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Topological strings on elliptic fibrations

MURAD ALIM AND EMANUEL SCHEIDEGGER

We study topological string theory on elliptically fibered Calabi—
Yau manifolds using mirror symmetry. We compute higher genus
topological string amplitudes and express these in terms of poly-
nomials of functions constructed from the special geometry of the
deformation spaces. The polynomials are fixed by the holomorphic
anomaly equations supplemented by the expected behavior at spe-
cial loci in moduli space. We further expand the amplitudes in the
base moduli of the elliptic fibration and find that the fiber moduli
dependence is captured by a finer polynomial structure in terms of
the modular forms of the modular group of the elliptic curve. We
further find a recursive equation which captures this finer structure
and which can be related to the anomaly equations for correlation
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Mirror symmetry and topological string theory are a rich source of insights

in both mathematics and physics. The A- and B-model topological string

theories probe Kéahler and complex structure deformation families of two
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mirror Calabi-Yau (CY) threefolds Z and Z* and are identified by mirror
symmetry. The B-model is more accessible to computations since its defor-
mations are the complex structure deformations of Z* which are captured
by the variation of Hodge structure. Mirror symmetry is established by pro-
viding the mirror maps, which are a distinguished set of local coordinates
in a given patch of the deformation space. These provide the map to the
A-model, since they are naturally associated with deformations of an under-
lying superconformal field theory and its chiral ring [1].

At special loci in the moduli space, the A-model data provides enumer-
ative information of the CY Z. This is contained in the Gromov-Witten
invariants which can be resumed to give integer multiplicities of BPS states
in a five-dimensional theory obtained from an M-theory compactification on
Z [2, 3]. Moreover, the special geometry governing the deformation spaces
allows one to compute the prepotential Fy(t) which governs the exact effec-
tive action of the four-dimensional theories obtained from compactifying
type ITA(IIB) string theory on Z(Z*), respectively.

The prepotential is the genus zero free energy of topological string the-
ory, which is defined perturbatively in a coupling constant governing the
higher genus expansion. The partition function of topological string theory
indicating its dependence on local coordinates in the deformation space has
the form:

(1.1) Z(t,1) = exp (Z A29‘2F(9)(t,f)>.

g

In [4, 5], Bershadsky, Cecotti, Ooguri and Vafa (BCOV) developed the the-
ory and properties of the higher genus topological string free energies putting
forward recursive equations, the holomorphic anomaly equations along with
a method to solve these in terms of Feynman diagrams. For the full partition
function, these equations take the form of a heat equation [5, 6] and can be
interpreted [6] as describing the background independence of the partition
function when the latter is interpreted as a wave function associated with
the geometric quantization of H3(Z*).

The higher genus free energies of the topological string can be further-
more interpreted as giving certain amplitudes of the physical string theory.!

1See [7] for a review.
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The full topological string partition function conjecturally also encodes the
information of 4d BPS states [8]. It is thus natural to expect the topological
string free energies to be characterized by automorphic forms of the target
space duality group. The modularity of the topological string amplitudes was
used in [5] to fix the solutions of the anomaly equation. The modularity of
the amplitudes is most manifest whenever the modular group is SL(2,7Z) or
a subgroup thereof. The higher genus generating functions of the Gromov—
Witten invariants for the elliptic curve were expressed as polynomials [9, 10]
where the polynomial generators were the elements of the ring of almost
holomorphic modular forms Fs, E4 and FEg [11]. Polynomials of these gen-
erators also appear whenever SL(2,Z) is a subgroup of the modular group,
as for example in [12-15]. The relation of topological strings and almost
holomorphic modular forms was further explored in [16] (see also [17, 18]).

Using the special geometry of the deformation space a polynomial struc-
ture of the higher genus amplitudes in a finite number of generators was
proven for the quintic and related one parameter deformation families [19]
and generalized to arbitrary target CY manifolds [20]. The polynomial struc-
ture supplemented by appropriate boundary conditions enhances the com-
putability of higher genus amplitudes. Moreover, the polynomial generators
are expected to bridge the gap towards constructing the appropriate mod-
ular forms for a given target space duality group which is reflected by the
special geometry of the CY manifold.

In this work we use the polynomial construction to study higher genus
amplitudes on elliptically fibered CY. The higher genus amplitudes are
expressed in terms of a finite number of generators which are constructed
from the special geometry of the moduli space of the CY. Expanding the
amplitudes of the elliptic fibration in terms of the base moduli allows us to
further express the parts of the amplitudes depending on the fiber moduli
in terms of the modular forms of SL(2,Z). Together with this refinement of
the polynomial structure we find a refined recursion which is the analog of
an equation discovered in the context of BPS state counting of a non-critical
string [12, 21, 22] and which was conjectured to hold for higher genus topo-
logical strings [13, 14].

We write the topological string amplitudes for elliptic fibrations in the
A-model as an expansion:

FO(tp,tp) = [{9(tr)dp,
nezb
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where tg,tpq,a=1,...,b=dim H?(B,Z) denote the special coordinates
corresponding to the Kahler parameters of the fiber and base of the elliptic

27TitE — eZﬂ'itha

fibration, respectively. We set qp = e . Then we we can

y4dB,a
formulate one of our main results as a conjecture:

Conjecture 1.1. (1) In the main example which we consider in this work
(for which b = 1), the expansion coefficients fég) can be written as

3n/2
79 = pl)(By, By, E6)qgﬁ'
n

Here PT(Lg) denotes a quasi-homogeneous polynomial in the Fisenstein
series Fo, By, Bg of degree 2g — 2 + 18n.

(2) Furthermore, the expansion coefficients fflg ) satisfy the following recur-

ston:
9 7gbg) 1 g.not - (3 —n )
(12) 81;2 -y S(n_s)ﬁh)fégshu(m)ﬁgg )
h=0 s=1

(3) Similar formulas hold for other elliptic fibrations with b < 2.

The outline of this work is as follows. In Section 2, we review some ele-
ments of mirror symmetry that allow us to set the stage for our discussion.
We present and further develop techniques to identify the flat coordinates
on the deformation spaces. In particular, we exhibit a systematic proce-
dure to determine these coordinates at an arbitrary point in the boundary
of the moduli space. We proceed in Section 3 with reviewing the holomor-
phic anomaly equations and how these can be used together with a poly-
nomial construction to solve for higher genus topological string amplitudes.
In Section 4, we present the results of the application of the techniques and
methods described earlier to an example of an elliptically fibered CY. The
dependence on the moduli of the elliptic fiber can be further organized in
terms of polynomials of Fo, 4 and Eg order by order in an expansion in
the base moduli. We find a recursion (1.2) which captures this structure and
relate it to the anomaly equation for the correlation functions of the full
geometry. We show that such recursions hold for several examples of elliptic
fibrations. We proceed with our conclusions in Section 5.
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2. Mirror symmetry

In this section, we review some aspects of mirror symmetry which we will
be using in the following.? To be able to fix the higher genus amplitudes
we need a global understanding of mirror symmetry and how it matches
expansion loci in the moduli spaces of the mirror manifolds Z and Z*. We
will also review and further develop some methods and techniques on the
B-model side along [29-36] to identify the special set of coordinates which
allows an identification with the physical parameters and hence with the
A-model side.

2.1. Mirror geometries

The mirror pair of CY 3-folds (Z, Z*) is given as hypersurfaces in toric ambi-
ent spaces (W, W*). The mirror symmetry construction of [24] associates the
pair (Z, Z*) to a pair of integral reflexive polyhedra (A, A¥).

The A-model geometry. The polyhedron A* is characterized by k relevant
integral points v; lying in a hyperplane of distance one from the origin in Z5,
vp will denote the origin following the conventions of [24, 25]. The k integral
points v;(A*) of the polyhedron A* correspond to homogeneous coordinates
u; on the toric ambient space W and satisfy n = h!(Z) linear relations:

k—1
(2.1) D=0 a=1,...,n.
=0

The integral entries of the vectors [* for fixed a define the weights [{ of the
coordinates x; under the C* actions

u; — ()\a)lgui, Ao €C*.

The ¢ can also be understood as the U(1), charges of the fields of the
gauged linear sigma model (GLSM) construction associated with the toric
variety [37]. The toric variety W is defined as W ~ (C* — =)/(C*)", where

2See [23-25] for foundational material as well as the review book [26] for general
background on mirror symmetry. Some of the exposition in this section will follow
[27, 28].
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= corresponds to an exceptional subset of degenerate orbits. To construct
compact hypersurfaces, W is taken to be the total space of the anti-canonical
bundle over a compact toric variety. The compact manifold Z C W is defined
by introducing a superpotential Wy = ugp(u;) in the GLSM, where x is the
coordinate on the fiber and p(u;) a polynomial in the u;~o of degrees —I.
At large Kéhler volumes, the critical locus is at ug = p(u;) = 0 [37].

An example of an elliptic fibration is the compact geometry given by a
section of the anti-canonical bundle over the resolved weighted projective
space P(1,1,1,6,9). Mirror symmetry for this model has been studied in
various places following [25, 38]. The charge vectors for this geometry are
given by:

Lo X1 X2 T3 T4 T3 Te
(2.2) M= (-6 3 2 1 0 0 0),
»)= O 0 0 -3 1 1 1)

The B-model geometry. The B-model geometry Z* C W* is determined by
the mirror symmetry construction of [24, 39] as the vanishing locus of the

equation
k—1

(2.3) p(Z%) =) awi= Y aX",
1=0 v, EA

where a; parameterize the complex structure of Z*, y; are homogeneous
coordinates [39] on W* and X,,,, m = 1, ..., 4 are inhomogeneous coordinates
on an open torus (C*)* € W* and X" := [[,, X, [40]. The relations (2.1)
impose the following relations on the homogeneous coordinates:

k—1
(2.4) [Ivi=1 a=1,...,n=n*(2")=r""(2).

i=0
The important quantity in the B-model is the holomorphic (3, 0) form which
is given by:
(2.5) Q(a;) = Resy_o— ﬁ aXs

: a;) = —0——— .
() L X

Its periods
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are annihilated by an extended system of Gelfand, Kapranov and Zelevinsky
(GKZ) [41] differential operators

e an-[(&) L&)

1;>0 1;<0
k—1 k—1 9
(2.7) Zk:izzgl/i,jei, ] :1,...,4. Z():;el‘-i-l, 9i:ai%’

where [ can be any positive integral linear combination of the charge vec-
tors [*. The equation L(I) mo(a;) = 0 follows from the definition (2.5). The
equations Zj m(a;) = 0 express the invariance of the period integral under
the torus action and imply that the period integrals only depend on special
combinations of the parameters a;

(2.8) Ta(@i) ~ Talza),  2a = (=)' Ha?,

the z4,a = 1,...,n define local coordinates on the moduli space M of com-
plex structures of Z*.

In our example, there is an additional symmetry on M. Its origin is
the fact that the polytope A* has further integral points on facets [25, 38].
They correspond to nonlinear coordinate transformations of the ambient
toric variety W. These coordinate transformations can be compensated by
transforming the parameters a;. This yields the symmetry on M

z 32
(2.9) I (21, 20) o (4312 —zl,—(112)3>'

The charge vectors defining the A-model geometry in Equation (2.2) give
the following Picard—Fuchs (PF) operators annihilating 7, (2;) = ag ma(a;):

(210) L1 =0 (91 — 302) — 122 (601 + 1)(691 + 5),
2
0
_p3 ; -
(2.11) Lo=03+ 2 H)(;aeg — 01 41), B, := fag

The discriminants of these operators are

Ay = (1 —43221)3 — (432 21)3 27 2o,

(2.12)
Ay =1+ 2729,
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Furthermore, we label the function
(2.13) Az =1—14322z.

Note, that Aj oI = (43221)3As and Ao I = X‘—S{g, hence the vanishing loci
of A1 and Ay are exchanged under the symmetry I.

A further important ingredient of mirror symmetry are the Yukawa cou-
plings which are identified with the genus zero correlators of three chiral
fields of the underlying topological field theory. In the B-model, these are
defined by:?

