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Feynman integrals and iterated integrals on moduli

spaces of curves of genus zero

Christian Bogner and Francis Brown

This paper describes algorithms for the exact symbolic computa-
tion of period integrals on moduli spacesM0,n of curves of genus 0
with n ordered marked points, and applications to the computation
of Feynman integrals.

1. Introduction

Let n ≥ 0 and let M0,n denote the moduli space of Riemann spheres with
n ordered marked points. The main examples of periods of M0,n+3 consist
of integrals [5, 6, 15]

(1.1)
∫

0≤t1≤···≤tn≤1

∏n
i=1 tai

i (1− ti)bi∏
1≤i<j≤n(ti − tj)cij

dt1 . . . dtn

for suitable choices of integers ai, bi, cij ∈ Z such that the integral converges.
These integrals have a variety of applications ranging from superstring the-
ory [36, 37] to irrationality proofs [20, 25]. In [5] it was shown that such
integrals are linear combinations of multiple zeta values

(1.2) ζ(n1, . . . , nr) =
∑

1≤k1<···<kr

1
kn1

1 . . . knr
r

, where ni ∈ N, nr ≥ 2

with rational coefficients. One of the goals of this paper is to provide effective
algorithms, based on [5], for computing such integrals (1.1) symbolically. The
idea is to integrate out one variable at a time by working in a suitable algebra
of iterated integrals (or rather, their symbols) which is closed under the two
operations of taking primitives and taking limits along boundary divisors.

The second main application is for the calculation of a large class of
Feynman amplitudes, based on the universal property of the spaces M0,n.
The general idea goes as follows. Suppose that X → S is a stable curve of
genus zero. Then the universal property of moduli spaces yields an n ≥ 3
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and a commutative diagram:

(1.3)
X −→ M0,n+1

↓ ↓
S −→ M0,n.

The idea is that, for a specific class of (multivalued) forms on X, we can
integrate in the fibers of X over S by passing to the right-hand side of the
diagram and computing the integral on the moduli space M0,n+1. In this
way, it only suffices to describe algorithms to integrate on the universal
curve M0,n+1 over M0,n. In practice, this involves computing a change of
variables to pass from X to a set of convenient coordinates on the moduli
space M0,n+1, applying the algorithm of [5] to integrate out one of these
coordinates, and finally changing variables back to S.

This process can be repeated for certain varieties which can be fibered
in curves of genus 0 and yields an effective algorithm for computing a large
class of integrals. Necessary conditions for such fibrations to exist (“linear
reducibility”) were described in [17] and apply to many families of Feynman
integrals, as we discuss in more detail presently.

1.1. Feynman integrals

Any Feynman integral in even-dimensional space–time can always be
expressed as an integral in Schwinger parameters αj :

(1.4) I =
∫

0≤αj≤∞

P (αj)
Q(αj)

dα1 . . . dαN ,

where P and Q are polynomials with (typically) rational coefficients and
which perhaps depend on other parameters such as masses or momenta.
Cohomological considerations tell us that the types of numbers occurring as
such integrals only depend on the denominator Q, and not on the numerator
P . A basic idea of [18] is to compute the integral (1.4) by integrating out
the Schwinger parameters αi one at a time in some well-chosen order. After
i integrations, we require that the partial integral

(1.5) I(α1, . . . , αN−i) =
∫

0≤αj≤∞
P

Q
dαN−i+1 . . . dαN

be expressed as a certain kind of generalized polylogarithm function, or iter-
ated integral. Under certain conditions on the singularities of the integrand,
the next variable can be integrated out. A “linear reduction” algorithm
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[17, 18] yields an upper bound for the set of singularities of (1.5) and can
tell us in advance whether (1.4) can be computed by this method. It takes
the form of a sequence of sets of polynomials (or rather, their associated
hypersurfaces):

S1, S2, . . .

where S1 = {Q}, and Si+1 is derived from Si by taking certain resultants of
polynomials in Si with respect to αN−i+1. When Q is linearly reducible, we
obtain a sequence of spaces for i ≥ 1:

Xi = (P1\{0,∞})N−i+1 \ V (Si)
= {(α1, . . . , αN−i+1) : αk �= 0,∞ and P (α1, . . . , αN−i+1) �= 0

for all P ∈ Si}

and maps πi : Xi → Xi+1 which correspond to projecting out the variable
αN−i+1. The linear reducibility assumption guarantees that Xi fibers over
Xi+1 in curves of genus 0. Thus setting (X, S) = (Xi, Xi+1) in the discussion
above, we can explicitly find changes of variables in the αi to write (1.5) as
an iterated integral on a moduli space M0,n and do the next integration.

It is perhaps surprising that such a method should ever work for any
non-trivial Feynman integrals. The fundamental reason it does, however, is
that the polynomial Q can be expressed in terms of determinants of matrices
whose entries are linear in the αi parameters. In the case when Q is the first
Symanzik polynomial, and to a lesser extent when Q also depends on masses
and external momenta, it satisfies many “resultant identities,” which only
break down at a certain loop order.

1.2. A method of hyperlogarithms versus a method of moduli
spaces

There are two possible approaches to implementing the above algorithm:
one that is now referred to as the “method of hyperlogarithms” [18], which
stays firmly on the left-hand side of the diagram (1.3); the other, which is
the algorithm described here [5], which makes more systematic use of the
geometry of the moduli spaces M0,n and works on the right-hand side of
the diagram (1.3).

The first involves working directly in Schwinger parameters, and express-
ing all partial integrals as hyperlogarithms (iterated integrals of one variable)
whose arguments are certain rational functions in Schwinger parameters.
It has been fully implemented by Panzer [38–40] and various parts of the
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algorithm have found applications in different contexts, as described below.
A conceptual disadvantage of this method is that the underlying geometry
of every Feynman diagram is different.

The second method, espoused here, is to compute all integrals on the
moduli spaces M0,n (which, by no accident, are the universal domain of
definition for hyperlogarithms). Thus the underlying geometry is always the
same and is well understood; all the information about the particular integral
(1.4) is contained in the changes of variables (1.3). Another key difference
is the systematic use of generalized symbols of functions in several complex
variables, as opposed to functions of a single variable (hyperlogarithms).

That these two points of view are equivalent is Theorem 4 below, but
leads, in practice, to a rather different algorithmic approach. We nonetheless
provide algorithms (the symbol and unshuffle maps) to pass between both
points of view.

1.3. Applicability

The above method can be applied to a range of Feynman integrals provided
that the initial integral (1.4) is convergent. The case of massless, single-scale,
primitively overall-divergent Feynman diagrams in a scalar field theory was
detailed in [17]. Since then, the method was applied to the computation of
integrals of hexagonal Feynman graphs, arising in N = 4 supersymmetric
Yang–Mills theory [26–28], integrals with operator insertions contributing
to massive matrix elements of quantum chromodynamics (QCD) [33–35],
one- and two-loop triangular Feynman graphs with off-shell legs [29], phase-
space contributions [22, 23] to the cross-section for threshold production of
the Higgs boson from gluon fusion at N3LO QCD [24], coefficients in the
expansion of certain hypergeometric functions, contributing to superstring
amplitudes [36, 37], massless multi-loop propagator-type integrals [38] and
a variety of three- and four-point Feynman integrals depending on several
kinematical scales [39]. These applications arise from very different con-
texts and the method is combined with various other computational tech-
niques. Focussing on Feynman integrals, we can summarize by stating that
the method can be extended to the following situations:

• To Feynman graphs with several masses or kinematic scales.

• To gauge theories, or more generally, integrals with arbitrary numer-
ator structures.

• To graphs with ultra-violet subdivergences. In particular, it is compat-
ible with the renormalization procedure due to Bogoliubov, Parasiuk,
Hepp and Zimmermann (BPHZ) in a momentum scheme [16].
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• Finally, it can also be combined with dimensional regularization to
treat UV and IR divergences by the method of [39].

The method is suited for automatization on a computer. For the special case
of harmonic polylogarithms, the programs [30, 31] support direct integration
using these functions. For the general approach, using hyperlogarithms, a
first implementation of the method was presented in [40]. A program for the
numerical evaluation of these functions is given in [32].

There appear to be other classes of integrals which are not strictly Feyn-
man diagrams, but for which the method of iterated fibration in curves of
genus zero (1.3) still applies. A basic example are periods of arbitrary hyper-
plane complements [5], and as a consequence, various families of integrals
occurring in deformation quantization, for example.

1.4. Plan of the paper

In Section 2 we review some of the mathematics of iterated integrals on
moduli spaces M0,n, based on [5]. The geometric ideas behind the main
algorithms are outlined here. In Section 3, these algorithms are spelled out
in complete detail together with some illustrative examples. In Section 4, it is
explained how to pass between Feynman integral representations and mod-
uli space representations. In Section 5 we discuss some applications, before
presenting the conclusions. Some introductory background can be found in
the survey papers [58, 59].

The methods of Section 3 should in principle generalize to genus 1, using
multiple elliptic polylogarithms defined in [19], but there remains a consider-
able amount of theoretical groundwork to be done. A different direction for
generalization is to introduce roots of unity, by replacing P1\{0, 1,∞} with
P1\{0, μN ,∞} where μN is the group of Nth roots of unity. This should be
rather similar to the framework discussed here.

2. Iterated integrals on the moduli spaces M0,n

2.1. Coordinates

Let n ≥ 3 and let C∞ = C ∪ {∞} denote the Riemann sphere. The com-
plex moduli space M0,n(C) is the space of n distinct ordered points on C∞
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modulo automorphisms

M0,n(C) = {(z1, . . . , zn) ∈ Cn
∞ distinct}/PGL2(C).

There are two sets of coordinates, called simplicial and cubical, which are
useful for the sequel. By applying an element of PGL2(C), we can assume
that z1 = 0, zn−1 = 1 and zn =∞ and define

t1 = z2, t2 = z3, . . . , tn−3 = zn−2.

The (t1, . . . , tn−3) are called simplicial coordinates and define an isomor-
phism

M0,n(C) ∼= {(t1, . . . , tn−3)∈Cn−3 such that the ti are distinct and ti �= 0, 1}.

Cubical coordinates, on the other hand, are defined by

(2.1) x1 =
t1
t2

, x2 =
t2
t3

, . . . , xn−4 =
tn−4

tn−3
, xn−3 = tn−3

Cubical coordinates define an isomorphism

M0,n(C) ∼= {(x1, . . . , xn−3) ∈ Cn−3 such that xixi+1 . . . xj

�= {0, 1} for all 1 ≤ i ≤ j ≤ n− 3}.

