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Topological strings on elliptic fibrations

Murad Alim and Emanuel Scheidegger

We study topological string theory on elliptically fibered Calabi–
Yau manifolds using mirror symmetry. We compute higher genus
topological string amplitudes and express these in terms of poly-
nomials of functions constructed from the special geometry of the
deformation spaces. The polynomials are fixed by the holomorphic
anomaly equations supplemented by the expected behavior at spe-
cial loci in moduli space. We further expand the amplitudes in the
base moduli of the elliptic fibration and find that the fiber moduli
dependence is captured by a finer polynomial structure in terms of
the modular forms of the modular group of the elliptic curve. We
further find a recursive equation which captures this finer structure
and which can be related to the anomaly equations for correlation
functions.
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1. Introduction

Mirror symmetry and topological string theory are a rich source of insights
in both mathematics and physics. The A- and B-model topological string
theories probe Kähler and complex structure deformation families of two
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mirror Calabi–Yau (CY) threefolds Z and Z∗ and are identified by mirror
symmetry. The B-model is more accessible to computations since its defor-
mations are the complex structure deformations of Z∗ which are captured
by the variation of Hodge structure. Mirror symmetry is established by pro-
viding the mirror maps, which are a distinguished set of local coordinates
in a given patch of the deformation space. These provide the map to the
A-model, since they are naturally associated with deformations of an under-
lying superconformal field theory and its chiral ring [1].

At special loci in the moduli space, the A-model data provides enumer-
ative information of the CY Z. This is contained in the Gromov–Witten
invariants which can be resumed to give integer multiplicities of BPS states
in a five-dimensional theory obtained from anM -theory compactification on
Z [2, 3]. Moreover, the special geometry governing the deformation spaces
allows one to compute the prepotential F0(t) which governs the exact effec-
tive action of the four-dimensional theories obtained from compactifying
type IIA(IIB) string theory on Z(Z∗), respectively.

The prepotential is the genus zero free energy of topological string the-
ory, which is defined perturbatively in a coupling constant governing the
higher genus expansion. The partition function of topological string theory
indicating its dependence on local coordinates in the deformation space has
the form:

(1.1) Z(t, t̄) = exp

(∑
g

λ2g−2F (g)(t, t̄)

)
.

In [4, 5], Bershadsky, Cecotti, Ooguri and Vafa (BCOV) developed the the-
ory and properties of the higher genus topological string free energies putting
forward recursive equations, the holomorphic anomaly equations along with
a method to solve these in terms of Feynman diagrams. For the full partition
function, these equations take the form of a heat equation [5, 6] and can be
interpreted [6] as describing the background independence of the partition
function when the latter is interpreted as a wave function associated with
the geometric quantization of H3(Z∗).

The higher genus free energies of the topological string can be further-
more interpreted as giving certain amplitudes of the physical string theory.1

1See [7] for a review.
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The full topological string partition function conjecturally also encodes the
information of 4d BPS states [8]. It is thus natural to expect the topological
string free energies to be characterized by automorphic forms of the target
space duality group. The modularity of the topological string amplitudes was
used in [5] to fix the solutions of the anomaly equation. The modularity of
the amplitudes is most manifest whenever the modular group is SL(2,Z) or
a subgroup thereof. The higher genus generating functions of the Gromov–
Witten invariants for the elliptic curve were expressed as polynomials [9, 10]
where the polynomial generators were the elements of the ring of almost
holomorphic modular forms E2, E4 and E6 [11]. Polynomials of these gen-
erators also appear whenever SL(2,Z) is a subgroup of the modular group,
as for example in [12–15]. The relation of topological strings and almost
holomorphic modular forms was further explored in [16] (see also [17, 18]).

Using the special geometry of the deformation space a polynomial struc-
ture of the higher genus amplitudes in a finite number of generators was
proven for the quintic and related one parameter deformation families [19]
and generalized to arbitrary target CY manifolds [20]. The polynomial struc-
ture supplemented by appropriate boundary conditions enhances the com-
putability of higher genus amplitudes. Moreover, the polynomial generators
are expected to bridge the gap towards constructing the appropriate mod-
ular forms for a given target space duality group which is reflected by the
special geometry of the CY manifold.

In this work we use the polynomial construction to study higher genus
amplitudes on elliptically fibered CY. The higher genus amplitudes are
expressed in terms of a finite number of generators which are constructed
from the special geometry of the moduli space of the CY. Expanding the
amplitudes of the elliptic fibration in terms of the base moduli allows us to
further express the parts of the amplitudes depending on the fiber moduli
in terms of the modular forms of SL(2,Z). Together with this refinement of
the polynomial structure we find a refined recursion which is the analog of
an equation discovered in the context of BPS state counting of a non-critical
string [12, 21, 22] and which was conjectured to hold for higher genus topo-
logical strings [13, 14].

We write the topological string amplitudes for elliptic fibrations in the
A–model as an expansion:

F (g)(tE , tB) =
∑
n∈Zb

f (g)
n (tE)qn

B,
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where tE , tB,a, a = 1, . . . , b = dimH2(B,Z) denote the special coordinates
corresponding to the Kähler parameters of the fiber and base of the elliptic
fibration, respectively. We set qE = e2πitE , qB,a = e2πitB,a . Then we we can
formulate one of our main results as a conjecture:

Conjecture 1.1. (1) In the main example which we consider in this work
(for which b = 1), the expansion coefficients f (g)

n can be written as

f (g)
n = P (g)

n (E2, E4, E6)
q
3n/2
E

η36n
.

Here P (g)
n denotes a quasi-homogeneous polynomial in the Eisenstein

series E2, E4, E6 of degree 2g − 2 + 18n.

(2) Furthermore, the expansion coefficients f (g)
n satisfy the following recur-

sion:

(1.2)
∂f

(g)
n

∂E2
= − 1

24

g∑
h=0

n−1∑
s=1

s(n− s)f (h)
s f

(g−h)
n−s +

n(3− n)
24

f (g−1)
n .

(3) Similar formulas hold for other elliptic fibrations with b ≤ 2.

The outline of this work is as follows. In Section 2, we review some ele-
ments of mirror symmetry that allow us to set the stage for our discussion.
We present and further develop techniques to identify the flat coordinates
on the deformation spaces. In particular, we exhibit a systematic proce-
dure to determine these coordinates at an arbitrary point in the boundary
of the moduli space. We proceed in Section 3 with reviewing the holomor-
phic anomaly equations and how these can be used together with a poly-
nomial construction to solve for higher genus topological string amplitudes.
In Section 4, we present the results of the application of the techniques and
methods described earlier to an example of an elliptically fibered CY. The
dependence on the moduli of the elliptic fiber can be further organized in
terms of polynomials of E2, E4 and E6 order by order in an expansion in
the base moduli. We find a recursion (1.2) which captures this structure and
relate it to the anomaly equation for the correlation functions of the full
geometry. We show that such recursions hold for several examples of elliptic
fibrations. We proceed with our conclusions in Section 5.
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2. Mirror symmetry

In this section, we review some aspects of mirror symmetry which we will
be using in the following.2 To be able to fix the higher genus amplitudes
we need a global understanding of mirror symmetry and how it matches
expansion loci in the moduli spaces of the mirror manifolds Z and Z∗. We
will also review and further develop some methods and techniques on the
B-model side along [29–36] to identify the special set of coordinates which
allows an identification with the physical parameters and hence with the
A-model side.

2.1. Mirror geometries

The mirror pair of CY 3-folds (Z,Z∗) is given as hypersurfaces in toric ambi-
ent spaces (W,W ∗). The mirror symmetry construction of [24] associates the
pair (Z,Z∗) to a pair of integral reflexive polyhedra (Δ,Δ∗).

The A-model geometry. The polyhedron Δ∗ is characterized by k relevant
integral points νi lying in a hyperplane of distance one from the origin in Z

5,
ν0 will denote the origin following the conventions of [24, 25]. The k integral
points νi(Δ∗) of the polyhedron Δ∗ correspond to homogeneous coordinates
ui on the toric ambient space W and satisfy n = h1,1(Z) linear relations:

(2.1)
k−1∑
i=0

lai νi = 0, a = 1, . . . , n .

The integral entries of the vectors la for fixed a define the weights lai of the
coordinates xi under the C

∗ actions

ui → (λa)l
a
i ui, λa ∈ C

∗ .