0

(2.14) ka(l‘) = / QA 8i8jakQ, 0; = @

For the example above, these can be computed using the PF operators [25]:

9
Cin(z) = —0—,
111(2) A,
3A
Ci12(2) 5 s
z1 22A1
(2.15) A32
)= Ay
9 (Ag® + (432 21)3)
Ca22(2) AN, .

2.2. Variation of Hodge structure

The PF equations capture the variation of Hodge structure which describes
the geometric realization on the B-model side of the deformation of the
N = (2,2) superconformal field theory and its chiral ring [29], see also ref
[32] for a review. Choosing one member of the deformation family of CY
threefold Z* characterized by a point in the moduli space M of complex
structures there is a unique holomorphic (3,0) form (z) depending on
local coordinates in the deformation space.

3We use z%,i = 1,...h%! to denote arbitrary coordinates on the moduli space of
complex structures and denote a dependence on these collectively by x. We make
the distinction to the coordinates defined in Equation (2.8) which will be identified
with the coordinates centered around the large complex structure limiting point in
the moduli space.
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A variation of complex structure induces a change of the type of the ref-
erence (3,0) form (z). This change is captured by the variation of Hodge
structure. H3(Z*) is the fiber of a complex vector bundle over M equipped
with a flat connection V, the Gauss—Manin connection. The fibers of this
vector bundle are constant up to monodromy of V. The Hodge decomposi-
tion

3
H3 = @ H3-pP
)
p=0

varies over M as the type splitting depends on the complex structure. A way
to capture this variation holomorphically is through the Hodge filtration FP

(216) H*=F'>F'D>F*>F>F' =0, FP=HH"ICH?,
q=2p

which define holomorphic subbundles 7P — M whose fibers are FP. The
Gauss—Manin connection on these subbundles has the property VFP C
FP~1 @ T* M known as Griffiths transversality. This property allows us to
identify derivatives of Q(x) € F® with elements in the lower filtration spaces.
The whole filtration can be spanned by taking multiderivatives of the holo-
morphic (3,0) form. Fourth-order derivatives can then again be expressed by
the elements of the basis, which is reflected by the fact that periods of Q(z)
are annihilated the PF system of differential equations of fourth order. The
dimensions of the spaces (F?,F?/F3, F1/F? FO/F') are (1,h>! h%! 1).
Elements in these spaces can be obtained by taking derivatives of Q(x) w.r.t.
the moduli. For the example, we are discussing a section of the filtration is
given by the following vector w(z) which has 2h%! + 2 = 6 components:

(2.17) w(z) = (Qx), Q) 0:2x), 010:Q(z),032(),
6,030(x))".

where 0; = xi%. Using w(z) we can define the period matrix

(2.18) H(x)ﬂa:/ wg(x), € H3(Z*), «a,B=0,...,2h%" +1,
fya
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the first row of which corresponds to the periods of Q(x). The periods are
annihilated by the PF operators. We can identify solutions of the PF oper-
ators with the periods of Q(z). In our example, near the point of maximal
unipotent monodromy z = (21, 22), the solutions are given in Appendix A.

Polarization. The variation of Hodge structure of a family of CY threefolds
in addition comes with a polarization, i.e., a non-degenerate integral bilinear
form () which is antisymmetric. This form is defined by Q(p,¢)) = [ g P ANY
for ¢, € H3. The polarization satisfies

Q(FP,F*P) =0, Q(Cyp,p)>0for o #0,

where C acts by multiplication of ##~7 on HP4. Hence, () is a symplectic
form.

Since the space of periods can be identified with the space of solutions to
the PF equations, the symplectic form on H3(Z*) should be expressible in
terms of a bilinear operator acting on the space of solutions. This approach
has been developed in [36]. We will review and employ these techniques in
the following.

We want to express the symplectic form @ in terms of the basis (2.17).
For this purpose, we define an antisymmetric linear bidifferential operator
on the space of solutions of the PF equation as

(2.19) Dy A\ Do(fi1, f2) = % (D1 fiDafa — DafiD1 fo),

where Dy and Dy are arbitrary differential operators with respect to x. Then
we can write ) as an antisymmetric bidifferential operator

(2.20) Zle ) A Dy(6),

where Dy, D; run over the basis of multiderivatives in 6 = (61,...,0p1.1)
used to define the vector w(x) spanning the Hodge filtration, see (2.17).
The condition that Q(z) is constant over the moduli space, i.e.,

(2.21) 0:,Q(x) =0, i=1,...,h%"Y

imposes constraints on the coefficients Qg ;(x). These lead to a system of
algebraic and differential equations for the Q;(x). At this point, we need
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to express the higher-order differential operators in terms of the basis (2.17)
using the relations such as (A.2) and (A.3). Then this system can be solved
up to an overall constant.

In our example, near the point of maximal unipotent monodromy z =
(21, z2), we find

(2.22)
1
Q(z) = = AxAs (01 A 922 + 09 A 0169) — Ay Oy N «922 _® 01 N 0104
3 3 A3
Al 2 aig a4 2021a9
— 1N 6.6 — 1N 6.0 1A60 1A 6.
352 12+A32 12+3A32 1+ A2 2

where a4, ag and ajg are given in (A.6). In the basis of periods (A.7) we
then obtain

0o 0 0 0 0 1/2
o 0 0 0 -1/2 0
0o 0 0 -1/2 0 0
(2.23)
0 0 1/2 0 0 0
0 1/2 0 0 0 0
~1/2 0 0 0 0 0

Moreover, the invariant definition of the B-model prepotential is given
in terms of the natural symplectic form Q on H3(Z*,Z). Let w;(z) be a
basis for the periods, then

(2.24) FOz) = 5 ) Qwi), @j(x)) ™ i) (x).

2.3. The Gauss—Manin connection and flat coordinates

The Gauss—Manin connection. The PF operators (2.10) are equivalent to
a first-order equation for the period matrix. Using linear combinations of
the operators and derivatives thereof, the system can be cast in the form

(2.25) (6; — Ai(2) I(z) ;" =0, i=1,...,h%",
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which defines the Gauss—Manin connection V. For our example, the matrices
A;(z) near the point of maximal unipotent monodromy are given in the
appendix.

There are limiting points in the moduli space of complex structure M at
which the Hodge structure degenerates [26, 42]. These points are of partic-
ular interest in the expansion of the topological string amplitudes. In order
to describe these limiting points, we assume that there exists a smooth com-
pactification M of M such the boundary consists of a finite set I of normal
crossing divisors M \ M = Uier Di- Along these divisors, the Gauss-Manin
connection can acquire regular singularities. This means that, at a point
pE ﬂ?ill D;, the connection matrix has at worst a simple pole along D;.
Note that since we defined A; in (2.25) with 6; instead of J; this means that
matrix A;(z) is holomorphic along D;.

At a regular singularity described by a divisor D; = {y; = 0}* we there-
fore define:

(2.26) Resp, (V) = Ai(y)

y;=0-

This residue matrix gives the following useful information. The eigenvalues of
the monodromy 7" are exp(27i\) as A ranges over the eigenvalues of Res(V).
Furthermore, T' is unipotent if and only if Res(V) has integer eigenvalues.
Finally, if no two distinct eigenvalues of Res(V) differ by an integer, then T’
is conjugate to S = exp(—27iRes(V)). These properties allow us to extract
the relevant information about the monodromy of V around these boundary
divisors. We will see later that this allows us to easily obtain the solutions
to the PF equations at the various boundary points.

The monodromies T; for all the divisors D; in the boundary form a
group, the monodromy group I" of the Gauss—Manin connection. This group
is a subgroup of Aut(H?3(Z*,7Z)) preserving the symplectic form Q. Hence,
I is a subgroup of Sp(2h*! + 2,Z). The topological string amplitudes F
are expected to be automorphic with respect to this group.

The point p in the boundary which has been studied usually so far, is the
point of maximal unipotent monodromy, also known as the large complex
structure limit. From the connection matrices A;(z) of our example we can

4We will denote local coordinates near an intersection point of boundary divisors
by y, still reserving z for the point of maximal unipotent monodromy.
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immediately get information on the monodromy matrices around the divisors
D10y = {z1 =0} and D(g 1) = {22 = 0}. (For the notation on the divisors
see Section 4.2.) We simply consider the matrices Resy.,—oy = Ai(2)],=0 and
bring them into Jordan normal form. This yields

0O 1 0 0 0 O
0O 01 0 0 O
0O 0 01 0O
Resp, (V) ~ ,
0O 0 0 0 0 O
O 000 0 O
0O 0 0 0 0 O
(2.27)
0O 1 0 0 0 O
O 01 0 0 O
0O 0 0 0 0 o0
Resp,, (V) ~
0O 000 1 0
0O 0 0 0 0 1
0O 0 0 0 0 O

From this we read off that the corresponding monodromy matrices Tp,, ,
and Tp, ,, satisfy

(228) (TD(LO) - 1)4 = 07 (TD(O.I) - 1)3 = 0.

It can be checked that these monodromy matrices satisfy the conditions for
a point of maximal unipotent monodromy [26, 38].

Flat coordinates. We proceed by discussing a special set of coordinates on
the moduli space of complex structure which permit an identification with
the physical deformations of the underlying theory. These coordinates are
defined within special geometry which was developed studying moduli spaces
of N = 2 theories, we follow [1, 23, 29-32, 43, 44]. Choosing a symplectic
basis of 3-cycles A!, By € H3(Z*) and a dual basis az, 3’ of H3(Z*) such
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that
AIQBJ:5§:—BJQAI, AIﬂAJ:B]ﬂBJZO,
(2.29) / oy =65, / gl=6L, 1,0=0,.. 0242,
Al BJ
the (3,0) form Q(z) can be expanded in the basis a7z, 57:
(2.30) Qz) = X (x)ar — Fy(x)p”.

The periods X7 (z) can be identified with projective coordinates on M and

Fy with derivatives of a function F(X'), Fy = 8/;5{)51). In a patch where

XO%(z) # 0 a set of special coordinates can be defined

Xa

a __
P =x0

a=1,..., K21 (Z").

The normalized holomorphic (3,0) form vy = (X°)~1Q(t) has the expansion:

(2.31) vy = g + t%a, — BPF(t) — (2Fy(t) — t°F.(t)) 4,
where

Fo(t) = (XO)2F and  F,(t) := 0,Fp(t) = ")‘gggt).
Fy(t) is the prepotential. We define further
(2.32) Vg = g — BPFu(t) — (Fa(t) — tPFa (1)) 5°,
(2.33) ve = - — 1289,
(2.34) 00 = g0

The Yukawa coupling in special coordinates is given by

(2.35) Cune = 0,000 50(0) = [

vo N 0,0p0:10.
Z*

where now 9, = éftja . We further define the vector with 2h%! 4+ 2 components:

(236) v = (2707 Va, U%)) Uo)t'
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We have then by construction:

Vo 06 0 0 Vo
p 0 0 Cu O v,
(2.37) Dol =10 o SC 50 vcc ’
D a D
00 0O 0 0 O V0
=C,

which defines the (2h%! + 2) x (2h?! + 2) matrices C,, in terms of which
we can write the equation in the form:

(2.38) (0 — Ca) v = 0.

The entries of v correspond to elements in the different filtration spaces
discussed earlier. As in Equations (2.25) and (2.38) defines the Gauss—-Manin
connection, now in special coordinates. The upper triangular structure of the
connection matrix reflects the effect of the charge increment of the elements
in the chiral ring upon insertion of a marginal operator of unit charge. Since
the underlying superconformal field theory is isomorphic for the A- and the
B-models, this set of coordinates describing the variation of Hodge structure
is the good one for describing mirror symmetry and provide thus the mirror
maps. The following discussion builds on [33-35].

In order to find the mirror maps starting from a set of arbitrary local
coordinates on the moduli space of complex structure we study the rela-
tion between the vectors w of Equation (2.17) and v spanning the Hodge
filtration, these are related by the following change of basis:

(2.39) w(z(t)) = M(z(t))o(t).

