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Dubrovin-Zhang hierarchy for
the Hodge integrals

A. BURYAK

In this paper we prove that the generating series of the Hodge inte-
grals over the moduli space of stable curves is a solution of a certain
deformation of the KAV hierarchy. This hierarchy is constructed
in the framework of the Dubrovin-Zhang theory of the hierarchies
of the topological type. It occurs that our deformation of the KdV
hierarchy is closely related to the hierarchy of the Intermediate
Long Wave equation.

1. Introduction

Let Mg, be the moduli space of stable complex algebraic curves with n
labelled marked points. The intersection theory of M, , is closely related to
the theory of integrable systems of partial differential equations. The basic
result in this subject is the famous Witten conjecture ([Wit91]) proved by
M. Kontsevich (see [Kon92]). It tells the following. The class v; € H*(M,.p;
C) is defined as the first Chern class of the line bundle over M, ,, formed by
the cotangent lines at the i-th marked point. Intersection numbers (g, 7%, - - -
Tk, )g are defined as follows:

. k kn
<Tk1Tk2"'Tk”>g = /M Q]Z)ll 22"'1[)77, .
g,n

Let us introduce variables h, tg,t1,%2,... and consider the generating series
Ko
D ST SN CRTEE e
920,n>1 ki,....kn>0
2g—2+n>0

Witten’s conjecture, proved by M. Kontsevich, says that the second

derivative %ZT? is a solution of the KdV hierarchy. The first two equations of
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this hierarchy are

U, = UlUg + Euxmcv

= *1 Uy + —(2 + )+ 72

U (I UgU U, U .
tz 2 x 12 xTHrx TTX 240 TLLTT
Here we identify z with tg.

In this paper we study the Hodge integrals over the moduli space Mg,ni

NjThy = Th) g o= / Ay s -,

g,n

where \; € H% (@7"; C) is the j-th Chern class of the rank g Hodge vec-

tor bundle over M, , whose fibers over smooth curves are the spaces of
holomorphic one-forms. Consider the generating series

pHodge .= 3" Z hggj > Tk Th)g eyt

gn>0 0<j<g k1,..0,kn>0
2g—2+n>0
The main result of the paper is the following. In Section we con-
struct a certain hamiltonian deformation of the KdV hierarchy. The first
two equations of this hierarchy are

(1.1) ‘) —uugc—i-Zhg 9= 1’ qu+1,
g>1
|329’ 2941, 2
Ut, = 5 Ug + Z 2(““2(])96 + 077" (u”))

+ 29'w 2(g + Duzgin.
> )

Here Bs, are Bernoulli numbers: By = %, By = —%, ...; and we denote by
u; the derivative d2u. We call this hierarchy the deformed KdV hierarchy.
Let

2g rrHodge
g g0

~ _1)9
1.9 FHodge — FHodge + 2 : ( e
(1.2) — 2%9(2g + 1) oty

Theorem 1.1. The series ‘92}?9:;@6 is a solution of the deformed KdV hier-
archy.
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We remind the reader that we identify = with ¢y.
Let us explain how to compute the series F049¢ yging this theorem.

Since My 3 is a point and fM A = 24, we have
2 he
FHodge _ 0 + =t
om0 6 247
Therefore,
a2ﬁHodge
i — to.
2
ot? -

Using this equation as an initial condition for the deformed KdV hierarchy,
Theorem allows to determine the series 8%7152(1“. Note that the transfor-
mation (1.2 is invertible, one can check that

22g 1 _ 1 ’B ‘ 62gﬁHodge
Hodge __ 17Hod § : 29
FROME = ROt + 22g9-1 lhs 29
29)! ot

g>1

. Hodge Hodge .
Therefore, using M?)Tg we can reconstruct % After that the string

equation allows to determlne FHodge Thyis is the same argument as E. Wit-

ten used in [Wit91] in order to reconstruct the series F' from the second

. . 2
derivative 2 1y
ot

Remark 1.2. In [Kaz09] M. Kazarian proved that after a certain change of
variables the series F7°99¢ hecomes a solution of the KP hierarchy. It seems
to be interesting to relate his result to ours.

Equation coincides (after several rescalings) with the Intermedi-
ate Long Wave (ILW) equation (see e.g. [SAKT9]). We are very grateful to
S. Ferapontov and D. Novikov for noticing this fact after the author’s talk
on the conference in Trieste (Hamiltonian PDEs, Frobenius manifolds and
Deligne-Mumford moduli spaces, September 2013). An infinite sequence of
conserved quantities of the ILW equation was constructed in [SAKT9]. We
compare these conserved quantities with the Hamiltonians of our deformed
KdV hierarchy in Section

Our approach is based on the B. Dubrovin and Y. Zhang theory of the
integrable hierarchies of the topological type. In [DZ05] B. Dubrovin and
Y. Zhang gave a construction of a bihamiltonian hierarchy associated to
any conformal semisimple Frobenius manifold. They conjectured that the
equations and the hamiltonian structures of this hierarchy are polynomial.
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In [BPS12a] the authors suggested a more general construction of a hamil-
tonian hierarchy associated to an arbitrary semisimple cohomological field
theory and proved the polynomiality of the equations and of the hamiltonian
structure (see also [BPS12b]). One of the simplest examples of a cohomo-
logical field theory is the one formed by the Hodge classes

(1.3) L+e+edg+ - +e9)\ € H (M, ,; C).

The main step in the proof of Theorem [I.1]is the application of the polyno-
miality theorem from [BPS12a] to the Dubrovin-Zhang hierarchy associated
to the cohomological field theory (|1.3]). We also prove the following theorem.

