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Abstract loop equations, topological recursion and

new applications

Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

We formulate a notion of “abstract loop equations,” and show that
their solution is provided by a topological recursion under some
assumptions, in particular the result takes a universal form. The
Schwinger–Dyson equation of the one- and two-Hermitian matrix
models, and of the O(n) model appear as special cases. We study
applications to repulsive particles systems, and explain how our
notion of loop equations are related to Virasoro constraints. Then,
as a special case, we study in detail applications to enumeration
problems in a general class of non-intersecting loop models on the
random lattice of all topologies, to SU(N) Chern–Simons invari-
ants of torus knots in the large N expansion. We also mention an
application to Liouville theory on surfaces of positive genus.

1. Introduction

The topological recursion [65, 67] is a universal structure, formulated axio-
matically in terms of algebraic geometry on a curve. To the data of a
complex curve C, a meromorphic function x on C, a meromorphic 1-form
ω01, a meromorphic symmetric 2-form ω02 on C2, it associates a sequence of
meromorphic, symmetric n-forms ωg

n(z1, . . . , zn) on Cn (the correlators), and
a sequence of numbers F g (the free energies), which are “symplectic invari-
ants” of the initial data. They are in a certain sense the unique solution to
a hierarchy of linear and quadratic loop equations, which are closely related
to Virasoro constraints [108].

It has been first identified as the underlying structure of the large N
expansion in the one-Hermitian matrix models [71], as a culmination of the
moment method developed in [1, 3–5, 9–12]. In this case, y2 =

∏2n
i=1(x− ai)

and C was a hyperelliptic curve and ω01 = y dx. Then, it has been shown to
hold in the same form in the 2-matrix models [42, 64] and in the chain of
Hermitian matrices [67]. In this case, x and y can be arbitrary meromor-
phic functions on a compact Riemann surface C, and ω01 = y dx. Then it was
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observed that the topological recursion makes sense and some of its prop-
erties are preserved with weaker assumptions on the triple (C, x, y) called
spectral curve. It has been found in applications to enumerative geometry of
moduli spaces [24, 63, 77, 78, 115, 118], especially in Gromov–Witten theory
on toric Calabi–Yau 3-folds [30, 68] where the relevant spectral curves are
such that ex and ey are meromorphic on a compact Riemann surface C. In
combinatorics, the topological recursion structure has also been shown to
solve the problem of enumerating maps [76], and more recently enumerating
maps carrying certain statistical physics models like the Ising model [64]
or self-avoiding loops models [20]. In the latter case, the relevant spectral
curve C is a torus but y is a multivalued function on C. A deformation of
the topological recursion by a parameter � has also been defined. The case
of � � 1 was treated in [38, 44]: it remains in the framework of algebraic
geometry, and governs the large N expansion of the beta ensembles for fixed
β �= 0 (see [128] for definition and references therein), with identification:

(1.1) � =
1
N

(√
β

2
−
√
2
β

)
.

The case of � ∈ O(1) rather lives in the realm of geometry of D-modules,
is currently being developed [39–41, 61], and has potential applications in
refined topological string theories.

In this article, we will show that the topological recursion also governs
the large N expansion in generalized matrix models, which have been called
“repulsive particle systems” in the recent work [85]. Those are statistical
mechanical models whose partition function can be written, if we have only
one species of particles,

(1.2) ZN =
∫ ∏

1≤i<j≤N

R0(λi, λj)
N∏

i=1

dλi e
−N V (λi)

considered as a convergent integral. We usually assume that R(λi, λj) ∝
(λi − λj)β at short distances, for some β > 0. We recall that � = 0 cor-
responds to β = 2. Such models are ubiquitous in theoretical physics and
enumerative geometry, even for β = 2. They appear in statistical physics on
the random lattice [46, 129], in the theory of random partitions [73, 75], in
supersymmetric gauge theories [58, 87, 117, 123], in topological strings [113],
in Chern–Simons theory [107, 109, 110], etc.

This article begins with shaping a notion of “abstract � = 0 loop equa-
tions,” and show that they are solved by the same topological recursion
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which was formulated in [65] (Section 2). The key result about abstract
loop equations is Proposition 2.7, and we show that many of the proper-
ties of the usual topological recursion are preserved1. The initial data for
this recursion are a 1-form ω01 (which was y dx) and a symmetric 2-form ω02
(which was a fundamental 2-form of the second kind, also called “Bergman
kernel,” when C is a curve). In this way, we retrieve all previous avatars,
like the one-Hermitian matrix model, the two-Hermitian matrix model (see
Section 7.1), in one-cut or multi-cut regimes. Their solution by a topological
recursion had been obtained case by case so far, but the reason for existence
of a universal solution was still missing. This article, especially Sections 4,
5 and 7.1, solves this puzzle by putting the Schwinger–Dyson equations of
those matrix models under the same roof. We also find interesting new appli-
cations. We illustrate the theory on four such new examples, and find that
the topological recursion governs:

• The 1/N expansion of systems of repulsive particles, when it exists
(Section 3). For fixed β > 0 different from 2, a generalization along
the lines of [38] is possible, but is left aside in order to keep this
article focused. It is natural to include several species of particles,
which have species-dependent pairwise interactions. We shall see that
an assumption of strict convexity of the pairwise interaction plays a
key role (Definition 3.2) in the construction of the relevant spectral
curve. The proof of existence of a full asymptotic expansion in 1/N
in such models in the one-cut regime or the multi-cut regime with
fixed filling fractions is treated in [27], and is not the concern of this
article, which takes it (unless mentioned) as an assumption. Our main
results are formulated in Proposition 3.14 and Corollary 3.16 (resp.
Proposition 3.20 and Corollary 3.21 for the multi-species case).

• The enumeration of maps with a loop configuration, in all topologies,
with uniform boundary conditions (Section 5). This is the “formal
integral” counterpart of systems of repulsive particles, and the intro-
duction of several species of particles has also a natural combinatorial
origin in the model, as introducing colors for domains separated by the
loops. Contrary to the convergent case, the proof of our results here is
complete and does not rely on extra assumptions. We also treat height
models on maps of all topologies with boundaries of fixed heights in
Section 5.8, where heights take values at vertices of a ADET or ÂD̂Ê

1For the skilled reader, we anticipate by saying that the symplectic invariance is
not expected to hold, as we comment in Section 8.
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Dynkin diagram. We indeed observe that among heights models, those
are special because they lead to strictly convex pairwise interactions
(Lemma 5.5).

• The large N expansion of torus knot invariants computed in U(N)
Chern–Simons theory (Section 6), where we justify a proposal of [23].
Here we also justify the existence of the 1/N expansion.

• The large impulsion expansion of Liouville correlation functions on a
surface of positive genus (Section 7.3), for which we stay in this article
at a formal level. In particular, we do not address important issues of
convergence, choice of contours of integrations and characterization of
the cuts of the spectral curve.

On the way, we explain in Section 4 how abstract loop equations for repulsive
particle systems can be identified with Virasoro constraints after a non-linear
change of times. We also illustrate in Sections 7.2 and 7.3 concerning repul-
sive particle systems on positive genus surfaces, that ad hoc definitions of the
correlators can sometimes simplify the analysis. We present our conclusions
in Section 8. A table of notations is collected in B.

The notion of �-deformation of the notion of abstract loop equations,
and their solution by a topological recursion, will be considered in a future
work. Since we restrict ourselves to � = 0 in this article, we shall even omit
to mention � = 0, and speak of “abstract loop equations.”

2. Abstract loop equations

2.1. Notion of domain

We first collect some notations and definitions. A closed arc (resp. an open
arc) is a piecewise smooth embedding of S1 (resp. of [0, 1]) to a Riemann
surface. Let U be an open subset of a Riemann surface and p be a point.
We denote in particular:

Definition 2.1.

• M(U) (resp. H(U)), the space of meromorphic (resp. holomorphic)
1-forms on U .

• M ′({p}) (resp. H ′({p})), the space of germs of meromorphic (resp.
holomorphic) 1-forms at p.

• M ′−({p}), the quotient space M ′({p})/H ′({p}).
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If ξ is a local coordinate around p such that ξ(p) = 0, M ′−({p}) can be
identified with the space of polynomials in (ξ(p))−1.

Definition 2.2. We call U a domain if ∂U consists of a non-empty, finite
disjoint union of smooth, closed arcs (γj), and is equipped with an involutive,
orientation reversing diffeomorphism ι.

The main example of domains we have in mind can be constructed
from an oriented Riemann surface Σ which may have smooth boundaries,
and a collection of open arcs (γoj )1≤j≤ro and closed arcs (γcj )1≤j≤rc on Σ

(see figure 1). We consider D = Σ \
(⋃ro

j=1 γoj ∪
⋃rc

j=1 γcj

)
. The topological

Figure 1: Construction of a domain, and its continuation across Γ. γ1 (resp.
γ2∪̇γ3) is the image of the cut γo (resp. γc) after opening the cut by confor-
mal mapping. Vj is the neighborhood of γj in UΓ obtained as the union of
Uj (in yellow), U ′j (in green) and γj .
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boundary of D is the disjoint union of r = r0 + 2rc connected components
coming either from open arcs and closed arcs:

• Open arcs yield a component γj = (γoj )1 �Ej
(γoj )2, where (γ

o
j )a for

a = 1, 2 are two copies of γoj , and Ej = ∂γoj is the set of endpoints of
γj . It is naturally equipped with an involution ιoj , which sends a point
of (γoj )1 to the same point on (γ

o
j )2.

• Closed arcs yield two components (γcj )1 and (γcj )2 corresponding to
the exterior and the interior of γcj . Their disjoint union is naturally
equipped with an involution ιcj , which sends a point of (γoj )1 to the
same point on (γcj )2.

We denote D = D ∪ ∂D the topological completion of D. Then, one can
always find a conformal mapping from D to some U with everywhere smooth
boundary, which extends to a homeomorphism fromD to U , but behaves as a
squareroot near Ej ↪→ D. Thus, U is a domain, with an orientation reversing
involution ι defined globally on ∂U . By similar uniformization arguments,
we could also allow Σ to have only piecewise smooth boundaries.

Let U be a domain, and Γ =
⋃r

j=1 γj be a subunion of connected compo-
nents of ∂U (it will be ∂U itself unless precised). Let Uj ⊆ U be an annular
open neighborhood of γj , and U ′j be another copy of Uj . We may glue U ′j
to U along γj to define a Riemann surface UΓ, and identify U and γj to
their image in UΓ by inclusion. Vj = Uj �γj

U ′j is an open neighborhood of
γj in UΓ. The orientation reversing involution ι initially defined on Γ can be
extended uniquely to a holomorphic involution on V =

∐r
j=1 Vj . Later, we

need to introduce smooth arcs γextj ⊆ Uj which are homotopic in Vj to γj

(by definition, they do not intersect γj), and their image γintj = ι(γextj ). We
also introduce Γext =

⋃r
j=1 γextj .

2.2. Spaces of continuable functions

Definition 2.3. Let HΓ(U) be the space of continuable 1-forms across the
boundary components Γ. It is defined as the space of holomorphic 1-forms
on U , which can be extended as meromorphic 1-forms on UΓ defined for
small enough neighborhoods Uj :

(2.1) HΓ(U) = H(U) ∩
(

lim−→
U�Γ↪→UΓ

M(UΓ)

)
.
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We make an abuse of notations and identify a 1-form f ∈ HΓ(U) with
the unique meromorphic 1-form on some UΓ which coincides with f on U ⊆
UΓ. The involution ι acting on V can be used to define linear operators
Δ,S : M(V )→ M(V ) by formulas

(2.2) Δf(z) = f(z)− (ι∗f)(z), Sf(z) = f(z) + (ι∗f)(z).

By abuse of notations, we shall write later f(ι(z)) ≡ ι∗f(z). Conversely, we
have

∀f ∈ HΓ(U), ∀z ∈ V , f(z) =
Sf(z) + Δf(z)

2
,(2.3)

f(ι(z)) =
Sf(z)−Δf(z)

2
.

Since ι is defined on V =
∐

Vj , one may consider it as a collection of local
involutions ιj = ι|Vj

by restricting the involution to Vj for j ∈ [[1, r]]. In the
same way, one can view Δ and S as a collection of local operators Δj and Sj ,
defined on M(Vj). We also point out a polarization formula which becomes
useful later: for any 1-forms f, g ∈ M(V ), we have

(2.4) f(z)g(ι(z)) + f(ι(z))g(z) =
1
2
(Sf(z)Sg(z)−Δf(z)Δg(z)) .

We say that f ∈ H(U) extends continuously to Γ ⊆ ∂U when, for any coor-
dinate x on Σ locally defined on an open set O ⊆ U such that O intersects
U , f/ dx initially defined and holomorphic on O ∩ U extends to a continuous
function on O ∩ U .

Definition 2.4. By Schwarz reflection principle, the subspace of
H(
∐r

j=1 Uj) consisting of 1-forms which extend continuous, ι-invariant func-
tions on Γ, can be identified with the subspace of ι-invariant holomorphic
1-forms in V . We denote it H inv

Γ (V ).

We want to consider classes of continuable 1-forms for which a Cauchy
residue formula holds. This leads us to:

Definition 2.5. A local Cauchy kernel G(z, z0) is a meromorphic 1-form
in z0 ∈ UΓ and a meromorphic function in z ∈ V , with only singularity in
its first variable a simple pole at z = z0, such that locally:

(2.5) G(z, z0) ∼ dz0
z0 − z

+ analytical.
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Definition 2.6. A subspaceH of M(UΓ) is normalized ifH ∩ H(UΓ) = {0}.

Definition 2.7. A subspaceH of HΓ(U) is representable by residues if there
exists a local Cauchy kernel G(z, z0) such that, for any f in H, the function
f̃ in M(UΓ) defined by

(2.6) f̃(z0) =
∑
p∈V

Res
z→p

G(z, z0) f(z)

has the same poles as f , i.e., (f − f̃) ∈ H(UΓ).

By definition, a 1-form belonging to H can only have a finite number of
poles in V chosen small enough, so the sum in (2.6) is finite.

Definition 2.8. We define the subspace LΓ(U) ⊆ HΓ(U) consisting of
1-forms f such that Sf ∈ H inv

Γ (V ).

The key property of a 1-form f ∈ LΓ(U) is that Sf is holomorphic in a
neighborhood of Γ in UΓ. Thus, its behavior at poles is determined by that
of Δf(z).

Lemma 2.1. Assume we have a subspace H ⊆ LΓ(U) representable by
residues. Then

(2.7) ∀f ∈ H, ∀z0 ∈ UΓ, f̃(z0) =
∑
p∈V

Res
z→p

ΔzG(z, z0)
4

Δf(z),

where the superscript z indicates the variable on which the operator Δ acts.

Proof. Let f ∈ H. We remark that p ∈ V is a pole of f iff ι(p) is a pole of
f , and we compute from (2.6):

f̃(z0) =
1
2

∑
p∈V

Res
z→p

Sz[G(z, z0) f(z)](2.8)

=
1
4

∑
p∈V

Res
z→p

[SzG](z, z0)Sf(z) + [ΔzG](z, z0)Δf(z)

=
∑
p∈V

Res
z→p

[ΔzG](z, z0)
4

Δf(z).

Indeed, since f ∈ LΓ(U) is holomorphic at the poles, the last term does not
contribute to the residue. �
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2.3. Properties of representable subspaces

We denote H̃ the subspace of M(UΓ) spanned by f̃ when f runs in H.

Lemma 2.2. If H is representable by residues, so are H̃ and H+ H̃ with
same local Cauchy kernels. Besides, for any f ∈ H, ˜̃

f = f̃ . Hence, H̃ is
normalized and H+ H̃ is normalized iff H is normalized.

Proof. For any f ∈ H, since (f̃ − f) is holomorphic in a neighborhood of Γ:

(2.9) f̃(z0) =
∑
p∈V

Res
z→p

G(z, z0) f(z) =
∑
p∈V

Res
z→p

G(z, z0) f̃(z).

Hence H̃ is representable by residues with local Cauchy kernel G, and the
right-hand side coincides with ˜̃

f by definition. �

Given a local Cauchy kernel, we consider the linear map:⊕
p∈V

M ′
−({p}) −→ M(UΓ),(2.10)

(gp)p �−→ g̃(z0) =
∑
p∈V

Res
z→p

G(z, z0) gp(z)

and denote HG its image. The 1-forms on the right-hand side behave like
gp(z0) when z0 → p, p being a point in Γ.

Lemma 2.3. HG is representable by residues with local Cauchy kernel
G(z, z0), normalized, and is maximal within such subspaces.

Proof. We need to compute

(2.11) ˜̃g(z0) =
∑
p∈V

Res
z→p

G(z, z0)

⎛⎝∑
q∈V

Res
ξ→q

G(ξ, z) gq(ξ)

⎞⎠ .

Notice that the poles are isolated, so the sum over p is finite. Taking into
account the pole of G(ξ, z) at z = ξ, we may exchange the residues in z
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and ξ:

˜̃g(z0) =
∑

(p,q)∈V 2

Res
ξ→q

(
Res
z→p

+δp,q Res
z→ξ

)
G(z, z0)G(ξ, z) gq(ξ).

The first term does not contribute since G(z, z0)G(ξ, z) is holomorphic when
z → p, while the second term gives

(2.12) ˜̃g(z0) =
∑
p∈V

Res
ξ→p

G(ξ, z0) gp(ξ),

which coincides with g̃(z0). �

For large enough normalized representable subspaces, we do not have the
choice of a Cauchy kernel.

Lemma 2.4. If G1 and G2 are two local Cauchy kernels for H containing
a sequence of function (fk,j)k≥1,j∈[[1,r]] with a pole of order k at a given point
pj ∈ Vj, and H is normalized, then G1 ≡ G2.

Proof. The assumption implies that, for any f ∈ H and any j,
Res z→pj

(G1(z, z0)−G2(z, z0))f(z) = 0. By specializing to f = fj,k, we find
that the Taylor expansion of (G1(z, z0)−G2(z, z0)) at z = zj vanishes iden-
tically. By the principle of isolated zeros, we must have G1(z, z0) = G2(z, z0)
for any z ∈ Vj , thus any z ∈ V . �

2.4. Residues as contour integrals in the physical sheet

Equivalently, we may rewrite (2.7) as a contour integral in Uj only:

Lemma 2.5. Assume H ⊆ M(UΓ) is representable by residues. For a given
z0 ∈ UΓ, we choose arcs γextj ⊆ Uj as in Section 2.1, oriented like γj, so that
z0 or ι(z0) does not lie between γextj and γj. Remind the notation Γext =⋃r

j=1 γextj .
(2.13)

∀f ∈ H, ∀z0 ∈ UΓ, f̃(z0) =
1
2iπ

∮
Γext

[ΔzG](z, z0) f(z) +G(ι(z), z0)Sf(z).

Proof. The orientation of γj can be carried by homotopy to an orientation
of γextj . Then, the orientation of γintj = ιj(γextj ) is opposite to the orientation
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carried by homotopy from ι(γj). These arcs allows to represent the residues.
Setting Γint = ι(Γext), we have

f̃(z0) =
1
2iπ

(∮
Γext

+
∮
Γint

)
G(z, z0) f(z)(2.14)

=
1
2iπ

∮
Γext

Sz[G(z, z0) f(z)]

=
1
2iπ

∮
Γext

[ΔzG](z, z0) f(z) +G(ι(z), z0)Sf(z),

the last line being a mere rewriting of the previous one.
�

A similar computation shows:

Lemma 2.6. Assume H ⊆ LΓ(U) representable by residues. Then, for any
z0 ∈ UΓ:

(2.15) ∀f ∈ H, f̃(z0) =
1
2iπ

∮
Γext

[ΔzG](z, z0)
(

f(z)− Sf(z)
2

)
.

�

2.5. Loop equations and topological recursion

Definition 2.9. We denote Γfix the set of fixed points of Γ under ι. Elements
of Γfix are called ramification points.

Notice that in the example given in Section 2.1, ramification points only
arise from ends α ∈ Ej of open arcs.

Definition 2.10. We say that a 1-form f ∈ L(U) is off-critical if the zeros
of Δf(z) in V only occur at ramification points, and their order is exactly 2.

If H is a vector space of 1-forms, we denote Hn the space of symmetric
n-forms f(z1, . . . , zn), such that f(·, z2, . . . , zn) ∈ H for any z2, . . . , zn away
from poles of f . We consider in this paragraph a family ω•• = (ωg

n)n,g of
meromorphic, symmetric n-forms (n ≥ 1) on Un, indexed by an integer g ≥
0. In other words, ωg

n ∈ Mn(UΓ) with our notations.

Definition 2.11. We say that a couple (n, g) is stable if 2g − 2 + n > 0,
i.e., (n, g) �= (1, 0), (2, 0).
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The main topic of this article is to study families ω•• which satisfy certain
constraints, that we will call “loop equations.”

Definition 2.12. We say that ω•• satisfies linear loop equations if:

(i) ω01 ∈ LΓ(U) is an off-critical 1-form.

(ii) G(z, z0) =
∫ z

ω02(·, z0) defines a local Cauchy kernel.
(iii) For any stable (n, g), we have ωg

n ∈ HΓ(U), and for any z2, . . . , zn which
are not poles of ωg

n, Sωg
n(·, z2, . . . , zn) ∈ H inv

Γ (V ).

We say that those loop equations are solvable when (iii) is replaced by:

(iv) For any stable (n, g), ωg
n ∈ (HG)n, i.e., ωg

n(·, z2, . . . , zn) belongs to
the maximal normalized subspace of LΓ(U) which is representable by
residues for the local Cauchy kernel of (ii).

Definition 2.13. We say that ω•• satisfies quadratic loop equations if, for
any stable (n, g),

(2.16)

Qg
n(z; zI) = ωg−1

n+1(z, ι(z), zI) +
∑

J⊆I, 0≤h≤g

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(ι(z), zI\J)

is a quadratic differential in z ∈ V with double zeros at ramification points.

Assuming linear loop equations, there are equivalent ways to write the
quadratic loop equation. For instance, using the polarization formula given
in (2.4), we can recast (2.16) as

(2.17)
1
2
Δω01(z)Δ

zωg
n(z, zI) = Eg

n(z, ι(z); zI) + Q̃g
n(z; zI),

where we have introduced

(2.18)

Eg
n(z, z′; zI) = ωg−1

n+1(z, z′, zI) +
∑

J⊆I, 0≤h≤g
(J,h) 
=(∅,0),(I,g)

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(z

′, zI\J)

and Q̃g
n(z; zI) = 1

2 Sω01(z)Sωg
n(z, zI)−Qg

n(z; zI). Since Sωg
n(·, zI) ∈ H inv

Γ

(V ), it must have at least a simple zero at ramification points. Therefore,
Q̃g

n(z; zI) has double zeros at ramification points iff Qg
n(z; zI) does.
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Here is the central result of the theory, whose applicability will be
illustrated in the remaining of the article:

Proposition 2.7. If ω•• satisfies solvable linear and quadratic loop equa-
tions, then for any stable (n, g), the poles of ωg

n(·, z2, . . . , zn) in UΓ occur
only at ramification points, and we have the topological recursion formula

(2.19) ωg
n(z, zI) =

∑
α∈Γfix

Res
z→α

K(z, z0) Eg
n(z, ι(z); zI),

where Eg
n was defined in (2.18) and we introduced the recursion kernel

(2.20) K(z, z0) =
1
2

∫ z
ι(z) ω

0
2(·, z0)

ω01(z)− ω01(ι(z))
.

We observe that any ramification point α actually belongs to some con-
tour γj such that ι(γj) = γj : if z is near α, so is ι(z) and therefore the path
of integration from ι(z) to z remains in a neighborhood of α, and thus

∫ z
ι(z)

is well defined. The key point to use this proposition in practice is to show
that the linear loop equations are solvable, i.e., show that ωg

n can be rep-
resented by a residue formula for a certain Cauchy kernel.2 The purpose of
Section 3 is to provide a non-trivial class of examples where solvable linear
and quadratic loop equation arise.

Proof. Let us fix a family of spectator variable zI = (z2, . . . , zn) ∈ Un−1.
Since they are chosen away from Γ, we can always assume that zi /∈ V for
any i ∈ [[2, n]]. Firstly, we notice that, from linear loop equations, ωg

n(z, zI)
has the same poles with respect to z ∈ V as Δzωg

n(z, zI), and our definition
of solvability implies that these are the only possible poles of ωg

n(z, zI) for
z ∈ UΓ. Besides, property (ii) in Definition 2.12 imposes that the only singu-
larity of ω02(z, z0) = dzG(z, z0) in the range (z, z0) ∈ UΓ × V is a double pole
without residues at z0 = z. We prove the statement about the location of
the poles of ωg

n by recursion of χg
n = 2g − 2 + n > 0. Indeed, the right-hand

side of the decomposition (2.17) of ωg
n involves ωg′

n′ with χg′

n′ < χg
n, and the

unknown but regular Q̃g
n. At level χ = 1, we have to consider (n, g) = (3, 0)

2Here, we described a situation where the Cauchy kernel does not depend on n
and g, but this assumption might be relaxed if needed in some applications.
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or (1, 1). As regards ω03, we have a decomposition

(2.21)

Δzω03(z, z2, z3) =
2

Δω01(z)

(
ω02(z, z2)ω02(ι(z), z3) + ω02(ι(z), z2)ω

0
2(z, z3)

+ Q̃0
3(z; z2, z3)

)
.

The numerator of the right-hand side is regular for z ∈ V , and the denomi-
nator may create poles at zeros of Δω01(z). Since ω01 is assumed off-critical,
they can only occur at ramification points. Thus ω03 has poles at ramification
points only. As regards ω11, we have a decomposition

(2.22) Δzω11(z) =
2

Δω01(z)

(
ω02(z, ι(z)) + Q̃1

1(z)
)

ω02(z, ι(z)) has a pole of order 2 at ramification points, and since ω01 is off-
critical and Q1

1(z) regular, we deduce that ω11(z) has poles at ramification
points only. If we assume the property true for ωg′

n′ such that χn′,g′ < χ,
one shows by the same arguments that any ωg

n(z, zI) with χg
n = χ has poles

at ramification points only. Therefore, we know that ωg
n has poles only at

ramification points. Since ωg
n satisfy solvable linear loop equations, we can

use Lemma 2.1, and find

(2.23)

ωg
n(z0, zI) =

∑
α∈Γfix

Res
z→α

1
2

∫ z
ι(z) ω

0
2(z0, ·)

ω01(z)− ω01(ι(z))

(
Eg

n(z, ι(z); zI) + Q̃g
n(z; zI)

)
.

The quadratic loop equations provide exactly the condition under which
Q̃g

n(z;zI)
ω01(z)−ω01(ι(z))

is regular at ramification points. Therefore, this term does not
contribute to the residue, and we find (2.19). �

There is a converse to Proposition 2.7:

Proposition 2.8. If ω01 and ω02 satisfy (i) and (ii) of Definition 2.12, the
topological recursion formula (2.19) defines ωg

n for stable n, g, which are
elements of Mn(UΓ), satisfying solvable linear loop equations (i.e., (iv) of
Definition 2.12) and quadratic loop equations (Definition 2.13).

Proof. We first mention that formula (2.19) has a diagrammatic represen-
tation [42, 65], i.e., ωg

n can be written as a sum over skeleton graphs of a
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Riemann surface of genus g with n punctures. It is quite useful to prove
elementary properties of the topological recursion. For instance, repeating
the diagrammatic proof of [67], one can show directly that, despite the spe-
cial role played by z0 outwardly, Equation (2.19) does produce a symmetric
n-form. Then, Sωg

n(·, zI) ∈ H inv
Γ (V ) follows from (2.19) and the fact that

SG(z, ·) ∈ H inv
Γ (V ), and solvability follow from Lemmas 2.1 and 2.2. To

establish the quadratic loop equations, we use Lemma 2.1 to write:

(2.24) ωg
n(z, zI) =

∑
α∈Γfix

Res
z→α

ΔzG(z, z0)
4

Δzωg
n(z, zI).

And comparing with the topological recursion formula (2.19), we find

(2.25)
∑

α∈Γfix
Res
z→α

1
2Δ

zG(z, z0)
Δω01(z)

(
1
2
Δω01(z)ω

g
n(z, zI)− Eg

n(z, ι(z); zI)
)
= 0,

where Eg
n defined in (2.18), and considering the limit when z0 approaches

one of the ramification points, this equation implies that Q̃g
n defined in

(2.17) has a zero at ramification points. Since it is invariant under ι, this
zero has even order. Since we already have proved linear loop equations,
this implies quadratic loop equations in their equivalent form noticed after
Definition 2.13. �

We now come to properties of the topological recursion formula, which
were already identified in [65]: behavior under variations of the initial data
in Section 2.6, and singular limits in Section 2.8. We also give definition in
a minimal framework of numbers ωg

0 (the free energies, in Section 2.7), so
that the formulas for the variation of the initial data continue to hold.

2.6. Variations of initial data

Let Ω∗ be a cycle in UΓ, which lies outside a compact neighborhood of
the ramification points. Assume we are given an initial data consisting of
Γ, ω01 ∈ LΓ(U) and ω02 ∈ M2(UΓ) so that G(z, z0) =

∫ z
ω02(·, z0) is a local

Cauchy kernel. We call these data a spectral curve. Then, we can define ωg
n

by the topological recursion formula (2.19).
In this paragraph, we discuss the effect of an infinitesimal variation of

the spectral curve. More specifically:

Definition 2.14. Let Ω∗ be a path in UΓ, which lies outside a compact
neighborhood of the ramification points, and ΛΩ a germ of holomorphic
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function on Ω∗. We consider a variation of the form

δΩω01(z) = Ω(z) =
∫
Ω∗
ΛΩ(·)ω02(·, z, ),(2.26)

δΩω02(z1, z2) =
∫
Ω∗
ΛΩ(·)ω03(·, z1, z2).(2.27)

We call δΩ a Witten-Dijkgraaf-Verlinde-Verlinde-compatible variation.

The reason for this denomination will appear in (2.32) below. δΩ is a
derivation on the space of functionals of ω01 and ω02. Then, we can deduce:

Theorem 2.9. For any stable n, g:

(2.28) δΩωg
n(z1, . . . , zn) =

∫
Ω∗
ΛΩ(·)ωg

n+1(·, z1, . . . , zn).

This result has a nice diagrammatic interpretation, and the proof is
identical to that in [65].

2.7. Definition of free energies

We define the stable free energies:

Definition 2.15. For any g ≥ 2, we define the number

(2.29) ωg
0 = F g =

1
2− 2g

∑
α∈Γpole

Res
z→α

ωg
1(z)

(∫ z

o
ω01

)
,

where o is an arbitrary base point and Γpole is the set of poles of ωg
1 .

Note that this definition does not depend on the choice of a base point o.
By integrating Equation (2.28), a straightforward computation shows:

Corollary 2.10. Equation (2.28) holds also for n = 0 and any g ≥ 2.

If we have two 1-forms Ω and Ω′ defining variations δΩ and δΩ′ , the
fact that stable ωg

n do not have poles in UΓ except at branch points imply
that δΩδΩ′ = δΩ′δΩ. Therefore, if we have a smooth family of spectral curves
depending on parameters (ti)i around some initial value (t0i )i, so that ∂ti

can be realized as δΩi
satisfying (2.26) and (2.27), we may define unstable

free energies as follows:
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Definition 2.16. We define ω10 ≡ F 1 as the function of (ti)i modulo a
constant, at least locally in the neighborhood of (t0i )i such that

(2.30) ∂ti
F 1 =

∫
z∈Ω∗i

ΛΩ(z)ω11(z).