The lai can also be understood as the U(1)a charges of the fields of the
gauged linear sigma model (GLSM) construction associated with the toric
variety [37]. The toric variety W is defined as W � (Ck − Ξ)/(C∗)n, where

2See [23–25] for foundational material as well as the review book [26] for general
background on mirror symmetry. Some of the exposition in this section will follow
[27, 28].
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Ξ corresponds to an exceptional subset of degenerate orbits. To construct
compact hypersurfaces,W is taken to be the total space of the anti-canonical
bundle over a compact toric variety. The compact manifold Z ⊂W is defined
by introducing a superpotentialWZ = u0p(ui) in the GLSM, where x0 is the
coordinate on the fiber and p(ui) a polynomial in the ui>0 of degrees −la0 .
At large Kähler volumes, the critical locus is at u0 = p(ui) = 0 [37].

An example of an elliptic fibration is the compact geometry given by a
section of the anti-canonical bundle over the resolved weighted projective
space P(1, 1, 1, 6, 9). Mirror symmetry for this model has been studied in
various places following [25, 38]. The charge vectors for this geometry are
given by:

(2.2)
x0 x1 x2 x3 x4 x5 x6

(l1) = (−6 3 2 1 0 0 0),
(l2) = (0 0 0 −3 1 1 1).

The B-model geometry. The B-model geometry Z∗ ⊂W ∗ is determined by
the mirror symmetry construction of [24, 39] as the vanishing locus of the
equation

(2.3) p(Z∗) =
k−1∑
i=0

aiyi =
∑
νi∈Δ

aiX
νi ,

where ai parameterize the complex structure of Z∗, yi are homogeneous
coordinates [39] onW ∗ andXm,m = 1, . . . , 4 are inhomogeneous coordinates
on an open torus (C∗)4 ⊂W ∗ and Xνi :=

∏
mX

νi,m
m [40]. The relations (2.1)

impose the following relations on the homogeneous coordinates:

(2.4)
k−1∏
i=0

y
lai
i = 1, a = 1, . . . , n = h2,1(Z∗) = h1,1(Z).

The important quantity in the B-model is the holomorphic (3, 0) form which
is given by:

(2.5) Ω(ai) = Resp=0
1

p(Z∗)

4∏
i=1

dXi

Xi
.

Its periods

πα(ai) =
∫

γα

Ω(ai), α = 0, . . . , 2h2,1 + 1
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are annihilated by an extended system of Gelfand, Kapranov and Zelevinsky
(GKZ) [41] differential operators

L(l) =
∏
li>0

(
∂

∂ai

)li

−
∏
li<0

(
∂

∂ai

)−li

(2.6)

Zk =
k−1∑
i=0

νi,jθi, j = 1, . . . , 4. Z0 =
k−1∑
i=0

θi + 1, θi = ai
∂

∂ai
,(2.7)

where l can be any positive integral linear combination of the charge vec-
tors la. The equation L(l)π0(ai) = 0 follows from the definition (2.5). The
equations Zk πα(ai) = 0 express the invariance of the period integral under
the torus action and imply that the period integrals only depend on special
combinations of the parameters ai

(2.8) πα(ai) ∼ πα(za), za = (−)la0
∏

i

a
lai
i ,

the za, a = 1, . . . , n define local coordinates on the moduli space M of com-
plex structures of Z∗.

In our example, there is an additional symmetry on M. Its origin is
the fact that the polytope Δ∗ has further integral points on facets [25, 38].
They correspond to nonlinear coordinate transformations of the ambient
toric variety W . These coordinate transformations can be compensated by
transforming the parameters ai. This yields the symmetry on M

(2.9) I : (z1, z2) �→
(

1
432

− z1,− z1
3z2

( 1
432 − z1)3

)
.

The charge vectors defining the A-model geometry in Equation (2.2) give
the following Picard–Fuchs (PF) operators annihilating π̃α(zi) = a0 πα(ai):

L1 = θ1(θ1 − 3θ2)− 12z1(6θ1 + 1)(6θ1 + 5),(2.10)

L2 = θ3
2 + z2

2∏
i=0

(3θ2 − θ1 + i), θa := za
∂

∂za
.(2.11)

The discriminants of these operators are

(2.12)
Δ1 = (1− 432 z1)3 − (432 z1)3 27 z2,

Δ2 = 1 + 27 z2,
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Furthermore, we label the function

(2.13) Δ3 = 1− 432 z1.

Note, that Δ1 ◦ I = (432 z1)3Δ2 and Δ2 ◦ I = Δ1
Δ3

3 , hence the vanishing loci
of Δ1 and Δ2 are exchanged under the symmetry I.

A further important ingredient of mirror symmetry are the Yukawa cou-
plings which are identified with the genus zero correlators of three chiral
fields of the underlying topological field theory. In the B-model, these are
defined by:3

(2.14) Cijk(x) :=
∫

Z∗
Ω ∧ ∂i∂j∂kΩ, ∂i :=

∂

∂xi
.

For the example above, these can be computed using the PF operators [25]:

(2.15)

C111(z) =
9

z13Δ1
,

C112(z) =
3Δ3

z12z2Δ1
,

C122(z) =
Δ3

2

z1z22Δ1
,

C222(z) =
9
(
Δ3

3 + (432 z1)3
)

z22Δ1Δ2
.

2.2. Variation of Hodge structure

The PF equations capture the variation of Hodge structure which describes
the geometric realization on the B-model side of the deformation of the
N = (2, 2) superconformal field theory and its chiral ring [29], see also ref
[32] for a review. Choosing one member of the deformation family of CY
threefold Z∗ characterized by a point in the moduli space M of complex
structures there is a unique holomorphic (3, 0) form Ω(x) depending on
local coordinates in the deformation space.

3We use xi, i = 1, . . . h2,1 to denote arbitrary coordinates on the moduli space of
complex structures and denote a dependence on these collectively by x. We make
the distinction to the coordinates defined in Equation (2.8) which will be identified
with the coordinates centered around the large complex structure limiting point in
the moduli space.



738 Murad Alim & Emanuel Scheidegger

A variation of complex structure induces a change of the type of the ref-
erence (3, 0) form Ω(x). This change is captured by the variation of Hodge
structure. H3(Z∗) is the fiber of a complex vector bundle over M equipped
with a flat connection ∇, the Gauss–Manin connection. The fibers of this
vector bundle are constant up to monodromy of ∇. The Hodge decomposi-
tion

H3 =
3⊕

p=0

H3−p,p,

varies overM as the type splitting depends on the complex structure. A way
to capture this variation holomorphically is through the Hodge filtration F p

(2.16) H3 = F 0 ⊃ F 1 ⊃ F 2 ⊃ F 3 ⊃ F 4 = 0, F p =
⊕
q≥p

Hq,3−q ⊂ H3,

which define holomorphic subbundles Fp → M whose fibers are F p. The
Gauss–Manin connection on these subbundles has the property ∇Fp ⊂
Fp−1 ⊗ T ∗M known as Griffiths transversality. This property allows us to
identify derivatives of Ω(x) ∈ F 3 with elements in the lower filtration spaces.
The whole filtration can be spanned by taking multiderivatives of the holo-
morphic (3, 0) form. Fourth-order derivatives can then again be expressed by
the elements of the basis, which is reflected by the fact that periods of Ω(x)
are annihilated the PF system of differential equations of fourth order. The
dimensions of the spaces (F 3, F 2/F 3, F 1/F 2, F 0/F 1) are (1, h2,1, h2,1, 1).
Elements in these spaces can be obtained by taking derivatives of Ω(x) w.r.t.
the moduli. For the example, we are discussing a section of the filtration is
given by the following vector w(x) which has 2h2,1 + 2 = 6 components:

w(x) =
(
Ω(x), θ1Ω(x), θ2Ω(x), θ1θ2Ω(x), θ2

2Ω(x),(2.17)

θ1θ
2
2Ω(x)

)t
.

where θi = xi ∂
∂xi . Using w(x) we can define the period matrix

(2.18) Π(x) α
β =

∫
γα

wβ(x), γα ∈ H3(Z∗), α, β = 0, . . . , 2h2,1 + 1,
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the first row of which corresponds to the periods of Ω(x). The periods are
annihilated by the PF operators. We can identify solutions of the PF oper-
ators with the periods of Ω(x). In our example, near the point of maximal
unipotent monodromy z = (z1, z2), the solutions are given in Appendix A.

Polarization. The variation of Hodge structure of a family of CY threefolds
in addition comes with a polarization, i.e., a non-degenerate integral bilinear
form Q which is antisymmetric. This form is defined by Q(ϕ,ψ) =

∫
Z∗ ϕ ∧ ψ

for ϕ,ψ ∈ H3. The polarization satisfies

Q(F p, F 4−p) = 0, Q(Cϕ, ϕ̄) > 0 for ϕ �= 0,

where C acts by multiplication of ip−q on Hp,q. Hence, Q is a symplectic
form.

