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SL(2,7Z)-invariance and D-instanton
contributions to the D°R* interaction

MiCHAEL B. GREEN, STEPHEN D. MILLER AND PIERRE VANHOVE

The modular invariant coefficient of the DSR?* interaction in the
low energy expansion of type IIB string theory has been conjec-
tured to be a solution of an inhomogeneous Laplace eigenvalue
equation, obtained by considering the toroidal compactification
of two-loop Feynman diagrams of eleven-dimensional supergrav-
ity. In this paper we determine the exact SL(2,Z)-invariant solu-
tion f(x +iy) to this differential equation satisfying an appro-
priate moderate growth condition as y — oo (the weak coupling
limit). The solution is presented as a Fourier series with modes
fn(y)e?™® where the mode coefficients, f,,(y) are bilinear in K-
Bessel functions. Invariance under SL(2, Z) requires these modes to
satisfy the nontrivial boundary condition f,,(y) = O(y~2) for small
y, which uniquely determines the solution. The large-y expansion of
f(x + iy) contains the known perturbative (power-behaved) terms,
together with precisely-determined exponentially decreasing con-
tributions that have the form expected of D-instantons, anti-D-
instantons and D-instanton/anti-D-instanton pairs.

1. Introduction

The low energy expansion of string theory has a rich dependence on the mod-
uli, or scalar fields, that parameterize the coset space G(R)/K(R), where G
is the duality group and K its maximal compact subgroup. In this paper
we will be concerned with the simplest nontrivial example, type IIB super-
string theory in D = 10 space-time dimensions, in which G = SL(2) and
K = SO(2). Duality invariance of the theory implies that the IIB scatter-
ing amplitudes should transform covariantly under the discrete arithmetic
subgroup, G(Z) = SL(2,Z). This implies that the coefficients of the terms
at any order in the low energy expansion of the amplitude are modular
functions, which restricts their dependence on the moduli.
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Terms of sufficiently low dimension in the effective action preserve a frac-
tion of the 32 supercharges, i.e., they are BPS interactions. Such interactions
have particularly simple moduli-dependent coefficients. The lowest-order
terms that contribute to the four-particle amplitude, beyond the Einstein—
Hilbert action, are the i-BPS and :-BPS interactions of order R* and
D*R*, where R* denotes four powers of the Riemann curvature tensor
with the sixteen indices contracted by a standard sixteen-index tensor [20,
Appendix 9.A] that will not concern us here. These interactions have coeffi-
cients given by non-holomorphic Eisenstein series, 'z (2) and E (), respec-
tively (we refer to for a definition of these series). Here Q = = + iy is
the complex modulus and y~! = gp is the type IIB string coupling.

It is the coefficient of the next term, the 1-BPS interaction DSR*, that
is the subject of this paper. This interaction enters into the type IIB string
frame low energy effective action in the form

(1.1) o / d0z\/ — det G0y~ £(Q) DS RY,

where G119 is the ten-dimensional string frame metric, £, is the string length
scale and we have suppressed an overall numerical coefficient. The factor of
y~1 cancels when G119 is rescaled in a manner that converts the expression
to the Einstein frame, in which SL(2,Z) duality should be manifest. The
coefficient f(2) is a modular function that was conjectured in [2I] to be the

solution of an inhomogeneous Laplace eigenvalue equatio
2
(1.2) (Aq —12)f(Q) = — (2€(3)E2(2))",

where Aq = 12 (8% + 85) The basis of this conjecture was an implementa-
tion of the duality that relates M-theory compactified on a torus to type IIB
string theory compactified on a circle [Il, 29, B1]. More precisely, the pro-
cedure used in [21] was to evaluate the terms of order DSR?* in two-loop
four-graviton supergravity amplitude compactified on a two-torus to nine
dimensions. The complex structure of the torus, €2, translates into the com-
plex coupling constant of the type IIB string theory while the torus volume,
V, is proportional to an inverse power of the radius of the string theory
circle, rp.

However, the analysis of in [21] was incomplete in several respects.
Although the power-behaved terms in the large-y expansion of f(2) were

n reference [21], f(2) was denoted by &(2,2y; it has also been denoted by &1)
in earlier papers on this subject, such as [I5] and [I6].
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determined in [21], a general analysis of the solution including the non power-
behaved parts of the solution was missing. The objective of this paper is to
develop such an analysis. Furthermore, since is the simplest of the more
general inhomogeneous eigenvalue equations that arise at higher orders in
the low energy expansion [I7], such an analysis should be of more general
significance.

