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Transcendental equations satisfied by the individual
zeros of Riemann (, Dirichlet and modular
L-functions

GUILHERME FRANGA AND ANDRE LECLAIR

We consider the non-trivial zeros of the Riemann (-function and
two classes of L-functions; Dirichlet L-functions and those based
on level one modular forms. We show that there are an infinite
number of zeros on the critical line in one-to-one correspondence
with the zeros of the cosine function, and thus enumerated by
an integer n. From this it follows that the ordinate of the nth
zero satisfies a transcendental equation that depends only on n.
Under weak assumptions, we show that the number of solutions of
this equation already saturates the counting formula on the entire
critical strip. We compute numerical solutions of these transcen-
dental equations and also its asymptotic limit of large ordinate.
The starting point is an explicit formula, yielding an approximate
solution for the ordinates of the zeros in terms of the Lambert
W -function. Our approach is a novel and simple method, that takes
into account arg L, to numerically compute non-trivial zeros of
L-functions. The method is surprisingly accurate, fast and easy to
implement. Employing these numerical solutions, in particular for
the (-function, we verify that the leading order asymptotic expan-
sion is accurate enough to numerically support Montgomery’s and
Odlyzko’s pair correlation conjectures, and also to reconstruct the
prime number counting function. Furthermore, the numerical solu-
tions of the exact transcendental equation can determine the ordi-
nates of the zeros to any desired accuracy. We also study in detail
Dirichlet L-functions and the L-function for the modular form
based on the Ramanujan 7-function, which is closely related to
the bosonic string partition function.

1. Introduction

Riemann’s major contribution to number theory was an explicit formula for
the arithmetic function 7(x), which counts the number of primes less than z,
in terms of an infinite sum over the non-trivial zeros of the ((s) function, i.e.,
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roots p of the equation ((p) = 0 on the critical strip 0 < R(s) <1 [1]. It was
later proven by Hadamard and de la Vallée Poussin that there are no zeros on
the line R(s) = 1, which in turn proved the prime number theorem, 7(z) ~
Li(x). (See Section 7.3 for a review.) Hardy proved that there are an infinite
number of zeros on the critical line R(s) = 5. The Riemann hypothesis (RH)
was Riemann’s statement in his seminal eight-page paper [1] that all non-
trivial zeros have ®(p) = 1. In his own words, concerning the roots ¢ to the
equation ((3 +it) =0,

... it is very likely that all roots are real. One would of course like to have
a rigorous proof of this, but I have put aside the search for such a proof
after some fleeting vain attempts . ...

Despite strong numerical evidence of its validity, it remains unproven to this
day. Many important mathematical results were proven assuming the RH, so
it is a cornerstone of fundamental mathematics. Some excellent introductions
to the RH are given in [2-5].

Riemann also gave an estimate N(T'), given by (15) but without the
S(T') term, for the average number of zeros on the entire critical strip with
0 < $(p) < T. This formula was later proven by von Mangoldt, but it has
never been proven to be valid on the critical line, as explicitly stated in
Edward’s book [2]. Denoting the number of zeros on the critical line up
to height T by Ny(T'), Hardy and Littlewood proved that No(T) > CT.
Selberg improved this result stating that No(T') > C T'log T for very small
C. Levinson [6] demonstrated that No(T) > CN(T') where C = %, which was
further improved by Conrey [7] who obtained C' = % Further improvements
on this last result are in [8, 9]. Obviously, if the RH is true we must have
No(T) = N(T). These statements are described in [2, 10].

The RH is formulated as a problem in pure mathematics, rather than
physics, however it has interesting connections with different areas of physics
such as quantum mechanics, quantum chaos and in particular quantum
statistical physics. For an extensive review we refer the reader to [11].
Although the work presented here does not intrinsically bring physics ideas
to bear on the problem, and is essentially pure mathematics, it is worth-
while mentioning some ideas on the RH that are based on physics, even
if the purpose is only to make contrasts with the present work. Julia [12]
and Spector [13] proposed independently the free “Riemann gas” where the
partition function is ¢. In [13] supersymmetry and the Witten index were
key ingredients. A string theory perspective on the RH is also possible.
Bakas and Bowick [14] considered an arithmetic gas to construct a formula
for boson-parafermion equivalence using properties of (. Examples of exactly
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solvable models were also discussed. Spector [15] considered dualities in field
theory that are related to arithmetic functions. These are analogs of dual-
ities in string theory. He introduced the notion of partial supersymmetry,
leading to a formulation of parafermions of non-integer order and found
a bosonic analog of the Witten index. These arithmetic quantum theories
have a partition function related to {, and possess, like string theory, a
Hagedorn temperature. In [16] the RH is reformulated in terms of ultravio-
let relations occurring in perturbative closed strings. A connection between
Gromov—Witten invariants, topological string theory and Riemann zeros has
also been motivated [17]. More ideas relating the RH to strings and geom-
etry can be found in [18]. A connection of the RH to quantum gases in low
dimensions was proposed in [19].

The most prominent idea related to physics goes back to an old idea of
Hilbert—Pdlya. Below, we will describe and study Montgomery’s conjecture
that the ordinates of non-trivial zeros of the (-function satisfy the statis-
tics of the Gaussian unitary ensemble (GUE) [20]. The latter led Berry
to propose that the ordinates of the non-trivial zeros are eigenvalues of a
chaotic Hamiltonian [21]. Berry’s work indicates interesting connections of
the RH to quantum chaos and was further explored in numerous papers.
For instance, in [22, 23] an analogy between the ordinates of the Riemann
zeros and energy levels of a (unknown) quantum Hermitian operator with
chaotic dynamics was proposed. The classical counterpart of such a hypo-
thetical quantum system is associated with the Hamiltonian H = xp. Based
on this approach, a mapping between the Berry—Keating model and the
Russian doll model of superconductivity was proposed [24]. This model is
exactly solvable and has a cyclic renormalization group. In [25] a generaliza-
tion of the Berry—Keating model was considered by adding an interaction
term to the Hamiltonian. All these works focus on N(T') and carry out the
analysis on the critical line, i.e., they essentially assume the validity of the
RH. Nevertheless, a number of interesting analytic results were obtained,
emphasizing the important role of the fluctuating term in the counting for-
mula N(T), namely the function S(T) = Larg( (1 +iT). However, these
works can only reproduce the smooth part of N(7T') through a semi-classical
approach. Instead of associating Riemann zeros with eigenstates of a quan-
tum Hamiltonian, as in the previously mentioned papers, the authors of
[26] focus on the scattering problem. They associate the smooth phase of
the (-function with the density of states of a quantum inverted harmonic
oscillator. In a related, but essentially different approach than Berry and
Keating, Connes used abstract mathematical objects called adeles. In this
approach there exists an operator playing the role of the Hamiltonian, which
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has a continuous spectrum, and the Riemann zeros correspond to missing
spectral lines [27]. Connes proposed a hypothetical trace formula which, if
proved, can lead to a proof of the RH. A dynamical system whose parti-
tion function is the (-function was also proposed [28]. Unfortunately, thus
far, a quantum mechanical Hermitian operator whose spectrum yields the
non-trivial zeros has not yet been found. A quantum field theoretical con-
struction with a spectrum given by the Riemann zeros has also been pursued,
although a free bosonic field theory with a spectrum related to prime num-
bers is unlikely [29, 30], since its path integral cannot be zeta regularized.
We will not be pursuing these ideas here, rather, the basis of our work is a
novel mathematical analysis of the original problem.

L-functions are generalizations of the Riemann (-function, the latter
being the trivial case [31]. In this paper we will consider two different classes
of L-functions; Dirichlet L-functions and L-functions associated with modu-
lar forms. The former have applications primarily in multiplicative number
theory, whereas the latter in additive number theory. These functions can be
analytically continued to the entire (upper half) complex plane. The Gener-
alized Riemann hypothesis (GRH) is the conjecture that all non-trivial zeros
of Dirichlet L-functions and global L-functions in general lie on the critical
line. Much less is known about the zeros of L-functions in comparison with
the (-function, however let us mention a few works. Selberg [32] obtained
the analog of Riemann—von Mangoldt counting formula (15) for Dirichlet
L-functions. Based on this result, Fujii [33] gave an estimate for the num-
ber of zeros in the critical strip with the ordinate between [T, T + H]. The
distribution of low-lying zeros of L-functions near and at the critical line
was examined in [34], assuming the GRH. The statistics of the zeros, i.e.,
the analog of the Montgomery—Odlyzko conjecture, were studied in [35-37].
It is also known that more than half of the non-trivial zeros of Dirichlet
L-functions are on the critical line [38]. For a more detailed introduction to
L-functions see [39].

Besides the Dirichlet L-functions, there are more general constructions
of L-functions based on arithmetic and geometric objects, like varieties
over number fields and modular forms [40, 41]. Some results for general
L-functions are still conjectural. For instance, it is not even clear if some
L-functions can be analytically continued into a meromorphic function.
We will only consider the additional L-functions based on modular forms
here. Thus the L-functions considered in this paper have similar properties,
namely, they possess an Euler product, can be analytically continued into
the (upper half) complex plane, except for possible poles at z =0 and 1,
and satisfy a non-trivial functional equation.
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Since it is well known that there are an infinite number of zeros on the
critical line for the Riemann (-function, if in some region of the critical
strip one can show that the counting formula (15) correctly counts the zeros
on the critical line, then this proves the RH in this region of the strip. It
has been shown numerically that the first billion or so zeros all lie on the
critical line [42, 43], thus one can approach this problem asymptotically.
Such an analysis was carried out in [44], where the main outcome was an
asymptotic transcendental equation for the ordinate of the nth Riemann zero
on the critical line. The way in which this equation is derived shows that
these zeros are in one-to-one correspondence with the zeros of the cosine
function; it is in this manner that the n-dependence arises. In this paper
we provide a more rigorous and through analysis of this result. Moreover,
we propose generalizations. We derive an exact equation satisfied by the
Riemann zeros on the critical line, where the above-mentioned asymptotic
equation is obtained as a limit of large n. We also generalize these results
to Dirichlet L-functions and to L-functions related to modular forms. For
all these classes of functions we obtain an exact equation for the ordinate
of the nth zero on the critical line. Since such an equation comes from a
relation with the cosine function, its solutions can be automatically counted.
We will argue that, under weak assumptions, the number of solutions of the
transcendental equation coincides with the known counting formula for zeros
on the entire critical strip, i.e., No(T") = N(T).