Since the space of periods can be identified with the space of solutions to
the PF equations, the symplectic form on H3(Z∗) should be expressible in
terms of a bilinear operator acting on the space of solutions. This approach
has been developed in [36]. We will review and employ these techniques in
the following.

We want to express the symplectic form Q in terms of the basis (2.17).
For this purpose, we define an antisymmetric linear bidifferential operator
on the space of solutions of the PF equation as

(2.19) D1 ∧D2(f1, f2) =
1
2
(D1f1D2f2 −D2f1D1f2),

where D1 and D2 are arbitrary differential operators with respect to x. Then
we can write Q as an antisymmetric bidifferential operator

(2.20) Q(x) =
∑
k,l

Qk,l(x)Dk(θ) ∧Dl(θ),

where Dk, Dl run over the basis of multiderivatives in θ = (θ1, . . . , θh1,1)
used to define the vector w(x) spanning the Hodge filtration, see (2.17).
The condition that Q(x) is constant over the moduli space, i.e.,

(2.21) θiQ(x) = 0, i = 1, . . . , h2,1,

imposes constraints on the coefficients Qk,l(x). These lead to a system of
algebraic and differential equations for the Qk,l(x). At this point, we need
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to express the higher-order differential operators in terms of the basis (2.17)
using the relations such as (A.2) and (A.3). Then this system can be solved
up to an overall constant.

In our example, near the point of maximal unipotent monodromy z =
(z1, z2), we find

Q(z) =
1
3
Δ2Δ3

(
θ1 ∧ θ22 + θ2 ∧ θ1θ2

)−Δ2 θ2 ∧ θ22 − a9

3Δ3
θ1 ∧ θ1θ2

(2.22)

− Δ1

3Δ3
2 1 ∧ θ1θ22 +

a10

Δ3
2 1 ∧ θ1θ2 +

a4

3Δ3
2 1 ∧ θ1 +

20 z1a9

Δ3
2 1 ∧ θ2.

where a4, a9 and a10 are given in (A.6). In the basis of periods (A.7) we
then obtain

(2.23)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1/2

0 0 0 0 −1/2 0

0 0 0 −1/2 0 0

0 0 1/2 0 0 0

0 1/2 0 0 0 0

−1/2 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Moreover, the invariant definition of the B-model prepotential is given

in terms of the natural symplectic form Q on H3(Z∗,Z). Let i(x) be a
basis for the periods, then

(2.24) F (0)(x) =
1
2

∑
i>j

Q(i(x), j(x))−1i(x)j(x).

2.3. The Gauss–Manin connection and flat coordinates

The Gauss–Manin connection. The PF operators (2.10) are equivalent to
a first-order equation for the period matrix. Using linear combinations of
the operators and derivatives thereof, the system can be cast in the form

(2.25) (θi −Ai(x))Π(x)
α

β = 0, i = 1, . . . , h2,1,
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which defines the Gauss–Manin connection∇. For our example, the matrices
Ai(x) near the point of maximal unipotent monodromy are given in the
appendix.

There are limiting points in the moduli space of complex structureM at
which the Hodge structure degenerates [26, 42]. These points are of partic-
ular interest in the expansion of the topological string amplitudes. In order
to describe these limiting points, we assume that there exists a smooth com-
pactification M of M such the boundary consists of a finite set I of normal
crossing divisors M\M =

⋃
i∈I Di. Along these divisors, the Gauss–Manin

connection can acquire regular singularities. This means that, at a point
p ∈ ⋂h2,1

i=1 Di, the connection matrix has at worst a simple pole along Di.
Note that since we defined Ai in (2.25) with θi instead of ∂i this means that
matrix Ai(z) is holomorphic along Di.

At a regular singularity described by a divisor Di = {yi = 0}4 we there-
fore define:

(2.26) ResDi
(∇) = Ai(y)|yi=0.

This residue matrix gives the following useful information. The eigenvalues of
the monodromy T are exp(2πiλ) as λ ranges over the eigenvalues of Res(∇).
Furthermore, T is unipotent if and only if Res(∇) has integer eigenvalues.
Finally, if no two distinct eigenvalues of Res(∇) differ by an integer, then T
is conjugate to S = exp(−2πi Res(∇)). These properties allow us to extract
the relevant information about the monodromy of ∇ around these boundary
divisors. We will see later that this allows us to easily obtain the solutions
to the PF equations at the various boundary points.

The monodromies Ti for all the divisors Di in the boundary form a
group, the monodromy group Γ of the Gauss–Manin connection. This group
is a subgroup of Aut(H3(Z∗,Z)) preserving the symplectic form Q. Hence,
Γ is a subgroup of Sp(2h2,1 + 2,Z). The topological string amplitudes F (g)

are expected to be automorphic with respect to this group.
The point p in the boundary which has been studied usually so far, is the

point of maximal unipotent monodromy, also known as the large complex
structure limit. From the connection matrices Ai(x) of our example we can

4We will denote local coordinates near an intersection point of boundary divisors
by y, still reserving z for the point of maximal unipotent monodromy.
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immediately get information on the monodromy matrices around the divisors
D(1,0) = {z1 = 0} and D(0,1) = {z2 = 0}. (For the notation on the divisors
see Section 4.2.) We simply consider the matrices Res{zi=0} = Ai(z)|zi=0 and
bring them into Jordan normal form. This yields

ResD(1,0)(∇) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ResD(0,1)(∇) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.27)

From this we read off that the corresponding monodromy matrices TD(1,0)

and TD(0,1) satisfy

(2.28)
(
TD(1,0) − 1

)4 = 0,
(
TD(0,1) − 1

)3 = 0.

It can be checked that these monodromy matrices satisfy the conditions for
a point of maximal unipotent monodromy [26, 38].

Flat coordinates. We proceed by discussing a special set of coordinates on
the moduli space of complex structure which permit an identification with
the physical deformations of the underlying theory. These coordinates are
defined within special geometry which was developed studying moduli spaces
of N = 2 theories, we follow [1, 23, 29–32, 43, 44]. Choosing a symplectic
basis of 3-cycles AI , BJ ∈ H3(Z∗) and a dual basis αI , β

J of H3(Z∗) such
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that

AI ∩BJ = δI
J = −BJ ∩AI , AI ∩AJ = BI ∩BJ = 0 ,∫

AI

αJ = δI
J ,

∫
BJ

βI = δI
J , I, J = 0, . . . h2,1(Z∗),(2.29)

the (3, 0) form Ω(x) can be expanded in the basis αI , β
J :

(2.30) Ω(x) = XI(x)αI −FJ(x)βJ .

The periods XI(x) can be identified with projective coordinates on M and
FJ with derivatives of a function F(XI), FJ =

∂F(XI)
∂XJ . In a patch where

X0(x) �= 0 a set of special coordinates can be defined

ta =
Xa

X0
, a = 1, . . . , h2,1(Z∗).

The normalized holomorphic (3, 0) form v0 = (X0)−1Ω(t) has the expansion:

(2.31) v0 = α0 + taαa − βbFb(t)− (2F0(t)− tcFc(t))β0,

where

F0(t) = (X0)−2F and Fa(t) := ∂aF0(t) =
∂F0(t)
∂ta

.

F0(t) is the prepotential. We define further

va = αa − βbFab(t)− (Fa(t)− tbFab(t))β0,(2.32)

va
D = −βa − taβ0,(2.33)

v0 = β0.(2.34)

The Yukawa coupling in special coordinates is given by

(2.35) Cabc := ∂a∂b∂cF0(t) =
∫

Z∗
v0 ∧ ∂a∂b∂cv0.

where now ∂a = ∂
∂ta . We further define the vector with 2h2,1 + 2 components:

(2.36) v = (v0, va, va
D, v0)t.
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We have then by construction:

(2.37) ∂a

⎛⎜⎜⎜⎝
v0
vb

vb
D

v0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0 δc

a 0 0
0 0 Cabc 0
0 0 0 δb

a

0 0 0 0

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

:=Ca

⎛⎜⎜⎜⎝
v0
vc

vc
D

v0

⎞⎟⎟⎟⎠ ,

which defines the (2h2,1 + 2)× (2h2,1 + 2) matrices Ca, in terms of which
we can write the equation in the form:

(2.38) (∂a − Ca) v = 0.