This definition makes sense because the derivative of the right-hand side
with respect to tj is symmetric by exchange of i and j, due to the fact that
ω12 is a symmetric 2-form, which is regular across Ω

∗
i × Ω∗j since those paths

remain away from the ramification points where ω12 has its poles. Similarly:

Definition 2.17. We define ω00 = F 0 as the function of (ti)i modulo a
quadratic form, at least locally in the neighborhood of (t0i )i such that

(2.31)

∂ti
∂tj

∂tk
F 0 =

∫
z1∈Ω∗i

ΛΩ(z1)
∫

z2∈Ω∗j
ΛΩ(z2)

∫
z3∈Ω∗k

ΛΩk
(z3)ω03(z1, z2, z3).

Therefore, we conclude that (2.28) holds for any n, g ≥ 0 at least with
Ω is equal to some Ωi. We can compute from the residue formula

∂ti
∂tj

∂tk
F 0 =

∑
α∈Γfix

Ωi(α)Ωj(α)Ωk(α)
2ρα

,(2.32)

where

(2.33) Ωi(α) =
Ωi

dξ
(α), ω01(z)− ω01(ι(z)) ∼z→α

2ρα ξ(z) dξ(z)

and ξ is a local coordinate near α so that ξ(α) = 0 and ξ(ι(z)) = −ξ(z).
This representation of third derivatives of F 0 as a sum of cubic terms is
closely related to WDVV equations [57]. Remark that, according to those
definitions, (2.28) holds for any n, g ≥ 0 such that (n, g) �= (0, 0) and (1, 0).

2.8. Singular limits

A family of spectral curve parameterized by t ∈]0, t0] is said to be singular at
t = 0 if ramification points collide at t = 0, or a singularity of ω01 collides with
at least one ramification point at t = 0. The topological recursion formula
usually diverges when t→ 0, but we can control precisely how it diverges in
terms of the blow-up of the singularity. This blow-up curve contains only the



68 Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

singular ramification points, i.e., those where a singularity arise in the limit
t → 0. In the topological recursion formula (2.19), since the computation
of residues in the topological recursion is a local operation, we find that
the contribution of the residues at non-singular ramification points remains
finite, and for the computation of the residues at singular ramification points,
we may replace ω01 and ω02 by their blow-up. Therefore, we find:

Proposition 2.11. Assume (ω01)t(zt) ∼ tα (ω01)
∗(ζ) and (ω02)t(z1,t, z2,t) ∼

(ω02)
∗(ζ1, ζ2) when t → 0, and zt, zi,t denote family of points approaching the

point ζ, ζi in the blow-up curve. Then, for any stable (n, g):

(2.34)

(ωg
n)t(z1,t, . . . , zn,t) = tα(2−2g−n) (ωg

n)
∗(ζ1, . . . , ζn) + o(tα(2−2g−n)).

�

2.9. Spectral curves with automorphisms

Eventually, we explain for spectral curves with symmetry, how the symmetry
carries to the ωg

n. This remark has not appeared yet in the literature, and is
noteworthy in recent applications of the topological recursion to knot theory.

Let U be a domain and Γ be a subset of the connected components of
∂U . Let H be a subspace of HΓ(U) representable by residues, and G its local
Cauchy kernel. In this paragraph, we imagine that we have a finite degree,
holomorphic (resp. anti-holomorphic) map σ : U → U such that σ|∂U com-
mutes with the involution ι on Γ. If we assume furthermore that Γ avoids
fixed points of σ, the quotient π : U → U/σ is smooth in the vicinity of the
image of Γ. For any f ∈ H(U), we define

(2.35) fσ(x) =
∑

y∈σ−1{x}
f(y),

σ can be extended to a holomorphic (resp. anti-holomorphic) finite degree
map, hence we have a covering π : UΓ → UΓ/σ. If f ∈ HΓ(U), then fσ ∈
Hπ(Γ)(U/σ), and the subspace Hσ is representable by residues with local
Cauchy kernel

(2.36) Gσ(z, z0) =
∑

ζ0∈σ−1{z0}
G(z, ζ0).

It is easy to see that:
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Proposition 2.12. ω•• satisfies linear loop equations (resp. solvable linear
loop equations, and quadratic loop equations) if and only if (ω••)σ satisfies
linear loop equations (resp. solvable linear loop equations, and quadratic loop
equations).

In other words, the topological recursion commutes with the quotient
operation, provided the quotient is smooth near the ramification points.

3. Repulsive particles systems

Here we consider an important class of applications of the previous formalism.

3.1. The model

Let Γ0 be a union of arcs and open arcs in Ĉ. We consider a N -point process
in Γ0 with joint distribution of the form

(3.1)

d�(λ1, . . . , λN ) =
∏

1≤i<j≤N

|λi − λj |β
∏

1≤i,j≤N

(R(λi, λj))
ρ/2

N∏
i=1

e−N V(λi) dλi,

ZN =
∫
(Γ0)N

d�(λ1, . . . , λN ).(3.2)

When β = 2, it can be realized as the eigenvalue distribution of a random
normal matrix M with spectrum included in Γ0:

(3.3) d�(M) = dM e−NTrV(M)+ ρ

2
Tr lnR(M⊗1N ,1N⊗M),

where 1N is the identity matrix of size N ×N . Although we borrow a proba-
bilistic language, d� can be a signed or complex measure, and even a formal
measure in this definition. By formal measure, we mean that

(3.4) V(x) = 1
t

(
x2

2
− U(x)

)
, U(x) =

∑
k

tk Uk(x),

where tk are formal variables, and ZN or any expectation value with respect
to d� is considered as a generating series in the formal variables tk. We have
factored the distribution (3.2), because we will later assume thatR(x, y) does
not vanish for (x, y) ∈ Γ20. It is thus characterized by a repulsion at short
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distance between two particles i and j, proportional to |λi − λj |β. We call
V the potential, R the two-point interaction and β the Dyson index. We
may assume without restriction that R(x, y) = R(y, x). It was convenient to
introduce a redundant, free parameter ρ in the model.

In the context of formal integrals, we shall review in Section 5 that this
model describes the statistical physics of self-avoiding loops on random lat-
tices, i.e., the general O(−ρ)-loop model on random maps [82]. For ρ = −1,
it contains for instance the Ising model on faces of random triangulations
[72]. In the context of convergent integrals, such a model has also appeared
in the context of quantum entanglement [33], and in relation with dynamics
of fluid interfaces [19].

We denote M = diag(λ1, . . . , λN ), and

(3.5) 〈f(M)〉 = 1
ZN

∫
(Γ0)N

d�(λ1, . . . , λN ) f(λ1, . . . , λN ).

We are interested in computing the partition function ZN , and the connected
correlators:

(3.6) Wn(x1, . . . , xn) =

〈
n∏

i=1

Tr
1

xi −M

〉
c

,

where c stands for “cumulant.” Equivalently,

(3.7)

Wn(x1, . . . , xn) ≡
〈

n∏
i=1

Tr
1

xi −M

〉
=

∑
J1∪̇···∪̇Jr=[[1,n]]

r∏
i=1

W|Ji| ((xji
)ji∈Ji

) .

In the following, we assume that V, R and Γ0 are such that ZN exists and
ZN �= 0. Then, Wn(x1, . . . , xn) defines a holomorphic function in the domain
(C \ Γ0)n, and a priori, Wn(x1, . . . , xn) has a discontinuity when one of the
xi’s crosses Γ0.

3.2. Some results of potential theory

3.2.1. Preliminaries. In this paragraph, we focus on convergent integrals
and assume Γ0 ⊆ R, and non-negative distribution �(λ1, . . . , λN ). We use
potential theory to prove useful technical results.

We denote P1(Γ0) (resp. P0(Γ0)) the convex set of probability measures
(resp. signed measures of total mass 0) on Γ0. Those sets are equipped with
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weak-* topology, which means that

lim
n→∞μn = μ∞ ⇐⇒ ∀f ∈ C0b (Γ0),(3.8)

lim
n→∞

(∫
Γ0

dμn(x) f(x)
)
=
∫
Γ0

dμ∞(x) f(x),

where C0b (Γ0) denotes the space of bounded continuous functions on Γ0. We
introduce the functional E on P1(Γ0):

(3.9) E [μ] = −
�

Γ20
dμ(x) dμ(y) lnR0(x, y) +

∫
Γ0

dμ(x)V(x),

where R0(x, y) = |x− y|β/2 (R(x, y))ρ/2. Since lnR0 and V can have singu-
larities, there might exist probability measures for which it is infinite or left
undefined. Let Γo0 = {x ∈ Γ0| V(x) < +∞}, and let a be an endpoint of Γo0.

Definition 3.1. We say that (V, R0) defines a strongly confining interaction
at a point a if there exist M : Γo0 → R

∗
+ such that

(3.10) lnR0(x, y) ≤ M(x) +M(y), lim inf
x→a

(V(x)− 2M(x)) = +∞.

We say that (V, R0) defines a strongly confining interaction if this is true
for any endpoint a of Γo0.

Definition 3.2. We say that R0 defines a strictly convex interaction if, for
any signed measure ν such that ν(Γ0) = 0,

(3.11)
�

Γ20
dν(x) dν(y) lnR0(x, y) ≤ 0

with equality iff ν = 0.

This implies in particular that PE1 (Γ0) = {μ ∈ P1(Γ0), E [μ] < +∞} is
a convex set, on which E is strictly convex. Besides,

Lemma 3.1. If R0 defines a strictly convex interaction, then for any com-
plex measure ν such that ν(Γ0) = 0,

(3.12)
�

Γ20
dν(x) ( dν(y))∗ lnR0(x, y) ≤ 0.
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Proof. Since lnR0(x, y) = lnR0(y, x) is real valued by assumption, the
left-hand side is real valued. Therefore,

�
Γ20

dν(x) ( dν(y))∗ lnR0(x, y) =
�

Γ20

[
Re dν(x)Re dν(y)(3.13)

+ Im dν(x) Im dν(y)
]
lnR0(x, y).

Since Re dν and Im dν are signed measures with mass 0, (3.11) applies to
each term. �

When (V, R0) defines a strongly confining interaction, we may adopt a
slightly weaker definition of strictly convex interaction, by restricting oneself
to ν with support included in a compact of Γo0. Examples of strictly convex
interactions are given in A. They include R0(x, y) = |x− y|β , its trigono-
metric and elliptic analog.

3.2.2. Equilibrium measures. Our goal is to establish that, with help
of the functional E for well-chosen potentials V and some extra assumptions,
one can define subspaces of HΓ(U) which are representable by residues and
normalized. They will play an important role in the analysis of the 1/N
expansion of Schwinger–Dyson equations.

We consider the following set of assumptions:

Hypothesis 3.3.

(i) (V, R0) is strongly confining.

(ii) R0 is a strictly convex interaction.

(iii) V : Γo0 → R is real analytic.

(iv) lnR : (Γo0)
2 → R is real analytic.

Proposition 3.2. If Hypothesis 3.3 holds, then E admits a unique min-
imizer μeq ∈M1(Γ0). It is characterized by the existence of a constant C
such that

(3.14) 2
∫
Γ0

dμeq(y) lnR0(x, y) ≤ V(x) + C

with equality μeq-almost everywhere. The support Γ of μeq is included in
a compact of Γo0, consists of the disjoint union of segments (γj)1≤j≤r, and
has continuous density in Γ̊. Besides, if Γ̃0 =

⋃r
j=1 γ̃j is a disjoint union of
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segments so that γ̃j is a neighborhood of γj in Γ0, μeq is also the unique
minimizer of E on M1(Γ̃0).

Proposition 3.3. If Hypothesis 3.3 holds, the random empirical measure
1
N

∑N
i=1 δλi

whose distribution is induced by (3.2) converges almost surely
and in expectation to μeq, and limN→∞ 1

N2 lnZN = −E [μeq].

Proof. These are classical results of potential theory in the case R(x, y) ≡ 1
[7, 49, 121], that we actually do not state with optimal assumptions. The
proof can easily be generalized to a strictly convex interaction R0, since this
assumption guarantees the uniqueness of a minimizer of E . See, e.g., [85] for
some details when R(x, y) �= 1. �

Assumption (i) on strong confinement was chosen to simplify the presen-
tation. The same conclusion holds if it is weakened so as to keep the support
compact. The case of non-compact supports is interesting but beyond the
scope of this article, see, e.g., [86] for potential-theoretic results for R ≡ 1.
Assumption (ii) on strictly convex interactions is a convenient framework
under which existence and unicity of the equilibrium measure is guaran-
teed, but might be relaxed if the latter can be established by other means.
Assumptions (iii) and (iv) about analyticity of V and lnR are only used to
ensure that Γ is a finite union of segments, as can be observed on (3.86)
below. Within the present Section 3.2, we may replace them by requiring
directly that Γ is a finite union of segments.

3.2.3. Stieltjes transform and analytical continuation. A complex
measure (a fortiori a probability measure) μ on Γ0 can be characterized by
its Stieltjes transform:

(3.15) ω(x) =
(∫

Γ0

dμ(y)
x− y

)
dx,

ω(x) is a holomorphic 1-form in Ĉ \ suppμ, which behaves as ω(x) ∼ dx
x

when x→∞ away from suppμ. Equivalently, for any x ∈ Γ0, we have in
the sense of distributions:

(3.16) 2iπ dμ(x) = ω(x− i0)− ω(x+ i0).

In particular, ω(x) is discontinuous at any interior point of suppμ.
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The singular integral equation satisfied by the equilibriummeasure (3.14)
can be rewritten in terms of its Stieltjes transform ωeq:
(3.17)

∀x ∈ Γ̊, ωeq(x+ i0) + ωeq(x− i0) +
2ρ
β

1
2iπ

∮
Γ

dx lnR(x, y)ωeq(y) = dV(x).

Given that lnR(x, y) is holomorphic in a neighborhood of Γ2, the last term
in the left-hand side is a holomorphic 1-form in x in a neighborhood of Γ.

C \ Γ (resp. Ĉ \ Γ) defines a domain U (resp. Û) in the sense of Sec-
tion 2.1, and we now use extensively the notations of Section 2. The coor-
dinate x defines a function x : ÛΓ → Ĉ which is ι-invariant. In general, we
identify a function (or a 1-form f) defined on Ĉ \ Γ and its pullback x∗f ,
which is a function (or a 1-form) defined on U ⊆ UΓ. Assumption (iii) (resp.
(iv)) allows to define V (resp. lnR) as a ι-invariant holomorphic function
on V (resp. in V 2). Therefore, the functional equation (3.17) shows that
ωeq ∈ HΓ(U) (see Definition 2.3) and defines a 1-form ωeq ∈ M(UΓ), which
satisfies

(3.18) ∀z ∈ V, ωeq(z) + ωeq(ι(z)) +
2ρ
β
Oωeq(z) = dV(z),

where3 we have introduced an operator O : M∗(V )→ H inv
Γ (V ) by

(3.19) Of(z) =
1
2iπ

∮
Γ

dz lnR(z, ζ) f(ζ).

As a consequence of Proposition 3.3:

Corollary 3.4.

(3.20) lim
N→∞

W1(x)
N

=
ωeq(x)

dx

and the convergence is uniform for x in any compact of C \ Γ0.

For generic V, the 1-form ω01 = ωeq ∈ LΓ(U) will be off-critical, in the
sense of Definition 2.10.

3For the definition to make sense, we restricted ourselves to a subspace M∗(V ) of
M(V ) consisting of 1-forms, which do not have poles on Γext. Since Γext is a floating
contour, this means that we require poles in

∐r
j=1 Vj only arise in the complement

of a neighborhood of Γ. This technicality is not important, except in the proof of
Proposition 3.8 where it will be pointed out, so the reader may also consider that
M∗ ≈ M .
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3.2.4. Regularity and fixed filling fractions. The filling fractions are
the partial masses of μeq on the connected components of the support: ε∗j =
μeq(γj). Notice that

∑r
j=1 ε∗j = 1. We would like to study variations of μeq

with respect to the potential, and when r ≥ 2, with respect to filling fractions
as well. If we vary the potential, the filling fractions will change. We also
prefer to disentangle those variations.

Let γ̃j be a neighborhood of γj in Γ, and set Γ̃ =
∐r

j=1 γ̃j . Let h : Γ̃→ R

be a real-analytic function on Γ̃. Let σ be the simplex
{
ε ∈ (R×+)r,

∑r
j=1 εj =

1
}
. If ε ∈ σ, we denote Pε(Γ̃) the set of probability measures μ on Γ̃ so

that μ[γ̃j ] = εj for any j ∈ [[1, r]]. Restricted to this convex set, the strictly
convex functional E [μ] has a unique minimizer, that we denote momentar-
ily μeq[V, ε]. We believe that, for generic V and ε generic, the equilibrium
measure is C1 with respect to potential and filling fractions. Since we do
not have an explicit formula to describe the equilibrium measure, a proof
would involve more functional analysis, so we only present this proposal as
a conjecture:

Conjecture 3.5. If Hypothesis 3.3 holds, for V and ε generic, there exists
a linear map μ′eq[V, ε], defined over triples (h, δ, f) consisting of an admis-
sible function h : Γ̃→ R, a vector δ ∈ R

r so that
∑r

j=1 δj, and a bounded
continuous function f : Γ̃→ R, so that

(3.21) μ′eq[V, ε] · (h, δ, f) = lim
t→0

1
t

∫
Γ̃

f(x) dμeq[V + th, ε+ tδ](x).

By linearity, μ′eq[V, ε] can be extended to complex-valued h whose real
and imaginary parts are admissible, and complex valued f . The difficult
point in Conjecture 3.5 is to justify differentiability of μeq[V + th, ε+ tδ]
and regularity of the support Γ[V, ε] when t is small enough. Then, we can
differentiate the relations:

∀x ∈ Γ̊[V, ε]
∫
2∂x lnR0(x, y) dμeq[V, ε](y) = V ′(x),(3.22)

∀j ∈ [[1, r]]
∫
Γ̃j

dμeq[V, ε](y) = εj ,(3.23)

to find the functional equation for μ′eq:

∀x ∈ Γ̊[V, ε] μ′eq[V, ε] · (2 ∂x lnR0(x, •), δ, h) = h′(x),
∀j ∈ [[1, r]] μ′eq[V, ε] · (1γj

, δ, h) = δj .(3.24)
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We also give two useful results relating μ′eq to the second derivative of the
energy functional:

Lemma 3.6. If Conjecture 3.5 holds, we have, for any admissible f :

(3.25)

μ′eq[V, ε] · (h, 0, f) = μ′eq[V, ε] · (f, 0, h) =
∂2

∂t∂s

∣∣∣
t=0
s=0

E[μeq[V + th+ sf, ε]
]
.

Proof. Let us define

(3.26) F (t, s) = E [μeq[V + th+ sf, ε]
]
.

We have

(3.27)

F (t, s) = −
�

Γ20
dμeq[V + th+ sf, ε](x) dμeq[V + th+ sf, ε](y) lnR0(x, y)

+
∫
Γ0

dμeq[V + th+ sf, ε](x) (V + th+ sf)(x)

and if Conjecture 3.5 holds, we can differentiate for (t, s) small enough:

(3.28)
∂tF (t, s) = μ′eq[V + th+ sf, ε]

×
(

h, 0, V − 2
∫
Γ0

dμeq[V + th+ sf, ε](y) ln | • −y|
)

+
∫
Γ0

dμeq[V + th+ sf, ε](x)h(x)

=
∫
Γ0

dμeq[V + th+ sf, ε](x)h(x)

because of the characterization of μeq. Similarly, we can compute ∂sF (t, s).
The answer is C1, hence F is C2 near (0, 0). In particular, we find

(3.29)
∂s=0∂t=0F (t, s) = μ′eq[V ](f, 0, h) = ∂t=0∂s=0F (t, s) = μ′eq[V ](h, 0, f).

�
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3.2.5. First kind differentials. When r ≥ 2, we introduce the basis of
first kind differentials as the Stieltjes transform of variations of μeq with
respect to filling fractions.

Definition 3.4. If we let (e1, . . . , er) the canonical basis of R
r, we define

the holomorphic 1-forms (hi)1≤i≤r−1 by

(3.30) hi(x) = μ′eq[V, ε] · (0, ei − er, wx) dx, wx(ξ) =
1

x− ξ
.

It is uniquely characterized by the functional relation

(3.31) ∀x ∈ Γ̊,

∫
2hi(y) ∂x lnR0(x, y) = 0.

The functional equation deduced from (3.24) allows to upgrade hi to a
holomorphic 1-form on ÛΓ, such that

(3.32) ∀z ∈ V, hi(z) + hi(ι(z)) +
2ρ
β
Ohi(z) = 0

and

(3.33) ∀(i, j) ∈ [[1, r − 1]]× [[1, r]],
1
2iπ

∮
γextj

hi = δj,i − δj,r.

Notice that the cycle
∑r−1

j=1 γextj is homologically equivalent in ÛΓ to −γextr .

3.2.6. Fundamental 2-form of the second kind and local Cauchy
kernel.

Definition 3.5. A fundamental 2-form of the second kind is a meromorphic
2-form in (z0, z) ∈ ÛΓ, denoted B(z0, z), such that

• B(z0, z) = B(z, z0).

• The only singularity of B(z0, z) is a double pole at z = z0 with leading
coefficient 1 and without residue.

• It satisfies the functional equation, for any z ∈ U and z0 ∈ V :

(3.34) B(z, z0) +B(z, ι(z0)) +
2ρ
β
Oz0B(z, z0) =

dx(z0) dx(z)
(x(z0)− x(z))2

.

We say it is normalized on (γj)j if, for any j ∈ [[1, r]], ∮γextj
B(z0, ·) = 0.
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Lemma 3.7. G(z, z0) =
∫ z

B(·, z0) is a local Cauchy kernel, which satisfies,
for all z ∈ U and z0 ∈ V :

(3.35) Sz0G(z, z0) +
2ρ
β
Oz0G(z, z0) =

dx(z0)
x(z0)− x(z)

+ constant.

Proof. It follows from the description of the singularities of B(z, z0), and the
functional equation for B(z, z0) = B(z0, z) with respect to the variable z0.

�

Proposition 3.8. If Hypothesis 3.3 and Conjecture 3.5 hold, there exists
a fundamental 2-form of the second kind (it will be proved to be unique in
Corollary 3.12).

Proof. Let x0 ∈ C \ Γ. Thanks to Conjecture 3.5, we can compute the vari-
ation of the equilibrium measure with respect to the function wx(ξ) = 1

ξ−x ,
and then its Stieltjes transform, i.e., we define, for x ∈ C \ Γ:

(3.36) B̃(x, x0) = μ′eq[V, ε] · (wx, 0, wx0) dx0 dx.

By Lemma 3.6, we deduce that B̃(x0, x) = B̃(x, x0). By construction in
(3.36), B̃(x0, ·) is a holomorphic 1-form on C \ Γ, and even on Ĉ \ Γ since
μ′eq,gx0

and μ′eq,hx0
have zero total mass. This implies by symmetry that B̃

is a holomorphic 2-form in (Ĉ \ Γ)2. The characterization (3.34) becomes,
in terms of Stieltjes transform: for any x ∈ C \ Γ and x0 ∈ Γ̊,

(3.37) B̃(x, x0 + i0) + B̃(x, x0 − i0) +
2ρ
β
Ox0B̃(x, x0) = − dx0 dx

(x0 − x)2
.

By previous arguments, it can be upgraded to a meromorphic 1-form B̃(z, z0)
for (z, z0) ∈ Û × ÛΓ, which satisfies, for any (z0, z) ∈ U × V :

(3.38) Sz0B̃(z, z0) +
2ρ
β
Oz0B̃(z, z0) = − dx(z0) dx(z)

(x(z0)− x(z))2
,

where Oz denotes the operator defined in (3.19), acting on the variable z.
The candidate for the fundamental 2-form of the second kind is

(3.39) B(z, z0) = B̃(z, z0) +
dx(z0) dx(z)
(x(z0)− x(z))2

.

Since the last term added in (3.39) is holomorphic in a neighborhood of Γ
and ι-invariant, it is annihilated by Oz0 and we deduce from (3.38), for any
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(z, z0) ∈ U × V :

(3.40) Sz0B(z, z0) +
2ρ
β
Oz0B(z, z0) =

dx(z0) dx(z)
(x(z0)− x(z))2

.

By construction from (3.24), the periods when z goes around γextj must
vanish. It remains to show that B(z, z0) can be extended to Û2

Γ and to
describe its singularities. If z ∈ Uj , we may move the contour Γext in Oz0 so
as to surround z. Taking into account the double pole of B(z, z0) at z0 = z,
coming from the last term added in (3.39), we find

(3.41) Oz0B(z, z0) = − dz0 dz lnR(z, z0) +
∮
Γext∪{z}

dz0 lnR(z0, ζ)B(z, ζ).

Thus, we can analytically continue B(z, z0) to z ∈ U ′j with the formula

(3.42)

Sz0B(z, z0) +
2ρ
β
Oz0B(z, z0) =

dx(z0) dx(z)
(x(z0)− x(z))2

+ dz dz0 lnR(z, z0).

In this way, we have defined B(z, z0) as a meromorphic 2-form in (z, z0) ∈
Û2
Γ. Since B(z, z0) = B(z0, z) for (z, z0) ∈ Û2, the symmetry must hold for

(z, z0) ∈ Û2
Γ. We already know that the only singularity of B(z, z0) when

z ∈ Û is a double pole at z0 = z with leading coefficient 1 and without
residue. Remind that in ÛΓ, Vj can be described as the gluing along γj of
Uj and U ′j (see figure 1). Let z0 ∈ Û , and consider z ∈ U ′j . Using (3.40), we
find

(3.43) B(z, z0) = −B(z, ι(z0))−Oz0B(z, z0) +
dx(z0) dx(z)
(x(z0)− x(z))2

.

Since Oz0B(z, z0) is regular when z ∈ Vj , the only other singularity of
B(z, z0) could be a double pole at z0 = ιj(z), but it does not occur since
the first term in the right-hand side has leading coefficient −1 at z0 = ιj(z),
while the last term has leading coefficient 1 and both have no residues. The
last case to study is z0 ∈ U ′j0 and z ∈ U ′j , for which we can use (3.42) to
write:
(3.44)

B(z, z0)= −B(z, ι(z0))−Oz0B(z, z0)+ dz dz0 lnR(z, z0)+
dx(z0) dx(z)
(x(z0)− x(z))2

.

Since ι(z0) ∈ U and z ∈ U ′j0 , we deduce by using symmetry and the property
we just proved that the first term in the right-hand side is regular. The only
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singularity of the right-hand side comes from the last term, and is a double
pole at z0 = z with leading coefficient 1 and no residue, so the proof is
complete. �

3.3. Representation by residues

The inhomogeneous linear equations of the form

(3.45) ∀z ∈ V, Sf(z) +
2ρ
β
Of(z) = T (z),

where T ∈ H inv
Γ plays a key role in our construction. This equation was

closely related to a saddle point condition for the functional E . An easy
particular solution of (3.45) is T (z)/2, and f̆(z) = f(z)− T (z)/2 now solves
the homogeneous linear equation, i.e., with vanishing right-hand side.
Therefore, we would like to describe the subspace H of HΓ(Û) consisting
of 1-forms f satisfying

(3.46) ∀z ∈ V, Sf(z) +
2ρ
β
Of(z) = 0.

Proposition 3.9. If Hypothesis 3.3 holds, H is representable by residues,
with local Cauchy kernel G(z, z0) defined in Lemma 3.7.

Proof. For any f ∈ H, consider the 1-form:

(3.47)

f̃(z0) =
∑

α∈Γfix
Res
z→α

(∫ z

B(z, z0)
)

f(z) =
∑

α∈Γfix
Res
z→α

(∫ z

B̆(z, z0)
)

f(z).

Since Sf(z) is regular at the ramification points, we could replace B(z, z0)
by

(3.48) B̆(z, z0) = B(z, z0)− 1
2

dx(z0) dx(z)
(x(z0)− x(z))2

without affecting the residues. By construction, B̆(z, z0) satisfies the homo-
geneous linear equation with respect to its variable z. Hence, f̃ ∈ H, and
since G(z, z0) is a local Cauchy kernel, f̃ − f ∈ H(UΓ). �
When the support Γ consists of r ≥ 2 segments, we cannot hope H to be
normalized. Indeed, we have 1-forms of the first kind, which are non-zero
holomorphic elements of H. However, we claim:
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Lemma 3.10. Assume R0 is a strictly convex interaction. Let f ∈ H(ÛΓ) ∩
H such that, for any j ∈ [[1, r]], ∮γj

f = 0. Then f ≡ 0.

This leads us to introduce

(3.49) H0 =
{

f ∈ H, ∀j ∈ [[1, r]],
∮

γextj

f = 0
}

.

Corollary 3.11. If Hypothesis 3.3 holds, H0 is normalized, and H = span
(h1, . . . , hr−1)⊕H0.

Eventually, we may give an alternative characterization of the Cauchy
kernel adapted to the subspace H.

Corollary 3.12. If Hypothesis 3.3 holds, there is a unique fundamental
2-form of the second kind normalized on (γj)j in the sense of Definition 3.5.

Proof of Lemma 3.10. Let f ∈ H(ÛΓ) ∩H. It can be represented as the
Stieltjes transform of a complex measure supported on Γ, namely dνf (x) =
1
2iπ (f(x− i0)− f(x+ i0)) if we identify f to an element of H(Ĉ \ Γ).
Integrating (3.46) with respect to x and rewriting in terms of ν, we obtain

(3.50) ∀x ∈ Γ, β

∫
Γ

dνf (ξ)
(
2 ln |x− ξ|+ 2ρ

β
lnR(x, ξ)

)
= Cj

for some constant Cj . Let us integrate this relation against the complex
conjugate of dνf (x) over γj , and sum over j. We find
(3.51)�

Γ2
( dνf (x))∗ dνf (ξ)

(
2 ln |x− ξ|+ 2ρ

β
lnR(x, ξ)

)
=

r∑
j=1

Cj

(∫
γj

dνf (x)

)∗

and notice that
∫
γj

dνf (x) = 1
2iπ

∮
γextj

f . Hence, assuming that f has vanish-
ing periods around γj imply that νf (γj) = 0, and a fortiori νf (Γ0) = 0. By
strict convexity (see Lemma 3.1), we deduce that νf ≡ 0, hence f ∈ H inv

Γ .
Thus, Of(z) ≡ 0 and (3.46) implies f ≡ 0. �
Proof of Corollary 3.11. Notice that the cycle

∑r
j=1 γextj of Û is homologi-

cally equivalent to the trivial cycle (we may contract it through the∞ point).
Hence, the first kind differentials are linearly dependent:

∑r
j=1 hj = 0, but

(r − 1) of them are independent. For any ω ∈ H, if we denote εj = 1
2iπ

∮
γj

ω,
we have (ω −∑r

j=1 εjhj) ∈ H0. �
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Proof of Corollary 3.12. If B1 and B2 are two such 2-forms, B1(z, z0)−
B2(z, z0) satisfies the homogeneous equation (3.46) with respect to z, has
vanishing periods around the γj , and is holomorphic in Û . According to
Lemma 3.10, we must have B1 ≡ B2. �

3.4. Schwinger–Dyson equations

Schwinger–Dyson equations can be derived by integration by parts, or change
of variables in the integrals. They are exact for any finite N and do not
depend on the contour Γ0. To simplify the exposition, we assume that there
is no boundary terms. It happens for instance when Γ0 is a union of arcs, and
the interactions are strongly confining at the endpoints of Γ0 in the sense
of Definition 3.1. It would not be difficult to include effects of boundaries in
the equations below, and our conclusion would hold the same (in the case
R ≡ 1, see for instance [44]).