We organize our work as follows. In Section 2 we derive an exact equa-
tion satisfied by each individual Riemann zero on the critical line. We discuss
how the number of its solutions can be the same as the counting formula on
the entire critical strip. In Section 3 we follow the same analysis for Dirich-
let L-functions, and in Section 4 for L-functions based on level one modular
forms. In Section 5 we derive a useful approximation for the zeros expressed
explicitly in terms of the Lambert W-function. In Section 6 we consider
the counterexample of Davenport—Heilbronn, which is known to violate the
RH, and discuss how the RH fails based on the different properties of our
transcendental equation in comparison with previous cases. In Section 7 we
obtain numerical solutions to the transcendental equation related to the
Riemann (-function. We show that the leading order asymptotic approxi-
mation is accurate enough to reproduce the GUE statistics and the prime
number counting function. Furthermore, we show that solutions to the exact
transcendental equation yield highly accurate results, up to 500 digit accu-
racy or more if desired. In Section 8 we solve numerically the transcendental
equation related to Dirichlet L-functions, considering two explicit exam-
ples. We also consider numerical solutions for L-functions based on modular
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forms, in particular for the L-function based on the Ramanujan 7-function,
which is related to the bosonic string theory. Section 9 contains our con-
cluding remarks. In Appendix A we present the short Mathematica code
we used to calculate the zeros for Dirichlet L-functions, some of which are
shown in Appendix B.

2. Zeros of the Riemann (-function

For simplicity we first consider the Riemann (-function, which is the simplest
Dirichlet L-function. Moreover, we first consider the asymptotic equation
(13), first proposed in [44], since it involves more familiar functions. How-
ever, this asymptotic equation should here be viewed as following straight-
forwardly from the new exact equation (20), presented later.

2.1. Asymptotic equation satisfied by the nth zero

Let us start with the completed Riemann zeta function defined by

(1) X(s) =7 T (3/2) ((s),

where s = o 4 it. In quantum statistical physics, this function is the free
energy of a gas of massless bosonic particles in d spatial dimensions when
s=d+1 [19], up to the overall power of the temperature T d+1 Under
a “modular” transformation that exchanges one spatial coordinate with
Fuclidean time, if one analytically continues d, physical arguments show
that it must have the symmetry

(2) x(s8)=x(1—5s).

This is the fundamental, and amazing, functional equation satisfied by the
(-function, which was proven by Riemann using only complex analysis. For
several different ways of proving (2) see [10]. Now consider Stirling’s approxi-
mation I'(s) o~ /2ms°~1/2e=% which is valid for large ¢. Under this condition
we also have

t
(3) ss—exp{i(tlogt—i—gj)+alogt—7;—|—U+O(t1)}.
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Therefore, using the polar representation ¢ = |¢|e?®#¢ and the above expan-
sions, we can write x(s) = Ae? where

A\ (0-1)/2
(4) Ao, t) =V2rn o/ <2> ™o +it)| (1+0 (s71)),

(5)  O(o,t) = %log <2t7re) + %(J — 1) +arg((c+it)+ 0 (t71).

The above approximation is very accurate. For ¢t as low as 100, it evaluates
X (% =+ it) correctly to one part in 10%. Above, we are assuming ¢ > 0. The
results for t < 0 follows trivially from the relation y(s) = x(3).

Now let p = o + it be a Riemann zero. Then arg ((p) can be defined by

the limit
(6) arg( (p) = 5h%l+ arg( (o + 60 +it) .

For reasons that are explained below, it is important that 0 < § < 1. This
limit in general is not zero. For instance, for the first Riemann zero given by
p1 ~ % +1314.1347, we have arg( (p1) ~ 0.157873919880941213041945. On
the critical line s = % + it, if ¢ does not correspond to the imaginary part
of a zero, the well-known function S(¢) = 2 arg ¢ (3 + it) is defined by con-
tinuous variation along the straight lines starting from 2, then up to 2 + it
and finally to 3 + it, where arg ((2) = 0. Assuming the RH, the current best
bound is [S(¢)] < (§ + o(1)) log’ifgt for t — oo, proven by Carneiro, Chandee
and Milinovich [45], improving on a previous work of Goldston and Gonek
[46]. On a zero, the more standard way to define this term is through the
limit S(p) = 3 lime_o (S (p + i€) + S (p — i€)). We have checked numerically
that for several zeros on the line, our definition (6) gives the same answer
as this standard approach, and also agrees with the standard definition of
S(t) where t is not the ordinate of a zero.

From (1) we have x(s) = x (5), which implies that A(c, —t) = A(o,t)
and (o, —t) = —0(o,t). Denoting x (1 — 5) = A’ e~ we then have

(7) Ao, t) = A(1 —o,t), O'(o,t) =0(1—0,t).

From (2) we also have |x(s)| = |x(1 — s)|, therefore A(o,t) = A'(o,t) for any
s on the critical strip.

Let us now approach a zero p = o + it through the § — 07 limit. From (1)
it follows that ((s) and x(s) have the same zeros on the critical strip, so it
is enough to consider the zeros of x(s). From (2) we see that if p is a zero



8 Guilherme Franca and André LeClair

so is 1 — p. Then we clearly have!

(8) 51—i>%1+ x(p+0)+x(1—p—19)]= 51—i>%1+ Ao +0,t)B(o +4,t) =0,
where we have defined

(9) B(o,t) = 1) 4 gm0,

The second equality in (8) follows from A = A’. Then, in the limit § — 0T,
a zero corresponds to A =0, B =0 or both. They can simultaneously be
zero since they are not independent. If B =0 then A =0, since A o [(].
However, the converse is not necessarily true. In order to be more rigorous,
one should consider the limits § — 0" separately in A versus B; below we
will consider taking the limit in B first.

The non-trivial behavior of A is mostly dictated by |¢|. On the other
hand, there is much more structure in B since it contains the phases of x(s)
and x(1 —s). It describes oscillations on the complex plane and involves
tlogt and ( itself. Thus let us consider B = 0. We will provide ample evi-
dence that all zeros are characterized by this equation. The general solution
of B =0 is given by

(10) 0+60 =(2n+ 1),

which are a family of curves t(o). However, since x(s) is analytic on the crit-
ical strip, we know that the zeros must be isolated points rather than curves,
thus this general solution must be restricted. Let us choose the particular
solution

(11) =60, lim cosf =0.

6—0

On the critical line o =1, from (7) we have that the first equation in
(11) is already satisfied. Then from the second equation in (11) we obtain

!The linear combination in (8) was chosen to be manifestly symmetric under
s — 1 — s. Had we taken a different linear combination in (8), then B = ¢% + be i
for some constant b. Setting the real and imaginary parts of B to zero gives the two
equations cosf + bcosf’ = 0 and sinf — bsin @’ = 0. Summing the squares of these
equations one obtains cos(6 + 0') = —(b + 1/b)/2. However, since b + 1/b > 1, there
are no solutions except for b = 1.
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lims_,o+ 0 (% + 9, t) = (n + %) 7w for n =0,41,42,..., hence

(12) n:2t7rlog<2fm>—§+6li%1+iarg§(%+5+it).
A closer inspection shows that the right-hand side of (12) has a minimum in
the interval (—2, —1), thus n is bounded from below, i.e., n > —1. Establish-
ing the convention that zeros are labeled by positive integers, p, = % + ity
where n =1,2,..., we must replace n — n — 2 in (12). Therefore, the imag-
inary parts of these zeros satisfy the transcendental equation

ty 11

tn o1 1 Ly
(13) %bg <%€> +6li)%l+;arg<(§—|—(5—{—ltn) =n—-3

In short, we have shown that, asymptotically, there are an infinite number of
zeros on the critical line whose ordinates can be determined by solving (13).
This equation determines the zeros on the upper half of the critical line.
The zeros on the lower half are symmetrically distributed; if p, = % + ity is
a zero, so is p,, = % — ity.

The left-hand side of (13) is a monotonically increasing function of ¢, and
the leading term is a smooth function. This is clear since the same terms
appear in the staircase function N(T'), Equation (15); see also Remark 1.
Possible discontinuities can only come from %arg( (% + it), and in fact, it
has a jump discontinuity whenever ¢ corresponds to the ordinate of a zero on
or off the critical line. However, if limgs_,o+ arg (% +0+ z't) is well defined
for every t, then the left-hand side of Equation (13) is well defined for any
t, and due to its monotonicity, there must be a unique solution for every
n. Under this assumption, the number of solutions of Equation (13), up to
height T, is given by

T T 7 1
(14)  No(T) = 5—log (m> +gt —argC (3 +iT)+0(T7).
This is so because the zeros are already numbered in (13). Thus we can
replace n — Ng + % and t, — T, such that the jumps correspond to integer
values. In this way T will not correspond to the ordinate of a zero and
0 can be eliminated. In summary, No(7T) in (14) counts the solutions to
Equation (13) for zeros on the critical line, assuming there is a solution for
every n, and without assuming the RH.

Using Cauchy’s argument principle it is known that one can derive the
Riemann—von Mangoldt formula, which gives the number of zeros inside the
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critical strip with 0 < (p) < T'. This formula is given by [2, 10]

(15) N(T) = % log <2Ze> + g +8(T)+0(T™),

where S(T) = 2 arg( (3 +4T). The above formula without the S(T") term
was already in Riemann’s paper [1]. Note that it has the same form as the
counting formula on the critical line that we have just found, Equation (14).
Thus, under the assumptions we have described, we conclude that No(T") ~
N(T), at least asymptotically for now. In the next section we will present
the exact version. This means that our particular solution (11), leading to
Equation (13), already saturates the counting formula on the entire critical
strip and there are no additional zeros from A =0 in (8), nor from the
general solution (10). This strongly suggests that (13) describes all non-
trivial zeros of ¢, which must then lie on the critical line. We emphasize that
we have not assumed the RH in the above arguments. In Section 9 we will
summarize the assumptions which lead to the exact version of Equation (13)
described below and reiterate its implications for the RH.