The entries of v correspond to elements in the different filtration spaces
discussed earlier. As in Equations (2.25) and (2.38) defines the Gauss–Manin
connection, now in special coordinates. The upper triangular structure of the
connection matrix reflects the effect of the charge increment of the elements
in the chiral ring upon insertion of a marginal operator of unit charge. Since
the underlying superconformal field theory is isomorphic for the A- and the
B-models, this set of coordinates describing the variation of Hodge structure
is the good one for describing mirror symmetry and provide thus the mirror
maps. The following discussion builds on [33–35].

In order to find the mirror maps starting from a set of arbitrary local
coordinates on the moduli space of complex structure we study the rela-
tion between the vectors w of Equation (2.17) and v spanning the Hodge
filtration, these are related by the following change of basis:

(2.39) w(x(t)) =M(x(t))v(t) .

By the fact that this change of basis is filtration-preserving, the matrixM(x)
must be lower block-triangular. For concreteness, we expose the discussion
in the following for h2,1(Z∗) = 2:

(2.40) M(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m11 0 0 0 0 0
m21 m22 m23 0 0 0
m31 m32 m33 0 0 0
m41 m42 m43 m44 m45 0
m51 m52 m53 m54 m55 0
m61 m62 m63 m64 m65 m66

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Imposing that the change of connection matrices yields the desired result
requires the vanishing of the following matrix:

(2.41) Na(t) = Ca(t)−
∑

i

JiaM(x)−1(Ai(x)M(x)− θiM(x)).

Here J = (Jia) is the Jacobian for the logarithmic derivative

(2.42) Jia =
1
xi

∂xi

∂ta
.

The matrices Na have the general block form

(2.43) Na(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

na,11 na,12 na,13 0 0 0
na,21 na,22 na,23 na,24 na,25 0
na,31 na,32 na,33 na,34 na,35 0
na,41 na,42 na,43 na,44 na,45 na,46

na,51 na,52 na,53 na,54 na,55 na,56

na,61 na,62 na,63 na,64 na,65 na,66

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We set m11(x) = X0(x) since it will turn out that this quantity should
be identified with one of the periods. The vanishing of the first column of
the Na allows us to express the mk1 in terms of X0(x) and its derivatives.
Moreover, it follows that m11 is a solution to the PF equations

(2.44) Lr X
0(x) = 0.

Similarly, the vanishing of the second and third column of the Na expresses
themk2 andmk3 in terms ofm12 andm13 and their derivatives, respectively.
In addition, they satisfy differential equations of the form

(2.45) Dr(taX0) = Lr(taX0)− taLr X
0 = 0.

Together with (2.44) we conclude that the products t1X0 and t2X0 must
be solutions to the PF equations as well. In other words, the flat coordi-
nates must be ratios of two periods. The differential Equations (2.45) form
a system of nonlinear partial differential equation which determine the flat
coordinates in terms of x. In general, they are hard to solve, but one can
transform this system into a system of linear partial differential equations
of higher order along the lines of [45].
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Next, we consider the blocks
( na,24 na,25

na,34 na,35

)
= 0. They can be solved for the

functions Cabc(t). This yields expressions in terms of ta, their derivatives,
and the functions m22, m23, m32, m33, m44, m45, m54, m55. Taking into
account the previous results, we need to express the latter four functions in
terms of X0.

The two conditions na,46 = 0 can be used to express m44 and m45 in
terms of ta, their derivatives, and m66. Similarly, na,56 = 0 yield similar
expression for m54 and m55. If we apply this to our example and again
choose the point of maximal unipotent monodromy with local coordinates
z, then we obtain the following relations:

(2.46)

m44(z) =
3 θ2t2 −Δ3θ1t2

Δ3 det J
m66(z),

m45(z) = −3 θ2t1 −Δ3θ1t1
Δ3 detJ

m66(z),

m54(z) = −
(
9− 11664 z1 + 5038848 z12

)
θ1t2 −Δ3

2Δ2θ2t2

Δ3
2Δ2 det J

m66(z),

m55(z) =

(
9− 11664 z1 + 5038848 z12

)
θ1t1 −Δ3

2Δ2θ2t1

Δ3
2Δ2 detJ

m66(z).

The vanishing of n1,44 and n1,45 allows us to express m64 and m65 in terms
of m42, . . . ,m45, ta, their derivatives and the Cabc. Upon using the previous
results, they can be expressed in terms ofX0, ti, their derivatives andm66(z).

To determine the latter, we use the vanishing of the na,66.

432 z1
(
Δ1 + 30233088 z12z2

)
Δ1Δ3

m6,6(z)− θ1m6,6(z)(2.47)

− (θ1t1)m64(z)x− (θ1t2)m65(z) = 0.

Substituting all the previous results leads to the following differential equa-
tion

Δ1Δ3

(
m66(z)θ1X0(z) +X0(z)θ1m66(z)

)
(2.48)

− 432 z1
(
Δ1 + 30233088 z12z2

)
m66(z)X0(z) = 0.
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All the dependence on the ti has canceled. We observe that the prefactor of
m66(z)X0(z) can be written as

(2.49)
Δ1

2

Δ3
θ1

(
Δ3

2

Δ1

)
= 432 z1

(
Δ1 + 30233088 z12z2

)
.

Hence, the differential equation simplifies to

(2.50) θ1

(
Δ3

2

Δ1m66(z)X0(z)

)
= 0.

Its solution is

(2.51) m66(z) = f(z2)
Δ3

2

Δ1X0(z)
,

where f(z2) is an undetermined function that only depends on z2. To fix
this function we look at the vanishing of the n2,66. After all substitutions
this yields the differential equation

(2.52) θ2(Δ1m66(z)X0(z)) = θ2
(
f(z2)Δ3

2
)
= 0.

Since Δ3 does not depend on z2, we conclude that f(z2) must be a constant,
which we set to 1.

We can now recursively express all the functions mij through the func-
tion X0(z) which must be a solution of the PF equations. In particular, this
yields the well known expression for the Yukawa couplings in flat coordinates

(2.53) Cabc(t) =
∑
i,j,k

1
(X0(z(t)))2

∂zi
∂ta

∂zj
∂tb

∂zk
∂tc

Cijk(z(t)) .

There are still a few conditions remaining, namely na,64 = 0 and na,65 =
0. These turn out to be very difficult to analyze. One can check that these
conditions are implied by

Q(X0, t1X
0) = 0, Q(X0, t2X

0) = 0, Q(t1X0, t2X
0) = 0.(2.54)

where Q was determined in (2.22). In particular, not every ratio of solu-
tions to the PF equations yields a flat coordinate. In general, we expect a
weaker condition involving the left-hand sides of (2.54) to be equivalent to
the vanishing of Na.
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Solutions of the PF equations. As we have just seen, in order to deter-
mine the flat coordinates we need solutions of the PF equation which sat-
isfy (2.54). It is well-known how to solve these equations at the point of
maximal unipotent monodromy by observing that they form extended GKZ
hypergeometric systems; see, e.g., [25, 46]. However, we will need the flat
coordinates at other special loci in the moduli space. For this purpose, we
need a systematic procedure to solve the system of PF equations at an
arbitrary point in the boundary M\M of the moduli space where it is in
general no longer of extended GKZ hypergeometric type.

However, if the moduli spaceM is one-dimensional we have the following
well-known result; see e.g., [47, 48]. Let

R = Resy=0 ∇ = A(y)|y=0

be the residue matrix of the connection∇ at a regular singular point given by
y = 0. R is a constant matrix. If the eigenvalues of R do not differ by positive
integers, then there exists a fundamental system of solutions to (2.25) of the
form

(2.55) u(y) = yRS(y)

with S(y) a single-valued and holomorphic matrix. If some of the eigenval-
ues of R do not differ by positive integers, then there is an algorithm for
finding a non-constant change of basis such that an eigenvalue is shifted by
1. Then, (2.55) holds with R replaced by the residue matrix R̃ in the new
basis. Since any two fundamental systems are related by an invertible con-
stant matrix, this form is independent of the choice of basis, and we can take
for R its Jordan normal form. This simplifies the computations enormously.

In the present case where the moduli space M is higher-dimensional, we
can prove the following result: Let p =

⋂n
i=1Di be a point at the intersection

of h2,1 boundary divisors, where each of the divisors Di is given by an
equation yi = 0. Let

Ri = ResDi
∇ = Ai(y)|yi=0, ∀i.

The matrices R are in general not constant anymore. However, for the solu-
tions near a point given by yi = 0, i = 1, . . . , n, we can set all yi to zero in
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Ri. Then a fundamental system of solutions takes the form

u(y) =
n∏

i=1

yi
RiS(y).