Lemma 3.13. For any x, x2, . . . , xn in C \ Γ0:

(3.52)

−
(
1− 2

β

)〈
Tr

1
(x−M)2

∏
i∈I

Tr
1

xi −M

〉
c

+

〈(
Tr

1
x−M

)2 ∏
i∈I

Tr
1

xi −M

〉
c

+
∑
J⊆I

〈
Tr

1
x−M

∏
j∈J

Tr
1

xj −M

〉
c

×
〈
Tr

1
x−M

∏
j′∈I\J

Tr
1

xj′ −M

〉
c

− 2
β

〈
Tr

N V ′(M)
x−M

∏
i∈I

Tr
1

xi −M

〉
c

+
2
β

∑
i∈I

〈
Tr

1
(x−M)(xi −M)2

∏
j∈I\{i}

Tr
1

xj −M

〉
c

+
2ρ
β

〈(
Tr

(∂1 lnR)(M ⊗ 1N ,1N ⊗M)
x−M

)∏
i∈I

Tr
1

xi −M

〉
c

= 0.

Sketch of proof. Equation (3.52) for n = 1 is obtained by performing
the infinitesimal change of variable λi → λi + ε

x−λi
+O(ε2) in the integral

ZN (which is invariant since we assumed the absence of boundary terms).
Equation (3.52) for n ≥ 2 is then deduced by writing the equation for n = 1
but for a new potential V(λ) +∑

i∈I
εi

xi−λ for i ∈ I, and collecting the terms
of order

∏
i∈I εi. All these steps can be justified both for formal integrals, and
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case by case for convergent integrals. For instance, in the case of convergent
integrals over Γ0 = R, we may use, for any smooth function h : R → R

going to 0 at ±∞ and with bounded derivative, the change of variable
λi → λi + ε h(λi), which is well defined for ε small enough. And then, we
specialize to h(λ) = Re 1

x−λ and Im 1
x−λ for a given x ∈ Γ0. �

When we assume lnR analytic in a neighborhood of Γ20, we can rewrite
Equation (3.52) completely in terms of the correlators, with contour integrals
around Γ0

(3.53)(
1− 2

β

)
∂xWn(x, xI) +Wn+1(x, x, xI) +

∑
J

W|J |+1(x, xJ)Wn−|J |(x, xI\J)

− 2
β

∮
Γ0

dξ

2iπ
N V ′(ξ)Wn(ξ, xI)

x− ξ
+
2
β

∑
i∈I

∮
Γ0

dξ

2iπ
Wn−1(ξ, xI\{i})
(x− ξ)(xi − ξ)2

+
2ρ
β

∮
Γ20

dξ dη

(2iπ)2
(∂ξ lnR)(ξ, η)

x− ξ

×
⎛⎝Wn+1(ξ, η, xI) +

∑
J⊆I

W|J |+1(ξ, xJ)Wn−|J |(η, xI\J)

⎞⎠ = 0.

We call n the rank of the equation.

3.5. Topological expansion of the correlators and loop equations

Definition 3.6. The correlators have a large N expansion of topological
type if, for any n ≥ 1,

(3.54) Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−n W h
n (x1, . . . , xn),

where W g
n(x1, . . . , xn) dx1, . . . , dxn is an element of H(Û) independent of

N , and the meaning of the right-hand side is either a formal series, or an
asymptotic series with uniform convergence for x1, . . . , xn in compact subsets
of Û = Ĉ \ Γ.

The goal of this article is not to discuss general conditions which guar-
antee the existence of such an expansion. For formal integrals, Wn is by
construction defined as a formal power series, with a 1/N behavior of the
form (3.54), see Section 5. For convergent integrals, with Hypotheses 3.3 and
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the assumption that V is off-critical, (3.54) would have to be justified. This
is done in [27], and we only mention that it holds in two cases:

• When the support Γ is connected (r = 1).

• When Γ consists of r segments, but in a model with fixed filling frac-
tions.

It is clear from the Schwinger–Dyson equations that (3.54) is possible only
for β = 2, otherwise one would find all powers of 1/N in the expansion. In
the multi-cut case, we do not expect a 1/N expansion, but rather (3.54)
where the coefficients W h

n are bounded but featuring fast modulations with
N , and the heuristic argument of [74] for Hermitian matrix models can
easily be adapted to describe precisely those coefficients for general systems
of repulsive particles.

We would like in the present section to forget about Hypotheses 3.3, and
we shall rather be working with:

Hypothesis 3.7.

(i) β = 2.

(ii) Γ =
⋃r

j=1 γj and γj are disjoint bounded intervals of R.

(iii) V is analytic in a neighborhood of Γ.

(iv) lnR is real-analytic in a neighborhood of Γ2.

(v) The correlators have a large N expansion of topological type.

(vi) W 0
1 is discontinuous at any interior point of Γ.

(vii) ω01(x) = W 0
1 (x) dx is an off-critical 1-form.

We may wish to add a stronger condition at some point, so we introduce
as well:

Hypothesis 3.8. Conditions (i)–(vii) of Hypothesis 3.7, and

(viii) R0(x, y) = |x− y| (R(x, y))ρ/2 is a strictly convex interaction.

Condition (i) is mandatory if we want to restrict ourselves to expansions
of topological type, and not general 1/N expansions. Conditions (ii)–(iv)
are implied by (i), (ii) and (iv) of Hypothesis 3.3. Conditions (vi) and (vii)
amounts to saying that the density of μeq remains positive on the interior
of Γ and behaves as a square root at the edges, and is satisfied for generic
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potentials. Condition (vii) in Hypothesis 3.8 is (iii) of Hypothesis 3.3: it is a
convenient framework to analyze the question of uniqueness of solutions of
(3.46), i.e., to prove that H0 is normalized. It can be relaxed if one can show
normalization by other means. It is useful even in the context of formal
integrals, but it is a technical assumption that one would like to relax in
some applications, for instance, in the O(−ρ)-model (i.e., R(x, y) = (x+ y))
with |ρ| > 2 [60]. Eventually, (v) includes the assumption that the leading
order of W2 (denoted W 0

2 ) exists, and given that, we do not need to assume
Conjecture 3.5.

Proposition 3.14. Let us assume Hypothesis 3.7, and define ωg
n ∈ Hn(U)

by the formulas:

ωg
n(z1, . . . , zn) = W g

n(x(z1), . . . , x(zn)) dx(z1) · · · dx(zn)(3.55)

+ δn,2δg,0
dx(z1) dx(z2)
(x(z1)− x(z2))2

.

Then, ω•• satisfies linear and quadratic loop equations. More precisely, they
satisfy, for any n, g, any zI = (z2, . . . , zn) ∈ Un−1,

∀z ∈ V, Szωg
n(z, zI) + ρOzωg

n(z, zI)(3.56)

= δg,0

(
δn,1 dV(z) + δn,2

dx(z) dx(z2)
(x(z)− x(z2))2

)
.

This proposition is proved below in Section 3.7. In other words, ωg
n ∈ Hn,

where H is the subspace of M(UΓ) consisting of 1-forms f satisfying

(3.57) ∀z ∈ V, Sf(z) + ρOf(z) = 0

and Hn is its n-variable analog. We insist on the following intermediate
result:

Porism 3.15. ω02(z, z0) is a fundamental 2-form of the second kind, G(z, z0)
=
∫ z

ω02(z, z0) is a local Cauchy kernel, and H is representable by
residues. �

Those two results hold without assumptions about unicity of solutions
of (3.46), and we prove them in Section 3.7 below. Then, it shows that the
topological recursion formula holds in all models of the form (3.2):
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Corollary 3.16. Let us assume Hypothesis 3.8 and for any stable n, g
and any j ∈ [[1, r]], ∮γj

ωg
n(·, zI) = 0. Then, stable ωg

n can be computed by
the topological recursion:

ωg
n(z0, zI) =

∑
α∈Γfix

Res
z→α

K(z, z0)

⎛⎜⎜⎝ωg−1
n+1(z, ι(z), zI)

+
∑

J⊆I, 0≤h≤g
(J,h) 
=(∅,0),(I,g)

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(ι(z), zI\J)

⎞⎟⎟⎠ ,

where the recursion kernel is

(3.58) K(z, z0) =
1
2

∫ z
ι(z) ω

0
2(·, z0)

ω01(z)− ω01(ι(z))
.

Proof. Since R0 is a strictly convex interaction, we deduce as in the proof
of Corollary 3.11 that the subspace

(3.59) H0 =

{
f ∈ H ∀j ∈ [[1, r]],

∮
γextj

f = 0

}

is normalized. If the stable ωg
n have vanishing periods around γextj , they

belong to (H0)n, which means that the linear loop equations are solvable.
Thus, we can apply Proposition 2.7. �

In Corollary 3.15, if the stable ωg
n(z0, zI) had non-vanishing periods when

z0 goes around γextj , it could be computed by the residue formula (yielding an
element of H0) shifted by a linear combination (with coefficients depending
on zI) of first kind differentials introduced in Section 3.2, so as to achieve
the correct periods in z0. Within the Hypothesis 3.8, it is thus clear, by
recursion, that the knowledge of all periods of ωg

n allows to determine it
uniquely and explicitly.

3.6. Topological expansion of the partition function

One can also have access to derivatives of the partition function ZN with
respect to any parameters of the potential. The partition function itself may
have a prefactor which does not depend on perturbations of the potential
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V → V + tϕ where ϕ is real analytic on Γ and t is small enough, but depends
on N , so that lnZN ≡ W0 does not necessary has an expansion of topological
type.

Proposition 3.17. With the assumptions of Corollary 3.16,

(3.60) W0 = F = CN +
∑
g≥0

N2−2g F g,

where, for any g ≥ 2,

(3.61) F g =
1

2− 2g

∑
α∈Γfix

Res
z→α

ωg
1(z)

(∫ z

ω01

)

which does not depend on the choice of primitive for ω01, and CN does not
depend on real-analytic perturbations of V.

We refer to Section 2.7 for the discussion about F 0 and F 1. We do not
address here the computation of the constant CN which depends on the
applications. For applications to topological string theories and for having
some symmetry properties, the computation of this constant has been fixed
explicitly, e.g., in [28, 36].

Proof. One has to check that the derivative of both sides match, with respect
to the parameter t shifting the potential to Vt = V + tϕ, where ϕ is a real-
analytic function on Γ0. If the model with potential V satisfies the assump-
tions of Corollary 3.16, so does the model with potential Vt for t small
enough. We know from first principles:

∂tF = −
∮
Γ0

dξ

2iπ
ϕ(ξ)W1(ξ),(3.62)

∂tW1(x) = −
∮
Γ0

dξ

2iπ
ϕ(ξ)W2(ξ, x),(3.63)

∂tW2(x1, x2) = −
∮
Γ0

dξ

2iπ
ϕ(ξ)W3(ξ, x1, x2).(3.64)

If we plug the topological expansion for W1 in (3.62), we find that ∂tF has
an expansion of topological type:

(3.65) ∂tF =
∑
g≥0

N2−2g
(
−
∮
Γ0

dξ

2iπ
W g
1 (ξ)

)
.
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Besides, if we consider only the leading term of (3.63) and (3.64) when N is
large, we deduce

∂tω
0
1(z) = −

1
2iπ

∮
Γext

ϕ(ξ)ω02(ξ, z),(3.66)

∂tω
0
2(z1, z2) = −

1
2iπ

∮
Γext

ϕ(ξ)ω03(ξ, z1, z2).(3.67)

Hence, ∂t is a WDVV-compatible variation in the sense of Definition 2.14.
Then, Corollary 2.10 tells us, for any g ≥ 2:

(3.68) ∂tF
g =

∮
Γext

dξ

2iπ
ϕ(ξ)ωg

1(ξ).

We thus identify, for any g ≥ 2, the N2−2g term in (3.65) with (3.68). �

3.7. Proof of Proposition 3.14

We first work with functions on C \ Γ rather than with 1-forms on the
domain U . For any holomorphic function f defined in a neighborhood of
Γ in C \ Γ, we define the function

(3.69) Of(x) =
1
2iπ

∮
Γ
(∂x lnR(x, ξ))f(ξ) dξ

which is holomorphic in a neighborhood of Γ, and

(3.70)Δf(x) = f(x+ i0)− f(x− i0), Sf(x) = f(x+ i0) + f(x− i0)

which are defined for x ∈ Γ. We are going to prove, by recursion on χg
n =

2g − 2 + n ≥ −1:

Lemma 3.18. For any x ∈ Γ̊, any xI = (x2, . . . , xn) ∈ (C \ Γ)n−1,

(3.71) SxW g
n(x, xI) + ρOxW g

n(x, xI) = δg,0

(
δn,1V ′(x)− δn,2

(x− x2)2

)
,

where the superscript x stresses that S and O acts on the variable x.
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Proof of the lemma. At level χ = −1, we just have (n, g) = (1, 0). The rank 1
Schwinger–Dyson equation to leading order in N gives

(3.72)
(
W 0
1 (x)

)2 + 1
2iπ

∮
Γ

dξ

x− ξ

(
ρOW 0

1 (ξ)− V ′(ξ)
)
W 0
1 (ξ) = 0.

If we take the discontinuity of this equation at x ∈ Γ̊ (i.e., specialize to x± i0
and substract), we find

(3.73) ΔW 0
1 (x)

(SW 0
1 (x) + ρOW 0

1 (x)− V ′(x)
)
= 0.

Thanks to (vi), we arrive to

(3.74) ∀x ∈ Γ̊, SW 0
1 (x) + ρOW 0

1 (x) = V ′(x).

At level χ = 0, we have (n, g) = (2, 0). The rank 2 Schwinger–Dyson equation
to leading order in N gives

2W 0
2 (x, x2)W 0

1 (x) +
1
2iπ

∮
Γ

dξ

x− ξ

W 0
1 (ξ)

(ξ − x2)2
(3.75)

+
1
2iπ

∮
Γ

dξ

x− ξ

[ (
ρOW 0

1 (ξ)− V ′(ξ)
)
W 0
2 (ξ, x2) + ρ W 0

1 (ξ)OξW 0
2 (ξ, x)

]
= 0.

We compute its discontinuity at x ∈ Γ̊:

ΔxW 0
2 (x, x2)

[
SW 0

1 (x) + ρOW 0
1 (x)− V ′(x)

]
,(3.76)

+ ΔW 0
1 (x)

[
SxW2(x, x2) + ρOxW 0

2 (x, x2) +
1

(x− x2)2
]
= 0.(3.77)

The first line vanishes since we already showed (3.74), and thanks to (vi),
we find

(3.78) SxW 0
2 (x, x2) + ρOxW 0

2 (x, x2) = − 1
(x− x2)2

.

Then, let χ ≥ 1, let us assume that (3.71) holds for all n′, g′ such that χg′

n′ >
χ, and let n, g such that χg

n = χ. We collect the term of order N2g−1+n in
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the rank n Schwinger–Dyson equation:

(3.79)

W g−1
n+1(x, x, xI) +

∑
J⊆I, 0≤h≤g

W h
|J |+1(x, xJ)W

g−h
n−|J |(x, xI\J)

+
ρ

2iπ

∮
Γ

dξ

x− ξ

⎛⎝Oξ,2W g−1
n+1(ξ, ξ, xI)

+
∑

J⊆I, 0≤h≤g

W h
|J |+1(ξ, xJ)OξW g−h

n−|J |(ξ, xI\J)

⎞⎠
+

1
2iπ

∮
Γ

dξ

x− ξ

(
−V ′(ξ)W g

n(ξ, xI) +
∑
i∈I

W g
n−1(ξ, xI\{i})
(ξ − xi)2

)
= 0,

where Ox,i means that O acts on the ith variable only of the function to its
right. We organize the computation of the discontinuity of this equation as
follows:

(3.80)

Δx,1
[Sx,2W g−1

n+1(x, x, xI) + ρOx,2W g−1
n+1(x, x, xI)

]
+

′′∑
J⊆I, 0≤h≤g

ΔxW h
|J |+1(x, xJ)

[SxW g−h
n−|J |(x, xI\J) + ρOxW g−h

n−|J |(x, xI\J)
]

+
∑
i∈I

ΔxW g
n−1(x, xI\{i})

[
SxW 0

2 (x, xi) + ρOxW 0
2 (x, xi) +

1
(x− x2)2

]
+ΔxW g

n(x, xI)
[SW 0

1 (x) + ρOW 0
1 (x)− V ′(x)

]
+ΔW 0

1 (x)
[SxW g

n(x, xI) + ρOxW g
n(x, xI)

]
= 0.

In the third line,
∑′′

means that we excluded the terms (J, h) = (∅, 0), (I, g)
and (I \ {i}, g) from the sum. According to the recursion hypothesis, the
brackets in the first four lines vanish, with a word of caution for the first
line when (n, g) = (1, 1). In this case, we may rewrite

Δx,1
[Sx,2W 0

2 (x, x) + ρOx,2W 0
2 (x, x)

]
(3.81)

= lim
y→x

Δy
[SxW 0

2 (y, x) + ρOxW 0
2 (y, x)

]
= lim

y→x
Δy
[
SxW 0

2 (y, x) + ρOxW 0
2 (y, x) +

1
(x− y)2

]
(3.82)
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which indeed vanishes since we already proved (3.78). Only the last line of
(3.80) remains, and thanks to (vi):

(3.83) ∀x ∈ Γ̊, SxW g
n(x, xI) + ρOxW g

n(x, xI) = 0.

By induction, this proves the lemma for any n, g. �
Now that we have Lemma 3.18, we come back to the proof of Proposi-
tion 3.14. Those functional relations imply that, for any zI = (z2, . . . , zn) ∈
Ûn−1, ωg

n(·, zI) defined by (3.55) are continuable n-forms across Γ (see Def-
inition 2.3), which satisfy, for any z ∈ V ,

(3.84)

Szωg
n(z, zI) +Ozωg

n(z, zI) = δg,0

(
δn,1 dV(z) + δn,2

dx(z) dx(z2)
(x(z)− x(z2))2

)
.

In particular, for (n, g) = (2, 0), notice the change of sign in the right-hand
side due to the shift between W 0

2 and ω02.
Let us have a look at the Schwinger–Dyson equation for W 0

1 (x), that we
rewrite

(3.85)(
W 0
1 (x)

)2 − V ′(x)W 0
1 (x) +

1
2iπ

∮
Γ

dξ

x− ξ

(V ′(x)− V ′(ξ) + ρOW 0
1 (ξ)

)
= 0.

Although the last term is unknown, we know that it is holomorphic in a
neighborhood of Γ. Thus, considering (3.85) as a quadratic equation for
W 0
1 (x), we may solve it

4:

(3.86)

W 0
1 (x) =

V ′(x)
2

−
√
(V ′(x))2

4
− 1
2iπ

∮
Γ

dξ

x− ξ

(V ′(x)− V ′(ξ) + ρOW 0
1 (ξ)

)
.

Let a be a ramification point in UΓ, i.e., such that x(a) ∈ Γ. We infer from
(3.86) that W 0

1 (x) is finite when x approaches x(a), hence ω01 ∈ LΓ(U).
Besides, W 0

1 (x)−W 0
1 (x(a)) ∈ O(

√
x− x(a)). We recall that

√
x− a is a

local coordinate in Uγ near a, thus Δω01(z) has at least double zero at ram-
ification points. And, since ΔW 0

1 (x) does not vanish in the interior of Γ,

4We choose the sign of the square root such that W 0
1 (x) has the right behavior

as x→∞.
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this ensures that ω01 is off-critical. Besides, the computation given in the
proof of Proposition 3.8 relies on this functional relation (3.84) for ω02 only
(replace B(z0, z) there by our present ω02(z0, z)), and shows that G(z0, z) =∫ z

ω02(z0, z) is a local Cauchy kernel. Last but not least, since Ozωg
n(z, zI) is

holomorphic for z ∈ V , we deduce from (3.84) that Sωg
n(·, zI) ∈ H inv

Γ . There-
fore, we established linear loop equations.

Now, we are going to recast the Schwinger–Dyson equations so as to
obtain quadratic loop equations. As before, we first work in C \ Γ with the
functions W g

n . Since W g
n(ξ, xI) ∈ O(1/ξ) when ξ →∞, we may represent:

(3.87)

Ox,2W g−1
n+1(x, x, xI) +

∑
J⊆I, 0≤h≤g

W h
|J |+1(x, xJ)OxW g−h

n−|J |(x, xI\J)

=
1
2iπ

∮
Γ

dξ

x− ξ

⎛⎝Ox,2W g−1
n+1(ξ, x, xI)

+
∑

J⊆I, 0≤h≤g

W h
|J |+1(ξ, xJ)Ox,2W g−h

n−|J |(x, xI\J)

⎞⎠ .

Thus, Equation (3.53) can be decomposed:

(3.88)

W g−1
n+1(x, x, xI) +

∑
J⊆I, 0≤h≤g

W h
|J |+1(x, xJ)W

g−h
n−|J |(x, xI\J)

+ ρ

⎛⎝Ox,2W g−1
n+1(x, x, xI) +

∑
J⊆I, 0≤h≤g

W h
|J |+1(x, xJ)OxW g−h

n−|J |(x, xI\J)

⎞⎠
− V ′(x)W g

n(x) +
∑
i∈I

W g
n−1(x, xI\{i})
(x− xi)2

+ P g
n(x;xI) = 0,

where

(3.89)

P g
n(x;xI) =

1
2iπ

∮
Γ

V ′(x)− V ′(ξ)
x− ξ

W g
n(ξ) dξ −

∑
i∈I

d

dxi

(
W g

n−1(x, xI\{i})
x− xi

)

+
ρ

2iπ

∮
Γ

dξ

x− ξ

⎛⎝Ox,2W g−1
n+1(ξ, x, xI)
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+
∑

J⊆I, 0≤h≤g

W h
|J |+1(ξ, xJ)OxW g−h

n−|J |(x, xI\J)

−Oξ,2W g−1
n+1(ξ, ξ, xI)

−
∑

J⊆I, 0≤h≤g

W h
|J |+1(ξ, xJ)OξW g−h

n−|J |(ξ, xI\{i})

⎞⎠ .

The relevance of this decomposition comes from the observation that
P g

n(x;xI) is a holomorphic function of x in a neighborhood of Γ. Now, let us
multiply by ( dx)2

∏
i∈I dxi and translate this equation in the realm of differ-

ential forms in the domain U . In particular, we can define a quadratic differ-
ential Pg

n(z; zI) for z ∈ V , such that Pg
n(z, zI) = P g

n(x(z);x(zI))( dx)2
∏

i∈I

dx(zi) when z ∈ U . It has double zeros at ramification points, coming from
the zeros of ( dx)2. One also has to take into account the shift between W 0

2

and ω02 (see (3.55)). When (n, g) �= (1, 1), we find that (3.88) becomes, for
z ∈∐r

j=1 Uj and zI ∈ Un−1:

(3.90)

ωg−1
n+1(z, z, zI) +

∑
J⊆I, 0≤h≤g

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(z, zI\J)

− 2
∑
i∈I

ωg
n−1(z, zI\{i})

dx(z) dx(z2)
(x(z)− x(z2))2

+ ρ

⎛⎝Oz,2ωg−1
n+1(z, z, zI) +

∑
J⊆I, 0≤h≤g

ωh
|J |+1(z, zJ)Ozωg−h

n−|J |(z, zI\J)

⎞⎠
− dV(z)ωg

n(z, zI) +
∑
i∈I

dx(z) dx(zi)
(x(z)− x(zi))2

ωg
n−1(zI\{i}) + P̃g

n(z; zI) = 0,

where we included all the terms having double zeros at ramification points
in P̃g

n(z; zI), namely

P̃g
n(z; zI) = Pg

n(z; zI) + δg,0

(
δn,2

dx(z) dx(z2)
(x(z)− x(z2))2

(3.91)

+ δn,3
2 ( dx(z))2 dx(z2) dx(z3)

(x(z)− x(z2))2 (x(z)− x(z3))2

)
.

The operator O was defined in (3.19) in the framework of 1-forms, and
are just the translation of O defined in (3.69) in the framework of functions.
Notice that the third term in the first line of (3.90) combines with the middle
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term of the third line, and just amounts to change the sign of the latter. We
now use the linear loop equation in the form (3.84) to replace in (3.90) the
quantities involving Oz by quantities involving ι(z) only, for z ∈∐r

j=1 Uj .
We find

− ωg−1
n+1(z, ι(z), zI)−

∑
J⊆I, 0≤h≤g

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(ι(z), zI\{i})(3.92)

+ P̃g
n(z; zI) = 0.

Hence, the quadratic differential Qn,j(z; zI) defined in (2.16) coincides with
P̃g

n,j(z; zI), so has double zeros at ramification points. For (n, g) = (1, 1), we
must be careful because of the double pole in ω02 at coinciding points. We
start with (3.88):

(3.93)

W 0
2 (x, x) + 2W 1

1 (x)W
0
1 (x)− V ′(x)W 1

1 (x)

+ ρ
(Ox,2W 0

2 (x, x) +OxW 0
1 (x)W

1
1 (x) +W 0

1 (x)OxW 1
1 (x)

)
+ P 1

1 (x) = 0.

For z ∈ Uj , we first compute

(3.94)

W 0
2 (x(z), x(z)) = lim

z′→z
W 0
2 (x(z

′), x(z))

= lim
z′→z

1
dx(z) dx(z′)

(
ω02(z

′, z)− dx(z′) dx(z)
(x(z′)− x(z))2

)
= − lim

z′→z

ω02(z
′, ι(z)) + ρOzω02(z

′, z)
dx(z) dx(z′)

= −ω02(z, ι(z)) + ρOz,2ω02(z, z)
( dx(z))2

and we use this expression to replace W 0
2 . We obtain

(3.95) −ω02(z, ι(z))− ω01(z)ω
1
1(ι(z))− ω01(ι(z))ω

1
1(z) + P̃11 (z) = 0,

hence Q1
1(z) = P̃11 (z) again, and it has double zeros at ramification points.

Therefore, we have obtained the quadratic loop equations.

3.8. The model with several species of particles

Our results can be extended to repulsive systems of particles of s ≥ 2 differ-
ent species. We consider Nk particles of type k with k ∈ [[1, s]], and denote
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λi,k their position on some arc Γ0,k, and N =
∑s

k=1 Nk the total number of
particles. We consider the model

d�(λ) =
∫ ⎡⎣ ∏

1≤k,l≤s

Nk∏
i=1

Nl∏
j=1

(Rk,l(λi,k, λj,l))
ρk,l/2

⎤⎦(3.96)

s∏
k=1

⎡⎣ ∏
1≤i<j≤Nk

|λi,k − λj,k|βk

Nk∏
i=1

e−N Vk(λi,k) dλi,k

⎤⎦ ,

where the integral runs over
∏s

k=1(Γ0,k)
Nk . In the decomposition of the

measure, it is understood that the two-point interactions Rk,l will be reg-
ular on Γ0,k × Γ0,l for any k, l ∈ [[1, s]]. We may assume without restriction
that Rk,l(x, y) = Rl,k(y, x) and ρk,l = ρl,k. We denote again ZN the partition
function of �.

In the context of formal integrals, we shall see in Section 5 that they
describe the statistical physics of self-avoiding loops on random lattices,
where the symmetry between the inner and the outer domains delimited by
the loops is broken. It contains the ρ2-Potts model on general random maps
as a special case [16].

Let us denote

(3.97) Mk = diag(λi,k)1≤i≤Nk
, M = diag(M1, . . . , Ms).

We now want to consider observables distinguishing the type of particles.
For any k1, . . . , kn ∈ [[1, s]], we define the refined correlators

(3.98) Wn(
k1
x1, . . . ,

kn
xn) =

〈
n∏

i=1

Tr
1

xi −Mki

〉
c

.

For each variable xi, we use the notation
ki
xi to indicate to which type of

particles it is coupled, but it should not hide the fact that Wn(
k1
x1, . . . ,

kn
xn) is

a different function of x1, . . . , xn for each k1, . . . , kn. If we want to sum over
all type of particles, we rather write

Wn(x1,
k2
x2, . . . ,

kn
xn) =

s∑
k1=1

Wn(
k1
x1,

k2
x2, . . . ,

kn
xn)(3.99)

=

〈
Tr

1
x1 −M

n∏
i=2

Tr
1

xi −Mki

〉
c

.
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If (xi)i∈I is a set of variables and (ki)i∈I a sequence in [[1, s]], we also write
collectively Wn(

kI
xI). This function is holomorphic in the domain

∏n
i=1(C \

Γ0,ki
), and, a priori, has a discontinuity when one of the xi’s crosses Γ0,ki

.
In the original model (3.2), we considered the cases where the support Γ

of the equilibrium measure μeq, was the union of r disjoint segments γk. Such
a regime can be elegantly described as a model with r species of particles,
where

• βk ≡ β, Vk ≡ V, Rk,l ≡ R and ρk,l ≡ ρ do not depend on k, l ∈ [[1, r]].
• Nk = �Nμeq(γk)�, and Γ0,k is a small neighborhood5 of γk in Γ0.

The refined correlators Wn(
k
x,

aI
xI) are then obtained by projecting Wn(x,

aI
xI)

on the space of holomorphic functions having a discontinuity on Γ0,k, i.e.,

(3.100) Wn(
k
x,

aI
xI) =

1
2iπ

∮
Γ0,k

dξ Wn(ξ,
aI
xI)

x− ξ
.

3.9. Generalization of the method

The analysis of the model with r species is very similar to the case r = 1.
The only difference is that we have to deal with vectors [Wn(

k
x,

kI
xI)]1≤k≤s,

and the operator O becomes a matrix of operators (Ok,l)k,l. Hence, we will
not reproduce all the details, and rather summarize the main steps leading
to the results of Section 3.10 below.

3.9.1. Results from potential theory and analytic continuation.
Let εk = Nk/N be fixed and positive. We are led to introduce the following
functional on

∏s
k=1Mεk

(Γ0,k):

(3.101)

E [μ] = −1
2

s∑
k=1

βk

�
Γ20,k

dμk(x) dμk(y) ln |x− y|

− 1
2

s∑
k,l=1

ρk,l

�
Γ0,k×Γ0,l

dμk(x) dμl(y) lnRk,l(x, y) +
s∑

k=1

∫
Γ0,k

dμk(x)Vk(x).

5The partition function of (3.2) on (Γ0)N differs from that on
⋃r

k=1(Γ0,k)Nk by
exponentially small corrections when N is large, which are irrelevant from the point
of view of 1/N expansions.
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Critical points of this functional are characterized by the following equations:
for any k ∈ [[1, s]], for x ∈ Γ0,k μk-almost everywhere:

(3.102)

βk

∫
Γ0,k

dμk(ξ) ln |x− ξ|+
s∑

l=1

ρk,l

∫
Γ0,l

dμl(ξ) lnRk,l(x, ξ) = Vk(x) + Ck

for some constant Ck.

Definition 3.9. We say the interactions defined by the data
(Rk,l, ρk,l, βk)k,l, are strictly convex if, for any vector of complex measures
ν = (ν1, . . . , νs) such that νk(Γ0,k) = 0 for any k ∈ [[1, s]], we have(

βk

�
Γ20,k

dνk(x)( dνk(y)) ln |x− y|(3.103)

+
s∑

l=1

ρk,l

�
Γ0,k×Γ0,l

dνk(x)( dνl(y)) lnRk,l(x, y)

)
≤ 0

with equality iff ν ≡ 0.