2.2. Exact equation for the nth zero

It is straightforward to repeat the above analysis without considering an
asymptotic expansion. The exact versions of (4) and (5) are

(16) Al t) =m0 (3(0 + b)) [IG (o +it)]
(17) 0(o,t) = argT (3 (0 +it)) — %logw+arg§(o+it),

where again x(s) = 4e? and x(1 — s) = A'e™' | with A'(c,t) = A(1 — 0,1)

and 0'(0,t) = (1 — o,t). The zeros on the critical line o = 3 correspond

to the particular solution 6 = 6" and lims_g+ cos @ = 0. Therefore we have
limg_,g+ 6 (% + 4, t) = (n + %) m. Replacing n — n — 2, the imaginary parts
of these zeros must satisfy the exact equation

(18) argT’ (i + %tn) —tylog /T + 6111& arg ¢ (% +4d5+ itn) = (n — %) .
The Riemann—Siegel ¢ function is defined by
(19) J(t) = argD (3 + 4t) — tlog v/,

where argI' is defined such that this function is continuous and ¥(0) = 0.
Therefore, we conclude that there are an infinite number of zeros in the form
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Pn = % + it,, where n = 1,2, ..., whose imaginary parts ezactly satisfy the
following equation:

(20) I(ta) + lim argC (5 +06+itn) = (n— )

Expanding the I'-function in (19) through Stirling’s formula one obtains
V(tn) = 4 log (3) — & + O (1/t,), and recovers the asymptotic Equation
(13) from (20). Let us mention at this point that our approach of considering
zeros of B = 0, namely (10), is also able to reproduce the trivial zeros on the
negative real line, and also zeros off of the critical line in the counterexample
of Section 6 [53].

Again, as discussed in the paragraph above Equation (14), the first term
in (20) is smooth and the whole left-hand side is a monotonic increasing
function. If limg_g+ ¢ (% + 0+ it) is well defined for every t, then Equa-
tion (20) must have a unique solution for every n; see also Section 6. Under
this assumption it is valid to replace t,, — T and n — Ny + %, so the number
of solutions of (20) is given by

(21) No(T) = %ﬁ(T) +1+ %arg( (3 +4T).

The exact Backlund counting formula, which gives the number of zeros
on the entire critical strip with 0 < J(p) < T, is given by the well-known
formula [2]

(22) N(T) = %ﬁ(T) 14 5(T).

Therefore, comparing with the exact counting formula on the entire critical
strip (22), we have No(T') = N(T') exactly. This indicates that our particu-
lar solution, leading to Equation (20), captures all the zeros on the critical
strip, and they should all be on the critical line.

In summary, without assuming the RH, but under the assumption that
lims_,g+ arg ¢ (% +4d+ it) exists for every ¢, then (20) has a unique solution
for every n. If there is indeed a unique solution for every n, then this leads
to a No(T') which saturates the counting formula for the entire critical strip,
and this would establish the validity of the RH. Furthermore, it implies that
all non-trivial zeros are simple, as explained in Remark 2. Further related
and clarifying remarks, based on a counterexample, are in Section 6.
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Figure 1: (a) A plot of %arg{ (% + z't) as a function of ¢ showing its rapid
oscillation. The jumps occur on a Riemann zero. (b) The function Ny(T')
in (14), which is indistinguishable from a manual counting of zeros. The
dashed line is the smooth part without the arg ¢ term.

2.3. Further remarks

Remark 1. The small shift by § in Equation (20) or (13) is essential since it
smooths out S(t) = % arg ¢ (% + it), which is known to jump discontinuously
at each Riemann zero. As is well known, S(¢) is a piecewise continuous
function that rapidly oscillates around its average value, which is zero, with
discontinuous jumps, as shown in figure la. However, when S(t) is added
to the smooth part of N(T') one obtains an accurate staircase function,
which jumps by the multiplicity of the zero at the ordinate of each Riemann
zero; see figure 1b. Note that N(T") is necessarily a monotonically increasing
function since it is a counting formula.

One reason ¢ needs to be positive in (20) can be seen as follows. Near a
simple zero p,, we have ((s) = (s — pn) (' (pn) = (0 + i (t — t,)) (' (pn). This
gives arg ((s) ~ arctan ((t — t,)/d) + ¢, where c is a constant. With § > 0 as
one passes through a zero from below, S(t) increases by one, as it should be
based on its role in the counting formula N (7). On the other hand, if § < 0

then S(t) would decrease by one instead, which cannot be the case?.

Remark 2. An important consequence of Equation (20) is that, again, if it
has a unique solution for every n, then all non-trivial zeros are simple. This
essentially follows from the fact that they are in one-to-one correspondence
with the zeros of the cosine function (11), which are simple. To see this,
let us suppose there is a double zero at ordinate t,, i.e., tn41 = tn = to.

2Note added: there are deeper reasons why & has to be positive, described in our
subsequent work [59], which is discussed in the concluding section of the present
article.
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Then subtracting Equation (20) with ¢, from the corresponding equation
with t,+1, we obtain a contradiction, namely 0 = 7. Therefore, for n # m
Equation (20) implies ¢,, # tm,.

Now if we actually assume that the zeros on the critical line are simple
(which we have not), there is an easier way to see that the zeros correspond to
cos = 0. On the critical line s = % + it, the functional equation (2) implies
X(s) is real, thus for ¢ not the ordinate of a zero, sinf = 0 and cosf = +1.
Thus cos @ is a discontinuous function. Now let ¢, be the ordinate of a simple
zero. Then close to such a zero we define

x(3 +it) t—te

(23) c(t) N ~ rrat

For ¢t > t, then c(t) =1, and for t < te then c(t) = —1. Thus c(t) is
discontinuous precisely at the zero. In the above polar representation, for-
mally ¢(t) = cosf (%,t). Therefore, by identifying zeros as the solutions to
cos = 0, we are simply defining the value of the function ¢(¢) at the dis-
continuity as c(te) = 0.

Remark 3. Let us introduce another function ¢(s) — (s) = f(s)((s) that
also satisfies the functional equation (2), i.e., X(s) = X(1 — s), but has zeros
off of the critical line due to the zeros of f(s). In such a case the corre-
sponding functional equation will hold if and only if f(s)= f(1—s) for
any s, and this is a trivial condition on f(s) which could have been can-
celed in the first place. Moreover, if f(s) and ((s) have different zeros,
the analog of Equation (8) has a factor f(s), i.e., x(p+ )+ x(1—p—19) =
flp+8)[x(p+0)+ x(1—p—0)] =0, implying (8) again where x(s) is the
original (1). Therefore, the previous analysis eliminates f(s) automatically
and only finds the zeros of x(s). The analysis is non-trivial precisely because
((s) satisfies the functional equation but ((s) # ((1 — s). Furthermore, it is a
well-known theorem that the only function that satisfies the functional equa-
tion (2) and has the same characteristics of ((s), is ((s) itself. In other words,
if ((s) is required to have the same properties of ((s), then ((s) = C((s)
where C is a constant [10, p. 31].

Remark 4. Although Equations (20) and (22) have an obvious resem-
blance, it is impossible to derive the former from the later, since the later is
just a counting formula valid on the entire strip, and it is assumed that T’
is not the ordinate of a zero. Moreover, such a derivation would require the
assumption of the validity of the RH and the simplicity of the zeros, contrary
to our approach, where we derived Equations (20) and (13) directly on the



14 Guilherme Franga and André LeClair

critical line, without assuming the RH, nor the known counting formula
N(T). Despite our best efforts, we were not able to find Equations (13)
and (20) in the literature. Furthermore, the counting formulas (14) and (22)
have never been proven to be valid on the critical line [2].

Remark 5. One may object that our basic Equation (20) involves ((s)
itself and this is somehow circular. This is not a valid counter-argument.
First of all, arg  already appears in the counting function N(7"). Secondly,
Equation (20) is a much more detailed equation than simply ((s) = 0, which
has an infinite number of solutions, in contrast with (20) which for each n, as
we have argued, has a unique solution corresponding to the nth zero. Also,
there are well-known ways to calculate arg (, for example from an integral
representation or a convergent series [47].

3. Zeros of Dirichlet L-functions
3.1. Some properties of Dirichlet L-functions

We now consider the generalization of the previous results to Dirichlet L-
functions. Let us first introduce the basic ingredients and definitions regard-
ing this class of functions, which are all well known [31]. Dirichlet L-series
are defined as

(24) Lisy) =3 X
n=1

n

for R(s) > 1, where the arithmetic function x(n) is a Dirichlet character.
They can all be analytically continued to the entire complex plane, except
possibly for a simple pole at s = 1 when Y is principal, and are then referred
to as Dirichlet L-functions.

There are an infinite number of distinct Dirichlet characters which are
primarily characterized by their modulus k£, which determines their period-
icity. They can be defined axiomatically, which leads to specific properties,
some of which we now describe. Consider a Dirichlet character x mod &, and
let the symbol (n, k) denote the greatest common divisor of the two integers
n and k. Then x has the following properties:

(1) x(n+ k) = x(n).
(2) x(1) =1 and x(0) = 0.
(3) x(nm) = x(n)x(m).
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(4) x(n) =01if (n,k) > 1 and x(n) # 0 if (n,k) = 1.

(5) If (n, k) = 1 then x(n)?*) =1, where ¢(k) is the Euler totient arith-
metic function. This implies that x(n) are roots of unity.

(6) If x is a Dirichlet character so is the complex conjugate .

For a given modulus k there are ¢(k) distinct Dirichlet characters, which
essentially follows from Property 3.1 above. They can thus be labeled as
Xk,; where j =1,2,..., (k) denotes an arbitrary ordering. If k = 1 we have
the trivial character where y(n) =1 for every n, and (24) reduces to the
Riemann (-function. The principal character, usually denoted by xi, is
defined as x1(n) = 1 if (n,k) = 1 and zero otherwise. In the above notation
the principal character is always xy 1.

Characters can be classified as primitive or non-primitive. Consider the
Gauss sum

k
(25) G(x) =Y x(m)e*mm/k,
m=1

If the character x mod k is primitive, then |G(x)|? = k. This is no longer
valid for a non-primitive character. Consider a non-primitive character X
mod k. Then it can be expressed in terms of a primitive character of smaller
modulus as X(n) = x1(n)x(n), where X1 _is the principal character mod &
and x is a primitive character mod k < k, where k is a divisor of k. More
precisely, £ must be the conductor of Y (see [31] for further details). In this
case the two L-functions are related as L(s,X) = L(s, X)le% (1—x(p)/p°).
Thus L(s, X) has the same zeros as L(s, x). Therefore, it suffices to consider
primitive characters, and we will henceforth do so.