This follows by induction from the result in dimension 1 together with the
fact that [Ri, Rj ] = 0, a consequence of the flatness of ∇. In general, the Ri

cannot be simultaneously brought into Jordan normal form. However, there
exist constant matrices Ci such that the Ri can be brought into simultaneous
triangular form Ti = C−1

i RiCi. Then we can bring u(y) into the form

u(y) =
n∏

i=1

Pi yi
Ti S(y),

which considerably simplifies the explicit computation. In practice, the Pi

are often permutation matrices.

Elliptic fibrations. Here, we discuss a few aspects of elliptic fibrations.
Let Z be an elliptically fibered CY threefold π : Z → B, where the fiber
π−1(p) ∼= E is a smooth elliptic curve, p ∈ B \Δ, where the discriminant Δ
is a divisor in B. We consider the variation of Hodge structure for the fam-
ily of mirror CY threefolds f : Z∗ → M where M is the complex structure
moduli space. We recall that the Gauss–Manin connection for this family has
monodromy group Γ ∈ Aut(H3(Z∗,Z)). Since Z is an elliptic fibration, there
is a distinguished subgroup of Γ isomorphic to a subgroup Γell ⊂ SL2(Z) and
the variation of Hodge structure contains a variation of sub-Hodge structures
coming from the elliptic fiber.

In our example the monodromy group Γ is generated by two matrices
A and T [38]. Consider the element T∞ = (TA)−1 ∈ Γ. Then A3 and T∞3

generate an SL2(Z) subgroup as follows:

(2.56) A3t1 = − 1
t1 + 1

, T∞3t1 = t1 + 1

Hence, we expect t1 to be a modular parameter of an elliptic curve. In fact,
in the limit z2 → 0 the PF system reduces to the PF equation of the elliptic
curve mirror to the elliptic fiber.
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3. Higher genus recursion

In this section, we review the ingredients of the polynomial construction [19,
20], following [20] as well as the boundary conditions needed to supplement
the construction to fix remaining ambiguities. To implement the boundary
conditions it is necessary to be able to provide the good physical coordinates
in every patch in moduli space. This can be done by exploiting the flat
structure of the variation of Hodge structure on the B-model side.

3.1. Special geometry and the holomorphic anomaly

The deformation space M of topological string theory, parameterized by
coordinates xi, i = 1, . . . ,dim(M), carries the structure of a special Kähler
manifold.5 The ingredients of this structure are the Hodge line bundle L
over M and the cubic couplings C which are a holomorphic section of L2 ⊗
Sym3T ∗M. The metric on L is denoted by e−K with respect to some local
trivialization and provides a Kähler potential for the special Kähler metric
on M, Gij = ∂i∂̄jK. Special geometry further gives the following expression
for the curvature of M:

(3.1) R l
ii j

= [∂̄i, Di]lj = ∂̄īΓ
l
ij = δl

iGjī + δl
jGīi − CijkC̄

kl
ī .

The topological string amplitude or partition function F (g) at genus g is a
section of the line bundle L2−2g over M. The correlation function at genus
g with n insertions F (g)

i1···in
is only non-vanishing for (2g − 2 + n) > 0. They

are related by taking covariant derivatives as this represents insertions of
chiral operators in the bulk, e.g., DiF (g)

i1···in
= F (g)

ii1···in
.

Di denotes the covariant derivative on the bundle Lm ⊗ SymnT ∗M
where m and n follow from the context.6 T ∗M is the cotangent bundle of
M with the standard connection coefficients Γi

jk = Gii∂jGki. The connec-
tion on the bundle L is given by the first derivatives of the Kähler potential
Ki = ∂iK.

5See [5, Section 2.3] for background material.
6The notation Di is also being used for the boundary divisors Di ∈ M \M. It

is clear from the context which meaning applies.
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In [5, Section 3.2] it is shown that the genus g amplitudes are recursively
related to lower genus amplitudes by the holomorphic anomaly equations:

∂̄īF (g)
i1...in

=
1
2
C̄jk

ī

(
g∑

r=0

n∑
s=0

1
s!(n− s)!

∑
σ∈Sn

DjF (r)
iσ(1)...iσ(s)DkF (g−r)

iσ(s+1)...iσ(n)

+DjDkF (g−1)
i1...in

)
,−(2g − 2 + n− 1)

n∑
s=1

Gīis
F (g)

i1...is−1is+1...in
,(3.2)

where

(3.3) C̄ij

k̄
= C̄īj̄k̄G

īiGjj̄ e2K , C̄īj̄k̄ = Cijk

and where the sum σ ∈ Sn is over permutations of the insertions and the
formula is valid for (g = 0, n ≥ 4), (g = 1, n ≥ 2) and all higher genera and
number of insertions. For n = 0 it reduces to the holomorphic anomaly for
the free energies Fg:

(3.4) ∂̄īF (g) =
1
2
C̄jk

ī

(
g−1∑
r=1

DjF (r)DkF (g−r) +DjDkF (g−1)

)
.

These equations, supplemented by Bershadsky et al.[4]

(3.5) ∂̄īF (1)
j =

1
2
CjklC̄

kl
ī + (1− χ

24
)Gjī

and special geometry, determine all correlation functions up to holomorphic
ambiguities. In Equation (3.5), χ is the Euler character of the manifold. A
solution of the recursion equations is given in terms of Feynman rules [5,
Section 6].

The propagators S, Si, Sij for these Feynman rules are related to the
three point couplings Cijk as

(3.6) ∂̄īS
ij = C̄ij

ī
, ∂̄īS

j = GīiS
ij , ∂̄īS = GīiS

i.

By definition, the propagators S, Si and Sij are sections of the bundles
L−2 ⊗ SymmT with m = 0, 1, 2. The vertices of the Feynman rules are given
by the correlation functions F (g)

i1···in
. The anomaly Equations (3.4) and (3.5),

as well as the definitions in Equation (3.6), leave the freedom of adding
holomorphic functions under the ∂ derivatives as integration constants. This
freedom is referred to as holomorphic ambiguities.
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3.2. Polynomial structure of higher genus
amplitudes

In [20] it was proven that the correlation functions F (g)
i1···in

are polynomials
of degree 3g − 3 + n in the generators Ki, S

ij , Si, S where a grading 1, 1, 2, 3
was assigned to these generators, respectively. It was furthermore shown
that by making a change of generators [20]

S̃ij = Sij ,

S̃i = Si − SijKj ,

S̃ = S − SiKi +
1
2
SijKiKj ,

K̃i = Ki,(3.7)

the F (g) do not depend on K̃i, i.e., ∂F (g)/∂K̃i = 0. We will henceforth drop
the tilde from the modified generators.

The proof relies on expressing the first non-vanishing correlation func-
tions in terms of these generators. At genus zero these are the holomorphic
three-point couplings F (0)

ijk = Cijk. The holomorphic anomaly Equation (3.4)
can be integrated using Equation (3.6) to

(3.8) F (1)
i =

1
2
CijkS

jk + (1− χ

24
)Ki + f

(1)
i ,

with ambiguity f
(1)
i . As can be seen from this expression, the non-

holomorphicity of the correlation functions only comes from the generators.
Furthermore, the special geometry relation (3.1) can be integrated:

(3.9) Γl
ij = δl

iKj + δl
jKi − CijkS

kl + sl
ij ,

where sl
ij denote holomorphic functions that are not fixed by the special

geometry relation, this can be used to derive the following equations which
show the closure of the generators carrying the non-holomorphicity under
taking derivatives [20].7

∂iS
jk = CimnS

mjSnk + δj
iS

k + δk
i S

j − sj
imS

mk − sk
imS

mj + hjk
i ,

7These equations are for the tilded generators of Equation (3.7) and are obtained
straightforwardly from the equations in [20].
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∂iS
j = CimnS

mjSn + 2δj
iS − sj

imS
m − hikS

kj + hj
i ,

∂iS =
1
2
CimnS

mSn − hijS
j + hi,

∂iKj = KiKj − CijnS
mnKm + sm

ijKm − CijkS
k + hij ,(3.10)

where hjk
i , h

j
i , hi and hij denote holomorphic functions. All these functions

together with the functions in Equation (3.9) are not independent. It was
shown in ref. [49] (see also [50]) that the freedom of choosing the holomorphic
functions in this ring reduces to holomorphic functions E ij , Ej , E which can
be added to the polynomial generators

Ŝij = Sij + E ij ,

Ŝj = Sj + Ej ,

Ŝ = S + E .(3.11)

All the holomorphic quantities change accordingly.
The topological string amplitudes now satisfy the holomorphic anomaly

equations where the ∂̄ī derivative is replaced by derivatives with respect to
the polynomial generators [20].

