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Jacobi trace functions in the theory of

vertex operator algebras

Matthew Krauel and Geoffrey Mason

We describe a type of n-point function associated to strongly reg-
ular vertex operator algebras V and their irreducible modules.
Transformation laws with respect to the Jacobi group are devel-
oped for 1-point functions. For certain elements in V , the finite-
dimensional space spanned by the 1-point functions for the irre-
ducible modules is shown to be a vector-valued weak Jacobi form. A
decomposition of 1-point functions for general elements is proved,
and shows that such functions are typically quasi-Jacobi forms.
Zhu-type recursion formulas are provided; they show how an n-
point function can be written as a linear combination of (n− 1)-
point functions with coefficients that are quasi-Jacobi forms.

1. Introduction

Let V = (V, Y,1, ω) be a vertex operator algebra (VOA) of central charge c
with vacuum vector 1 and Virasoro element ω. For a state v ∈ V , the vertex
operator determined by v is generally denoted

Y (v, z) =
∑
n∈Z

v(n)z−n−1,

where v(n) is called the nth mode of v. We also define operators L(n) by

Y (ω, z) =
∑
n∈Z

L(n)z−n−2

for the vertex operator associated to ω. The VOA V carries the conformal
grading into finite-dimensional subspaces V = ⊕n∈ZVn, where Vn = {v ∈ V |
L(0)v = nv}.

In the present paper we deal exclusively with VOAs that are simple
and strongly regular. Strong regularity of V entails that it is rational, C2-
cofinite, CFT-type (i.e., V0 = C1 and V = ⊕n≥0Vn), and also V1 consists of
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primary states (L(1)V1 = 0). These assumptions may be taken as the basic
requirements for an axiomatic approach to rational conformal field theory.
For a review of the theory of such vertex operator algebras, cf. [26]. A simple,
strongly regular VOA satisfies the following additional properties (loc. cit.):

1) V has only a finite number of (inequivalent) irreducible admissible
modules, denoted by M1, . . . ,M s ([4, 31]).

2) V has a nonzero, invariant bilinear form 〈·, ·〉 : V × V → C. It is nonde-
generate, symmetric, and unique when normalized so that 〈1,1〉 = −1
([12, 24]).

3) V1 is a reductive Lie algebra with respect to the bracket [u, v] = u(0)v.
Moreover, each homogeneous space of each irreducible module M r is
a linearly reductive V1-module. (This is proved in [6] for the adjoint
module V . The more general case for M r can be proved similarly.)

4) V has a ‘square-bracket’ grading such that

V =
⊕
n≥0

V[n],

where V[n] = {v ∈ V | L[0]v = nv} and V[0] = C1 ([31]).

From now on, 〈·, ·〉 is the canonical invariant bilinear form normalized
as in 3) above.

Elements h1, . . . , hm ∈ V1 are said to satisfy Condition H if

1) they are linearly independent,

2) h1(0), . . . , hm(0) are semisimple operators on each module M1, . . . ,M s

with rational integer eigenvalues,

3) [hi, hj ] = 0 (1 ≤ i, j ≤ m).

Thanks to the reductivity of V1, any set of elements {hi} satisfying Condi-
tion H is contained in Cartan subalgebra of V1 (ie., a maximal abelian Lie
subalgebra consisting of semisimple elements). Conversely, a Cartan subal-
gebra has a basis of elements that satisfy Condition H ([26]). It is easy to
see that if the elements {hi} satisfy Condition H then

hi(n)hj = δn,1 〈hi, hj〉1 (1 ≤ i, j ≤ m).

Until further notice, fix h1, . . . , hm satisfying Condition H. Introduce
the symmetric matrix G = (〈hi, hj〉) and let G[α] denote αtGα (t denotes
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transpose) for an m-rowed column vector α. For elements v1, . . . , vn ∈ V we
consider n-point functions of the form

Fr(v1, . . . , vn; z1, . . . , zm, τ)(1)

= TrMr Y (q
L(0)
1 v1, q1) · · ·Y (qL(0)

n vn, qn)ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−c/24,

where c is the central charge of V and we always take qk=ewk , ζl=e2πizl , q=
e2πiτ with wk, zl ∈ C (1 ≤ r ≤ s, 1 ≤ k ≤ n, 1 ≤ l ≤ m) and τ ∈ H (the com-
plex upper half-plane). It is convenient to abbreviate tuples such as (h1, . . . ,
hm) by h. Thus the important special case of a 1-point function with homo-
geneous element v ∈ Vk, for example, reduces to

(2) Jr,h(v; τ, z) := TrMr o(v)ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−c/24,

which (formally) can be written

(3) Jr,h(v; τ, z) = qλr−c/24
∑
`≥0

∑
t1,...,tm∈Z

c(`, t1, . . . , tm)ζt11 · · · ζ
tm
m q`,

where λr is the conformal weight of M r. (In case the trace is over a space
W which is not M r, we will denote (2) by JW,h(v; τ, z).)

For example, if v = 1 and h1, . . . , hm is a basis of a Cartan subalgebra H
of V1, then Jr,h(1; τ, z) (the 0-point function) determines the multiplicities
of the H-weights of M r considered as V1-module, and thereby the decom-
position of M r into irreducible V1-modules.

The main purpose of the present paper is to establish transformation
laws for one-point functions with respect to the Jacobi group SL2(Z) n (Z⊕
Z)m. It transpires that this naturally breaks down into two cases, depending
on whether the equality hj(n)v = 0 (1 ≤ j ≤ m,n ≥ 0) holds or not. In the
first case we have the following theorem.

Theorem 1.1. Let V be a simple, strongly regular VOA. For any v ∈ V ,
there are finitely many integers t such that the function Jr,h(v; τ, z) converges
on every closed subset of {(τ, z1, . . . , zm) ∈ H× Cm | zi 6∈ 1

t (Z + Zτ) , 1 ≤
i ≤ m} with Fourier expansion (3). If v ∈ V[k] satisfies hj(n)v = 0 for all 1 ≤
j ≤ m and n ≥ 0, then Jr,h(v; τ, z) satisfies the following functional equa-
tions:



i
i

“2-Krauel” — 2015/6/10 — 23:08 — page 276 — #4 i
i

i
i

i
i

276 M. Krauel and G. Mason

1) For all γ =
(
a b
c d

)
∈ SL2(Z),

Jr,h

(
v;
aτ + b

cτ + d
,

z

cτ + d

)
(4)

= (cτ + d)k exp

(
πi
cG[z]

cτ + d

) s∑
`=1

A`r,γJ`,h(v; τ, z),

with scalars A`r,γ depending only on γ.

2) For all [λ, µ] ∈ Zm × Zm there is a permutation r 7→ r′, r′ ∈ {1, . . . , s},
such that

(5) Jr,h
(
v; τ, z + λτ + µ

)
= exp

(
−πi(G[λ]τ + 2ztGλ)

)
Jr′,h(v; τ, z).

Essentially, this says that the vector of 1-point functions (J1,h, . . . , Js,h)t

is a vector-valued weak Jacobi form of weight k and index G/2. For example,
if V is holomorphic (i.e., it has a unique irreducible module), then JV,h is a
weak Jacobi form of weight k and index G/2 (generally with a character χ
of SL2(Z), which is trivial if 24|c).

The statement of convergence can be refined in a number of cases. In
particular, Heluani and Van Ekeren have recently [15] introduced the idea to
use another set of quasi-Jacobi forms to address this issue in the case of N =
1 SUSY vertex algebras. In this setting, they first prove their trace functions
are conformal blocks, and are then able to utilize this other set of quasi-
Jacobi forms to prove convergence in the m = 1 case on the stronger domain
consisting of closed subsets of {(τ, z) | z 6∈ Z + Zτ}. It appears possible and
of interest to extend these ideas to establish a similar domain of convergence
in the case of general strongly regular VOAs.