The layout of this paper is as follows. The detailed solution of is
given in Section 2l Our procedure is to consider the inhomogeneous second
order differential equations satisfied by the mode coefficients of the Fourier
series

(1.3) 1) =3 Fuly)ermine,

This requires the imposition of appropriate boundary conditions on J?n(y)
at y — oo and y — 0. The y — oo condition (the weak coupling limit) is
determined by the moderate growth conditionﬂ requiring that

(1.4) F(Q) =0y,

which corresponds to tree-level behaviour of the D®R* interaction in string
perturbation theory. The y — 0 condition (the strong coupling limit), which
is much less obvious, requires

(1.5) Faly) = O(y~2).

We will see that this condition follows from a subtle relation between the
weak coupling limit condition and SL(2,Z) invariance. These boundary con-
ditions pin down the solution completely (with no arbitrary undetermined
coefficients) and we are able to determine the exact solution for f,(y) for
all n:

Theorem 1.6. The unique solution satisfying s given in terms
of (T3 by
(1.7) Jaly) = n0f(y) + anVyK: (27|nly)

+ YD MY (rinly) Ki (27 |na |y) K (27 |ngy),

ni+ne.=n 1¢,57=0,1

(n17n2)7é(070)

2In the present context, this condition means that for any yo > 0 there exists
some constant C' > 0 such that |f(z + iy)| < Cy? for all y > yo.
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where oy, are constants, and f and M7 ., (z) are polynomials in z and 1/z.
The K -Bessel functions must be replaced by an appropriate limit when either
n, ny, or ny vanishes; see Section[2.3 for complete details.

As we shall now explain, each of the coefficients in the solution has
an interpretation in terms of quantities arising in string theory in the limit
1y — o0o. The parameter y is the inverse string coupling constant and so this
limit is the weak coupling limit, in which the dominant terms in the solution
are power behaved in y~! and correspond to contributions in string pertur-
bation theory. Such terms arise in the f (y) part of the n = 0 mode, which has
the form f(y) = agy® + a1y + azy . The values of the coefficients ag, a; and
as are rational numbers multiplied by products of zeta values. These coeffi-
cients are expected to correspond to the values obtained from an analysis of
the low energy expansion of superstring perturbation theory. In that context
the coefficient, ay,, of y3~2" arises as a term in the low energy expansion of
the contribution of a genus-h Riemann surface to superstring perturbation
theory (see the review article by D’Hoker and Phong [§], and references
therein, for a comprehensive description of string perturbation theory, and
[4, 9] for details of the expression for the genus-two four-graviton ampli-
tude). One additional power-behaved term arises in from the n =0
contribution limy, o on/yK 1 (27|nly) = a3y—3, which should correspond to
a genus-three contribution in string perturbation theory. The coefficients ay,
ay, az, and ag were extracted from the constant term of f(€2) by somewhat
different means in [21]. The present status of the comparison of these values
with those obtained from superstring perturbation theory will be given in
Section [3]

The large-y behaviour of the K-Bessel functions in (1.7]) gives a rich
spectrum of exponentially decreasing terms that may be interpreted as D-
instanton effects in string theoryﬂ It is particularly notable that there are
instanton/ anti-instanton terms in the large-y expansion. For example, the
zero mode, fy, contains a sum of an infinite series of exponentially suppressed
terms of the form ) >, cn ey where the coefficients ¢, are easily
deduced from the large-y limit of as we will also describe in Section

In Section [3| we will discuss how the information in the solution of
makes contact with string theory. In particular, the small coupling (equiva-
lently, large-y) expansion of the solution obtained in Section contains a rich

3The terminology is motivated by the fact that large-y behaviour proportional
to e2mi(mtn2)zo=2n(jnml+n21)y i characteristic of contributions of D-instantons and
anti-D-instantons, although the precise form of such contributions has not been
obtained by explicit D-instanton calculations.
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array of instanton and anti-instanton contributions. One of the main new
observations in this paper is that these conspire to ensure that the strong
coupling (y — 0) limits of the Fourier modes satisfy the appropriate small-y
boundary condition. This appears somewhat analogous to the manner in
which instanton effects conspire to ensure the absence of a singularity in
three-dimensional A/ = 4 supersymmetric Yang—Mills theory in the work of
Seiberg—Witten [30].