We will need the functional equation satisfied by L(s, x). Let x be a
primitive character. Define its order a such that

26) . {1 if x(—1) = —1 (odd),

0 if x(—1) =1 (even).

Let us define the entire function

(27) Moo= () (50 B




16 Guilherme Franca and André LeClair

Then A satisfies the following well-known functional equation, only valid for
primitive characters [31]:

i G(x)
Vk

3.2. Exact equation for the nth zero

(28) A(s,x) = A(l = s,%).

For a primitive character, since |G(x)| = vk, the factor on the right-hand
side of (28) is a phase. It is thus possible to obtain a more symmetric form
through a new function defined as
j0/2 |1/4
(29) 6(87X) = A(87X)
G (x)

It then satisfies

(30) 5(87X) :g(l_SaX) 55(1_57X)‘

Above, the function & of s is defined as the complex conjugation of all coef-
ficients that define ¢, namely x and the i%/2 factor, evaluated at a non-
conjugated s.

Note that A(s, x) = A(3,X). Using the known result G (¥) = x(—1)G(x)
we then conclude that

(31) 5(87 X) =¢ (ga Y) :

This implies that if the character is real, when p is a zero of £ so is p, and one
needs only to consider p with positive imaginary part. On the other hand
if x # X, then the zeros with negative imaginary part are different from p.
For the trivial character where k = 1 and a = 0, implying x(n) = 1 for any
n, then L(s, x) reduces to the Riemann ((s) and (30) yields the well-known
functional equation (2).

Let s = o + it. Then the function (29) can be written as £(s, x) = Ae'
where

32)  A(o,t,x) = <7"T">U—2F 'r (“*“*”)‘ L(o + it, ¥)|,

(33) 0(o,t,x) :argF<U+a+Zt>
+

+ arg L(o +it, x)

t 7r 1
5 %) g8 G(x)

T
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From (31) we have that A(o,t, x) = A(o, —t,X) and 0(o,t, x) = —0(0, —t,X).
Denoting £(1 — s,x) = A’e™™" we then have A'(o,t,x) = A(1 — 0,t,x) and
0'(o,t,x) = 0(1 — o,t,x). Taking the modulus of (30) we also have that
A(o,t, x) = A'(o,t, x) for any s.

On the critical strip, the functions L(s,x) and £(s, x) have the same
zeros. Thus on a zero we clearly have

(34) Jim {&(p+0,x) +€(1—p=0,x)} =0.

Let us define

(35) B(o,t,x) = et 4 gm0t

Since A = A’ everywhere, from (34) we conclude that on a zero we have

(36) 5h%1+ A(o +90,t,x)B(o +d,t,x) =0.

As before, let us consider the particular solution of limgs g+ B = 0 given by

(37) =0, lim cosf = 0.

6—0

Let us define the function

When k& =1 and a = 0, the function (38) is just the usual Riemann—Siegel
¥ function (19). Since the function logI' has a complicated branch cut, one
can use the following series representation in (38) [58]:

(39) log'(s) = —ys — log s — i {10g (1 + %) - %} ,
n=1

where v is the Euler-Mascheroni constant. Nevertheless, most numerical
packages already have the log I' function implemented.



18 Guilherme Franca and André LeClair

On the critical line o = § the first equation in (37) is already satisfied.
From the second equation we have limg_,g+ 0 (% + 6, t) = (n + %) m, there-
fore

. ‘ argG  ma 1
(40)  Dko(tn) + lim arg L (3 +6+itn, x) — g t = (n + 2) .

Analyzing the left-hand side of (40) we can see that it has a minimum,
thus we shift n — n — (ng 4+ 1) for a given ng, to label the zeros according
to the convention that the first positive zero is labeled by n = 1. Thus the
upper half of the critical line will have the zeros labeled by n =1,2,...
corresponding to positive t,, while the lower half will have the negative
values t, labeled by n =0,—1,.... The integer ng depends on k, a and
X, and should be chosen according to each specific case. In the cases we
analyze below ng = 0, whereas for the trivial character ng = 1. Henceforth
we will omit the integer ng in the equations, since all cases analyzed in the
following have ng = 0. Nevertheless, the reader should bear in mind that
for other cases, it may be necessary to replace n — n — ng in the following
equations.

In summary, there are an infinite number of zeros on the critical line,
i.e., in the form p, = % + it,, where for a given n € Z, the imaginary part
t, is the solution of the equation

(41) Vg oltn) + 51i161+ arg L (% + 0 +ity, X) _

5 - _Z

gl (,-}3).

3.3. Asymptotic equation for the nth zero

From Stirling’s formula we have the following asymptotic form for ¢ — +oo:

(42) Orealt) = sgn(t) [';' log (’;i) + 2‘%% +o(1 /t)] .

The first-order approximation of (41), i.e., neglecting O(1/t) terms, is there-
fore given by

t k|t 1
v Mlog <’n|) + — lim arg L (3 + 6 +ivy[tal, x)

(43) "or ome 7r1 50+ L et )
B vy, —4 —2a Up
— 5 agG ) =n+ 5 :
where v, = 1 if n > 0 and v, = —1 if n < 0. For n > 0 we have t,, = |t,,| and

for n < 0 we have t, = —|ty]|.
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Figure 2: Exact counting formulae (44) and (45). Note that they are not
symmetric with respect to the origin, since the L-zeros for complex x are
not complex conjugates. We used x = x7,2 shown in (81).

3.4. Counting formulas

Let us define N (T,x) as the number of zeros on the critical line with
0 < S(p) < T and Ny (T, x) as the number of zeros with —T" < J(p) < 0. As
explained before, N (T, x) # N, (T, x) if the characters are complex num-
bers, since the zeros are not symmetrically distributed between the upper
and lower half of the critical line.

The counting formula Ny (7', x) is obtained from Equation (41) by replac-
ing t, —» T and n — NJ + %, therefore

(44) N (T,x) = %ﬂk,a(T) + %argL (3 +iT,x) — % arg G (x) + %.

The passage from (41) to (44) is justified under the assumptions already
discussed in connection with (14) and (21), i.e., assuming that (41) has a
unique solution for every n. As explained above for the Riemann ( case, this
is equivalent to assume the existence of the lims_o+ arg L (% + 6 + it, X) for
every t. Analogously, the counting formula on the lower half line is given by

_ 1 1 1. 1 a
(45) Ny (T, x) = ;ﬁk,a(T) - arg L (§ — T, X) + o arg G(x) — 1
Note that in (44) and (45) T is positive. Both cases are plotted in figure 2
for the character x72 shown in (81). One can notice that they are precisely
staircase functions, jumping by one at each zero. Note also that the functions
are not symmetric about the origin.
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From (42) we also have the first-order approximation for 7" — oo,

T kT 1 argG 1 a
+ - - bl - 1, - _ 4z
(46) Ny (T, x) = 5 log (2776) +7rargL(2+zT,X) 5 "5t
Analogously, for the lower half line we have
_ T kT 1 argG 1
A7) Ny (T,x) = —log | ~— | — —arg L (3 —iT - =.
(47) 0 (T:X) o OB <27T€> e (2 ! ’X)+ 2w 8

As in (41) again we are omitting ng since in the cases below ng = 0, but
for other cases one may need to include £ng on the right-hand side of N3,
respectively.

It is known that the number of zeros on the entire critical strip up to
height T, i.e., in the region {0 < o < 1, 0 < t < T}, is given by [20]

1 1 . 1
(48) NT(T,x) = —0pq (T) + —argL (% +zT,X) — —arglL (%,X) .
T T T

From Stirling’s approximation and noticing that 2a — 1 = —x(—1), then for
T — oo we obtain the asymptotic approximation [20, 32]

T kT 1 .
NT(T, %) :—Wlog () + p arg L (% +iT, x)

2 2me
49) x(=1)
8

1
—;argL(%,X)— +0(1/7).
Both formulas (48) and (49) are exactly the same as (44) and (46), respec-
tively. This can be seen as follows. From (30) we conclude that & is real
on the critical line. Thus arg¢ (%) =0= —% arg G (x) + arg L (%,X) + 7
Then, replacing arg G (x) in (41) we obtain

(50) Vgq (tn) + Jh%l‘*' arg L (% + § +ity, X) —arg L (%,X) = (n - %) .

Replacing ¢t,, — T and n — NJ + % in (50) we have precisely the expression
(48), and also (49) for T' — oco. Then we conclude that Ny (T, x) = N (T, x)
exactly. From (31) we see that negative zeros for character y correspond to
positive zeros for character . Thus for —7T < J(p) < 0 the counting on
the critical strip also coincides with the counting on the critical line, since
Ny (T, x) = Ny (T,x) and N~ (T, x) = N*(T,%). Therefore, the number of
zeros on the entire critical strip is the same as the number of zeros on
the critical line obtained as solutions of (41), under the assumption that
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(41) has a unique solution for every n. This is equivalent to stating that
limg g+ arg L (% + d +it, X) exists for every t. This will be further exempli-
fied in Section 6.

4. Zeros of L-functions based on modular forms
Let us generalize the previous results to L-functions based on level one

modular forms. We first recall some basic definitions and properties. The
modular group can be represented by the set of 2 x 2 integer matrices

(51) SLy (Z) = {A - (‘g Z)

a,b,c,d € Z, detAzl},

provided each matrix A is identified with —A, i.e., +A are regarded as
the same transformation. Thus for 7 in the upper half complex plane, it
transforms as 7 — A7 = ZTTIZ under the action of the modular group. A
modular form f of weight k£ is a function that is analytic in the upper half

complex plane which satisfies the functional relation [54]

(52) f (Z:i;) — (er +d)F f(r).

If the above equation is satisfied for all of SLo (Z), then f is referred to as
being of level one. It is possible to define higher level modular forms which
satisfy the above equation for a subgroup of SLsy (Z). Since our results are
easily generalized to the higher level case, henceforth we will only consider
level one forms.

For the SLy(Z) element <6 %), the above Equation (52) implies the

periodicity f(7) = f(7 + 1), thus it has a Fourier series
(53) f(r) =2 as(n)g", q=e.
n=0

If af(0) = 0 then f is called a cusp form.
From the Fourier coefficients, one can define the Dirichlet series

[e.9]

(54) Ly (5= 4,
n=1

The functional equation for Ly (s) relates it to Ly (k — s), so that the critical

line is R(s) = &, where k > 4 is an even integer. One can always shift the
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critical line to % by replacing af(n) — ay(n)/n*=D/2 however we will not

do this here. Let us define
(55) Af(s) = (2m) " T'(s) Lys(s).
Then the functional equation is given by [54]

(56) Ap(s) = (=D)M2Ap(k = s).