When v ∈ V[k] fails to satisfy hj(n)v = 0 for some 1 ≤ j ≤ m or n ≥ 0,
the 1-point functions (2) do not necessarily satisfy (4) and (5). To describe
the transformation laws in this case, let us fix for now a Cartan subalgebra
H ⊆ V1, say of dimension d, together with an orthogonal basis {uj} of H. It
suffices to take v ∈ V[k] in the form

(6) v = u1[−m1,1]`1,1 · · ·u1[−m1,ν1 ]
`1,ν1 · · ·ud[−md,1]`d,1 · · ·ud[−md,νd ]

`d,νdw

for nonnegative integers `x,y,mx,y (1 ≤ x ≤ d, 1 ≤ y ≤ νd), and w in the com-
mutant Ω(0) := CV (MH) of the Heisenberg subVOA MH ⊆ V generated by
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H. There is a decomposition ([6, 8, 26])

M r =

δ⊕
t=1

⊕
β∈Λ

MH(β + γt)⊗ Ωr(γt)(7)

of M r into irreducible MH ⊗ Ω(0)-modules. In particular, each Ωr(γt) is a
certain irreducible Ω(0)-module. Here, Λ ⊆ P ⊆ H where Λ, P are additive
subgroups of H of rank d, Λ is a positive-definite even lattice with respect
to 〈 , 〉, and {γt} are coset representatives of P/Λ. (See [26] and Section 5
below for further details.) We then have the following theorem.

Theorem 1.2. Let V be a simple, strongly regular vertex operator algebra
with orthogonal basis {uj} of H and v ∈ V[k] as in (6). Then

Jr,h(v, τ, z) =
1

η(τ)d

δ∑
t=1

JΩr(γt),h(w; τ, z)
∑
i

f i(τ)Ψt,h(ki, τ, z),

where i = (i1,1, . . . , i1,νd , . . . , id,1, . . . , id,νd)∈Zdνd with 0≤ ix,y≤b`x,yc, f i(τ)
is a quasi-modular form of weight 2

∑
x,y ix,y, ki =

∑
x,y(`x,y − 2ix,y), and

Ψt,h(ki, τ, z) is a linear combinations of functions of the form

(8)
∑

α∈Λ+γt

〈a, α〉ki q〈α,α〉/2ζ〈α,h1〉
1 · · · ζ〈α,hm〉m

for various a ∈ H. (For precise definitions of these functions, see Section 5.)

The functions (8) and their transformation laws with respect to the
Jacobi group are discussed in [21]. In the case 〈a, hj〉 = 0 for all 1 ≤ j ≤ m,
they are Jacobi forms on Γ0(N) of weight f + ki and index G/2, where N
is the level of Λ, Γ0(N) ⊆ SL2(Z) is defined by

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (modN)

}
,

and we suppose the quadratic form has rank 2f . Otherwise, (8) are quasi-
Jacobi forms on Γ0(N) of the same weight and index. In either case,∑

i

f i(τ)Ψt,h(ki, τ, z)

is a quasi-Jacobi form on Γ0(N) of weight f +
∑

j `j and index G/2.
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Theorem 1.2 reduces the computation of Jr,h(v, τ, z) to a similar com-
putation involving only the commutant Ω(0) and its irreducible modules.
It is a standard conjecture that, under the assumption that V is strongly
regular, Ω(0) is also strongly regular. Assuming this to be true (it is known
in many cases), Theorems 1.1 and 1.2 provide explicit transformation laws
for the functions Jr,h(v; τ, z) for any homogeneous v ∈ V .

The literature dealing with (weak) Jacobi forms in the context of affine
algebras and related areas is quite extensive, whereas the theory for general
vertex operator algebras that we develop here has few precedents. In [5]
some of the theory is developed for lattice VOAs, and [16] deals with the
case of highest weight integrable representations for affine Kac-Moody Lie
algebras. Weak Jacobi forms arise as elliptic genera in various contexts, e.g.,
from models of N = 2 super conformal field theories discussed in [17]. In
particular, a generic approach is developed to calculate the relevant trans-
formation properties for N = 2 Neveu-Schwarz models and the elliptic genus
for the N = 2 Landau-Ginzburg models are calculated. Libgober also dis-
cusses elliptic genera in [25], showing in the Calabi Yau case that the elliptic
genus is a weak Jacobi form, while in other cases it lies in the space of quasi-
Jacobi forms.

Weak Jacobi forms and quasi-Jacobi forms also appear, at least implic-
itly, in the study of n-point recursion formulas in [3] and [27]. Gaberdiel
and Keller [13] discuss these functions further in the N = 2 Neveu-Schwarz
model, developing some transformation properties while also establishing
differential operators which arise in superVOAs that preserve the weak
Jacobi form property of the elliptic genus. Recent work of Heluani and Van
Ekeren [15] considers certain supercurves and the vertex (operator) algebras
(NW = 1 SUSY vertex algebras) that produce vector bundles over these
supercurves. In this setting, they show that certain functions analogous to
the ones studied here give rise to superconformal blocks on a moduli space
of elliptic supercurves. Their work establishing convergence of the functions
they consider inspired us to revisit the convergence of the functions that we
deal with here, where a previous draft of this paper contained an incomplete
proof. As Heluani and Van Ekeren explain, their work can be regarded as
an algebro-geometric approach to such problems.

Finally, we note that the special case of the partition function with only
one elliptic variable, i.e., v = 1 and m = 1 in previous notation, appears in
[20]. It is our hope that the results of the present paper may, in particular,
foster closer ties between vertex operator algebras and elliptic genera.

The paper is organized as follows. In Section 2 we discuss the various
kinds of modular-type functions that we need, including (matrix) Jacobi
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and quasi-Jacobi forms, and ‘twisted’ Weierstrass and Eisenstein series. The
latter functions appear as coefficients in the recursion formula, expressing
n-point functions (1) as a sum of (n− 1)-point functions, which is proved in
the short Section 3, following [27]. This result reduces the study of n-point
functions to the case of 1-point functions. Our main results, Theorems 1.1
and 1.2, are proved in Sections 4 and 5 respectively.

2. Automorphic forms

2.1. Jacobi and quasi-Jacobi forms

Let MerH×Cn denote the space of meromorphic functions on H× Cn, and F
be a real symmetric positive-definite n× n matrix. We say a meromorphic
function φ on H× Cn is a meromorphic Jacobi form of weight k, index F ,
and character χ (χ : Γ1 → C∗) on a subgroup Γ1 of SL2(Z) if for some `0 ∈ Q,
φ has an expansion of the form

(9) φ(τ, z) =
∑

r∈Zn,`∈Q,
4`−F−1[r]≥0

c(`, r)q` exp
(
2πi(ztr)

)
,

where q = e2πiτ (τ ∈ H), ` ≥ `0, c(`, r) are scalars, and for all γ =
(
a b
c d

)
∈ Γ1

and (λ, µ) ∈ Zn × Zn we have

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= χ(γ)(cτ + d)k exp

(
2πi

cF [z]

cτ + d

)
φ(τ, z),

and

φ(τ, z + λτ + µ) = exp
(
−2πi(τF [λ] + 2ztFλ)

)
φ(τ, z).

In the case `0 ≥ 0, φ is holomorphic. Throughout this paper we take the
term Jacobi form to mean holomorphic Jacobi form. When the condition
4`− F−1[r] ≥ 0 in (9) is replaced with ` ≥ 0, we call φ(τ, z) a weak Jacobi
form of weight k and index F . (See [11] for a detailed study of such functions
when n = 1 and [30] for a discussion of the general case.)

The function φ is a quasi-Jacobi form of weight k and index F on Γ1 if
for each τ ∈ H, z ∈ Cn, γ =

(
a b
c d

)
∈ Γ1, and [λ, µ] ∈ Zn × Zn, we have

1) (cτ + d)−ke−2πi cF [z]

cτ+dφ
(
aτ+b
cτ+d ,

z
cτ+d

)
∈ MerH×Cn

[
cz1
cτ+d , . . . ,

czn
cτ+d ,

c
cτ+d

]
with coefficients dependent only on φ, and
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2) e2πi(τF [λ]+2ztFλ)φ(τ, z + λτ + µ)∈MerH×Cn [λ1, . . . , λn] with coefficients
dependent only on φ.

