) is nothing but dy studied in
Section 3, while the coefficient of yz2 in wy (or that of y2z in wz) is dyz/2.
They have been shown to be modular forms with respect to Γ(4) in the
previous section. �

4.3. (2, 3, 6) case

Similarly, we can directly compute the matrix factorization mirror to the
Seidel Lagrangian of P1

2,3,6. The result is (M = ∧∗C3, δ), where

δ = (xX + yY + zZ) ∧ ·+ wxιX + wyιY + wzιZ ,



i
i

“4-JZhou” — 2015/6/10 — 23:40 — page 373 — #29 i
i

i
i

i
i

Modularity of open Gromov-Witten potentials 373

and wx, wy, wz are defined by

wx = q6
dx− qdyz,

wy = cy(qd)y2 + yz2
∑
a,b≥0

(
(−1)b(2a+ 4b+ 5)q

48A(a+b,a,0,0)−4
d

+ (2b+ 2)q
48A(a+b,a,b,0)−4
d

)
+ z4

∑
a,b≥0,n≥a+b

(−1)n−a−b(2n− 2a+ 2)q
48A(n,a,b,0)−17
d ,

wz = cz(qd)z5 + y2z
∑
a,b≥0

(
(−1)b(2a+ 2b+ 3)q

48A(a+b,a,0,0)−4
d

+ (2a+ 2)q
48A(a+b,a,b,0)−4
d

)
+ yz3

∑
a,b≥0,n≥a+b

(−1)n−a−b(4n− 2b+ 5)q
48A(n,a,b,0)−17
d ,

and A(n, a, b, c), cy and cz are given in (3.30), (3.31) and (3.34) respectively.

The sum of coefficients for the yz2, y2z terms of (M, δ) gives the one for
y2z2 in W , similarly for z4, yz3 terms. Recall that

q48
d = q , A(n, a, b, c) =

(
n+ 2

2

)
−
(
a+ 1

2

)
−
(
b+ 1

2

)
−
(
c+ 1

2

)
.

By pulling out q−4
d for the first parts in the yz2, y2z terms, we get

∑
a,b≥0

(−1)b(4b+ 2a+ 5)q
1

2
(b+1))b+1+2a+1) ,(4.6)

∑
a,b≥0

(−1)b(2b+ 2a+ 3)q
1

2
(b+1)(b+1+2a+1) .(4.7)

The following quantity is easily computed:

(4.8)
∑
a,b≥0

(−1)b(2a+ 1)q
1

2
(b+1)(b+1+2a+1) =

1

24
(1− E2(q)) .
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More precisely, we have

∑
a,b≥0

(−1)b(2a+ 1)q
1

2
(b+1)(b+1+2a+1)

=
∑

k≥1, l≥k,
l=k+odd

(−1)k−1(l − k)q
1

2
kl =

∑
k≥1, l≥k,
l=k+odd

((−1)kk + (−1)ll)q
1

2
kl

=
∑
k,l≥1,

l=k+odd

(−1)kkq
1

2
kl =

∑
k, l≥1,
k=odd,
l=even

(−1)kkq
1

2
kl +

∑
k, l≥1,
k=even,
l=odd

(−1)kkq
1

2
kl

=−
∑
k, l≥1,
k=odd,
l=even

kq
1

2
kl +

∑
k, l≥1,
k=even,
l=odd

kq
1

2
kl .

Then the statement follows from the summations we computed in Section 3.2.
Comparing (4.6), (4.7) with (4.8), we can see what is left is to calculate

∑
a,b≥0

(−1)b(b+ 1)q
1

2
(b+1)(b+1+2a+1) .

This can be simplified further as follows (changing the variable b+ 1 to k)

(4.9)
∑

k≥1,a≥0

(−1)k−1kq
1

2
k(k+2a+1) =

∑
k≥1

(−1)k−1k
q

1

2
(k2+k)

1− qk
.