As in Lemma 3.1, it is equivalent to use complex measures instead of
signed measures in this definition, provided the measure on y in (3.103)
is replaced by its complex conjugate. In particular, this implies that E is
strictly convex. The natural set of assumptions is now:

Hypothesis 3.10.

(i) Vk : Γ0,k → R are real analytic.

(ii) lnRk,l : Γ0,k × Γ0,l → R are real analytic.

(iii) The interactions are strictly convex.

(iv) If some Γ0,k is unbounded, the potentials are strongly confining.

If Hypothesis 3.10 holds, the existence and uniqueness of a vector of
equilibrium measures is guaranteed, and Γk = suppμk will be a union of rk

segments: Γk =
⋃rk

j=1 γk,j . We can define domains Uk (resp. Ûk) which maps
bijectively to C \ Γk (resp. Ĉ \ Γk), and include them in Riemann surfaces
(Uk)Γk

as in Section 2.1. Let Vk,j be annular neighborhoods of γk,j in (Uk)Γk
,

let Vk =
⋃rk

j=1 Vk,j and ιk its holomorphic involution. The potentials Vk(x)
can be promoted to a sequence Vk(z) of ιk-invariant holomorphic functions of
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z ∈ Vk. Similarly, lnRk,l(x, y) defines a sequence lnRk,l(z, w) of holomorphic
functions of (z, w) ∈ Vk × Vk, which are ιk-invariant in z and ιl-invariant in
w. We are led to define the operators6 Ok,l : M∗(Vl)→ H inv

Γk
by

(3.104) Ok,lf(z) =
1
2iπ

∮
Γextk

dz lnRk,l(z, ξ) f(ξ).

The Stieltjes transform of the equilibrium measures

(3.105) ω01(
k
z) =

(∫
Γk

dμeq,k(ξ)
x− ξ

)
dx(z)

are initially defined as holomorphic 1-forms in Uk. From the saddle point
equation (3.102), we deduce that they can be continued across Γk (i.e.,
ω01(

k·) ∈ HΓk
(Uk)), and they satisfy the functional equation

(3.106) ∀z ∈ Vk, Δkω
0
1(

k
z) +

s∑
l=1

2ρk,l

βk
Ok,lω

0
1(

l
z) =

2
βk

dVk(z).

Besides, assuming an analog of Conjecture 3.5 and repeating the steps of
Section 3.2, we can show the existence of a sequence of a fundamental 2-form
of the second kind, denoted B(

k0· , k·) ∈ M(ÛΓk0
× ÛΓk

), such that

• B(
k0
z0,

k
z) = B(

k
z,

k0
z0).

• For any z0 ∈ Vk0 and z ∈ Uk:

(3.107) Sz0
k0

B(
k
z,

k0
z0) +

s∑
l0=1

ρk0,l0 Oz0
k0,l0

B(
k
z,

l0
z0) = δk,k0

dx(z0) dx(z)
(x(z0)− x(z))2

.

• For any j ∈ [[1, rk]],
∮
γextk,j

B(
k0
z0,

k·) = 0.

Similarly, we can also construct first kind differentials, i.e., a sequence
hm,j(

k·) ∈ H((Uk)Γk
), indexed by k, m ∈ [[1, s]] and j ∈ [[1, rm]], such that

• for any z ∈ Vk:

(3.108) Skh•(
k
z) +

s∑
l=1

2ρk,l

βk
Ok,lh•(

l
z) = 0,

6See footnote page 74 for the meaning of M∗.
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• for any j′ ∈ [[1, rk]], 1
2iπ

∮
γext

k,j′
hm,j(

k·) = δk,mδj,j′ .

3.9.2. Representation by residues. We define H, the subspace of⊕s
k=1 HΓk

(Ûk) consisting of vectors of 1-forms f which satisfy, for any k ∈
[[1, s]] and z ∈ Vk,

(3.109) Skf(
k
z) +

s∑
l=1

2ρk,l

βk
Ok,lf(

l
z) = 0

and its subspace of forms with vanishing periods:

(3.110)H0 =

{
f ∈ H, ∀k ∈ [[1, s]], ∀j ∈ [[1, rk]],

∮
γextk,j

f(
k·) = 0

}
.

We also define

(3.111) G(
k
z,

k0
z0) =

∫ z

B(
k·, k0

z0).

Notice that
⊕s

k=1 HΓk
(Ûk) � HΓk

(∐s
k=1 Ûk

)
, where we insist that the right-

hand side involves the disjoint union of Ûk, so that we are still in the frame-
work on Section 2.1. The proofs in Section 3.3 can be adapted to show:

Proposition 3.19. If Hypothesis 3.10 holds, H is representable by residues,
with local Cauchy kernel G(

k
z,

k0
z0). Besides

(3.112) H = H0 ⊕

⎛⎜⎝ s⊕
k=1

span
1≤m≤s
1≤j≤rm

hm,j(
k·)

⎞⎟⎠
and H0 is normalized. �

3.9.3. Schwinger–Dyson equations. Schwinger–Dyson equations for
the refined correlators in the multi-species case can be derived as in
Section 3.4. When we assume lnRk,l(x, y) analytic for (x, y) in a neighbor-
hood of Γ0,k × Γ0,l, the rank n Schwinger–Dyson equation without bound-
ary terms reads, for any k and kI = (k2, . . . , kn) ∈ [[1, s]], for any x ∈ C \ Γ0,k
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and xI = (x2, . . . , xn) ∈
∏

i∈I(C \ Γ0,ki
),

(3.113)(
1− 2

βk

)
∂xWn(

k
x,

kI
xI) +Wn+1(

k
x,

k
x,

kI
xI) +

∑
J⊆I

W|J |+1(
k
x,

kJ
xJ)Wn−|J |(

k
x,

kI\J

xI\J)

− 2
βk

∮
Γ0,k

dξ

2iπ
N V ′k(ξ)Wn(

k
ξ,

kI
xI)

x− ξ
+

2
βk

∑
i∈I

∮
Γ0,k

dξ

2iπ
Wn−1(

k
ξ,

kI\{i}
xI\{i})

(x− ξ)(xi − ξ)2

+
s∑

l=1

2ρk,l

βk

�
Γ0,k×Γ0,l

dξ dη

(2iπ)2
∂ξ lnRk,l(ξ, η)

x− ξ⎛⎝Wn+1(
k
ξ,

l
η,

kI
xI) +

∑
J⊆I

W|J |+1(
k
ξ,

kJ
xJ)Wn−|J |(

l
η,

kI\J

xI\J)

⎞⎠ = 0.

The coupling between different species of particles only occur in the last
line, through the off-diagonal terms of the matrix ρ = (ρk,l)k,l.

3.10. Results

We introduce:

Hypothesis 3.11.

(i) βk ≡ 2.

(ii) Γk =
⋃rk

j=1 γk,j is a disjoint union of bounded intervals γk,j .

(iii) Vk is analytic in a neighborhood of Γk.

(iv) lnRk,l is analytic in a neighborhood of Γk × Γl.

(v) The refined correlators of (3.99) have a large N expansion of topolog-
ical type.

(vi) W 0
1 (

k·) is discontinuous at any interior point of Γk.

(vii) ω01(
k
x) = W 0

1 (
k
x) dx are off-critical 1-forms.
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Proposition 3.20. Let us assume Hypothesis 3.11, and define ωg
n ∈⊕s

k1,...,kn=1
H(
∏n

i=1 Uki
) by the formulas

ωg
n(

k1
z1, . . . ,

kn
zn) = W g

n(
k1

x(z1), . . . ,
kn

x(zn))
n∏

i=1

dx(zi)(3.114)

+ δn,2δg,0δk1,k2

dx(z1) dx(z2)
(x(z1)− x(z2))2

.

Then, ω•• satisfies linear and quadratic loop equations. More precisely, for
any n, g, any k, kI = (k2, . . . , kn), any zI = (z2, . . . , zn) ∈

∏n
i=2 Uki

, and for
any z ∈ Vk, we have

Sz
kωg

n(
k
z,

kI
zI) +

s∑
l=1

ρk,lOk,lω
g
n(

k
z,

kI
zI)(3.115)

= δg,0

(
δn,1 dVk(z) + δn,2δk,k2

dx(z) dx(z2)
(x(z)− x(z2))2

)
.

�

Hypothesis 3.12. (vii) The interactions are strictly convex, in the sense
of Definition 3.9.

Notice that (ii) to (iv) of Hypothesis 3.11 and (vii) of Hypothesis 3.12
are implied by Hypothesis 3.10.

Corollary 3.21. Let us assume Hypothesis 3.12 and for any stable n, g,
any k, kI and any j ∈ [[1, rk]],

∮
γextk,j

ωg
n(

k·, kI
zI) = 0. Then, ωg

n can be computed
by the topological recursion:

(3.116)

ωg
n(

k0
z0,

kI
zI) =

∑
α∈Γfixk0

Res
z→α

Kk0(z, z0)

⎛⎝ωg−1
n+1(

k0
z , ιk0(

k0
z ),

kI
zI) +

∑
J⊆I, 0≤h≤g

ωh
|J |+1(

k0
z ,

kJ
zJ)ω

g−h
n−|J |(ιk0(

k0
z ),

kI\J

zI\J)

⎞⎠ ,

where the recursion kernel is given by

(3.117) Kk0(z, z0) =
1
2

∫ z
ιk0 (z)

ω02(
k0· , k0

z0)

ω01(
k0
z )− ω01(ιk0(

k0
z ))

.
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We remark that the recursion kernel only involves ω02(
k0
z0,

k
z) for k = k0.

After summing over k, the topological recursion takes the usual
form (2.19).

4. Virasoro constraints, graphs and loop equations

In this section, we rewrite the Schwinger–Dyson equations of the repulsive
particle with s species in terms of the partition function, with index βk ≡ 2
for any k ∈ [[1, s]]. We show that they can be obtained by a canonical trans-
formation mixing s independent copies of a set of Virasoro constraints, mak-
ing the connection, e.g., with [102] or the work of [11]. This decomposition
can be seen as a realization of Givental formula expressing the value of the
potential of a Frobenius manifold as the result of the action of a canonical
transformation on a product of Kontsevich integrals [81]. From this point of
view, the coefficients of the potentials V are interpreted as flat coordinates
on the Frobenius manifold, the interaction between the eigenvalues corre-
sponding to a motion in this manifold. The topological recursion therefore
gives the 1/N expansion of those deformed Virasoro constraints, provided
the one and two-points functions are known to leading order in N .

In this section, we consider all quantities as formal series in coefficients of
the potentials and the two-point interaction. The method to define properly
such formal matrix models has been reviewed in detail in [72].

4.1. Virasoro constraints and the one-Hermitian matrix model

Considering a family of formal parameters t = (tk)k≥0, we say that a formal
series fN (t) satisfies Virasoro constraints if

(4.1) ∀m ≥ −1, Lm[t, N ] · f(t) = 0,

where for m = −1, 0, 1:

(4.2) L−1[t, N ] = t1
∂

∂t0
+
∑
j≥2

(j − 1)tj
∂

∂tj−1
,

(4.3) L0[t, N ] =
1

N2

∂2

∂t20
+
∑
j≥1

j tj
∂

∂tj
,
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(4.4) L1[t, N ] =
2

N2

∂

∂t0

∂

∂t1
+
∑
j≥1

(j + 1)tj
∂

∂tj+1

and for m ≥ 2

Lm[t, N ] =
2m
N2

∂

∂t0

∂

∂tm
+

1
N2

m−1∑
j=1

j(m− j)
∂

∂tj

∂

∂tm−j
(4.5)

+
∑
j≥1

(j +m)tj
∂

∂tm+j
.

The name “Virasoro” comes from the commutation relations satisfied by
those formal differential operators:

(4.6)
[
Lm[t, N ], Lm′ [t, N ]

]
= (m−m′)Lm+m′ [t, N ].

For further convenience, when there is no confusion, if f(t) is a formal series
in t, we denote

(4.7) ∀j ∈ N
n, fj(t) =

∂nf(t)
∂tj1 · · · ∂tjn

.

It is well known [8, 84, 108, 112] (see Lemma 4.1 below) that the parti-
tion function of a one-Hermitian matrix model satisfies Virasoro constraints.
More precisely, consider the local partition function

(4.8) Z[V, N ] =
∫
ΓN
0

∏
1≤i<j≤N

(λi − λj)2
N∏

i=1

e−NV(λi) dλi

with a potential of the form

(4.9) V(x) = V(0)(x)− t0 −
∑
j≥1

tj
j
(x− Λ)j .

Γ0 is a contour ending at ∞ in the complex plane, V(0) is analytic near
Λ ∈ C with a Taylor expansion of the form

(4.10) V(0)(x) = −t
(0)
0 −

∑
j≥1

t
(0)
j

j
(x− Λ)j

and (Γ0,V(0)) is chosen such that Z[V(0), N ] is a convergent integral. Here,
t = (tj)j≥1 is a set of formal parameters. If xi /∈ Γ0, is far enough from Γ0,
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writing that

(4.11) Tr
1

xi −M
= Tr

1
xi − Λ− (M − Λ)

=
∑
j≥0

Tr (M − Λ)j

(xi − Λ)j+1
,

we observe that the n-point correlators of (3.6) near xi = Λ ∈ Γ0 are gener-
ating series of nth-order derivatives of the partition function

(4.12)

Wn(x1, . . . , xn) =
δn,1

(x1 − Λ)
+

∑
j1,...,jn≥1

n∏
i=1

ji/N

(xi − Λ)ji+1
(lnZ)j[V, N ].

We then have:

Lemma 4.1. The 1-matrix model satisfies the Virasoro constraints:

(4.13) ∀m ≥ −1, Lm[t(0) + t, N ] · Z[V, N ] = 0.

Proof. The Virasoro constraints are a mere rewriting of the rank 1
Schwinger–Dyson equation (specialization of Lemma 3.13 for R0 ≡ 1 and
n = 1) for the correlators, as a set of differential equations satisfied by the
partition function.

4.2. Several species of particles and sum over graphs

One can generalize the preceding section by considering the model with s
species of particles defined in (3.96), with βk ≡ 2:

d�(λ) ∝
∫ ⎡⎣ ∏

1≤k,l≤s

Nk∏
i=1

Nl∏
j=1

(Rk,l(λi,k, λj,l))
ρk,l/2

⎤⎦(4.14)

s∏
k=1

⎡⎣ ∏
1≤i<j≤Nk

(λi,k − λj,k)2
Nk∏
i=1

e−N Vk(λi,k) dλi,k

⎤⎦ ,

where the range of integration is
∏s

k=1 Γ
N
0,k with Γ0,k some contour in the

complex plane. We denoteR = (Rk,l)k,l, V = (Vk)k andN = ((Nk)k, N), and
Z[R,V,N] the partition function of such a model. Without loss of generality
we assume that Rk,l(x, y) = Rl,k(y, x) and ρl,k = ρk,l.
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As before, we take a point Λk ∈ Γk,0 around which performing Taylor
expansions, and we take as potential

(4.15) Vk(x) = V(0)k (x)− tk,0 −
∑
j≥1

tk,j

j
(x− Λk)j ,

where (V(0)k ,Γk,0)k is chosen so that Z[R,V(0),N] is a convergent integral.
We also Taylor expand the two-point interaction as follows:

(4.16)

ρk,l lnRk,l(x, y) =
∑
i,j≥0

Rk,l;i,j

ij
(x− Λk)i(y − Λl)j , Rk,l;i,j = Rl,k;j,i

with the convention that 1
ij ≡ 1 if i = 0 or j = 0. Again, the refined corre-

lators (defined in (3.98)) are related to derivatives of the partition function:

(4.17)

Wn(
k1
x1, . . . ,

kn
xn) =

δn,1 Nk1

(x1 − Λk1)

+
∑

(j1,k1),...,(jn,kn)
j1,...,jn≥1

[
n∏

i=1

ji/N

(xi − Λki
)ji+1

]
(lnZ)j[R,V,N].

The Taylor expansion (4.16), implies that one can build the partition func-
tion out of local partition functions (4.8), by “mixing” them with some
differential operator [48, 77, 97]

(4.18)

Z[R,V,N] = exp

⎛⎝ 1
2N2

∑
1≤k,l≤s

∑
i,j≥0

Rk,l;i,j
∂2

∂tk,i∂tl,j

⎞⎠ s∏
k=1

Z

[
N

Nk
Vk, Nk

]
.

The action of this quadratic differential operator can be written as usual with
Wick’s theorem as a sum over graphs with vertices weighted by derivatives
of the local free energies F [V, N ] = lnZ[V,N], and edges weighted by the
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two-point interaction:

(4.19)

Z[R,V,N] =
∑

G, s-colored
graph

N−2#E(G)

#Aut(G)
∏

v∈V (G)
Fj(e(v))

[
N

Nc(v)
Vc(v), Nc(v)

]

∏
e∈E(G)

Rc(v0(e)),c(v1(e));j(v0(e),e),j(v1(e),e).

The s-colored graphs over which the sum ranges are described as follows:

• G is an oriented graph (maybe disconnected). We denote V (G) (resp.
E(G)), its set of vertices (resp. edges).

• Vertices v are decorated by a color in [[1, s]], denoted c(v).

• Half-edges (v, e), where v is a vertex and e is an edge adjacent to v,
are decorated by a positive integer, denoted j(v, e) ≥ 0. If e is an edge,
we denote v0(e) and v1(e) are the two adjacent vertices.

• If v is a vertex, we denote e(v) the set of edges adjacent to v, and
j(e(v)) the set of j(v, e) for e ∈ e(v).

One can go further and make explicit the dependance of the partition func-
tion in terms of the times by introducing the set of s-colored graphs with
leaves. We call leave an open half-edge, i.e., a pair consisting in a marked
univalent vertex and an edge which connects it to a regular vertex v ∈ E(G).
We denote L(G) the set of leaves of such a graph (see figure 2).

Then, we have

(4.20)

Z[R,V,N] =
∑

G s-colored graph
with leaves

N−2|E(G)|

|Aut(G)|
∏

v∈V (G)
Fj(e(v))

[
N

Nc(v)
V(0)c(v), Nc(v)

]

×
∏

�∈L(G)
tc(�),j(�)

∏
e∈E(G)

Rc(v0(e)),c(v1(e));j(v0(e),e),j(v1(e),e),

where the vertices are weighted by

(4.21) Fj[(N/Nc)V(0)c , Nc] =
∂n lnZ[(N/Nc)Vc, Nc]

∂tj1 · · · ∂tjn

∣∣∣
t=0

.
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Figure 2: Example of 2-colored graph with two leaves. We indicate the two
colors as black and white, and the leaves as shaded. This graph contributes
to the global partition function with a weight Fa,c[(N/N1)V(0)1 , N1]
R1,1;a,bR1,1;c,dFb,d,e[(N/N1)V(0)1 , N1]R1,2;e,f Ff,g,h[(N/N2)V(0)2 , N2] t2,gt2,h.

4.3. Virasoro constraints and loop equation

In this section, we show how the Virasoro constraints for the local partition
functions imply s independent sets of Virasoro constraints for Z[R,V,N].
If one comes back to Schwinger–Dyson equations in terms of correlators, it
explains how the Schwinger–Dyson equations of the repulsive particle model
with s species can be deduced from the Schwinger–Dyson equations of the
one-Hermitian matrix model.

Observe that, if f(t, t̃) is a function of two variables, one has

(4.22)

e
R+R̃
2

∂

∂t

∂

∂t̃ f(t, t̃) =
∞∑

k=0

(R+ R̃)k
2k k!

∂k

∂tk
∂k

∂t̃k
f(t, t̃)

=
∞∑

k=0

⎛⎝ k∑
j=0

Rj R̃k−j k!
j! (k − j)!

⎞⎠ 1
2k k!

∂k

∂tk
∂k

∂t̃k
f(t, t̃)

=
∞∑
i=0

∞∑
j=0

(i+ j)!
i! j!

Ri R̃j

2i+j (i+ j)!
∂i+j

∂ti+j

∂i+j

∂t̃i+j
f(t, t̃)

=
∞∑
i=0

∞∑
j=0

(R/2)i (∂/∂t̃)i

i!
(R̃/2)j (∂/∂t)j

j!
∂i

∂ti
∂j

∂t̃j
f(t, t̃)

= f

(
t+

R
2

∂

∂t̃
, t̃+

R̃
2

∂

∂t

)
,
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where the last line is a convenient notation. This shows that the full par-
tition function Z[R,V,N] is obtained from the one particle one by formal
substitution:

(4.23) Z[R,V,N] =
s∏

k=1

Z

[
N

Nk
Ṽk[R,V,N], N

]
,

where the potential Ṽk[R,V, N ] is obtained by shifting the coefficients of the
Taylor expansion of Vk by a differential operator:

tk,i → t̃k,i[R,V, N ] = tk,i +
s∑

l=1

1
N2

⎛⎝∑
j≥0

1
2
Rk,l;i,j

∂

∂tl,j

⎞⎠ .(4.24)

By convention, those differential operators are pushed to the left of the
product of local partition functions. We observe that this shift of times (4.24)
is closely related to the Taylor expansion of the operators Ok,l introduced
in (3.104) and which appeared in the loop equations studied in Section 3.
Indeed, using the formal expansion of the 1-point correlator (4.17), recalling
that Λk ∈ Γk,0 and the definition of the coefficients Rk,l;i,j in (4.16):

(4.25)∑
i≥0

(
t̃k,i[R,V,N]− tk,i

)
(x− Λk)i−1Z[R,V,N]

= − 1
2N

s∑
l=1

∑
i,j≥0

Rk,l;i,j

j
(x− Λk)i−1

(
Res
ξ→∞

(ξ − Λl)j W1(
l
ξ) dξ

)
Z[R,V,N]

= − 1
2N

s∑
l=1

∮
Γl,0

dξ

2iπ

⎛⎝∑
i,j≥0

Rk,l;i,j

j
(x− Λk)i−1(ξ − Λl)j

⎞⎠
×W1(

l
ξ) dξ Z[R,V,N]

= − 1
2N

s∑
l=1

ρk,l

∮
Γl,0

dξ

2iπ
∂x lnRk,l(x, ξ)W1(

k
ξ)Z[R,V,N]

= − 1
2N

s∑
l=1

ρk,l(Ok,lW1)(
k
x)Z[R,V,N].

By substitution in the Virasoro constraints satisfied by the local partition
functions, we obtain:
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Lemma 4.2. The partition function in the repulsive particle model with s
species satisfies

(4.26) ∀k ∈ [[1, s]], ∀m ≥ −1, Lk,m[R, t,N] · Z[R,V,N] = 0,

where we have set

(4.27)

Lk,m[R, t,N] = Lk,m

[ N

Nk
tk, Nk

]
+

s∑
l=1

∑
i,j≥0

(m+ j)
Rk,l;j,i

N2

∂2

∂tk,i∂tl,m+j
.

These operators satisfy the commutation relation

∀k, k′ ∈ [[1, s]], ∀m, m′ ≥ −1, [
Lk,m[R, t,N],(4.28)

Lk′,m′ [R, t,N]
]
= δk,k′(m−m′)Lk,m+m′ [R, t,N].

Proof. The fact that the operators Lk,m annihilate the full partition function
is a direct consequence of the substitution relation (4.23). To establish the
commutation relations, we start with

(4.29)
[
Lm[tk, Nk], Lm′ [tk′ , Nk′ ]

]
= δk,k′ (m−m′)Lm+m′ [tk, Nk].

and ⎡⎣∑
i,j≥0

(m+ j)
Rk,l;j,i

N2

∂2

∂tk,i∂tl,m+j
, Lm′ [tk′ , Nk′ ]

⎤⎦
= δk,k′

∑
i,j≥0

(m′ +m+ j)(m+ j)
Rk,l;j,i

N2

∂2

∂tk,i∂tk′,m′+m+j

+ δl,k′
∑
i,j≥0

(m+ j)(m′ + i)
Rk,l;j,i

N2

∂2

∂tk,m′+i∂tl,m+j
.(4.30)

Besides, we remark
(4.31)[ ∑

i,j≥0
(m+ j)Rk,l;j,i

∂2

∂tk,i∂tl,m+j
,
∑

i′,j′≥0
(m′+ j′)Rk′,l′;j′,i′

∂2

∂tk′,i′∂tl′,m′+j′

]
=0.



110 Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

Therefore,

(4.32)[
Lk,m[R, t,N], Lk′,m′ [R, t,N]

]
=
[
Lm[(N/Nk)tk, Nk], Lm′ [(N/Nk′)tk′ , Nk′ ]

]
+

⎡⎣Lm[(N/Nk)tk, Nk],
s∑

l=1

∑
i,j≥0

(m′ + j)
Rk′,l;j,i

N2

∂2

∂tk′,i∂tl,m′+i

⎤⎦
+

⎡⎣ s∑
l=1

∑
i,j≥0

(m+ j)
Rk,l;j,i

N2

∂2

∂tk,i∂tl,m+j
, Lm′ [(N/Nk′)tk′ , Nk′ ]

⎤⎦
= δk,k′(m−m′)Lm+m′ [tk, Nk]

− δk,k′

s∑
l=1

∑
i,j≥0

(m′ +m+ j)(m′ + j)
Rk,l;j,i

N2

∂2

∂tl,i∂tk,m+m′+j

−
∑
i,j≥0

(m′ + j)(m+ i)
Rk′,k;j,i

N2

∂2

∂tk,m+i∂tk′,m′+j

+ δk,k′

s∑
l=1

∑
i,j≥0

(m′ +m+ j)(m+ j)
Rk,l;j,i

N2
,

∂2

∂tl,i∂tk,m′+m+j

+
∑
i,j≥0

(m+ j)(m′ + i)
Rk,k′;j,i

N2

∂2

∂tk′,m′+i∂tk,m+j

= δk,k′(m−m′)L(k)m+m′ [R, t,N].

�

It is noteworthy to give the combinatorial interpretation of the Virasoro
constraints. The Virasoro operator Lk,m[R,V,N] acts on a s-colored graph
G as follows:

• The linear operator (m+ j)tk,j
∂

∂tk,m+j
replaces a leaf of degree m and

color k by a leaf of degree m− j and of same color.

• The bilinear operator 1
N j(m− j) ∂

∂tk,j

∂
∂tk,m−j

replaces a couple of leaves
of same color k and respective degree j and m− j by two vertices
linked by an edge of weight 1, oriented from the first to the second.
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• The bilinear operator (m+ j)iRk,l;j,i
∂2

∂tl,i ∂tk,m+j
replaces a couple of

leaves of respective colors k and l and respective degree m+ j and i
by two vertices linked by an edge e′ of weight Rk,l;j,i, oriented from
the first to the second, and such that j0(e′) = j and j1(e′) = i. The
new vertices keep the color of the leaf they came from.

The Virasoro constraints can then be seen as a consequence of a bijection
between sets of s-colored graphs. This interpretation can be mapped to
Tutte’s equations for generating series of colored maps with tubes introduced
in Section 5.1 below, by making the following correspondence for a given
s-colored graph G:
• Each n-valent vertex v ∈ V (G) of color k is mapped to a sum of maps
of color k with n boundaries, whose respective lengths are given by
the indices ji(e) of the incident edges (i.e., i = 1 if the edge is pointing
towards v, i = 0 else).

• Each edge weighted by Rk,l;i,j is mapped to an annular face, the two
boundaries of which have respective colors k and l, and respective
lengths i and j.

5. Enumeration of maps with decorations

In this section, we apply Section 3 to the study of the enumerative prob-
lems emerging from the combinatorial interpretation of some formal matrix
models. In a first step (Section 5.1.1), we introduce a combinatorial model
enumerating colored maps with tubes, and we explain in Section 5.1.2 an
equivalent formulation in terms of maps with self-avoiding loops. We then
show in Section 5.2 that the repulsive particle model (which is a kind of
matrix model) with arbitrary two-point interaction generates such maps.
We derive in Section 5.3 combinatorial relations between generating series
by the technique of substitution developed in [17, 18] for planar maps, and
by Tutte’s decomposition for higher genus maps. Those relations are actually
equivalent to the loop equations satisfied the repulsive particle model. This
allows us to compute the generating series of colored maps of all topologies
with tubes by the topological recursion. We complete this result by describ-
ing in Section 5.6 a technique to compute explicitly the coefficients of the
generating series of such maps, since closed form for the generating series
themselves is in general out of reach. Eventually, we describe in details in
Section 5.8 the special case of maps carrying an ADE height model, which
fits in our general formalism.
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5.1. Combinatorial models

5.1.1. Colored maps with tubes. A map (see, e.g., [43]) is an equiv-
alence class modulo oriented homeomorphisms of proper embeddings of a
finite graph in an oriented surface, such that:

• erasing the image of the graph in the surface yields a finite union of
connected components (called faces), which are homeomorphic to a
disk;

• each connected component of the surface has a non-empty intersection
with the image of the graph.

We call length of a boundary of a face the number of edges forming this
boundary, and the degree of a face is the length of its unique boundary.
If g, n ≥ 0 and � = (�1, . . . , �n) is a vector of positive integers, we define
Mg

n(�), the set of maps drawn on a genus g surface, with n marked faces
whose boundary have a marked edge, and respective lengths �i. By con-
vention, M0

1(0) has a single element, which is the embedding of the graph
with one vertex, and that is the only case where we encounter 0 boundary
lengths.

We now introduce the notion of s-colored maps with tubes, by replacing
the first point by

• faces are either homeomorphic to a disk (those have one boundary, and
are called simple faces), or to an annulus (those have two boundaries,
and are called annular faces);

• the connected components of the graph carry a color, which is an
integer between 1 and s.

Notice that if the two boundaries of an annular face belong to the same
connected component of the graph, they must carry the same color. We
agree that simple faces receive the color of their boundary, while annular
faces receive the couple of color of their two boundaries (see figure 3).

Let g, n ≥ 0, and k ∈ [[1, s]]n a vector of colors, � ∈ (N∗)n a vector of
lengths. We define sCMTg

n(k; �) as the set of s-colored maps which are con-
nected surface of genus g with n marked simple faces of respective colors
(ki)i and lengths (�i)i, each carrying a marked edge on its boundary.

We want to consider a model where a map M∈ sCMTg
n(k, l) receives

the weight w(M) obtained as a product of the following Boltzmann weights:

• Each vertex receives a local weight u.
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Figure 3: Example of genus 0 map with two colors: one marked white face of
degree 8 (octogon), 12 unmarked white simple faces of degree 3 (triangles),
one black simple face of degree 3 and one annular face of degree (4, 3).

• Each vertex of color k receives a local weight uk.

• Each unmarked simple face of color k and degree � receives a local
weight tk,�.

• Each annular face of colors (k1, k2) and degrees (�1, �2) receives a local
weight Rk1,k2;�1,�2 = Rk2,k1;�2,�1 .

We denote |AutM| the number of automorphisms of the map.
We fix once for all a sequence of real numbers Λ = (Λ1, . . . ,Λs). For

n = 0 and any g ≥ 0, we define the generating series

(5.1) Fg =
∑

M∈sCMTg
0

w(M)
|AutM| .

For any n ≥ 1 and g ≥ 0, we define a sequence of generating series indexed
by k ∈ [[1, s]]n:

(5.2)

W g
n(

k1
x1, . . . ,

kn
xn) =

δn,1δg,0 uuk1

(x1 − Λk1)
+

∑
�1,...,�n≥1

⎛⎝ ∑
M∈sCMTg

n(k;�)

w(M)
|AutM|

⎞⎠
[

n∏
i=1

1
(xi − Λki

)�i+1

]
.
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Eventually, we introduce formal series in a large parameter N to collect all
genera:

Z = eF , F =
∑
g≥0

(
N

u

)2−2g
F g,(5.3)

Wn(
k1
x1, . . . ,

kn
xn) =

∑
g≥0

(
N

u

)2−2g−n

W g
n(

k1
x1, . . . ,

kn
xn).