In other words, there are meromorphic functions Si1,...,in,j(φ) and Ti1,...,in(φ)
on H× Cn determined only by φ, and s1, . . . , sn, t ∈ N such that

(cτ + d)−k exp

(
−2πi

cF [z]

cτ + d

)
φ

(
aτ + b

cτ + d
,

z

cτ + d

)
(10)

=
∑

i1≤s1,...,in≤sn
j≤t

Si1,...,in,j(φ)(τ, z)

(
cz1

cτ + d

)i1
· · ·
(

czn
cτ + d

)in ( c

cτ + d

)j

and

e2πi(τF [λ]+2ztFλ)φ(τ, z + λτ + µ)

=
∑

i1≤s1,...,in≤sn

Ti1,...,in(φ)(τ, z)λi11 · · ·λ
in
n .(11)

If φ 6= 0, we take Ss1,...,sn,t(φ) 6= 0 and Ts1,...,sn(φ) 6= 0, and say φ is a quasi-
Jacobi form of depth (s1, . . . , sn, t). In the case n = 1 and F = 0, this defini-
tion of a quasi-Jacobi form reduces to that in [25]. (See also Definition 3.10
in [18] for another definition of quasi-Jacobi form.)

Let Qn denote the space of quasi-Jacobi forms on H× Cn. Straightfor-
ward calculations establish the following well-known lemma.

Lemma 2.1. The space of quasi-Jacobi forms Qn is closed under multi-
plication by E2(τ) and partial derivatives d

dτ and d
dzj

, 1 ≤ j ≤ n. (Nb. such

operations change the weight and depth.)

2.2. Twisted elliptic functions

For w ∈ C, z ∈ Cn, and τ ∈ H such that |q| < |ew| < 1 and ζz1+···+zn 6= 1,
we define the ‘twisted’ Weierstrass functions P̃k(w, z, τ) by

(12) P̃k(w, z, τ) :=
1

(k − 1)!

∑
`∈Z

`k−1q`w
1− ζ−1

1 · · · ζ
−1
n q`

,

where q = e2πiτ , qw = ew, ζj = e2πizj . When z = z1 + · · ·+ zn and we set ζ =
e2πiz, the functions P̃k(w, z, τ) = P̃k(w, z, τ) are the same as the functions
(−1)kPk

[
ζ
1

]
(w,τ) in [27] (where one can find more details), Pk(1,ζ

−1,2πiw,τ)



i
i

“2-Krauel” — 2015/6/10 — 23:08 — page 281 — #9 i
i

i
i

i
i

Jacobi trace functions 281

in [3], and (2πi)−kP̂k(qw, q, ζ) in [13]. We will also consider functions of the
form (12) when ζ1 · · · ζn = 1. In this case, the sum is to exclude the term
` = 0 and the functions are simply the classical (or ‘untwisted’) Weierstrass
functions.

Writing (12) as

P̃k(w, z, τ) =
1

(k − 1)!

∞∑
`=1

(
`k−1q`w

1− ζ−1
1 · · · ζ

−1
n q`

+
(−1)k`k−1q−`w q`ζ1 · · · ζn

1− ζ1 · · · ζnq`

)
+ δk,1

1

1− ζ−1
1 · · · ζ

−1
n
,

it can be shown that the functions P̃k(w, z, τ) converge for |q| < |qw| < 1
(see also [13, 27]).

Define the functions G̃k(τ, z) by

G̃2k(τ, z) := 2ξ(2k) +
(2πi)2k

(2k − 1)!

∞∑
`=1

(
`2k−1q`ζ−1

1 · · · ζ−1
n

1− q`ζ−1
1 · · · ζ

−1
n

+
`2k−1q`ζ1 · · · ζn
1− q`ζ1 · · · ζn

)
,

G̃2k+1(τ, z) :=
(2πi)2k+1

(2k)!

∞∑
`=1

(
`2kq`ζ−1

1 · · · ζ−1
n

1− q`ζ−1
1 · · · ζ

−1
n
− `2kq`ζ1 · · · ζn

1− q`ζ1 · · · ζn

)
,

G̃1(τ, z) := (2πi)

∞∑
`=1

(
q`ζ−1

1 · · · ζ−1
n

1− q`ζ−1
1 · · · ζ

−1
n

+
q`ζ1 · · · ζn

1− q`ζ1 · · · ζn

)
+

2πi

1− ζ−1
1 · · · ζ

−1
n
− πi,

where ξ(2k) =
∑∞

n=1
1
n2k , and set

Ẽm(τ, z) :=
1

(2πi)m
G̃m(τ, z).

The functions Ẽm with one complex variable z have been called ‘twisted
Eisenstein series’ in [3, 13, 27]. The additional complex variables considered
here do not add much difficulty as most calculations reduce to the single
complex variable case by noting

Ẽm(τ, z) = Ẽm(τ, z1 + · · ·+ zn).

Lemma 2.2. For m ≥ 1, the functions Ẽm(τ, z) are quasi-Jacobi forms of
weight m and index 0.
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Proof. We first take the n = 1 (z = z) case and show that Ẽm satisfies (10)
for the matrices S =

(
0 −1
1 0

)
and T = ( 1 1

0 1 ). The result follows from a trans-
formation discussed in [13]. In particular, it is established there (see display
(C.15)) that

τ−mẼm

(
−1

τ
,
z

τ

)
=

m∑
k=0

(−1)m−k

(m− k)!
Ẽk(τ, z)z

m−kτk−m,

where we take Ẽ0(τ, z) to be 1. Therefore,

τ−mẼm

(
−1

τ
,
z

τ

)
=

m∑
k=0

(−1)m−k

(m− k)!
Ẽk(τ, z)z

m−kτk−m(13)

=

m∑
k=0

(−1)m−k

(m− k)!
Ẽk(τ, z)

(z
τ

)m−k
.

This proves the transformation for the matrix S. For the matrix T we have
T · τ 7→ τ + 1, and we find Ẽm(τ + 1, z) = Ẽm(τ, z).

We now consider the general case of z. Using Ẽm(τ, z) = Ẽm(τ, z1 + · · ·+
zn) and (13), we find

τ−mẼm

(
−1

τ
,
z

τ

)
= τ−mẼm

(
−1

τ
,
z1 + · · ·+ zn

τ

)
=

m∑
k=0

(−1)m−k

(m− k)!
Ẽk(τ, z1 + · · ·+ zn)

(
z1 + · · ·+ zn

τ

)m−k
=

m∑
k=0

∑
i1,...,in≥0

i1+···+in=m−k

Ci1,...,in
(−1)m−k

(m− k)!
Ẽk(τ, z)

(z1

τ

)i1
· · ·
(zn
τ

)in
,

where the Ci1,...,in are scalars produced when expanding ((z1 + · · ·+ zn)/
τ)m−k. This proves (10) for the matrix S. The case for the matrix T is again
trivial.

To prove (11), we can repeat similar steps for [λ, 0] ∈ Zn × Zn, using the
transformation (for the z = z case)

Ẽm(τ, z) =

m∑
k=0

(−1)m+k

(
m

k

)
λm−kẼk(τ, z)
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(cf. [29], page 7). We omit further details. �

The following lemma follows as in Proposition 2 in [27] with the same
proof (see also display (C.14) in [13]).

Lemma 2.3. We have

P̃m(w, z, τ) =
(−1)m

wm
+
∑
k≥m

(
k − 1

m− 1

)
Ẽk(τ, z)w

k−m.

Beyond the modular forms discussed above, we also frequently encounter
the usual quasi-modular Eisenstein series E2(τ) normalized so that it has
the functional equation

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− c(cτ + d)

2πi
,

for γ =
(
a b
c d

)
∈ SL2(Z).

3. Recursion formula

In this section we establish recursion formulas for n-point functions. These
results are found using an analysis that is similar to that in [27] and [31].
For this reason, we merely state the needed results, omitting proofs. The next
lemma contains the necessary changes as well as the assumption

ζ
h1(0)
1 · · · ζhm(0)

m v = v.