It is related to the derivative of the Appell function of level one. The other
terms involving 2b+ 2, 2a+ 2 in the yz2, y2z terms can be calculated due to
symmetry and the result for W , both are equal to q−

1

12 (1− E2(q))/12. For
the coefficient of z4 in wy and that of yz3 in wz, we need to compute (by
pulling out q−17

d , using q48
d = q and defining k = n− a− b)

∑
k,a,b≥0

(−1)k(2k + 2b+ 2)q1+a+b+ab+ 3k

2
+ak+bk+ k2

2 ,

∑
k,a,b≥0

(−1)k(4k + 4a+ 2b+ 5)q1+a+b+ab+ 3k

2
+ak+bk+ k2

2 .
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Taking the difference of the above two formulas, and simplifying a little
further, we are left with∑

k,a,b≥0

(−1)k(2a+ 1)q1+a+b+ab+ 3k

2
+ak+bk+ k2

2 ,(4.10)

∑
k,a,b≥0

(−1)k(2k + 1)q1+a+b+ab+ 3k

2
+ak+bk+ k2

2 .(4.11)

We expect that all the quantities in (4.9), (4.10), (4.11) are quasi-modular
forms (up to a multiple of a power of q) for Γ(6) with possibly non-trivial
multiplier systems. This would then imply that the coefficients in the matrix
factorization (M, δ) for the (2, 3, 6) case are modular. However, we are not
able to prove this at this moment.7

5. Mirror symmetry over global moduli

In Section 3 and Section 4 we proved that the potential W and the matrix
factorizationM are modular for some modular group Γ which depends on the
geometry, hence they extend automatically to be sections of holomorphic line
bundles on the modular curves Γ\H∗. The proof is based on straightforward
calculations. In this section we explain why modularity is expected from the
point of view of global mirror symmetry.

5.1. LG/CY correspondence

It is well-known that the elliptic curve is self-mirror. This simple impor-
tant fact can be obtained using group action and LG/CY correspondence as
follows.

Given a symplectic torus E, we equip it with the complex structure
with an automorphism group G, where G = Z3,Z4 or Z6. Then E/G =
P1

3,3,3,P1
2,4,4 or P1

2,3,6 respectively. By the mirror construction [16] which is
briefly explained in the beginning of Section 3, the Landau-Ginzburg mirror
is the open Gromov-Witten potential W defined on C3 whose explicit ex-
pressions are given in Theorems 3.2, 3.5 or 3.8 respectively. The potentialW
is invariant under the action of the dual group Ǧ ∼= G, and the mirror of E
is given by (C3/Ǧ,W ) [16, 55]. By LG/CY correspondence [47], the complex

7We are kindly informed by Kathrin Bringmann and Larry Rolen in a private
communication that these summations are nice objects which are related to mock
modular forms.
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geometry (so-called the B-model) of (C3/Ǧ,W ) is equivalent to that of the
elliptic curve Ě = {W = 0} ⊂WP2, where WP2 is the weighted projective
space (C3 − {0})/C× and the C× action has weights (1, 1, 1), (1, 2, 2) and
(2, 3, 6) respectively. This gives an explanation, which is different from the
usual SYZ approach, of why the elliptic curve is self-mirror.

A-model mirror symmetryoo // B-model

E/G

Open Gromov-Witten potential

,,

mirroroo // Ě = {W = 0} ⊂WP2

(C3/Ǧ,W )

LG/CY correspondence

OO

Figure 2: Chain of dualities

The moduli space of complex structures on Ě is the (compactified) up-
per half plane quotient by SL(2,Z). By global mirror symmetry, the Kähler
moduli of E is also the upper half plane quotient by SL(2,Z) (this can also
be seen from considering the moduli space of Bridgeland stability conditions
[12]). The global mirror map in this case is simply given by the identity map.

On the other hand, the mirror elliptic curve family under consideration is
given by the equationW = 0, which is not the universal family over the mod-
uli stack SL(2,Z)\H∗ of complex structures of the mirror elliptic curve. This
elliptic curve family is essentially (up to reparametrization and base change,
as shown in Section 3) the elliptic curve families of type En reviewed in
Section 2. Note that the base change would also alter the modular group
for which the parameter σ in the elliptic curve family in (1.1) is a Haupt-
modul. Since the parameter for the base of the family W = 0 is a modular
function for certain modular group, one would expect that the coefficients
in the equation W = 0, as functions on the modular curve, are related to
modular forms. For example, in the P1

3,3,3 case, the equation W = 0 defines
the universal family of elliptic curves over the modular curve Γ(3)\H∗, and
the parameters φ, ψ are modular forms for Γ(3). The big picture is illustrated
in Figure 2.