Note that the divisors above only involve products of cubical coordinates
with consecutive indices. The main advantage of cubical coordinates is that
the divisors corresponding to

xi = 0 for i = 1, . . . , n− 3

are strict normal crossing in a neighborhood of the origin (0, . . . , 0). The rea-
son for the nomenclature is that the standard cell (a connected component
of the set of real points M0,n(R)) is either a simplex

Xn
∼= {(t1, . . . , tn−3) ∈ Rn−3 : 0 < t1 < · · · < tn−3 < 1}

or a cube

Xn
∼= {(x1, . . . , xn−3) ∈ Rn−3 : 0 < xi < 1 for all 1 ≤ i ≤ n− 3} ,

depending on the choice of coordinate system.
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2.2. Differential forms

Let Ωk(M0,n) denote the space of global regular differential k-forms onM0,n

which are defined over Q. Consider the following elements of Ω1(M0,n):

ωij =
dti − dtj
ti − tj

for 0 ≤ i, j ≤ n− 2,

where we set t0 = 0 and tn−2 = 1. Clearly ωij = ωji and ωii = 0. There are
no other linear relations between the ωij besides these. Define

A1(M0,n) = 〈ωij : for i < j, (i, j) �= (0, n− 2)〉Q.

ThusA1(M0,4) has the basis dt1
t1

, dt1
t1−1 . The ωij satisfy the following quadratic

relation:

(2.2) ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0

for all indices i, j, k. Define A•(M0,n) to be the differential graded algebra
which is the quotient of the exterior algebra generated by A1(M0,n) by the
quadratic relations (2.2). A theorem due to Arnold states that

A•(M0,n) −→ H•
dR(M0,n; Q)

is an isomorphism of algebras. Thus A•(M0,n) is an explicit model for the
de Rham cohomology of M0,n. In cubical coordinates, it is convenient to
take a different basis for A1(M0,n) formed by

dxi

xi
and

d(xi . . . xj)
xixi+1 . . . xj − 1

for 1 ≤ i ≤ j ≤ n− 3.

We will consider iterated integrals in these 1-forms.

2.3. Iterated integrals and symbols

Recall the definition of iterated integrals from [7]. Let M be a smooth com-
plex manifold and let ω1, . . . , ωn denote smooth 1-forms. Let γ : [0, 1]→ M
be a smooth path. The iterated integral of these forms along γ is defined by∫

γ
ω1 . . . ωn =

∫
0≤t1≤t2≤···≤tn≤1

γ∗(ωn)(t1) . . . γ∗(ω1)(tn).

There are different conventions for iterated integrals: here we integrate start-
ing from the right. The argument of the left-hand integral is C-multilinear
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in the forms ωi and can be viewed as a functional on the tensor product
Ω1(M)⊗n. Elements of this space are customarily written using the bar
notation [ω1| . . . |ωn] to denote a tensor product ω1 ⊗ · · · ⊗ ωn.

Chen’s theorem states that iterated integration defines an isomorphism
from the zeroth cohomology of the reduced bar construction on the C∞ de
Rham complex of M to the space of iterated integrals on M which only
depend on the homotopy class of γ relative to its endpoints. The reduced
bar construction on M0,n can be written down explicitly using the model A
defined above, in terms of a certain algebra of symbols. For n ≥ 3, define a
graded Q vector space

V (M0,n) ⊂
⊕
m≥0

A1(M0,n)⊗m

by linear combinations of bar elements∑
I=(i1,...,im)

cI [ωi1 | . . . |ωim
]

which satisfy the integrability condition∑
I

cI [ωi1 | . . . |ωij−1 |ωij
∧ ωij+1 |ωij+2 | . . . |ωim

] = 0(2.3)

for all 1 ≤ j ≤ m− 1.

Then V (M0,n) is an algebra for the shuffle product x and is equipped with
the deconcatenation coproduct Δ, which is defined by

Δ[ωi1 | . . . |ωim
] =

m∑
k=0

[ωi1 | . . . |ωik
]⊗ [ωik+1 | . . . |ωim

].

Thus V (M0,n) is a graded Hopf algebra over Q. Iterated integration defines
a homomorphism

V (M0,n) −→ {Multivalued functions on M0,n(C)},(2.4) ∑
I=(i1,...,im)

cI [ωi1 | . . . |ωim
] �→

∑
I

cI

∫
γz

ωi1 . . . ωim
,

where γz is a homotopy equivalence class of paths from a fixed (tangential)
base point to z ∈M0,n(C). By a version of Chen’s theorem, this map gives
an isomorphism between homotopy invariant iterated integrals (viewed as
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multivalued functions of their endpoint) onM0,n and symbols. Equivalently,
this means that the map (2.4) is a homomorphism of differential algebras (for
a certain differential to be defined in (2.5)) and the constants of integration
are fixed as follows. One can show that, in cubical coordinates (x1, . . . , xn−3),
every iterated integral (2.4) admits a finite expansion of the form∑

I=(i1,...,in−3)

fI(x1, . . . , xn−3) log(x1)i1 . . . log(xn−3)in−3 ,

where fI(x1, . . . , xn−3) is a formal power series in the xi which converges
in the neighborhood of the origin. The normalization condition is that the
regularized value at zero vanishes:

f0,...,0(0, . . . , 0) = 0.

This gives a bijection between symbols and certain multivalued functions
(whose branch is fixed, for example, on the standard cell Xn), and in this way
we can work entirely with symbols. Various operations on functions can be
expressed algebraically in terms of V (M0,n). For example, the monodromy
of functions around loops can be expressed in terms of the coproduct Δ.

2.4. The bar-de Rham complex

Differentiation of iterated integrals with respect to their endpoint corre-
sponds to the following left-truncation operator:

d : V (M0,n) −→ Ω1(M0,n)⊗ V (M0,n),(2.5) ∑
I

cI [ωi1 | . . . |ωim
] �→

∑
I

cIωi1 ⊗ [ωi2 | . . . |ωim
],

where I = (i1, . . . , im). The bar-de Rham complex is defined to be

B(M0,n) = Ω•(M0,n)⊗ V (M0,n)

equipped with the differential induced by d. In [5] it was shown that

Theorem 1. The cohomology of the bar-de Rham complex of M0,n is
trivial:

H i(B(M0,n)) =

{
Q if i = 0,

0 if i > 0.
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In particular, B(M0,n) is closed under the operation of taking primi-
tives, which is one ingredient for computing integrals symbolically. The next
ingredient states that one can compute regularized limits along irreducible
boundary divisors D ⊂M0,n\M0,n with respect to certain local canonical
sections v of the normal bundle of D. Let Z denote the Q-vector space
generated by multiple zeta values (1.2).

Theorem 2. There exist canonical “regularized limit” maps

Regv
D : V (M0,n) −→ V (M0,r)⊗ V (M0,n+2−r)⊗Z

for every irreducible boundary divisor D of M0,n which is isomorphic to
M0,r ×M0,n+2−r.

This states that the regularized limits of iterated integrals on moduli
spaces are products of such iterated integrals with coefficients in the ring Z
of multiple zeta values. By applying these two operations of primitives and
limits, one can compute period integrals on M0,n. In more detail:

2.4.1. Total primitives. Taking primitives of differential 1-forms is a
trivial matter. Let η be a 1-form in B1(M0,n) such that dη = 0. We can
write it as a finite sum

η =
∑

k

ωk
0 ⊗ [ωk

1 | . . . |ωk
n].

A primitive is given explicitly by∫
η =

∑
k

[ωk
0 |ωk

1 | . . . |ωk
n].

The constant of integration is uniquely (and automatically) determined by
the property

ε

(∫
η

)
= 0,

where ε : V (M0,n) → Q is the augmentation map (projection onto terms
of weight 0). The fact that

∫
η satisfies the integrability condition (2.3)

follows from the integrability of η and the equation dη = 0. In practice, the
algorithm we actually use for taking primitives on the universal curve needs
to be more sophisticated and is described below.
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2.4.2. Limits. When taking limits, one must bear in mind the fact that
the elements of V (M0,n) represent multivalued functions, and hence depend
on the (homotopy class) of the path γz of analytic continuation (2.4). When
computing period integrals by the method described above, however, all iter-
ated integrals which occur will be single valued on the domain of integration
[17, Theorem 58].

In cubical coordinates, the domain of integration is the unit cube Xn =
[0, 1]n−3, and so it suffices in this case to define limits along the divisors
in M0,n defined by xi = 0 and xi = 1, where xi are cubical coordinates.
Recall that the integration map from V (M0,n) to multivalued functions is
normalized at the point (0, . . . , 0) with respect to unit tangent vectors in
cubical coordinates xi, and it follows that the limits at xi = 0 are trivial to
compute. Any function f in the image of (2.4) is uniquely determined on the
simply connected domain Xn = [0, 1]n−3, and admits a unique expansion for
some N
(2.6)

f(x1, . . . , 1− εi, . . . , xn−3) =
N∑

k=0

log(ε)kpk(ε)fk(x1, . . . , xi−1, xi+1, . . . , xn−3),

where pk(ε) is holomorphic at ε = 0 and where fk is in the image of
V (M0,i+2)⊗ V (M0,n−i). The “regularized limit” of f along xi = 1 (with
respect to the normal vector − ∂

∂xi
) is the function

Regxi=1 f = p0(0)f0(x1, . . . , xi−1, xi+1, . . . , xn−3).

It is the composition of the realization map (2.4) with a certain map
(Theorem 2)

V (M0,n) −→ Z ⊗ V (M0,i+2)⊗ V (M0,n−i),

where Z is the ring of multiple zeta values. This map can be computed
explicitly as follows.

Recall first of all the general formula for the behavior of iterated inte-
grals with respect to composition of paths, where γ1γ2 denotes the path γ2

followed by the path γ1:

(2.7)
∫

γ1γ2

ω1 . . . ωn =
n∑

i=0

∫
γ1

ω1 . . . ωi

∫
γ2

ωi+1 . . . ωn.

If Eγ is the function on V (M0,n) which denotes evaluation of a (regular-
ized) iterated integral along a path γ, then the previous equation can be
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interpreted as a convolution product

(2.8) Eγ1γ2 = m(Eγ1 ⊗ Eγ2) ◦Δ.

Ignoring, for the time being, issues to do with tangential base points and
regularization, a path from the origin 0 to a point z = (x1, . . . , xi−1, 1,
xi+1, . . . , xn−3) which lies inside the cube Xn = [0, 1]n−3 is homotopic to
a composition of paths γ1γ2 (“up the ith axis and then along to the point
z”), where

γ2 = straight line from 0 to 1i = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . 0︸ ︷︷ ︸
n−i−4

)

and γ1 is a path from 1i to z which lies inside xi = 1. The segment of path
γ2 can be interpreted as a straight line from 0 to 1 in M0,4 = P1\{0, 1,∞}
(with coordinate xi). Iterated integrals along this path give rise to coeffi-
cients of the Drinfeld associator, which are multiple zeta values. Iterated
integrals along γ1 can be identified with our class of multivalued functions
on the boundary divisor D of M0,n defined by xi = 1, which is canoni-
cally isomorphic to M0,i+2 ×M0,n−i. One can check that the above argu-
ment makes sense for regularized (divergent) iterated integrals, and putting
the pieces together yields the regularization algorithm which is described
below.