For completeness, we will present several alternative procedures for deter-
mining the solution to in three appendices. In Appendix we will
make the SL(2,7) properties of explicit by expressing the solution as
a series of the form

2(3)*
3

(1.8) f(Q) = E3(Q) + Y (det) *F(79),

YES

with S={+1}\{(: nl) e M2(Z) N GL*(2,R) | ged(my,ny)= ged(ma,ng) =
1} (which is the set of 2 x 2 matrices with integer entries and co-prime rows
modulo an overall sign). The function F(2) depends only on the ratio of
the real and imaginary parts of 2, and satisfies a second order inhomoge-
neous ordinary differential equation given in . The convergence of the
sum over the images of F() under SL(2,Z) transformations is obtained
only if one imposes suitable boundary conditions in the limits x/y — 0 and
x/y — ooE| The Fourier modes of the SL(2,Z)-invariant expression are
considered in Appendix where we give an alternative expression of the
Fourier modes f,,(y) of f(€2) in terms of integrals. We have not succeeded
in directly computing those integrals, but their values are of course deter-
mined by the analysis of Section [2l Furthermore, the convergence properties
of these integrals again leads to the y — 0 boundary condition that was
deduced by general arguments in Section

In Appendix [B] we will describe how the solution may be obtained in a
manner suggested by Schmid’s work on automorphic distributions of Eisen-
stein series [26], 28]. This gives yet another formula for f,(y) in Lemma
In Appendix [C] we will comment on the solution using the Rolcke-Selberg
spectral expansion. This leads to a complete solution of , but one which
seems to be very difficult to use in practice (at least for the nonzero Fourier
modes) since it involves properties of unknown cusp forms.

4We are grateful to Don Zagier for describing the solution satisfying the appro-
priate boundary conditions, as well as for discussions concerning the relevance of
this solution.
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2. Fourier modes of the inhomogeneous Laplace equation
2.1. Fourier modes and boundary conditions

We will now consider (1.2]) in terms of the Fourier modes of both sides. We
write the Fourier expansion of the solution as

(2.1) x + zy an 2m'nx

nez

and the Fourier expansion of the source term as

(22)  S(z+iy) = —4((3)*Es(z +iy)* = D Su(y)e’ ™.
nez

The latter are determined by the standard Fourier expansion of the non-
holomorphic Eisenstein series,

1 A
(23) E; (fL’ + Zy) = E 52 E‘Fn s 27rznx,
2¢(2s) e lc(x —l— iy) + d =

where the zero mode consists of two power behaved terms,

VAL = s 1) 1
[(s)C(29) |

and the non-zero modes are proportional to K-Bessel functions,

(2.4) Fos(y) =y +

27

(2.5)  Fusly) = T(s)C(25)

[n[*"201-0s(Inl) vy K1 (2m|nly), n#0

(see [5 §1.6]).

Since the Laplace operator A commutes with all group translations,
the differential equation can be equivalently stated as the simultaneous
differential equations

(2.6) (05 — 12 =470’y fuly) = Suly), n €,

for each Fourier mode of (2.1)). We will determine the solution for each value
of n in the form

(2.7) Faly) = fF(y) + FH (),
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where [P (y) is a particular solution to the equation and f¥(y) is a solution
of the homogenous equation which is chosen in order that the solution f,(y)
satisfies appropriate boundary conditions.

We now need to consider these boundary conditions. The large y (mean-
ing weak string coupling) growth condition on f(x + iy) carries over
to each fourier coefficient f,(y), thus

(2.8) ]/”;L(y) = O(y3), for large y.

In fact modes with n # 0 will be shown to decay like a constant times
y° exp(—27|nly) in this limit, with values of e, that will be discussed later.
In addition to this boundary condition on each fn( ) for large y, there is
also a condition for small y which is in fact a consequence of together
with the SL(2,Z)-invariance of f(£2). It is given by the following lemma.

Lemma 2.9. If h(xz + iy) is an SL(2,7Z)-invariant function on the upper
half plane satisfying the large-y growth condztzon h(:z: +iy) = O(y®) for some
s > 1, then each Fourier mode h fo T +iy)e 2" dx of h satisfies
the bound hn( ) = O(y'=*) for small y. In particular, the small-y boundary
condition for any mode number n is

(2.10) Faly) = O(y™2).

Proof. Note the inequality Fg(z +iy) > y® for s > 1, which comes from
dropping all terms with ¢ # 0 in the definition . By assumption, the
large-y bound states that there is a constant C' > 0 such that |h(z + iy)| <
Cy® for any x + iy in F, the standard fundamental domain for SL(2,7Z).
It follows that |h(x +iy)| < CEs(x +dy) in F, and hence, by automor-
phy, everywhere in the upper-half plane. This, together with the fact that
Es(z + iy) > 0, implies

N ! s—1)((2s —
(2.11) hn(y)lso/o Es(a:+iy)dx:c(ys+ff( :)¢(2 1)y13>'

['(s)¢(2s)
Therefore hy, (y) = O(y'~*) as y — 0. In the particular case h = f and s = 3,
the bound ([1.4)) then implies (2.10)). O