Now in order to see more clearly why it is the modular subgroup Γ
instead of the full modular group SL(2,Z) that enters the picture, the main
point is as follows. We have fixed the Seidel Lagrangian L ⊂ E/G to define
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the open Gromov-Witten potential. The Lagrangian L lifts to r copies of
Lagrangians L1, . . . , Lr in E, where r = 3, 4, 6 respectively. Thus the A-side
moduli under consideration is the Kähler structure together with the markings
by these r Lagrangians. By homological mirror symmetry, the corresponding
B-side moduli for the mirror is the complex structure on Ě together with
the coherent sheaves mirror to L1, . . . , Lr. In the next subsection, we show
that these sheaves give rise to a cyclic subgroup of order r of the group of
r-torsion points on Ě. Thus the moduli space is given by the modular curve
XΓ = Γ\H∗ instead of SL(2,Z)\H∗.

5.2. T-duality

It is a standard fact that the modular curve Γ0(r)\H∗ is the (coarse) moduli
space of pairs (E,H), where E is an elliptic curve and H < Er is a cyclic
subgroup of order r of the group of r-torsion points on E.

For simplicity, we focus on P1
3,3,3, and the other two cases are similar.

The Seidel Lagrangian in P1
3,3,3 lifts to three Lagrangian cycles in the elliptic

curve Eρ with its automorphism group generated by the cube root of unity
ρ = exp(2πi/3). They are denoted as {L, ρL, ρ2L}, with

(5.1) [L] = A+ 2B , [ρL] = −2A−B , [ρ2L] = A−B ,

whereA,B ∈ H1(Eρ,Z) are the generators corresponding to the lattice points
1 and ρ which give rise to the elliptic curve Eρ, respectively.

We will use T-duality to transform {L, ρL, ρ2L} to coherent sheaves on
the mirror elliptic curve Ěρ. T-duality and homological mirror symmetry for
elliptic curves was well-studied, see for instance [49], and we include it here
for completeness of the paper.

To avoid dealing with multi-sections, we consider the double cover Ẽρ
of the elliptic curve Eρ with its corresponding lattice generated by 2, ρ. The
Lagrangians L1 = L,L2 = ρL,L3 = ρ2L lifts to Lagrangians L̃1, L̃2, L̃3 in the
double cover. Take the generators of H1(Ẽρ) to be Ã, B corresponding to the
lattice points 2, ρ. Then we have

(5.2) [L̃1] = Ã+ 4B, [L̃2] = Ã+B, [L̃3] = Ã− 2B .

The intersections are

(5.3) L̃1 ∩ L̃2 = −3, L̃2 ∩ L̃3 = −3, L̃3 ∩ L̃1 = 6 .
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Let s = L̃1 and f = B̃ = −3B. We then have

(5.4) L̃1 = s, L̃2 = s+ f, L̃3 = s+ 2f .

Consider the elliptic curve C whose lattice is generated by 2 + 4ρ,−3ρ.
Now s and f can be regarded as a section and a fiber of a Lagrangian fibration
on this elliptic curve. By T-duality, they are mirror to the following sheaves
on the mirror curve Č: O1 = O,O2 = O(D),O3 = O(2D) where D is the
divisor of degree 1 corresponding to the fiber class f (equipped with trivial
flat connection).

The action which takes a Lagrangian section s to s+ f corresponds to
tensoring O(D) in the mirror curve Č. The relation ρ3 = 1 says the mirror
Z3 action permutes O,O(D),O(2D) cyclically. It follows that the sheaves
give rise to a cyclic subgroup of order 3 of the group of 3-torsion points on
the variety Pic0(Č), which is isomorphic to the mirror elliptic curve Č itself.