Theorem 1.3. Consider the Dubrovin-Zhang hierarchy associated to the
cohomological field theory (1.3). Then the Miura transformation

~ (—1)¢ 9.
(14) UHU—U—F;QQQ(QQ_’_]_)!EEUQQ

transforms this hierarchy to the deformed KdV hierarchy.

One can see that the variable u is related to the variable u (Eq. ) in
the same way as the series F7949¢ is related to the series FHo9¢ (Eq. (L.2)).
This is so, because, as it will be explained in Section ] Theorem is a
consequence of Theorem

1.1. Organization of the paper

In Section [2] we give a construction of the deformed KdV hierarchy. The
main statement here is Proposition [2.3]

In Section [3| we recall the Dubrovin-Zhang theory of the hierarchies of
the topological type.

In Section [4| we formulate three propositions and show that Theorems
and Proposition [2.3]follow from them. These propositions are proved
in Sections [f] [6] and [7] correspondingly.

In Section 8 we compare the deformed KdV hierarchy with the hierarchy
of the Intermediate Long Wave equation.

Appendix is devoted to the proof of several technical statements.
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2. Deformed KdV hierarchy

In this section we construct the deformed KdV hierarchy. First, in Section[2.]]
we recall basic facts about hamiltonian systems of partial differential equa-
tions. Then in Section we present a construction of the deformed KdV
hierarchy. The main statement here is Proposition It says that there
exists a unique sequence of local functionals with certain properties. The
uniqueness part is simple. It is based on Lemma that is proved in Sec-
tion The proof of the existence part is presented in Section

2.1. Hamiltonian systems of PDEs

Here we recall the hamiltonian formalism in the theory of partial differential
equations. The material of this section is mostly borrowed from [DZ05].

2.1.1. Differential polynomials and local functionals. Consider vari-
ables u, u1, ug, . ... We will often denote u by ug and use an alternative nota-
tion for the variables uq,us, .. .:

Ugp 1= UL, Upp = UD,....
Let A be the space of polynomials in the variables us,s = 1,2,.. .,

f(ua Ug, Ugg, - - ) = Z Z f81782 ..... Sm (u)uslu82 Ce U,

m>0 81,...,8m>1

with the coefficients f %" (u) being power series in u. Such an expression
will be called differential polynomial.
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The operator 9;: A — A is defined as follows:

Oy := Zusﬂaaus.

s>0

Let A = A/im(9,). We have the projection 7: A — A/im(0,). We will use
the following notation:

/hda: = (h),

for any h € A. The elements of the space A will be called local functionals.

For a local functional h = [ hdz € A, the variational derivative g—z cA

is defined as follows:
Sh ; Oh
5= > (=) "

>0

Let us introduce a gradation degg; ¢ on the ring A of differential polyno-
mials putting

deggipur =k, k> 1; deggys f(u) = 0.

This gradation will be called differential degree. The gradation on A induces
the gradation on the space A. There is an important lemma (see e.g. [DZ05]).

Lemma 2.1. Let f be an arbitrary differential polynomial such that fl|u,=o
= 0. Then the local functional f = [ fdz is equal to zero, if and only if

57 _
o =o.

Let A" C A be the subring of polynomials in u, u, us, . ... Sometimes we
will use another gradation on the ring A’ assigning to u;,7 > 0, degree 1.
This second gradation will be just called degree.

2.1.2. Extended spaces. Introduce a formal indeterminate h of the dif-
ferential degree

degdif h=-2.

Let A:= A® C[h] and A% c A be the subspace of elements of the total
differential degree k, k > 0. The space Al consists of elements of the form

flusug,ug, .. h) =Y W fi(usur,...), fi €A, degyy fi =2i+k.
>0

The elements of the space A will be also called differential polynomials.
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Let A := A ®C[h] and AF c A ® C[7] be the subspace of elements of
the total differential degree k. The space A¥ consists of integrals of the form

fz/f(u;ul,UQ,...;h)daz, fe.,zl\[k],

They will also be called local functionals.
2.1.3. Hamiltonian systems of PDEs. Let K be a differential operator
(2.1) K = Z fiih'os,

4,520

where f; ; € Aand degg; s fij +j = 2i + 1. Let us define the bracket {-, -}  :
AE s Al Alk+I+1] by

_ = [0g, 06h
{9,h}K .—/6UK5udx.

The operator K is called Poisson, if the bracket {-, -} x is antisymmetric
and satisfies the Jacobi identity. It is well-known that the operator 0, is
Poisson (see e.g. [DZ05]).

A system of partial differential equations

(2.2) - :fi(u;ul,...;h), 1> 1,

where f; € ./Zt\[”, is called hamiltonian, if there exists a Poisson operator K
and a sequence of local functionals i; € A%, i > 1, such that

Shi
T = Kia
fi _ ou
{hi,hj}[(:o, for i,j > 1.
The local functionals h; are called the Hamiltonians of the system ([2.2)).

2.1.4. Miura transformations. Let us recall the Miura group action on
hamiltonian hierarchies.
Consider transformations of the form

(23) u—u=u+ thfk(u;ul, coougg),  fr €A, degg fr = 2k.
k>1

It is easy to see that transformations ([2.3|) form a group which is called the
Miura group.
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Let us define the Miura group action on hamiltonian hierarchies. Given a
transformation , any differential polynomial from Al can be rewritten
in the variables u;. This defines the Miura group action on Al and on Al
The action on Poisson operators is defined as follows:

~ o
— _— Ap _ q
KoK= aupa oK o[> (~0,) ° Fuc

p=>0 q=>0

The Miura group action transforms solutions of hamiltonian hierarchies
in the following way (see e.g. [DZ05]).

Lemma 2.2. Suppose we have a Poisson operator K and a sequence of
commuting local functionals h,, € AL N — O Let u(z,t1,...;h) be
a solution of the correspondmg hierarchy of PDEs: K‘Sh Consider a
Miura transformation (2 Then the series u(x, tl, ...;h) is a solution of
the transformed hzemrchy K 5h

2.2. Deformed KdV hierarchy

In this section we give a construction of a deformation of the KdV hierarchy.