The conditions (2.8)) and (2.10)) specify a unique solution to (2.6). To be

explicit, we observe that the solution space of the corresponding homoge-
neous differential equation

(2.12) (y202 — 12 — dxn2?)FH =
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consists of the two-dimensional space

{FH = afh (27|nly) + by/yK: (2n|nfy)la,b € C}, n#0,

(2.13)
or {fo = ay +by_3|a beC}, n =0,

where the modified Bessel functions of the third kind are defined by

(2.14) Ki(y) = /5, PW)e™
1

\2my

with P(y) =1 +3 + 15 + 3 15 The unique expression 1) that 5atlsﬁes the
boundary condltlons 1n the two dimensional solution space to , for n #
0, can be deduced by noting the following asymptotic behav1our of Bessel
functions. In the y — oo limit the relevant functions behave as

e—2minly 1
VYK72(27|nly) = Az (1 +0 <>>

Y

627r|n|y 1

(2.15) and I:(y) = (P(=y)e? + P(y)e™),

(2.16)

so only the K7,y solution satisfies the boundary condition, which means
that a = 0 in (2.13)). The coefficient b of the solution to the inhomogeneous
equation is then determined by noting the y — 0 asymptotics

15 3
2.17 yK7,5(2m|nly) = - — — +O(y
(217)  VEKy(ninl) mwwyg T oW

and imposing the condition ) for small y, which requires the =2 term
in (2.17) to cancel with a snmlar term in the particular solution f;, fr (y). The
situation for n = 0 is of course simpler and again has a = 0, and b determined
by asymptotics at the origin.

In order to analyze the particular solutions of we need first to
discuss the Fourier modes of the source term, which can be conveniently
broken into a sum of products of Fourier modes of the nonholomorphic

FEisenstein series given in and (| .,

(2'18) Sn(y) = Z Sny,ne (y)

ny1,N2 €L
ni+ns=n

The s, n, are naturally divided into the following classes:
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e When ny =ny =0,

(2.19) s00(y) = —(20B)y? +4¢(2)y 7).
e When either n; =0 and ng =n # 0 or ngo =0 and ny = n # 0,

a2(|n))
]

(220)  sn0(y) = son(y) = —87(2¢(3)y* + 4¢(2)) K1(2|nly),

where oa(|n[) = 3y, k2, the sum being over positive divisors.

e When n; # 0 and ng # 0,

(In1)a2(In2l)
[n1ns|

g
(2.21) S (y) = —64m2y =2 K1(27|n1|y) K1 (27|naly).

In parallel with l) it will be useful to express fn(y) as the sum

(2.22) PO = Y fam®),

ni+ns=n

where

(223) (y28§ - 12— 47T2(7’L1 + n2)2y2)ﬁll,n2 (y) = Sny,no (y)

The space of solutions to this equation is again two dimensional and obvi-
ously shares the same homogeneous solutions given in with n =n; +
ng. There is an obvious ambiguity breaking apart into a sum of differen-
tial equations : a homogeneous solution could be simultaneously added
to one fn, n, and subtracted from another f, .., where n + nf = ny + no,
without affecting the overall sum . To avoid this ambiguity, we shall
insist that each f,, ,, satisfies the same growth conditions as f,(y),

]/C;MJLQ (y)
ﬁl,nQ (y)

As before, such solutions are unique and have the form

O(y?), for y large,

(2.24) ;
O(y™°), fory small.

(2.25) Fr 2 () = Far s (U) + Qs VY K7 p2(27 |01+ 12ly),

for any values of n; and ng, where Anplm is a particular solution satisfy-
ing the large-y bound O(y?®) and ay, n, is the coefficient of the homoge-
neous solution, which will be determined by the small-y boundary condition

Frvna(y) = O(y~2).
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We will now determine the explicit solutions for various choices of the
integers (n1,ng). These give rise to the following sectors:

(i) n1 = ng = 0;

(ii) n1 = 0,m2 # 0 or ny # 0,n2 = 0;
(iii) ning > 0;
(iv
(v

The last case is a special case of (iv) but merits separate discussion.

ning < 0;

~— ~— ~— ~—

ni,ne #0 and n =ny +ng = 0.

2.2. Solutions of the equations in distinct sectors of n; and ng

(1) niy :TLQZO

In this case the source term, soo(y), is given by the power behaved terms

in (2.19) and it is easy to see that the solution to (2.23) is

2
MO KD, L00)

(2.26) fooly) =

Furthermore, ago = 0 and ﬁ),o(y) = ﬁfo(y)'

~

The complete zero mode, fo(y) is given by the sum of f070(y) and the
terms of the form f,, _,, (y) that arise in case (v), and will be discussed in
Section

(ii) n1 =0,ma #0orn; #0,n3 =0

It is easy to verify by substitution that (2.23]) with source term ([2.20))
has a particular solution given by

227)  frow) = .