Lemma 3.1. Let M r be a module for V , v ∈ Vk, and v1, . . . , vn ∈ V . If

ζ
h1(0)
1 · · · ζhm(0)

m v = v, then

n∑
r=1

Jr,h(v1, . . . , v[0]vr, . . . , vn; τ, z) = 0.

The following two lemmas, when combined, reduce any n-point function
to a linear combination of (n− 1)-point functions with modular coefficients
of the type described in Section 2.



i
i

“2-Krauel” — 2015/6/10 — 23:08 — page 284 — #12 i
i

i
i

i
i

284 M. Krauel and G. Mason

Lemma 3.2. Let v ∈ V and suppose hj(0)v = µjv, µj ∈ C, for each 1 ≤
j ≤ m. Then for any V -module M r and v1, . . . , vn ∈ V , we have

Jr,h(v, v1, . . . , vn; τ, z)

= δz·µ,Z TrMr o(v)YM (q
L(0)
1 v1, q1) · · ·Y (qL(0)

n vn, qn)ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−c/24

+

n∑
s=1

∑
k≥0

P̃k+1(zs − z, τ, z · µ)Jr,h(v1, . . . , v[k]vs, . . . , vn; τ, z),

where δz·µ,Z is 1 if z · µ ∈ Z and is 0 otherwise.

Lemma 3.3. Let the assumptions be the same as in the previous lemma.
Then for p ≥ 1,

Jr,h(v[−p]v1, . . . , vn; τ, z)

= δz·µ,Zδp,1 TrMr o(v)YM (q
L(0)
1 v1, q1)

· · ·Y (qL(0)
n vn, qn)ζ

h1(0)
1 · · · ζhm(0)

m qL(0)−c/24

+ (−1)p+1
∑
k≥0

(
k + p− 1

p− 1

)
Ẽk+p(τ, z · µ)Jr,h(v[k]v1, . . . , vn; τ, z)

+ (−1)p+1
n∑
s=2

∑
k≥0

(
k + p− 1

p− 1

)(
P̃k+p(zs − z1, τ, z · µ)

· Jr,h(v1, . . . , v[k]vs, . . . , vn; τ, z)
)
.

In particular, in the case n = 1 we have

Jr,h(v[−p]v1; τ, z)

= δz·µ,Zδp,1 TrMr o(v)YM (q
L(0)
1 v1, q1)ζ

h1(0)
1 · · · ζhm(0)

m qL(0)−c/24

+ (−1)p+1
∑
k≥0

(
k + p− 1

p− 1

)
Ẽk+p(τ, z · µ)Jr,h(v[k]v1; τ, z).

Another result that will be useful is the following. (See also [13].)

Corollary 3.4. Let m = 1 and n = 1 as in the previous lemma.
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1) If u ∈ V such that h(0)u = 0, then

Jr,h(u[−p]v; τ, z) = δp,1 TrMr o(u)o(v)ζh(0)qL(0)−c/24

+ (−1)p+1
∑
k≥0

(
k + p− 1

p− 1

)
Ek+p(τ)Jr,h(u[k]v; τ, z).

2) If u ∈ V such that h(0)u = µu (µ 6= 0), then

Jr,h(u[−p]v; τ, z) = (−1)p+1
∑
k≥0

(
k + p− 1

p− 1

)
Ẽk+p(τ, µz)Jr,h(u[k]v; τ, z).

Remark. The difference of a minus sign between these equations and those
found in [27] can be attributed to the minus sign difference in our definitions
of the functions Pk

[
ζ
1

]
(w, τ) and the action of SL2(Z).

Finally, using that Ek(τ) = 0 for odd k we can establish the following
corollary.

Corollary 3.5. Let m = n = 1 as before.

1) For any v ∈ V , we have

Jr,h(h[−1]v; τ, z)(14)

=
1

2πi

d

dz
Jr,h(v; τ, z) +

∑
k≥1

E2k(τ)Jr,h(h[2k − 1]v; τ, z),

and

Jr,h(L[−2]v; τ, z)(15)

=
1

2πi

d

dτ
Jr,h(v; τ, z) +

∑
k≥1

E2k(τ)Jr,h(L[2k − 2]v; τ, z).

2) If u ∈ V such that h(0)u = 0, then

(16) Jr,h(u[−2]v; τ, z) = −
∑
k≥1

(2k − 1)E2k(τ)Jr,h(u[2k − 1]v; τ, z).

3) If u ∈ V such that h(0)u = µu (µ 6= 0), then

(17) Jr,h(u[−2]v; τ, z) =
∑
k≥2

(−1)k+1(k − 1)Ẽk(τ, µz)Jr,h(u[k − 2]v; τ, z).
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4. Theorem 1.1 proof

Throughout this section, V is a strongly regular vertex operator algebra
of central charge c and M1, . . . ,M s its inequivalent irreducible admissible
modules. Fix h1, . . . , hm in V1 which satisfy Condition H on each module
M r. Let G be the Gram matrix G = (〈hi, hj〉) associated with the bilinear
form 〈·, ·〉 and elements h1, . . . , hm.

We first prove the transformation law (4) in Theorem 1.1. To do so we
will need a 1-point analogue of a result due to Miyamoto [28]. For u,w ∈ V1

and v ∈ V , we define the function Φr(v;u,w, τ) by

(18) Φr(v;u,w, τ) := TrMr o(v)e2πi(w(0)+〈u,w〉/2)qL(0)+u(0)+〈u,u〉/2−c/24.

Function (18) is similar to the functions Φr defined in [28], except there only
the case v = 1 is considered. Moreover, we have switched the notation of u
and w and taken 〈1,1〉 = −1, which is negative the normalization taken by
Miyamoto.

The proof of the following theorem is the same as in [28] (see Theorem
A) when one makes the appropriate changes. We omit details here; they may
be found in [19].

Theorem 4.1. Let V be a rational, C2-cofinite vertex operator algebra and
M1, . . . ,M s be its finitely many inequivalent irreducible admissible modules.
Suppose w ∈ V1 and v ∈ V[k] are such that w(n)v = 0 for n ≥ 0. Then for
all γ =

(
a b
c d

)
∈ SL2(Z),

Φr

(
v; 0, w,

aτ + b

cτ + d

)
= (cτ + d)k

s∑
i=1

Air,γΦi(v; cw, dw, τ),

where Air,γ are the scalars S(γ, r, i) dependent on γ that appear in Zhu’s
Theorem 5.3.2 of [31].

Note that

Jr,h(v; τ, z) = Φr(v; 0, z · h, τ),

where z · h is the usual dot-product. By Theorem 4.1,

Jr,h

(
v;
aτ + b

cτ + d
,

z

cτ + d

)
= Φr

(
v; 0,

z · h
cτ + d

,
aτ + b

cτ + d

)
= (cτ + d)k

s∑
`=1

A`r,γΦ`

(
v;

cz · h
cτ + d

,
dz · h
cτ + d

, τ

)
.(19)
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Expanding the Φ` on the right hand side we find

Φ`

(
v;

cz · h
cτ + d

,
dz · h
cτ + d

, τ

)
(20)

= TrM` o(v) exp

2πi

dz · h(0)

cτ + d
+ cd

m∑
j=1

m∑
t=1

zj 〈hj , ht〉 zt
2(cτ + d)2


· exp

2πiτ

L(0) + c
z · h(0)

cτ + d
+ c2

m∑
j=1

m∑
t=1

zj 〈hj , ht〉 zt
2(cτ + d)2

− c/24


= TrM` o(v) exp

(
2πiz · h(0)

)
exp

2πic

m∑
j,t=1

zj 〈hj , ht〉 zt
2(cτ + d)

 qL(0)−c/24

= exp

(
πi
cG[z]

cτ + d

)
TrM` o(v)ζ

h1(0)
1 · · · ζhm(0)

m qL(0)−c/24.

Combining (19) and (20) establishes (4).