There are only two cases to consider since % can be an even or an odd
integer. As in (29) we can absorb the extra minus sign factor for the odd
case. Thus we define {¢(s) = As(s) for g even, and then £¢(s) = &f(k — s).
For g odd we define {(s) = e~ /2\4(s) implying &;(s) = £ (k — s). Rep-
resenting £7(s) = |¢f] e where s = o + it, we follow exactly the same steps
as in the previous sections. From the particular solution (37) we conclude
that there are infinite zeros on the critical line R(p) zg determined by
limg_,g+ 0 (% + 9, t) = (n — %) 7. Therefore, these zeros are given in the form

Pn = % + it,, where ¢, is the solution of the equation

1 -1 k/2
(57) V(tn) + 511161+ arg Ly (g +5+ itn) _ (n _ "‘(4)) 7r,

where n = 1,2, ... and we have defined
(58) Oy (t) = argT (& +it) — tlog 2.
This implies that the number of solutions of (57) with 0 < ¢ < T is given by

1 — (—1)k/2

1 1
(59) No(T) = —0(T) + —arg Ly (5 +4T) - 1

In the limit of large t,,, neglecting terms of O(1/t), Equation (57) becomes

2me

tn . , k4 (—1)k/2
(60) tnlog <> + 6£%+ arg Ly (% + 64 ity) = (n -—
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5. Approximate zeros in terms of the Lambert W-function
5.1. Explicit formula

We now show that it is possible to obtain an approximate solution to the
previous transcendental equations with an explicit formula. In this approx-
imation, there is indeed a unique solution to the equation for every n. Let
us introduce the Lambert W-function [48], which is defined for any complex
number z through the equation

(61) W(z)eV® = 2.

The multi-valued W-function cannot be expressed in terms of other known
elementary functions. If we restrict attention to real-valued W (z) there are
two branches. The principal branch occurs when W (z) > —1 and is denoted
by Wp, or simply W for short, and its domain is 2 > —e~'. The secondary
branch, denoted by W_, satisfies W_1(x) < —1 for —e~! < < 0. Since
we are interested only in positive real-valued solutions, we just need the
principal branch where W is single valued.

Let us start with the zeros of the (-function, described by Equation (13).
Consider its leading order approximation, or equivalently its average since
(arg ¢ (% + zy)) = 0. Then we have the transcendental equation

tn tn 11
62 log | ) = — —,
(62) or 08 <27re> "8

Through the transformation tn = 27 (n — %) x, 1, this equation can be writ-

ten as zn,e” =e~! (n — 4 ). Comparing with (61) we thus we obtain
~ 2 (n - E)

63 tn = 8

o W - B

where n =1,2,....

Although the inversion from (62) to (63) is rather simple, it is very
convenient since it is indeed an explicit formula depending only on n, and
W is included in most numerical packages. It gives an approximate solution
for the ordinates of the Riemann zeros in closed form. The values computed
from (63) are much closer to the Riemann zeros than Gram points, and one
does not have to deal with violations of Gram’s law; see Remark 8.

Analogously, for Dirichlet L-functions, after neglecting the arg L term,
Equation (43) yields a transcendental equation which can be written as
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rpe* = kA,e~! through the transformation |t,| = 27 A,z !, where

(64) Aﬂu%:%(n+myﬂm>+1—4%—zu%+1)

2T 8

Thus the approximate solution is explicitly given by

~ 2nv, A
(65) tn — 7TVTL 171 (X) ,
W ke Ay (X)]
where n =0,+1,42,.... In the above formula n =1,2,... correspond to
positive ¢, solutions, whilen = 0, —1, ... correspond to negative ¢,, solutions.

Contrary to the (-function, in general, the zeros are not conjugate related
along the critical line.

In the same way, ignoring the small arg L term in (60), the approximate
solution for the imaginary part of the zeros of L-functions based on level one
modular forms is given by

- k)2
(66) To=—AnT 4y RECD

A S O S
W [(2¢) 14, . 0 T he

5.2. Further remarks

Let us focus on the approximation (63) regarding zeros of the (-function.
Obviously the same arguments apply to the zeros of the other classes of
functions based on formulas (65) and (66).

Remark 6. The estimates given by (63) can be calculated for arbitrarily
large n, since W is a standard elementary function. Of course, the ¢, are
not as accurate as the solutions t¢,, including the arg ( term, as we will see
in Section 7. Nevertheless, it is indeed a good estimate, especially if one
considers very high zeros where traditional methods have not previously
estimated such high values. For instance, formula (63) can easily estimate
the zeros shown in Table B.1 (Appendix B.1), and much higher if desirable.
The numbers in this table are accurate approximations to the nth zero to
the number of digits shown, which is approximately the number of digits in
the integer part. For instance, the approximation to the 10!%° zero is correct
to 100 digits. With Mathematica we easily calculated the first million digits
of the 10'%° zero.

Remark 7. Using the asymptotic behaviour W (z) ~ log x for large z, the
nth zero is approximately given by ¢, ~ 27n/logn, as already known [10].
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The distance between consecutive ordinates is then approximately equal to
tnt1 — tn =~ 27/ logn, which tends to zero when n — oo.

Remark 8. The solutions (63) are reminiscent of the so-called Gram points
gn, which are solutions to ¥(gy) = nm where 9 is given by (19). Gram’s law is
the tendency for Riemann zeros to lie between consecutive Gram points, but
it is known to fail for about % of all Gram intervals. Our ¢, are intrinsically
different from Gram points. It is an approximate solution for the ordinate of
the zero itself. In particular, the Gram point gg = 17.8455 is the closest to the
first Riemann zero, whereas t; = 14.52 is already much closer to the true zero
which is t; &~ 14.1347. The traditional method to compute the zeros is based
on the Riemann-Siegel formula ( (5 +it) = Z(t) [cos(t) — isinY(t)], and
the empirical observation that the real part of this equation is almost always
positive, except when Gram’s law fails, and Z(t) has the opposite sign of
sin¥. Since Z(t) and ¢ (% + it) have the same zeros, one looks for the zeros of
Z(t) between two Gram points, as long as Gram’s law holds (—1)"Z (g,) > 0.
To verify the RH numerically, the counting formula (22) must also be used
to assure that the number of zeros on the critical line coincides with the
number of zeros on the strip. The detailed procedure is thoroughly explained
in [2, 10]. Based on this method, amazingly accurate solutions and high zeros
on the critical line were computed [43, 49-51]. Nevertheless, our proposal is
fundamentally different. We claim that (20) is the equation that determines
the Riemann zeros on the critical line. Then, one just needs to find its
solution for a given n. We will compute the Riemann zeros in this way in
the next section, just by solving Equation (20) numerically, starting from
the approximation given by the explicit formula (63), without using Gram
points nor the Riemann—Siegel Z function. Let us emphasize that our goal is
not to provide a more efficient algorithm to compute the zeros [50], although
the method described here may very well be, but to justify the validity of
Equation (20).

6. A counterexample: the Davenport—Heilbronn function

In this section we consider a function that is known to violate the RH, and
this serves to sharpen our understanding of our previous analysis. In this
example, one can clearly see how the corresponding transcendental equation
does not have a unique solution for every n.
The Davenport—Heilbronn function is defined by
(1 —ik)

(67) D(s) = TL (s,X5,2) +

(1 +ik)

2 L (37X5,2)
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with

V10 —2v5 -2
VE-1

Above the Dirichlet character is the following:

(68) K=

n |12 3 4 5

(69) :
X572(n)‘1 ) — —1 0

where x52(—1) = —1 thus a = 1. The function (67) satisfies the functional

equation
T\ —5/2 1+s
(3) r ( 2 ) D(s).

The function (67) has almost all the same properties of (, such as a
functional equation, except that it has no Euler product formula. It is well
known that it has zeros in the region % (s) > 1, which is essentially a con-
sequence that it has no Euler product. It also has zeros in the critical strip
0 < R(s) < 1, where infinitely many of them lie on the critical line R(s) = 3;
however, it also has zeros off of the critical line, thus violating the RH. For
a detailed study of this function and numerical computation of its zeros see
[52].

Repeating the analysis of the previous sections for zeros on the critical
line, we obtain the following transcendental equation:

(70) §(s) =&(1—s), &(s)

1 1 1
(71) ;19571(75”) + - 6lim arg D (% + 5+ z‘tn) + 3=

—0t

where U5 1 is defined in (38). The approximate solution is explicitly given by

~ 2w (n — é)
(72) tn = w [56—1(72 i g)]

for n=1,2,.... From (71) and (72) it is possible to compute zeros on the
critical line. Moreover, zeros off of the critical line satisfy the general solu-
tion (10) [53]. This shows that B = 0, with B defined in (35), captures all
the zeros.

Since (71) only captures zeros at o = %, what happens if there are zeros
off of the critical line? Consider a simple zero denoted by pe = 06 + ite Where
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(@)
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44

43
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81.93  83.11 85.69 87.65 81.93  83.11 85.69 87.65

Figure 3: (a) Left-hand side of (71) against t. Note the discontinuity at
the point te ~ 85.6993 corresponding to n = 44 and 45, where (71) has no
solution. (b) We plot R [D(1/2 + it)] (blue line) and ¥ [D(1/2+ it)] (red
line) against ¢. Observe that ® [D(1/2 + it)] < 0 when I [D(1/2 + it)] — 0,
for t — to, signaling the change of branch of arg D(1/2 + it).

0<o0e <1 and g, # % Due to the functional equation (70) there is also a
zero at 1 —py, =1 — 04 + ite. Let

(73) Sp(t) = 1 lim argD (5 +6 +it).

T 6—0+

From its role in the counting formula over the entire critical strip, one
knows that when ¢ varies across to then Sp(t) must jump by two, i.e., we
must have ASp(te) = Sp(te + €) — Sp(te — €) = 2. This implies that Sp(t)
changes branch around ¢, in such a way that it cannot be smoothed out by
the § — 0T limit. In other words, the limit (73) does not exist close to te.
Therefore, (71) will not have a solution around ¢, for a given n. If instead of
a simple zero we have a zero with multiplicity m > 2, then ASp(te) = 2m,
changing branch even more drastically. The same situation also happens if
there are zeros with multiplicity m > 2 on the critical line, where we would
have ASp = m.