∂F (g)
i1...in

∂Sij
− 1
2

(
Ki

∂F (g)
i1...in

∂Sj
+Kj

∂F (g)
i1...in

∂Si

)
+
1
2
KiKj

∂F (g)
i1...in

∂S

=
1
2

g∑
r=0

n∑
s=0

1
s!(n− s)!

∑
σ∈Sn

DjF (r)
iσ(1)...iσ(s)DkF (g−r)

iσ(s+1)...iσ(n)

+
1
2
DjDkF (g−1)

i1...in
(3.12) ∑

i

Gīi

∂F (g)
i1...in

∂Ki
= −(2g − 2 + n− 1)

n∑
s=1

Gīis
Fg

i1...is−1is...in
.(3.13)

This equation can be simplified by grouping powers of Ki [50].

3.3. Constructing the generators

The construction of the generators of the polynomial construction has been
discussed in [49]. The starting point is to pick a local coordinate z∗ on the
moduli space such that C∗ij is an invertible n× n matrix in order to rewrite
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Equation (3.9) as

(3.14) Sij = (C−1
∗ )ik

(
δj
∗Kk + δj

kK∗ − Γj
∗k + sj

∗k
)
.

The freedom in Equation (3.11) can be used to choose some of the sk
ij [49].

The other generators are then constructed using Equation (3.10) [49]:

Si =
1
2
(
∂iS

ii − CimnS
miSni + 2si

imS
mi − hii

i

)
,(3.15)

S =
1
2
(
∂iS

i − CimnS
mSni + si

imS
m + himS

mi − hi
i

)
.(3.16)

In both equations, there is no summation over the index i. The second
equation holds for every value of i. The freedom in adding holomorphic
functions to the generators of Equation (3.11) can again be used to make a
choice for the functions hii

i for all i and hi0
i0
for some i0, the other ones are

fixed by this choice and can be computed from Equation (3.10).

3.4. Boundary conditions

Genus 1. The holomorphic anomaly equation at genus 1 (3.5) can be inte-
grated to give:
(3.17)

F (1) =
1
2

(
3 + h1,1 − χ

12

)
K +

1
2
log detG−1 +

∑
i

si log zi +
∑

a

ra logΔa,

where i = 1, . . . , h2,1 and a runs over the number of discriminant compo-
nents. The coefficients si and ra are fixed by the leading singular behavior
of F (1) which is given by [4]

(3.18) F (1) ∼ − 1
24

∑
i

log zi
∫

Z
c2Ji,

for the algebraic coordinates zi, for a discriminant Δ corresponding to a
conifold singularity the leading behavior is given by

(3.19) F (1) ∼ − 1
12

logΔ .

Higher genus boundary conditions. The holomorphic ambiguity needed to
reconstruct the full topological string amplitudes can be fixed by imposing
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various boundary conditions for F (g) at the boundary of the moduli space.
As in Section 2.3 we assume that the boundary is described by simple normal
crossing divisors M\M =

⋃
i∈I Di for some finite set I.

We can distinguish the various boundary conditions by looking at the
monodromy Ti of the Gauss–Manin connection∇ around a boundary divisor
Di. By the monodromy theorem [51] we know that Ti must satisfy

(3.20) (Ti
m − 1)n = 0

for n ≤ dimZ∗ + 1 and some positive integer m. The current understanding
of the boundary conditions for F (g) seems to suggest that they can roughly
be classified according to the value of n. In general, the finer structure by
the Jordan decomposition of T is relevant; see [60].

The large complex structure limit. A point in the boundary is a large com-
plex structure limit or a point of maximal unipotent monodromy if n =
dimZ∗ + 1 in (3.20) and if Ni = log Ti satisfies certain conditions described
in detail in [26] and [38].

The leading behavior of F (g) at this point (which is mirror to the large
volume limit) was computed in [2–5, 52, 53]. In particular, the contribution
from constant maps is

(3.21) F (g)|qa=0 = (−1)gχ
2

|B2gB2g−2|
2g (2g − 2) (2g − 2)!

, g > 1,

where qa denote the exponentiated mirror map at this point.

Conifold-like loci. A divisor Di in the boundary is of conifold type if n = 2
in (3.20). If m = 1 then Z∗ acquires a conifold singularity, if m > 1 the sin-
gularity is not of conifold type but the physics behaves similarly. This singu-
larity is often called a strong coupling singularity [54]. Singularities of both
types appear at the vanishing of the discriminant Δ. A well-known example
for the case m > 1 is the divisor given by the non-principal disciminant in
the moduli space of the mirror of P(1, 1, 2, 2, 6)[12] for which m = 2.

The leading singular behavior of the partition function F (g) at a conifold
locus has been determined in [2–5, 55, 56]

(3.22) F (g)(tc) = b
B2g

2g(2g − 2)t2g−2
c

+O(1), g > 1
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Here tc ∼ Δ
1
m is the flat coordinate at the discriminant locus Δ = 0. For a

conifold singularity b = 1 and m = 1. In particular, the leading singularity
in (3.22) as well as the absence of subleading singular terms follows from
the Schwinger loop computation of [2, 3], which computes the effect of the
extra massless hypermultiplet in the space-time theory [57]. The singular
structure and the “gap” of subleading singular terms have been also observed
in the dual matrix model [58] and were first used in [59, 60] to fix the
holomorphic ambiguity at higher genus. The space-time derivation of [2, 3]
is not restricted to the conifold case and applies also to the case m > 1
singularities which give rise to a different spectrum of extra massless vector
and hypermultiplets in space-time. The coefficient of the Schwinger loop
integral is a weighted trace over the spin of the particles [56, 57] leading to
the prediction b = nH − nV for the coefficient of the leading singular term.
The appearance of the prefactor b in the case m > 1 has been discussed
in [49] for the case of the local F2 (see also [61]).

Orbifold loci. A divisor Di in the boundary is of orbifold type if n = 1
in (3.20). In this case, the monodromy is of finite order. The leading singular
behavior of the partition function F (g) at a such a divisor is expected to be
regular [5, Section 7.2]

(3.23) F (g)(to) = O(1), g > 1.

where to is the flat coordinate at the orbifold locus Di.

The holomorphic ambiguity. The singular behavior of F (g) is taken into
account by the local ansatz

(3.24) hol.ambiguity ∼ p(g)(yi)
Δ2g−2

,

for the holomorphic ambiguity near Δ = 0, where p(yi) is a priori a series
in the local coordinates yi near the singularity. Patching together the local
information at all the singularities with the boundary divisors with finite
monodromy, it follows however that the numerator p(zi) is generically a
polynomial of low degree in the zi. Here zi denote the natural coordinates
centered at large complex structure, zi = 0 ∀i, cf. Footnote 4. The finite
number of coefficients in p(zi) is constrained by (3.22).
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4. Higher genus amplitudes for an elliptic fibration

In this section, we use the polynomial construction together with the bound-
ary conditions discussed previously to construct the higher genus topological
string amplitudes for the example of the elliptic fibration which we discussed.

4.1. Setup of the polynomials

We start by setting up the polynomial construction as discussed in Sec-
tion 3.2. This involves using the freedom in choosing the generators in order
to fix the holomorphic functions appearing in the derivative relations (3.10).
We fix the choice of the polynomial generators such that these functions
are rational expressions in terms of the coordinates in the large complex
structure patch of the moduli space. For the holomorphic functions in the
following we multiply lower indices by the corresponding coordinates and
divide by the coordinates corresponding to upper indices.

Aj
i →

zi
zj
Aj

i

With this convention we can express all the holomorphic functions appearing
in the setup of the polynomial construction in terms of polynomials in the
local coordinates. We start by fixing the choice of the generators Sij in
Equations (3.14) and (3.9):

s111 = −2, s112 = −1
3
, s122 = 0,(4.1)

s211 = 0, s212 = 0, s222 = −4
3
.(4.2)

Such a simple choice is in general not possible.
Then the following quantities are chosen by fixing the choice of the

generators Si in Equation (3.15), i.e., of h11
1 , h

22
2 , and the other quantities

are then computed from Equation (3.10);

h11
1 =

1
9
− 48 z1 +

5
6
z2 − 540 z1z2,(4.3)

h12
1 = − 5

108
− 5
4
z2 + 20 z1 + 540 z1z2,(4.4)

h22
1 = −60 z1 (1− 27 z2) ,(4.5)
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h11
2 = −60 z1z2,(4.6)

h12
2 =

1
9
+

5
12
z2 − 48 z1,(4.7)

h22
2 = −23

54
+ 40 z1 − 5

2
z2 − 540 z1z2.(4.8)

We proceed by fixing the choice of the generator S in Equation (3.15),
i.e., of, say, h1

1, and compute from Equation (3.10)

h1
1 =

155
27

z1 − 25
1296

z2 + 50 z1z2,(4.9)

h2
1 = 0,(4.10)

h1
2 = − 5

18
z2 + 120 z1z2,(4.11)

h2
2 =

155
27

z1 +
1055
1296

z2 + 50 z1z2.(4.12)

We further compute:

(4.13) h1 =
25

23328
, h2 = −50

3
z1z2,

and

(4.14) h11 =
5
36
, h12 =

5
108

, h22 = 0.