Remark. Although it may appear that Condition H and the assumption
hj(n)v = 0 are not needed to establish (4), they are used in the proof of
Theorem 4.1 and are indeed necessary.

Next we prove (5). Following H. Li [23], define invertible maps ∆hj (z) :
V → (EndV )Jz−1, zK by

∆hj (z) := zhj(0) exp

−∑
k≥1

hj(k)

k
(−z)−k

 ,

and YM
∆hj

(z)(·, z) : V → (EndM)Jz−1, zK by

YM
∆hj

(z)(v, z) := YM
(
∆hj (z)v, z

)
.

We then have the following theorem (loc. cit. Proposition 5.4).

Theorem 4.2. Suppose that g is a finite order automorphism of V such
that g(hj) = hj. Let (M r, Y r) be a g-twisted V -module. Then (M r, Y r

∆hj
(z))

is a weak (ge2πihj(0))-twisted V -module.
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Applying this formalism when g = e2πihj(0) is the identity automorphism
(hj has integral eigenvalues), we obtain an isomorphism of V -modules

(21) (M r′ , Y r′

∆hj
(z))
∼= (M r, Y r)

for some r′ ∈ {1, . . . , s}. For each hi (1 ≤ i ≤ m) we have

∆hi(z)ω =

zhi(0) exp

−∑
k≥1

hi(k)

k
(−z)−k


ω

= zhi(0)

(
ω − hi(1)ω(−z)−1 +

hi(1)2ω

2
(−z)−2

)
= ω + hiz

−1 + 〈hi, hi〉 z−2.

Therefore, the modes of ω∆hi
acting on (M r′ , Y r′

∆hi
(z)) are given by

∑
n∈Z

ω∆hi
(n)z−n−1 = Y r′

∆hi
(z)(ω, z) = Y r′(∆hi(z)ω, z)

=
∑
n∈Z

(
ω(n)z−n−1 + hi(n)z−n−2 +

〈hi, hi〉
2

z−n−3

)
.

Taking Reszz of both sides, we find ω∆hi
(1) = ω(1) + hi(0) + 〈hi, hi〉 /2, i.e.,

(22) L∆hi
(0) = L(0) + hi(0) +

〈hi, hi〉
2

.

In a similar way we have

∆hi(z)hj = hj + 〈hi, hj〉 z−1

for any 1 ≤ j ≤ m, and in particular,

(23) (hj)∆hi
(0) = hj(0) + 〈hi, hj〉 .

Using (22) and (23), we find

(24) L∆−λ·h(0) = L(0)− λ · h+
1

2

m∑
s=1

m∑
t=1

λs 〈hs, ht〉λt,
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and

(25) (hj)∆−λ·h(0) = hj(0)−
m∑
s=1

λs 〈hs, hj〉 .

Finally, with these same calculations applied to v ∈ V[k] such that hj(n)v = 0

for 1 ≤ j ≤ m and n ≥ 0, we find that the zero mode of v on (M r′ , Y r′

∆−λ·h(z))

is o∆−λ·h(v) = v(k − 1) = o(v).
Using (24), (25), and the isomorphism (21), it follows that

Jr,h(v; τ, z + λτ + µ)

= TrMr o(v) exp

[
2πi

m∑
δ=1

(zδ + λδτ + µδ)hδ(0)

]
exp(2πiτ(L(0)− c/24))

= TrMr o(v) exp

[
2πi

m∑
δ=1

(zδ + λδτ)hδ(0)

]
exp(2πiτ(L(0)− c/24))

= TrMr′ o(v) exp

[
2πi

m∑
δ=1

(zδ + λδτ)

(
hδ(0)−

m∑
t=1

λt 〈ht, hδ〉

)]

exp

[
2πiτ

(
L(0)− λ · h(0) +

1

2

m∑
δ=1

m∑
t=1

λδ 〈hδ, ht〉λt − c/24

)]
= TrMr′ o(v) exp

(
2πiz · h(0)

)
exp

(
2πiτλ · h(0)

)
exp

(
−2πi

m∑
δ=1

n∑
t=1

zδ 〈hδ, ht〉λt

)
exp

(
−2πiτ

m∑
δ=1

m∑
t=1

λδ 〈hδ, ht〉λt

)

exp
(
−2πiτλ · h(0)

)
exp

(
πiτ

m∑
δ=1

m∑
t=1

λδ 〈hδ, ht〉λt

)
qL(0)−c/24

= exp
(
−πi

(
G[λ]τ + 2ztGλ

))
Jr′,h(v; τ, z).

Here, the second equality uses the fact exp
(
2πiµ · h(0)

)
= 1 since µ · h(0)

acts on M r with integer eigenvalues. This proves (5).
Since (3) is clear, it remains to establish the convergence of Jr,h(v; τ, z)

for any v ∈ V and module M r =
⊕

d≥0M
r
λr+d

, where λr is the conformal
weight of M r. For the remainder of this section we also drop the notation
Jr,h and simply write Jh as none of the calculations are dependent on M r.

Consider the case m = 1. That is, take h to be a single element h ∈
V1 that satisfies Condition H, so that we are concerned with the function
Jr,h(v; τ, z) on H× C. Let M denote the ring of quasi-modular forms and
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Q0 be the ring of quasi-Jacobi forms of index 0 (see [25], Proposition 2.8),
which are both known to be Noetherian. By Definition 2.5 in [25], it is
clear certain generators of quasi-Jacobi forms of index 0 are convergent on
closed subsets of {(τ, z) ∈ H× C | z 6∈ Z + Zτ}. In particular, the functions
Ẽk(τ, z) introduced in Subsection 2.2 are convergent on this domain.

For α ∈ Z, let Uα be the map defined by U(φ(τ, z)) = φ(τ, αz). Then Uα
maps (quasi-)Jacobi forms of index m to (quasi-)Jacobi forms of index α2m.
In particular, Ẽk(τ, αz) = Uα(Ẽk(τ, z)) is a quasi-Jacobi form of index 0.

Set V (Q0) = V ⊗Q0 and let Oh(V ) be the subspace of V generated by
the elements

u[0]v,(26)

u[−2]v +

∞∑
k=2

(2k − 1)E2k(τ)u[2k − 1]v, when h(0)u = 0, and(27)

u[−2]v +

∞∑
k=2

(k − 1)Ẽk(τ, αz)u[k − 2]v, when h(0)u = αz.(28)

By (16), (17), and Lemma (3.1), it follows that Jh(v, τ, z) = 0 for all v ∈
Oh(V ).

Lemma 4.3. Suppose V is C2-cofinite. Then V (Q0)/Oh(V ) is a finitely
generated Q0-module.

Proof. The proof mimics that of Lemma 4.4.1 in [31]. Since C2(V ) has finite
codimension, there exists an integer N such that Vn ⊂ C2(V ) for all n > N .
Let A be the R-submodule of V (Q0) generated by

⊕
n≤N Vn. If v ∈ V[k] we

will show that v ∈ A+Oh(V ), thereby proving V (Q0) = A+Oh(V ), and
thus the lemma.

In the case k ≤ N , we are done since v ∈ A. Therefore we assume that
k > N . In this case, V[k] ⊂ A+Oh(V ), and so we have v = a+

∑d
i=0 bi(−2)ci

for some a ∈ A and homogeneous bi, ci ∈ V satisfying wt[bi] + wt[ci] = k − 1.
In the case h(0)bi = 0, then bi(−2)ci ∈ A+Oh(V ) just as in [31]. It suffice
to show bi(−2)ci ∈ A+Oh(V ) in the case h(0)bi = αbi for some nonzero
α ∈ Z.