In the case of the function (67), the first zero off of the critical line
occurs at o4 =~ 0.8085 and t, &~ 85.6993. In figure 3a we plot the left-hand
side of (71) against ¢, and one can clearly see the above-mentioned situation,
namely that (71) is not defined at to and there is no solution for n = 44
and n = 45. The change of branch close to t, can be seen from figure 3b.
Therefore, denoting Ny(7') the number of solutions of (71) up to height T,
we clearly have No(T') < N(T'), where N(T') is the number of zeros in the
entire critical strip. For a more detailed illustration of these facts we refer
the reader to [53].
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Figure 4: Comparison of the prediction of (63) (blue line) and (13) (red
dots). We are plotting t,, against n. (a) n € [1,...,400]. Note how the solu-
tions are close at first sight. (b) If we focus on a small range we can see how
the solutions of (13) oscillate around the line (63) due to the fluctuating
term arg . Here n € [99984, ..., 10°].

For simple zeros on the critical line the limit (73) exists, but for zeros
off of the critical line, it does not, since Sp(t) has to jump at least by two
and the change of branch does not allow us to smooth the function.

7. Numerical analysis: (-function
7.1. The importance of arg ¢

Instead of solving the exact equation (20) we will initially consider its first-
order approximation, which is Equation (13). As we will see, this approxi-
mation already yields surprisingly accurate values for the Riemann zeros.

Let us first consider how the approximate solution given by (63) is mod-
ified by the presence of the arg( term in (13). Numerically, we compute
arg ¢ taking its principal value. The fact that we get very accurate zeros up
to the billionth zero implies that up to this ¢, arg ¢ near a zero is always
on the principal branch. As already discussed in Remark 1, the function
arg ¢ (% + it) oscillates around its average, which is zero, as shown in Figu-
re la. At a Riemann zero it can be defined by the limit (6) which is generally
not zero. The arg ( term plays an important role and indeed improves the
estimate of the nth zero. This can be seen in figure 4 where we compare the
estimate given by (63) with the numerical solutions of (13).

We can apply a root finder method in an appropriate interval, centered
around the approximate solution #, given by formula (63). Some of the
solutions obtained in this way are presented in Table B.2 (Appendix B.1)
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and are accurate up to the number of decimal places shown. We used only
Mathematica or some very simple algorithms to perform these numerical
computations, taken from standard open source numerical libraries.

Although Equation (13) was derived for large n, it is surprisingly accu-
rate even for the lower zeros, as shown in Table B.3 (Appendix B.1). It is
actually easier to solve for low zeros since arg( is better behaved. These
numbers are correct up to the number of digits shown, and the precision
was improved simply by decreasing the error tolerance.

7.2. GUE statistics

The link between the Riemann zeros and random matrix theory started
with the pair correlation of zeros, proposed by Montgomery [20], and the
observation of Dyson [57] that it is the same as the two-point correlation
function predicted by the GUE for large random matrices.

The main purpose of this section is to test whether our approxima-
tion (13) to the zeros is accurate enough to reveal this statistics. Whereas
formula (63) is a valid estimate, it is not sufficiently accurate to reproduce
the GUE statistics, since it does not have the oscillatory arg ¢ term. On the
other hand, the solutions to Equation (13) are accurate enough, which again
indicates the importance of arg (.

Montgomery’s pair correlation conjecture can be stated as follows:

1 ' A sin? (7u)
4 — 1~ du|l— —55—
(74) NT) 2 /a “( w2u? >
0<t,t'<T
a<d(t,t')<B

where d(t, ') = £1log (&) (t—t), 0 <a <3, N(T) ~ £ log (&) accord-
ing to (15), and the statement is valid in the limit 7" — oo. The right-hand
side of (74) is the two-point GUE correlation function. The average spacing
between consecutive zeros is given by % ~ 2w/ log (%) — 0asT — oo. This
can also be seen from (63) for very large n, i.e., t,11 —t, — 0 as n — oc.
Thus, the distance d(t,t") between zeros on the left-hand side of (74) is a
normalized distance.

While (74) can be applied if we start from the first zero on the critical
line, it is unable to provide a test if we are centered around a given high zero
on the line. To deal with such a situation, Odlyzko [51] proposed a stronger
version of Montgomery’s conjecture by taking into account the large density
of zeros higher on the line. This is done by replacing the normalized distance
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Figure 5: The solid line represents the right-hand side of (76) and the dots
represent its left-hand side, computed from Equation (13). The param-
eters are = a4+ 0.05, a = (0, 0.05, ..., 3) and the z-axis is given by
z =% (a+ ). (a) We use the first 10° zeros. (b) The same parameters but
using zeros in the middle of the critical line; M = 10° — 10° and N = 10°.

in (74) by a sum of normalized distances over consecutive zeros in the form

1 tn
d, = —1 — ) (tpa1 — tn) .
(75) o 108 (52 ) s 1)

Thus (74) is replaced by

™ wemw, 2 el (- )

M<mn<N
a<> y_ dmin<p

where M is the label of a given zero on the line and N > M. In this sum
it is also assumed that n > m, and we included the correct normalization
on both sides. The conjecture (76) is already well supported by extensive
numerical analysis [43, 51].

Odlyzko’s conjecture (76) is a very strong constraint on the statistics
of the zeros. Thus, we submit the numerical solutions of Equation (13) to
this test. In figure 5a we can see the result for M =1 and N = 10°, with
a ranging from 0...3 in steps of € = 0.05, and 3 = « + ¢ for each value of
a, ie., a=(0.00, 0.05, 0.10,..., 3.00) and S = (0.05, 0.10, ..., 3.05). We
compute the left-hand side of (76) for each pair («, ) and plot the result
against x = % (a4 B). In figure 5b we do the same thing but with M =
10° — 10° and N = 10%. Clearly, the numerical solutions of (13) reproduce
the GUE statistics. In fact, figure 5a is identical to the one in [51]. The last
zeros in these ranges are shown in Table B.4 (Appendix B.1).
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7.3. Prime number counting function

In this section we explore whether our approximations to the Riemann zeros
are accurate enough to reconstruct the prime number counting function. As
usual, let 7(z) denote the number of primes less than x. Riemann obtained
an explicit expression for 7(z) in terms of the non-trivial zeros of ((s). There
are simpler but equivalent versions of the main result, based on the function
1 (x) below. However, let us present the main formula for 7(x) itself since it
is historically more important.

The function 7(z) is related to another number-theoretic function J(z),
defined as

(77) J(x)= >

lo
2<n<zx

where A(n), the von Mangoldt function, is defined as A(n) = logp if n = p™
for some prime p and an integer m > 1, and A(n) = 0 otherwise. The two
functions 7(z) and J(z) are related by Mdbius inversion:

(78) Z p(n l/n

n>1

Here p(n) is the Mobius function defined as follows. p(n) = 0 if n has one
or more repeated prime factors, p(n) = 1if n = 1 and p(n) = (—=1)* if nis a
product of k distinct primes. The above expression is actually a finite sum,
since for large enough n, z'/™ < 2 and J = 0.

The main result of Riemann is a formula for J(z), expressed as an infinite
sum over zeros p of the ((s) function

. . > dt 1
(79) J(z) = Li(z) — ZP:L1 (x) —1—/93 logt 12 —1) log 2,

where Li(z fo dt/ logt is the log-integral function®. The above sum is
real because the p’s come in conjugate pairs. If there are no zeros on the
line R(z) = 1, then the dominant term is the first one in the above equation,
J(x) = Li(x), and this was used to prove the prime number theorem by
Hadamard and de la Vallée Poussin.

3Some care must be taken in numerically evaluating Li(z ) since Li has a branch
point. It is more properly defined as Ei(plog ) where Ei(z) = — f dte~t/t is the
exponential integral function.
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Figure 6: The prime number counting function m(x) with the first 50 Rie-
mann zeros. (a) Zeros approximated by the formula (63). (b) Zeros obtained
from numerical solutions to Equation (13).

The function #(z) has the simpler form

(80)  Y(x) = Z An) =z — Z%: —log(2m) — %log (1 - ;) .

n<x P

In this formulation the prime number theorem is equivalent to ¢ () = .

In figure 6a we plot m(x) from Equations (78) and (79), computed with
the first 50 zeros in the approximation p, = % + it,, given by (63). Figure 6b
shows the same plot with zeros obtained from the numerical solutions of
Equation (13). Although with the approximation t, the curve is trying to
follow the steps in 7(z), once again, one clearly sees the importance of the
arg ¢ term.

7.4. Solutions to the exact equation

In the previous sections we have computed numerical solutions of (13) show-
ing that, actually, this first-order approximation to (20) is very good and
already captures some interesting properties of the Riemann zeros, such as
the GUE statistics and the ability to reproduce 7(x). Nevertheless, by sim-
ply solving (20) it is possible to obtain values for the zeros as accurately as
desirable. The numerical procedure is performed as follows:

(1) We apply a root finder method on (20) looking for the solution in a
region centered around the number ¢,, provided by (63), with a not so
small 6, for instance § ~ 1075,

(2) We solve (20) again but now centered around the solution obtained in
step 1 above, and we decrease §, for instance 6 ~ 1078,
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(3) We repeat the procedure in step 2 above, decreasing ¢ again.

(4) Through successive iterations, and decreasing § each time, it is possible
to obtain solutions as accurate as desirable. In carrying this out, it is
important to not allow J to be exactly zero.

An actual implementation of the above procedure in Mathematica is shown
in Appendix A, which we have included mainly to show its simplicity. The
first few zeros computed in this way are shown in Table B.5 (Appendix
B.1). Through successive iterations it is possible achieve even much higher
accuracy than shown in Table B.5.

It is known that the first zero where Gram’s law fails is for n = 126.
Applying the same method, like for any other n, the solution of (20) starting
with the approximation (63) does not present any difficulty. We easily found
the following number:

t126 =279.22925092774518922840988045195535928349263 7405561293594 727.