Remark 3. For the computation of period integrals, one needs slightly
more. We actually require an expansion of the function (2.6) as a polynomial
in log(ε) and a Taylor expansion of pk(ε) up to some order K in ε. This is
because f can occur with a rational prefactor which may have poles in ε of
order K. This Taylor expansion is straightforward to compute recursively by
expanding ∂

∂xi
f and integrating (we know the constant terms by the previous

discussion). The partial derivative ∂
∂xi

f is simply a component of the total
differential d defined in (2.5), which decreases the length and hence this
gives an algorithm which terminates after finitely many steps, also described
below.

Note that in order to compute period integrals (1.1), one only requires
taking limits with respect to the final cubical variable xi for i = n.

2.4.3. More general limits. It can happen, for example when comput-
ing Feynman integrals, that one wants to take limits at more general divisors
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Figure 1: On the left is a picture of M0,5 in cubical coordinates (x1, x2),
and two paths going from the origin to (1, 1). On the right-hand side is the
space obtained by blowing up the point (1, 1). The exceptional divisor is
E ∼= P1. There are two tangential base points defined over Z which lie above
(1, 1), which are based at z1 and z2. The inverse image of the two paths end
at the point z1, or z2, respectively.

on M0,n. The compactification of the standard cell Xn (the closure of Xn

in M0,n for the analytic topology) is a closed polytope

Xn ⊂M0,n

which has the combinatorial structure of a Stasheff polytope. It can happen
that one wants to compute limits at a (tangential) base point on the bound-
ary of Xn. An example is illustrated in figure 1 in the case n = 5, and where
X5 is a pentagon.

The case of such limits can be dealt with using explicit local normal
crossing coordinates on the boundary of Xn such as the dihedral coordinates
uij defined in [5]. One can show that any such limit is in fact a composition
of regularized limits along divisors xik

= 1 and xik
= 0 in some specified (but

not necessarily unique) order. This order can be determined from the com-
binatorics of the dihedral coordinates, and gives an algorithm to compute
limits in this more general sense.

For example, in figure 1, the point z1 is reached by taking the limit first
as x2 goes to 1 and then x1 goes to 1; the point z2 corresponds to the opposite
order. The regularized limits of iterated integrals (such as Li1,1(x, y)) at (1, 1)
along each path are different. Note that a path which approaches (1, 1) with
a gradient which is strictly in between 0 and ∞ corresponds to a limit point
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which is not equal to either z1 or z2 on E and could take us outside the
realm of multiple zeta values.

Finally, it is worth noting that one can imagine situations when one
needs to take limits at points “at infinity” corresponding to the case when,
for example, some cubical coordinates xi go to infinity. This will not be
discussed here.

2.5. Fibrations

The space V (M0,n) is defined by a system of quadratic equations (2.3) and
its structure is hard to understand from this point of view. We will never
need to actually solve the integrability equations (2.3).

A different description of V (M0,n) comes from considering the morphism

M0,n −→M0,n−1,(2.9)
(x1, . . . , xn−3) �→ (x1, . . . , xn−4)

which is obtained by forgetting the last cubical coordinate. It is a fibration,
whose fiber over the point (x1, . . . , xn−4) is isomorphic to the punctured
projective line

Cn = P1\{0, (x1 . . . xn−4)−1, . . . , x−1
n−4, 1,∞}

with coordinate xn−3. Let An = A(M0,n) denote the model for the de-Rham
complex on M0,n defined earlier, and let FĀn = An/An−1 denote the Q-
vector space of relative differentials.

Denote the natural projection by

(2.10) ω �→ ω : An → FĀn.

Using the representation of forms in cubical coordinates, we can choose a
splitting

(2.11) λn : FĀn
∼→ FAn ⊆ An

which is defined explicitly in (3.1), and obtain a decomposition of An−1-
modules:

(2.12) An
∼= An−1 ⊗ FĀn.
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Armed with this decomposition, the quadratic relation (2.2) can be reinter-
preted as a multiplication law on 1-forms on the fiber:

μn : FA1
n ∧ FA1

n −→ A1
n−1 ⊗ FA1

n(2.13)

which is used intensively in all computations. The product of two elements
in FA1

n lies in A2
n
∼= A2

n−1 ⊕ (A1
n−1 ⊗ FĀ1

n) since FĀ2
n = 0. In fact, our choice

of splitting λn is such that the component of the previous isomorphism in
A2

n−1 vanishes, which defines the map (2.13).

Theorem 4 ([5]). The choice of map λn gives a canonical isomorphism of
algebras

(2.14) V (M0,n) ∼= V (M0,n−1)⊗ V (Cn)

(which does not respect the coproducts on both sides) where

V (Cn) =
⊕
k≥0

( FĀ1
n)⊗k

is the Q-vector space spanned by all words in FĀ1
n, equipped with the shuffle

product.

This gives a very precise description of the algebraic structure on V (M0,n):
by applying this theorem iteratively, every element of V (M0,n) can be
uniquely represented by a sum of tensors of words in prescribed alphabets. In
order to go back and forth between the two representations on the left- and
right-hand sides of (2.14) we have the symbol and unshuffle maps, defined
as follows.

(1) The symbol map is a homomorphism, which depends on the choice
(2.11),

(2.15) Ψ : V (Cn) −→ V (M0,n)

which can be thought of as the map which takes a function defined on
a fiber of the universal curve Cn and extends it to a function on the
entire moduli space M0,n.

It is constructed as follows. One can define a Gauss–Manin con-
nection, corresponding to “differentiation under an iterated integral”
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which is a linear map

∇ : V (Cn) −→ A1
n−1 ⊗ V (Cn)

by the following recipe: lift words in FĀn to words in An via the map
λn; then apply the usual internal differential of the bar construction
in degree 0 (all signs simplify since the ωi are 1-forms):

D[ω1| . . . |ωn] = (−1)n

(
n∑

i=1

[ω1| . . . |dωi| . . . |ωn](2.16)

+
n−1∑
i=1

[ω1| . . . |ωi ∧ ωi+1| . . . |ωn]

)

and finally project all 1-forms on the right-hand side to FĀ1 via the
map (2.10) and project all two forms (namely, dωi and ωi ∧ ωi+1) onto
A1

n−1 ⊗ FĀ1 via the decomposition (2.13). Pulling out all factors in
A1

n−1 to the left gives the required formula for ∇.
The connection ∇ can be promoted to a total connection

∇T : V (Cn) −→ A1
n ⊗ V (Cn)(2.17)

by setting ∇T = d−∇, and identifying A1
n−1 ⊕ FĀ1

n
∼= A1

n via the
decomposition (2.12). It is straightforward to show that in this context
the total connection is flat (∇2

T = 0).
Finally, the symbol map is the unique linear map (necessarily a

homomorphism)

(2.18) Ψ : V (Cn) −→ V (M0,n)

which satisfies the equation

(id⊗Ψ) ◦ ∇T = d ◦Ψ.

This can be viewed as a recursive formula to compute the symbol map
Ψ since ∇T strictly decreases the length of bar elements. Explicitly, it
can be rewritten as

Ψ =
∫

(id⊗Ψ) ◦ ∇T ,

where the total primitive operator
∫

was defined in Section 2.4.1.
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(2) In the other direction, there is the unshuffle map which is a homomor-
phism of graded algebras

(2.19) Φ : V (M0,n) ∼−→ V (M0,n−1)⊗ V (Cn)

which is the inverse of the map m(id⊗Ψ) : V (M0,n−1)⊗ V (Cn) →
V (M0,n) (which we abusively denote simply by Ψ), where m denotes
multiplication. It can be computed as follows. Denote the natural map

r : V (M0,n) −→ V (Cn),
[ω1| . . . |ωr] �→ [ω1| . . . |ωr]

given by restriction of iterated integrals to the fiber induced by (2.10)
componentwise on bar elements. Note that the map Ψ has the property
that r ◦Ψ is the identity on V (Cn).

Recall the morphism (2.9) from M0,n to M0,n−1 defined in terms
of cubical coordinates. The projection map π : An → An−1 implied by
the section λn is given by sending first dxn−3 to zero and then xn−3

to zero. One can see that it is a homomorphism by inspection of the
explicit equations in Section 3.1: the product of two elements in FA1

n

have no component in A2
n−1. It defines a homomorphism

π : V (M0,n) → V (M0,n−1)

and one easily verifies that the homomorphism Φ defined by

Φ(ξ) = (r ⊗ π) ◦Δ

is an inverse to the symbol map Ψ.
Alternatively, we can view M0,n−1 as being embedded in M0,n

by identifying it with the divisor defined by xn−3 = 0. An element
of V (M0,n) can be thought of as an iterated integral along a path
from the unit tangential base point at the origin 0 in cubical coordi-
nates to a point x = (x1, . . . , xn−3). It is the composition of a path
from the unit tangential base point at 0 to (x1, . . . , xn−4) in the base
M0,n−1, followed by a path in Cn from the unit tangential base point
at xn−3 = 0 to x. Since composition of paths is dual to deconcatena-
tion in V (M0,n), this yields a geometric interpretation of the above
formula for Φ.

Thus it is possible, via the symbol and unshuffle maps, to pass back and
forth between a representation of an iterated integral onM0,n as a symbol in
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V (M0,n) or a product of words in V (Ci)’s. This gives a precise algorithmic
equivalence between the two approaches described in Section 1.2.

2.6. Representation as functions

In order to represent elements of V (M0,n) as functions (although in principle
one never needs to do this) the simplest method is to apply the unshuffle
map Φ defined above, which reduces to the problem of representing elements
of V (Ck), for 4 ≤ k ≤ n as functions. This is simply the case of computing
iterated integrals in a single variable xn−3, i.e., hyperlogarithms.

V (Cn) −→ Iterated integrals on Cn,(2.20)

[ω1| . . . |ωk] �→
∫

ω1 . . . ωk.

The iterated integrals on Cn are normalized with respect to the tangen-
tial base point ∂

∂xn−3
at xn−3 = 0. They can be written as polynomials in

log(xn−3) and explicit power series which were studied in the work of Lappo–
Danilevsky [56]. In this way, the iterated use of the unshuffle map reduces
the expression of elements of V (M0,n) as functions to a product of hyper-
logarithms. These are well understood, and can be expressed in terms of
multiple polylogarithms

Lin1,...,nr
(x1, . . . , xr) =

∑
0<k1<...<kr

xk1
1 . . . xkr

r

kn1
1 . . . knr

r

which can be computed to arbitrary accuracy by standard techniques [32].

2.7. “Mixed” primitives

Suppose that we have an element ξ ∈ V (M0,n), and a one form ω ∈ FA1
n

which is only defined on the fiber. The mixed primitive is defined to be

ω � ξ := Ψ
(∫

ω Φ(ξ)
)

∈ V (M0,n).