In this case we have

bi[−2]ci +

∞∑
`=2

(`− 1)Ẽ`(τ, αz)bi[`− 2]ci
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is inOh(V ). Since Ẽk(τ, αz) is again a quasi-Jacobi form and wt[bi[`− 1]ci] =
wt[bi] + wt[ci]− ` = k − 1− `, our induction hypothesis shows that

∞∑
`=2

(`− 1)Ẽ`(τ, αz)bi[`− 2]ci

is in Oh(V ), and thus so is bi[−2]ci. Using that bi(−2)ci = bi[−2]ci +∑
j>−2 βjbi[j]ci for some scalars βj , we can apply our induction hypothe-

sis again to the elements bi[j]ci to find bi(−2)ci ∈ Oh(V ). The lemma is now
proved. �

Remark. Since our recursion formula introduces functions of the form
Ẽ`(τ, αz) (α ∈ Z) in the previous step, an arbitrary function φ(τ, z) in Q0

may have a pole at z ∈ 1
α (Z + Zτ) for different α. Therefore, the finite many

elements in Q0 that arise in the following lemma may each have such poles.
The authors would like to thank Reimundo Heluani for bringing this to their
attention. After this step, however, no further coefficients with poles are
introduced in the proof, and we therefore obtain the domain of convergence
as described in the statement of the theorem.

Lemma 4.4. Suppose V is C2-cofinite. For any v ∈ V there exist m,n ∈ N
and φi(τ, z), ψj(τ, z) ∈ Q0, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, such that

(29) L[−2]mv +

m−1∑
i=0

φi(τ, z)L[−2]iv ∈ Oh(V )

and

(30) h[−1]nv +

n−1∑
j=0

ψj(τ, z)h[−1]jv ∈ Oh(V ).

Proof. By the previous lemma and the fact Q0 is Noetherian, we have the
Q0-submodule generated by {h[−1]jv, j ≥ 0} is finitely generated. There-
fore, some relation such as (30) must hold. Equation (29) is proved simi-
larly. �

Set Dτ = 1
2πi

d
dτ and Dz = 1

2πi
d
dz .

Proposition 4.5. Suppose that V is C2-cofinite.
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1) If v ∈ V is such that L[`]v = 0 for ` > 0, then there exists an m ∈ N
and φi(τ, z) ∈ Q0, 0 ≤ i ≤ m− 1, such that

(31) Dm
τ Jh(v, τ, z) +

m−1∑
i=0

φi(τ, z)D
i
τJh(v, τ, z) = 0.

2) If v ∈ V is such that h[`]v = 0 for ` > 0, then there exists an n ∈ N
and ψj(τ, z) ∈ Q0, 0 ≤ j ≤ n− 1 such that

(32) Dn
z Jh(v, τ, z) +

n−1∑
j=0

ψj(τ, z)D
j
zJh(v, τ, z) = 0.

Proof. The proof of (31) follows just as in [3]. The proof of (32) is similar,
and follows from using Equation (14) along with induction and the fact that
there are scalars βijk such that h[2k − 1]h[−1]iv =

∑i−1
j=0 βijkh[−1]jv for any

k ≥ 1. �

It follows from the theory of ordinary differential equations that solutions
to these equations converge wherever the functions φi(τ, z) and ψj(τ, z) do.
In particular, (31) shows that Jh(v, τ, z) converges on the set F := {(τ, z) ∈
H× C | z 6∈ 1

t (Z + Zτ), finitely many t ∈ Z}.
It remains to show that similar differential equations hold for any v ∈ V ,

not just those that are primary. We will first establish a series of lemmas
involving a single variable z. We omit the variable τ until the end, as the
analogous results can be proved similarly and are also essentially found in [3].

Lemma 4.6. Suppose ` ≥ 1, j ≥ 0, and v ∈ V[k] is such that h(0)v = αv
for some scalar α.

1) For ` = 1, h[`− 1]h[−1]jv = αh[−1]jv.

2) For ` = 2, h[`− 1]h[−1]jv = h[−1]jh[1]v + j〈h, h〉h[−1]j−1v.

3) For all ` ≥ 1, there are scalars βij` and elements satisfying wt[uij`] ≤
wt[v], with equality only if uij` = v, such that

h[`− 1]h[−1]jv = h[−1]jh[`− 1]v +

j−1∑
i=0

βij`h[−1]iuij`.

Proof. Both (a) and (b) follow from easy proofs by induction on j. Part (c)
follows by induction on j + `. �
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Using this lemma along with (14) we find

Jh(h[−1]j+1v, τ, z)(33)

= DzJh(h[−1]jv, τ, z) +

∞∑
`=1

E2`(τ)Jh(h[2`− 1]h[−1]jv, τ, z)

= DzJh(h[−1]jv, τ, z) +

∞∑
`=1

E2`(τ)

(
Jh(h[−1]jh[2`− 1]v, τ, z)

+

j∑
i=0

βij`Jh(h[−1]iuij`, τ, z)

)
.

Noting that wt[h[2`− 1]v] < wt[v] = k for ` ≥ 1 and using induction on k +
j along with (33), we obtain the following lemma.

Lemma 4.7. For any v ∈ V[k] and j ≥ 0 there are elements uij` ∈ V sat-
isfying wt[uij`] < k and functions fij(τ), gij`(τ) ∈M ⊂ Q0, 0 ≤ i ≤ j − 1,
such that

Jh(h[−1]jv, τ, z) = Dj
zJh(v, τ, z) +

j−1∑
i=0

fij(τ)Di
zJh(v, τ, z)(34)

+

j−1∑
i=0

∑
`

gij`(τ)Di
zJh(uij`, τ, z).

Proposition 4.8. For any v ∈ V[k] there exist m,n ∈ N, elements ui`, wj` ∈
V satisfying wt[ui`],wt[u′i`] < k, and functions φi(τ, z), φi`(τ, z), ψj(τ, z),
ψj`(τ, z) ∈ Q0, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, such that

Dm
τ Jh(v, τ, z) +

m−1∑
i=0

φi(τ, z)D
i
τJh(v, τ, z)(35)

+

m−1∑
i=0

∑
`

φi`(τ, z)D
i
τJh(ui`, τ, z) = 0
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and

Dn
z Jh(v, τ, z) +

n−1∑
j=0

ψj(τ, z)D
j
zJh(v, τ, z)(36)

+

n−1∑
j=0

∑
`

ψj`(τ, z)D
j
zJh(wj`, τ, z) = 0.

(Note that the functions φ and ψ are not necessarily the same as those
in (30).)

Proof. Since Jh(u, τ, z) = 0 for ∀u ∈ Oh(V ), we can substitute (30) into Jh to
obtain 0. Next, solve for Jh(h[−1]nv, τ, z) and then exchange Jh(h[−1]nv, τ, z)
with the right hand side of (34), replacing j with n. What results is (36).
Equation (35) follows from a similar analysis, where the necessary lemmas
analogous to those here can be proved just as in [3]. �

We are now in position to prove the convergence of Jh(v, τ, z) for any
v ∈ V . We first fix τ and prove that Jh(v, τ, z) converges in the z-variable on
the set F . The same proof can be applied to prove that Jh(v, τ, z) converges
for all τ ∈ H by fixing z, though we will omit these details. We proceed
by induction on wt[v] for homogeneous elements v ∈ V . If wt[v] = 0, then
v = β1 for some scalar β, and Jh(v, τ, z) satisfies the relevant differential
equation in Proposition (4.5), and therefore converges on F since the func-
tions ψj(τ, z) do. Suppose, then, that for any v ∈ V with wt[v] ≤ k − 1,
Jh(v, τ, z) also converges on this domain, and consider the case wt[v] = k.

By our induction hypothesis, the functions Jh(wj`, τ, z) in the previous
proposition all converge on F . For the same fixed τ , set G(τ, z) to be the
third summand in (36). That is, G(τ, z) =

∑n−1
j=0

∑
` ψj`(τ, z)D

j
zJh(wj`, τ, z).

Then a well-known result (see for example Lemma 1 in [1]) asserts the exis-
tence of a function k(z) that converges on the same domain F and satis-
fies (Dz + k(z))G(τ, z) = 0. Applying the operator Dz + k(z) to (36) shows
that Jh(v, τ, z) satisfies a differential equation with respect to the opera-
tor Dz and with coefficients that converge on F for fixed τ . This in turn
implies Jh(v, τ, z) converges on F . As mentioned before, fixing z and using
the same argument with (35) shows Jh(v, τ, z) also converges for all τ ∈ H.
This proves Jh(v, τ, z) converges on the domain stated in Theorem (1.1) in
the case m = 1.