To conclude, for the mirror side, we should consider the moduli space of
complex structures of an elliptic curve decorated with a cyclic subgroup of
order three of the group of 3-torsion points on the elliptic curve. Thus the
global moduli is given by Γ0(3)\H∗, and the open Gromov-Witten potential
should be globally defined over Γ0(3)\H∗. From previous sections we see that
it is actually a global object over Γ(3)\H∗.

5.3. One more example

We now give one more example for which the global moduli space of Käh-
ler structures can be identified with a modular curve and the generating
functions of Gromov-Witten invariants are modular forms.

The mirror manifold of KP2 is a non-compact Calabi-Yau 3-fold X given
by [25]

(5.5) {uv = 1 + z + w + α/zw} ⊆ C2
u,v × (C×)2

z,w ,

and is a conic fibration over the base (C×)2
z,w. The flat coordinate, denoted

by t(α), for the threefold X can be expressed in terms of the flat coordinate
τ(α) for the corresponding elliptic curve {1 + z + w + α/zw = 0} ⊂ (C×)2

z,w

which is the discriminant locus of the conic fibration.
The idea is the following. On one hand, α(τ) is automatically a mod-

ular form as it is the Hauptmodul for the modular curve Γ0(3)\H∗ which
parametrizes the elliptic curve family above, see [4]. Thus it is a tautology
that α(t(τ)) is a modular form. On the other hand, in the A-model on KP2 ,
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we know that α(t) is a generating function of open Gromov-Witten invari-
ants [13]. Therefore, we know that the generating function of open Gromov-
Witten invariants of KP2 is a modular form defined over the complexified
Kähler moduli space, which under mirror symmetry is identified with the
modular curve Γ0(3)\H∗ parametrizing the mirror manifolds of KP2 .

The details are given as follows. The SYZ mirror Calabi-Yau 3-fold X
for KP2 is given by [13]

(5.6) w1w2 = 1 + δ(q) + z1 + z2 +
q

z1z2
,

with

(5.7) 1 + δ(q) =

∞∑
k=0

nkq
k ,

where q = qt := exp 2πit, t is the flat coordinate on the complexified Kähler
moduli space of KP2 . Then the mirror curve is given by 1 + δ(q) + z1 + z2 +
q

z1z2
= 0. A scaling on the coordinates shows that this curve is equivalent to

(5.8) 1 + z1 + z2 +
z

z1z2
= 0 , z =

qt
(1 + δ(qt))3

.

Now consider z as the complex structure modulus for the mirror curve. It
is a standard fact that this elliptic curve family is 3-isogenous to the Ẽ6

curve family in Section 2.3 and thus is parametrized by the modular curve
Γ0(3)\H∗. Furthermore, one has

(5.9) z(τ) = −α(τ)

27
= − 1

27

(3η(3τ)3

η(τ) )3

(3η(3τ)3

η(τ) )3 + ( η(τ)3

η(3τ))3
.

The relation between the modular variable qτ := exp 2πiτ and the flat coor-
dinate t is given by [45, 57, 59],

(5.10) qτ = (−qt)
∏
d≥1

(1− qdt )3d2nGV
0,d , qt = (−qτ )

∏
n≥1

(1− qnτ )9nχ−3(n) .

where nGV
0,d = 3,−6, 27,−192, 1695, . . . are the genus 0 degree d Gopakumar-

Vafa invariants [23, 24, 28], and χ−3(n) is the non-trivial Dirichlet character
mod 3 (it takes the value 0, 1,−1 on an integer 3k, 3k + 1, 3k + 2, respec-
tively). From the above formulas in (5.8), (5.9) for the same quantity z, one
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then has

(5.11) 1 + δ(qt) = (−27)
1

3 q
1

3

t α(qτ )−
1

3 = (−27)
1

3 q
1

3

t α(qτ (qt))
− 1

3 .

The first few constants {nk}k≥0 = {1,−2, 5,−32, 286,−3038, 35870, . . .} pre-
dicted by using this formula and (5.7) give exactly the open Gromov-Witten
invariants computed by a direct counting as done in [13]. That is, the gener-
ating function 1 + δ(qt), up to multiplication by the factor q1/3

t , is a modular
form in qτ .
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