By the fact that this change of basis is filtration-preserving, the matrix M (z)
must be lower block-triangular. For concreteness, we expose the discussion
in the following for h*!(Z*) = 2:

my1 0O 0 0 0
Mol  Ma22 M3 0 0
ms31 M3z Ma33 0 0

(2.40) M(z) =
ma1 M4z 143 144 145

o O O O O

ms1 M52 M53 M4 M55
me1  Me2 Te3 64 165 1166
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Imposing that the change of connection matrices yields the desired result
requires the vanishing of the following matrix:

(2.41) Ny (t) = Cy(t) — Z Jia M(2)"Y(Aij(z)M (x) — 6;M(x)).

Here J = (Jjq) is the Jacobian for the logarithmic derivative

1 Ozt
zt ote”

(2.42) Jia =
The matrices N, have the general block form

Ng11 Ma12 MNa13 0 0 0
Ng21 MNa22 Na23 Na24 Na25 0
(2.43) No(z) = Na31 MNaj32 MNa33 MNa34 Na3s 0
Na,41 MNa42 MNad3 MNad4 MNad5  Na 46
Ng51 MNab2 MNa,53 MNas54 MNab5  Ta,56
Nag61 MNa62 MNa,63 MNa64 MNa,65 Ta,66

We set my1(x) = X%(x) since it will turn out that this quantity should
be identified with one of the periods. The vanishing of the first column of
the N, allows us to express the my; in terms of X° (z) and its derivatives.
Moreover, it follows that mi; is a solution to the PF equations

(2.44) L, X%z)=0.

Similarly, the vanishing of the second and third column of the N, expresses
the myo and mygg in terms of mqio and m13 and their derivatives, respectively.
In addition, they satisfy differential equations of the form

(2.45) Doty XO) = L, (ta X°) — to L, X° = 0.

Together with (2.44) we conclude that the products t; X" and X% must
be solutions to the PF equations as well. In other words, the flat coordi-
nates must be ratios of two periods. The differential Equations (2.45) form
a system of nonlinear partial differential equation which determine the flat
coordinates in terms of z. In general, they are hard to solve, but one can
transform this system into a system of linear partial differential equations
of higher order along the lines of [45].
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Next, we consider the blocks (ngj e ) = 0. They can be solved for the
functions Cgpe(t). This yields expressions in terms of ¢,, their derivatives,
and the functions mos, mas, ms3a, Mmass, Maq, Mys5, M54, Mss. Taking into
account the previous results, we need to express the latter four functions in
terms of XV.

The two conditions n4 46 = 0 can be used to express my4 and mys in
terms of t,, their derivatives, and mgg. Similarly, n,s6 = 0 yield similar
expression for ms4 and mss. If we apply this to our example and again
choose the point of maximal unipotent monodromy with local coordinates

z, then we obtain the following relations:

. 3 92t2 — A391t2

maa(z) = Agdet J me6(2),
392t1 — A391t1
mys(2) = —me(z),
(2.46) (9 — 11664 21 + 5038848 212) Oty — Ag®Aqfty
m54(z) = — 5 m66(z)7
Az“Agdet J
(9 — 11664 21 + 5038848 212) 01t — A3*Aobaty
m55(2 = 2 m66(z).
A3? Ay det J

The vanishing of nj 44 and ny 45 allows us to express mgs and mgs in terms

of myo, ..., mys, te, their derivatives and the Cyp.. Upon using the previous

results, they can be expressed in terms of XY, ;, their derivatives and mgg(2).
To determine the latter, we use the vanishing of the n, 6.

432 z1 (Aq + 30233088 21 %27)
A1Ag
— (Gltl)m64(2)x — (01t2)m65(z) = 0

(2.47) me6(2) — 01me6(2)

Substituting all the previous results leads to the following differential equa-
tion

(2.48) A1As (m66(z)91X0(z) + XO(Z)01m66(Z))
— 43221 (A1 + 30233088 21%20) mgg(2) X (2) = 0.
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All the dependence on the t; has canceled. We observe that the prefactor of
mee(2) X°(z) can be written as

A12 A32 2
(2.49) A—gel A= 432 21 (A1 + 30233088 21 22) .

Hence, the differential equation simplifies to

A 2
(2.50) 0, <A1m66(2)X0(z)> =0.

Its solution is

Ag?
2.51 = —_
(2.51) mee(2) f(z2)A1X0(z)’
where f(z2) is an undetermined function that only depends on zz. To fix
this function we look at the vanishing of the nggs. After all substitutions

this yields the differential equation
(2.52) 02(A1mes(2)X°(2)) = 02 (f(22)A3%) = 0.

Since Ag does not depend on z3, we conclude that f(z2) must be a constant,
which we set to 1.

We can now recursively express all the functions m;; through the func-
tion X°(z) which must be a solution of the PF equations. In particular, this
yields the well known expression for the Yukawa couplings in flat coordinates

@5 Cal) =Y o o G G C).

1,9,k

There are still a few conditions remaining, namely 7464 = 0 and ng 65 =
0. These turn out to be very difficult to analyze. One can check that these
conditions are implied by

(2.54) QX% 1 X% =0, QX° X% =0, QtX°tX% =0.

where @@ was determined in (2.22). In particular, not every ratio of solu-
tions to the PF equations yields a flat coordinate. In general, we expect a
weaker condition involving the left-hand sides of (2.54) to be equivalent to
the vanishing of N,.
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Solutions of the PF equations. As we have just seen, in order to deter-
mine the flat coordinates we need solutions of the PF equation which sat-
isfy (2.54). It is well-known how to solve these equations at the point of
maximal unipotent monodromy by observing that they form extended GKZ
hypergeometric systems; see, e.g., [25, 46]. However, we will need the flat
coordinates at other special loci in the moduli space. For this purpose, we
need a systematic procedure to solve the system of PF equations at an
arbitrary point in the boundary M \ M of the moduli space where it is in
general no longer of extended GKZ hypergeometric type.

However, if the moduli space M is one-dimensional we have the following
well-known result; see e.g., [47, 48]. Let

R =Resy— V = A(y)|y=0

be the residue matrix of the connection V at a regular singular point given by
y = 0. R is a constant matrix. If the eigenvalues of R do not differ by positive
integers, then there exists a fundamental system of solutions to (2.25) of the
form

(2.55) u(y) =y"S(y)

with S(y) a single-valued and holomorphic matrix. If some of the eigenval-
ues of R do not differ by positive integers, then there is an algorithm for
finding a non-constant change of basis such that an eigenvalue is shifted by
1. Then, (2.55) holds with R replaced by the residue matrix R in the new
basis. Since any two fundamental systems are related by an invertible con-
stant matrix, this form is independent of the choice of basis, and we can take
for R its Jordan normal form. This simplifies the computations enormously.

In the present case where the moduli space M is higher-dimensional, we
can prove the following result: Let p = (_; D; be a point at the intersection
of h*! boundary divisors, where each of the divisors D; is given by an
equation y; = 0. Let

Ri = RGSDi V = Ai(y)|yi=03 Vi.

The matrices R are in general not constant anymore. However, for the solu-
tions near a point given by y; = 0,2 =1,...,n, we can set all y; to zero in
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R;. Then a fundamental system of solutions takes the form
u(y) = [Jvi™ S ).
i=1

This follows by induction from the result in dimension 1 together with the
fact that [R;, R;] = 0, a consequence of the flatness of V. In general, the R;
cannot be simultaneously brought into Jordan normal form. However, there
exist constant matrices C; such that the R; can be brought into simultaneous
triangular form 7; = C;lRiCi. Then we can bring u(y) into the form

u(y) = [[Pivi™ Sw),
=1

which considerably simplifies the explicit computation. In practice, the P;
are often permutation matrices.

Elliptic fibrations. Here, we discuss a few aspects of elliptic fibrations.
Let Z be an elliptically fibered CY threefold 7 : Z — B, where the fiber
771(p) & E is a smooth elliptic curve, p € B\ A, where the discriminant A
is a divisor in B. We consider the variation of Hodge structure for the fam-
ily of mirror CY threefolds f : Z* — M where M is the complex structure
moduli space. We recall that the Gauss—Manin connection for this family has
monodromy group I' € Aut(H?3(Z*,7)). Since Z is an elliptic fibration, there
is a distinguished subgroup of I" isomorphic to a subgroup I'ey C SL2(Z) and
the variation of Hodge structure contains a variation of sub-Hodge structures
coming from the elliptic fiber.

In our example the monodromy group I' is generated by two matrices
A and T [38]. Consider the element Ts, = (T'A)~! € T. Then A% and T,.?
generate an SLo(Z) subgroup as follows:

(2.56) Aty = — Tty =1 + 1

t1+1’

Hence, we expect t1 to be a modular parameter of an elliptic curve. In fact,
in the limit zo — 0 the PF system reduces to the PF equation of the elliptic
curve mirror to the elliptic fiber.
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3. Higher genus recursion

In this section, we review the ingredients of the polynomial construction [19,
20], following [20] as well as the boundary conditions needed to supplement
the construction to fix remaining ambiguities. To implement the boundary
conditions it is necessary to be able to provide the good physical coordinates
in every patch in moduli space. This can be done by exploiting the flat
structure of the variation of Hodge structure on the B-model side.

3.1. Special geometry and the holomorphic anomaly

The deformation space M of topological string theory, parameterized by
coordinates x%, i = 1,...,dim(M), carries the structure of a special Kéhler
manifold.® The ingredients of this structure are the Hodge line bundle £
over M and the cubic couplings C' which are a holomorphic section of £2 ®
Sym3T* M. The metric on £ is denoted by e~ X with respect to some local
trivialization and provides a K&hler potential for the special Kahler metric
on M, GZ} = &E%.K . Special geometry further gives the following expression
for the curvature of M:

(3.1) Riglj = [0;, Dil'; = O;TY; = 6iGj; + 65Gy; — CijCF.

The topological string amplitude or partition function F) at genus ¢ is a
section of the line bundle £2729 over M. The correlation function at genus
g with n insertions ]—"i(f?,in
are related by taking covariant derivatives as this represents insertions of
chiral operators in the bulk, e.g., lez(lg)z = ]-'i(i‘(i)mi”.

D; denotes the covariant derivative on the bundle £™ ® Sym"™T* M
where m and n follow from the context.® 7% M is the cotangent bundle of
M with the standard connection coefficients I‘;k = Gﬁ@ij;. The connec-
tion on the bundle £ is given by the first derivatives of the Kahler potential

is only non-vanishing for (29 — 2 4+ n) > 0. They

5See [5, Section 2.3] for background material.
6The notation D; is also being used for the boundary divisors D; € M \ M. It
is clear from the context which meaning applies.
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In [5, Section 3.2] it is shown that the genus g amplitudes are recursively
related to lower genus amplitudes by the holomorphic anomaly equations:

5.0 _ 1Ak (g—7)
85‘7:1'1...1'" - C (ZZ sl(n — s)! Z z (1)-+lo S)Dk}_la( +1)-lo(n)

r=0 s=0 €S,
(3.2) + DjDFY j’) —(2g-2+n-1 ZG“ F i i
s=1
where
(3.3) C¥ = CpG G K Crp = Cie

and where the sum o € S, is over permutations of the insertions and the
formula is valid for (g = 0,n > 4), (¢ = 1,n > 2) and all higher genera and
number of insertions. For n = 0 it reduces to the holomorphic anomaly for
the free energies FY:

= 1
(34)  GF9 =7 ok (ZD FODFO) 4 DDy F9- 1>)
r=1

These equations, supplemented by Bershadsky et al.[4]
5. 71 _ } Koy Xy
(35) a% 9 Jklc (1 24)sz

and special geometry, determine all correlation functions up to holomorphic
ambiguities. In Equation (3.5), x is the Euler character of the manifold. A
solution of the recursion equations is given in terms of Feynman rules [5,
Section 6].

The propagators S, S?, S¥ for these Feynman rules are related to the
three point couplings Cjjj, as

(3.6) G5 =CY, 58 =G, 35 =Gz

By definition, the propagators S, S* and S¥ are sections of the bundles
L£72 ® Sym™T with m = 0, 1, 2. The vertices of the Feynman rules are given
by the correlation functions F;* (g) . The anomaly Equations (3.4) and (3.5),
as well as the definitions in Equation (3.6), leave the freedom of adding
holomorphic functions under the & derivatives as integration constants. This
freedom is referred to as holomorphic ambiguities.