Proposition 2.3. Let ¢ be any complex number. There exists a unique
sequence of local functionals hy, € A% n > 1, such that

- u? | Bag|

2.4 hy = / — 4+ e L) dz,
- ut2
hy, = / ((n—|—2)' + O(h)) dz, forn > 2,

{Ewﬁj}az - 07 fOT' 7’7.7 Z 1.

The hamiltonian system of partial differential equations corresponding
to the sequence of local functionals h,, and the Poisson operator 9, will be
called the deformed KdV hierarchy.

The uniqueness statement in Proposition [2.3] is a consequence of the
following simple lemma that will be proved in the next section.

Lemma 2.4. Let us fiz a local functional h € ALl of the form h = i (%3 +
O(h))dac. Consider also an arbitrary power series qo(u). Suppose there exists
a local functional g€ A% of the form G = [ (qo(u) + O(h))dz, such that
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{h,q}s, = 0. Then the local functional § is uniquely determined by h and

qo(u).

We thank B. Dubrovin for telling us about Lemma
The proof of the existence part of Proposition is presented in Sec-
tion [l

2.3. Proof of Lemma 2.4]

The proof is based on the following lemma.

Lemma 2.5. Let p(u;ui,ug,...) be an arbitrary homogeneous differential
polynomial of positive differential degree. Suppose {fpd:];,f %dm}a, =0,
then [ pdx = 0.

Proof. 1f degg; s p = 1, then automatically [ pdz = 0. Suppose degg;rp > 2.

Define the bracket [-, ] on differential polynomials as follows:
s\ Or <\ 0q
rli= 3 (@05 — @)L
s>0
We have
/[uux,p |dx —/ Zas uum p dx — /(puw + udyp)dx
$>0 Us

/‘”Da <u22>dx—/8x(pu)dx
{/pdaz/ dm} —o.

Thus, [uug, p] is a Oy-derivative.
Let us consider the lexicographical order on monomials J;" ; up*. It is
easy to compute that, for a monomial f(u) [T} up*, we have (see [LZ03])

(2.5) [uttg, f(u H upt] = <Z (k+ 1Dag —ag — 1) f(u)ug H u™
k=1

k=1

+ monomials with the lower
lexicographical order

Let f(u) [T, up* be the monomial in p with the highest lexicographical
order. From (2.5)) and the fact that [uu,, p] is a d,-derivative it follows that
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m > 2 and a,,, = 1. The lexicographical order of the highest monomial in
the polynomial

e () )

is lower than the lexicographical order of the highest monomial in p. We
can do the same process further and prove that p is a d,-derivative and,
therefore, [ pdz = 0. O

Now let us PTOVG Lemma [2.4] Suppose that there exist two different
local functionals g',g* € AL such that {h, g}y, =0 and @ = I (ao(u) +
21‘21 q; (u, UL, .. .)h’)dx. We have

(2.6) {h.7" —q*}o, = 0.

Let 4o be the smallest 7, such that [(¢} — ¢?)dz # 0. From (2.6]) it obviously
follows that {f %de, f(qil0 - qizo)dx, }8m = 0. Hence, by Lemma f(q}o -
q?o)d:c = 0. This contradiction proves the lemma.

3. Cohomological field theories and the Dubrovin-Zhang
hierarchies

In this section we briefly recall the Dubrovin-Zhang theory of the hierar-
chies of the topological type. In Section we review the definition of coho-
mological field theory. In Section we describe the construction of the
Dubrovin-Zhang hierarchy associated to a semisimple cohomological field
theory.

3.1. Cohomological field theory

Here we recall the definition of cohomological field theory. For simplicity, we
consider only one-dimensional cohomological field theoriesﬂ We refer the
reader to [Sha09] for a more detailed introduction to this subject.

A one-dimensional cohomological field theory is a collection of classes
agn € H* (ﬂgm; C) defined for all g and n and satisfying the following prop-
erties (axioms):

ITo be completely precise, we consider one-dimensional cohomological field the-
ories, where the scalar product of the unit with itself is equal to 1.
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ag.n belongs to the S,-invariant part in the cohomology H* (M, ,; C),
where the Sy-action on H*(My p; C) is induced by the mappings M, ,,
— My, defined by permutations of marked points.

e We have ap3 =1€ H*(Ms;C) =C.

o If 7: ﬂg,n_i,_l — mg,n is the forgetful map, then 70y, = g nt1-

a) Ifgl: Mg, ni+1 X Mg, npt1 — Mg, +gs.m1+n, is the gluing map, then

gl*a91ﬂ27nl+n2 = Qg ni+1 " Qgy np+1-
b) If gl: Mg_1n42— Mgy is the gluing map, then gl* oy, = ag—1 n12.

The potential F' of the cohomological field theory is defined as follows.
Introduce variables t4, where d > 0. Then

F .= Z F,h?,  where

920
1 n . n
Fg = E E E [ Oég}nl_‘['lpi' | |td1
n>0 di,...,dn, >0 g.m =1 i=1
2g—24n>0

Example 3.1. Let € be an arbitrary complex number. Then the classes
agn=1+eM +e*Xo+ - +9\, € H (Mg,;C)
form a one-dimensional cohomological field theory.

Example 3.2. Let €1, €9, ... be an arbitrary sequence of complex numbers.
Then the classes

Oég’n = exp Z i ChQi_l(A) s
i>1
where chg;_1(A) are the Chern characters of the Hodge bundle, form a one-
dimensional cohomological field theory. In fact, any one-dimensional coho-
mological field theory has this form (see [MZ00]).