8aa(|n|)
= 9xnp * (qg,o(ﬂ”\y)Ko(?WInly) + qé,o(wlnly)Kl(%yn\y)),

where the coefficients are given by

(2.28) dno(2) =

(2.29) and q}l’o(z) = — (90¢(3) — n?7* + 5422¢(3)) .

(90¢(3) — n®r* +922¢(3))
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Note that the expression (2.27) respects the symmetries

(230) .]/0;7«17712 (y) = f—nh—nz (y> = ﬁlz,nl (y)

Since fzo(y) ~ —402””')%5:4_90«3))7;_3 as y — 0, the coefficient a, o of the

second term in (2.25) must be taken to be

6409 (|n|)(n?m* —90¢(3))
135|n|27

(2.31) n,0 = Qo =

in order that complete solution satisfies the boundary condition (2.24) at
the origin.
Thus the full solution (2.25)) given by

(2.32)  Fao(y) = fou(y)

8oa(|n
- 97i|(7|z|3|) X (qg,g(ﬂ\n|y)Ko(27r|n|y) +‘]fr11,0(77|7”b|y)K1(27r|n|y))
6405 (|n])(n27* — 90¢(3
L Gt 90CE)
135|n|zm 2
behaves as
~ 2 B 47209 (|n|)

(2.33) fno(y) = fon(y) = T2y T O(1)

in the y — 0 limit. In the large-y limit the solution behaves as

(234)  Fuol) = fonly) = 2 x (4oa(mln 23y +0(1))

where the exponential suppression has a form characteristic of a charge-n D-
instanton and the other factors are associated with the instanton measure.
This will be commented upon further in Section [3]

(iii) ning > 0 and (iv) ning < 0 with ny +mng # 0

Let sgn(z) denote the sign function and H(x) = 14-%11(1) denote the
Heavyside function. It is easy to check that an explicit particular solution
to (2.23) with source given by ([2.21]) is given by the bilinear sum in Ky and
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K7 Bessel functions

(2.35)  fF (y):32m2(‘”1\)a2(!n2\)

ni,n2

3‘711712”7”&1 —|—TL2’5

: Z @), (w1 + naly) Ki(2|na |y) K (27 |naly),
i.j=0,1

where the matrix coefficients are given by the expressions
(2.36) qg’lo’m(z) = sgn(ning) < — 4zning (n% +n — 6n1n2)
30
- ?nln2(n1 - n2)2),

(2.37) nns (2) = (H(ning) + H(=ning) sgn(ni) sgn(ni + no))
X < —ny (13n%n2 — 65n1n3 +nf + 19n§’)

30
+ ;nlng(nl — n2)>,

(2.38) 4y (2) = (H(ning) + H(—ninz) sgn(nz) sgn(ni + n2))

X < —ng (13n§n1 — 65n9nt +nj + 19n:15)

30
+ ;nzn%(ng - n1)>,
and
(2.39) q}]’ll,nz(z) = —4zning (n% +n2 — 6n1n2)
_ 14n$ng — 94n3n3 + 1dnind + nj + nj
. .

Imposing the small-y boundary condition on f/‘;hw (y) in (2.25)) requires

128705 (|n1|)oa(|na))

45n3n3|ng + nal?

(2.40) Qny n, = sg0(n1 + ng)

. (n? + ng + 15n‘11n2 + 1571171;l — 80n§’n% — SOn%ng

n
+ 60n%n%(n1 —ng) log <]n;|> ),



SL(2,7Z)-invariance and D-instanton contributions 319

and the resulting y — 0 behaviour of (2.25) is given by

(2.41) Fonals) = S22 o),

In sector (iii), where |nj+na|=|n1|+|n2|, the y — oo behaviour of ([2.25])
has the instantonic form

(242) o (y) = e~ 2rlmtnaly (‘%n

B 647209(In1|)o2(|n2|) n? + n3 — 6ning

3|TZ1NQ‘% (nl —{-712)4

+ O(yl))

In sector (iv), where |n| = |n1 + na2| < |n1| + |n2| a qualitatively new feature
is that there are an infinite number of values of n; and ny having a fixed
value of n = nj + ny. Because of this, the y — oo limit is very different from
the large-y limit for the nine > 0 case in since the particular solu-
tion contains terms that decrease exponentially relative to BPS D-instanton
terms. Explicitly, when niny < 0 the large-y behaviour is given by

Fora (8) = Ony o VT 722|014 o)
_ p=2r(mal+lnaly <U2(!n1|)02(|n2!) N O(y3)>

Inina|sy?