752 Murad Alim & Emanuel Scheidegger

3.2. Polynomial structure of higher genus
amplitudes

In [20] it was proven that the correlation functions fi(f )Zn are polynomials
of degree 3¢ — 3 4+ n in the generators K;, 5%, 8% S where a grading 1,1,2, 3
was assigned to these generators, respectively. It was furthermore shown

that by making a change of generators [20]

S — g
St=8"— SUK;,
S=8-5K,;+ %SinZKJ,
(3.7) K; = Kj,

the F9) do not depend on Kj, i.e., dF9) /dK; = 0. We will henceforth drop
the tilde from the modified generators.

The proof relies on expressing the first non-vanishing correlation func-
tions in terms of these generators. At genus zero these are the holomorphic
three-point couplings fi(Jle = Cjji- The holomorphic anomaly Equation (3.4)
can be integrated using Equation (3.6) to

1 .
(3.8) F = 0S4+ (1= 0K+ Y,

1

with ambiguity fi(l). As can be seen from this expression, the non-
holomorphicity of the correlation functions only comes from the generators.
Furthermore, the special geometry relation (3.1) can be integrated:

(3.9) Tl = 6/K; + 6. K; — CijuS™ + 5L,
where sﬁj denote holomorphic functions that are not fixed by the special
geometry relation, this can be used to derive the following equations which
show the closure of the generators carrying the non-holomorphicity under
taking derivatives [20].”

(%Sjk _ CimnSijnk + 5?Sk + 5553’ _ ngsmk _ séfmsmj + hg’k’

"These equations are for the tilded generators of Equation (3.7) and are obtained
straightforwardly from the equations in [20].
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9,87 = CipppS™ S™ 42618 — 51 S™ — hy ST 4 bl
1 )
0;S = *CimnSmSn — hijSJ + h;,
(3.10) 0K = KiKj — CijnS™ Ky + {1 K — CijieS* + hij,

where hgk, hg, h; and h;; denote holomorphic functions. All these functions
together with the functions in Equation (3.9) are not independent. It was
shown in ref. [49] (see also [50]) that the freedom of choosing the holomorphic
functions in this ring reduces to holomorphic functions £9, &7, € which can
be added to the polynomial generators

S — §U 4 g,
S =504,
(3.11) S=5+¢.

All the holomorphic quantities change accordingly.

The topological string amplitudes now satisfy the holomorphic anomaly
equations where the 9; derivative is replaced by derivatives with respect to
the polynomial generators [20].

11...% 1 K a‘fz(l )zn K aﬁ(lg) in 1K K afz(lg)zn
asi o\ MiTasi THiTae ) Tt g
I~ v ) (g—r)
— ' g—r
) Z (n — s) l Z fla(l) g S)Dk}—%( +1)-do(n)
r=0 s o€S,
(312) 3D, fff )
oFY,
3.13 Gt = —(2g =2+ n— 1) G—Fg.
aK. T1eels—10g.ln "
7 ¢ s=1

This equation can be simplified by grouping powers of K; [50].

3.3. Constructing the generators

The construction of the generators of the polynomial construction has been
discussed in [49]. The starting point is to pick a local coordinate z, on the
moduli space such that C,;; is an invertible n x n matrix in order to rewrite
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Equation (3.9) as
(3.14) Sii = (O 1)k (51’1@ +OK, T + s{;k) .

The freedom in Equation (3.11) can be used to choose some of the sfj [49].
The other generators are then constructed using Equation (3.10) [49]:

(3.15) S = = (0:S" — CimnS™S™ + 25,,8™ — hil)

N =N —

(3.16) S = ((%Si — CimnS™S™ + st S™ 4 Ry S™ — hz) .

In both equations, there is no summation over the index ¢. The second
equation holds for every value of i. The freedom in adding holomorphic
functions to the generators of Equation (3.11) can again be used to make a
choice for the functions h;l for all ¢ and hzg for some ig, the other ones are
fixed by this choice and can be computed from Equation (3.10).

3.4. Boundary conditions

Genus 1. The holomorphic anomaly equation at genus 1 (3.5) can be inte-
grated to give:

(3.17)
1 1 _
FO =2 (3 +AbL %) K+ logdet G + Ei:silogzi + Ea:ralogAa,
where i = 1,...,h%*! and a runs over the number of discriminant compo-

nents. The coefficients s; and r, are fixed by the leading singular behavior
of FI) which is given by [4]

1
3.18 FO ~ = logzi/ coJi,
(3.18) 24; e

for the algebraic coordinates z;, for a discriminant A corresponding to a
conifold singularity the leading behavior is given by

1
(1) ~ ——
(3.19) F B log A .

Higher genus boundary conditions. The holomorphic ambiguity needed to
reconstruct the full topological string amplitudes can be fixed by imposing
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various boundary conditions for F) at the boundary of the moduli space.
As in Section 2.3 we assume that the boundary is described by simple normal
crossing divisors M \ M = |J,c; D; for some finite set I.

We can distinguish the various boundary conditions by looking at the
monodromy T; of the Gauss—Manin connection V around a boundary divisor
D;. By the monodromy theorem [51] we know that 7; must satisfy

(3.20) (T —1)" =0

for n < dim Z* + 1 and some positive integer m. The current understanding
of the boundary conditions for F(9) seems to suggest that they can roughly
be classified according to the value of n. In general, the finer structure by
the Jordan decomposition of T is relevant; see [60].

The large complex structure limit. A point in the boundary is a large com-
plex structure limit or a point of maximal unipotent monodromy if n =
dim Z* + 1 in (3.20) and if N; = logT; satisfies certain conditions described
in detail in [26] and [38].

The leading behavior of F(@) at this point (which is mirror to the large
volume limit) was computed in [2-5, 52, 53|. In particular, the contribution
from constant maps is

| B2g Bag—2|
29(29 —2) (29 - 2)!"

where ¢, denote the exponentiated mirror map at this point.

(3.21) FO)| o= (-1)9% g>1,

Conifold-like loci. A divisor D; in the boundary is of conifold type if n = 2
in (3.20). If m = 1 then Z* acquires a conifold singularity, if m > 1 the sin-
gularity is not of conifold type but the physics behaves similarly. This singu-
larity is often called a strong coupling singularity [54]. Singularities of both
types appear at the vanishing of the discriminant A. A well-known example
for the case m > 1 is the divisor given by the non-principal disciminant in
the moduli space of the mirror of P(1,1,2,2,6)[12] for which m = 2.

The leading singular behavior of the partition function F9) at a conifold
locus has been determined in [2-5, 55, 56]

By
z 5z T01), g>1

. FO(te) =b
(3.22) (te) WISy,
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Here t. ~ A is the flat coordinate at the discriminant locus A = 0. For a
conifold singularity b = 1 and m = 1. In particular, the leading singularity
in (3.22) as well as the absence of subleading singular terms follows from
the Schwinger loop computation of [2, 3], which computes the effect of the
extra massless hypermultiplet in the space-time theory [57]. The singular
structure and the “gap” of subleading singular terms have been also observed
in the dual matrix model [58] and were first used in [59, 60] to fix the
holomorphic ambiguity at higher genus. The space-time derivation of [2, 3]
is not restricted to the conifold case and applies also to the case m > 1
singularities which give rise to a different spectrum of extra massless vector
and hypermultiplets in space-time. The coefficient of the Schwinger loop
integral is a weighted trace over the spin of the particles [56, 57] leading to
the prediction b = ng — ny for the coefficient of the leading singular term.
The appearance of the prefactor b in the case m > 1 has been discussed
in [49] for the case of the local Fy (see also [61]).

Orbifold loci. A divisor D; in the boundary is of orbifold type if n =1
in (3.20). In this case, the monodromy is of finite order. The leading singular
behavior of the partition function () at a such a divisor is expected to be
regular [5, Section 7.2]

(3.23) FO(t,)=0(1), g¢g>1.
where t, is the flat coordinate at the orbifold locus D;.

The holomorphic ambiguity. The singular behavior of F¢) is taken into
account by the local ansatz

P9 (y:)
A29—2"

(3.24) hol.ambiguity ~

for the holomorphic ambiguity near A = 0, where p(y;) is a priori a series
in the local coordinates y; near the singularity. Patching together the local
information at all the singularities with the boundary divisors with finite
monodromy, it follows however that the numerator p(z;) is generically a
polynomial of low degree in the z;. Here z; denote the natural coordinates
centered at large complex structure, z; = 0 Vi, cf. Footnote 4. The finite
number of coefficients in p(z;) is constrained by (3.22).
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4. Higher genus amplitudes for an elliptic fibration

In this section, we use the polynomial construction together with the bound-
ary conditions discussed previously to construct the higher genus topological
string amplitudes for the example of the elliptic fibration which we discussed.

4.1. Setup of the polynomials

We start by setting up the polynomial construction as discussed in Sec-
tion 3.2. This involves using the freedom in choosing the generators in order
to fix the holomorphic functions appearing in the derivative relations (3.10).
We fix the choice of the polynomial generators such that these functions
are rational expressions in terms of the coordinates in the large complex
structure patch of the moduli space. For the holomorphic functions in the
following we multiply lower indices by the corresponding coordinates and
divide by the coordinates corresponding to upper indices.
Al Zipd
Zj

With this convention we can express all the holomorphic functions appearing
in the setup of the polynomial construction in terms of polynomials in the

local coordinates. We start by fixing the choice of the generators S% in
Equations (3.14) and (3.9):

1
(4'1) ‘9%1 = -2, 8%2 = _ga 352 =0,
(4.2) 3%1 =0, 3%2 =0, 332 ==

Such a simple choice is in general not possible.

Then the following quantities are chosen by fixing the choice of the
generators S° in Equation (3.15), i.e., of h%l,hm, and the other quantities
are then computed from Equation (3.10);

1 5
(4.3) hﬁzg—%m+6@—wmw%
5 5
(4.4) h?::—ﬂﬁg——122+2021+540mz%

(4.5) hi2 = —60 21 (1 — 27 29),
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(4.6) hil = —60 2 29,
1 5
12 _ ~ - o
(4.7) hy' =g+ 322 — 482,
23 5
4. 2 = " 4402 — S 20— 54 .
( 8) h 54+ 021 22’2 5 02’12’2

We proceed by fixing the choice of the generator S in Equation (3.15),
i.e., of, say, hl, and compute from Equation (3.10)

155 25
4. hi=—""12 —
(4.9) 1 o7 Z1 1296 29 + 50 z1 29,
(4.10) h? =0,
(4.11) hé::—f%z2+]20az%
155 1055
(4.12) h2 = z1 + zo + 50 21 29.

27 97 "1 T 1906

We further compute:

25 50
4.1 1 =2 2 _ _ 7Y
( 3) 233287 3 2122,
and
5 )
( ) 11 367 12 108’ 22

With these choices the polynomial part of the higher genus amplitudes
is entirely fixed by Equation (3.12). However, we need to supplement this
polynomial part with the holomorphic ambiguities which are not captured
by the holomorphic anomaly recursion and can be fixed by the boundary
conditions discussed earlier. In order to implement the boundary conditions
we make an ansatz for the ambiguities which will be discussed in Section 4.4.
We then expand the polynomial part and the ansatz in the local special
coordinates in the different patches of moduli space. In order to do this for
the present example we first proceed by discussing the moduli space and its
various boundary components.

4.2. Moduli space and its compactification

To obtain a nice and useful description of the moduli space of complex
structures, we first need the secondary fan of the variety W. This is obtained
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from the columns of the Mori generators (2.2) which are (taking the primitive
lattice vectors in Z2)

(4.15) b =(1,0), by=(0,1), by=(1,-3), by=(—1,0).

These vectors define the weighted projective space P(1,1,3) blown up in one
point, with toric divisors Dy 0y, D(o,1), D(1,—3), D(—1,0), respectively. (The
divisor D(; _3y does not lie on the boundary of the moduli space [38] and
will be neglected in the following.) This space is still singular, and we will
discuss the resolution of the singularities in the next subsection.