A standard counting argument using the Euler characteristics shows that, for
any v ≥ 0, for given g, n, there is only a finite number of maps in sCMTg

n(k; �)
with exactly v vertices, so that the coefficient of uv is given by a finite sum
[34, 72]. Hence, Fg, W g

n , Z, F and Wn are well-defined formal series in u.
It is convenient to introduce the following generating series of annular

faces:

(5.4)

(Rk1,k2(x1, x2))
ρk1,k2/2 = exp

⎛⎜⎜⎝ ∑
i1,i2≥0

(i1,i2) 
=(0,0)

Rk1,k2;i1,i2

i1i2
(x1 − Λk1)

i1(x2 − Λi2)
i2

⎞⎟⎟⎠
with the convention that 1

i = 1 if i = 0.

5.1.2. Maps carrying self-avoiding loop configuration. Self-avoiding
loop models play an important role in two-dimensional statistical physics,
because they allow to reach at the critical point a continuum of universality
classes, parameterized by the fugacity given to a loop, and believed to be
described by conformal field theories with central charge c < 1 [53]. Their
analog on maps (i.e., on a random two-dimensional lattice) have also been
studied [105], and their relation at the critical point with the same model
on the fixed lattice should be captured by the KPZ relations [47, 55, 104].

Given a mapM, a loop configuration is a collection of self- and mutually
non-intersecting cycles (also called loops7) drawn on the surface, avoiding
the vertices and crossing edges at most once and transversally. The set of
faces and edges crossed by a cycle are thus cyclically ordered, their union has
the topology of an annulus. We call ring this sequence of faces. Eventually,
we define a s-colored map with a loop configuration as a map with a loop
configuration such that each connected component of the graph minus the
edges crossed by a loop carries a color between 1 and s. Faces that are

7This denomination has nothing to do with the usual name of “loop equations.”
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not crossed by a loop thus receive the color of their boundary, and rings
receive two colors (one for each boundary). When some faces are marked,
we require that their boundary is not crossed by a loop.8 The colors can
be seen as colors of domains separated by loops, with the precision that if
removing a loop did not disconnect the map, the colors of the domains on
both sides of this loop should be the same.

As in Section 5.1.1, we collect the sets of connected s-colored maps with
a given topology and given length and colors for marked faces sMLg

n(k; �).
We give to such a map a weight w(M) obtained as the product of

• a local weight uuk per vertex of color k;

• a local weight tk,� per face of color k which is not crossed by a loop;

• a local weight zk1,k2 = zk2,k1 per face of a ring of color k1, k2;

• a local weight gk1,k2;�1,�2 = gk2,k1;�2,�1 per face crossed by a loop consist-
ing of a sequence of �1 edges with color k1, an edge crossed by the loop,
another sequence of �2 edges with color k2, and another edge crossed
by the loop, for some �1, �2 ≥ 0;

• a non-local weight −ρk,l = −ρl,k per ring of color (k, l).

And, we define as in Section 5.1.1 the generating series

(5.5) F g =
∑

M∈sMLg
0

w(M)
|AutM|

and for any n ≥ 1, the sequence of generating series indexed by a vector k
of n colors:

W g
n(

k1
x1, . . . ,

kn
xn) =

δn,1δg,0 uuk

(x1 − Λk1)
+

∑
�1,...,�n≥1

⎛⎝ ∑
M∈sMLg

n(k,�)

w(M)
|AutM|

⎞⎠(5.6) [
n∏

i=1

1
(xj − Λkj

)�j+1

]
.

8This means that we consider here only uniform boundary conditions for the
maps. Maps where we allow open paths whose ends are located on boundaries of
marked faces, can be decomposed upon removing the faces visited by these open
paths, into a collection of maps with uniform boundary conditions. Their generating
series, for a finite number of open paths realizing a given link pattern, can be
computed by universal relations described in [34, Chapter 5].
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Eventually, we introduce the generating series for all genera:

Z = eF , F =
∑
g≥0

(
N

u

)2−2g
F g, Wn(

k1
x1, . . . ,

kn
xn) =

∑
g≥0

(5.7)

(
N

u

)2−2g−n

W g
n(

k1
x1, . . . ,

kn
xn).

Again, a counting argument using Euler characteristics shows that these are
well-defined formal series in u and (zk,k′)k,k′ .

This model is a particular case of the model of s-colored maps with
tubes defined in Section 5.1.1. Indeed, if M is an s-colored map with a
loop configuration, by erasing the edges crossed by the loops, we obtain
an s-colored map with tubes. The weight given to annular faces via this
bijection is encoded in the generating series (compare with (5.4)):

(5.8)

Rk1,k2(x1, x2) =
1

zk1,k2

+
∑

�1,�2≥0
(�1,�2) 
=(0,0)

gk1,k2;�1,�2(x1 − Λk1)
�1(x2 − Λk2)

�2 .

Conversely, general weights gk1,k2;�1,�2 in the model of s-colored maps with a
loop configuration allow to reproduce general weights Rk1,k2;i,j in the model
of s-colored maps with tubes. Therefore, these two combinatorial models are
actually equivalent, and both points of view are interesting: maps with tubes
appear naturally in relation with Virasoro constraints, while maps with loop
configurations appear naturally in the combinatorial interpretation of matrix
models as we now review.

5.2. Formal matrix model representations

5.2.1. Maps. The relation between maps and Hermitian matrix models
was pioneered by Brézin et al. [29]. They have shown that the Feynman
diagram expansion for the formal local partition function (4.8)

Z = Z[Vk, Nk] =
∫
HNk

dM e−Nk TrVk(M),(5.9)
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Vk(M) =
1

uuk

⎛⎝(x− Λk)2

2
−
∑
j≥3

tj
j
(M − Λk)j

⎞⎠
=

∞∑
n=0

1
n!

(
N

u

)n ∑
j1,...,jn≥3

∫
HNk

dM exp
(
−N

u

Tr (M − Λk)2

2

)
[

n∏
i=1

tji

ji
Tr (M − Λk)ji

]

coincides with the generating series of maps

(5.10)
∑
g≥0

(
N

u

)2−2g ∑
M∈Mg,0

w(M)
|AutM|

assuming Nk = Nuk. The degree j term in Vk generates faces of degree j
and color k, while the Gaussian matrix integral over Mk is responsible for
gluing faces.

5.2.2. s-Colored maps with a loop configuration. The same tech-
niques have been used by Gaudin et al. [82, 95] to represent the generating
series of maps with a loop configuration as a formal matrix model with sev-
eral Hermitian matrices, and it is straightforward to adapt them to s-colored
maps with a loop configuration. Let us assume momentarily that ρk,l are neg-

ative integers. Then, the generating series Z (resp. Wn(
k1
x1, . . . ,

kn
xn)) intro-

duced in Section 5.1.2 coincides with the partition function (resp. the cor-
relators of the matrices M1, . . . , Ms) in the formal matrix model defined by
the measure

d� ∝
s∏

k=1

dMk exp (−N Tr Vk(Mk))×
∏

1≤k≤l≤s

−ρk,l∏
a=1

dA
(a)
k,l exp(5.11) ⎧⎨⎩N

⎛⎝−Tr (A(a)
k,l )

2

2zk,l
+
∑
i,j≥0

gk,l;i,j

2
Tr (M i

kA
(a)
k,l M

j
l (A

(a)
k,l )

†)

⎞⎠⎫⎬⎭ .

Here, Mk are Hermitian matrices of size Nk ×Nk, A
(a)
k,k are Hermitian

matrices of size Nk ×Nk and Ak,l are complex rectangular matrices of size
Nk ×Nl, and Nk = Nuk. The coupling between the matrices Mk and A

(a)
k,l

generates faces with two distinguished edges, while the Gaussian matrix
integral over A

(a)
k,l is responsible for gluing such faces along the distinguished



118 Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

edges. Thus, if we draw a path which crosses the distinguished faces of such
faces, it will form a loop. Since the matrices A

(a)
k,l come with a Gaussian

weight and the correlators we are interested in only involve the Mk’s, we
can integrate them out. We find that it induces the measure on Mk’s:

d� ∝
s∏

k=1

dMk exp (−N Tr Vk(Mk))(5.12)

×
∏

1≤k,l≤s

exp
[ρk,l

2
Tr ln (Rk,l(Mk ⊗ 1Nl

,1Nk
⊗Ml))

]

with Rk,l given in (5.8). In this form, the measure makes sense for ρk,l not
restricted to be a negative integer, and it coincides with the formal model of
repulsive particles introduced in (3.96) for βk = 2. We thus have obtained the
combinatorial interpretation of this model. It is not difficult to extend this
interpretation to values of βk by including non-orientable maps (i.e., maps
where some edges are Möbius strips) as in [39], but we shall not pursue this
direction.

5.3. Loop equations

5.3.1. Review for usual maps. In this paragraph, we shall reserve the
notation

(5.13) Ŵ g
n [Vk](

k
x1, . . . ,

k
xn), Vk(x) =

1
uuk

⎛⎝−∑
j≥1

tk,j

j
(x− Λk)j

⎞⎠
to the generating series of maps (in the usual sense) of given topology, i.e.,
W g

n(
k
x1, . . . ,

k
xn) defined in (5.6) where sML is replaced by M. k denotes a

color between 1 and s, but does not play an important role for the moment,
it intervenes in (5.13) only through Λk. Maps with one marked face can be
constructed recursively by removing the face adjacent to the marked edge
on the marked face. For planar maps (g = 0), this results into the celebrated
Tutte’s equation [125]

(5.14)
(

Ŵ 0
1 (

k
x)
)2
−
∮

dξ

2iπ
uV ′k(ξ) Ŵ 0

1 (
k
ξ)

x− ξ
= 0,
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where the contour integral is sufficiently far away from Λk. The same pro-
cedure can be worked out in any topology, and the result is [72, 76]

(5.15) Ŵ2(
k
x,

k
x) +

(
Ŵ1(

k
x)
)2
−Nk

∮
dξ

2iπ
V ′k(x) Ŵ1(

k
x)

x− ξ
= 0

and for any n ≥ 2:

(5.16)

Ŵn+1

(
k
x,

k
x,

k
xI

)
+
∑
J⊆I

Ŵ|J |+1

(
k
x,

k
xJ

)
Ŵn−|J |

(
k
x,

k
xI\J

)

−Nk

∮
dξ

2iπ

V ′k (x) Ŵn

(
k
ξ,

k
xI

)
x− ξ

+
∑
i∈I

∮
dξ

2iπ

Ŵn−1
(

k
ξ,

k
xI\{i}

)
(x− ξ) (xi − ξ)2

= 0,

where Vk is given in (5.9). As a matter of fact, (5.16) can be obtained from
5.15 by marking faces. Both equations can also be derived from the matrix
model representation (5.9) as Schwinger–Dyson equations.

Similarly, the Schwinger–Dyson equations of the formal repulsive particle
model (3.114) provide functional relations between generating series of s-
colored maps with a loop configuration:

(5.17)

Wn+1(
k
x,

k
x,

kI
xI) +

∑
J⊆I

W|J |+1(
k
x,

k
xJ)Wn−|J |(

k
x,

kI\J

xI\J)

−N

∮
dξ

2iπ
V ′k(x)Wn(

k
ξ,

kI
xI)

x− ξ
,

+
s∑

l=1

ρk,l

� dξ dη

(2iπ)2
∂ξ lnRk,l(ξ, η)

x− ξ

⎛⎝Wn+1(
k
ξ,

l
η,

kI
xI)(5.18)

+
∑
J⊆I

W|J |+1(
k
ξ,

kJ
xJ)Wn−|J |(

l
η,

kI\J

xI\J)

⎞⎠
+
∑
i∈I

∮
dξ

2iπ
Ŵn−1(

k
ξ,

kI\{i}
xI\{i})

(x− ξ)(xi − ξ)2
= 0.



120 Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

We now explain how they can be given a purely combinatorial proof. We
reserve in this paragraph the notation Wn for generating series of sML (as
opposed to Wn for M).

5.3.2. Planar maps with a loop configuration by substitution. The
nested loop approach developed in [17, 18] allows to decompose s-colored
maps with a loop configuration, into usual maps. It is enough to consider the
case of n = 1 marked face, and we first focus on planar maps, i.e., g = 0. We
summarize the argument of [18]. GivenM∈ sML01, let us remove the faces
crossed by the outermost loops from the point of view of the marked face:
“outermost” here means the loops which can be reached by a continuous
path on the surface, starting on the marked face without crossing any other
loop. SinceM is planar, every loop is separating, therefore, the ring where
it is drawn has an outer and an inner boundary. We mark an edge on such
an inner boundary by an arbitrary but well-defined procedure.9 The outer
connected component, which contains the marked face, is a map M′ ∈ M0

1

called the gasket, which has a definite color equal to that of the marked face.
The unmarked faces of M′ are either faces of M, or large faces created by
the removal. The other connected components are again s-colored maps with
a loop configurationM′

i ∈ sML01. Conversely, the data of the rings removed,
M′ and M′

i allow to reconstruct the initial map M. Therefore, we have a
bijective decomposition of ML01.

At the level of generating series, this translates into

(5.19) W 0
1 (

k
x) = Ŵ 0

1 [Ṽk](
k
x),

where the shifted potential is the generating series of weights for the faces
of the gasket:

(5.20) Ṽk(x) = Vk(x)−
s∑

l=1

ρk,l

∮
lnRk,l(x, ξ)W 0

1 (
l
ξ)

dξ

2iπ
.

9For instance, we can take the edge e which is the closest in M, for geodesic
distance on the graph, to the marked edge e0 on the marked face ofM; if two edges
e and e′ lie at same distance along two geodesics starting at e0, we can choose
the one reached by the geodesic which turns left at the first point when the two
geodesics become distinct.
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The contour of integration is chosen sufficiently far away from Λk. ρk,l lnRk,l

(x, y) is the generating series of rings with inner boundary of color k and
outer boundary of color l. The last term of (5.20) expresses the fact that
large faces of the gasket are identified in the correspondence with the gluing
of a ring with a s-colored map with a loop configuration. Therefore, (5.14)
for Ŵ 0

1 implies the relation

(
W 0
1 (

k
x)
)2

+
s∑

l=1

ρk,l

∮
dξ dη

(2iπ)2
∂x lnRk,l(ξ, η)

x− ξ
W 0
1 (

k
ξ)W 0

1 (
l
η)(5.21)

− uuk

∮
dξ

2iπ
V ′k(ξ)W 0

1 (
k
ξ)

x− ξ
= 0.

This gives a combinatorial origin to the Schwinger–Dyson equations (3.114)
for (n, g) = (1, 0). Going from n = 1 to arbitrary n just amounts to mark
(n− 1) extra faces, and this process also has a clear combinatorial meaning.

The substitution procedure cannot be naively applied when g ≥ 1, for
two reasons. Firstly, outermost loops might be non-contractible, so the “out-
side” and the “inside” have no meaning, and removing them creates pairs of
new boundaries for the gasket. Secondly, to retrieve the initial map after the
removal, we may need to glue s-colored maps with a loop configuration hav-
ing n′ ≥ 2 boundaries, into a set of n large faces of the gasket. This implies
that the weight of the gasket is not local anymore (distinct faces can be
coupled in this way). Therefore, such configurations cannot be enumerated
in general by a Ŵ g′

n′ for a shifted potential.

5.3.3. Tutte’s method and higher genus. Equation (5.21) can be red-
erived directly by Tutte’s method. For any M∈ ML01(k; �) which is not
reduced to a single vertex, if we remove the marked edge, three situations
are possible. Either it was bordered on both sides by the marked face, in
which case we obtain two mapsM′

1 ∈ ML01(k; �1) andM′
2 ∈ ML01(k; �2), with

�1 + �2 = �− 2. Or, it was bordered by a face of degree j which is not crossed
by a loop, in which case we obtain a mapM′ ∈ M0

1(k; �− 2 + j). Or, it was
bordered by a face crossed by a loop, whose boundary is a sequence of i
edges with color k1, followed by an edge crossed by the loop, followed by
another sequence of j edges with color k2, and another edge crossed by the
loop. We then obtain a map M′′ of genus 0 with 1 marked face of degree
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�− 2 + (i+ j + 2), where two edges on the boundary of the marked face are
ends of an open path (the former loop), and separated by j. Such a map can
be further decomposed into:

• the strip of color (k, l) consisting of the faces crossed by the path,
whose boundary of color k has length i′ and boundary of color l has
length j′;

• two mapsM′′
1 ∈ ML01(k; �− 2 + i+ i′) andM′′

2 ∈ ML01(l; j + j′).

This decomposition is a bijection, and reminding that Rk,l(x, y) is the gen-
erating series of faces crossed by a loop, it translates into the functional
relation:

(5.22)

xW 0
1 (

k
x)− uuk =

(
W 0
1 (

k
x)
)2

+
∮

dξ

2iπ

∑
j≥3 tk,jξ

j−1

x− ξ
W 0
1 (

k
ξ)

+
s∑

l=1

ρk,l

� dξ dη

(2iπ)2
∂ξ lnRk,l(ξ, η)

x− ξ
W 0
1 (

k
ξ)W 0

1 (
l
η).

Reminding the definition of the potential:

(5.23) V ′k(x) =
1

uuk

⎛⎝x2

2
−
∑
j≥3

tk,j

j
ξj−1

⎞⎠
we retrieve Equation (5.21).

The advantage of Tutte’s method is that it can easily be adapted in
genus g ≥ 1. In the first situation (when the marked face borders the marked
edge of both sides), we obtain either a connected map with one handle
less, i.e., of genus g − 1, but two marked faces, or two connected compo-
nents M′

1 and M′
2 with one marked face each and genera summing up to

g. In the second situation, the topology is not changed. In the third sit-
uation, when the strip consisting of the faces crossed by the open path is
cut out in M′′, we obtain either a connected map of genus (g − 1) with
two marked faces, or two connected components M′′

1 and M′′
2 with one

marked face each and whose genera must sum up to g. We thus find instead
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of (5.22):

(5.24)

xW g
1 (

k
x) = W g−1

2 (
k
x,

k
x) +

g∑
h=0

W h
1 (

k
x)W g−h

1 (
k
x)

+
∮

dξ

2iπ

∑
j≥3 tk,jξ

j−1

x− ξ
W g
1 (

k
ξ) +

s∑
l=1

� dξ dη

(2iπ)2
∂ξ lnRk,l(ξ, η)

x− ξ

×
(

W g−1
2 (

k
ξ,

l
η) +

g∑
h=0

W h
1 (

k
ξ)W g−h

1 (
l
η)

)

which is a genus expansion form of (5.17) for n = 1. Once again, obtain-
ing the equation for any n ≥ 2 can be done by marking extra faces. This
concludes our combinatorial proof of the loop equations.

5.4. Solution by the topological recursion

By construction, the generating series of s-colored maps with a loop con-
figuration (or equivalently, with tubes) Wn(

k1
x1, . . . ,

kn
xn) have a topological

expansion in the sense of Definition 3.6. In order to check the other points
in Hypothesis 3.11, we need to address the convergence property of W 0

1 (
k
x).

For this purpose, we can use its representation by substitution in Ŵ 0
1 (x), and

the description of the cut locus of the latter, established in full generality in
[17, Section 6]. To state it, we need:

Definition 5.1. A family of non-negative numbers t = (tj)j is admissible
if, for any � ≥ 1, the generating series of planar maps with 1 marked face of
degree �, equipped with a marked point, and with local vertex weight u and
local face weights tj , is finite.

Lemma 5.1 ([17], One-cut lemma). If the coefficients of the shifted
potential (5.20) are admissible, W 0

1 (
k
x) has a non-zero radius of convergence

around x = Λk. Besides, W 0
1 (

k
x) defines a holomorphic function in C \ Γk,

where Γk = [ak, bk] is a segment of the real axis containing Λk. And, W 0
1

(
k
x) is discontinuous at every interior point of Γk, and Ṽk(x) is absolutely

convergent at least in an open disk centered at Λk and containing the interior
of Γk. ak (resp. bk) are strictly increasing functions of u, and all other
parameters being fixed and u > 0, it is a power series in (ρk,l)k,l.
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This shows that, when the weights tk,l, gk1,k2;�1,�2 and −ρk,l are
non-negative and the generating series we want to compute are not +∞,
Hypothesis 3.11 is verified. We can apply Proposition 3.20, namely

(5.25)

ωg
n(

k1
z1, . . . ,

kn
zn) = W g

n(
k1

x(z1), . . . ,
kn

x(zn)) + δn,2δg,0δk1,k2

dx(z1) dx(z2)
(x(z1)− x(z2))

2

satisfies linear and quadratic loop equations in the sense of Sections 2.12 and
2.13. Besides, there exists a critical value u∗ > 0 so that, for any u < u∗, the
disk of convergence of Ṽk contains [ak, bk] itself, while ak or bk reach its
boundary at u = u∗. It is also possible to consider negative weights, or even
complex weights, but the cut locus might be more complicated.

Definition 5.2. A family of complex numbers t = (tj)j≥1 is sub-admissible
if (|tj |)j≥1 is admissible.

Lemma 5.2 ([17], One-cut lemma, weaker version). If the coeffi-
cients of the shifted potential (5.20) are sub-admissible, W 0

1 (
k
x) has a non-

zero radius of convergence around x = Λk. At least for u small enough and
real-valued weights, the conclusions of Lemma 5.1 still hold (except for mono-
tonicity of ak and bk).

Then, we can deduce as in Section 3 that ωg
n satisfies (3.115). Let us

introduce H, the subspace of holomorphic 1-forms in
∐s

k=1 Ĉ \ [ak, bk]
satisfying

(5.26) ∀x ∈]ak, bk[, f(
k
x +i0) + f(

k
x −i0) +

s∑
l=1

ρk,lOk,lf(
l
x) = 0

which are formal power series10 in (ρk,l)k,l.

Lemma 5.3. H is normalized in the sense of Definition 2.6.

10It is an example where we can prove normalizability without establishing strict
convexity of the two-point interaction. It would have been a condition on the weights
concerning loops, i.e., zk,l, gk1,k2;�1,�2 and ρk,l, which is satisfied at least for real
valued weights and ρk,l small enough. However, we expect that the range of parame-
ters for which the two-point interactions are strictly convex to determine the radius
of convergence of those formal series.
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Proof. Firstly, we claim that for any u > 0, ak and bk are formal power
series in ρk,l (it is an easy consequence of the substitution relations (5.19)
and Section 5.5 below). Let us denote ak(0) and bk(0) are the value of ak

and bk at ρk,l ≡ 0. We introduce H(0), the space of holomorphic 1-forms in∐s
k=1 Ĉ \ [ak, bk] satisfying

(5.27) ∀x ∈]ak(0), bk(0)[, f(x+ i0) + f(x− i0) = 0.

We claim that H(0) is representable by residues and normalized. Indeed,
it is associated with the standard two-point interaction R(x, y) = |x− y|2
which is strictly convex, so we can use Proposition 3.8 and Lemma 3.10 (see
also Section 5.5 below for explicit residue representations). Accordingly, the
linear map that associates with f ∈ H its specialization at ρk,l ≡ 0 denote
f(0) ∈ H(0) is an isomorphism (see Section 5.5 for the recursive determi-
nation of the coefficients of the power series from f(0)). Thus, H is also
normalized. �

So, assuming further that lnRk,l is analytic in a neighborhood of [ak, bk]×
[al, bl] (off-criticality assumption which amounts to Hypothesis 3.11-(iv)), we
can conclude with Proposition 3.20 and Corollary 3.21 that ωg

n for n ≥ 1,
g ≥ 0 and (n, g) �= (1, 0), (2, 0) satisfy solvable linear and quadratic loop
equations, and can be expressed solely from ω01 and ω02 by the topological
recursion:

(5.28)

ωg
n(

k0
z0,

kI
zI) =

∑
α∈Γfixk0

Res
z→α

Kk0(z, z0)

⎛⎝ωg−1
n+1(

k0
z , ιk0(

k0
z ),

kI
zI)

+
∑

J⊆I, 0≤h≤g

ωh
|J |+1(

k0
z ,

kJ
zJ)ω

g−h
n−|J |(ιk0(

k0
z ),

kI\J

zI\J)

⎞⎠ ,

where the recursion kernel is given by

(5.29) Kk0(z, z0) =
1
2

∫ z
ιk0 (z)

ω02(
k0· , k0

z0)

ω01(
k0
z )− ω01(ιk0(

k0
z ))

.

Thus, we have reduced the problem of enumerating s-colored maps with
a loop configuration in any topologies, to the problem of enumeration of
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disks (ω01) and cylinders (ω
0
2). Following a previous remark, we observe that

the recursion kernel only involves the generating series of cylinders whose
marked faces have the same color.

5.5. Comments on disk and cylinder generating series

Explicit formulas for W 0
1 and W 0

2 in the model of s-colored maps with a
loop configuration is out of reach for general weights gk,l;i,j . Indeed, one has
to solve master loop equation,11 for any k ∈ [[1, s]]:

∀x ∈ Γ̊k, W 0
1 (

k
x +i0) +W 0

1 (
k
x −i0)(5.30)

+
s∑

l=1

ρk,l

∮
Γk

∂x lnRk,l(x, ξ)W 0
1 (

l
ξ) = V ′k(x).

Let us rewrite slightly differently this equation when faces crossed by loops
have bounded degree. In this case, Rk,l is a symmetric polynomial in two
variables, that we may factorize

Rk,l(x, ξ) = Sk,l(x)
dl∏

p=1

(ξ − sk,l,p(x))mp =⇒ ∂x lnRk,l(x, ξ)(5.31)

=
S′k,l(x)
Sk,l(x)

−
dl∑

p=1

s′k,l,p(x)
ξ − sk,l,p(x)

.

Assumption (iv) of Hypothesis 3.11 that all singularities of lnRk,l lie away
from Γk × Γl amounts to require that sk,l,p(Γk) ∩ Γl = ∅ for any p ∈ [[1, dl]].
Then, we can move the contour integral in (5.30) to pick up residues at

11Computing the discontinuity of (5.21), we see that these equations holds as
soon as the interior of the cut locus Γk (which could be more complicated than a
segment in general, see [17, Equation 6.28]) is included in the open disk of con-
vergence of Vk around Λk. In practice in loop models, one starts by assuming
the position of the cut locus is known, then attempt to solve the equation, and
eventually derive necessary condition of the weights for such an assumption to be
possible.
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sj(x): for all x ∈ Γ̊k,

(5.32)

W 0
1 (

k
x +i0) +W 0

1 (
k
x −i0) +

s∑
l=1

dl∑
p=1

ρk,lmp s′k,l,p(x)W
0
1 (

l

sk,l,p(x)) = V ′k(x)

+
s∑

l=1

dl∑
p=1

uul ρk,l

S′k,l(x)
Sk,l(x)

.

It is therefore very natural to work with the differential form ω01(
k
x) = W 0

1

(
k
x) dx in order to absorb the function s′k,l,p(x): for all x ∈ Γ̊k,

ω01(
k
x +i0) + ω01(

k
x −i0) +

s∑
l=1

dl∑
p=1

ρk,lmp ω01(
l

sk,l,p(x)) = dV ′k(x)(5.33)

+
s∑

l=1

uul ρk,l d lnSk,l(x).

This equation comes with the condition that ω01 is holomorphic in C \ Γk,

with a simple pole of residue −uuk at ∞, and W 0
1 (

k
x) remains bounded on

Γk (see [17, Chapter 6]).
Because of the third term in the left-hand side, this equation is highly

non-local, and we cannot hope to solve it in full generality, even assuming
that Γk = [ak, bk] is a known segment. We notice that this non-local term
only depends on the weights assigned to loops gk,l;i,j , zk,l and ρk,l, while the
weights for faces not crossed by a loop only appear in the right-hand side.
For this reason, solving (5.33) is equally difficult (or easy) for all values of
tk,j . Similarly,

(5.34) ω̌02(
k
x,

k2
x2) = W 0

2 (
k
x,

k2
x2) dx1 dx2 = ω02(

k
x,

k2
x2)− δk,k2

dx1 dx2
(x− x2)2

satisfies an equation of type (5.32) with respect to x, with the right-hand
side replaced by

−δk,k2 dx1 dx2/(x− x2)2

and extra conditions that it is holomorphic in (Ĉ \ Γk)× (Ĉ \ Γl), and it is
holomorphic in a neighborhood of the image of Γk in the Riemann surface
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Uk as defined in Section 2. On the contrary, the nature of the solution will
depend much on the “group” generated by the sk,l,p, and thus is a non-trivial
way on the parameters zk,l and gk,l;i,j .

Actually, it is enough to find ω02, since it gives access to a local Cauchy
kernel (see Definition 2.5 and Section 3.9)

(5.35) G(
k
x,

k2
x2) =

∫ x

ω02(
k·, k2

x2).

We can use its properties to show that

(5.36) ω̃01(
k
x) =

1
2

dVk(x)− 1
2

1
2iπ

∮
Γk

G(
k·, k

x) dVk(ξ)

satisfies the same equation and extra conditions as ω01. If the solution of
such constraints is unique (this is the case when the two-point interaction
defined by (Rk,l)k,l is strictly convex), we conclude that ω01(

k
x) is given by the

expression (5.36). For instance, when faces which are not crossed by loops
have bounded degree, Vk is a polynomial, thus the contour integral can be
moved to pick up a residue at ∞.

At present, the solution of such equations is known in very few cases
assuming Γk is known. When there is only one color (s = 1), and R(x, ξ) =
(1/z + g1,0(x+ ξ)), this is the O(−ρ) model where loops live only on trian-
gles initially considered by Gaudin and Kostov [82]. Equation (5.33) with
the general right-hand side has been solved in [20, 59, 60]. These techniques
were adapted in [17, 18] to solve the model where R is an homography (which
must be involutive by symmetry), which describes a model where loops cross
only triangles, but an extra weight is introduced to take into account curva-
ture of the loops. They were extended in a straightforward way [16] to s = 2
colors and R1,1 = R2,2 = 0, while R1,2 is an homography, which describe a
O(−ρ) model where loops cross only triangles, separate domains of different
colors, and also receive a weight taking into account curvature. The special
case where all faces are crossed by loops (the fully packed model) was shown
to include the Potts model on general random maps, i.e., a model of maps
with faces of arbitrary degree but all weighted 1, whose vertices are equipped
with Q = ρ2 Potts variables. In all those cases, Γk = [ak, bk] are determined
by implicit equations in terms of the weights, which are sometimes amenable
to an explicit solution.
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5.6. Computing explicitly the coefficients of the generating series

Although computing ω01(
k
x) and ω02(

k
x,

k2
x2) explicitly is in general out of reach,

we recall that they were defined as formal series in some parameters. In
combinatorics, one is interested in number of s-colored maps with a loop
configuration, with a given number of vertices, a given number of faces
of each type, a given number of loops, etc. We explain below that these
numbers can be determined effectively for any topology. We illustrate the
method by considering the generating series ωg

n(m ;
kI
xI) of M∈ sML with

a given number of loops m = (mk,l)k,l separating domains of color k and l.
By construction

(5.37) ωg
n(

kI
xI) =

∑
m∈Ns2

∏
1≤k≤l≤s

(−ρk,l)mk,l ωg
n(m ;

kI
xI).