3.2. Dubrovin-Zhang hierarchy

In [BPS12a] the authors gave a construction of a hamiltonian system of
partial differential equations associated to an arbitrary semisimple cohomo-
logical field theory. In this section we recall that construction. For simplicity,
we do it in the case of a one-dimensional cohomological field theory. Any
one-dimensional cohomological field theory is semisimple.
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We fix a one-dimensional cohomological field theory, o, € H*(M,; C),
with a potential F' =} -, h?F,. In Sections [3.2.1] and [3.2.2| we construct
a sequence of local functlonals and a Poisson operator. In Section we
present a solution of the constructed hierarchy.

3.2.1. Local functionals. Let

_or
oot

We identify z with to. Let u, := 0}u. From the axioms of cohomological
field theory it follows that

Uy =ty + Op1 +OF*) + O(h), n >0.

Thus, any power series in A and g, t1, ... can be expressed as a power series
in b and u,u; — 1,us9,us, .. ..
Let
. O*F
DA ot,0t,
Let us express €2, ; as a power series in i and u,u; — 1, ug, . ... In [BPS12al

it is proved that the coefficient of 19 in €, , is a differential polynomlal of
dlfferentlal degree 2g. So, we can consider £, 4 as an element of AL Tet
hy, = f Qo pt1dx € Al } n > 1. The local functionals h,, will be the Hamil-

tonians of our hlerarchy. It is easy to show that Qq, = (nrll), + O(h).

3.2.2. Poisson operator. Let us construct a Poisson operator of our
hierarchy. Let

0*F,
Vi= ———5
ot3

and vy, := d7v. From the axioms of cohomological field theory it follows that
Oy =ty + 6n1 + O(t%).

Thus, any power series in tg,%1,%o,... can be expressed as a power series in
v,01 — 1,V9,....
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Consider u as a power series in v,v; — 1, vs, . ... Consider the differential
operator
ou ou
K = —0P 00,0 E (=0z)%0 —
vy vy
p=>0 q=>0

We can express this operator in the following form

1,520

where p; ; is a power series in u,u; — 1, ug, . ... In [BPS12a] it is proved that
pi,j is a differential polynomial of differential degree 27 4+ 1 — j. Thus, K is
an operator of the form . In fact, the operator K is Poisson and the
local functionals h,, commute with respect to the Poisson bracket defined by
it: {hn, b} = 0.

By definition (see [BPS12a]), the Dubrovin-Zhang hierarchy, associated
to our cohomological field theory, is the hamiltonian hierarchy, formed by
the local functionals h,,n > 1, and the Poisson operator K.

3.2.3. Solution of the hierarchy. We have the following lemma (see
[BPS12a]).

Lemma 3.3. The series %th s a solution of the constructed hierarchy:

ou Shy,
Oty, K su’ 7 1

4. Reformulation of Theorems [1.1], and of Proposition

In this section we formulate three propositions and show that Theorems|I.1
and Proposition follow from them. These propositions are proved in
the next three sections of the paper.

Consider the cohomological field theory and the corresponding
Dubrovin-Zhang hierarchy.

Proposition 4.1. The Miura transformation

Py (=1)¢ 9.9
(41) UHU—U—F;%(ZQWHEUQQ
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transforms the Poisson operator of the hierarchy to 0, and the Hamiltonian
El to

63 h —— hQE ~— 1 ~~
(4.2) / 3 + g Uu2 + 144OUU4 + Z e~ cquugy | du,
9>3

where cg, g > 3, are some complex constants.

Proposition 4.2. The following two local functionals

- u? | Bag|
hi= ||+ [ d
1 / 6 —i—; € 2(29)!UUQ9 x,

4
_ U h 9 |BQ’ _29+1 _11 2
h2:/ TRPTE “‘””Z(ng!hg Ty ey TNy ) | d

commute with respect to the bracket {-,-}a, .

Proposition 4.3. Suppose there exists a sequence of complex numbers cq,
g>1, c1 #0, that satisfies the following property: there exists a local func-
tional hy € A9 of the form

hy = / (;ﬁ + O(h)) dx

that commutes with the local functional

B 3
hi1 = / % + Z hgz-:g_lcguugg dx
g>1

with respect to the bracket {-,-}o,. Then all numbers c,, for g >3, are
uniquely determined by c¢1 and co.

Let us show that Theorems and Proposition [2.3]follow from these
propositions.

From the propositions, it follows that the Miura transform of our
Dubrovin-Zhang hierarchy is a hierarchy with 0, as a Poisson operator
and the local functional as the Hamiltonian h;. This proves the exis-
tence statement of Proposition [2.3] The uniqueness statement follows from
Lemma [2.4] We also immediately get Theorem [I.3] Theorem [I.1]follows from
Theorem Lemma [3.3] and Lemma
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5. Proof of Proposition 4.1

We have hy,, = [ Qo nt1dz. The proof of the proposition is splitted in four
steps. In Section [5.1] we derive a certain homogeneity property of the differ-
ential polynomials €2, ,. In Section we find the coefficient of A9¢9 in the
potential FHod9e Tn Section we prove that substitution kills the
coefficients of A9¢9 in the Hamiltonians h, and show that

B ~3
h1 = / % + Z hgsg_lcgﬂﬂgg dzx.
g>1

We also show that ¢ = i. The computation of ¢y is quite technical, it
is done in Appendix [A] Section [5.4] is devoted to the computation of the
Poisson operator of our Dubrovin-Zhang hierarchy.