In other words, ξ is viewed as an element of V (M0,n−1)⊗ V (Cn) via the
unshuffle map, then multiplied by 1⊗ ω before computing its primitive

∫
in

V (Cn) (which is simply given by left concatenation of forms in FA1, as in
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Section 2.4.1). Clearly, the map � is bilinear over Q and satisfies

(2.21) ω0 � Ψ([ω1| . . . |ωk]) = Ψ([ω0| . . . |ωk])

for all ωi ∈ FĀ1
n. Furthermore, � is right-linear over V (M0,n−1):

(2.22) ω � (bx ξ) = bx (ω � ξ)

for all b ∈ V (M0,n−1), and ξ ∈ V (M0,n), and � is uniquely determined by
(2.21), (2.22) and (2.14). Evidently, one does not want to have to compute
� by applying the unshuffling and symbol maps Φ and Ψ which would be
highly inefficient (and largely redundant).

The approach we have adopted is more direct. Suppose that ξ =∑
I cI [ωi1 | . . . |ωim

]. As a first approximation to the mixed primitive ω � ξ
take the element

ξ0 =
∑

I=(i1,...,im)

cI [λn(ω)|ωi1 | . . . |ωim
].

The projection of ξ0 onto V (Cn) coincides with that of ω � ξ, but ξ0 does
not satisfy the integrability condition (2.3). The idea is to add correction
terms ξ1, . . . , ξk to ξ0 so that the sum ξ0 + · · ·+ ξk =

∑
J c′J [ηj1 | . . . |ηjm+1 ]

satisfies the first k integrability equations (with the notation of (2.3))∑
J

c′J [ηi1 | . . . |ηjr
∧ ηjr+1 | . . . |ηjm+1 ] = 0 for 1 ≤ r ≤ k.

The correction term ξk+1 is obtained using the quadratic relations μn to
expand out each wedge product ωi ∧ ωj in the (k + 1)th integrability equa-
tion, applied to ξ0 + · · ·+ ξk. The mixed primitive ω � ξ is equal to the sum
ξ0 + · · ·+ ξm if ξ is of length m. The precise details are described below.

2.8. Feasibility and orders of magnitude

By iterating theorem (4) one obtains a formula for the dimension of all
symbols on M0,n+3 in weight N :

(2.23)
∑
N≥0

(dimQ V (M0,n+3)N )tN =
1

(1− 2t)(1− 3t) . . . (1− (n + 1)t)
.
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This gives a coarse upper bound for the possible size of expressions which
can occur during the integration process. At the initial step of integration,
the integrand is of weight 0 on a moduli space of high dimension M0,n+3,
and at the final step, the integrand is of high weight on a moduli space of
low dimension M0,4. The dimensions (2.23) peak somewhere in the middle
of the computation. For example, for (the maximal weight part) of a period
integral (1.1) in five variables, one works in a sequence of vector spaces
of dimension 20, 125, 285, 211, 32 (these are the dimensions of the spaces of
functions after taking each primitive and before taking each limit).

In the case of Feynman diagrams, one can estimate in advance (using
the linear reduction algorithm) the number of marked points n which will
be required at each step of the integration to get a bound on the size of
the computation. In practice, it seems that the limit of what is reasonable
with current levels of computing power should be adequate to reach the
“non-polylogarithmic” boundary where amplitudes which are not periods of
mixed Tate motives first start to appear.

3. Computing on the moduli space

In this section we spell out the details of the above algorithms and present
them in a version which is ready for implementation on a computer. As a
proof of concept we implemented these algorithms in a Maple-based com-
puter program. With this program we computed all examples below and all
applications of Section 5.

For notational convenience let m = n− 3 denote the number of cubical
coordinates xi on M0,n. As bases for A1

n, FĀ1
n and FA1

n we choose the sets
of closed 1-forms

Ωm =

⎧⎨⎩dx1

x1
, . . . ,

dxm

xm
,

d
(∏

a≤i≤b xi

)
∏

a≤i≤b xi − 1
for 1 ≤ a ≤ b ≤ m

⎫⎬⎭ ,

Ω̄F
m =

⎧⎨⎩dxm

xm
,

(∏
a≤i≤m−1 xi

)
dxm∏

a≤i≤m xi − 1
for 1 ≤ a ≤ m

⎫⎬⎭ ,

ΩF
m =

⎧⎨⎩dxm

xm
,

d
(∏

a≤i≤m xi

)
∏

a≤i≤m xi − 1
for 1 ≤ a ≤ m

⎫⎬⎭ ,
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respectively. The isomorphism ¯FAn

λn∼= FAn ⊆ An of (2.11) is defined explic-
itly by

λn
dxm

xm
=

dxm

xm
,(3.1)

λn

(∏
a≤i≤m−1 xi

)
dxm∏

a≤i≤m xi − 1
=

d
(∏

a≤i≤m xi

)
∏

a≤i≤m xi − 1
for 1 ≤ a ≤ m.

According to these chosen bases, we refer to the vector spaces V (Cn),
V (M0,n) by V (ΩF

m), V (Ωm) respectively. Iterated integrals are written as
linear combinations of words [ω1| . . . |ωk], whose letters are 1-forms in these
sets. Note that Ωm is the disjoint union of Ωm−1 and ΩF

m.

3.1. Arnold relations

With the above choices, the Arnold relations of (2.13) read explicitly:

dxm

xm
∧ d (xi . . . xm)

xi . . . xm − 1
= −

m−1∑
k=i

dxk

xk
∧ d (xi . . . xm)

xi . . . xm − 1
,

d (xj . . . xm)
xj . . . xm − 1

∧ d (xi . . . xm)
xi . . . xm − 1

=
d (xi . . . xj−1)
xi . . . xj−1 − 1

∧
(

d (xi . . . xm)
xi . . . xm − 1

− d (xj . . . xm)
xj . . . xm − 1

)
−

j−1∑
k=i

dxk

xk
∧ d (xi . . . xm)

xi . . . xm − 1

for 1 ≤ i ≤ j ≤ m. For the implementation on a computer, it is efficient to
generate these equations to a desired number of variables once and for all,
and to store them as a look-up table since they are used very frequently by
the algorithms below.

The splitting of Theorem 4 is realized by a certain application of the
Arnold relations. We define an auxiliary map ρi by the following operations.
For a word ξ = [ω1| . . . |ωk] with letters in Ω̄F

m and some 1 ≤ i < k we con-
sider the neighboring letters ωi|ωi+1 and consider the wedge-product of their
images in ΩF

m. By the corresponding Arnold relation, we express this prod-
uct as a Q-linear combination of wedge-products, with one factor in the base
Ωm−1 and one in the fiber ΩF

m. We replace the letters ωi|ωi+1 in ξ by the
factor in ΩF

m and pull the base term in Ωm−1 and rational pre-factors out of
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the word. In summary, this defines the auxiliary map

ρi : V
(
Ω̄F

m

)→ Ωm−1 ⊗ V
(
Ω̄F

m

)
by

ρi [a1| . . . |ak] =
∑

j

cjηj ⊗ [a1| . . . |ai−1|αj |ai+2| . . . |ak] ,

where ηj ∈ Ωm−1, αj ∈ ΩF
m, cj ∈ Q are determined by the Arnold relation

λnai ∧ λnai+1 =
∑

j

cjηj ∧ αj .

Note that these are the same operations as in our definition of the Gauss–
Manin connection ∇ above, which we obtain by summing the ρi over i. This
is because the first sum on the right-hand side of (2.16) vanishes in our
set-up, as all our 1-forms are closed, and the operations on the terms of the
second sum correspond to the definition of ρi.

Example 5. For n = 5, m = 2 we have the Arnold relations

x1dx2 + x2 dx1

x1x2 − 1
∧ dx2

x2
=

dx1

x1
∧ x1dx2 + x2 dx1

x1x2 − 1
,

x1dx2 + x2 dx1

x1x2 − 1
∧ dx2

x2 − 1
=
(

dx1

x1
− dx1

x1 − 1

)
∧ x1dx2x2 dx1

x1x2 − 1

+
dx1

x1 − 1
∧ dx2

x2 − 1
.

For the words κ =
[

x1dx2
x1x2−1

∣∣∣ dx2
x2−1

]
, ξ =

[
x1dx2

x1x2−1

∣∣∣dx2
x2

∣∣∣ dx2
x2−1

]
in V (Ω̄F

2 ) we
compute

ρ1κ =
[
dx1

x1

]
⊗
[

x1dx2

x1x2 − 1

]
−
[

dx1

x1 − 1

]
⊗
[

x1dx2

x1x2 − 1

]
+
[

dx1

x1 − 1

]
⊗
[

dx2

x2 − 1

]
,

ρ1ξ =
[
dx1

x1

]
⊗
[

x1dx2

x1x2 − 1

∣∣∣ dx2

x2 − 1

]
,

ρ2ξ = 0.

3.2. The symbol map

Both the total connection and the symbol map can be computed conve-
niently by use of the maps ρi. The total connection (see (2.17)) is computed
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as
∇T [a1| . . . |ak] = d [a1| . . . |ak]−

∑
1≤i<k

ρi [a1| . . . |ak] ,

where (by (2.5))
d [a1| . . . |ak] = a1 ⊗ [a2| . . . |ak] .

The symbol map Ψ (see (2.18)) is applied to a word in V (Ω̄F
m) by the recur-

sive algorithm

Ψ ([ai]) = [λn (ai)] ,
Ψ ([ai1 |ai2 | . . . |aik

]) = λn (ai1) �Ψ ([ai2 | . . . |aik
])(3.2)

−
∑

1≤i<k

� ((id⊗Ψ) ρi [ai1 | . . . |aik
]) , 1 < k,

where ξ1 � ξ2 ≡ �(ξ1 ⊗ ξ2) denotes the concatenation of two words ξ1, ξ2.
Note that on the right-hand side of (3.3) the map Ψ acts on words of length
k − 1.

Example 6. Making use of the relations derived in Example 5, we compute

Ψ
([

x1dx2

x1x2 − 1

∣∣∣dx2

x2

∣∣∣ dx2

x2 − 1

])
=
[
x1dx2 + x2 dx1

x1x2 − 1

∣∣∣dx2

x2

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

]
�Ψ

([
x1dx2

x1x2 − 1

∣∣∣ dx2

x2 − 1

])
=
[
x1dx2 + x2 dx1

x1x2 − 1

∣∣∣dx2

x2

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

∣∣∣x1dx2 + x2 dx1

x1x2 − 1

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣x1dx2 + x2 dx1

x1x2 − 1

]
+
[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣ dx2

x2 − 1

]
+
[
dx1

x1

∣∣∣dx1

x1

∣∣∣x1dx2 + x2 dx1

x1x2 − 1

]
.

The map Ψ is defined such that for any ξ ∈ V
(
Ω̄F

m

)
we have DΨ (ξ) = 0

and therefore Ψ (ξ) ∈ V (Ωm) . The vector space V (Ωm) is generated, over
V (Ωm−1), by the image of V

(
Ω̄F

m

)
under Ψ. We furthermore note the prop-

erty
Ψ (ξ1 x ξ2) = Ψ(ξ1)xΨ(ξ2)

for any ξ1, ξ2 ∈ V
(
Ω̄F

n

)
.