(2.43) _ e&ﬂnﬁmly%(l +0(y™)
2|n1 + n2|2

g2 (|mal+nal)y <U2(!nll)02(ln2!) N O(ys))

n1na| 3y

The second term in either expression can be more exponentially damped
than the first term as ny or ng increases with n = ny + ngy held fixed.

(v) ni,m2 #0 withn =ny +ng =0

This is a special case of (iv) and the particular solution can now be
obtained by carefully considering the limit ng = —nj + € with € — 0 in ([2.35)).
Superficially, the presence of the |n; + n2|~> factor there suggests that this
limit gives a badly divergent result. However, there are massive cancela-
tions caused by properties of the K-Bessel functions and the resulting limit
simplifies to be

-~ 327r02(\n1])2
2.44) fP =0

ni,—n1

S () Ki(2m|ma ) K5 (2 |ma )
iijO’l
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where the coefficient matrix, 7%, has components

r00(z) = 2 (—5122* + 4827 — 15)
(2.45) rO1(z) = r10(z) = — (1282 + 1227 + 15)
rbl(z) = 271 (51225 +162* + 3327 — 15) .

The solution of the homogeneous equation solution can also be obtained by

setting no = —n1 + € in oy, », and considering the limit € — 0, which leads
to

2.46 li K o(2 _ 8oa(|m)®

(246) Mmoo yRrp(2in + naly) = 57 5

In order to verify that the full solution

803(|n1)?

(2.47) Frnem () = FL o () + ;

21nSm2y
satisfies the y = 0 boundary condition, we also note that for small y

8ay(Jm])? | 8oa(|nal)

21nSm2y3 5niy

(2.48) fr ) = +0(1).

Therefore, it follows from (2.47) that at small y the full solution for the
(n1,—n1) mode is

_ 8oa(|na])?

(2.49) P (y) = +0(1),

5|n1|ty

and at large y it is

~ 8oa([n1l)®  _un a2(|m|)? -
2.50 _ - — el (22U 4 O(y=3) ).
( ) fm, ni (y) 2171?7‘(23/3 e |7”L1 |5y2 + (y )

Note that the power behaved term proportional to 1/y® was uncovered by
a different method in [2I] and is interpreted as a genus-three contribution
to the amplitude in string theory perturbation theory. The exponentially
decaying term is characteristic of the contribution of a charge-(ni, —n1) D-
instanton/anti D-instanton pair.
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2.3. The complete expression for each Fourier mode, fn(y)

Having determined the expressions for fn1 n2 (y) we shall now study the n-th
mode fn( ), which we recall was given in as the sum of ]‘A’nhnz (y) over
ny, and ng with ny +ng =n. We first note that by and the explicit
formulas for each f,, n, given in Section the SL(2,Z)-invariant function
f() — @E;},(Q) is O(y) for y large. Applying Lemma we conclude
that its Fourier coefficients J?n( ) — 24(3)2}" 3(y) obey the bound O(y~¢) for
any fixed positive real number £ > 0. Usmg formulas and ., this
gives the asymptotic statement

-~ 20'_ n
(2.51) Faly) = 945{(3;5 5(l D;Q +0(y™°),

again for any fixed € > 0. In the case n = 0, o_5(|n|) should be interpreted
as ((5). The error term can be slightly improved using the Kronecker limit
formula, though this will not be important for our purposes. Note that even
though each term in satisfies the small-y bound O(y~!), their aggre-

gate sum diverges like y~2 in (2.51)).

The constant term: The n = 0 mode is given by

(2.52) Fow) = Foo) + > Frm ()

n17£0

The sum of the second term in (2.47)) over all nonzero integers n; is

16 oa(m)? 16 6)C(4)%2¢(2)  4¢(6
(2.53) s 3 2 e ><€<( 8))4( )_ o)

where we have used the Ramanujan identity

2 o(m O't/ C(r—t)C(r—=t)(r—t—1t
$ ) _ I — ¢ =) —t—¥)

(2.54) = C2r—t—t)

m=1

As a result of this and (2.26]), we can write the complete solution for the
zero mode as

2g(33)2ygur ONOINE(CN 27 S

(255)  foly) = ; "

n#0
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where the expression for f; n, P (y) is given in and is exponentially sup-
pressed as y — oo. The behaviour as y — 0 is more subtle since the sum
in does not commute with the small-y limit, and was given above
in . A finer asymptotic expansion can be obtained using Mellin trans-
form methods.