Let us fix some notations. By F°49¢ we denote the potential of the
cohomological field theory . We also use the notations from Section

- A2 pHodge 92 Hodge
u; = 3;8F77 v = a}caFOi.
ot? ot2

Recall that we identify x with ¢g.
5.1. Homogeneity of 2, ,
The dimension of Mg,n is equal to 3g — 3 + n, thus, the coefficient of

h9el [Tio t?i in FHod9¢ is non-zero only if > isoli — 1)d; + j = 3g — 3. Con-
sider the linear differential operator O defined by

: 0 0 0
i>0
We get
(51) OlFHodge — _SFHodge‘

From (j5.1) and the commutation relation (recall that 0, = 8%))

(5.2) [0z, O01] = =0,

it is clear that

O1up = (n — 1)uy,.
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Thus,
0 0 0
- — 1Dy — — 3h—.
O, Z(z i 50 <5 Bhor
>0
From ([5.1) it is easy to see that
(5.3) O1Qpg=—(+qg+1)Q,

On the other hand, in [BPS12a] it is proved that €, , is a power series in
h, where the coefficient of A9 is a homogeneous differential polynomial of
differential degree 2¢. This property can be written as

(5.4) 028y, 4 =0, where
0 0
©: ;w ou;  oh

If we subtract (5.3) from (5.4), we get

o
(5.5) > wig+ h— a0 | o= P+ a+ 1)y
>0

We have that €, , is a power series in & and ¢ with the coefficients that
are differential polynomials. It is easy to see that the coefficient of h9¢7 is
non-zero, only if g > j. From it follows that the coefficient of h9¢7 is a
polynomial in u,uy,... of degree p+qg+1— g+ j.

5.2. Coefficient of h9¢9

The so-called \j-conjecture, proved in [FP03], tells that

22071 — 1 |Byy| (29 — 3+ n)!
. >\ d1 d2 “ .. d" frnd 9
(5.6) /M g1 ¥y Un 229-1  (2g)! dy!dy!---dp!’

g,n

n
g>1, Zd¢:2g—3+n.
i=1

We have
1 (n—3)!
FHodge: - ty oty .
0 Z nl Z dyl--d

n>3  dy,..d.>0
di+-+d,=n—3
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Therefore, from (5.6) it follows that, for g > 1, the coefficient of h9%9 in

. -1_1|B
FHodge i5 equal to Q;J -1 |22-‘)’!| V2g—2.
Hodge . .
Consider now Qg ,, = % as a series in h,e,v,v1 — 1,v9,.... We get

that the coefficient of h9¢9 is equal to

929-1 _q |ng|azg 1 <8v> _ 929-1 _ yng\aQW1 (v’:vx)
n:

2291 (2¢g)! ot 229-1 (2g)1
_ 229—1 -1 ’B2g‘ 2 Un—l—l
229-1 (29)!17" \(n+1)!)"
Thus,
9291 _1|By| , !
Qop= 77+ he a2 9029 ( )
" ! ; 2291 (29)! " \(n+1)!
+ Z hgsjfgvj v,v1 — 1,v9,...),

9>320

where f7 ;(v,v1 = 1,v9,...) are power series in v,v1 — 1,vg,.. ..

5.3. Miura transformation

We have
(5.7)

U = U+Z 7_1|B29| +Zh957f0 v,v1 — 1,0 )

= 9591 ( )' V2g 9. 1 — L,v9,...).
g>1 g>352>0
It is easy to check that
2291 — 1|Byy| (—1)9

5.8 1 92 |1 % | = 1.
(58) *_222 229—1 )lz +_2§; 229(2g +—1)!Z

Therefore,

v="u-+ E hgéqud(ﬂ,’ljl—l,ag,...),
9>320

where qg ;(u,u; — 1,2, ...) are power series in u,u; — 1, o, .. ..
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We get

,EnJrl 22g71 -1 |32 | anJrl
Qn,) = —— h9e9 91 529
Om (n+1ﬂ+§: c 2%4(%ﬂa7<m+&ﬂ>

921
+ ) ey (W, ),
9>3>0
- an+2 ) 1w
hn:/Qovanx:/ m—i— Z hgejw;}r (u,u,...) | d.

9>3520

Here wy ; are differential polynomials in ;. From (/5.5)) it follows that wg,j is

a polynomial in u,u1, ... of degree n+1— g+ j. If g — j = n, then wy ;=
bgﬂgg, for some constant by and we have f w;i’ jda: = 0. We obtain

ﬁn+2 .
7 GoJ,,n
hn —/ (T 2) + E h9e Wy dzx.

9,320
n>g—j>1

In particular, we get

_ 3
hy :/ % +Zh9€g*1qg dx,

g=>1
where ¢, are quadratic polynomials in @, @y, .... It is cleat that [@;u;dz =
(1) [ Wty jdz. Therefore, we have
_ e
(5.9) hi = / " + Zhgsg_lcgﬁﬁgg dux,
g>1

for some constants c,.

It remains to prove that ¢; = i and ¢y = le;()' If e = 0, then our coho-
mological field theory is trivial. The corresponding Dubrovin-Zhang hier-
archy in this case is the KAV hierarchy (see [DZ05]). Thus, ¢; = 5. The
computation of ¢y is done in Appendix [A]
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5.4. Poisson operator

Consider the operator O from Section Since O1v = —v and Ojv, =
(n — 1)v,, we get

Thus,

ou ou

The Poisson operator K of our hierarchy is equal to
(5.11) Z —am 0y [ > (=0:)"o ou
avm ovy,
n>0
Let us express it as K = ano prOr. From (5.10) and ([5.2)) it follows that
(5.12) O1pn = —(n — 1)pn
On the other hand, in [BPS12a) it is proved that the coefficient of 90} in

K is a differential polynomial in u,uq, ... of differential degree 2g + 1 — n.
Therefore, we have

8
(5.13) sz : —h pn = (n—1)pp.