The m = 0 term corresponds to generating series of maps without loops,
i.e., it vanishes if two colors ki and kj are different, and in terms of (5.13):

(5.38)

ωg
n(0 ;

k
x1, . . . ,

k
xn) = Ŵ g

n [Vk](
k
x1, . . . ,

k
xn) dx1 · · · dxn + δn,2δg,0

dx1 dx2
(x1 − x2)2

.

If we want to compute ωg
n(m,

kI
xI) for a given m, thanks to the topological

recursion (5.28) and the remark made in (5.36), we just need to compute
ω02(m

′ ; k1
x1,

k2
x2) for m = (m′

k,l)k,l with m′
k,l ≤ mk,l. This can be done recur-

sively.
For the initialization, it is a classical result [52] that

ω01(0 ;
k
x) =

1
2
V ′k(x)−

1
2

∮
dξ

2iπ
V ′k(x)− V ′k(ξ)

x− ξ

√
(x− ak(0))(x− bk(0))√
(ξ − ak(0))(ξ − bk(0))

,

ω02(0 ;
k
x,

k2
x2) = δk,k2

dx dx2
2(x− x2)2

× (x− Λk)(x2 − Λk)− (x+ x2 − 2Λk)
ak(0)+bk(0)

2 + ak(0)bk(0)√
(x− ak(0))(x− bk(0))(x2 − ak(0))(x2 − bk(0))

.

ak(0) and bk(0) are order 0 terms in ak and bk considered as a power series
in (ρk′,l)k′,l, and are determined by the equations [17, Section 6]:

ak(0) + bk(0)
2

=
1
2iπ

∮
dξ

2iπ

∑
j≥1 tk,j(ξ − Λk)j−1√

(ξ − ak(0))(ξ − bk(0))
,(5.39)
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ak(0)2+bk(0)2+3ak(0)bk(0)
8

= 2uuk+
1
2iπ

∮
ξ dξ

2iπ

∑
j≥1 tk,j(ξ − Λk)j−1√

(ξ − ak(0))(ξ − bk(0))
,

where the contour integral surrounds Γk(0) = [ak(0), bk(0)] and lies in the
domain of analyticity of Vk(x). Those expressions can be obtained by solving
directly (5.33) for ρk,l → 0. If we introduce a uniformization variable ζ so
that

(5.40) x =
ak(0) + bk(0)

2
+

bk(0)− ak(0)
4

(
ζ +

1
ζ

)
.

We actually have

(5.41) ω02(0 ;
k

x(ζ),
k2

x(ζ2)) = δk,k2

dζ1 dζ2
(ζ1 − ζ2)2

and it is more convenient to use such a variable for further computations.
Then, the generating series of cylinders with finite number of loops can be
obtained by solving recursively:

(5.42)

ω02(m ;
k
x,

k2
x2) = δk,k2δm,0

dζ dζ2
(ζ − ζ2)2

s∑
l1,l2=1

+
∑

0≤pk,l≤mk,l∏
k,l pk,l(mk,l−pk,l) 
=0

∮
Γl1 (0)×Γl2 (0)

ω02(p ;
k
x,

l1
ξ1) lnRl1,l2(ξ1, ξ2)ω

0
2(m− p ;

l2
ξ2,

k2
x2).

Similarly, (5.36) leads to

(5.43)

ω01(m ;
k
x) = ω01(0 ;

k
x)

+
s∑

l1,l2=1

∑
0≤pk,l≤mk,l∏

k,l pk,l(mk,l−pk,l) 
=0

∮
Γl1(0)×Γl2 (0)

ω02(p ;
k
x,

l1
ξ1) lnRl1,l2(ξ1, ξ2)ω

0
1(m− p ;

l2
ξ2).

Then, one can plug the series ω01(
k
x) and ω02(

k
x,

k2
x2) truncated up to

o
(∏

k,l(−ρk,l)mk,l

)
in the topological recursion formula (5.28) to obtain

ωg
n(

kI
xI) up to the same order, recursively on 2g + n.
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In this example, we focused in the number of loops inside the enumer-
ated maps. One could have chosen some other parameters, like u (coupled
to the number of vertices), or uk (coupled to the number of vertices of a
specific color). One would find a similar recursive procedure to compute
truncated versions of ω01 and ω02 generating s-colored maps with a loop con-
figuration and a bounded number of vertices. Plugging these expressions in
the topological recursion formula then gives rise to the generating functions
of s-colored maps with a loop configuration of arbitrary topology and a
number of vertices bounded by the order of approximation chosen.

In some other contexts, such as topological strings or Gromov–Witten
theory, where one enumerates embeddings of surfaces into a target space,
this procedure corresponds to fixing a bound on the degree of the embed-
ding map or on the homology class of the embedded surface (see, e.g., [68],
where the same kind of induction procedure is performed). Indeed, in many
applications for physics, one is interested in the coefficients of perturbative
expansions, i.e., expansion in a small parameter which is often coupled to a
geometric property, and the procedure we described is very efficient for such
computations.

5.7. Critical points and asymptotics of large maps

When u increases, Hypothesis 3.8 may fail. In particular, if a zero of Rk,l

approaches Γk × Γl when the parameter of the model vary, we will reach
at the limit a critical point which is characteristic of a loop model, i.e.,
cannot be reached in a model of usual random maps with bounded degree.
Let us study qualitatively an example. First, let us focus on the master
equation (5.32) for W 0

1 . We know that W 0
1 (

k
x) is not analytic at x = bk.

When the model is off-critical, the last term in the left-hand side of (5.32)
is holomorphic in a neighborhood of ak, while the right-hand side is regular:
the singular part near x = ak must satisfy

(5.44) [W 0
1 (

k
x +i0)]sing + [W 0

1 (
k
x −i0)]sing = 0

hence is of square root type, i.e., W 0
1 (

k
x) ∝ f(

√
x− bk) where f is a

holomorphic function in the vicinity of 0. Coming back to the example
considered in Section 5.5, assume that the parameters of the model are
tuned so that we reach a critical point for which sk,l,a(∂Γl) touches ∂Γk.
To fix ideas, we assume that sk,l,a(bk) = bl for some triplets k, l, a. Then,
the last term in (5.32) is singular when x = bk, and its singularity behaves
like [W 0

1 (sk,l,a(x))]sing when x→ bk, and depends only on the local behavior
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of sk,l,a(x) when x→ bk. Since sk,l,a(x) are roots of a polynomial, they are
either regular or have an algebraic singularity at bk.

When they are regular near bk, we have (sk,l,a(x)− bl) ∝ (x− bk)μk,l,a

for some non-negative integer μk,l,a. Then, it is natural to make the ansatz
of a power law singularity for W 0

1 , namely we look for a local behavior:

(5.45) [W 0
1 (

k
x)]sing ∼ Ck (x− bk)νk .

Plugging (5.45) into the master equation (5.32) and identifying the leading
singular part when x → bk, we find necessary conditions relating μk,l,a and
νk. For instance, let us consider the case of a single color (s = 1). If there is
only one element a0 such that sa(∂Γ) ∩ ∂Γ �= ∅, we find that, if ν is not an
half-integer, we must have

(5.46) μ = 1, e2iπν + 1 + ρ ma0 eiπν = 0.

This gives the well-known parameterization of the critical exponent of the
O(−ρ) model:

(5.47) ρ ma0 = −2 cosπν.

It corresponds to the case where R(x1, x2) behaves locally near x1, x2 → b
like (x1 + x2 − 2b)ma0 .

Thus, although it remains a difficult problem to solve (5.33) exactly,
even at the critical point, it is always possible to perform case by case a local
analysis on the singularities to deduce the values of the critical exponents
νk. By transfer theorems [79], a behavior like (5.45) implies that Tk,�, the
number of planar s-colored maps of color k with a loop configuration and a
marked face of length � is asymptotic to

(5.48) Tk,� ∼
�→∞

Ck

Γ(−νk)
bνk+�
k

�1+νk
.

Another interesting question is to find the asymptotics of the number of
genus g maps with v vertices, i.e., of the coefficients of F g seen as a power
series in u. Such a singularity u = u∗ can only be reached when approaching
a critical point as above. The spectral curves parameterized by u become
singular when u → u∗, so the W g

k have a singularity as a function of u at
u = u∗, which we can describe after Proposition 2.11. This in turns gives
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access to the asymptotic of maps with large number of vertices by transfer
theorems [79]:

Proposition 5.4. Assume the existence of exponents α, α′ > 0 such that

(5.49)

[W 0
1 (

k
x)]sing ∼ (u∗ − u)α y∗(

k

x∗),
k

x∗=
x− bk

b∗k − bk
, |b∗k − bk| ∝ (u∗ − u)α

′

and

(5.50) W 0
2 (

k1
x1,

k2
x2) dx1 dx2 ∼ (W 0

2 )
∗(

k1
x∗1,

k2
x∗2) dx∗1 dx∗2.

Then, for any n, g such that 2g − 2 + n > 0, we have

(5.51)

W g
n(

k1
x1, . . . ,

kn
xn) ∼

u→u∗
(u∗ − u)(α+α′)(2−2g−n)−α′n (W g

n)
∗(

k1
x∗1, . . . ,

kn

x∗n),

where (W g
n)∗ is computed by (5.25) from (ωg

n)∗ obtained by applying the

topological recursion formula (5.28) to the initial data ω01(
k
x) = y∗(

k
x∗) and

(5.52) (ω02)
∗(

k1
x∗1,

k2
x∗2) =

(
W 0
2 (

k1
x∗1,

k2
x∗2) dx∗1 dx∗2 +

δk1,k2

(x∗1 − x∗2)2

)
dx∗1 dx∗2.

Hence, the number of s-colored maps with a loop configuration, of genus g
with v vertices, behaves for g ≥ 2 as

(5.53) (F g)v ∼
v→∞

(F g)∗

Γ((α+ α′)(2g − 2))
v(α+α′)(2g−2)−1 (u∗)(α+α′)(2−2g)+v.

The blow-up y(
k
x∗), F ∗g and the exponents α, α′ are universal, while u∗

depends on the model. This method has to be applied case by case, and
in general the exponents α, α′ describing the approach of the critical point,
are related to the exponent describing the behavior of the model at criti-
cality (see for an illustration the discussion in [18, Section 3]). For instance,

consistency implies that, if y(
k
x∗) ∝ (x∗)κ when x∗ →∞, then

(5.54) α′κ = α.
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5.8. Another combinatorial model: height model

In this paragraph, we apply the previous techniques to the study of the
heights model introduced in [99–101], and show that it is solved by the
topological recursion. Let G be a finite graph with multiple edges, and
A = (Av,v′) its adjacency matrix, i.e., Av,v′ is the number of (unoriented)
edges between two nodes v, v′ of G. We shall see in Lemma 5.5 that it is
meaningful to restrict oneself to G being a Dynkin diagram of ADET type,
or an extended Dynkin diagram of ÂD̂Ê type (see figure 6).

5.8.1. Maps with a G-height configuration. If M is a map (in the
usual sense) with faces of degree 4 only (quadrangles), and if we denote
G its underlying graph, a G-height configuration is a map σ : G → G (this
means that it associates vertices to vertices, and edges to edges respecting
the incidence relations) such that, the boundary of any face contains exactly
two non-consecutive vertices with same height (see figure 4). We associate
with such a configuration the weight

(5.55) w(M, σ) =
∏

v∈V (M)

uuσ(v)

∏
[v1,v2,v3,v4]
face of M

(
δσ(v1),σ(v3)

uuσ(v1)
+

δσ(v2),σ(v4)

uuσ(v2)

)
.

We collect in the set MGHg
n(k; �) the connected maps of genus g, with n

marked faces consisting of vertices of the same height k = (k1, . . . , kn) and
of degree � = (�1, . . . , �n). We introduce the generating series

Figure 4: An example of map with a G = D5-height configuration, and its
loop representation.
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Figure 5: An example of map with a G = D5-height configuration in loop
representation.

(5.56) F g =
∑

(M,σ)∈MGHg
0

w(M, σ)
|AutM|

and for any n ≥ 1:

W g
n(

k1
x1, . . . ,

kn
xn) =

δn,1δg,0 uuk1

x1
+

∑
�1,...,�n≥1

(5.57)

×
∑

(M,σ)∈MGHn
g (k,�)

w(M, σ)
|Aut (M, σ)|

[
n∏

i=1

1
x�i+1

i

]
.

Equivalently, we can split the degree 4 faces into degree 3 faces (trian-
gles), by drawing a red diagonal between the two vertices whose heights are
constrained to match (see figures 4 and 5). One can draw a path crossing
the edges of the triangles which are not red, so that we obtain a colored map
M̃ with a loop configuration, where all faces are triangles and are crossed
by a loop. One can go out of the fully-packed case by allowing faces of
degree j ≥ 3 whose boundaries consist of vertices of a given height k, with
weight tk,j each. Hence, we retrieve a special case of the weight introduced in
Section 5.1.2, with interactions between colors prescribed by the adjacency
matrix of G:

(5.58) ρk,l = −Ak,l, Rk,l(x, y) = x+ y

and where gk,1,0 = gk,0,1 =
√

t.
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5.8.2. Matrix model representation. In [101], a formal matrix model
representation was proposed for the height model. It is based on the following
measure:

d� ∝
s∏

k=1

dMk exp (−N TrVk(Mk))
∏

<k,l>∈G

dBk,l dB†k,l(5.59)

exp
[
−N Tr

(
Bk,lB

†
k,lMk +B†k,lBk,lMl

) ]
,

Mk are Hermitian matrices of size Nk ×Nk, and for each (unoriented) edge
〈k, l〉 of G, Bk,l are complex matrices of size N ×N , and

(5.60)Nk = Nuk, Vk(x) =
1

uuk

⎛⎝(x+ t/2)2

2
−
∑
j≥3

tk,j
(x+ t/2)j

j

⎞⎠ .

Integrating out the matrices Bk,l and B†k,l who have Gaussian distribution,
yields a measure

d� ∝
s∏

k=1

dMk exp (−N TrVk(Mk))(5.61)

×
∏

1≤k,l≤s

exp
[
−N

Ak,l

2
Tr ln(Mk ⊗ 1N + 1N ⊗Ml)

]
,

where we recognize (5.12). The correlators of this formal matrix model give
the generating series (5.57)

(5.62)

〈
n∏

i=1

Tr
1

xi + t/2−Mki

〉
c

=
∑
g≥0

(
N

u

)2−2g−k

W g
n

(
k1
x1, . . . ,

kn
xn

)
.

These ADE matrix models were first introduced in [96], and later appeared
in N = 2 supersymmetric gauge theories associated with ADE quivers [58]
(see also [94] for the A2 quiver matrix model, which is closely related to the
O(−2) model). The Schwinger–Dyson equations for such models have been
previously written within the CFT formalism in [45].



Abstract loop equations, topological recursion 137

5.8.3. Strict convexity of the interactions.

Lemma 5.5. The two-point interactions defined by (5.58) are strictly con-
vex iff G is a Dynkin diagram of ADET or an extended Dynkin diagram of
ÂD̂Ê type (see figure 6).

Proof. We need to understand under which conditions, for any signed mea-
sures (νk)k supported on R+, so that νk(R+) = 0, we have

Ẽ(ν) ≡
�

R2

⎛⎝ s∑
k=1

dνk(x) dνk(y) ln |x− y|(5.63)

−
s∑

k,l=1

Ak,l dνk(x) dνl(y) ln |x+ y|
⎞⎠ ≤ 0

Figure 6: On the left, Dynkin diagram with positive Cartan matrix. On the
right, Dynkin diagram with non-negative Cartan matrix, having one 0 eigen-
value, and one has to add Tn, which is a cycle with n vertices corresponding
to the A2n/Z2.
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with equality iff νk = 0 for any k ∈ [[1, s]]. We use the representation

(5.64) ln |x| = lim
ε→0

(
ln ε− Re

∫ ∞

0
du e−εu eiux − 1

u

)
and the fact that νk has total mass 0 to rewrite

Ẽ(ν) = −1
2
lim
ε→0

∫ ∞

0
du

e−εu

u

⎛⎝ s∑
k,l=1

(2−A)k,l Re ν̂k(u)Re ν̂l(u)(5.65)

+(2+A)k,l Im ν̂k(u) Im ν̂l(u)

⎞⎠ ,

where ν̂ denotes the Fourier transform of the measure ν. Therefore, E(ν) ≤ 0
iff 2−A and (2+A) are positive. Besides, due to the fact that a signed
measure ν supported on R+ vanish iff Im ν̂ ≡ 0, we have Ẽ(ν) = 0 only for
(νk)k ≡ 0 iff 2+A is positive definite. Notice that C = 2−A is the Cartan
matrix of the graph G. It is well known that a finite graph with multiple
edges has a positive definite Cartan matrix iff it is the Dynkin diagram of
ADE type, and if we allow the Cartan matrix to be non-negative, it can also
be an extended Dynkin diagram of ÂD̂Ê type. This justifies a posteriori
to restrict the study of height model based on such Dynkin diagrams G. In
all those cases, the eigenvalues of A are of the form 2 cos(πmk/h∨), where
h∨ is the Coxeter number, and mk are the Coxeter exponents (for extended
Dynkin diagrams, one of the Coxeter exponent is 0). So, we have a fortiori
that 2+A is positive definite. Hence the result. �

5.8.4. Topological recursion. Since Ak,l is non-negative, the one-cut
Lemma 5.1 can be applied whenever uk, tk,j are non-negative (and if it is
not the case, we can still use the weaker version Lemma 5.2). Then, Hypothe-
ses 3.11 is satisfied, so we can apply our Proposition 3.20: the generating
series of maps in the height model for any G,

(5.66)

ωg
n(

k1
x1, . . . ,

kn
xn) = W g

n(
k1
x1, . . . ,

kn
xn) dx1 · · · dxn

+ δn,2δg,0δk1,k2

dx1 dx2
(x1 − x2)2

satisfy the linear and quadratic loop equations in the sense of Definitions
(2.12) and (2.13). Besides, if G is a Dynkin diagram listed in Lemma 5.5
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(figure 6), Hypothesis 3.12 is satisfied, so we can apply Corollary 3.21: the
generating series of maps in the height model are computed by the topolog-
ical recursion

ωg
n(

k0
z0,

kI
zI) =

∑
α∈Γfixk0

Res
z→α

Kk0(z, z0)

⎛⎝ωg−1
n+1(

k0
z , ιk0(

k0
z ),

kI
zI)(5.67)

+
∑

J⊆I, 0≤h≤g

ωh
|J |+1(

k0
z ,

kJ
zJ)ω

g−h
n−|J |(ιk0(

k0
z ),

kI\J

zI\J)

⎞⎠ ,

where the recursion kernel is given by

(5.68) Kk0(z, z0) =
1
2

∫ z
ιk0 (z)

ω02(
k0· , k0

z0)

ω01(
k0
z )− ω01(ιk0(

k0
z ))

.

At present, an expression for ω01(
k
x) and ω02(

k1
x1,

k2
x2) in full generality is

not known, even at the critical points12. Yet, we expect the problem to be
solvable because (extended) Dynkin diagram are very special. We remind
however that, if one is only interested in the generating series of maps with
fixed number of level lines (in the loop representation, it corresponds to a
fixed number of loops), the method described in Section 5.6 leads to explicit
results. Let us mention that the analysis of singularities (see Section 5.7) at
the critical point in these models has been performed long ago [99–101], and
the critical exponents are related to the spectrum of A, in a way generalizing
the relation (5.46) valid for the universality class of the O(−ρ) model where
loops live on triangles.

6. Chern–Simons invariants of torus knots

We illustrate our method to give structural results on large N expansion
of Chern–Simons theory with gauge group SU(N) on a certain class of

12It is known only for G = A2, or G = As with s ≥ 3 but a symmetry assumption
on the cuts, which both reduce to the solution of the O(−ρ) model where loops live
on triangles [20, 59, 60, 98].
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3-manifolds for which the partition function was known to be described
by “repulsive particle systems.”

6.1. The model for torus knots

6.1.1. Definition. For any knot K in a 3-manifold M, one can construct
knot invariants W(G, R, q) indexed by a simply laced group G and an irre-
ducible representation R, where q is a variable. In quantum field theory, they
can be defined as Wilson loops around K in Chern–Simons theory on M with
gauge group G [126]. For q equal to certain roots of unity, it was given a
rigorous meaning in the work of Reshetikhin and Turaev [120]. In particular,
for G = SU(2) and R its dimension n irreducible representation, one retrieves
the colored Jones polynomial Jn(q) [90], and for G = U(N) and R the fun-
damental representation, one retrieves the HOMFLY-PT polynomial [80].

Torus knots are knots which can be drawn on a torus T ⊆ S3 without
self-intersections. They are characterized by two coprime integers (P, Q)
describing the number of times the knot wraps around two independent non-
contractible cycles in T. They are in many regards the simplest knots among
all. For instance, there exist closed formulas to compute all Wilson loops.
It has been shown [22, 37, 56, 91, 107, 109] that they can be rewritten as
certain observables in a repulsive particle system. We shall restrict ourselves
to the case of G = U(N). Then,

(6.1) W(U(N), R, q) = 〈sR(eT )〉

with respect to the measure on R
N :

d�(t1, . . . , tN ) =
1

Z̃
(P,Q)
N

∏
1≤i<j≤N

sinh
(

ti − tj
2P

)
(6.2)

sinh
(

ti − tj
2Q

) N∏
i=1

e−N Ṽ(ti) dti,

V(t) = t2

2uPQ
, u = N ln q.(6.3)

sR denotes the character of the representation R, which is here a Schur
polynomial. We have set T = diag(t1, . . . , tN ). We will focus on the case
q > 1, hence u > 0.
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6.1.2. Relation between correlators and Wilson loops. We define
disconnected correlators in the model (6.15) as

(6.4) Wn(x1, . . . , xn) =

〈
n∏

i=1

Tr
1

xi − eT/PQ

〉

and we recall that they are related to the connected correlators by

(6.5) Wn(x1, . . . , xn) =
∑

J1∪̇···∪̇Jr=[[1,n]]

r∏
j=1

W|Ji| ((xji
)ji∈Ji

) .

They allow to compute any expectation values of traces of powers of eT/PQ:

(6.6) 〈Tr (ek1T/PQ) · · ·Tr (eknT/PQ)〉 =
∮

Rn
+

n∏
i=1

xki

i dxi

2iπ
Wn(x1, . . . , xn)

and we now review how the expectation values of Schur polynomials can
be deduced from them. Irreducible representations R of U(N) are in cor-
respondence with Young tableaux with less than N rows. If we denote |R|
its number of boxes, it also determines an irreducible representation of the
symmetric group S|R|, and by Schur–Weyl duality:

(6.7) sR(eT ) =
1
|R|!

∑
μ� |R|

|Cμ|χR(Cμ) pμ(eT ),

where the sum runs over partitions μ = (μ1, . . . , μ�) with |R| boxes, Cμ is
the conjugacy class of the symmetric group S|R| determined by μ, |Cμ| is the
number of permutations in this class, χR is the character of the symmetric
group S|R| and

(6.8) pμ(eT ) =
�∏

j=1

pμj
(eT ), pj(eT ) = Tr ejT

are the power-sums symmetric polynomials. Reminding the change of vari-
able 6.14, we find

W(U(N), R, q) =
1
|R|!

∑
μ� |R|

|Cμ|χR(Cμ)
∮

R
�(μ)
+

�(μ)∏
j=1

x
PQμj

j dxj

2iπ
(6.9)

W �(μ)(x1, . . . , x�(μ)).
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6.1.3. Analytic continuation in q and expansion of topological type.
We justify in this paragraph the existence of an expansion of topological type
(see Definition 3.6) for the correlators, where the variable of expansion N is
traded to 1/(ln q).

Let us consider the measure (6.2) with u > 0, i.e., ln q > 0. At fixed N ,
one can perform the change of variable t̃i = (ln q)−1/2ti, and write

(6.10)

d�̃(t1, . . . , tn) =
N∏

i=1

e−t̃2i /2PQ dt̃i ×
∏

1≤i<j≤N

( ∞∑
k=0

(ln q)k(t̃i − t̃j)2k

(2P )2k(2k + 1)!

)
( ∞∑

l=0

(ln q)l(t̃i − t̃j)2l

(2Q)2l(2l + 1)!

)
(t̃i − t̃j)2.

For our purposes, it is convenient to drop here the normalization factor, and
define a new partition function as

(6.11) Z̃
(P,Q)
N =

∫
RN

d�̃(t1, . . . , tN ).

This integral is convergent for ln q > 0, and from (6.10), it has an expansion
in powers of ln q with positive coefficients. Hence, this series is absolutely
convergent, and defines Z̃

(P,Q)
N as an entire function of ln q. In particular,

it does not vanish for ln q small enough. Therefore, F = lnZ is an analytic
function of ln q at least in a neighborhood of ln q = 0. Now, the disconnected
correlators can be defined as formal Laurent series in x1, . . . , xn:

Wn(x1, . . . , xn) =
∑

k1,...,kn≥0

1
xk1+1
1 · · ·xkn+1

n

1

Z̃
(P,Q)
N

∫
RN

n∏
j=1

(6.12) ⎛⎝ N∑
ij=1

ekj

√
ln q tij

/PQ

⎞⎠ d�̃(t1, . . . , tN ),

whose coefficients can also be defined, from their series expansion in ln q
(notice that, by parity, it is an expansion in ln q and not

√
ln q), as analytic

functions of ln q at least in a neighborhood of 0. We can then deduce that
the connected correlators Wn(x1, . . . , xn), which can be expressed polynomi-
ally in terms of the disconnected correlators, are also formal Laurent series
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in x1, . . . , xn of analytic functions of ln q in a neighborhood of 0. For any
χ, we can thus build formal Laurent series in x1, . . . , xn by collecting the
coefficients of (ln q)χ in (6.12). It is clear from (6.12) that the coefficient
of x

−(k1+1)
1 · · ·x−(kn+1)

n grows at most like M
(k1+···+kn)
n,χ for some Mn,χ > 0

when k1, . . . , kn →∞, so that those Laurent series actually define holomor-
phic functions at least in a neighborhood of x1, . . . , xn =∞. Since Wn is
initially holomorphic in C \ R

×
+, we deduce that W g

n is also holomorphic
at least in C \ R

×
+. Their precise analytic structure will be determined in

Section 6.3.
The coefficients in the series representing F ≡ Wn=0 and Wn are finite

sums of moments of Gaussian integrals, computed by Wick’s theorem: they
coincide with the generating series of connected maps with tubes and n
boundaries as explained in Section 5. In this case, since the potential is
Gaussian, all faces are annular faces. This implies that, for a map of genus g
with n marked faces, the counting of Euler characteristics gives 2− 2g − n =
v − e, where v is the number of vertices, and e is the number of edges. The
weight of a map depends on N = u/ ln q only through a factor Nv, and ln q
appears also through a factor (ln q)e. Therefore, the coefficient of (ln q)χ in
the series is a sum over maps with Euler characteristics χ, as is well known
since t’Hooft [124]. This implies that the series defining F and Wn actually
takes the form

(6.13)

F =
∑
g≥0

(ln q)2g−2 F g, Wn(x1, . . . , xn)

=
∑
g≥0

(ln q)2g−2+n W g
n(x1, . . . , xn),

where the coefficient F g is an analytic function of u in a neighborhood of
0, and W g

n is a formal Laurent series in x1, . . . , xn, whose coefficients are
analytic functions of u in a neighborhood of 0.

We recover by a direct method for torus knot complements some results
known from the theory of LMO invariants for any 3-manifold, namely that
the F g can actually be defined for any knot complement using the theory of
LMO invariants, and then shown to be analytic in a neighborhood of u = 0
[83]. It is observed [23] that the large N expansion of Wilson loops in any
representation are polynomial in eu. As we shall see below, the stable F g

and W g
n will be given by the topological recursion formula, from where their

analytical structure in u can be completely described, and one can prove the
aforementioned observation, but this will not be addressed in this article.
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6.2. The spectral curve

It is convenient to perform the change of variable

(6.14) λi = eti/PQ.

We obtain the model with a measure on R
N
+ :

(6.15)

d�̆(λ1, . . . , λN ) =
1

Z̆
(P,Q)
N

∏
1≤i<j≤N

(λP
i − λP

j )(λ
Q
i − λQ

j )
N∏

i=1

e−N V̆(λi) dλi,

V̆(λ) = PQ(lnλ)2

2u
+
lnλ

N

(
1 +

P +Q

2
(N − 1)

)
.(6.16)

6.2.1. Properties.

Lemma 6.1. In the model (6.15), the interactions are strongly confining
at 0 and ∞, and strictly convex.

Proof. The two-point interaction is R0(x, y) =
√
|xP − yP ||xQ − yQ|, and

we have

(6.17) ∀x, y > 0, lnR0(x, y) ≤ P +Q

2
(| lnx|+ | ln y|).

Since the potential grows like (lnx)2 when x→ 0,∞, it implies that the
interactions are strongly confining at 0 and∞ in the sense of Definition 3.1.
Besides, for any signed measure ν on R+ with total mass 0, we have
(6.18)
1
2

�
(R∗+)

2
dν(x) ( dν(y))∗ lnR0(x, y)=−

∫ ∞

0

ds

2s

(
|π̂∗P ν(s)|2+|π̂∗Qν(s)|2

)
< 0,

where πα is the diffeomorphism of R
∗
+ defined by πα(x) = xα. Therefore, the

two-point interaction is strictly convex in the sense of Definition 3.2. �

Accordingly, the equilibrium measure μ̆eq for the model (6.2) on the real
axis (or equivalently (6.15) on the positive real axis) is unique
(cf. Proposition 3.2).
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Lemma 6.2. For any u > 0, the support of the equilibrium measure of the
model (6.15) is a segment [a, b], with 0 < a < b <∞.

Proof. Let μ̃eq denote the equilibrium measure of the model (6.2). The equi-
librium measure of the model (6.15) is just obtained by the change of variable
(6.14), i.e., is given by Φ∗μeq where Φ(t) = et/PQ. From Theorem 3.2, μeq is
characterized by the existence of a constant C such that

(6.19)
∫

dμeq(t′)
[
ln sinh

( |t− t′|
2P

)
+ ln sinh

( |t− t′|
2Q

)]
− V(t) = C

with equality μ̃eq everywhere. We observe that, for any α > 0, ln sh
( |t−t′|

2α

)
is a concave function of t. Since μ̃eq is a non-negative measure, this implies
that the integral in the left-hand side is a concave function of t. Besides,
Ṽ (t) = t2/2uPQ is strictly convex, hence the left-hand side is a concave
function of t. This implies that, if the equality is realized for t = t1 and t = t2,
it must be realized for t ∈ [t1, t2]. Hence, the support of μ̆eq is connected. �

6.2.2. The equilibrium measure. Let us consider the Stieltjes trans-
form

(6.20) ω01(x) =
(∫ b

a

dμ̆eq(y)
x− y

)
dx.

It is characterized by (3.17) with a linear operator O defined by

(6.21)Of(x) =
1
2iπ

∮
[a,b]

f(ξ)

⎛⎝− P−1∑
j=1

1
ξ − e2iπj/P x

−
Q−1∑
j=1

1
ξ − e2iπj/Qx

⎞⎠
and for any 1-form f which is holomorphic in C \ [a, b] and is O( dx) at ∞,
we find

(6.22) Of(x) =
P−1∑
j=1

f(e2iπj/P x) +
Q−1∑
j=1

f(e2iπj/Q).
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It consists of sums of rotations by angles 2π/Q and 2π/P . In other words,
we have the functional equation, for any x ∈]a, b[:

ω01(x+ i0) + ω01(x− i0) +
P−1∑
j=1

ω01(e
2iπj/P x) +

Q−1∑
j=1

ω01(e
2iπj/Qx)(6.23)

=
(

PQ

u

lnx

x
+

P +Q

2x

)
dx.