The non-zero Fourier modes: Modes with n # 0 get contributions from
the sectors labelled (ii), (iii) and (iv), so that,

(2'56> ﬁl(y) :ﬁl,O( +f0n + Z fnl,n n1 )+2 Z ﬁll,n—nl(y)

ni=1 ni>n+1

It is first important to verify that the last sum is convergent. This involves an
estimate of the behaviour of its terms as [n1| — oo, which arises in case (iV)
The K;(2m|ni1|y)K;(2m|n — n1]y) terms in the n; sum (coming from
are exponentially suppressed as |n1| gets large. Furthermore, for fixed n, an
analysis of formula shows that o, n—n, = O(nl_ﬁ) as n; — 0o. Thus
the terms coming from the homogeneous solutions au, n,/yK7 /2(27r\n1 +
naly) also converge because the sum Y, non, is finite.

The leading behaviour in the weak coupling limit ¥y — oo has the form

(257)  Fuly) = e 2 (872("57?«3)&/2 + om) ,

which is dominated by the behaviour of fmo and J?o,n- The behaviour for
small y was given in (2.51]). It is also possible to study these asymptotics
using the explicit formulas for f;,, ,, given in Section or from an analysis

of (A.44]) (which gives an alternative description of the terms in (2.56))). See
also formula (B.13]), which gives yet another formula for f,(y).

3. Discussion and connections with string theory

The motivation for considering the differential equation from [21] was
based on considering the compactification of the two-loop Feynman diagrams
of the four-graviton amplitude of eleven-dimensional supergravity on T2,
in the zero-volume limit, ¥ — 0. The first non-leading term in the low-
energy expansion of this amplitude was argued in [21I] to give the effective
type IIB string theory interaction f(Q)D®R* with f(Q) satisfying . In
this paper we have determined the exact solution for all the Fourier modes

n(y) from .



SL(2,7Z)-invariance and D-instanton contributions 323

The zero mode ﬁ)(y) possesses four terms that are power behaved
in y that were originally discussed in detail in [2I]. The coefficients of these
powers are rational numbers multiplying products of zeta values. The values
of these coefficients should agree with explicit perturbative string theory
calculations up to genus three. The genus zero and genus one string results
were known to agree at the time of publication of [2I]. The genus-two con-
tribution has been related in [6] to the integral of an invariant introduced
in [25] [33], which has also recently been evaluated [7] and agrees with the
genus-two term (the y~! term in ) The genus-three part (the y—3
contribution in (2.55))) agrees precisely with the prediction for that term in
the type ITA theory, that arises from the expansion of the one-loop eleven-
dimensional supergravity amplitude compactified on a circle [14]. Although a
recent genus-three string theory calculation [I3] also apparently reproduces
this value for the coefficient of the y 2 contribution, there are currently some
questions concerning technical details of the calculation.

In solving for the modes f,,(y), it was important to understand the nature
of the boundary conditions at y = co and y = 0. Although the condition at
large y (the weak coupling regime) is simply that no term can be more sin-
gular than 73, which is the power corresponding to tree-level perturbation
theory, the condition at y = 0 is more subtle. We showed in Lemma 2.9 that
the necessary condition is that f,(y) = O(y~2) in the limit y — 0, which fol-
lows as consequence of SL(2,Z) invariance together with the y — oo bound,
fn(y) = O(y?). This is a highly non-trivial condition, in that it implies that
the infinite series of terms that manifests itself as a series of exponentially
decreasing D-instanton and anti D-instanton contributions at large y, simul-
taneously conspires to cancel a singular term in f,,(y) at small y. This bears
some similarity to the behaviour of the metric on the Coulomb branch of
three-dimensional N' = 4 supersymmetric SU(2) Yang-Mills theory with no
flavour fields in Seiberg-Witten theory [30] (see also [10]). In that case,
the expansion of the moduli space metric at large values of the Higgs field
also gets contributions from an infinite series of exponentially suppressed
terms [12], but the solution can be uniquely determined by requiring the
Coulomb branch metric to be non-singular at the origirﬂ

5Tt has been suggested that the series of exponentially suppressed terms might
be interpreted as instanton/anti-instanton contributions [22]. However, the identifi-
cation of the radial coordinate in the Atiyah-Hitchin metric with the corresponding
scalar vacuum expectation value in the explicit semi-classical solution is ambiguous.
Owing to the high degree of supersymmetry in our case, it is not possible to redefine
the modular parameter 2 without losing SL(2,Z) invariance, so this ambiguity is
not present.
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The expressions for the Fourier modes contain detailed information con-
cerning the instanton-like contributions that decrease exponentially at large
y. Such terms that have the form expected of contributions arising from D-
instantons, anti D-instantons and D-instanton/anti D-instanton pairs. This
is explicit in the large-y limits given in for the terms contributing to
fo(y) and in (2:34)), and for the terms contributing to f,(y).
In particular, shows that the constant term, fy(y), has an infinite
series of exponentially decreasing terms in the large-y limit, which have
exponential factors e~47"¥ that have the form which would arise from a D-
instanton/anti D-instanton pair with charges n and —n. Furthermore, the
measure contains the square of the divisor sum o3(|n|),