Let us sum ([5.12)) and (5.13)), we get

8 0

We know that p,, is a power series in i and ¢ with the coefficients that are
differential polynomials in uz It is easy to see that the coefficient of h97 is
zero, if g < j. Thus, from it follows that p, = Z >0 bg,n¥e9, where
bg,n are complex numbers. From (5.13) it follows that by, = 0, if 29 # n — 1.
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Finally, we get

(5.15) K =Y bgh9e9979%!,
920

where b, are some complex numbers.
We have proved that in the operator K there are no terms with h9e’,

for g > j. Thus, by (5.7) and (5.11)),

229 1Byl .
(5.16) = |1+ Y a 00y
229 L —11Byyl
o |1+ J a

This equation together with (5.8)) implies that the Miura transformation (4. 1))
transforms the operator K to 0,. This concludes the proof of the proposition.

Remark 5.1. Let us compute the product on the right-hand side of (5.16]).

By (5.8),

221 —1|B '
1+ Z 922g—1 ‘ 229‘| 229 = T & _iz "
g>1 (29)! ez —e 2

. A direct computation shows that

. 2
1z
iz iz = w - ZW-
e2 —e 2

On the other hand, ¥(2) = 1 — ¥, (522/2%. Therefore,

W — 2z —1—%2429 e g)‘329| 29
g>1

We conclude that

K=0,+ Z hgggwgggﬂ'
i (29)!
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6. Proof of Proposition

Before the proof of the proposition let us state several useful formulas.

(6.1) {/uuzgldaz,/uu292da@} =0,
0,

T

6.2 “, 2upgdr S = —2 ar, [ 4
(6.2) i uuzg:ca— wuggde, 24:r8m.

T

They can be easily checked by a direct computation.
From (6.1) and (6.2) it follows that
_ 1)|B
(6.3) {hl’hQ}a :Zhggg—z % 9+ ’ 29‘ {/d /uu29d }
922

| Bag, || Bg, |
+ Z 2;1 2992 Ulag, d, u2u292dm N .

g1+92=
91792>1

We have to prove that (6.3)) is equal to 0. Expression (6.3]) is equal to

(6.4) /

(9 + D)[Bayl -

|B2g HB292‘ 2 2
g =2 (Quugg, + 0372 () )ugg, 41 | de.
| | 2 x g1

g1,92>1

We have fa§92 (u2)u291+1d1‘ = fU2U29+1. If m > 2, then (see e.g. [GKP94])

| Bam, || Bam,| _ (2m + 1) Bo|
Z (2;1)!(2;2)! N (2m)! -

mi+meo=m
mi,ma>1

Therefore, (6.4]) is equal to

/

‘B2g‘ Z |B291HB292‘

P20, 1152951 da.
4(2g)1" M2 2(2g1)!(2go)! 202 2L AT

g1+92=g
g1,92>1
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The variational derivative of this integral is equal to

By
g - 20702

’B291HBQQ2| 2
- g " (Ug, Ung, +1 + 077 (uugg, +1)
2(291)!(2¢92)! 2o * !
1+g2=
9917992219
_ |B2g|

- 4(29)| (2uu2g+1 - agg+1(u2))

Bag, || Bag,
_ Z M(u2g2u291+1_aggl(uluzlh))
91+92=9g 2(291) (29 )
91,9221
o
2 (

22) (29 —9; ) (UZiUQg—Qi-l-l - 8§i(u1u2g—27j))

— 03 (wuag, )

Lemma 6.1. We have the following identity:

(6.5

BQZB2g 24 % Uqua Z'fg =1,
(U2'u2 —2i+1 — 03" (urugg—2;)) = 4 ,
12 (20)!(2g — 20)1° 9 e g 0, if g # 1.

This lemma concludes the proof of Proposition [£.2} We prove it in Appen-
dix [Bl

«Q —

7. Proof of Proposition
We have

4
— u
(7.1) ha —/ 2 —i—Zngpg dzx.

g=>1

It is easy to see that [ pidz = [ Guusdz. Denote Guus by 7.
Let us show that, for g > 2, We have

(7.2) /pgdac = / (e972gy + 9 'ry) du,
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where g and ry are polynomials in u; of degrees 2 and 3 correspondingly.
We prove it by induction on g. The coefficient of 29 in {hq, ha}g, is equal to

3
(7.3) {/uﬁdaz,/pgdx} 4972 Z Cgy {/uquld:E,/rgzdx}
0a gi1+92=g Oa
-1 ut
+ 97 e, {/UUdi:E,/%dx}am =0.

91,9221
The second term in ([7.3)) has degree 3 and the third one has degree 4. Hence,

we get. (72).

From (7.3) and (6.2) it follows that [redz = % [ uug.dz. Clearly, we
have [ qgdz = ey [uuggdz, where eg is a complex constant. Using (7.3), we
get

w3
(7.4) eg {/6 dx,/uqud:):}
0z

C lc 2
+ Z % {/UUledQZ,/UQUQQde}a =0.

g1+92=9g
g1,92>1

Define the local functionals ?97?91792 e A% as follows:

_ w3
fqi= {/6daz,/uu29dac}a ,
?91,92 = {/UUled$,/u2U,292d:U}a + {/UUngdx,/UQngdl‘}a .

In these notations equation ([7.4]) looks as follows:

— Cg—1C1—= Cg,Cqy —
egfg + ’ 2 fg—l,l + Z 92g f91792 = 0.

g1+g92=g
9129222

Let us show that, for g > 4, this equation uniquely determines c,—1 from
Cg—2,Cg—3, - ., c1. For this we have to prove that the local functionals f, and
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?9—1,1 are linearly independent. We have

fo= /u2uzg+1dﬂf,
foo11= / [—2(92(u?) + 2uug)ugg—1 — 2(2uugg—o + 0297 (u®))us] dx
=—4f,—2 /(2uungg_1 + 2uuzugg_o)dx
= —4f, - 2/ (92(u?)ugg—1 — 2uiusg—1 + O3 (u*)usg—o
— 6u1u2ugg_2)dac

= _479 — 2/u%u2g_1dx.