Just to illustrate, and to convince the reader, how the solutions of (20) can
be made arbitrarily precise, we compute the zero n = 1000 accurate up to
500 decimal places, also using the same simple approach?:

t1000 = 1419.42248094599568646598903807991681923210060106416601630
46908146846086764175930104179113432911792099874809842
32260560118741397447952650637067250834288983151845447
68825259311594423942519548468770816394625633238145779
15284185593431511879329057764279980127360524094461173
37041818962494747459675690479839876840142804973590017
35474131911629348658946395454231320810569901980719391
75430299848814901931936718231264204272763589114878483
29996467356160858436515425171824179566414953524432921
93649483857772253460088

Furthermore, one can substitute known precise Riemann zeros into (20) and
can check that the equation is identically satisfied. These results corroborate
that (20) is an exact equation for the Riemann zeros.

4Computing this number to 500 digit accuracy took a few minutes on a standard
personal laptop computer using Mathematica. It only takes a few seconds to obtain
100 digit accuracy.
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8. Numerical analysis: L-functions

We perform exactly the same numerical procedure as described in the previ-
ous Section 7.4, but now with Equation (41) and (65) for Dirichlet
L-functions, or with (57) and (66) for L-functions based on level one modular
forms.

8.1. Dirichlet L-functions

We will illustrate our formulas with the primitive characters x72 and x73
since they possess the full generality of ¢ = 0 and 1 and complex components.
There are actually ¢(7) = 6 distinct characters mod 7.

Example x7,2. Consider £ = 7 and j = 2, i.e., we are computing the Dirich-
let character x72(n). For this case a =1. Then we have the following
components:

n |12 3 4 5 6 7

(81) X72(n)‘1 e2mi/3  omif3  —2mi/3 w3 1

The first few zeros, positive and negative, obtained by solving (41) are shown
in Table B.6 in Appendix Appendix B.2. The solutions shown are easily
obtained with 50 decimal places of accuracy.

Example x7 3. Consider k = 7 and j = 3, such that a = 0. In this case the
components of x73(n) are the following:

no |1 2 3 4 5 6 7
x73(n) ‘ 1 e—2mi/3  g2mi/3  2mi/3  —2mi/3

(82)

The first few solutions of (41) are shown in Table B.7 in Appendix B.2 and
are accurate up to 50 decimal places. As previously stated, the solutions
to Equation (41) can be calculated to any desired level of accuracy. For
instance, we can easily compute the following number for n = 1000, accurate
to 100 decimal places:

t1000 = 1037.56371706920654296560046127698168717112749601359549
01734503731679747841764715443496546207885576444206.

We also have been able to solve the equation for high zeros to high accu-
racy, up to the millionth zero, some of which are listed in Table B.8 in
Appendix Appendix B.2, and were previously unknown.
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8.2. Modular L-function based on Ramanujan 7

Here we will consider an example of a modular form of weight £ = 12. The
simplest example is based on the Dedekind n-function

(83) n(r) =g [[1-q"), q=e"".
n=1

Up to a simple factor, 7 is the inverse of the chiral partition function of the
free boson conformal field theory [55], where 7 is the modular parameter of
the torus. The modular discriminant

(84) A(r)=n(r)*' =3 1(n)q"
n=1

is a weight £ = 12 modular form. It is closely related to the inverse of the
partition function of the bosonic string in 26 dimensions, where 24 is the
number of light-cone degrees of freedom in 26 spacetime dimensions [56].
The Fourier coefficients 7(n) correspond to the Ramanujan 7-function, and
the first few are

no |1 2 3 4 5 6 7 8
7(n) |1 —24 252 —1472 4830 —6048 —16744 84480

(85)

We then define the Dirichlet series

(56) L= "W

ns

n=1

Applying (57) the zeros are p,, = 6 + it,,, where t,, satisfies the equation
(87) V12(tn) + §lir(r)1+ arg La(6 + 6 + it,,) = (n — 3) .

The counting formula (59) and its asymptotic approximation are

(88) No(T) = %ﬂlg(T) + %arg LA(G + iT)

T T 1 11
~ —1 — —arg L 1) + —.
(89) w08 <27T6> + . a(6+iT) + 4
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Figure 7: Exact counting formula (88) based on the Ramanujan 7-function.

A plot of (88) is shown in figure 7, and we can see that it is a perfect staircase
function. The approximate solution (66) now has the form

(90) tn =

forn=2,3,....

Note that the above equation is valid for n > 1 since W (x) is not defined
for z < —1/e.

We follow exactly the same numerical procedure, previously discussed
in Section 7.4 and implemented in A, to solve Equation (87) starting with
the approximation provided by (90). Some of these solutions are shown in
Table B.9 in Appendix B.3 and are accurate to 50 decimal places.

9. Concluding remarks

In this paper we considered non-trivial zeros of the Riemann (-function,
Dirichlet L-functions and L-functions based on level one modular forms.
The same approach was applied to all these classes of functions, showing
that there are an infinite number of zeros on the critical line in one-to-
one correspondence with the zeros of the cosine function (11), leading to
a transcendental equation satisfied by the ordinate of the nth zero. More
specifically, for the Riemann (-function these zeros are solutions to (20),
for Dirichlet L-functions we have (41), and for L-functions based on level
one modular forms the ordinates of the zeros must satisfy (57). It is impor-
tant to stress that these equations were derived on the critical line, without
assuming the RH.



Transcendental equations for ¢ and L-functions 37

The implication of our work for the GRH can be summarized as follows.
If the corresponding transcendental equation has a unique solution for every
n, the validity of the GRH would follow. The explanation is very simple.
Suppose the transcendental equation indeed has a unique solution for every
n. Then the zeros obtained from its solutions on the critical line can be
counted, since they are enumerated by the integer n, yielding the counting
function No(T'). The number of solutions saturate the counting formula over
the entire critical strip, namely No(T) = N(T'), where N(T') counts zeros
on the entire critical strip and has been known for a long time. Thus the
equation captures all the non-trivial zeros.

As previously discussed, and explicitly illustrated in Section 6, the exis-
tence of solutions depends on whether the § — 0" limit of the argument
of the corresponding L-function is well defined for every ordinate t. The
validity of this limit was our only assumption throughout the paper. We
also argued that if there is indeed a unique solution of the transcendental
equation for every n, then all non-trivial zeros are simple. If there are zeros
off of the critical line, or zeros with multiplicity m > 2 on the critical line,
the equation will fail to capture all the zeros on the critical strip and then
No(T) < N(T). Does this means that the GRH is false if the transcendental
equation does not always have a unique solution? Not necessarily, since all
the zeros can still be on the critical line but not all of them are simple. This
suggests that the GRH and the simplicity of all non-trivial zeros is equivalent
to the statement that the transcendental equation has a unique solution for
every n. We have not proven that there is a unique solution to the transcen-
dental equation. An attempt to justify more carefully this § — 07 limit is in
our preliminary work [59], where we claim that the Euler product formula
is still valid in the region 3 < R(s) < 1 in a statistical manner.

We also showed that it is possible to obtain an explicit formula as an
approximation for the ordinates of the zeros in terms of the Lambert W-
function; Equation (63) for the (-function, (65) for Dirichlet L-functions
and (66) for L-functions based on level one modular forms. This approxi-
mation is very convenient, allowing us to actually compute accurate zeros
without relying on Gram points, nor dealing with violations of Gram’s law.

We have also provided compelling numerical evidence for the validity of
these transcendental equations satisfied by the nth zero. For the {-function,
the leading order asymptotic approximation (13) proved to be accurate
enough to reveal the interesting features of the Riemann zeros, like the
GUE statistics and the reconstruction of the prime number counting func-
tion m(x). It turns out the exact Equation (20) is much more stable and
easy to solve numerically, it is thus able to provide numerical results as
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accurate as is desired. We have also provided accurate numerical solutions
for Dirichlet L-functions using (41) and for the particular example of the
modular L-function based on the Ramanujan 7-function, through (87). The
numerical approach employed here constitutes a novel and simple method
to compute non-trivial zeros of L-functions.
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Appendix A. Mathematica implementation

Here we provide the short Mathematica code used to compute the zeros from

the transcendental equations. We will consider Dirichlet L-functions, since it

involves more ingredients, like the modulus &, the order a and the Gauss sum

G(7). For the Riemann (-function the procedure below is trivially adapted

as a special case, as well as for the Ramanujan 7-function of Section 8.2.
The function (38) is implemented as follows:

RSTheta[t_, a_, k-] := Im[LogGammal[l/4+a/2+1Ixt/2]] — t/2«Log[Pi/K]

For the transcendental equation (41) we have

ExactEq[n_, t_, s, a_, k., jo, G, n0_] :=
(RSThetalt, a, k| + Arg[DirichletL[k, j, 1/2+\delta+Ixt]] — 1/2+xArg[G])/
Pi+a/4+1/2—-n+n0

Above, s denotes 0 < § < 1, a is the order (26), k is the modulus, j specifies
the Dirichlet character x; ; (as discussed in Section 3) and G is the Gauss
sum (25). Note that we also included ng, discussed after (40), but we always
set ng = 0 for the cases analyzed in Section 8.1. The implementation of the
approximate solution (65) is

Sgnn_] := Which[n != 0, Signn], n == 0, —1]
An_, a_, G_, n0_] := Sgn[n]*(n — n0 + 1/2/PixArg|G])
+ (1 — 4xSgn[n] — 2*a*(Sgn[n]+1))/8
tApprox[n_, a_, G_, k_, n0_] :=
2xPixSgn[n|*A[n, a, G, n0]/LambertWk«A[n, a, G, n0]/E]

One can then obtain the numerical solution of the transcendental equa-
tion (41) as follows:
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FindZero[n_, s_, a_, k_, j-, G, n0_, t0_, prec_] :=
t /. FindRoot[ExactEq[n, t, s, a, k, j, G, n0], {t, t0}, PrecisionGoal—>
prec/2, AccuracyGoal—>prec/2, WorkingPrecision—>prec]

Above, tg will be given by the approximate solution (65). The variable prec
will be adjusted iteratively. Now the procedure described in Section 7.4 can
be implemented as follows:

DirichletNZero[n_, order_, digits_, k_, j_, n0_] := (
chi = DirichletCharacter[k, j, —1];

a = Which|[chi == —1, 1, chi == 1, 0];
s = 107 (-3);
prec = 15;

G = Sum|DirichletCharacter[k, j, ]J*Exp[2xPixI«l/k], {1, 1, k}];
t = N[tApproxn, a, G, k, n0], 20];
absvalue = 1;
While[absvalue > order,
t = FindZero[n, s, a, k, j, G, n0, t, prec];
Print[NumberFormlt, digits]];
s = s/1000;
prec = prec + 20;
absvalue = Abs[DirichletL[k, j, 1/2 + Ixt]];
]

Print[ScientificForm absvalue, 5]];

)

Above the variable order controls the accuracy of the solution. For instance,
if order = 10750 it will iterate until |L (1) + it) | ~ 10750. The variable digits
controls the number of decimal places shown in the output.