o) 2 1
> y?
Since the measure for a single charge-n D-instanton contains a single power
oAf a divisor sum, this is another indication that terms of this form in
fo(y) might be identified with D-instanton/anti D-instanton pairs. Such
instanton/anti-instanton terms should break all supersymmetries, giving rise
to extra fermionic zero modes. Soaking these up should ought to account
for the fact that they are suppressed by the factor of 1/y? in , although
we have not determined such factors in the measure from an explicit D-
instanton calculation. R R
The exponentially suppressed terms that contribute to f,o and fop,
with n # 0 might be interpreted as contributions of single charge-n D-
instantons or charge-n anti D-instantons with a measure that can be read

off from ,
(3.2) ¢ 2rlnly (4“2(’”’)<<3>y1/2 + 0<1>) ,

In|5/2
which has a factor of y®/2 relative to (3.1). Likewise, the large-y contribution
to fn(y) with n =nj + ng and sign(n;) = sign(ngz), obtained in (2.42)) has
the form

(3.3) e~ 2mImF2l gy (10 ) oo (ng|) % (function of ny,ng),

which has a power of y°.

It would be desirable to understand the particular powers of y in the
prefactors of , and in terms of the zero modes associated with
supersymmetry breaking, but we have not understood this in a systematic
manner.



SL(2,7Z)-invariance and D-instanton contributions 325

In any case, given the non-standard application of M-theory /string the-
ory duality that motivated , we would like to determine whether this
equation accurately describes the coefficient of the D® R* interaction beyond
the checks outlined above. Further motivation for this equation and its gen-
eralisation to higher-rank duality groups was obtained in [2, [I8], [19] in con-
sidering properties of the low energy effective action of type II string theory
in lower dimensions obtained by toroidal compactification to dimension D.
In these cases the coefficient of the D-dimensional D6R* interaction, f(P),
is a function of the moduli associated with the Ej;_p(Z) duality groupﬁ
Equation then generalises to an inhomogeneous Laplace eigenvalue
equation [15]

ay (a0 - SEEDAEZON 00 - (69)" 4 1206031000
where AP)is the laplacian on the homogeneous space and ES(D) is the max-
imal parabolic Langlands Eisenstein series attached to the parabolic associ-
ated with the first node of the Dynkin diagram (which is the coefficient of the
R* interaction in D dimensions). The constant terms in various parabolic
subgroups were analysed to a certain extent for the cases with D > 6 in
[18, [19] and for D = 3 in [I5], and agreed with expectations based on per-
turbative string theory calculations. This has also been extended to the cases
of D =1 and 2 in [I1]. The analysis of the non-zero Fourier modes presents
new challenges that extends the considerations of [16], which considered the
maximal parabolic Langlands Eisenstein series that arise as coefficients of
the R* and D*R* interactions. The four dimensional version of ([3.4) has
also received support from consideration of the soft scalar limits of N'= 8
supergravity amplitudes in four dimensions [3] .

Since the natural region of validity of perturbative supergravity is V >
¢3, it is not obvious why the M-theory argument that leads to f(€2) should
be a good approximation to the exact answer. However, in common with
analogous duality arguments for BPS quantities, the fact that the DSR*
interaction is 1-BPS seems to justify what would otherwise be an outra-
geous continuation in V. In considering higher order interactions in the low
energy expansion there is no reason, based on our current understanding, for
expecting such a continuation from large to small V to be valid. Nevertheless,
it might be of interest to analyze the structure of the compactified Feynman

6Recall that the duality groups of rank < 8 are specific real split forms of SL(2,7Z),
SL(3,Z) x SL(2,Z), SL(5,Z), Spin(5,5,Z), E¢(Z), E7(Z), Es(Z).
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diagrams of eleven-dimensional supergravity further, if only to find inspi-
ration for the possible mathematical structure of higher order terms. The
paper [17] contains a detailed discussion of higher order corrections to the
low energy expansion, that arise by expanding the two-loop four-graviton
amplitude of eleven-dimensional supergravity to higher orders beyond the
DOSR* interaction studied in this paper. This does not yield any contribu-
tions that survive the rg — oo limit to D = 10 dimensions, but does give
contributions that may be useful at finite values of rp (i.e., in the D =9
type IIB theory). Even though the analysis in [I7] is not the complete story,
the equations that emer