We need to prove that 2 [(uuggy1)dz and £ [(u2ugg—1)dz are linearly
independent. We have

5 I (29 +1
(75) @ /(u2uzg+1)d93 = —22 < gi )’LLZ'UQ9+1_Z',
i=1
o
(7.6) Su /(uiuzg_l)daz = —2ujugy — 2ugugg—1
g
2g—1
— 22 < ig— 1 )Uiu2g+1i-
i=1
The matrix of coefficients of ujuay and uzugg—2 in ((7.5) and (7.6) is equal

to
(29+1)29(29—1)
<—2(2g +1) =S )
—4 —(29-1)(29 - 2)
It is non-degenerate, if g > 4. This completes the proof of the proposition.

8. Deformed KdV hierarchy and the ILW equation

In this section we explain a relation of the deformed KdV hierarchy to
the hierarchy of the conserved quantities of the Intermediate Long Wave
equation constructed in [SAKT9).

In Section we recall the definition of the ILW equation and show
how to rescale the parameters in order to get the first equation of the
deformed KdV hierarchy. In Section [8.2] we introduce slight extensions of
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the spaces A and AlH. Section contains a review of the construction of
conserved quantities of the ILW equation from [SAKT79]. In Section we

compare these conserved quantities with the Hamiltonians of the deformed
KdV hierarchy.

8.1. Intermediate Long Wave equation

The Intermediate Long Wave equation looks as follows (see e.g. [SAKT9)):

(8.1) wr + 2wwy + T(wy,) =0,
where
T(f) — 262717122”@82”71]0
= (2n)! 7

and § is a non-zero complex number.

Remark 8.1. In the physics literature the operator T is usually written in
the following way:

v =rv [ o (sgn<:c —6) — coth ”“25‘5)) F(€)de.

—0o
Let u be a formal variable and € be a non-zero complex number. Let us
make the following rescalings:

(8.2) Ve K 5 IVE

w = —u, T=——+t1

2/’ 2
Then Equation (8.1)) is transformed to
| Bag|

(8.3) Up = Uty + Z,uzgsg*l 51 2941
= (29)!

If we put A = u?, we get exactly the first equation (1.1) of the deformed
KdV hierarchy.

8.2. Extensions of ./1[’“] and of Al¥]

We need to enlarge the spaces Al and Al
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Nl

Let AM] be the space of series of the form

Flsur,ug, ) =Y pifilwsu,..), fi€ A degyyfi=i+k.
i>0

Denote by K,[f] the space of integrals of the form

f = /f(u, Ui, ug,...;u)dr, where f € uzqf]
We have the following simple generalization of Lemma

Lemma 8.2. Let us fiz a local functional h € KE] of the form h = i (%3 +
O(w))dz. Consider also an arbitrary power series qo(u). Suppose there exists

a local functional q € KE?} of the form g = [ (go(u)+ O(p))dz, such that
{h,q}s, = 0. Then the local functional § is uniquely determined by h and

qo(u).

The proof is the same as the proof of Lemma
8.3. Conserved quantities

Here we review the construction of an infinite sequence of conserved quan-
tities of the ILW equation. We follow [SAKTI] except for the fact that we
make the rescalings (8.2]).

Let us introduce the operator R by

229191’ 2g| 95291
)‘I'
g>1

Consider the following equation:

1 /2 1
€U—1:)\<€U—M<\/g+2R>0’I+2u>

It is easy to see that it has a unique solution of the form o =75 -, =,

where o, € .Z,[? ) For example,

o1 = 2u,

1 4u



Dubrovin-Zhang hierarchy for the Hodge integrals 265

It is not hard to check that, if u is a solution of (8.3), then o satisfies the
following equation:

A
0n=3 (7 —1) o, — e looy + pogRoy + 1ROy
We can easily see that [ oydz = 0, therefore, all local functionals [ o,dz are

conserved quantities of Equation (8.3)).
8.4. Relation to the deformed KdV hierarchy

In this section we express the conserved quantities [ o,dz as linear combi-
nations of the Hamiltonians h,,.

Let i = u? and consider the Hamiltonians h,,n > 1, of the deformed
KdV hierarchy. Let hg := [ %d:c and h_1 := [udx. It is easy to see that

n—1

On = (—1)"“2u” + Gin Ut +O(p)
" n — (n—i)l & ’

where a; j,1 < i < j, are some complex coefficients. Thus, we have

n—1
_ Qi —
/O‘ndCC = (=1)""12"(n — 1)l hy,_o + E E; hp—i—2 + O(p).

=1

Since [ o,dx are conserved quantities, we have { [ o,dz, hi}g, = 0. There-
fore, from Lemma [8.2] it follows that

n—1

/Jndx = (=1)"M2"(n— D)y 2+ Y

i=1

Qjn
i Pp—i—2.

Appendix A. Coefficient of A2

Here we compute the coefficient ¢o in and complete the proof of Propo-
sition .11

Consider the local functionals [ Qqodz before the Miura transforma-
tion . In order to compute the coefficient ¢y in , we only need to
compute the coefficients of & and of A% in J Qo,2dz. The coefficient of & is
equal to 2—14 f wugdz. Let us compute the coefficient of h%e.

The series agg’Q .o can be computed using the Givental operators that
act on potentials of cohomological field theories. We remind the general
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formulas for this in Section [A.I] All technical computations are done in
Section [A.2]

A.1. Deformations of cohomological field theories

Consider a one-dimensional cohomological field theory, o, € H*(M,,; C).
Let F' be its potential. Consider the following deformation of the classes

Qgn'
agn(e) = exp (echy—1(A)) agn,

where chg;—1(A) is the Chern character of the Hodge bundle. It is well-known
that the classes oy (e) form a cohomological field theory.