The solution in the one-cut regime (as required by Lemma 6.2) was found
in [23]:

Proposition 6.3. We have

(6.24)
1
P

P−1∑
j=0

ω01(e
2iπ j

P x) = −1
u

dx

x
ln
[
e−u(−1)Q z(x)

]
,

where z(x) is an algebraic function

(6.25) x = e
u

2
(1/P+1/Q) z−1/Q

(
1− e−uz

1− z

)1/P

.

The equilibrium measure is

(6.26) dμ̆eq(x) =
P

2iπu

dx

x
ln
(

z(x+ i0)
z(x− i0)

)
.

Sketch of the proof of [23]. Let us define a function Y (x) by setting

(6.27)

ω01(x) =
PQ

u(P +Q)
[
ln(e

u

2
(1/P+1/Q)x)− ln(−Y (e

u

2
(1/P+1/Q)x)

]dx
x

and [ă, b̆] = e
u

2
(1/P+1/Q)[a, b]. Then, (6.23) translates into

(6.28)

∀ξ ∈]ă, b̆[, Y (ξ + i0)Y (ξ − i0)
Q−1∏
j=1

Y (e2iπj/Q ξ)
P−1∏
j=1

Y (e2iπj/P ξ) = 1.

The fact that ω01(x) is holomorphic on C \ [ă, b̆] and behaves like dx/x when
x→∞, implies that Y (x) is holomorphic on C \ [ă, b̆], vanishes only at
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x = 0, and behaves as

(6.29) Y (ξ) =
ξ→0

−ξ +O(ξ2), Y (ξ) =
ξ→∞

−ξ e−u(1/P+1/Q) +O(1).

Consider the P +Q following functions:

(6.30) Fk(ξ) =
P−1∏
j=0

Y (e2iπk/Q e2iπj/P ξ), 0 ≤ k ≤ Q− 1,

(6.31) FQ+l(ξ) =
Q−1∏
j=0

1
Y (e2iπj/Q e2iπl/P ξ)

, 0 ≤ l ≤ P − 1.

Notice that Fk(ξ) has cuts along e−2iπk/Q e−2iπj/P [ă, b̆] for 0 ≤ j ≤ P − 1,
and FQ+l(x) has cuts along e−2iπl/P e−2iπj/Q[ă, b̆] for 0 ≤ j ≤ Q− 1. In par-
ticular across the cut e−2iπl/P e−2iπk/Q[ă, b̆], we have

(6.32) ∀ξ ∈ e−2iπl/P e−2iπk/Q]ă, b̆[, Fk(ξ − i0) = FQ+l(ξ + i0).

This implies that the functions (Fk)0≤k≤P+Q−1 transform among themselves
under cut crossings, see figure 7 for the (P, Q) = (3, 2) case.

Therefore, any polynomial symmetric function of the Fk’s is continuous
across [a, b] and all its images under rotations, i.e., must be holomorphic in
C
×. Since Fk behaves as integer powers of ξ or ξ−1 near zero and near ∞,

it must be a polynomial in ξ and 1/ξ. This principle shows that

(6.33) ∀f ∈ C Π(f, ξ) =
P+Q−1∏

k=0

(f − Fk(ξ))

is a polynomial in ξ and ξ−1, whose coefficients are polynomial in f . More-
over, we observe that Π(f, e2iπ

1
P Q ξ) = Π(f, ξ), and thus Π(f, ξ) is actually a

polynomial in ξPQ and ξ−PQ. The behaviors (6.29) at ξ → 0 and at ξ →∞
imply

Π(f, ξ) = fP+Q + (−1)P+Q − (−1)PQ (−1)P ξ−PQ fQ

− (−1)PQ (−1)Q e−u(P+Q) ξPQ fP +
P+Q−1∑

j=1

Πj f j(6.34)

for some coefficients Πj . So far, we have thus shown that the function F0(x)
satisfies an algebraic equation. It can be proved, see [23, Section 4.2] that,
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Figure 7: For the (3, 2) knot (the trefoil knot), we have P +Q = 5 functions
F0, F1, . . . , F4, with cuts indicated, and they transform among each other
when crossing cuts. This defines a Riemann surface of genus 2, as a degree
5 covering of the plane Ĉ. The five functions F0, . . . , F4 can be seen as five
branches of a multivalued function on Ĉ, which can be lifted to an analytic
function on the Riemann surface.

knowing that the cut locus of ω01 is a single segment (Lemma 6.2) determines
uniquely all the coefficients Πj . The solution can be written parametrically:

(6.35) ξPQ = C1 z−P

(
1− cz

1− z

)Q

, F0 = C2 z
1− cz

1− z
.

and the conditions (6.29) at ξ → 0 and ξ →∞ are fixing

(6.36) C1 = eu(P+Q), C2 = −1, c = e−u.

If we remind the relation ξ = e
u

2
(1/P+1/Q)x, we obtain

(6.37) x = e
u

2
(1/P+1/Q) z−1/Q

(
1− e−uz

1− z

)1/P

as announced in (6.25). The position of the cut [a, b] can be deduced as a
function of u (figure 8). What we have obtained is the symmetrization of
ω01 (the Stieltjes transform of μeq) under rotations by angle 2π/P . However,
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Figure 8: Position of the support as a function of u = N ln q > 0, ă(u) (top
lines) and b̆(u) (bottom lines) for (P, Q) = (3, 2) (solid line), (P, Q) = (3, 7)
(dotted line) and (P, Q) = (7, 97) (dashed line).

since ω01 has a cut only along [ă, b̆] and not along its rotated images, it is
easy to recover μ̆eq as the discontinuity along Γ.

(6.38) ∀x ∈]a, b[, dμeq(x) =
P

2iπu
ln
(

z(x+ i0)
z(x− i0)

)
dx
x

.

The branch points are the zeros of dx, i.e., of dx/x. Their position in
the z-variable satisfies the quadratic equation −P

z +
Q

z−eu − Q
z−1 = 0, whose

solutions are

(6.39)

z±(u) =
(P +Q)eu + (P −Q)±√(eu − 1)[(P +Q)2eu − (P −Q)2]

2P
.

In particular, for any u > 0, we find z±(u) is real positive and such that
(1− e−uz±(u)) and (1− z±(u)) have same sign. Hence, we find that for
any u > 0, the cut is a segment [a(u), b(u)] = [x(z−(u)), x(z+(u))] on the
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positive real axis (see figure 8). Hence, (6.35) gives a solution of (6.23) (by
construction), which leads to a measure (right-hand side of (6.26)) supported
on a segment of the positive real axis. By unicity (deduced from Lemma 6.1),
this measure must be the equilibrium measure sought for. �

6.2.3. Fundamental 2-form of the second kind. The method of the
previous paragraph shows in general that, for any meromorphic 1-form f in
C \ [a, b] which is solution of the master equation:

(6.40) f(x+ i0) + f(x− i0) +
P−1∑
j=1

f(e2iπj/P ) +
Q−1∑
j=1

f(e2iπj/Q) = 0

the averages

(6.41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P−1∑
j=0

f(e2iπ(j/P+k/Q)x) 0 ≤ k ≤ P − 1,

−
Q−1∑
j=0

f(e2iπ(l/P+j/Q)x) 0 ≤ l ≤ Q− 1

are actually branches of a unique meromorphic 1-form on the curve C of
Equation (6.25), which is uniformized to Ĉ by the variable z. Therefore,
there is a unique fundamental 2-form of the second kind on this curve:

(6.42) B(z0, z) =
dz dz0
(z − z0)2

which defines the appropriate Cauchy kernel:

(6.43) G(z0, z) =
∫ z

B(z0, z) =
dz0

z0 − z

allowing to represent objects of type (6.41). As expected, we find that the
2-form ω02 is closely related to B(z0, z):

Proposition 6.4.

(6.44)
P−1∑
j=0

ω02(x0, e
2iπj/P x) =

dz(x) dz(x0)
(z(x)− z(x0))2

− d(xP ) d(xP
0 )

(xP − xP
0 )2

.
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Proof. We have from (3.78), for any x ∈]a, b[:

(6.45)

ω02(x0, x+ i0) + ω02(x0, x− i0) +
Q−1∑
j=1

ω02(x0, e
2iπj/Qx) +

P−1∑
j=1

ω02(x0, e
2iπj/P x)

= − dx dx0
(x− x0)2

and ω02(x0, x) is holomorphic for x ∈ Ĉ \ [a, b]. Let us first find a particular
solution of the non-homogeneous equation. Let us introduce the following
sequence of 1-forms indexed by m ∈ [[1, PQ]]:

(6.46)

fm(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xPQ

P +Q

dx

x
if m = PQ

xm

P

dx

x
if m is a multiple of P

xm

Q

dx

x
if m is a multiple of Q

1
2iπ

1
1

e2iπm/P − 1
+

1
e2iπm/Q − 1

xm lnx
dx

x
else

.

They are constructed so that

(6.47)

∀x ∈]a, b[, fm(x+ i0) + fm(x− i0) +
P−1∑
j=1

fm(e2iπj/P x) +
Q−1∑
j=1

fm(e2iπj/Qx)

= xm dx

x
.

Then, we can build

(6.48) G(x, x0) =
PQ∑
k=1

xPQ−k
0 fk(x)

xPQ − xPQ
0
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which satisfies

∀x ∈]a, b[, G(x+ i0, x0) +G(x− i0, x0) +
P−1∑
j=1

G(e2iπj/P x, x0)(6.49)

+
Q−1∑
j=1

G(e2iπj/Qx, x0) =
dx

x− x0
.

Therefore, − dx0G(x, x0) is a particular solution of (6.45), which is mero-
morphic on Ĉ \ R−, with a double pole without residues at all xPQ = xPQ

0 ,
and a logarithmic singularity on R−. We can decompose it:

dx0G(x, x0) =− P 2 + PQ+Q2

P 2Q2(P +Q)
d(xPQ

0 ) d(xPQ)

(xPQ − xPQ
0 )2

+
1

P 2

d(xP
0 ) d(xP )

(xP − xP
0 )2

+
1

Q2

d(xQ
0 ) d(xQ)

(xQ − xQ
0 )2

+ lnx R(x0, x),(6.50)

where R(x0, x) is a rational function of x0 and x. We observe, however, that,
after averaging G(x, x0) over rotations of x of angle 2π/P (or, over rotations
of angle 2π/Q), the logarithmic singularity disappears. The 2-form

(6.51) B̆(x, x0) = ω02(x, x0) + dx0G(x, x0)

is a solution of (6.45) with the vanishing right-hand side. We now proceed
like in Section 6.2.2 by defining

Hk(x0, x) =
P−1∑
j=0

B̆(x0, e2iπ(k/Q+j/P )x), 0 ≤ k ≤ Q− 1,(6.52)

HQ+l(x0, x) = −
Q−1∑
j=0

B̆(x0, e2iπ (j/Q+l/P )x), 0 ≤ l ≤ P − 1.(6.53)

For any k ∈ [[0, P +Q− 1]], Hk(x0, ·) is meromorphic on Ĉ (in particular has
no logarithmic cut), with double poles without residues at xPQ = xPQ

0 . For
any k ∈ [[0, Q− 1]], Hk has cuts along e2iπ(k/P+l/Q)[a, b] for all l ∈ [[0, P − 1]],
whereas for any l ∈ [[0, P − 1]], HQ+l(x0, ·) has cuts along e2iπ(k/P+l/Q)[a, b]
for all k ∈ [[0, Q− 1]]. And, more precisely:

(6.54) ∀x ∈ e−2iπ(l/P+k/Q)]a, b[, Hk(x0, x+ i0) = HQ+l(x0, x− i0).
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This implies that Hk(x0, x) can be seen as the kth branch of a meromorphic
formH(x0, x) defined on the same Riemann surface as ω01(x). So, it must be a
rational function of z(x) and z(x0), with double poles at x = e2iπ(j/P+k/Q)x0
for some j, k. Given its singularities, it takes the form

(6.55) H(x, x0) = A1
dz(x) dz(x0)
(z(x)− z(x0))2

+A2
d(xPQ) d(xPQ

0 )

(xPQ − xPQ
0 )2

.

Besides, we can deduce from (6.50) and the observation that the logarithmic
singularity in G(x, x0) disappears after average, that

(6.56)

H(x0, x) =
P−1∑
j=0

ω02(x0, e
2iπj/P x) +

d(xP ) d(xP
0 )

(xP − xP
0 )2

− 1
P +Q

d(xPQ) d(xPQ
0 )

(xPQ − xPQ
0 )2

.

In the first sheet, H(x0, x) assumes the values H0(x0, x), and for a fixed
x0, we have Q points such that xPQ = xPQ

0 , which are actually those cor-
responding to xQ = xQ

0 . The last term of (6.56) has a pole at x = x0 in the
first sheet, but is regular at the other aforementioned (Q− 1) points. There-
fore, matching with the poles of (6.55) yields A1 = 1 and A2 = −1/(P +Q).
Hence,

(6.57)
P−1∑
j=0

ω02(x0, e
2iπj/P x) =

dz(x) dz(x0)
(z(x)− z(x0))2

− d(xP ) d(xP
0 )

(xP − xP
0 )2

.

Then, ω02(x0, x) can be recovered as the part of (6.57) which has a cut on
[a, b] and not on its rotations by 2π/Q angles. �

6.3. Analytic structure of W g
n

In the convergent model (6.15), since the potential is convex for u > 0, Γ is
a single segment and W 0

1 (x) is discontinuous at any interior point of Γ̊. On
the other hand, we could define W g

n(x1, . . . , xn)’s as holomorphic functions
for xi in some neighborhood of ∞. We now claim:

Lemma 6.5. For any (n, g), W g
n(x1, . . . , xn) defines a holomorphic function

in (C \ Γ)n.
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Proof. The W g
n satisfy the Schwinger–Dyson equation order by order in

(ln q), i.e., (3.88) with ρ = 1 and O given by (3.69) with

(6.58) R(x, y) =
xP − yP

x− y

xQ − yQ

x− y
.

We can rewrite them

(6.59)

W g
n(x, xI) =

(
2W 0

1 (x) +OW 0
1 (x)− V ′(x)

)−1
×

⎛⎜⎜⎝−W g−1
n+1(x, x, xI)−

∑
J⊆I 0≤h≤g

(J,h) 
=(∅,0),(I,g)

W h
|J |+1(x, xJ)W

g−h
n−|J |(x, xI\J)

−Ox,2W g−1
n+1(x, x, xI)−

∑
J⊆I 0≤h≤g

(J,h) 
=(∅,0),(I,g)

W h
|J |+1(x, xJ)OxW g−h

n−|J |(x, xI\J)

−W 0
1 (x)OxW g

n(x)−
∑
i∈I

W g
n−1(x, xI\{i})
(x− xi)2

− P g
n(x;xI)

⎞⎟⎟⎠ ,

where P g
n was defined in (3.89), and we recognize the prefactor

(6.60) 2W 0
1 (x) +OW 0

1 (x)− V ′(x) = ΔW 0
1 (x).

The equality (6.59) between holomorphic functions in C \ R
×
+, extends to

an equality valid in the maximal domain of analyticity of the functions
at hand. We observe that P g

n here is a polynomial. Besides, if f is holo-
morphic in C \ R

×
+, Of is holomorphic in a neighborhood of [ε,+∞[, since

it can have singularities only on the rotations of R
×
+ by 2π/P and 2π/Q

angles. So, the only singularity in the right-hand side of (6.59) comes from
the singularities of W h

m for 2h− 2 +m < 2g − 2 + n, or from the prefactor(
2W 0

1 (x) +OW 0
1 (x)− V ′(x)

)−1 which has a singularity on Γ ⊂ R
×
+. There-

fore, (6.59) implies by recursion of 2g − 2 + n that W g
n is holomorphic in

C \ Γ. �

6.4. Result

We have justified in Sections 6.1.3 and 6.3 that the Wn have an expansion
of topological type. Therefore, we can apply Corollary 3.16, and find that
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the correlators are computed by the topological recursion. More precisely,
let us define for any stable n, g:

(6.61) ωg
n(x1, . . . , xn) = W g

n(x1, . . . , xn) dx1 · · · dxn

and their averaged version ω̌g
n(z1, . . . , zn) which are meromorphic on Cn �

Ĉ
n, so that

(6.62)

ω̌g
n(z1, . . . , zn) =

∑
0≤j1,...,jn≤P−1

ωg
n(e

2iπj1/P x(z1), . . . , e2iπjn/P x(zn))

when z1, . . . , zn belong to the first sheet of C. Then, Corollary 3.16 tells us:

Proposition 6.6. The ω̌g
n(z1, . . . , zn) are determined by the topological

recursion

ω̌g
n(z1, . . . , zn) = Res

z→z±(u)

1
2

(
1

z−z0
− 1

ι(z)−z0

)
ω01(z)− ω01(ι(z))

[
ω̌g−1

n (z, ι(z), zI)

+
∑

J⊆I, 0≤h≤g
(J,h) 
=(I,g),(∅,0)

ω̌h
|J |+1(z, zJ)ω̌

g−h
n−|J |(ι(z), zI\J)

]
.

Notice that we can use indifferently ω01 or ω̌01 in the denominator. The
description of ω01 (Proposition 6.3) was actually obtained in [23], where it
was conjectured (and checked for low g and representation of small sizes)
that the topological recursion with B(z0, z) given by (6.42) would compute
the topological expansion of the correlators, and hence the Wilson loops.
Our present result fully justifies this prediction.

Let us mention that the contribution of general reducible flat connections
to the Chern–Simons partition function on lens spaces is a multi-species
version of (6.2), where the breaking of U(N) symmetry between the particles
comes from an extra linear term in the potential whose coefficient depend
on the species. The spectral curve in such models was studied in [88, 89],
who found correspondence with the mirror curve of an orbifold quotient of
the resolved conifold. According to Section 3.9, this model also falls in the
range of applicability of the topological recursion.



156 Gaëtan Borot, Bertrand Eynard and Nicolas Orantin

7. Other examples

We explain how to retrieve the two-Hermitian matrix model, and matrix
models where eigenvalues live on a higher genus surface from the theory
developed in Section 2. In this section, we rather revisit a few aspects of
each problem at the light of our formalism rather than intend to present a
detailed study.

7.1. The two-Hermitian matrix model

The two-Hermitian matrix model is defined by the measure

(7.1) d�(M1, M2) = dM1 dM2 e−N Tr [V1(M1)+V2(M2)+α M1M2],

where M1 and M2 are Hermitian matrices, α is a coupling constant and V1
and V2 are two polynomials. The Schwinger–Dyson equation of this model
have been written down in [70]. We introduce the correlators associated with
the first matrix

(7.2) Wn(x1, . . . , xn) =

〈
n∏

i=1

Tr
1

xi −M1

〉
c

and we assume that they have an expansion of topological type

(7.3) Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−n W g
n(x1, . . . , xn).

If we consider (7.1) as a convergent matrix model, we ask that V1 and V2
are chosen so that the weight (7.1) is integrable over H2

N , and (7.3) would
have to be justified under suitable assumptions. If we rather consider (7.1)
as a formal matrix model, one takes

(7.4) Vj(x) =
1
uj

⎛⎝x2

2
−
∑
k≥3

tj,k
k

xk

⎞⎠ , j = 1, 2

and uj and tj,k are considered as formal parameters. The combinatorial inter-
pretation of the two-Hermitian matrix model is related to the enumeration
of random maps whose faces carry an Ising variable, i.e., + or − [92].
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A classical result [70, 122] is that Y (x) = V ′1(x)−W
(0)
1 (x) satisfies an

algebraic equation E(x, Y (x)) = 0, where

E(x, y) = (V ′1(x)− y)(V ′2(y)− x) + 1(7.5)

− lim
N→∞

1
N

〈
Tr
V ′1(x)− V ′1(M1)

x−M1

V ′2(y)− V ′2(M2)
y −M2

〉
is a polynomial of x and y. This equation E(x, y) = 0 defines a compact Rie-
mann surface C, endowed with a covering x : C → Ĉ of degree d2 = degV2.
In other words, C is realized as d2 sheets Ck of C, glued together at the zeros
of dx (the ramification points) along certain cuts γj joining them. There is a
distinguished sheet C0 for which W 0

1 (x(z)) ∼ 1/x(z) when x(z)→∞ while
z ∈ C0. We assume that the branch points are simple, so that we are in the
framework of Section 2 with U = C0, Vj are neighborhoods of the cuts in
C, and the involution ι is the local exchange of sheets bordered by a cut.
Let V =

∐
j Vj . If z ∈ Vj ∩ Ck and Ck′ ∩ Ck �= γj , we also denote jk′ the map

sending z to z′ ∈ V ∩ Ck′ so that x(z) = x(z′): it corresponds to sending z
to a distant sheet. The result of [42, 64] can be rephrased as:

Proposition 7.1. Introduce as usual

ωg
n(z1, . . . , zn) = W g

n(x(z1), . . . , x(zn)) dx(z1) · · · dx(zn)(7.6)

+ δn,2δg,0
dx(z1) dx(z2)
(x(z1)− x(z2))2

and assume that ω01 is an off-critical 1-form. Then, ω•• satisfies solvable
linear and quadratic loop equations. More precisely, they satisfy, for any
n, g, any zI = (z2, . . . , zn) ∈ Un−1,

(7.7)
∀z ∈ Vk, ωg

n(z, zI) + ωg
n(ι(z), zI)

+
∑
k′

ωg
n(jk′(z), zI) = δg,0

(
δn,1 dV1(z) + δn,2

dx(z) dx(z2)
(x(z)− x(z2))2

)

and ω02 is the unique fundamental 2-form of the second kind for the compact
Riemann surface C, whose period on the γj vanish.

We observe that (7.7) is very similar to the linear loop equation (3.56)
satisfied by ω01 in the repulsive particle systems, where the operator O is
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replaced by the sum of evaluations at all sheets of x : C → Ĉ. From Theo-
rem 7.1, it was shown in [42] that ωg

n in the two-Hermitian matrix model is
given by the topological recursion (2.19). In this article, we have seen that
such a result can be unified with others in a more general theory.

7.2. One-matrix model on elliptic curves

Let us revisit as a special case of repulsive particle systems, the case where
the particles interact pairwise with the Coulomb interaction on the torus
T = C/L where L = Z+ τZ and Im τ > 0. The model is defined by

d�(z1, . . . , zn) =
N∏

i=1

dλi e
−NβV(λi)

2

∏
1≤i<j≤N

|θ(λi − λj)|β ,(7.8)

ZN =
∫
(Γ0)N

d�(λ1, . . . , λN ).

The theta function we consider is the first Jacobi theta function

(7.9) θ(z) =
∑

n∈Z+1/2

−i eiπτn2+2iπn(z+1/2)

and it satisfies

(7.10) θ(z + n+mτ) = (−1)n e−2iπ(z+mτ/2)m θ(z).

In particular, θ(λi − λj) has a simple zero when λi → λj . The conclusions of
Section 3 in the context of the topological expansion assuming β = 2, and
leading to the topological recursion formula (2.19), can be applied to this
case. In this paragraph, we will rather illustrate that it can be helpful to
define the correlators slightly differently than (3.6), taking into account the
underlying geometry, in order to write the Schwinger–Dyson equations in a
simpler form than in Section 3.4. We shall see the same trick at work in any
genus in Section 7.3, but we focus here on the genus 1 case, since it allows
to take a pedestrian route without too technical computations. This is a
useful intermediate step in order to solve explicitly the master equation for
ω01 and ω02, or to justify for convergent matrix models described by (7.8) the
existence of a topological expansion under suitable assumptions, following,
e.g., [13, 26].
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Let M = diag(λ1, . . . , λN ). Here, it is natural to define the correlators
by

(7.11) Wk(z1, . . . , zk) =

〈
k∏

j=1

Tr (ln θ)′(zj − Λ)

〉
c

.

Notice that Wk(z1, . . . , zk) are holomorphic on C \ (Γ0 + L). We can derive
Schwinger–Dyson equations for the correlators, e.g., by performing the
infinitesimal change of variable:

(7.12) λi → λi + ε (ln θ)′(z − λ)

and express the invariance of the integral under change of variables. Assum-
ing like in Section 3.4 that V is such that there is no boundary terms, we
find 〈

N∑
i=1

−(ln θ)′′(z − λi) +
β

2

∑
i
=j

(ln θ)′(λi − λj)
[
(ln θ)′(z − λi)(7.13)

− (ln θ)′(z − λj)
]− N∑

i=1

Nβ

2
V ′(λi) (ln θ)′(z − λi)

〉
= 0.

This equation can be simplified [32] by a procedure analogous to partial
fraction expansion for rational functions, based on the following relation:

(ln θ)′(v − u)
[
(ln θ)′(u)− (ln θ)′(v)

]
= (ln θ)′(u)(ln θ)′(v)(7.14)

− 1
2

(
θ′′(u)
θ(u)

+
θ′′(v)
θ(v)

+
θ′′(v − u)
θ(v − u)

)
+
1
2

θ′′′(0)
θ′(0)

.

Hence,

(7.15)〈
−
(
1− β

2

)
Tr (ln θ)′′(z −M) +

β

2
Tr (ln θ)′(z −M) Tr (ln θ)′(z −M)

− βN

2
Tr

θ′′(z −M)
θ(z −M)

− β

4
Tr

(
θ′′(M ⊗ 1− 1⊗M)
θ(M ⊗ 1− 1⊗M)

− θ′′′(0)
θ′(0)

)
− Nβ

2
TrV ′(M)(ln θ)′(z −M)

〉
= 0.
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Notice that both the measure and the observables we consider depend explic-
itly on the modulus τ , since,

(7.16) θ′′(z) = 4iπ∂τθ(z).

We observe that the measure (7.8) depends explicitly on τ . We denote ∂τ,mes.

the derivative with respect to this dependence

(7.17) 4iπ∂τ lnZ = 4iπ∂τ,mes. lnZ =

〈
β

2

∑
i
=j

θ′′(λi − λj)
θ(λi − λj)

〉

and recognize a part of the constant in the second line. Let us define

V ·W1(z) =
〈
TrV ′(M) (ln θ)′(z −M)

〉
,(7.18)

Q1(z) =
〈
Tr

θ′′(z −M)
θ(z −M)

〉
.

Notice that Q1(z) is holomorphic in the fundamental domain, and is such
that

(7.19) Q1(z +m+ nτ)−Q1(z) = −4π2n2 − 4iπn W1(z).

We thus have(
β

2
− 1

)
W ′

1(z) +
β

2
(W2(z, z) +W2

1 (z)
)

− Nβ

2

∮
γ

dζ

2iπ
V ′(ζ) (ln θ)′(z − ζ)W1(ζ)

+
βN(N − 1)

4
θ′′′(0)
θ′(0)

− 2iπ ∂τ lnZ − Nβ

2
Q1(z) = 0.

To derive higher Schwinger–Dyson equations, we define the insertion oper-
ator ∂/∂V(zj) by perturbing the potential

(7.20) V(z)→ V(z)− 2ε
βN

(ln θ)′(zj − z)

and differentiating with respect to ε, and then setting ε = 0. When we apply
it on correlators, we find

(7.21)
∂

∂V(zk)
Wk−1(z1, . . . , zk) =Wk(z1, . . . , zk).
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On the derivative of the potential:

(7.22)
∂

∂V(zj)
βNV ′(z)

2
= (ln θ)′′(zj − z).

So, if we apply
∏

j∈I
∂

∂V(zj)
on (7.20), we find

(7.23)(
β

2
− 1

)
+ ∂zWk(z, zI)

+
β

2

⎛⎝Wk+1(z, z, zI) +
∑
J⊆I

W|J|+1(z, zJ )Wn−|J|(z, zI\J )

⎞⎠
− Nβ

2

∮
γ

dζ

2iπ
(ln θ)′(z − ζ)Wk(z, zI)− 2iπ ∂τ,mes.Wk−1(zI)− Nβ

2
Qk(z; zI)

−
∑
j∈I

〈
Tr ∂zj

[
(ln θ)′(zj −M) (ln θ)′(z −M)

] ∏
j′ �=j

Tr (ln θ)′(zj′ −M)
〉

c
= 0,

where

(7.24) Qk(z; zI) =

〈
Tr

θ′′(z −M)
θ(z −M)

∏
j∈I

Tr (ln θ)′(zj −M)

〉
c

is again holomorphic in the variable z in the fundamental domain, and sat-
isfies for k ≥ 2:

(7.25) Qk(z +m+ nτ ; zI)−Q(z; zI) = −4iπnWk(z, zI).

We transform the last term of Equation (7.23), thanks to the partial fraction
expansion identity (Equation (7.14)):

(7.26)
− ∂zj

[
(ln θ)′(zj −M) (ln θ)′(z −M)

]
= ∂zj

{
(ln θ)′(z − zj)

[
(ln θ)′(z −M)

− (ln θ)′(zj −M)
]}− 1

2
∂zj

(
θ′′(zj −M)
θ(zj −M)

)
+ f(z, zj).

Because only cumulants are involved in Equation (7.23), the term f(z, zj)
will disappear from the computation. The correlators (7.11) depend on τ
via the measure (7.8), and also via the logarithmic derivative of the theta
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function. We denote ∂τ,obs. the derivative with respect to this last depen-
dance only. In other words, ∂τ = ∂τ,mes. + ∂τ,obs.. We observe that, if we
differentiate Wk−1(zI) with respect to the τ -dependence of the observable:

(7.27)

4iπ∂τ,obs.Wk−1(zI) =
∑
j∈I

〈
Tr

(
θ′′′(zj −M)
θ(zj −M)

− θ′(zj −M)θ′′(zj −M)
θ2(zj −M)

) ∏
j′ 
=j

Tr (ln θ)′(zj′ −M)

〉
c

=
∑
j∈I

〈
Tr ∂zj

(
θ′′(zj −M)
θ(zj −M)

) ∏
j′ 
=j

Tr (ln θ)′(zj′ −M)

〉
c

we can retrieve the second term in (7.26). Thus, the loop equation at rank
k reads

(7.28)(
β

2
− 1

)
∂zWk(z) + ∂zWk(z, zI) +

β

2

⎛⎝Wk+1(z, z, zI)

+
∑
J⊆I

W|J |+1(z, zJ)Wn−|J |(z, zI\J)

⎞⎠− Nβ

2

∮
γ

dζ

2iπ
(ln θ)′(z − ζ)Wk(z, zI)

+
∑
j∈J

∂zj

{
(ln θ)′(z − zj)

[Wk−1(z, zI\{j})−Wk−1(zI)
]}

− 2iπ∂τWk−1(zI)− Nβ

2
Qk(z; zI) = 0.

If one wishes to take a potential with logarithmic singularities:

(7.29) V(z) = V0(z) +
L∑

l=1

2αl

Nβ
ln θ(ξl − z)

we may decompose again using (7.14):

(7.30)∮
γ

dζ

2iπ
(ln θ)′(z − ζ)V ′(ζ)W1(ζ) =

∮
γ

dζ

2iπ
(ln θ)′(z − ζ)V ′0(ζ)W1(ζ)

+
L∑

l=1

αl

{
(ln θ)′(z − ξl)

[
W1(z)−W1(ξl)

]
− 2iπ∂τ,V−V0 lnZ − 2iπ∂τ,mes. lnZ − N

2

(
θ′′(z − ξl)
θ(z − ξl)

− θ′′′(0)
θ′(0)

)}
,
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where ∂τ,V−V0 denotes the differentiation with respect to the τ -dependence
of (V − V0). This computation can be carried on to higher correlators:

(7.31)∮
γ

dζ

2iπ
(ln θ)′(z − ζ)V ′(ζ)Wk(ζ, zI) =

∮
γ

dζ

2iπ
(ln θ)′(z − ζ)V ′0(ζ)Wk(ζ, zI)

+
L∑

l=1

αl

{
(ln θ)′(z − ξl)

[Wk(z, zI)−Wk(ξl, zI)
]

− 2iπ∂τ,V−V0Wk−1(zI)− 2iπ∂τ,mes.Wk−1(zI)
}

.