A slightly different algorithm for Ψ in terms of differentiation under the
integral was already given in [2]. For related constructions, also see references
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[8–10]. In Section 4 we will make use of Ψ as a part of a procedure to
map hyperlogarithms in Schwinger parameters to multiple polylogarithms
of cubical variables. We expect the map Ψ also to be useful in different
contexts such as [51].

3.3. Primitives

Let ω ∈ Ω̄F
m and let ξ =

∑
I cI [ωi1 | . . . |ωik

] be an iterated integral in V (Ωm).
In Section 2.7, we discussed the strategy of building up the mixed primitive
ω � ξ by naive left-concatenation of the form ω to the word ξ, yielding

(3.3)
∑

I

cI [λn(ω)|ωi1 | . . . |ωik
] ,

and the addition of correction terms until the resulting combination satis-
fies the integrability condition of (2.3). For the explicit computation of the
correction terms, let us introduce some auxiliary notation. For all 0 ≤ i < k

let Ci (Ωm)k = Ω⊗i
m−1 ⊗ ΩF

m ⊗ Ω⊗(k−i−1)
m be the Q-vector space of words of

length k with letters in Ωm, whose first i letters, counted from the left, are
in the base Ωm−1, and whose (i + 1)th letter is in the fiber ΩF

m. The mem-
bers of these auxiliary sets of words do not necessarily stand for homotopy
invariant iterated integrals. We define the auxiliary maps

�i : Ci−1 (Ωm)k → Ci (Ωm)k

for i < k by the following recipe:

(3.4)
�i[a1| . . . |ai−1|ai|ai+1| . . . |ak] = [a1| . . . |ai−1|ai+1|ai| . . . |ak] if ai+1 ∈ Ωm−1,

�i[a1| . . . |ai−1|ai|ai+1| . . . |ak] = −
∑

j

cj [a1| . . . |ai−1|ηj |αj |ai+2| . . . |ak]

if ai+1 ∈ ΩF
m,

where the forms ηj ∈ Ωm−1, αj ∈ ΩF
m and constants cj ∈ Q are determined

by an Arnold relation

ai ∧ ai+1 =
∑

j

cjηj ∧ αj .

Note that indeed, in each word on the right-hand side of (3.4) the 1-forms
in the first i positions are in Ωm−1 and the form in the (i + 1)th position
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is in ΩF
m. This procedure can be iterated. Since 3.3 lies in C0 (Ωm)k+1, we

repeatedly apply �• to obtain the following formula for the mixed primitive

ω � [a1| . . . |ak] = (1 + �1 + �2 �1 + · · ·+ �k . . . �1)[λm(ω)|a1| . . . |ak].
(3.5)

The construction satisfies the relations (2.21) and (2.22).

Example 7. We consider the 1-form ω = dx2
x2

, the iterated integral

ξ = Ψ
([

x1d(x2)
x1x2 − 1

∣∣∣dx2

x2

])
=
[

d(x1x2)
x1x2 − 1

∣∣∣dx2

x2

]
−
[
dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

]
,

and the concatenation

ξ0 = λ2(ω) � ξ =
[
dx2

x2

∣∣∣ d(x1x2)
x1x2 − 1

∣∣∣dx2

x2

]
−
[
dx2

x2

∣∣∣dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

]
.

Following (3.5), we compute the primitive

ω � ξ = ξ0 + ξ1 + ξ2,

where ξ1 = �1ξ0 and ξ2 = �2 �1 ξ0. We obtain

ξ1 =
[
dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

∣∣∣dx2

x2

]
−
[
dx1

x1

∣∣∣dx2

x2

∣∣∣ d(x1x2)
x1x2 − 1

]
,

ξ2 = −2
[
dx1

x1

∣∣∣dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

]
by use of the Arnold relations given in the example of Section 3.1.

3.4. Limits

We consider limits at xl = u, l ∈ {1, . . . , m} where u ∈ {0, 1}. By definition,
any ξ ∈ V (Ωm) vanishes along xl = 0. Limits at 0 and 1 are computed as
follows.

As in the previous sections, let Z be the Q-vector space of multiple zeta
values. It was shown in [5] that for any ξ ∈ V (Ωm) the limits limxl→1 ξ are
Z-linear combinations of elements of V (Ωm−1) (after a possible renumbering
of the cubical coordinates: (xl+1, . . . , xm) �→ (xl, . . . , xm−1).) Our algorithm
for the computation of limits proceeds in two steps:
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• expand the function ξ at xl = u as a polynomial in log(xl − u), whose
coefficients are power series in xl − u, and

• evaluate the constant term (coefficient of log(xl − u)0) at xl = u.

The series expansion is the non-trivial part in this computation while the
evaluation of the series is immediate. Let Expxl=uξ(xl) denote the expansion
of the function ξ(xl) at xl = u. We compute the expansion recursively as

(3.6) Expxl=uξ(xl) = Regxl=uξ(xl) +
∫

dx′l Expx′l=u

∂

∂x′l
ξ(x′l),

where the integral on the right is the regularized integral from the tangen-
tial base point ∂

∂xl
at xl = u to xl, or equivalently, is an indefinite integral

in xl whose constant of integration is fixed by declaring that its regular-
ized limit at xl = u vanishes. Note that if ξ(xl) is a linear combination of
words of length k, then in the integrand on the right-hand side of (3.6),
Expx′l=u is computed on words of length k − 1. Rational prefactors are triv-
ially expanded as power series in xl = u also. The notation Regxl=uξ(xl)
stands for the operation of taking the regularized limit of ξ at xl = u. For
u = 0 we define Regxl=0 to be the identity map on terms of weight 0 and

Regxl=0ξ(xl) = 0

for ξ(xl) with all terms of weight greater than 0. For u = 1 regularized limits
are defined and computed in the remainder of this subsection.

Let us start by computing regularized limits of iterated integrals in
only one variable and then extend to the n-variable case. We consider
Ω1 =

{
dx1
x1

, dx1
x1−1

}
and for ξ ∈ V (Ω1) we use a simplified notation where

in each word we symbolically replace dx1
x1
→ 0 and dx1

x1−1 → 1 and multiply
the word with (−1)s where s is the number of 1-forms dx1

x1−1 . Following [4]
we define the map

Regx1=1 : V (Ω1) → Z

by the following relations for different cases of words ξ = [a1| . . . |ak] , ai ∈
{0, 1}, i = 1, . . . , k:

• Case 1 : If all letters are equal, a1 = a2 = . . . = ak, we have

Regx1=1 [a1| . . . |ak] = 0.
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• Case 2 : If the word begins with 0 and ends with 1 (from left to right),
we have

Regx1=1[0| . . . |0|1|︸ ︷︷ ︸
nr

. . . |1| 0| . . . |0|1︸ ︷︷ ︸
n1

]

= ζ(n1, . . . , nr) for nr ≥ 2, ni ≥ 1, n1 + · · ·+ nr = k.

• Case 3 : If the word begins in 1 we apply the relation

Regx1=1 [a1| . . . |ak] = Regx1=1 [1− ak| . . . |1− a1]

which is also true in all other cases.

• Case 4 : If the word ends with 0 we use the relation

Regx1=1[0| . . . |0|1|︸ ︷︷ ︸
n1

. . . |1| 0| . . . |0|1︸ ︷︷ ︸
nr

| 0| . . . |0︸ ︷︷ ︸
q

](3.7)

= (−1)q
∑

i1+···+ir=q

(
n1 + i1 − 1

i1

)
. . .

(
nr + ir − 1

ir

)
Regx1=1[0| . . . |0|1|︸ ︷︷ ︸

n1+i1

. . . |1| 0| . . . |0|1︸ ︷︷ ︸
nr+ir

],

where q, n1, . . . , nr ≥ 1.

By these relations, implementing the well-known shuffle-regularization, the
regularized value of any ξ ∈ V (Ω1) can be expressed as a Q-linear combina-
tion of expressions as in case 2, which are multiple zeta values.

Example 8. We consider ξ =
[

dx1
x1−1

∣∣∣dx1
x1

∣∣∣dx1
x1

]
which in short-hand nota-

tion reads ξ = −[1|0|0] and falls into the above case 4. By (3.7) we have
Regx1=1(−[1|0|0]) = Regx1=1(−[0|0|1]) and obtain by case 2:

Regx1=1ξ = −ζ(3).

Now we extend the definition of regularized limits to V (Ωm) . Let us
first define the auxiliary restriction maps

Rxl
: V (Ωm) → V (Ω1)

by

(3.8) Rxl
ξ = ξ|dxi=0, xi=0 for all i∈{1,...,m}, i�=l
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and
Lxl

: V (Ωm) → V (Ωm−1)

by

(3.9) Lxl
ξ = ξ|dxl=0, xl=1

and relabeling cubical coordinates as mentioned above. Note that the map
Rxl

is the projection onto words all of whose 1-forms are dxl

xl
and dxl

xl−1 .
These maps play a similar role as the restrictions Eγ in Section 2.4. The

map Rxl
restricts the iterated integral to the straight line from the origin to

1l (called γ2 in Section 2.4) and Lxl
restricts to the divisor of M0,n defined

by xl = 1 (in which γ1 of Section 2.4 lives). According to (2.8), we take
the deconcatenation coproduct Δ of ξ ∈ V (Ωm) and apply Lxl

and Rxl
to

the left and right parts of the tensor product, respectively. The right-hand
side of the tensor product is then in V (Ω1) and we apply the above map
of regularized values to this part. In summary, we extend the definition of
regularized values to

Regxl=1 : V (Ωm) → Z ⊗ V (Ωm−1)

by

(3.10) Regxl=1ξ = m
(
Lxl

⊗ Regxl=1Rxl

) ◦Δξ.

This completes our algorithm for computing limits of ξ ∈ V (Ωm) at
xl = 0, 1.

Example 9. We consider the iterated integral

ξ = Ψ
([

x1dx2

x1x2 − 1

∣∣∣dx2

x2

∣∣∣ dx2

x2 − 1

])
=
[

d(x1x2)
x1x2 − 1

∣∣∣dx2

x2

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣ d(x1x2)
x1x2 − 1

]
+
[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣ dx2

x2 − 1

]
+
[
dx1

x1

∣∣∣dx1

x1

∣∣∣ d(x1x2)
x1x2 − 1

]
∈ V (Ω2) .

In this case, the only contributions to the limit at x2 = 1 are given by the
term Regx2=1ξ(x2) of (3.6), which we compute by use of (3.10). The coprod-
uct of ξ involves 20 terms, most of which vanish after applying Lx2 to the
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left and Rx2 to the right part. From the non-vanishing terms we obtain

Regx2=1ξ(x2) = m

([
dx1

x1 − 1

]
⊗ Regx2=1

[
dx2

x2

∣∣∣ dx2

x2 − 1

]
−
[
dx1

x1

∣∣∣ dx1

x1 − 1

]
⊗ Regx2=1

[
dx2

x2 − 1

]
+
[
dx1

x1

∣∣∣dx1

x1

∣∣∣ dx1

x1 − 1

]
⊗ 1−

[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣ dx1

x1 − 1

]
⊗ 1

+
[
dx1

x1

∣∣∣ dx1

x1 − 1

]
⊗ Regx2=1

[
dx2

x2 − 1

])
.