We still have to remove the set where the hypersurface is singular, i.e.,
the discriminant locus. This is also given in terms of the data of toric
geometry as follows: if # is any face of the polytope A*, we define fy(z) =
> v.eonzs @i [ [; X7 The polynomial is degenerate if for any face  C A*, the
system of polynomial equations

of X@f_

(4.16) f(,:XlaT(l_...: B, =

0

has no solution in the toric variety. This yields that the discriminant locus
is given by the divisors

(4.17) Di={A; =0}, Ds={Ay=0}

with A; and Ag given in (2.12).
In the following, we will use the following abbreviations:

(4.18) Z1 =432z, ZzZo = —27z9.

These divisors intersect each other as follows. From A; = (1 — %)% —
Z3%5, we see that there is a tangency of order 3 between D1y and Dy
at the point (1,0). Writing Ay = (1 — 321 + 327) + z{ Ay we see that D
and Dy intersect transversally in the two points (z1, Z2) = (¢, 1) with ¢ =
3 (1 + 1@) By changing to the variables to w; = 5—11 we write A} = —w; (3 —
3wy + w12) + Ay and we have a triple intersection of Dy, Dy and D) in
(’wl,ig) = (0, 1).

Resolution of singularities. We want a compactification of the complex
structure moduli space by divisors with normal crossings. To achieve this
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we must resolve the singularities of P(1,1,3) and resolve all non-normal
crossings of Dy and Dy with any of the other divisors. Moreover, we will
need a set of local coordinates near each normal crossing.

The singularities of P(1,1,3) can be taken care of by toric geometry.
Resolving them amounts to subdividing the secondary fan and this intro-
duces three further generators bs = (1,—1), bg = (1,—2) and by = (0, —1),
and the corresponding toric divisors Dy _1), D(,_2) and D _1). Toric
geometry also provides us with the local coordinates near each intersec-
tion point of the toric divisors. They are determined by the generators of
the cone dual to the maximal cone spanned by the corresponding generators.
E.g. the dual cone to (0, bs, bg) is spanned by the vectors (2,1) and (—1, —1),
hence the corresponding local coordinates are (2%22, i . A summary can
be found in Table 1.

In order to obtain normal crossings with D and Dy we first consider the
resolution of the singularity of the hypersurface W = 23 — y* = 0 in (0,0).
The choice of this hypersurface singularity is motivated by the fact that
during the resolution process both a triple intersection and a tangency of
order 3 appear. Their resolutions therefore serve as a local model for the
resolutions of the non-normal crossings involving D; and Ds.

We view the hypersurface W = 0 as a divisor D in C2. The resolution can
be performed in terms of four blow-ups. At the first blow-up, we introduce
a P! with homogeneous coordinates (up : vp) such that upx — voy = 0. We
denote this exceptional divisor by Ey. In the coordinate patch ug =1 we
have & = vy and the singularity becomes W = 3 (vo® — 3). W = 0 now con-
sists of the components Ey = {y = 0} and D = {vg® —y = 0} which do not
intersect transversely in (vp,y) = (0,0). On the other hand, in the coor-
dinate patch vy =1, we have y = upx and the singularity becomes W =
23(1 — ugx). W =0 consists of the components Ey = {x =0} and D =
{1 — up*z = 0} which do not intersect at all. Hence, we focus on the patch
ug = 1 with local coordinates (vg,y) and resolve further.

At the second blow-up, we introduce a P! with homogeneous coordi-
nates (up,v1) such that ujvg —viy = 0. We denote this exceptional divisor
by Fp. In the coordinate patch u; =1, we have vy = v1y and the singu-
larity becomes W = y*(v13y? —1). W = 0 now consists of the components
By ={y =0} and D = {v12y? — 1 = 0} which do not intersect. On the other
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Table 1: xxx.

Crossing Local coordinates
D 1,0 N Do) (Z1,22)
D0y N D) (2122,2, )
D10y N D2 (Z1,1 — %)
Dg,—9y N Dy _1y ((z122) 71, 2122)
Dy N Ey (51(1 —22),2—11)
D10 N Do,-1) (521
D10 N Do,y (2 22)
D(_1.0) N Eo (sits1- 2)
(D11 Dy), - &8

ot
(D1NDy)_ -4, =%
By B, (~ozr —20)
E5N Dy (1 7, (f_fjf)B)
B3N D, (1- 2,1+ F25)
EiNEy ( 1232;1 ) — (1;?2)2)

hand, in the coordinate patch v; =1, we have y = ujvg and the singu-
larity becomes W = u13vg*(v9? — ug). W = 0 consists of the components
By = {vo = 0}, Ey = {ug =0} and D = {vy? — u1; = 0} which do not inter-
sect transversely in (vg,u1) = (0,0). Hence, we focus on the patch v; =1
with local coordinates (v, ;) and resolve further.

At the third blow-up, we introduce a P! with homogeneous coordi-
nates (ug : vg) such that ugvg — veu; = 0. We denote this exceptional divisor
by Es. In the coordinate patch ug = 1, we have vy = vou; and the singu-
larity becomes W = u16vg2(ulvg2 —1). W =0 consists of the components
By = {u; =0}, By = {va = 0} and D = {ujv2? — 1 = 0} which do not inter-
sect. On the other hand, in the coordinate patch vy = 1, we have u; = ugvg
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and the singularity becomes W = ug3v®(vg — ug). W = 0 consists of the
components Fy = {vg = 0}, Ey = {ug = 0} and D = {vy — ug = 0} which do
not intersect transversely in (vg,u2) = (0,0). Hence, we focus on the patch
vy = 1 with local coordinates (vg, u2) and resolve further.

At the fourth and final blow-up, we introduce a P! with homogeneous
coordinates (ug : v3) such that uzvg — vsug = 0. We denote this exceptional
divisor by FEs. In the coordinate patch us = 1, we have vg = v3us and the
singularity becomes W = uy'%3%(v3 — 1). W = 0 consists of the components
E3 ={uz =0}, Es ={v3 =0}, D= {v3—1=0} which do not intersect.
On the other hand, in the coordinate patch v3 =1, we have uy = ugvg
and the singularity becomes W = u33vg'%(1 —u3). W = 0 consists of the
components E3 = {vg = 0}, Ey = {uz = 0} and D = {1 — uz = 0} which do
intersect transversely in (us,vo) = (0,0). Hence, we have completely resolved
the singularity.

We see that EyN Es ={vy=0,u3 =0}, EsND ={vg=0,u3 =1} =
{ug = 0,v3 = 1} and EyN D = ). Moreover, in the other patch, E3 N Ey =
{ug = 0,v3 =0}, EaND =, and EygN Ey = (). Since E; does not appear
anymore, F3 N E; = (), its intersections can only be seen in the previous
patch with coordinates (u1,v2) and are Eg N E; =0 and Fy N Ey = {u; =
0, vy = 0}.

Now, we apply this to the divisors in the moduli space of the mirror of
P(1,1,1,6,9)[18]. After the first blow-up W = vy® — y describes a tangency
of order 3 which locally can be identified with the tangency of Dy and D(q 1.
This yields D = D1, Eg = D(g,1) with local coordinates

3

vg=1-— Zzi, Y= —Zzjz2.
From this we get
Y 5%52 ) 1—2
Ul = — = — —, Ul = — = — _3_
0 1—2z Y 2172
=35 =32
up 7379 v (I—-72)
(419) U2—7——7_27 1_;2_7___37_
Vo (1—2) uy ZiZo
U9 5?52 Vo (1 — 51)3

V0 (1 - 51)3, U2 - Z1%2
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With these identifications we find for the local coordinates near the four
intersections of these divisors

3
D10E32<1+(2122)37121>

1—7%
732y -
D(O,l) ﬂ E3 . —ﬁ, 1 — Z21
(4.20) e .
[ B (1= z)
2 3 - - 29 —3=
(1—2) Z1 %2
2z (1—7)?
EiNEy: | ——2= — .
! 2 < 1—7 5%22 >

Similarly, the triple intersection W = wugvg(vg — u2) after the third blow-
up locally can be identified with the triple intersection of Dy, Dy and D(_y ¢).
For this purpose, we set

U2:1_227 Vg = X wq,

where wy = 2—11 and « = w12 — 3wy + 3 which is nonzero at w; = 0. This
yields D = Dy, Ey = Dy and Ey = D(_1 ). From this we get (neglecting
factors of «)
(4.21) U 21— 2) v _ 1

. uzg = -—=z1\1—%22), UV3=-—= 7 7\

V0 up  Z1(1— Z)

Relabeling the exceptional divisor E3 by Eg we find for the local coordinates
near the two intersection points

1 1
DiNEy: (= ((1—7)°+2%), —
1N Ep (Zf (1=2)°+ 2 2) 21)

(4.22) Dy Ep : <zl(1 _ ), 1>

21

1
D NEy: | ————,1—22 ).
(0,1) N £o (21(1 — %) Zz)

This concludes the construction of the compactification of the moduli space

with normal crossing divisors. We summarize the local coordinates in table 1

where we have defined c4+ = % + i?. We give a sketch for the compactifica-

tion in figure 1. The divisor D(; _3) is drawn with a dashed line since it is
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E, Es

D10y D0
.
Do,1)

\ D,
Dl

D(Olyfl\ ==

Eqy

Figure 1: The blown-up moduli space.

not in the boundary of the moduli space. Under the action of the symmetry
I given in (2.9), we have

I(Dq —9)) = By, I(Dq —1)) = Eo, I(Dq o)) = E3,
(4.23) I(D1) = Da, I(D,1)) = Do,1), 1(D(o,—1)) = Do,~1);
I(D(—1,0)) = D(~1,0) I(Ep) = Ep.

For a sketch of the compactification in coordinates in which this symmetry
becomes manifest; see [38].

4.3. Periods and flat coordinates at the
boundary points

Consider the intersection points p of the boundary divisors listed in table 1.
We again denote the local coordinates near one of these points p by y. For
each of the first nine intersections p of (the remaining ones can be obtained
by applying the symmetry I) we determine the Gauss—Manin connection.
This can be done in two ways, starting from the results at the large complex
structure point reviewed in Section 2. Either one performs the change of
variables from z to y given in this table in the PF Equation (2.10) and
then reads off the connection matrix as discussed in A, or one transforms
the connection matrix using the gauge transformation law for this change



Topological strings on elliptic fibrations 765

of variables. In both cases, one needs to specify a basis for H3(Z*) near the
intersection p. We choose it to be the same everywhere and as in (2.17) and
express it in terms of differential operators acting on a period as

(424) 1’ 917 927 0102, 0227 91922 9

where 0; = ym%i.

Once we have the connection matrices A;(y), we can determine their
residues. The residues are then used in two ways. First, they allow us to
compute the index of the monodromy about the divisors intersecting p.
Second, they enter into the solutions of the PF equations as discussed in
Section 2. For the residues we find (the residues for D(; ¢y and D(g ;) have
been displayed in (2.27))

(4.25)
01000 0 0000GO00O
00100 0 020000
1 11
Resp,, , ~ 00 0 0 01 Resp, ~ |0 O 0 0)
’ 0000O0 O 000100
0000 % 0 0000O00O
00000 2 000001
01000 0 1000 00
001000 0+ 00 0 0
000100 0020 00
Resp,, .. ~ , Respg, ~ ;
(1,—-2) 0 7
000000 000 00
0000 20 0000 o0
00000 3 0000 0 1
1 1
100000 Looo0o0o0
020000 0 %0000
R ooéoooR 00 %000
eSD(fLo) ~ 5 , eSD(OﬁD ~ 11 s
000200 00 0% 00
0000%0 000040
000002 000004
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000000 010000
020000 001000
001100 000100
Resp, ~ , Resg, ~ )
000100 000000
000000 000000
000001 000000
01000 0 01000 0
00100 0 00100 0
00010 0 00010 0
Resg, ~ , Resp, ~
00000 0 00000 0
0000 % 0 0000 2 0
2 1
00000 2 0000O0 3

We note that the monodromy matrices Resp,, Resp, appear at the various
intersection points always with an eigenvalue 1 of multiplicity 3, but the
multiplicities of the eigenvalues 0 and 2 are different at different points
of intersection. This does not matter here, and can easily be remedied by
multiplying the basis elements (4.24) with appropriate powers of y; and
taking linear combinations. We have summarized the behavior of the various
monodromy matrices in Table 2. (This has first been obtained in [38]. The
monodromies about D 1) and D(; _y) can be related to the one about
D1y through the local toric geometry of the compactification M [62].) We
note here that by [38] the generators of the monodromy group I" are D, 1)
and D;. The generators of the monodromy subgroup I'g corresponding to
the elliptic fiber are D(; ) and D(O,,l)g.