Let us compute the zero n = 1, for the character (82), i.e., k =7 and
j = 3. We will verify the solution to order = 10~2° and print the results with
digits = 22. Thus executing

DirichletNZero[1, 10" (—20), 22, 7, 3, 0]

the output will be

4.35640188194944
4.356401624736541498075
4.356401624736284227537
4.356401624736284227280
4.1664%10"(—25)

Note how the decimal digits converge in each iteration. By decreasing order
and increasing digits it is possible to obtain highly accurate solutions. It
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is exactly in this way that we obtained the tables shown in Appendix B.
Obviously, depending on the height of the critical line under consideration,
one should adapt the parameters s and prec appropriately. In Mathematica
we were able to compute solutions up to n ~ 108 for Dirichlet L-functions,
and up to n ~ 10° for the Riemann (-function without problems. We were
unable to go much higher only because Mathematica could not compute the
arg L term reliably. To solve the transcendental equations (20) and (41) for
very high values on the critical line is still a challenging numerical problem.
Nevertheless, we believe that it can be done through a more specialized
implementation.

Appendix B. Numerical results

In this section we present some of the numerical results obtained by solving
the transcendental equations described in this paper. The numerical proce-
dure is described in Appendix A and should be adapted to each particular
class of functions.

Appendix B.1. Riemann ¢{-function

The explicit formula (63) can estimate very high Riemann zeros, yielding
results accurate up to the decimal point. Some of these results are shown in
table B.1.

Table B.1: Numerical results predicted by formula (63), which can easily
estimate very high Riemann zeros. The results are expected to be correct
up to the decimal point, i.e., to the number of digits in the integer part. The
numbers are shown with three digits beyond the integer part.

n tn

1022 1.370919909931995308226636 x 102!
10°0  5.741532903784313725642221053588442131126693322343461 x 10%8
10190 2.806903838428940699031954458382564000845480301628460
45192360059224930922349073043060335653109252473234 %1098
10200 1.385792222146789340845466805467159190123402451538707
081832868352483938909689796343076797639408172610028
651791994879400728026863298840958091288304951600695
814960962282888090054696215023267048447330585768 x 10198
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In table B.2 we have numerical solutions to (13), obtained simply by
applying a root finder method around the estimate provided by formula (63).

Table B.2: Numerical solutions to the asymptotic equation (13). All num-
bers shown are accurate up to the ninth decimal place and agree with [49].

n tn tn

14.52 14.134725142
10 50.23 49.773832478
102 235.99 236.524229666
103 1419.52 1419.422480946
104 9877.63 9877.782654006
10° 74920.89 74920.827498994
106 600269.64 600269.677012445
107 4992381.11 4992381.014003179
108 42653549.77 42653549.760951554
10° 371870204.05 371870203.837028053

100 3293531632.26 3293531632.397136704

Decreasing the error tolerance we can obtain more accurate solutions to
the asymptotic equation (13), even for the lower zeros, as shown in table B.3.

Table B.3: Numerical solutions to (13) for the lowest zeros. Although it was
derived for high ¢, it provides accurate solutions even for the lower zeros.
These numbers are correct up to the decimal place shown [49].

tn

14.13472514173469379045725198356247
21.02203963877155499262847959389690
25.01085758014568876321379099256282
30.42487612585951321031189753058409
32.93506158773918969066236896407490

CU W N RS

While the previous tables were computed for isolated zeros, to test
Odlyzko—Montgomery pair correlation conjecture (76) we have to compute
systematically a wide range of zeros. This is a strong test of Equation (13)
and the approximation (63), since in principle it could have missed some
zeros or presented some numerical issues. This was definitely not the case.
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We computed all the zeros in the range n =1...10° and also n = 10° —
10°...10%. Equation (13) and also the approximation (63) did not miss a
single zero. The last numbers in these ranges are shown in table B.4.

Table B.4: Last numerical solutions to (13) around n = 105 and n = 10°.

n tn n tn

10° -5 74917.719415828 10° — 5 371870202.244870467
10° — 4 74918.370580227 10° — 4  371870202.673284457
10° -3 74918.691433454 10° — 3 371870203.177729799
10° — 2 74919.075161121 10° — 2 371870203.274345928
10° — 1 74920.259793259 10° — 1  371870203.802552324
10° 74920.827498994 10° 371870203.837028053

The previous numerical solutions to (13) were obtained with no iteration,
i.e., simply by applying the root finder function once.

The numerical solutions to the exact equation (20) can yield arbitrarily
accurate values. With some very few iterations, as described in Appendix A,
we computed the first few zeros, as shown in table B.5.

Table B.5: The first few numerical solutions to (20), accurate to 60 digits
(58 decimals).

in

14.1347251417346937904572519835624702707842571156992431756855
21.0220396387715549926284795938969027773343405249027817546295
25.0108575801456887632137909925628218186595496725579966724965
30.4248761258595132103118975305840913201815600237154401809621
32.9350615877391896906623689640749034888127156035170390092800

T W N |3

Appendix B.2. Dirichlet L-functions

In table B.6 we present some numerical solutions to (41), with the Dirich-
let character shown in (81). We used exactly the procedure described in
Appendix A. For n > 0 we have the zeros on the upper half of the critical
line, while for n < 0 we have the zeros on the lower half of the critical line.
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Table B.6: Numerical solutions to (41) starting with the approximation (65),
for the character (81). The solutions are accurate to 50 decimal places.

n tn tn
10 25.57  25.68439458577475868571703403827676455384372032540097
9 23.67  24.15466453997877089700472248737944003578203821931614
8 21.73  21.65252506979642618329545373529843196334089625358303
7 19.73  19.65122423323359536954110529158230382437142654926200
6 17.66 17.16141654370607042290552256158565828745960439000612
) 15.50  15.74686940763941532761353888536874657958310887967059
4 13.24  13.85454287448149778875634224346689375234567535103602
3 10.81 9.97989590209139315060581291354262017420478655402522
2 8.14 8.41361099147117759845752355454727442365106861800819
1 4.97 5.19811619946654558608428407430395403442607551643259
0 —3.44 —2.50937455292911971967838452268365746558148671924805
-1 —7.04 —7.48493173971596112913314844807905530366284046079242
-2 —9.85 —9.89354379409772210349418069925221744973779313289503
-3 —12.35 —12.25742488648921665489461478678500208978360618268664
—4  —14.67 —14.13507775903777080989456447454654848575048882728616
-5 —16.86 —17.71409256153115895322699037454043289926793578042465
—6 —18.96 —18.88909760017588073794865307957219593848843485334695
-7  —20.99 —20.60481911491253262583427068994945289180639925014034
-8 —22.95 —22.66635642792466587252079667063882618974425685038326
-9 —24.87 —25.28550752850252321309973718800386160807733038068585

The next two tables B.7 and B.8 contain numerical solutions to (41),
but with the Dirichlet character (82).

Table B.7: Numerical solutions of (41) starting with the approximation (65),
for the character (82). The solutions are accurate to 50 decimal places.

n tn tn

10 25.55 26.16994490801983565967242517629313321888238615283992
9 23.65 23.20367246134665537826174805893362248072979160004334
8 21.71 21.31464724410425595182027902594093075251557654412326
7 19.71 20.03055898508203028994206564551578139558919887432101
6 17.64 17.61605319887654241030080166645399190430725521508443

(continued).
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Table B.7: Continued.

n fn tn

5 15.48  15.93744820468795955688957399890407546316342953223035
4 13.21  12.53254782268627400807230480038783642378927939761728
3 10.79  10.73611998749339311587424153504894305046993275660967
2 8.11 8.78555471449907536558015746317619235911936921514074
1 4.93 4.35640162473628422727957479051551913297149929441224
0 —5.45  —6.20123004275588129466099054628663166500168462793701
-1 =853 —7.92743089809203774838798659746549239024181788857305
-2 —11.15 —11.01044486207249042239362741094860371668883190429106
-3 —13.55 —13.82986789986136757061236809479729216775842888684529
—4 —15.80 —16.01372713415040781987211528577709085306698639304444
-5 —17.94 —18.04485754217402476822077016067233558476519398664936
—6 —20.00 —19.11388571948958246184820859785760690560580302023623
-7 —22.00 —22.75640595577430793123629559665860790727892846161121
-8 —23.94 —23.95593843516797851393076448042024914372113079309104
-9 —25.83 —25.72310440610835748550521669187512401719774475488087

Table B.8: Higher zeros for the Dirichlet character (82). These solutions
to (41) are accurate to 50 decimal places.

n tn tn

103 1037.61 1037.563717069206542965600461276981687171127
496013595490

104 7787.18 7787.337916840954922060149425635486826208937
584171726906

10°  61951.04 61950.779420880674657842482173403370835983852
937763461400

105 512684.78 512684.85669802977910968451970932105330171041

9463624401290

Appendix B.3. L-function based on Ramanujan T

Adapting the numerical procedure of Appendix A for the modular L-function
based on the Ramanujan 7-function, described in Section 8.2, we can obtain
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the numerical solutions given in table B.9, some of which were previously
unknown.

Table B.9: Non-trivial zeros of the modular L-function based on the
Ramanujan 7-function, obtained from (87) starting with the approxima-
tion (90). These solutions are accurate to 50 decimal places.

n tn tn

1 9.22237939992110252224376719274347813552877062243201
2 12.46 13.90754986139213440644668132877021949175755235351449
3 16.27 17.44277697823447331355152513712726271870886652427527
4 19.30 19.65651314195496100012728175632130280161555091200324
5 21.94 22.33610363720986727568267445923624619245504695246527
6 24.35 25.27463654811236535674532419313346311859592673122941
7 26.60 26.80439115835040303257574923358456474715296800497933
8 28.72 28.83168262418687544502196191298438972569093668609124
9 30.74 31.17820949836025906449218889077405585464551198966267
10 32.68 32.77487538223120744183045567331198999909916163721260

100 143.03 143.08355526347845507373979776964664120256210342087127
200 235.55 235.74710143999213667703807130733621035921210614210694
300 318.61 318.36169446742310747533323741641236307865855919162340
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