To prove the convergence for the function Jr,h(v; τ, z) when m > 1, we
fix all but one of the complex variables z1, . . . , zm and apply the previ-
ous argument. Since the convergence can be established in this manner for



i
i

“2-Krauel” — 2015/6/10 — 23:08 — page 295 — #23 i
i

i
i

i
i

Jacobi trace functions 295

each individual complex variable, Hartog’s Theorem gives the convergence
of Jr,h(v; τ, z). The proof of Theorem 1.1 is complete.

5. Theorem 1.2 proof

In this section we take up the transformation laws of the functions Jr,h(v; τ, z)
when hj(n)v 6= 0 for some 1 ≤ j ≤ m or n ≥ 0. We begin by reviewing the
Heisenberg VOA and a decomposition for strongly rational VOAs.

5.1. The Heisenberg VOA and a module decomposition

Let H be a d-dimensional abelian Lie algebra with non-degenerate sym-
metric invariant bilinear form (·, ·). Consider the affinization Ĥ = H ⊗ C[t,
t−1]⊕ CK, where K is central and [a⊗ tm, b⊗ tn] = (a, b)δm+n,0K (a, b ∈
H,m, n ∈ Z). Taking K to act as 1 on C and H ⊗ C[t] to act trivially, we
produce the induced module MH = U(Ĥ)⊗H⊗C[t]⊕CK C which is isomorphic
to the symmetric algebra S(H ⊗ t−1C[t−1]) as linear spaces.

Let the action of u⊗ tn on MH be denoted by u(n). For an orthonormal
basis {u1, . . . , ud} of H, set ωMH

= 1
2

∑d
i=1 ui(−1)21, where 1 = 1⊗ 1. Any

element v ∈MH can be written as a linear combination of elements of the
form

v = a1(−n1) · · · aν(−nν)1,

for a1, . . . , aν ∈ H and n1, . . . , nν ∈ N. For such an element v ∈MH , define
the map Y (·, z) : MH → (EndMH)Jz, z−1K by

Y (v, z) = ◦◦∂
(n1−1)a1(z) · · · ∂(nν−1)aν(z)◦◦,

where ∂(n) = 1
n!

(
d
dz

)n
, ai(z) =

∑
n∈Z ai(n)z−n−1 (1 ≤ i ≤ ν), and ◦◦ · · · ◦◦ sig-

nifies normal ordering (see for example [22]).
It is known that (MH , Y,1, ωMH

) is a simple (though not rational) vertex
operator algebra of central charge d with L(0)-grading

MH =
⊕
n≥0

(MH)n,
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where

(MH)n = {v ∈MH | L(0)v = nv}

=
〈
a1(−n1) · · · aν(−nν)1 |

a1, . . . , aν ∈ H,n1, . . . , nν ∈ N,
∑

ni = n
〉
.

There is a natural identification between (MH)1 and H given by u(−1)1 7→
u. Moreover, for a, b ∈ H we have a[0] = a(0) = 0 and a[1]b = a(1)b = (a, b)1.

For α ∈ H, define the space

MH(α) := MH ⊗ eα.

If n 6= 0 the operators a(n) ∈ EndMH act on MH(α) via its action on MH .
On the other hand, a(0) acts on eα by a(0)eα = (a, α)eα. The space MH(α)
is an irreducible MH -module with conformal weight 1

2(α, α), and for varying
α we obtain in this way all of the irreducible MH -modules up to equivalence
(see [22] for details).

The partition function ZMH
(1, τ) := TrMH

qL(0)−d/24 for MH satisfies

ZMH
(1, τ) = η(τ)−d.

Therefore, since L(0)eα = 1
2(α, α)eα, hj(0)eα = (hj , α)eα, and hj(0)MH = 0

for all 1 ≤ j ≤ m, we find

JMH(α),h(1; τ, z)(37)

= TrMH⊗eα ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−d/24

=
(

TrMH
ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−d/24
)(

Treα ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−d/24
)

= (ZMH
(1, τ)) ζ

(h1,α)
1 · · · ζ(hm,α)

m q
1

2
(α,α)

= η(τ)−dζ
(h1,α)
1 · · · ζ(hm,α)

m q
1

2
(α,α).

We now discuss a decomposition for any irreducible V -module M (see
[26] for more details). A result of Dong and Mason [6, 26] states that V1 is a
reductive Lie algebra and that M is a linearly reductive V1-module, i.e., its
action on M is completely reducible. The action of u ∈ V1 on M is given by
u(0). Let

ΩM := {w ∈M | u(n)w = 0, for u ∈ H and n ≥ 1} ,
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and for β ∈ H set

M(β) := {w ∈M | u(0)w = (β, u)w, where u ∈ H} .

Consider the set

P := {β ∈ H |M(β) 6= 0} ,
which is a subgroup of H. Then M has a decomposition

(38) M ∼= MH ⊗ ΩM =
⊕
β∈P

MH ⊗ ΩM (β),

where ΩM (β) := ΩM ∩M(β) (cf. [8, 26]).
It is known that ΩV (0) = Ω(0) is a simple vertex operator algebra and

ΩM (β) are irreducible Ω(0)-modules. Moreover, we have MH(β) ∼= MH ⊗ eβ,
where eβ ∈ Ω(β). It follows that the tensor product MH(β)⊗ ΩM (β) is an
irreducible MH ⊗ Ω(0)-module. Note also that M(β) = MH(β)⊗ ΩM (β).

Set

L0 = {u ∈ H | u(0) as an operator on M has eigenvalues in Z} ,

and

Λ :=
{
u ∈ L0 | (M,YM

∆u(z))
∼= (M,YM )

}
.

Then the isomorphism (21) (which holds for all u ∈ L0) implies

(39) ΩM (β) ∼= ΩM (β + u),

where u ∈ Λ and β ∈ P . In the case β = 0, this gives ΩM (u) ∼= ΩM (0) for
all u ∈ Λ. Therefore, ΩM (u) 6= 0 and Λ ⊆ P . In [26], it is shown that Λ
is a positive-definite integral lattice of rank d and |P : Λ| is finite. We set
δ := |P : Λ|.

The decomposition (38), which is an isomorphism of vector spaces, may
now be written as a decomposition of irreducible modules for MH(0)⊗
ΩM (0). Namely,

M =

δ⊕
t=1

⊕
β∈Λ

MH(β + γt)⊗ ΩM (γt)(40)

=

δ⊕
t=1

⊕
β∈Λ+γt

MH(β)⊗ ΩM (β),

where {γt} are coset representatives of P/Λ.
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5.2. Proof of Theorem 1.2

SinceMH is a subspace of V ,H is also a subspace of V ( identifying a(−1)1 ∈
(MH)1 with a ∈ H). Therefore, we may take the bilinear form (·, ·) on H
considered in the previous section to be one which, when extended to V ,
is the restriction of the bilinear form 〈·, ·〉 (on V ) to H. In other words, we
have (·, ·) = 〈·, ·〉 on MH and we will fix (·, ·) to be such a bilinear form on
H and use the notation 〈·, ·〉 for the remainder of the paper.

Let {ui | 1 ≤ i ≤ d} be a basis for H. By the decomposition (40) of V ,
any element in V may be written as sums of elements of the form

v = u1[−m1,1]`1,1 · · ·u1[−m1,ν1 ]
`1,ν1 · · ·ud[−md,1]`d,1

· · ·ud[−md,νd ]
`d,νd ⊗ eα ⊗ w,

w ∈ Ω(α), for various α ∈ Λ + γt, 1 ≤ t ≤ δ and `x,y,mx,y ∈ N (1 ≤ x ≤ d,
1 ≤ y ≤ νd). Note that v(n)MH(β)⊗ ΩMr(β) ⊆MH(α+ β)⊗ ΩMr(α+ β)
for an irreducible V -module M r. Therefore, the only v such that Jr,h(v; τ, z)
6= 0, are those that are a sum containing terms which lie in MH(0)⊗ Ω(0).
That is, for α = 0 and w ∈ Ω(0). It therefore suffices to consider elements of
the form given in (6).