For the solutions of the PF equations, we only give an example, for
the other points the results are analogous. The local coordinates at the
intersection D1 ) N Dy, 1) read

1

4.26 = —11664 = — .
( ) Y1 2122, Y2 97 29
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The residue matrices at y; = 0 have been displayed in (4.25). The solutions
of the PF operators take the form
(4.27)

mo(y) = so(y),

(
m2(y) = solog (ylyzz)Q +2s1(y)log (ylyzé) + s2(y),
(

2\ 3 2\ 2 2
y1y25> + 351 log (y1y25) + 3 s2(y) log <y1y25>+83(y),

m4(y) = Y27 54(y),
775(11) = y2§85(y),
with

5
so(y) =14 —yy2 + 0 (y*),

31 %
s1(y) = o= vy + O (y)
36
5
(4.28) s2(y) = gzt O (y"),
_ 9 o9 D 3
s3(y) = y2+< 10 Y2 6y1y2>+0(y)’
Table 2: xxx.
D 0 (T-1)*=0
Do) (T-1°=0
D, 1) (T3 - 1)4 =0
D(1,-2) (T° -1)*=0
Do,-1) T -1=0
D(*l,O) T6 - 1 - 0
Dy (T-1)2=0
Do (T-1)2=0
Ey T6-1=0
E, (T3 -1)*=0
E, (T3 —1)*=0

Es (T-1)*=0
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1 4 5
sa(y) *&4”+<m5w'“mmw>+ (v’),

_ 5 2 2
55(y)—1+<—18y1+15y2>+0(y)-

We obtain the symplectic form @ at p in the same way as the connection
matrices A;, by changing the variables in (2.22). Then, inserting the solutions
m;i(y) yields the intersection form

0o 0 0 § 0 0
1
0 0 —5 0 0 0
0 3= 0 0 0 0
(4.29) Q(mi(y), mi(y)) = .
-+ 0 0 0 0 0
o 0 0 0 0 3
0 0 0 0 —% 0

This allows us the choose the flat coordinates as follows:

2 31
tmozmwtﬂ%@wﬁ»%—mm+0@ﬂ,

mo(y 36
(4.30) 0
ta(y) = WOEZ) = y2? <1 + iyz + O (y2)> :

~— —

4.4. The partition function for small genus

Having the flat coordinates at all the intersections points p at the boundary
at hand, we can proceed to apply the boundary conditions discussed in
Section 3. In genus 1, we use caJ; = 102 and coJo = 36 to fix the s; in (3.17)
to be s1 = —%, 89 = —%, and furthermore we find r; = r9 = —%.

For higher genus we proceed as follows. We first compute the propaga-
tors near each of the intersection points p using (3.14) and (3.15). For this
purpose, we need to determine the various ingredients in these equations.
Since Cjji, are known as a rational functions in z, we can simply substitute
the change of variables z = z(y). For the holomorphic limits of K; and I‘fj

we use the expressions in terms of the periods at p:

% 82tl
oty dyiy;’

(4.31) K(y) = —logm(y), TX(y)=
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where my(y) is the period that appears in the denominator of the mirror
map; see e.g., (4.30). Since we do not know the analytic continuation of the
periods from the point of maximal unipotent monodromy z = (0,0) to p in
general, we pull the Christoffel symbols and K; from p back to (0,0), still
expressing them as functions of y, i.e.,

Kily) = 50 52 5K ()
zi(y)z (y) <3zkaylaymfn () — Dz, 0%y, >

2(y)  \Oyn 0z 0z ™Y 7 0y 0202 )

(4.32)

If(y) =

The ambiguities are simply obtained by substituting z = z(y) in the rational
functions determined in Section 4.1. This yields all the information needed
to determine the propagators at all the intersection points p.

In the next step, we make an ansatz for F(9), g > 2, as a polynomial
of degree 3g — 3 in formal variables S¥,S? S, K; with weights 1,2,3, 1,
respectively. Then we compute both sides of the holomorphic anomaly equa-
tion (3.12) and compare the coefficients of 1, K;, K; K. This yields equations
for the coefficients in the ansatz of the polynomial F(@). The solution to this
overdetermined system of equations is unique up to a constant which can be
absorbed into the holomorphic ambiguity (3.24). To determine the latter, we
make an ansatz for the numerator p(g)(z) as a series in z, i.e., near the point
the of maximal unipotent monodromy. Then we run through all the intersec-
jes Dj,J C 1,]J| = dim M. In our example, these are the
first nine intersection points in Table 1. For each of these points we substi-

tion points p €

tute the propagators computed in the previous paragraph for the variables
S St S, K; into the polynomial expression of F). Finally, we compute
the expansion in terms of the flat coordinates ¢ = t(y) at each point p:

(4.33) FO(1) = — - FO 1)),

mo(y(t))

where 7y(t) is again the period that appears in the denominator of the
definition of the flat coordinates. To each of these expansions we then apply
our discussion of the boundary conditions in Section 3.4.

In our example, we see from Table 2 that D _1), D(_1,), and Ej are of
orbifold type, while D; and Dy are of conifold type. The condition that F(9)
be regular at a divisor with finite monodromy, i.e., at Do 1), and D(_y )
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ensures that the holomorphic function p(g)(z) is a polynomial. The degrees
(di,ds) of its monomials are bounded by

(4.34) di<T(g—1), dy<6(g—1)—1, 3dy—dy <9(g—1).

In addition, regularity at D(; _y) fixes the coefficients of the monomials in
p9(2) with degrees 3dy — dy > 3(2g — 2), while regularity at D_1 ) fixes
those with d; > 6(g — 1). The divisor Ey does not yield additional condi-
tions. In particular, the holomorphic ambiguity takes now the form of a
rational function, for which we can now substitute z = z(y) if necessary.

Since D; and Dj are of conifold type, we can use the expansion (3.22).
In order to do so, we have to take into account that the flat coordinates
t1,t2 obtained from process described in Section 4.3 are only determined up
to normalization. Hence we expect relations t; = k;jt.;, i = 1,2, where .;
are the flat coordinates in the expansion (3.22). The gap condition for this
expansion yields an overdetermined system of relations among the remain-
ing coefficients of p(g)(z). For low genus, this system has a unique solution
depending only on the parameter kj. This normalization factor could in
principle be determined by an explicit analytic continuation of the periods
7(z) at the point of maximal unipotent monodromy to the periods m(y) at
D1 N Dy, though this is highly complicated.

Finally, at the point of maximal unipotent monodromy D 1) N D(1 g
we can apply the Gopakumar—Vafa (GV) expansion [3]:

f(Z,t, )\) = C;? + l(t) + Z Z Z %n(ﬁg)(z) (QSin (%))2972 qmﬁ,

6 m>0r>0

where ¢(t) and [(t) are a cubic and linear polynomials, respectively, depend-
ing on topological invariants of Z. Using the fact that there are no degree
1 curves of genus 2 in the base, n(()zi = 0 allows us to determine k; as well.
Moreover, the constant term of F(9) is determined by (3.21).

For genus g = 2,3 all these conditions lead to a unique solution for the
coefficients in the ansatz of p(@. It turns out that considering all the divisors
at all the intersection points yields a lot of redundant information. Unless we
have better understanding of the boundary behavior of the () it is not clear
how to improve this procedure to minimize the number of computations.

The resulting GV invariants n(ﬁg ) are listed in C. The resulting expressions
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for the ambiguities f(®(z) and f®)(z) can be found in B. For g > 3 the
computations turn out to be too involved. Moreover, we expect that the
boundary conditions known so far will not be sufficient to fix the holomorphic
ambiguity. We observe that the F(9) also show a particular behavior at the
other boundary divisors D;, however, it is not possible to give a precise
formulation of this behavior just from the resulting series expansion.

4.5. Recursion in terms of modular forms of SL(2,7)

Having computed the topological string partition function up to genus 3 we
proceed in the following with exploring the manifestation of the SL(2,7Z)
subgroup of the modular group. To do so we examine the large complex
structure expansion of F¢ in terms of the special coordinates. We need
further to choose a section of the corresponding line bundle £2729. We do
so by fixing the gauge mo(z) = 1, where 7 is the analytic solution at large
complex structure given in Equation (A.7). The special, flat coordinates in
this patch of moduli space are given by
tpi=t =2 tpi=to= 2 qpi=q =M, gqpi= gy =¥
o o

(4.35)
where the periods 7; are given in A. We consider the functions
(4.36) FO(tp,tp) = mo(=(1))* 2 F9(2(t)),

and expand these in the exponentiated base modulus ¢p:

1 onp9)
(4.37) FO9)(tg,tp) Zf (te)aB"™ ZZ*

n' 8an (]BZO

our Conjecture 1.1 then states that the fég) can be written as

q3n/2

£ = PO(Ba, B, B) 15,

where P,&" ) denotes a quasi-modular form constructed out of the Eisenstein
series Fo, Fy4, Eg of weight 2g + 18n — 2. The structure and weights of this
quasi-modular form was made as an ansatz guided by similar results for the
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canonical bundle over the 3 K3 surface in [13, 14]. The link between the
geometries considered there and our example is the geometry of an elliptic
fibration over a Hirzebruch surface Fy, which was considered in [63]. In that
geometry, it is possible to take a limit in the Kéhler moduli space which leads
to the non-compact geometry of the canonical bundle over the % K3, in a
different limit, it is furthermore possible to extract expressions for the ellip-
tic genera of a K3 surface [67], which are modular forms in F4 and Es. The
compact elliptic fibration over Py, which we consider here, can be considered
as another limit of the same geometry, where F; is blown down to Py. We
confirm this ansatz by computing higher genus topological string amplitudes
using their polynomial structure in terms of special geometry generators as
discussed in Section 4.4. Expanding the resulting expressions as in Equa-
tion (4.37), we confirm our conjecture for all the fég) which we computed.
Some examples of these are given in Appendix (D.2). We furthermore find
that the fr(Lg ) satisfy the following recursion:

0 T(Lg) 1 = _ n(3—n _
(4.38) ﬁng Y Z Z s(n— )M [T + (24)f(g b,
h=0 s=1

This recursion is analogous to a recursion which was conjectured for higher
genus in [13, 14]. The geometry considered in these works was that of a
%Kg. The recursion at genus 0 was motivated by a recursion in the BPS
state counting of the non-critical string [12, 21, 22] and its relation to the
prepotential of the geometry used to construct these [63].%

The recursion at genus zero can be verified explicitly either from the
construction of the polynomial expressions from integrals of the underly-
ing Seiberg-Witten-type curve [21, 22] or from the properties of the PF
equations [13]. The higher genus version of the equation is verified for low
genera by the explicit construction of the polynomials. In particular, the
explicit knowledge of the holomorphic ambiguities f@ and f®) allow us to
determine the Fy independent part of the polynomials P,S,g) which is not
determined by (4.38). Moreover, the higher genus version is conjectured to
be equivalent to the BCOV anomaly equation [14, 50]. In the following, we
want to relate qualitatively Equation (4.38) to the anomaly equations for
the amplitudes with insertions in its polynomial form (3.12), and (3.13).

8More recently this geometry has also been studied in [68].
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We work with the coordinates centered at large complex structure z;
and zo and consider the free energy with n insertions w.r.t zo:

F9) = (m)* 7 F )
" N7

since 29 is not the flat coordinate, the insertions are defined using covari-
ant derivatives on T% M. We will use however that zo = g2 + - -+ and hence
to leading order derivatives w.r.t go are captured by the amplitudes with
insertions w.r.t zs.

We are now interested in the appearance of Fy in the go — 0 limit in
the polynomial generators of the full problem, we find an occurrence in two

of the generators:?
S22 12, 1 Eg
4. — = ——E E - =
( 39) <2’2 >|QZ 12 2+ 4 +12E4
3/2
(4.40) Ki|gp=0 = Z (EyEy — Eg) .
We hence have
aF(g)

(4.41)

(aF,§9> 0522  gpY aK1>
q2=

OE, 952 9B, | 0K, 0B,

q2=

the two terms on the r.h.s can be computed from Equations (3.12) and
(3.13). The second of which vanishes in this case due to the vanishing of the
Kéhler metric G, on the r.h.s of Equation (3.13) in the limit go — 0.