Due to

Regx2=1

[
dx2

x2 − 1

]
= 0 and Regx2=1

[
dx2

x2

∣∣∣ dx2

x2 − 1

]
= −ζ(2)

or by cancellation of the second and fifth terms, we obtain the limit

lim
x2→1

ξ =
[
dx1

x1

∣∣∣dx1

x1

∣∣∣ dx1

x1 − 1

]
−
[
dx1

x1

∣∣∣ dx1

x1 − 1

∣∣∣ dx1

x1 − 1

]
− ζ(2)

[
dx1

x1 − 1

]
.

4. Feynman-type integrals

In this section we consider finite integrals derived from (linearly reducible,
unramified) Feynman integrals. We present an algorithm to map such inte-
grals to hyperlogarithms in cubical variables (corresponding to the morphism
X →M0,n+1 in the diagram 1.3). The integration over one chosen Schwinger
parameter maps to the integration over one cubical variable. Then this inte-
gration can be computed by the algorithms of Section 3. After the integra-
tion, as a preparation for the integration over a next Schwinger parameter,
we map back to iterated integrals in Schwinger parameters.

4.1. Schwinger parameters

In dimensional regularization, scalar Feynman integrals of Feynman graphs
G with N edges and loop-number L can be written in the Feynman para-
metric form

IG(D) =
Γ(ν − LD/2)∏n

j=1 Γ(νj)

∫
αj≥0

δ (1− αN )

⎛⎝ N∏
j=1

dαjα
νj−1
j

⎞⎠ Uν−(L+1)D/2
G

FG
ν−LD/2

,
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where ν =
∑N

i=1 νi is the sum of powers of Feynman propagators and D ∈ C.
We refer to the variables α1, . . . , αN as Schwinger parameters and the above
integration is over the positive range of each of these variables. The functions
UG and FG are the first and second Symanzik polynomials, respectively.
They are polynomials in the Schwinger parameters and FG is furthermore
a polynomial of kinematical invariants, which are quadratic functions of
particle masses and external momenta of G. For more details we refer to
[3, 11, 12].

Assume that we want to compute IG(2n) for some n ∈ N. There are
different scenarios in which our algorithms may be useful. In the simplest
case, the integral IG(2n) is finite and we may attempt to compute it without
further preparative steps. If IG(2n) is divergent there may be a n �= m ∈ N

such that IG(2m) is finite and the method of [13, 14] may provide useful
relations between IG(2n) and IG(2m). These relations, however, may involve
further integrals to be computed. The method of [6] allows for a subtraction
of UV divergent contributions by a renormalization procedure on the level
of the integrand. Alternatively, for a possibly UV and IR divergent integral,
we may attempt to expand IG as

IG =
∞∑

j=−2L

cjε
j ,

where ε = (2n−D)/2 and the cj are finite integrals. In principle, such an
expansion can be computed by sector decomposition [21]; however in this
case, a use of our algorithms may be prohibited by the type of polynomi-
als appearing in the integrands of the resulting cj . Recently, an alternative
approach, where the latter polynomials are given by Symanzik polynomials
of G and its minors was suggested in [39].

Let us assume that these or alternative methods have led us to an integral
over the positive range of Schwinger parameters where the integrand is of
the form

(4.1) f(α1, . . . , αN ) =

∏
Qi∈QQδi

i hyperlogarithms(Pi)∏
Pi∈P P βi

i

,

where all δi, βi ∈ N0 and where P = {P1, . . . , Pr} and Q = {Q1, . . . , Qq} are
finite sets of irreducible polynomials in Schwinger parameters. We assume
furthermore that all Pi are homogeneous and positive or negative definite.
This is the case for all Symanzik polynomials in the Euclidean momentum
region and in the massless case, and also for the polynomials arising from
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their linear reduction in a large class of situations. This simplifying assump-
tion allows us to apply the particular change of variables constructed below.
However, the general method is not restricted to this case.

A more precise description of the numerator is given below. For our
algorithms to be applicable, we furthermore have to assume that there is
an ordering on the Schwinger parameters such that the set P is linearly
reducible and unramified [17, 18]. In the following let αN , αN−1, . . . , α1 be
such a fixed ordering.

4.2. From Schwinger parameters to cubical variables

In the following, we transform a given integrand f of the type given by
(4.1) to an integrand in cubical variables. According to our fixed ordering
on the Schwinger parameters, let αN be the parameter to be integrated out
in the present step. Linear reducibility implies that the polynomials in P
are of degree at most 1 in αN , while there are no implications for Q. We
write P = PN ∪ P\N where PN ⊂ P is the subset of polynomials linear in
αN and P\N ⊂ P is the set of polynomials independent of αN . Let us fix
the numbering on the Pi such that PN = {P1, . . . , Pn} with n ≤ r. We also
write the set of all polynomials Qi as Q = QN ∪ Q\N where the polynomials
in QN depend on αN and the ones in Q\N do not.

Now let us be more specific about the functions occurring in the numer-
ator of (4.1). We write Lw(αN ) for a hyperlogarithm in αN , given by a word
w in differential 1-forms in the alphabet
(4.2)

ΩFeynman
N =

{
dαN

αN
,

dαN

αN − ρi
where ρi = −Pi|αN=0

∂Pi

∂αN

for i = 1, . . . , n

}
.

Here ρi is a rational function such that Pi vanishes for αN = ρi. Throughout
this section, we shall assume the Feynman integral we are considering is
linearly reducible and unramified. The condition for being unramified was
defined in [18, Definition 16], and discussed in [17, Section 9.3]. It implies,
in particular, that if ρi is a constant independent of all αi, then it must be
equal to 0 or −1.

We assume as an induction hypothesis that the functions in the numer-
ator of the integrand are of a certain type. We will see in Section 4.3 that
this assumption will be satisfied after integration and will be the starting
point for the next integration. The numerator of the integrand f is assumed
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to be a linear combination of hyperlogarithms in αN :

(4.3) numerator(f) =
∑

k

akbk(αN )Lwk
(αN ),

where the wk are words in the alphabet ΩFeynman
N and where we denote the

αN -dependent and αN -independent factor of the kth coefficient by bk(αN )
and ak, respectively. The αN -dependent factor bk(αN ) is a product of Qi ∈
QN while the αN -independent factor ak is allowed to be a product of Qi ∈
Q\N and of hyperlogarithms which do not depend on αN . As αN -independent
factors of the numerator remain unchanged in the integration procedure, we
restrict our attention to integrals of the type

(4.4)
∫ ∞

0
dαNf(α1, . . . , αN ) =

∫ ∞

0
dαN

∏
Qi∈QN

Qδi

i Lw(αN )∏
Pi∈P P βi

i

.

Let us now express the integral of (4.4) as an integral over cubical coor-
dinates such that the algorithms of Section 3 apply. Let RN

+ be the subspace
of RN where all Schwinger parameters are greater than or equal to zero and
let Rn

cube be the unit cube in n cubical variables, i.e.,

RN
+ =

{
(α1, . . . , αN ) ∈ RN |0 ≤ αi, i = 1, . . . , N

}
,

Rn
cube = {(x1, . . . , xn) ∈ Rn|0 ≤ xi ≤ 1, i = 1, . . . , n} .

Consider the αN -dependent polynomials PN = {P1, . . . , Pn} and the cor-
responding ρi = − Pi|αN =0

(∂Pi/∂αN ) for i = 1, . . . , n. We introduce an ordering on the
set PN as follows. A sufficiently small open region of the form 0 ≤ αN−1 �
αN−2 · · · � α1 � ε (where x� y denotes x < yM for some large M) does
not intersect the hypersurfaces ρi − ρj = 0. Therefore number the polyno-
mials in PN = {P1, . . . , Pn} such that everywhere in this region we have

(4.5) 0 > ρn > ρ1 > ρ2 > · · · > ρn−2 > ρn−1.

For the given, ordered set (P1, . . . , Pn), consider the rational map between
affine spaces

φ : AN → An
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(equivalently a homomorphism φ∗ : Q(x1, . . . , xn) → Q(α1, . . . , αN )) given
by

φ∗(xn) =
αN

αN − ρn
,(4.6)

φ∗(xn−1) = 1− ρn

ρn−1
,

φ∗(xk) =
1− ρn

ρk

1− ρn

ρk+1

for 1 ≤ k ≤ n− 2.

These variables xi will be our cubical coordinates and we construct the set
of 1-forms Ω̄F

n as above. Note that the restriction of φ to the first N − 1
coordinates defines a rational map φ : AN−1 → An−1, since ρ1, . . . , ρn do
not depend on αN . For fixed α1, . . . , αN−1, the curve P1 with coordinate
αN and punctures at {0, ρ1, . . . , ρn,∞} (i.e., the fiber of AN → AN−1), is
isomorphic, via (4.6), to the curve with coordinate xn and punctures at
{0, (x1 . . . xn−1)−1, (x2 . . . xn−1)−1, . . . , x−1

n−1,∞, 1}, in that order. Via such
a (family of) isomorphisms, we can explicitly express all 1-forms in ΩFeynman

N

as Q-linear combinations of 1-forms in Ω̄F
n in cubical coordinates. We obtain

dαN

αN
=

dxn

xn
− dxn

xn − 1
,(4.7)

dαN

αN − ρn
= − dxn

xn − 1
,

dαN

αN − ρi
=

xi . . . xn−1dxn

xi . . . xn − 1
− dxn

xn − 1
,

since the ρi are constant, for i = 1, . . . , n− 1. As a consequence, we can
express each hyperlogarithm Lw(αN ) as a Q-linear combination of hyper-
logarithms in cubical variables ξ ∈ V

(
Ω̄F

n

)
.

For simplicity, we make the following assumption (which is slightly
stronger than assuming that the linear reduction of the Feynman integral is
unramified):

(4.8) lim
α1→0

. . . lim
αN→0

xk(α1, . . . , αN ) ∈ {0, 1}, k = 1, . . . , n,

where these limits are approached from inside the cube Rn
cube. The domain

of the αN -integration is mapped to the domain 0 ≤ xn ≤ 1. The Jacobian is
J = − ρn

(xn−1)2 .
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Up to rational functions which do not depend on xn, we can now express
integrals of the type of (4.4) as integrals of the type

(4.9)
∫ 1

0
dxn

∏
qγi

i∏
f δi

i

ξ,

where γi, δi ∈ N, and where each qi is a polynomial in Schwinger parame-
ters without αN or in cubical variables, and the integrand involves func-
tions fi ∈ {xn, xn − 1, xn−1xn − 1, . . . , x1 · · · xn − 1} and hyperlogarithms
ξ ∈ V

(
Ω̄F

n

)
. Before we can apply our algorithm of Section 3.3 for the com-

putation of primitives, we use a standard procedure of applying finitely many
successive partial fraction decompositions and partial integrations until all
powers δi are equal to 1.