Since w ∈ Ω(0), it satisfies hj(0)w = 〈hj , w〉w = 0 for all 1 ≤ j ≤ m, and
hj(n)w = 0 for all n ≥ 0. Therefore, Jr,h(w; τ, z) satisfies the assumptions of
Theorem 1.1.

We will prove Theorem 1.2 for v as in (6) by first establishing results for
specific v. The following lemma and proof follow those found in [10].

Lemma 5.1. Let a ∈MH . Consider an element a[−1]`w ∈ V , ` ≥ 0, w ∈
Ω(0), and let α ∈ Λ + γt for some 1 ≤ t ≤ δ. Then there are scalars c`,`−2i

with 0 ≤ i ≤ `/2 and c`,` = 1 such that

JMH(α)⊗ΩMr (α),h(a[−1]`w; τ, z)

=

 ∑
0≤i≤`/2

c`,`−2i 〈a, α〉`−2i (〈a, a〉E2(τ))i

 JMH(α)⊗ΩMr (α),h(w; τ, z).

Proof. The proof is by induction on `, the case ` = 0 being clear. Suppose
the result holds for all k, 0 ≤ k < `. The n = 1 and p = 1 case of Lemma 3.3
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gives

JMH(α)⊗ΩMr (α),h(a[−1]`w; τ, z)

= TrMH(α)⊗ΩMr (α) o(a)o(a[−1]`−1w)ζ
h1(0)
1 · · · ζhm(0)

m qL(0)−c/24

+ (`− 1) 〈a, a〉E2(τ)JMH(α)⊗ΩMr (α),h(a[−1]`−2w; τ, z)

= 〈a, α〉 JMH(α)⊗ΩMr (α),h(a[−1]`−1w; τ, z)

+ (`− 1) 〈a, a〉E2(τ)JMH(α)⊗ΩMr (α),h(a[−1]`−2w; τ, z),

where the E2(τ) occur because hj(0)a = 0 for all j, so that Ẽ2(τ, 0) = E2(τ).
Applying the induction hypothesis on

JMH(α)⊗ΩMr (α),h(a[−1]`−1w; τ, z) and JMH(α)⊗ΩMr (α),h(a[−1]`−2w; τ, z),

we find

JMH(α)⊗ΩMr (α),h(a[−1]`w; τ, z)

= 〈a, α〉

 ∑
0≤i≤(`−1)/2

c`−1,`−1−2i 〈a, α〉`−1−2i (〈a, a〉E2(τ))i


· JMH(α)⊗ΩMr (α),h(w; τ, z)

+ (`− 1) 〈a, a〉E2(τ)

 ∑
0≤i≤(`−2)/2

c`−2,`−2−2i 〈a, α〉`−2−2i (〈a, a〉E2(τ))i


· JMH(α)⊗ΩMr (α),h(w; τ, z)

=

 ∑
0≤i≤`/2

c`,`−2i 〈a, α〉`−2i (〈a, a〉E2(τ))i

 JMH(α)⊗ΩMr (α),h(w; τ, z),

as desired. The last equality holds since

〈a, α〉

 ∑
0≤i≤(`−1)/2

c`−1,`−1−2i 〈a, α〉`−1−2i (〈a, a〉E2(τ))i


+ (`− 1) 〈a, a〉E2(τ)

 ∑
0≤i≤(`−2)/2

c`−2,`−2−2i 〈a, α〉`−2−2i (〈a, a〉E2(τ))i


=

∑
0≤i≤`/2

(c`−1,`−1−2i + (`− 1)c`−2,`−2i) 〈a, α〉`−2i (〈a, a〉E2(τ))i,
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so that c`,`−2i := c`−1,`−1−2i + (`− 1)c`−2,`−2i. �

Note that

JMH(α)⊗ΩMr (α),h(w; τ, z) = JMH(α)⊗ΩMr (α),h(1⊗ w; τ, z)

= JMH(α),h(1; τ, z) · JΩMr (α),h(w; τ, z),

while Equation (37) gives

(41) JMH(α)⊗ΩMr (α),h(w; τ, z) =
ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉

η(τ)d
JΩMr (α),h(w; τ, z).

Set

g`,i,a(τ) := c`,`−2i(〈a, a〉E2(τ))i

and

fa,α,`(τ) :=
∑

0≤i≤`/2

c`,`−2i 〈a, α〉`−2i (〈a, a〉E2(τ))i =
∑

0≤i≤`/2

g`,i,a(τ) 〈a, α〉`−2i .

Combining Lemma 5.1 and (41) establishes

JMH(α)⊗ΩMr (α),h(a[−1]`w; τ, z)

= fa,α,`(τ)
ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2

η(τ)d
JΩMr (α),h(w; τ, z).

We now take u1, . . . , ud to be an orthogonal basis for H and let `1, . . . , `d be
nonnegative integers. We first prove Theorem 1.2 for elements of the form
v = u1[−1]`1 · · ·ud[−1]`dw. In this case, Lemma 5.1 implies

JMH(α)⊗ΩMr (α),h(v; τ, z)

= fu1,α,`1(τ) · · · fud,α,`d(τ)
ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2

η(τ)d
JΩMr (α),h(w; τ, z).

Recalling the module decomposition (40) for M r, it follows that
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Jr,h(v; τ, z) =

δ∑
t=1

∑
α∈Λ+γt

JMH(α)⊗ΩMr (α),h(v; τ, z)(42)

=

δ∑
t=1

∑
α∈Λ+γt

fu1,α,`1(τ) · · · fud,α,`d(τ)

· ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2

η(τ)d
JΩMr (α),h(w; τ, z).

Each α ∈ Λ + γt may be written as α = u+ γt for some u ∈ Λ. The isomor-
phism (39) then shows

ΩMr(α) = ΩMr(u+ γt) ∼= ΩMr(γt).

Therefore, (42) becomes

Jr,h(v; τ, z) =

δ∑
t=1

JΩMr (γt),h(w; τ, z)

η(τ)d
(43)

·
∑

α∈Λ+γt

fu1,α,`1(τ) · · · fud,α,`d(τ)ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2

= η(τ)−d
δ∑
t=1

JΩMr (γt),h(w; τ, z)

·
∑

α∈Λ+γt

`1/2∑
i1=0

· · ·
`d/2∑
id=0

g`1,i1,u1
(τ) · · · g`d,id,ud(τ)

· 〈u1, α〉`1−2i1 · · · 〈ud, α〉`d−2id ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2.

Since the terms g`j ,ij ,uj (τ) are independent of α, Equation (43) becomes

η(τ)−d
δ∑
t=1

JΩMr (γt),h(w; τ, z)

`1/2∑
i1=0

· · ·
`d/2∑
id=0

g`1,i1,u1
(τ) · · · g`d,id,ud(τ)

·
∑

α∈Λ+γt

〈u1, α〉`1−2i1 · · · 〈ud, α〉`d−2id ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2.

Finally, the functions∑
α∈Λ+γt

〈u1, α〉`1−2i1 · · · 〈ud, α〉`d−2id ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2
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are linear combinations of functions of the form∑
α∈Λ+γt

〈a, α〉`1+···+`d−2(i1+···+id) ζ
〈α,h1〉
1 · · · ζ〈α,hm〉m q〈α,α〉/2,

for various a ∈ H. These are the functions (8) above and the functions θh
considered in [21]. Finally, we consider arbitrary v as in (6). Note that if
any of the mx,y (1 ≤ x ≤ d, 1 ≤ y ≤ νd) do not equal 1, then applications of
Lemma 3.3 will reduce Jr,h(v; τ, z) to sums of the form

H(τ)Jr,h(u1[−1]`1 · · ·ud[−1]`dw; τ, z)

for appropriate `1, . . . , `d ∈ N and quasi-modular form H(τ) of weight pre-
scribed in the statement of Theorem 1.2. The proof of Theorem 1.2 is now
complete.
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