We therefore have from (3.12):

1
(4.42) 522 = ZZDQF(h DQF )+§D2D2F7(Lg*1)
h 0 s=0

and furthermore:

3F(g) zg I _
__r2 (h) (g—h) (9—1)
OEy lg.= 24 DD DFV DR + DaDsF, a0’
h=0 s=0
(4.43)

9Since S?2 is a section of £72 we fix a section by multiplying by 73, we moreover
have 7T0|q2:0 = Ei/4
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We further compute 220'%|4,—0 = —1 and note that
22D2F9|g,—0 = (92Fr(bg) - nZ2F§2F7§g)> =0 = 7 <F£Q)> |g2=0-

Relating the fT(Lg) ~ FT(LQ ) ‘q2=0 it is possible to see the characteristic traits of
Equation (4.38). Due to the multiplication with 23 the non-vanishing con-
tribution of the first term on the r.h.s of (4.43) is coming from the product
of the connections with prefactor s(n — s), from the second term, a contri-
bution of n(n + 1) is coming from the contribution of the product of the two
connections. Further contributions come from derivatives acting on the con-
nections. This completes our qualitative relation of refined recursion (4.38)
to the polynomial form of the holomorphic anomaly equation with insertions
(3.12). A more thorough matching of the two equations is beyond the scope

of this work and will be discussed elsewhere.

4.6. Further examples

The expansion (4.38) also holds for other elliptic fibrations. We present here
some more examples. The first is a section of the anti-canonical bundle over
the resolved weighted projective space P(1,1,1, 3,6). The charge vectors for
this geometry are given by:

g X1 X2 T3 T4 Ty g
(4.44) M= (-4 2 1 1 0 0 0),
= (0 0 0 -3 1 1 1)

If we take the derivative with respect to Fo(27) instead of Es(7), then (4.38)
holds with the first initial condition given as

3
(4.45) FO = 5 FGo? (16 Fy* — 51 Fy2Go® 4+ 51 Gy*) A™3/2,
where F5 and G2 are modular forms of weight 2 and generate the ring of

modular forms for I'(2). They can be expressed in terms of Jacobi theta
functions as

0
(4.46) )
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The same is true, if we consider a section of the anti-canonical bundle over
the resolved weighted projective space P(1,1,1,3,3) whose charge vectors
are

Zo Ty T2 T3 T4 T5 Te
(4.47) M= (-3 11 1 0 0 0),

Taking the derivative with respect to E9(37) instead of Ey(7), then (4.38)
holds with initial condition

(448) [V = 9E, (B, — 87T BE® + 2349 F?) (E® — 27 F3)° A3/2,

where Fy and F3 are modular forms of weight 1 and 3, respectively, and
generate the ring of modular forms for I'1(3). They can be expressed in
terms of the Dedekind eta functions as

(n(7)2 + 27n(37)12) 5
n(T)n(37) ’

E1 (7’) =
(4.49)

Another elliptic fibration whose associated congruence subgroup is I'1(3) is
the degree (3,3) hypersurface in P? x P2, Its charge vectors are

xo r1 To XT3 T4 Ty Tg
(4.50) M= (-3 1 1 1 0 0 0),
= (-3 0 0 0 1 1 1)

and the first initial condition for the recursion is
(4.51) FO = 27E, (TE® +54F3) A~V

A similar example as (4.44) and (4.47) is a complete intersection of two
sections of the anti-canonical bundle over the resolved weighted projective
space P(1,1,1,3,3,3) whose charge vectors are

To1 To2 T1 T2 T3 T4 Ty T T
(4.52) M= (-2 -2 1 1 1 1 0 0 0)
= (0 0 0 0 0 -3 1 1 1)
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Taking the derivative with respect to Ea(47) instead of Ea(7), then (4.38)
holds with initial condition

(4.53) 9 = 3E3R° (4B* —13E,*F% + 13R%) A2,

where Fq and Fj} are modular forms of weight 1, and generate the ring of
modular forms for I';(4). They can be expressed in terms of the Dedekind
eta functions as

N =

_ (n()®* + 16m(47)°)
(4.54) n(27)? ’

The argument of the previous subsection also applies to elliptic fibra-
tions over Hirzebruch surfaces F,,, n = 0, 1, 2. They have more than one base
modulus. For example, the elliptic fibration given by the charge vectors

i) r1T X2 I3 Ty X5 T xT7
hy— (=
(4.55) (12)— (<6 3 2 1 0 0 0 0)
)= (0 0 0 -2 1 1 0 0),
= (0 0 0 -2 0 0 1 1)
has base Fy. In this case, the recursion (4.38) takes the following form:
O i ! (9-1)
0B, (2mn —2m —2n) f7
h) p(h
— g 22> sty tlm =) £
h=0 s=0 t=0

with first initial condition

(4.57) ol =

and fﬁf)n = ,(fm. The fact that the f,(ng)n can be expressed in the form f,(f?)n =
Py(ng,)n(EQ, Ey, Eg)A~™™" where P,Sf,)n(Eg, E4, Es) is a quasi-modular form of
weight 2g — 2 + 12m + 12n has already been observed in [15].
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Next, we consider an elliptic fibration over the Hirzebruch surface Iy
which has two phases. In the phase with charge vectors

o r1 X2 I3 Ty xIs Te X7
M= (-6 3 2 1 0 0 0 0),
4.58
(4.58) = (0 0 0 -2 1 1 0 0),
= (0 0 0 -1 0 -1 1 1)
the recursion turns out to be
(4.59))
Dfn '
OE, :fﬂ(anmefn n) f,fn)
1 K- _
Fr 2222 (tn )~ 1) - t(m =) £ o

0 s=0 t=0

with first initial conditions

In this case, the quasi-modular form Pﬁlg’)n(Eg, E4, Eg) has weight 2g — 2 +
12m 4+ 6n. The modularity of fé?l) has been analyzed in detail in [63].

Finally, for the elliptic fibration over Fo given by the charge vectors
charge vectors

i) r1 X9 I3 T4 XTj Te xT7
BH= (-6 3 2 1 0 0 0 0
()= (0 0 0 -2 1 1 0 0),
By= (0 0 0 0 0 -2 1 1)
we find that the recursion turns out to be
(4.62())
8 frm 1 N elg—1
O, = —4(2mn—2m—2n) 75197”>
1 n

g m
o2 @t =) —s(n—t) —tim—s) [T

h=0 s=0 t=0

\V)
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with first initial conditions

(4.63) F9 = _ptaks

0
,0 A’ (gl)*0

In this case, the quasi-modular form RS;Z %(Ez, Ey, Eg) has weight 29 — 2 +

12m.

As last example, we consider Schoen’s CY, i.e., a complete intersection of
two equations of degrees (3,1,0) and (0,1, 3), respectively, in P? x P! x P2,
i.e., the charge vectors are

Zo,1 To2 L1 T2 T3 T4 I5 T X7 X
(=3 0 1 1 1 0 0 0 0 0
= (-1 -1 0 0 0O 1 1 0 0 O
(O -3 0 0 0 0 O 1 1 1

This is an elliptic fibration over the rational elliptic surface dPg studied
in detail in [64] (see also [65]). For simplicity, we have restricted the Kéhler
classes of the rational elliptic surface to the class of the fiber and the section.
The recursion turns out to be

3f7(ng,)n 1 2 (g 1)
0B, 2 (9mn + 3n* = 3n) f17,,
(4.65) | S
iy Z 523 (sln =)~ tlm =) pamgm
h=0 s=0 t=

with first initial conditions

0 1 0
(4.66) 79 = 81176 % =o0.

In this case, the quasi-modular form Bgsa)n(Eg, Ey, Fy) for T'1(3) has weight
2g — 2+ 2m with E; and F given in (4.49). The modularity of fl(%) has been
proven in [66].
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5. Conclusions

In this work, we studied topological string theory and mirror symmetry
on an elliptically fibered CY. We computed higher genus amplitudes for
this geometry using their polynomial structure and appropriate boundary
conditions. The implementation of the boundary conditions required the
use of techniques to single out the preferred coordinates on the deformation
space of complex structures on the B-model side of topological strings. To do
this we used the Gauss—Manin connection and the special, flat coordinates
which could be found in various loci in the moduli space. At the large volume
limiting point on the A-side which is mirror to the B-model large complex
structure limit, the topological string free energies reduce to the Gromov—
Witten generating functions allowing us thus to make predictions for these
invariants at genus 2 and 3 in their resumed version giving the GV integer
BPS degeneracies.

Having computed the higher genus topological string amplitudes we
showed that these carry an additional interesting structure which exhibits
the elliptic fibration. Namely the order by order expansion in terms of the
moduli of the base of the elliptic fibration can be expressed in terms of the
characteristic modular forms of SL(2, Z) which is a subgroup of the full mod-
ular group due to the elliptic fibration. Along with this refined expansion in
terms of Fs, F4 and Eg we found a refined anomaly equation which could
be related to the holomorphic anomaly equations of BCOV for the corre-
lation functions. This type of anomaly is the analog of an anomaly which
was studied in the study of BPS states of exceptional non-critical strings
[12, 21, 22] which are captured by the prepotential of the geometry used in
their construction [63]. It was furthermore shown in [12] that this anomaly
is related to an anomaly found in the study of partition functions of N’ = 4
topological SYM theory [69]. The anomaly for the that latter theory on P?
found in [69] marks the first physical appearance of what became to be know
as mock modular forms (see [70] for an introduction). The relation of the
non-holomorphicity of mock modular forms and the recursion at genus 0
was further studied in [67, 71-73]. The recursion found in this work (4.38)
is expected to shed more light on the higher rank N = 4 topological SYM
theory on P2, since the main example of this paper is an elliptic fibration
over P? and the elliptic fibration structure is the analogous setup to [12].
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It would be furthermore interesting to give the higher genus amplitudes an
interpretation in the SYM theory.
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Appendix A. Gauss—Manin connection matrices

The vector w(z) with 2h*! + 2 components:
(A.1) w(z) = (Uz)  (1Uz),0:0(2) 6:1029(2),05Q(2), 60:105Q(2) )t.

was picked such that its entries span the filtration quotient groups (F?,
F2/F3, F'/F? F°/F') of respective orders (1,h%! h%! 1). Further multi-
derivatives of Q(z) can be expressed in terms of the elements of this vector
using the PF equations, derivatives and linear combinations thereof. We find
the following relation for the remaining double derivative:

3 (0291 + 144 2161 + 20 2:1)
Aj ’

(A.2) 0,° =

as well as relations for the triple derivatives, for example:

933 (164 2101 + 53568 21201 + 20 21 + 1296 620121 + 8640 212 + 302201 + 600221)
1 = k)
As?

(A.3)
2 305 (2021 + 144 2104 +9192)
0102 = A .

3
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The fourth-order derivatives can be expressed in terms of the Gauss—
Manin connection acting on the period matrix:

(A.4) (6 — Ai(2)) I(2) " =0, i=1,... 0%,

In the following, we give these matrices at the large complex complex
structure limit for the example discussed in this work:

(A.5)
0 1 0 0 0 0
60z1 4322z 3
— 0
As Aj 0 As 0
0 0 0 1 0 0
A(z) = ,
1(2) 0 0 602z, 4322z 0 3
As Az As
0 0 0 0 0 1
3CL1 3(12 3a3 3@4 60 21A32A2 as
AsAr AzAr AzAp AzAg Ay A3 Aq
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
Az(2) = 0 0 0 0 0 1
ae ar as ag —27 29 ag
A32 AQ A32 AQ A32 AQ A32 AQ AQ A32 AQ
a e ay a3 O0za9  awn
Al Al Al Al A1 A1
with

ay =720 21225 (5 4 91152 21)

as = —12 2921 (5 — 12960 21 — 35645184 21 %),

az = 180 2021 (1 — 2160 21 + 1679616 22) ,
(A.6) ag = —36 2021 (5 — 8640 2 — 71103744 2,°) ,
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as = 432 z1 (Aq(z) + 30233088 21 %22)

ag = —120 2129 (1 — 864 21) ,

a7 = =22 (1 — 1266 21 + 546912 z,%)

ag = —629 (1 — 804 21 + 147744 2, %),

ag =92 (1 — 1296 2 + 559872 217) ,
a1p = 4353564672 21° 2.