With these choices the polynomial part of the higher genus amplitudes
is entirely fixed by Equation (3.12). However, we need to supplement this
polynomial part with the holomorphic ambiguities which are not captured
by the holomorphic anomaly recursion and can be fixed by the boundary
conditions discussed earlier. In order to implement the boundary conditions
we make an ansatz for the ambiguities which will be discussed in Section 4.4.
We then expand the polynomial part and the ansatz in the local special
coordinates in the different patches of moduli space. In order to do this for
the present example we first proceed by discussing the moduli space and its
various boundary components.

4.2. Moduli space and its compactification

To obtain a nice and useful description of the moduli space of complex
structures, we first need the secondary fan of the varietyW . This is obtained
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from the columns of the Mori generators (2.2) which are (taking the primitive
lattice vectors in Z

2)

b1 = (1, 0), b2 = (0, 1), b3 = (1,−3), b4 = (−1, 0).(4.15)

These vectors define the weighted projective space P(1, 1, 3) blown up in one
point, with toric divisors D(1,0), D(0,1), D(1,−3), D(−1,0), respectively. (The
divisor D(1,−3) does not lie on the boundary of the moduli space [38] and
will be neglected in the following.) This space is still singular, and we will
discuss the resolution of the singularities in the next subsection.

We still have to remove the set where the hypersurface is singular, i.e.,
the discriminant locus. This is also given in terms of the data of toric
geometry as follows: if θ is any face of the polytope Δ∗, we define fθ(x) =∑

νi∈θ∩Z4 ai
∏

iX
νi . The polynomial is degenerate if for any face θ ⊂ Δ∗, the

system of polynomial equations

(4.16) fθ = X1
∂f

∂X1
= · · · = X4

∂f

∂X4
= 0

has no solution in the toric variety. This yields that the discriminant locus
is given by the divisors

(4.17) D1 = {Δ1 = 0}, D2 = {Δ2 = 0}

with Δ1 and Δ2 given in (2.12).
In the following, we will use the following abbreviations:

(4.18) z̄1 = 432z1, z̄2 = −27z2.

These divisors intersect each other as follows. From Δ1 = (1− z̄1)3 −
z̄3
1 z̄2, we see that there is a tangency of order 3 between D(0,1) and D1

at the point (1, 0). Writing Δ1 = (1− 3z̄1 + 3z̄2
1) + z̄3

1Δ2 we see that D1

and D2 intersect transversally in the two points (z̄1, z̄2) = (c±, 1) with c± =
1
2

(
1± i

√
3

3

)
. By changing to the variables to w1 = 1

z̄1
we write Δ1 = −w1(3−

3w1 + w1
2) + Δ2 and we have a triple intersection of D1, D2 and D(−1,0) in

(w1, z̄2) = (0, 1).

Resolution of singularities. We want a compactification of the complex
structure moduli space by divisors with normal crossings. To achieve this
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we must resolve the singularities of P(1, 1, 3) and resolve all non-normal
crossings of D1 and D2 with any of the other divisors. Moreover, we will
need a set of local coordinates near each normal crossing.

The singularities of P(1, 1, 3) can be taken care of by toric geometry.
Resolving them amounts to subdividing the secondary fan and this intro-
duces three further generators b5 = (1,−1), b6 = (1,−2) and b7 = (0,−1),
and the corresponding toric divisors D(1,−1), D(1,−2) and D(0,−1). Toric
geometry also provides us with the local coordinates near each intersec-
tion point of the toric divisors. They are determined by the generators of
the cone dual to the maximal cone spanned by the corresponding generators.
E.g. the dual cone to 〈0, b5, b6〉 is spanned by the vectors (2, 1) and (−1,−1),
hence the corresponding local coordinates are

(
z̄2
1 z̄2,

1
z̄1z̄2

)
. A summary can

be found in Table 1.
In order to obtain normal crossings with D1 and D2 we first consider the

resolution of the singularity of the hypersurface W = x3 − y4 = 0 in (0, 0).
The choice of this hypersurface singularity is motivated by the fact that
during the resolution process both a triple intersection and a tangency of
order 3 appear. Their resolutions therefore serve as a local model for the
resolutions of the non-normal crossings involving D1 and D2.

We view the hypersurfaceW = 0 as a divisorD in C
2. The resolution can

be performed in terms of four blow-ups. At the first blow-up, we introduce
a P

1 with homogeneous coordinates (u0 : v0) such that u0x− v0y = 0. We
denote this exceptional divisor by E0. In the coordinate patch u0 = 1 we
have x = v0y and the singularity becomesW = y3(v03 − y).W = 0 now con-
sists of the components E0 = {y = 0} and D = {v03 − y = 0} which do not
intersect transversely in (v0, y) = (0, 0). On the other hand, in the coor-
dinate patch v0 = 1, we have y = u0x and the singularity becomes W =
x3(1− u0

4x). W = 0 consists of the components E0 = {x = 0} and D =
{1− u0

4x = 0} which do not intersect at all. Hence, we focus on the patch
u0 = 1 with local coordinates (v0, y) and resolve further.

At the second blow-up, we introduce a P
1 with homogeneous coordi-

nates (u1, v1) such that u1v0 − v1y = 0. We denote this exceptional divisor
by E1. In the coordinate patch u1 = 1, we have v0 = v1y and the singu-
larity becomes W = y4(v13y2 − 1). W = 0 now consists of the components
E1 = {y = 0} and D = {v12y2 − 1 = 0} which do not intersect. On the other
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Table 1: xxx.

Crossing Local coordinates

D(1,0) ∩D(0,1) (z̄1, z̄2)

D(1,0) ∩D(1,−1)

(
z̄1z̄2, z̄

−1
2

)
D(1,0) ∩D2 (z̄1, 1− z̄2)

D(1,−2) ∩D(1,−1)

(
(z̄1z̄2)−1, z̄2

1 z̄2
)

D2 ∩ E0

(
z̄1(1− z̄2), 1

z̄1

)
D(−1,0) ∩D(0,−1)

(
z̄−1
1 , z̄−1

2

)
D(−1,0) ∩D(0,1)

(
z̄−1
1 , z̄2

)
D(−1,0) ∩ E0

(
1

z̄1(1−z̄2)
, 1− z̄2

)
(D1 ∩D2)+

(
1− z̄1

c+
, 1−z̄2

1− z̄1
c+

)
(D1 ∩D2)−

(
1− z̄1

c−
, 1−z̄2

1− z̄1
c−

)
D1 ∩ E0

(
(1−z̄1)3+z̄3

1 z̄2

z̄2
1

, 1
z̄1

)
E3 ∩ E2

(
− z̄3

1 z̄2

(1−z̄1)2
,− (1−z̄1)3

z̄3
1 z̄2

)
E3 ∩D(0,1)

(
1− z̄1,− z̄3

1 z̄2

(1−z̄1)3

)
E3 ∩D1

(
1− z̄1, 1 +

z̄3
1 z̄2

(1−z̄1)3

)
E1 ∩ E2

(
− z̄3

1 z̄2

1−z̄1
,− (1−z̄1)2

z̄3
1 z̄2

)

hand, in the coordinate patch v1 = 1, we have y = u1v0 and the singu-
larity becomes W = u1

3v0
4(v02 − u2). W = 0 consists of the components

E1 = {v0 = 0}, E0 = {u1 = 0} and D = {v02 − u1 = 0} which do not inter-
sect transversely in (v0, u1) = (0, 0). Hence, we focus on the patch v1 = 1
with local coordinates (v0, u1) and resolve further.

At the third blow-up, we introduce a P
1 with homogeneous coordi-

nates (u2 : v2) such that u2v0 − v2u1 = 0. We denote this exceptional divisor
by E2. In the coordinate patch u2 = 1, we have v0 = v2u1 and the singu-
larity becomes W = u1

6v2
2(u1v2

2 − 1). W = 0 consists of the components
E2 = {u1 = 0}, E1 = {v2 = 0} and D = {u1v2

2 − 1 = 0} which do not inter-
sect. On the other hand, in the coordinate patch v2 = 1, we have u1 = u2v0
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and the singularity becomes W = u2
3v0

6(v0 − u2). W = 0 consists of the
components E2 = {v0 = 0}, E0 = {u2 = 0} andD = {v0 − u2 = 0} which do
not intersect transversely in (v0, u2) = (0, 0). Hence, we focus on the patch
v2 = 1 with local coordinates (v0, u2) and resolve further.