Let F(e) be the potential of the deformed cohomological field theory.
There is the following formula (see e.g. [BPS12a]):

OF(e))
Oe

BQZ 20—1
= — 2N EF),

where 22— is the operator that acts as follows:

— OF OF h oy OF
P2ANF) = ————+ )ty + 1)t
(F) Dty g Oty | 2 HJ;”( ) ot;ot;

1 L OF OF
+3 (-t

i+j=21—2 0t; Ot;
Consider the second derivatives €2, 4(¢) := gifgfq). They are differential
polynomials in wu;(e) := 8;88%8) (see [BPS12al). Denote u;(e) by wu;. Let

aﬂgi’;(s)[u] be the derivative of €2, ,(¢) as a differential polynomial in u;. In

other words,

Oy q(e) [u] == Z Yy 4(€) 8“2
Oe ' Ou; Oe’

In [BPS124] it is proved that

an,q(e)

] By
Oe

e )
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where

(A1)

20—2
2 u](Qg) = Qpraim1,g + Dpgraimt + Y (1)1 Q24
i=0

— Z < n +2)0; Qo211

n>0
21-2n—1

+ ZZ( ) 1) O 0,00 1 Qg0

1=0 k=0
20-2

+ Z 1) 070,12 10))

202
+35 =y (1) 00,07 g0 0.

A.2. Coefficient of A2

Let us return to the case of the cohomological field theory . pg =
QLN et FEAV be the potential of the trivial cohomological field theory:

Ot,0tq
pRAV . _ h . .
=D D (e te

920,n>1 " K1k >0
2g—24n>0

KdV Q2FKav
and Q = Gior
From Section ij it follows that

o] =g (o4).
where
KdV
[ ](QKdV) QKdV+QKdV Q OQKdV Z a +2)8nQKdV
n>0

aQQKdV

n—1
n s 2 h
- Z <k> U 1Up—f—1— 0y (U )] - 2nmz>0 mun—s—lumJﬂ-
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We have the following formulas (see e.g. [DZ05]):

QKdV _ Uj 4+ —
T '™
3 p 2
QKdV _w 2 —
g T gg (T T 2uue) + gpus,
Qfdv = u74 — (uPup + uui) + da = (2uug + dugug + 3u3) + Lgufi
4 h U 23u2  wjug h?
QKdV — Ui 3 2 hz 4 2

By direct computations, we get

/ 1y (QKW) dz = / <Zu2uz + Z;uM) dz.

Thus, the coefficient of A% in J Qo2dz is equal to — 360 fuw@x Now
it is easy to compute that the coefficient ¢ in (5.9) is equal to @ This
completes the proof of Proposition

Appendix B. Proof of Lemma
Introduce the function ¢(z):= ) ;5 %zzi. For a power series f(z) =

>0 fiz", we denote by [2'] f the coefficient f;. The coefficient of uoy1u2g— 2k
on the left-hand side of (6.5]) is equal to

BopBag—2r i 2i\ BaiBay 2
(2k)!(2g —2k)1 2= \2k) (20)1(2g - 20)!
_ Z 29— 21 BoiBoy_o;

29 — 2k — 1) (20)!(2g — 20)!

201 [ Baxdz®*  ppl2R) 22k b Byip(2k—2it1) ,2k+1
- ]< (2k)! (2k)! _Z; (2i)!(2l<:—22’+1)!>

Therefore, the lemma is equivalent to the following identity.

Boph22* ¢¢ (2Kk) , 2k zk: 0y p(2R—2iH1) ;2k+1 s 52
(2k)! )2k —2i + 1)l "0q

=0
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Let us rewrite it in a bit different way:

¢¢( ngqb Z B2 §Z5 (2k— 21-1—1)2 22

B.1 80—
(B.1) (2k)! N2k —2i 1)1 K0

Let us formulate another identity of this type.

k .
¢(2k+1)¢ B2i¢(2k+2721)2 p
(B.2) =->
(

(2k +1)! 2i)1(2k + 2 — 2i)! T Oko:

We prove (B.1) and (B.2) by induction on k. For k = 0, equation (B.1])

looks as follows:

2

(B.3) 2 = —¢* + ¢+ ZZ.

It is equivalent to the following identity between the Bernoulli numbers (see
g. [GKP94]).

m

Z B2iBam—2i _ 2mBam Om,1
(2i)1(2m — 24)! (2m)! 4

Suppose that (B.1)) is true and also (B.2) is true for k' < k. Let us prove
(B.2). Let us differentiate (B.1]), we get

¢/¢(2k) ¢¢(2k+1) B Boyd' _i Bgi¢(2k_2i+2)2’
(

el T el T @2k 2012k — 2i + 1)!
k (2k—2i+1)
; 2;)3'2;; T T 5’“03
Using and the induction assumption, we get
2 (2k) (2k+1)
sy (50
_ <_¢; n Z) BQk zk: B)Q g;k 2;?_) 0 + (5,{702

1:0
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From the induction assumption it follows that

B2 p(2K) B Bop? - Pp2E+1) - zk: Boj p(2k—2i42) ;2
(

(2K)!  (2k)! (2K +1)! (2 — 1)!(2k — 2i +2)!
(;5(219) 2 BQkZQ 519,022
4(2k)!  4(2k)! 4

(B.5)

After substituting (B.5]) into (B.4)) we get (B.2]).
Suppose that (B.2) is true and also (B.1)) is true, for any k' < k. Then

the proof of (B.1]) for ¥ =k + 1 can be done in a completely similar way.
This concludes the proof of the lemma.
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