The αl are calledmomenta. In particular, we observe that, when the momenta
sum up to 1, the term involving ∂τ,mes. disappear from the loop equations.

7.3. Liouville theory on higher genus surface

Consider a given Riemann surface Σg of genus g with L marked points
z1, . . . , zL, equipped with a symplectic basis of cycles (Ah,Bh)1≤h≤g. Given
n momenta α1, . . . , αn, one wishes to compute the n-point functions in
Liouville field theory:

(7.32) 〈Vα1(z1) . . . Vαn
(zn)〉Σg

.

We introduce a variable N such that

(7.33) Nb =
L∑

l=1

αj + (1− g)
(

b+
1
b

)
.

It is known [32, 50, 51], that this correlation function can be retrieved from
the analytic continuation of the following integrals, first defined for a non-
negative integer N :

(7.34)

Zk1,...,kr
(p1, . . . , pg) =

∫
γ

k1
1 ×···×γkr

r

N∏
i=1

[
Ω(λi) e4π b

∑N
i=1

∑g
j=1 pjaj(λi)

L∏
l=1

E(λi, zl)2bαj

2g−2∏
j=1

(E(λi, ξj))
−1−b2

]
×

∏
1≤i<j≤N

E(λi, λj)−2b
2
,
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where γi are some paths on the Riemann surface, E(λ, λ′) is the prime form
and a(λ) = (a1(λ), . . . , ag(λ)) is the Abel map associated to the A-cycles, Ω
is an arbitrary but fixed holomorphic 1-form on Σg, whose 2g− 2 zeros are
denoted ξ1, . . . , ξ2g−2. If c is an odd non-singular characteristics, the prime
form is defined as [116]

(7.35) E(λ, λ′) =
θ(a(λ)− a(λ′) + c)√

dhc(λ) dhc(λ′)
, dhc(λ) =

g∑
i=1

∂ai
θ(c) dai(λ).

In the definition of the Abel map and of the prime form, the choice of the
(A,B) cycles is implicit. Notice that, since the prime form is a (−1/2,−1/2)
form, the integrand in (7.34) is indeed a 1-form in each variable. This model
is a repulsive particle system in the sense of Section 3, with Dyson index
β = −2b2. Q = b+ 1/b is called the background charge.

The case β = 2 corresponds to b2 = −1, i.e., Liouville theory without
zero background charge. In this case, (7.34) simplifies to

Zk1,...,kr
(p1, . . . , pg) =

∫
γ

k1
1 ×···×γkr

r

∏
1≤i<j≤N

E(λi, λj)2(7.36)

N∏
i=1

⎡⎣ n∏
j=1

E(λi, zj)2iαj e4iπ
∑N

i=1

∑g
j=1 pjaj(λi)

⎤⎦ .

The large N techniques make sense in the regime where the momenta αj

are large, i.e., we write

(7.37) αj = iN α̃j , pj = iN p̃j .

Our purpose is to illustrate rather than study in details, we shall ignore
here the issues about the choice of contours, of convergence, of strict convex-
ity of the interactions, of rigorous proof of existence of a large N expansion
of topological type, which should actually be nested problems. We rather
want to show how the techniques of Section 3 leading to a topological recur-
sion apply, and focus on the description of the spectral curve, i.e., of the
initial data ω01 [32] and ω02. As in Section 7.2, it is convenient to define the
correlators not by (3.6), but taking into account the geometry, by

(7.38) Wn(x1, . . . , xn) =

〈
n∏

i=1

Tr dxi
ln θ(a(xi)− a(M) + c)

〉
c

,
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where averages are understood with respect to the measure (7.36). We
assume an expansion of topological type

(7.39) Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−nWg
n(x1, . . . , xn)

and we set

(7.40) ωg
n(x1, . . . , xn) =Wg

n(x1, . . . , xn) + δn,2δg,0 B(x1, x2),

where

(7.41) B(x1, x2) = dx1 dx2 ln θ(a(x1)− a(x2) + c)

is the fundamental 2-form of the second kind of Σg associated to the basis
of cycles (A,B). ωg

n satisfy solvable linear loop equations and quadratic loop
equations in the sense of Definitions 2.12 and 2.13, and more precisely if we
denote Γ0 ⊆ Σg the cut locus of ωg

n and xI = (x2, . . . , xn) a set of spectator
variables, we have for any x ∈ Γ̊0:
(7.42)

ωg
n(x1 + i0, xI) + ωg

n(x1 − i0, xI) = δg,0 (δn,1 dV(x1) + δn,2δg,0 B(x1, x2)) ,

where we introduced the potential

(7.43) V(x) = −2
L∑

l=1

α̃j ln θ(a(x)− a(zj) + c)− 4π
g∑

i=1

p̃j aj(x).

Let us assume that Γ0 =
⋃r

j=0 γj is a disjoint union of open arcs γj . We
deduce that ωg

n is a n-form on Cn, where C is the Schottky double of Σg,
i.e., is a two-sheeted covering of Σg obtained by gluing two copies Σ

(1)
g and

Σ(2)g with opposite orientations along Γ0. It has genus 2g+ r − 1. One can
define a symplectic basis of cycles of C, which consists of the two copies
of the cycles (Ah,Bh)1≤h≤g, to which we add A-cycles surrounding γj for
j ∈ [[1, r]], and the B-cycles going from γj to γj+1 in Σ

(1)
g and coming back

to its initial point in Σ(2)g . With this choice, ω02 is the unique fundamental
2-form of the second kind on C with zero periods along all A-cycles, thus
given by (7.41) where the right-hand side is replaced by the theta function
on C instead of Σg. Here, the involution ι is defined globally on C and cor-
respond to the exchange of sheets. We can rewrite (7.42) as the relation, for
any x ∈ C:
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(7.44)
ωg

n(x1, xI) + ωg
n(ι(x1), xI) = δg,0 (δn,1 dV(x1) + δn,2δg,0 B(x1, x2)) .

ω01 can be constructed from (5.36) to (5.35), i.e., as the 1-form in C having
singularities in the second sheet prescribed by the right-hand side in (7.44)
and no singularities in the first sheet ω01 and ω02 are thus totally explicit in
this case, once the cut locus Γ0 is determined (see, e.g., the discussion in
[32]). By the results of Section 2, we can deduce that topological recursion
holds:

ωg
n(z0, zI) =

∑
α∈Γfix

Res
z→α

K(z, z0)

⎛⎜⎜⎝ωg−1
n+1(z, ι(z), zI)(7.45)

+
∑

J⊆I, 0≤h≤g
(J,h) 
=(∅,0),(I,g)

ωh
|J |+1(z, zJ)ω

g−h
n−|J |(ι(z), zI\J)

⎞⎟⎟⎠
with recursion kernel:

(7.46) K(z, z0) =
1
2

∫ z
ι(z) ω

0
2(·, z0)

ω01(z)− ω01(ι(z))

and this formula leads to an effective computation of the ωg
n, again provided

the cut locus Γ0 is known.
This generalizes the well known situation of the one-Hermitian matrix

model, for which we have Σg=0 = Ĉ and C is a hyperelliptic surface [3, 5, 9].
The description of the spectral curve as a Schottky double only relied on
the expression of the two-point interaction as a prime form. The results are
also valid for general potentials V.

8. Conclusion

We have proposed and studied the properties of a hierarchy of “abstract
loop equations,” which turns out to be solved by a topological recursion.
The initial data is a one-point function ω01, and a two-point function ω02.
Actually, they only need to be defined in a neighborhood of ramification
points for most of the properties of the topological recursion to hold. Saying
that, we underline that we have not addressed here the issue of symplectic
invariance, as we now comment.
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From the physics point of view, ω01 = y dx defines a spectral curve and
encodes the geometry, while the data ω02 should define a way to quantize it.
The stable ωg

n are considered as quantum corrections determined by those
two inputs. There are several (related) notions of quantization here. A first
one is illustrated in the recent work of [54], i.e., replacing x and y by oper-
ators x̂ and ŷ so that [ŷ, x̂] = gs, and the classical equation satisfied by x, y
becomes a D-module where wave functions sit. A second one is closer to the
idea of quantum cohomology, and this picture is now well understood in the
example of topological strings in toric Calabi–Yau 3-folds X after the recent
work of two of authors [68] proving the BKMP conjecture [30]. The perturba-
tive partition function of these topological string theories are wave functions
of a geometric quantization of the cohomology of the target space consid-
ered. Such a quantization is not unique and requires a choice of polarization
to be performed. Following [2, 127], one can explicitly identify such a choice
of quantization with a choice of ω02. The symmetries exhibited by the per-
turbative wave function built in this way by the topological recursion then
depend on this choice. In this case, ω01 is determined by the mirror curve
of X. Besides, localization techniques can be used to compute generating
series of Gromov–Witten invariants. The data of ω02 arise from the weights
of the edges of the localization graphs, and it turns out in this case that
it constructs a specific ω02 as a globally defined, fundamental 2-form on the
second kind on the compactification of the mirror curve [68]. As explained
in Section 4, we have described in this work hierarchies of loop equations
where the weight of edges in the analog of those “localization graphs” is arbi-
trary. A “good quantization” should be covariant with respect to canonical
transformations, i.e., transformations such that (x, y)→ (x′, y′) such that
dx ∧ dy = dx′ ∧ dy′, also called symplectic transformations. This will cer-
tainly impose constraints on the possible choice of ω02 for a given geometry if
we require that F g are invariant under those transformations. Actually, the
only non-trivial obstruction is the effect of (x, y)→ (−y, x). Although the
theory presented in Section 2 makes sense for any ω02 (defined, e.g., by for-
mal series expansion at the ramification points, with arbitrary coefficients),
it will not in general enjoy symplectic invariance13, so its application to

13Let us give an example to argue that we do not expect in general symplectic
invariance. Let us consider x, y meromorphic functions on a compact curve Σ, with
ω0

2 a fundamental 2-form of the second kind globally defined on Σ
2
. Eynard and

Orantin[66] tells us that F g are invariant under (x, y)→ (−y, x). With ω0
2 being

hold fixed, the topological recursion for the spectral curve (Σ, x, y) involves residues
at ramification points of x : Σ→ Ĉ, while that for the spectral curve (Σ, x, y)
involve residues at ramification points of y : Σ→ Ĉ. Let α be a ramification point
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quantum field theories may involve restricting oneself to the maximal sub-
class of ω02 for which symplectic invariance holds, which has not been yet
clearly identified. For example, for applying this procedure to the solving
of integrable systems of topological type arising in the study of Frobenius
manifold [57] (and thus computing Gromov–Witten invariants in a larger
setup), the choice of ω02 is completely fixed by the one of ω01 following the
work of Givental [81] where both of these arguments correspond to a canon-
ical transformation arising from a change of polarization in a geometrically
quantized theory. This canonical transformation allows to go from a very
specific point in the Frobenius manifold where the wave function is com-
pletely factorized as a product of KdV tau functions to an arbitrary point
where the wave function is the generating function of Gromov–Witten invari-
ants of a specific manifold. In general, we guess that symplectic invariance
is only possible when there exists a globally defined underlying geometry.

Our present work extends the range of potential applications of the
topological recursion, and includes the former applications to the large N
expansion of the one-Hermitian matrix model, the two-Hermitian matrix
model, with possibly several cuts. In particular, it allows to treat “gener-
alized matrix models” (also called “repulsive particle systems”), where the
pairwise interaction of eigenvalues described by a squared Vandermonde only
as an asymptotic behavior at short distances. We mention below some more
examples (even with β = 2) of repulsive particle systems.

• Chern–Simons theory with general gauge group G on torus knot com-
plement. The model is described by a measure on the Cartan subalge-
bra of the Lie algebra of G:

(8.1) d�(t1, . . . , tr) =
∏
α>0

sinh
(

α · t
2P

)
sinh

(
α · t
2Q

) r∏
i=1

e−
Nt2i
2P Qu dti.

The case of SO(N)/Sp(2N) is analysed in [25].

• Chern–Simons theory on Seifert manifolds X
(

P1
Q1

, . . . , Pm

Qm

)
. It was

shown in [107, 110] that the contribution of the trivial flat connec-
tion leads to a repulsive particle system. For G = U(N), it is defined

for x, and replace now Σ by Σ′ = Σ \ {α}. Since we are systematically forgetting a
ramification point, it is likely that F g for (Σ′,−y, x) will be different from F g for
(Σ,−y, x), while F g for (Σ′, x, y) is obviously the same as F g for (Σ, x, y). So, the
F g with the open Riemann surface Σ′ as part of the initial data, and ω0

2 coming
from Σ, will not be symplectic invariants.
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by the measure on R
N :

d�̃(t1, . . . , tN ) =
1

Z̃
(P,Q)
N

∏
1≤i<j≤N

⎡⎣sinh2( ti − tj
2

) m∏
l=1

sinh
(

ti−tj

2Pl

)
sinh

(
ti−tj

2

)
⎤⎦(8.2)

N∏
i=1

e−N Ṽ(t) dti, Ṽ(t) =
(

m∑
i=1

Qi

Pi

)
t2

2u
,

where u = N ln q, while other contributions correspond to multi-species
analogs of (8.3). The case m = 1 correspond to lens spaces X

(
P
Q

)
, and

coincides with the measure (6.2) relevant for the (P, Q) torus knot
upon the change of variable ti → ti/Q. The analysis in this model
based on the present theory, in particular the computation of the spec-
tral curve ω0,1 and ω0,2 is developed in [25] – for gauge groups of types
SU/SO/Sp.

• ABJM matrix model on S3 with U(N1)× U(N2) gauge group [111,
114]. The measure to study is

(8.3)
d�(t1, . . . , tN1 , s1, . . . , sN2)

=
∏

1≤i<j≤N1

sinh2
(

ti − tj
2

) ∏
1≤i<j≤N2

sinh2
(

si − sj

2

)

×
∏

1≤i≤N1
1≤j≤N2

cosh−2
(

ti − sj

2

)(N1∏
i=1

e−
t2i
2gs dti

)(
N2∏
i=1

e
s2i
2gs dsi

)
,

where the minus sign in the Gaussian potential for si’s has to be under-
stood as an analytical continuation. ω01 has been computed (see, e.g.,
[111]), and the same techniques of resolution would lead to an expres-
sion for ω02.

With Corollary 3.21, we deduce that the topological expansion in those
models is computed by the topological recursion.

Our formalism opens the way to a systematic study of the (q, t) defor-
mation of matrix models representations for various enumerative geometry
problems [14, 15]. In particular, although it has been found in [31] that the
β deformation alone [38] of the usual topological recursion could not be
used to extend the BKMP conjecture of [30] to compute refined topological
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strings amplitudes in toric Calabi–Yau 3-folds, we expect that our formalism
contain the appropriate deformation to handle it.

We let to a future work the study of the β deformation of our con-
struction, i.e., the cases where the short distance behavior of the two-point
interaction is described by a Vandermonde to the power β. This appear, e.g.,
to compute the conformal blocks of Liouville theory on positive genus sur-
faces (as discussed in [32] and Section 7.3), and Nekrasov partition functions
[35, 117, 123]. The two models should be related by AGT conjecture [6]. We
therefore hope that studying them both with the topological recursion would
lead to some insight about the AGT conjecture.

Repulsive particle systems correspond to the case of generalized matrix
models which have an eigenvalue representation. We believe that many other
matrix models where such diagonalization is not possible, should still be
solvable by the topological recursion, as it has already been shown for the
two-Hermitian matrix model [42, 64] (see also Section 7.1) and for the chain
of matrices [69]. The problem is reduced to that of putting the Schwinger–
Dyson in the form of abstract loop equations. For instance, we hope that
the present formalism will be applicable to all quiver matrix models.

We have shown in full generality in Section 5 that maps endowed with
self-avoiding loop configuration of all topologies are enumerated by the topo-
logical recursion, even in cases where ω01 and ω02 is not known in closed
form. The same will be true for maps with a 6-vertex model, for which ω01
was found at the critical point [129], and then in the general off-critical
case [103]. Since solving for ω01 is not more difficult than solving for ω02,
we can now consider that the 6-vertex model is solved explicitly for maps
of all topologies. There exists other statistical physics model on maps, like
the Potts model on maps with controlled face degree [93], the asymmetric
ABAB model [106], for which ω01 is known (and thus ω02 can be obtained
by similarly techniques even if not found in the literature), and it would be
interesting to know if combinatorics leads to loop equations for generating
series of maps with certain boundary conditions, i.e., if the model can be
solved by the topological recursion. We stress that, although the topologi-
cal recursion (2.19) for ωg

n can be written as a sum over skeletons of genus
g surfaces with n boundaries (see the diagrammatics in [67, Section 3]), it
is not clear if each term counts a certain class of maps (with a statistical
physics model or not). Hence, there is no known bijective interpretation of
(2.19), although its geometric content seems clear.

Let us come to a few technical comments. The key idea in our approach
was to define only local spectral curves, obtained by doubling an open
Riemann surface across cuts. As explained earlier, this local approach is very



Abstract loop equations, topological recursion 171

powerful since it allows to effectively deal with supposedly higher dimen-
sional version of the topological recursion, e.g., in the study of Gromov–
Witten theories where the gluing of local spectral curves maps to gluing of
target spaces. We have considered for simplicity only spectral curves having
cuts ending at simple ramification points (see the definition of domains in
Section 2.1), but it seems possible to include ramification points of higher
order, or branching cuts (for instance, tree-like cuts). The analog of the
topological recursion in this case has been proposed in [28, 119], and was
then shown to arise naturally in a limit situation where branch points are
simple but collide [21, 119].

Besides, we observe that cuts which are closed cycles do not give any
contribution to the topological recursion, provided some analyticity assump-
tions. The form of the topological recursion suggest that 1/N corrections in
generalized matrix models where eigenvalues live on a contour Γ come only
from fluctuations around the edges of the large N support Γ0 ⊆ Γ, while
collective effects do not allow more than O(N−∞) contributions from the
bulk. We are, however, not sure of the interpretation of this observation.
For instance, in unitary matrix models (which are normal matrix models
where eigenvalues live on the unit circle), would it mean that the parti-
tion function and the correlators cannot have an expansion in 1/N , or that
the first subleading term is actually a O(N−∞), unless a singularity in the
potential allows for another behavior?

When all quantities can be continued analytically on a compact Riemann
surface C of genus g (i.e., in the framework of the usual topological recursion
of [67]), the set B of fundamental 2-form of the second kind is an affine space
of dimension g(g+ 1)/2, and specifying normalization on certain A-cycles
selects a unique ω02 ∈ B. Let us denote τ the matrix of periods of C with
respect to a choice of symplectic basis (A,B) of homology cycles on C. One
may consider the ωg

n|(ε,κ) produced by the topological recursion from the
initial data twisted by third kind deformations:

ω01|ε = ω01 +
g∑

j=1

2iπ εj daj ,(8.4)

ω02|κ = ω02 +
∑

1≤j,k≤g

2iπ κj,k daj ⊗ dak,(8.5)

where ( daj)1≤j≤g is a basis of holomorphic 1-forms dual to A-cycles. The
result is that stable ωg

n|ε,κ are either modular but non-holomorphic in τ and
satisfy holomorphic anomaly equation, or holomorphic in τ but non-modular
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[62]. One may wonder if similar “modular” and “holomorphic anomaly prop-
erties” could be formulated in the more general formalism presented here.
“Holomorphic” here refers to the dependence in the moduli of the initial
data, and actually it is not completely clear what should be the good mod-
uli space(s) for the initial data (ω01, ω

0
2) in the framework of abstract loop

equations.
In repulsive particle systems, the strict convexity assumption (Defini-

tion 3.2) was essential to characterize completely the solution of loop equa-
tions: it implied the “solvability” of loop equations in the sense of Defini-
tion 2.12-(iv). New largeN phenomena are expected when this assumption is
not satisfied, and the problem is largely open since even the standard results
of potential theory concerning the leading order cannot be applied. One may
imagine a competition between several equilibrium measures, or/and that
entropic effects become relevant at leading order.
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Appendix A. Some examples of strictly convex interactions

We first make obvious remarks. If R0(x, y) defines a strictly convex inter-
action on I2, and J ⊆ I, then R0(x, y) defines a strictly convex interaction
on J2. The product of two strictly convex interaction is a strictly convex
interaction. Any positive power of a strictly convex interaction is a strictly
convex interaction. If ϕ : I → J is a diffeomorphism, R0(x, y) is a strictly
convex interaction on J2 iff then R0(ϕ(x), ϕ(y)) is a strictly convex interac-
tion on I2.

Lemma A.1. If L : R → R be even function with negative Fourier trans-
form, R0(x, y) = exp(L(x− y)) defines a strictly convex interaction on R,
and for any ρ ∈ [−2, 2], R0(x, y) = exp

(
L(x− y) + ρ

2L(x+ y)
)

defines a
strictly convex interaction on R+. The same result holds if R is replaced
by R/Z, and the Fourier transform by its discrete analog.

It is straightforward to generalize this result to s species of particles for
s ≥ 1. For instance, ρ becomes a matrix and a sufficient condition in the
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second case for having strictly convex interactions is that −2 ≤ ρ ≤ 2 as a
matrix. We have seen an avatar of this fact in Lemma 5.5.

Proof. For any signed measure ν with total mass 0, we may write

(A.1)
�

R2
dν(x) dν(y)L(x− y) =

∫
R

L̂(s) |ν̂(s)|2.

This expression is non-positive, and the left-hand side is finite iff the right-
hand side is finite. It vanishes iff ν̂ = 0, i.e., iff ν = 0. Similarly, for ν a signed
measure with total mass 0 and supported on R+, and for any ρ ∈ [−2, 2],
we may write

�
R2

dν(x) dν(y)
(
L(x− y) +

ρ

2
L(x+ y)

)
=
∫

R

[
(2 + ρ) (Re ν̂(s))2(A.2)

+ (2− ρ) (Im ν̂(s))2
]
.

This expression is non-positive, and the left-hand side is finite iff the right-
hand side is finite. When ρ ∈]− 2, 2[, it vanishes as before iff ν = 0. When
ρ = −2, it vanishes iff Re ν̂ = 0, which means that for any even bounded
continuous function ϕ, we must have ν(ϕ) = 0. Since ν is supported on R+,
this implies ν = 0. A similar proof works for ρ = 2, replacing Re by Im and
“even” by “odd,” showing that (A.2) vanishes iff ν = 0. �

We can apply Lemma A.2 to the following function defined on R:

(A.3) L(x) = ln |x| = lim
η→0

(
ln η − Re

∫ ∞

0

e−ηs

s
(eisx − 1) ds

)
and to the following functions defined on R/Z:

L(x) = ln | sinπx| = −
∞∑

m=1

cos(2πmx)
m

, L(x) = ln |ϑi(x|τ)|(A.4)

= −
∞∑

m=0

bm,i cos(2πmx),

where q = eiπτ and

(A.5)

bm,1 = (−1)mbm,2 =
1
m
+

2q2m

m(1− q2m)
, bm,3 = (−1)mbm,4 =

2q2m

m(1− q2m)
.
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Since, we have

snk

(
x

2K(k)

)
=

ϑ3(0)
ϑ2(0)

ϑ1(x)
ϑ4(x)

,(A.6)

sck

(
x

2K(k)

)
=

ϑ3(0)
ϑ4(0)

ϑ1(x)
ϑ2(x)

,

sdk

(
x

2K(k)

)
=

ϑ23(0)
ϑ2(0)ϑ4(0)

ϑ1(x)
ϑ3(x)

we can also apply Lemma A.2 to the functions L = snk, sdk and sck defined
on R/(2K(k)Z).

Appendix B. Table of main notations and definitions

Reference Notation Name

Ĉ Riemann sphere C ∪ {∞}
Definition 2.1 M(U) Space of meromorphic 1-forms

on U
Definition 2.1 H(U) Space of holomorphic 1-forms

on U
Definition 2.1 M ′({p}) Space of germs of meromorphic

1-forms near p
Definition 2.1 M ′−({p}) Negative Laurent polynomials

at p
Definition 2.4 H inv

Γ (U) Space of holomorphic 1-forms in
U , continuable across Γ

Definition 2.8 LΓ(U)
Definition 2.5 G(z, z0) Local Cauchy kernel
Definition 2.7 Space representable by residues
Definition 2.6 Normalized space
Section 2.3 H̃ Image of H by the map (2.6)
Section 2.3 HG Maximal space representable by

residue for G
Section 2.5 Hn Symmetric n-forms in n vari-

ables
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Reference Notation Name

Definition 2.2 U Domain
Section 2.1 Γ =

⋃r
j=1 γj ⊆ ∂U Cuts

Section 2.1 UΓ Open Riemann surface con-
taining U as physical sheet

Section 2.1 Uj Neighborhood of γj in the
physical sheet

Section 2.1 Vj = Uj
∐

γj
U ′j Annular neighborhood of γj

in UΓ
Section 2.1 V =

∐r
j=1 Vj

Section 2.1 ι Local involution across the
cuts

Ĉ Riemann sphere C ∪ {∞}
Definition 2.9 Γfix Set of ramification points

(fixed points of ι)
Equation (2.4) Sf(z) = f(z) + f(ι(z)) Analytic continuation of

2×(principal value)
Equation (2.4) Δf(z) = f(z)− f(ι(z)) Analytic continuation of the

discontinuity of the cut
Definition 2.11 Stable (n, g)
Definition 2.10 Off-critical 1-form
Definition 2.12 Linear loop equations
Definition 2.12 Solvable linear loop equa-

tions
Definition 2.13 Quadratic loop equations
Equation (2.19) Topological recursion for-

mula
Equation (2.20) Recursion kernel
Section 2.7 Free energies
Section 2.6 Spectral curve
Section 2.14 WDVV-compatible varia-

tion
Section 2.14 δΩ Infinitesimal deformation of

the initial data
Equation (3.2) Repulsive particle systems
Equation (3.2) V Potential
Equation (3.2) N Number of particles
Equation (3.19) O Compact integral operator
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Reference Notation Name

Equation (3.2) β Dyson index (power of the Vandermonde
determinant)

Equation (3.2) R Two-point interactions (excluding Van-
dermonde)

Section 3.2 R0 Two-point interactions (including Van-
dermonde)

Equation (3.2) ρ Power of the two-point interaction (−loop
fugacity)

Definition 3.1 Strongly confining interactions
Definition 3.2 Strictly convex interactions
Proposition 3.14 Γ0 Range of integration
Proposition 3.14 Γ Support of the equilibrium measure
Section 3.2 P1(Γ) Set of probability measures on Γ
Definition 3.5 B(z0, z) Fundamental 2-form of the second kind
Page 77 hj First kind differentials
Definition 3.6 Expansion of topological type
Section 5.1 s Number of colors
Section 5.2.2 M Set of maps
Section 5.1.1 sCMT Set of s-colored maps with tubes
Section 5.3.1 sML Set of s-colored maps with a loop config-

uration
Section 5.1 u, uk Weights per vertex
Section 5.1 tk,j Weights per face
Section 5.1 gk,l;i,j Weights per face carrying a loop
Section 5.1 −ρ,−ρk,l Loop fugacity (power of the two-point

interaction)
Section 5.1 n Number of boundaries
Section 5.1 g Genus
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[29] É. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Planar dia-
grams, Comm. Math. Phys. 59 (1978), 35–51 http://projecteuclid.
org/euclid.cmp/1103901558

[30] V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remod-
eling the B-model, Comm. Math. Phys. 287 (2009), 117–
178, hep-th/0709.1453.

[31] A. Brini, M. Mariño and S. Stevan, The uses of the refined
matrix model recursion, J. Math. Phys. 52 (2011), (052305),
hep-th/1010.1210.

[32] G. Bonelli, K. Maruyoshi, A. Tanzini and F. Yagi, Generalized matrix
models and AGT correspondance at all genera, J. High Energy Phys.
07 (2011), 055, hep-th/1011.5417.

[33] G. Borot and C. Nadal, Purity distribution for generalized random
Bures mixed states, J. Phys. A, Math. Theor. 45 (2012), (075209),
cond-mat.stat-mech/1110.3838.

[34] G. Borot, 2011, Quelques problèmes de géométrie énumérative,
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Thèse de doctorat, École Polytechnique, http://tel.archives-
ouvertes.fr/pastel-00005289/

[44] L.O. Chekhov, Matrix models with hard walls: geometry and solutions,
J. Phys. A 39 (2006), 8857–8894, hep-th/0602013.

[45] S. Chiantese, A. Klemm and I. Runkel, Higher order loop equations
for Ar and Dr quiver matrix models, J. High Energy Phys. 03 (2004),
033, hep-th/0311258.

[46] S. Caraciollo and A. Sportiello, Spanning forests on random planar
lattices, J. Stat. Phys. 135(5–6) (2009), 1063–1104, hep-th/09034432.

[47] F. David, Conformal field theories coupled to 2d quantum gravity in
the conformal gauge, Mod. Phys. Lett. A 3 (1988), 1651.

[48] P. Dunin-Barkowski, N. Orantin, S. Shadrin and L. Spitz, Identifica-
tion of the Givental formula with the spectral curve topological recur-
sion procedure, 2012, arXiv:1211.4021.

[49] P. Deift, Orthogonal polynomials and random matrices : a Riemann–
Hilbert approach, AMS, New York, 1998, Courant Institute of Mathe-
matical Sciences.



Abstract loop equations, topological recursion 181

[50] Vl.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint
correlation functions in 2D statistical models, Nucl. Phys. B 240
(1984), 312–348.

[51] Vl.S. Dotsenko and V.A. Fateev, Four-point correlation functions and
the operator algebra in 2D conformal invariant theories with central
charge c ≤ 1, Nucl. Phys. B 251 (1984), 691–734.

[52] P. di Francesco, P. Ginsparg and J. Zinn-Justin, 2d gravity and random
matrices, Phys. Rep. 254(1) (1994), hep-th/9306153v2.

[53] P. di Francesco, P. Mathieu and D. Sénéchal, Conformal field the-
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Ann. Henri Poincaré 12(8) (2011), 1431–1447, math.AG/0706.4403.

[79] P. Flajolet and R. Sedgewick, Analytic combinatorics, Cam-
bridge University Press, Cambridge, 2009, http://algo.inria.
fr/flajolet/Publications/books.html

[80] P. Freyd, D. Yetter, J. Hoste, W.B.R. Lickorish, K. Millett and
A. Ocneanu, A new polynomial invariant of knots and links, Bull.
Amer. Math. Soc. 12 (1985), 239–246.

[81] A. Givental, Gromov–Witten invariants and quantization of quadratic
Hamiltonians, Mosc. Math. J. 1(4) (2001), 551–568.

[82] M. Gaudin and I.K. Kostov, O(n) on a fluctuating lattice. Some exact
Results, Phys. Lett. B 220 (1–2) (1989), 200–206.
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