As a last step of preparation, we apply the symbol map Ψ of Section 3.2
to ξ. We obtain an integral as in (4.9) where now ξ ∈ V (Ωn) . Now we
compute the definite integral (4.9) by use of the algorithms of Sections 3.3
and 3.4. Up to rational prefactors, we obtain a Z-linear combination of
functions in V (Ωn−1) .

4.3. Back to Schwinger parameters

Note that after the integration, we have a function in terms of both types
of variables, the Schwinger parameters and the cubical coordinates. In order
to proceed with the integration over a next Schwinger parameter and apply
the same steps again, we firstly have to express the integrand only in terms
of Schwinger parameters again. Let I be the result of the αN -integration,
expressed as a linear combination

I =
∑

aiξi

of multiple polylogarithms ξi ∈ V (Ωn−1). The coefficients ai are trivially
expressed by Schwinger parameters by application of φ∗. However, express-
ing the multiple polylogarithms ξi in terms of Schwinger parameters is more
subtle, as we have to respect the limiting conditions of iterated integrals in
both sets of variables.

For any function f of variables y1, . . . , yn and numbers c1, . . . , cn let us
introduce the notation

lim
(y1,...,yn)→(c1,...,cn)

f = Regyn→cn
. . .Regy1→c1

f,
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where in the right-hand side, Reg denotes the regularized limits with respect
to unit tangent vectors in either cubical coordinates xi (or 1− xi), or
Schwinger parameters αi. In the following let us write 0n for the vector
(0, . . . , 0) with n components. We consider the vector xp = (xp(1), . . . , xp(n−1))
of the remaining cubical coordinates, where the ordering is given by a per-
mutation p on the set {1, . . . , n− 1}. We furthermore consider the vector
of remaining Schwinger parameters α = (αN−1, . . . , α1) in the ordering in
which we integrate over them, as fixed above.

Consider a multiple polylogarithm ξ ∈ V (Ωn−1) . By definition, it satis-
fies

(4.10) lim
xσ→0n−1

ξ = ε(ξ)

for every permutation σ on {1, . . . , n− 1}, where ε is the augmentation
map (projection onto components of length 0). We want to express each ξ
as iterated integrals η in Schwinger parameters, for which we impose the
condition

(4.11) lim
α→0N−1

η = ε(η).

Condition (4.11) corresponds to a vanishing condition for the iterated
integral ξ ∈ V (Ωn−1) at a tangential base point on M0,n+2 (strictly speak-
ing, on a related space M†

0,n+2 ([17, Section 8.2]) which can be read off
from the linear reduction algorithm and involves removing from An−1 only
those hypersurfaces xi = 0, xixi+1 . . . xj = 1 which correspond to singular-
ities actually occurring in the integrand), which is on the boundary of the
connected component of M0,n+2(R) defined by the unit hypercube 0 ≤
x1, . . . , xn−1 ≤ 1. One can verify that such a point can always be repre-
sented by a permutation p on {1, . . . , n− 1} (non-uniquely) and a vector
c = (c1, . . . , cn−1) (uniquely) with all ci ∈ {0, 1} such that for any rational
function g in the xi which is regular on M†

0,n+2, we have

(4.12) lim
xp→c

g = lim
α→0N−1

φ
g,

where on the left-hand side c is approached inside Rn−1
cube and on the right-

hand side (0, . . . , 0) is approached inside RN−1
+ . Such a point c and per-

mutation p determine the procedure to express ξ in terms of Schwinger
parameters. The components of c are computed by

ci = lim
α→0N−1

xi,
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where i ∈ {1, . . . , n− 1}, and lies in {0, 1}, by assumption (4.8). In the case
whenM†

0,n+2 = M0,n+2 (i.e., all possible singularities which can occur actu-
ally do occur), a permutation p satisfying (4.12) can easily be computed with
the help of dihedral coordinates uij , which are related to the cubical coor-
dinates as discussed in [5]. A permutation p satisfies (4.12) for any regular
function g on M0,n+2 (expressed as a rational function of cubical coordi-
nates) if it satisfies

lim
xp→c

uij = lim
α→0N−1

φ
uij

for all dihedral coordinates uij . This condition determines p in this case.

Example 10. Suppose M†
0,5 =M0,5. Let x1, x2 be cubical coordinates.

Suppose that x1 = 1− α2, x2 = 1− α2
α1

. Then the five dihedral coordinates
(x1, x2, 1− x1x2,

1−x1
1−x1x2

, 1−x2
1−x1x2

) in the limits α2 → 0 then α1 → 0 tend to
(1, 1, 0, 0, 1) respectively. This corresponds to taking first the limit as x1 → 1
and then x2 → 1.

On the other hand, suppose that x1 = 1− α1, x2 = 1− α1. Then the
limit of the five dihedral coordinates above as α1 → 0 are (1, 1, 0, 1

2 , 1
2), which

could potentially produce a log 2 in the iterated integrals (ramification at
prime 2). In such a case, the condition of being unramified will ensure that
1− x1x2 = α1(2− α1) does not occur as a singularity of the integrand. Thus
M†

0,5 = A2\{x1, x2 = 0, 1} =M0,4 ×M0,4 strictly contains M0,5. The limit
as α1 → 0 can be obtained as the limit as x1 → 1, x2 → 1 in either order.

Now let xp and c be vectors satisfying (4.12). We define η by the following
equation, where ξ ∈ V (Ωn−1) is the result of the integration of (4.9),

(4.13) η = m

(
φ
 ⊗ φ
 lim

xp→c

)
Δξ

and m is multiplication. Note that this is an application of (2.7). Then η is
the desired expression in terms of Schwinger parameters.

As a last step, we express each iterated integral in terms of hyperlog-
arithms, such that we arrive at the starting point for the next integration
over the variable αN−1. As a consequence of linear reducibility, all iterated
integrals are now given by differential forms of the type ω = dP/P where
P are polynomials in the Schwinger parameters which are of degree ≤ 1 in
the variable αN−1. In analogy to the construction of the unshuffle map we
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define the auxiliary restriction operations

παi
ω = ω|dαi=0, αi=0

and
rαi

ω = ω|dαj=0 for all j �=i.

By

(4.14) η′ = m
(
rαN−1 ⊗ παN−1

)
Δη

we finally arrive at a linear combination of hyperlogarithms Lw(αN−1) whose
coefficients are products of rational functions in Schwinger parameters, mul-
tiple zeta values and iterated integrals independent of αN−1. Iterating the
computation of (4.14) for the remaining Schwinger parameters we can express
all iterated integrals as hyperlogarithms. With this expression we can repeat
the above steps to integrate out αN−1, and so on.

4.4. Summary of the integration algorithm

Let us summarize the above steps for integrating over one Schwinger param-
eter αN . We start from a finite integral I =

∫∞
0 dαNf whose integrand f , as

in (4.3), is a linear combination of hyperlogarithms Lw(αN ) as functions of
αN , and whose coefficients are products of rational functions b(αN ) of the
Schwinger parameters including αN , and further functions (possibly hyper-
logarithms) not depending on αN . As above, we write PN for the set of
n polynomials depending linearly on αN , which are in the denominators of
b(αN ) and define the differential forms of Lw(αN ) by (4.2). The set PN is lin-
early reducible with respect to an ordered set (αN , . . . , α1) of all Schwinger
parameters, and unramified.

The main steps of the algorithm are combined as follows:

• Define the n cubical variables x1, . . . , xn, and express the integrand
f via the map (4.7) as a linear combination of hyperlogarithms in
V
(
Ω̄F

n

)
. The integration over αN is mapped via (4.6) to the integration

over xn from 0 to 1.

• Apply the symbol map Ψ of Section 3.2 to lift each function in V
(
Ω̄F

n

)
to multiple polylogarithms in V (Ωn) .

• Use iterated partial integration and partial fraction decomposition to
bring the integrand into the appropriate form. Then use the map � of
Section 3.3 to compute the primitive of f.
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• Take the limits of the primitive at xn = 0 and xn = 1 to obtain the
definite integral from 0 to 1, using the algorithm of Section 3.4. The
result is a linear combination of multiple polylogarithms in V (Ωn−1)
with coefficients possibly involving multiple zeta values.

• Apply the change of variables to obtain an expression only in Schwinger
parameters again. For iterated integrals, apply (4.13) such that the
regularized limit at α → 0N−1 is preserved.

• Write the result as a combination of hyperlogarithms in the next inte-
gration variable by (4.14).

Examples for the application of this algorithm by use of our computer pro-
gram are given below.

5. Applications

5.1. Cellular integrals

A particular instance of period integrals on moduli spaces are given by the
cellular integrals defined in [20] in relation to irrationality proofs. The basic
construction is to consider a permutation σ of {1, . . . , n} and define a rational
function and differential form

f̃σ =
∏

i

zi − zi+1

zσ(i) − zσ(i+1)
and ω̃σ =

∏
i

dzi

zσ(i) − zσ(i+1)
,

on the configuration space Cn(P1) of n distinct points z1, . . . , zn in P1, where
the product is over all indices i modulo n. Now PGL2 acts diagonally on
Cn(P1), and the quotient is

M0,n
∼= Cn(P1)/PGL2.

The rational function f̃σ and the form ω̃σ are PGL2-invariant, and therefore
descend in the standard way to a rational function and form fσ, ωσ onM0,n.
Because PGL2 is triply transitive, we can put z1 = 0, zn−1 = 1, zn =∞, and
replace zi+1 by xixi+1 . . . xn−3 for i = 1, . . . , n− 3, where x1, . . . , xn−3 are
cubical coordinates on M0,n.

Therefore, we can formally write

fσ =
∏

i

zi − zi+1

zσ(i) − zσ(i+1)
and ωσ =

dx1 . . . dxn−3∏
i zσ(i) − zσ(i+1)

,
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where the product is over all indices i modulo n, and all factors involving
zn = ∞ are simply omitted. For all N ≥ 0, consider the family of basic
cellular integrals

(5.1) Iσ
N =

∫
[0,1]n−3

fN
σ ωσ,

where the domain of integration is the unit hypercube in the cubical coordi-
nates xi. Conditions for the convergence of the integral are discussed in [20].
When it converges, this integral is a rational linear combination of multi-
ple zeta values of weights ≤ n− 3 and can be computed with our program.
In the case n = 5, 6 and σ(1, 2, 3, 4, 5) = (1, 3, 5, 2, 4), and σ(1, 2, 3, 4, 5, 6) =
(1, 3, 6, 4, 2, 5) it gives back exactly the linear forms involved in Apéry’s
proofs of the irrationality of ζ(2) and ζ(3). A systematic study of exam-
ples for higher n (described in [20]) was undertaken using the algorithms
described in this paper.