A fundamental solution is given by

mo(z) = so(z2),

m1(2) = so(z)log z1 + s1(2),

ma(z) = so(2) log z2 + s2(2),

m3(2) = so(z) ( (log 21)* + 3 log 21 log zg) + 51(2) log 22

1
(A7) ma(z) = so(z <E2) (log z1)2 + 3 log 21 log 29 + B (log zz)2>

3 1
(log 21)3 + 5 (log 21)2 log z9 + 5 log 21 (log 22)2)

3
(log 22)? + s2(2) (2 (log z1)? + log 21 log 22>

+ s3(2) log z2 + s4(2) log z1 + s5(2),

where
5 385 ,
142
s0(2) +36 21—1-5184;1 + 0(2°),
13 P 9 , 5 , 5 ,
=22 LA . 2 10
s12) = g —gr 2t gg A T gzt g a0,
5 2 38 , 5 o, 5 ,
=+ 2 2 O
(A8) 2(2) = patgetma g a - eant0E),
. ( ) — 1 + E 2 ﬂ 2 + O( 3)
s3(2) = 322 421 32422 Z7),
15 10183 ,
s4(2) = 1 21 + 68 217+ 0(z7),
15 2 965 , 13 , 5 s
e T SO i =2 2o O(2%).
5(2) = =g atga o a g s~ g A T 0EY)
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Appendix B. Holomorphic ambiguity

155520 (—111885 Z1 + 25523 zo + 671310 27 + 111447 20z

— 56842 72 — 1678275 7} — 1204665 Z277 + 148602 571 + 29375 75
+ 2237700 z} + 3455528 2273 + 302070 2527 — 136500 257,

— 1678275 2} — 5125329 Zp 7} — 1693290 727} + 202125 75 2>

+ 671310 28 + 4481781 292} 4 3357810 2321 — 107721 z3 23

— 111885 2] — 2233705 720 — 3969738 Z32; — 390927 Z5 %}

+ 58750 2375 + 489420 @2{ + 2634295 2329 + 1228482 75 2}

— 96750 Z3z{ — 836700 2271 — 1223340 Z5 zl 62250 Z3 2}

+ 692430 73 2] 4 122065 2320 — 273015 2521

+29375 252 + 39750 2521 ) Ay T2 Ay 2,

1

38093690880
+ 192660441750 27 + 62590386030 Zo21 4 211279484 72

— 1070395338600 23 — 794525009166 Zo27 — 114611573748 737,
— 7115156792 25 + 3611036097900 Z; + 4485991204548 7,75

+ 1373729024769 7377 + 172908712632 252, + 12595354536 Z5
— 8243223219000 2 — 15328771143252 757} — 7619382247178 7373
— 1534203320118 2372 — 182097732804 Z3 2 — 8683469900 Z5

+ 13425941147850 2 + 35631125168634 2227

+ 25991656710522 2521 + 7513251658918 25 25

+ 1210003720515 Z5 22 4+ 107250300570 25z, + 2195637500 25

— 16018774002000 ! — 59707988600022 Z 29

— 61303837831056 2527 — 24166432738356 z5 7]

— 4928943313826 7375 — 611530831590 Z577 — 26041575000 257,
+ 14136293140200 25 4 74311755828120 Zo2]

+ 106181883486822 7329 4 56186770195008 25 2}

+ 14124546987582 73 71 + 2183901301478 25 23

(—15917050800 z; + 456232932 Z5
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+ 141417906000 2572 — 9190359208800 z{ — 69493182032628 252}
— 139262199819120 227/ — 99607604872014 7329

— 31105605508380 z3 2, — 5666669637756 zng

— 499739411500 2575 + 4321388090250 z1° + 48656803865922 75 7)
+ 139798606371588 7221 % + 137955097456758 Z5 2]

+ 55201398291783 2520 + 11744735794614 7527

+ 1356336265200 25 21 4 8782550000 Z3 2, — 1414808425800 Z1

— 25014405127866 7,710 — 106841517162632 Z3 2}

— 149905707199956 z52¢ — 79956636322806 Z3 2,

— 20332329285174 2520 — 2995433412300 2527 — 77818650000 Z3 21
+ 300289531500 212 + 9067187221092 z27;

+ 60845356108857 2271 Y + 126488366264360 25 2]

+ 93969651592314 25 25 + 29701731464910 2577

+ 5375737341495 2528 4 305868024000 Z5 2 — 35787036600 z1°

— 2148868232604 Z, 712 — 24743599592694 727,

— 80849417068920 75 710 — 88089834084720 75z}

— 36636047127000 2525 — 7904357952642 75 27

— 752243946300 320 + 1655832150 214 + 286405678230 2o 212

+ 6642190971806 z5 212 + 37427283757680 z571

+ 63913185937407 2571° + 37575505804186 75 7}

+ 9831162295782 2575 + 1360789452540 Z3 z1 + 13173825000 z5 29
— 14575439970 Z,21* — 1005306836100 25713

— 11572589903500 z5712 — 34202435930730 Z5 z, 1

— 30897046296546 75210 — 10439016904684 25z}

— 1915988002740 z3 25 — 77206500000 25 2] + 56821108680 z5 214
4 2028431619060 zg’zii‘” + 12418135213655 25 21

4 19333958170350 25711 + 9305421434772 2571°

+ 2108401264068 7327 + 187661061000 2525 — 129039404760 25214
— 2587173466500 z3 21 — 8403448711600 25 7,2

— 6725788007592 2571 — 1892891215014 73 z°
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— 277132387700 2577 4 188761664700 z52, 1

+ 2155595370600 2521 4 3522052783964 252>

+ 1456170527574 Zaz1 + 293531487060 z571°

+ 8782550000 z5 Z) — 185488839900 z571* — 1165840766580 25713
— 868288332856 Z4 712 — 221357393880 Z5z11 — 25123350000 25 z.°
+ 123701472720 2571* + 389322265500 5 213

+ 124275425135 25712 + 23389674000 29711 — 55116605880 Z4 71
— 69934264260 75213 — 15944383000 227212 4 15644258910 25 214
+ 3981361650 25713 4 2195637500 2202{% — 2542777650 2571
+306075000 23°21% + 178731000 23°21%) A 1A~
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Appendix D. Modular forms
D.1. Definitions

We summarize the definitions of the modular objects appearing in this work.

p""

(D.1) H (L—4q"), A1) =n(n)*

and transforms according to

im 1 T
(D.2) o+ ) =), 0 (1) =/ Tam).
The Eisenstein series are defined by
2% e nkflqn
D. E =1-== L 4
(D.3) (=15 >

where Bj, denotes the k-th Bernoulli number. Ej, is a modular form of weight
k for k > 2 and even. The discriminant form is

1

(D.4) A(r) = s (Ba(r)?

~ Bo(r)?) = n(r).

The modular completion of the holomorphic Eisenstein series Fo has the
form

3

wlm7’

(D.5) Ea(r) = Bs(7) —

D.2. Expansions of fr(lg)

1 s
D.6) A" = ATIE (BE +31E7),

©_ 1 s

x (196319 Eg* + 755906 Eg”E4® + 208991 E4°)
+4E (113 Eg® + 31 B,%)° EQ) :
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o__ 1 A3 44024241 B8
3 T 557256278016 (Ea (3607440 6

+ 4311836724416 Ec° E4* + 6966210848730 E* E,°
+1904214859592 E*E4” + 49789907821 E4'?)

+ 8748 E4*Eg (113 Eg” + 31 E4°)

x (196319 Eg* + 755906 Eg*E4° 4 208991 E4°) B

(D.8) +17496 B,* (113 Be? + 31 )" By?)
1 s
(D.9)  fi¥) = ATIE; (3B + 31 B,°) B,
0L A3 1390175 BB — 1941621 B2 B,
> =3iss0a96> 6 6
—21935 Eg® — 197917 E,° + 12 E4Eg (196319 Eg*
(D.10) +755906 E¢” E4® + 208991 E4°) E»
+72E,% (113 Eg® + 31 E,%)° By?
(1) 1

-~ A3 (8E 1 ES5E,3
3 7 743008370688 (8 B (87737816690 Eis” Ey

+ 355811791488 Fg E4° + 255154185422 Eg*E,°
+28404078217 E4'* + 1388616631 E¢®)

+ 81 By (113 B® + 31 E4*) (1322175 E¢* B,
+1941621 Eg*E4° + 21935 E¢° 4 197917 E4?) B>
— 972 E4*Eg (113 E¢* + 31 E4*) (196319 Eg*

(D.11) +755906 Eg* E4* + 208991 E,°) E»?
(D.12) 3240 Ey* (13 B¢ + 31 )" B5* ),
@__ 1

| _69120A—% (Ea? (113 Eg® + 31 B)

+5 By (113 Eg* + 31 E4*) E5?) ,
@) _ 1
2 771911029760
+7232114 E6*E,*) + 3336839 E,°

+ (9371817 Eg* E4® + 5997963 E4° Eg*
+943457 E4”) B + 109675 Eg® — 30 E4Eg (196319 Eg*
+755906 E6”E4* + 208991 E4°) E?

(D.13) 280 Ey? (13 B + 31 )" B5* ),

A3 (2 B4*Eg (1540871 Eg*
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72 :mN% (2 E4? (6841970275 E¢®
+ 59257855181 Eg*Ey” + 188946594537 Eg* E,4°
+103842683975 E¢O E4® + 1946160544 F4'?)

— 36 E4°Eg (113 E” + 31 E4*) (1354933 E4°
+2482198 E¢*E4* + 475957 Eg*) By

— 9By (113 B¢* 4 31 E4®) (954989 E4°

+ 9455889 E*E4° + 6151191 E4° Eg*
+109675 E¢°) E? 4 360 E4*Eg

x (113 E¢* + 31 E4*) (196319 Eg*

+755906 E*E4* + 208991 E4°) E?

(D.14) F1710 By (113 B + 31 ) By )|
B 1 A 4EE (1132 + 31 ES
N =Triis210 (4 Eaks ( 6 +3LEL)
+21 Ey* (113 B¢* + 31 B4°) B,
(D.15) +35 By (113 E¢* + 31 E4%) E5*),
@ _ 1 A-3(p, (14470511 ES
2 7321052999680 (Ea ( 6

+ 299836579 E4*Eg* + 378756589 B¢ E4°
+31120385 E4°) + 12 E4*Eg (3459163 Eg*
+16800202 E¢*Ey* 4+ 7775707 E4,°) E,
+ (767725 E6® + 5958407 E4° + 33404973 E4* Eg?
+60894687 Es*E4°) Eo? — 140 E4E (196319 Eg*
+755906 Eg* E4® + 208991 E,°) E®

(D.16) ~2100 B4 (113 B¢ + 31 E43)° E24> ,

(3) _ 1 A2 (2B, B (49 Js o
15" = goaizronigrom ™ * (2EaEs (42089002745 B

+ 856373539390 E¢ E4® + 2773682486544 Eg* E,°
+2005074999106 E6*E,” + 260719698551 E4'?)

— 27 E4* (113 E¢* + 31 E4°) (8126451 E°

+ 97251020 E*E4° + 74249327 E4* Eg*
+2870738 E¢®) Ey — 54 E4*Eg (113 Eg® + 31 E4°)
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(9472999 E4°® + 17291314 E¢* B,
+3178471 Eg") Ey* — 315 Ey (113 E¢* + 31 E4°)
(180619 E4” + 1815513 Eg* E4°® + 1092333 E,4° Eg*
+21935 E6%) E>® + 1890 E4* E (113 Eg* 4 31 E4*)
(196319 Eg* + 755906 E¢> E4®
(D.17) +208991 E,°) Ey* + 12285 B, (113 Eg? + 31 E,%)° Ei’) :
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