5.2. Expansion of generalized hypergeometric functions

Many Feynman integrals can be expressed in terms of generalized hyperge-
ometric functions

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

k=0

∏p
j=1 (aj)k zk∏q
j=1 (bj)k k!

,

converging everywhere in the z-plane if q ≥ p, and in the case q = p− 1 for
|z| < 1 or at |z| = 1 if the real part of

∑p−1
j=1 bj −

∑p
j=1 aj is positive. Here

we used the Pochhammer symbol

(a)n =
Γ(a + n)

Γ(a)
.

Multi-variable generalizations, such as Appell and Lauricella functions, play
a role in Feynman integral computations as well. If the Feynman integral is
considered in D = 4− 2ε dimensions, the parameters take the form

(5.2) ai = Ai + εαi, bi = Bi + εβi, where αi, βi ∈ R.

In the case of massless integrals, the numbers Ai, Bi are integers while in
the case of non-vanishing masses, some of them are half-integers.

In order to arrive at a result for the Feynman integral where pole-terms
in ε can be separated, one has to expand these functions near ε = 0. Several
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computer programs are available for this task. The programs of [42, 43] use
algorithms for the expansion of very general types of nested sums [41] while
the program [45] writes an Ansatz in harmonic polylogarithms and deter-
mines the coefficients from differential equations. A method using systems
of differential equations was presented in [46–48]. We also refer to [53–55]
for recent progress in the field.

Alternatively, we can start from an integral representation of the func-
tion, expand the integrand and compute the resulting integrals explicitly.
This approach was applied in [44] for the expansion of 2F1. The algorithms
presented above are very well suited for this method and can be used to
extend it to more general functions.

As a first example we still consider 2F1. We have the integral represen-
tation

2F1(a1, a2; b; z1) =
Γ(b)

Γ(a2)Γ(b− a2)

∫ 1

0
za2−1
2 (1− z2)b−a2−1(1− z1z2)−a1dz2

for Re(b) > Re(a2) > 0 and z1 /∈ [1,∞). The parameters ai and b may depend
on ε as in (5.2). If we exclude the case of half-integers mentioned above, the
expansion at ε = 0 leads to integrands whose denominators are products of
z2, (1− z2), (1− z1z2) and whose numerators may involve powers of loga-
rithms of these functions. We can view the variables z1, z2 as cubical coordi-
nates and apply the algorithms of Section 3 to integrate over z2 analytically.

Example.

2F1(1, 1 + ε; 3 + ε; z1) =
Γ(3 + ε)
Γ(1 + ε)

∫ 1

0

zε
2(1− z2)
1− z1z2

dz2

=
∫ 1

0

2(z2 − 1)
z1z2 − 1

dz2 + ε

∫ 1

0

(2 ln(z2) + 3) (z2 − 1)
z1z2 − 1

+ ε2
∫ 1

0

(
ln(z2)2 + 3 ln(z2) + 1

)
(z2 − 1)

z1z2 − 1
dz2 +O (ε3)

=
2
z2
1

(z1 + (1− z1) ln(1− z1))

+
ε

z2
1

(z1 + 3(1− z1) ln(1− z1)

+ 2(1− z1)Li2(z1)) +
ε2

z2
1

((1− z1) ln(1− z1)

+ 3(1− z1)Li2(z1)− 2(1− z1)Li3(z1)) +O (ε3) .
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We extend the approach to generalized hypergeometric functions, start-
ing from the integral representation

pFq(a1, . . . , ap; b1, . . . , bq; z) =
Γ(bq)

Γ(ap)Γ(bq − ap)

∫ 1

0
tap−1(1− t)bq−ap−1

p−1Fq−1(a1, . . . , ap−1; b1, . . . , bq−1; zt)dt

in the region where it converges. Here again the expansion of the integrand
leads to integrals over cubical coordinates which can be computed by the
algorithms of Section 3.

Example.

3F2(2, 1 + ε, 1 + ε; 3 + ε, 2 + ε; z1)

=
Γ(3 + ε)Γ(2 + ε)

Γ(1 + ε)2

∫ 1

0

∫ 1

0

z2z
ε
3(1− z2)ε

(1− z1z2z3)1+ε
dz2 dz3

=
2
z2
1

((1− z1) ln(1− z1) + z1) +
ε

z2
1

(7(1− z1) ln(1− z1)

+ 5z1 + (2− 4z1)Li2(z1)) +
ε2

z2
1

(9(1− z1) ln(1− z1)

+ (7− 12z1)Li2(z1) + (6z1 − 2)Li3(z1) + 4z1) +O (ε3) .

While for these functions the integral representations are readily given
in cubical coordinates, an extension to further cases may require a change
of variables. For example the first Appell function

F1(a; b1, b2; c; x, y) =
∑
m≥0

∑
n≥0

(a)m+n (b1)m (b2)n

m!n! (c)m+n

xmyn, where |x|, |y|< 1

with the integral representation [49]

F1(a; b1, b2; c; x, y)

=
Γ (c)

Γ(a)Γ(c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− tx)−b1(1− ty)−b2dt

for Re(c) > Re(a) > 0 can be expressed in the appropriate form after
introducing cubical coordinates z3 = t, z2 = y, z1 = x/y.
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Example.

F1(1; 1, 1; 2 + ε; x, y) =
Γ(2 + ε)
Γ(1 + ε)

∫ 1

0

(1− z3)ε

(1− z1z2z3)(1− z2z3)
dz3

=
1

x− y
(ln(1− y)− ln(1− x))

+
ε

x− y
(ln(1− y)− ln(1− x)

+
1
2

ln(1− y)2 − 1
2

ln(1− x)2

− Li2(x) + Li2(y)) +O (ε2) .

We checked the examples with 2F1 and 3F2 analytically with the program
of [45] and the example with F1 numerically with the built-in first Appell
function in Mathematica.

5.3. Feynman integrals

As a third application we turn to the computation of Feynman integrals by
direct integration over their Schwinger parameters. As a first example we
consider the period integral (in the sense of [57]) of the four-loop vacuum-
type graph of figure 2(a). The integral is finite in D = 4 dimensions and is
given in terms of Schwinger parameters as

I1 =
∫

αi≥0

8∏
i=1

dαiδ(1− α8)
1
U2

.

The first Symanzik polynomial U is linearly reducible in this case. We use
our implementation of the algorithms of Sections 3 and 4 to integrate over
α1, . . . , α7 in an appropriate ordering and to compute the limit at α8 = 1 in
the last step.

The computation time per integration grows at first due to the increas-
ing weight and complexity of the functions involved, but decreases in the
end as fewer variables remain. Here we compute with multiple polyloga-
rithms of weight 2, 3, 4 and 5 in the fourth, fifth, sixth and seventh inte-
gration, respectively. We obtain the result I1 = 20ζ(5) which is well known
[50]. Period integrals of this type appear as coefficients of two-point inte-
grals corresponding to graphs obtained from breaking open one edge in the
vacuum-graph (see [18, 50]).

As an example for a Feynman integral with non-trivial dependence on
masses and external momenta, we consider the hexagon-shaped one-loop
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graph of figure 2(b) with incoming external momenta p1, . . . , p6. Introduc-
ing one particle mass with m2 < 0 we impose the on-shell condition p2

1 =
m2, p2

i = 0, i = 2, . . . , 6. In D = 6 dimensions the Feynman integral reads

I2 =
∫

αi≥0

6∏
i=1

dαiδ(1− α6)
2
F3

with the second Symanzik polynomial

F =
∑

1≤i<j≤6

αiαj

(−s2
ij

)
and kinematical invariants

sij =

(
j∑

k=i+1

pk

)2

.

This integral is computed in [28]. In a first step in this computation, the
integral is expressed in terms of the cross-ratios

u1 =
s2
26s

2
35

s2
25s

2
36

, u2 =
s2
13s

2
46

s2
36s

2
14

, u3 =
s2
15s

2
24

s2
14s

2
25

, u4 =
s2
12s

2
36

s2
13s

2
26

as

I2 =
1

s2
14s

2
25s

2
36∫

αi≥0

3∏
i=1

dαi
1

(u2 + α1 + α2)(u3α1 + u1α3 + α2)(u4α1α2 + α2 + α1α3 + α3)
.

We choose the parametrization

u1 =
1

1 + y
, u2 =

1 + v

1 + v − u
, u3 =

(1− u)(−y − x)
(1 + y)(−1 + u− v)

,

u4 =
1 + v − x

1 + v

which differs from the one in [28]. This parametrization is not pulled from
thin air: it is constructed recursively out of the polynomials occurring in the
linear reduction algorithm, applied to the integrand. With this choice each
ui tends to either 0 or 1 at the tangential base point which we choose by
the ordering (α2, α3, α1, u, v, x, y) and furthermore the polynomials in the
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(a) (b)

Figure 2: (a) Wheel with four spokes and (b) one-mass hexagon.

denominator of the re-written integrand of I2 are linearly reducible for the
ordering (α2, α3, α1). Therefore, we can apply our implementation to inte-
grate over the αi in this order and we obtain a result for positive u, v, x, y.
We checked the result analytically with the program of [40].

6. Conclusions

In this article we have presented explicit algorithms for symbolic compu-
tation of iterated integrals on moduli spaces M0,n+3 of curves of genus 0
with n + 3 ordered marked points, based on [5]. These algorithms include
the total differential of these functions, computation of primitives and the
exact computation of limits at arguments equal to 0 and 1. The algorithms
are formulated by use of operations on an explicit model for the reduced bar
construction on M0,n+3 in terms of cubical coordinates xi. In this formula-
tion, the algorithms are well suited for an implementation on a computer.
We have furthermore presented an algorithm for the symbol map, out of
which the vector space of homotopy invariant iterated integrals on M0,n+3

can be constructed.
We expect the algorithms to apply to a variety of problems in theoreti-

cal physics and pure mathematics. Here we have concentrated on two main
applications. As a first application, we have considered the computation of
periods on M0,n+3, for which our algorithms are readily applicable. Sec-
ondly, we have discussed the computation of a class of Feynman integrals
by the method of [2, 17]. In this approach, the Feynman integral is mapped
to an integral on the moduli space, where our algorithms are applied to
compute a single integration. We have presented an explicit procedure for
the required change of variables from Schwinger parameters to cubical coor-
dinates. A further procedure maps the result of the integration back to
iterated integrals in terms of Schwinger parameters, and this process can
be iterated. Using an implementation of our algorithms based on Maple, we
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have computed examples of such applications. As a third type of applica-
tion, we have briefly discussed an approach for the expansion of generalized
hypergeometric functions.
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of Appell and Kampé de Fériet functions, J. Math. Phys. 55 (2014),
043501; arXiv:1310.7700 [math-ph].

[54] V.V. Bytev, M.Y. Kalmykov and S. Moch, HYPERDIRE: HYPERgeo-
metric functions DIfferential REduction: MATHEMATICA based pack-
ages for differential reduction of generalized hypergeometric functions:
FD and FS Horn-type hypergeometric functions of three variables, 2013,
arXiv:1312.5777 [math-ph].
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