At the fourth and final blow-up, we introduce a P
1 with homogeneous

coordinates (u3 : v3) such that u3v0 − v3u2 = 0. We denote this exceptional
divisor by E3. In the coordinate patch u3 = 1, we have v0 = v3u2 and the
singularity becomesW = u2

10v3
6(v3 − 1).W = 0 consists of the components

E3 = {u2 = 0}, E2 = {v3 = 0}, D = {v3 − 1 = 0} which do not intersect.
On the other hand, in the coordinate patch v3 = 1, we have u2 = u3v0
and the singularity becomes W = u3

3v0
10(1− u3). W = 0 consists of the

components E3 = {v0 = 0}, E0 = {u3 = 0} and D = {1− u3 = 0} which do
intersect transversely in (u3, v0) = (0, 0). Hence, we have completely resolved
the singularity.

We see that E0 ∩ E3 = {v0 = 0, u3 = 0}, E3 ∩D = {v0 = 0, u3 = 1} =
{u2 = 0, v3 = 1} and E0 ∩D = ∅. Moreover, in the other patch, E3 ∩ E2 =
{u2 = 0, v3 = 0}, E2 ∩D = ∅, and E0 ∩ E2 = ∅. Since E1 does not appear
anymore, E3 ∩ E1 = ∅, its intersections can only be seen in the previous
patch with coordinates (u1, v2) and are E0 ∩ E1 = ∅ and E1 ∩ E2 = {u1 =
0, v2 = 0}.

Now, we apply this to the divisors in the moduli space of the mirror of
P(1, 1, 1, 6, 9)[18]. After the first blow-up W = v0

3 − y describes a tangency
of order 3 which locally can be identified with the tangency of D1 and D(0,1).
This yields D = D1, E0 = D(0,1) with local coordinates

v0 = 1− z̄1, y = −z̄3
1 z̄2.

From this we get

(4.19)

u1 =
y

v0
= − z̄3

1 z̄2
1− z̄1

, v1 =
v0
y
= −1− z̄1

z̄3
1 z̄2

,

u2 =
u1

v0
= − z̄3

1 z̄2
(1− z̄1)2

, v2 =
v0
u1

= −(1− z̄1)2

z̄3
1 z̄2

,

u3 =
u2

v0
= − z̄3

1 z̄2
(1− z̄1)3

, v3 =
v0
u2

= −(1− z̄1)3

z̄3
1 z̄2

.
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With these identifications we find for the local coordinates near the four
intersections of these divisors

(4.20)

D1 ∩ E3 :
(
1 +

z̄3
1 z̄2

(1− z̄1)
3 , 1− z̄1

)
D(0,1) ∩ E3 :

(
− z̄3

1 z̄2

(1− z̄1)
3 , 1− z̄1

)
E2 ∩ E3 :

(
− z̄3

1 z̄2

(1− z̄1)
2 ,−

(1− z̄1)3

z̄3
1 z̄2

)
E1 ∩ E2 :

(
− z̄3

1 z̄2
1− z̄1

,−(1− z̄1)2

z̄3
1 z̄2

)
.

Similarly, the triple intersectionW = u2v0(v0 − u2) after the third blow-
up locally can be identified with the triple intersection ofD1,D2 andD(−1,0).
For this purpose, we set

u2 = 1− z̄2, v0 = αw1,

where w1 = 1
z̄1

and α = w1
2 − 3w1 + 3 which is nonzero at w1 = 0. This

yields D = D1, E0 = D2 and E2 = D(−1,0). From this we get (neglecting
factors of α)

(4.21) u3 =
u2

v0
= z̄1(1− z̄2), v3 =

v0
u2

=
1

z̄1(1− z̄2)
.

Relabeling the exceptional divisor E3 by E0 we find for the local coordinates
near the two intersection points

(4.22)

D1 ∩ E0 :
(
1
z̄2
1

(
(1− z̄1)3 + z̄3

1 z̄2
)
,
1
z̄1

)
D2 ∩ E0 :

(
z̄1(1− z̄2),

1
z̄1

)
D(0,1) ∩ E0 :

(
1

z̄1(1− z̄2)
, 1− z̄2

)
.

This concludes the construction of the compactification of the moduli space
with normal crossing divisors. We summarize the local coordinates in table 1
where we have defined c± = 1

2 ± i
√

3
6 . We give a sketch for the compactifica-

tion in figure 1. The divisor D(1,−3) is drawn with a dashed line since it is
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Figure 1: The blown-up moduli space.

not in the boundary of the moduli space. Under the action of the symmetry
I given in (2.9), we have

(4.23)

I(D(1,−2)) = E1, I(D(1,−1)) = E2, I(D(1,0)) = E3,

I(D1) = D2, I(D(0,1)) = D(0,1), I(D(0,−1)) = D(0,−1),

I(D(−1,0)) = D(−1,0), I(E0) = E0.

For a sketch of the compactification in coordinates in which this symmetry
becomes manifest; see [38].

4.3. Periods and flat coordinates at the
boundary points

Consider the intersection points p of the boundary divisors listed in table 1.
We again denote the local coordinates near one of these points p by y. For
each of the first nine intersections p of (the remaining ones can be obtained
by applying the symmetry I) we determine the Gauss–Manin connection.
This can be done in two ways, starting from the results at the large complex
structure point reviewed in Section 2. Either one performs the change of
variables from z to y given in this table in the PF Equation (2.10) and
then reads off the connection matrix as discussed in A, or one transforms
the connection matrix using the gauge transformation law for this change
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of variables. In both cases, one needs to specify a basis for H3(Z∗) near the
intersection p. We choose it to be the same everywhere and as in (2.17) and
express it in terms of differential operators acting on a period as

(4.24) 1, θ1, θ2, θ1θ2, θ2
2, θ1θ2

2 ,

where θi = yi
∂

∂yi
.

Once we have the connection matrices Ai(y), we can determine their
residues. The residues are then used in two ways. First, they allow us to
compute the index of the monodromy about the divisors intersecting p.
Second, they enter into the solutions of the PF equations as discussed in
Section 2. For the residues we find (the residues for D(1,0) and D(0,1) have
been displayed in (2.27))
(4.25)

ResD(1,−1) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1

3 0
0 0 0 0 0 2

3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ResD2 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 2 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

ResD(1,−2) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2
3 0

0 0 0 0 0 1
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ResE0 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1
6 0 0 0 0

0 0 5
6 0 0 0

0 0 0 7
6 0 0

0 0 0 0 11
6 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ResD(−1,0) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
6 0 0 0 0 0

0 5
6 0 0 0 0

0 0 1
6 0 0 0

0 0 0 5
6 0 0

0 0 0 0 1
6 0

0 0 0 0 0 5
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ResD(0,−1) ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
18 0 0 0 0 0

0 5
18 0 0 0 0

0 0 7
18 0 0 0

0 0 0 11
18 0 0

0 0 0 0 13
18 0

0 0 0 0 0 17
18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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ResD1 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 2 0 0 0 0

0 0 1 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ResE3 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ResE2 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 1
3 0

0 0 0 0 0 2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ResE1 ∼

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 2
3 0

0 0 0 0 0 1
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We note that the monodromy matrices ResD1 , ResD2 appear at the various
intersection points always with an eigenvalue 1 of multiplicity 3, but the
multiplicities of the eigenvalues 0 and 2 are different at different points
of intersection. This does not matter here, and can easily be remedied by
multiplying the basis elements (4.24) with appropriate powers of yi and
taking linear combinations. We have summarized the behavior of the various
monodromy matrices in Table 2. (This has first been obtained in [38]. The
monodromies about D(1,−1) and D(1,−2) can be related to the one about
D(1,0) through the local toric geometry of the compactification M [62].) We
note here that by [38] the generators of the monodromy group Γ are D(0,−1)

and D1. The generators of the monodromy subgroup Γell corresponding to
the elliptic fiber are D(1,0) and D(0,−1)

3.
For the solutions of the PF equations, we only give an example, for

the other points the results are analogous. The local coordinates at the
intersection D(1,0) ∩D(1,−1) read

(4.26) y1 = −11664 z1z2, y2 = − 1
27 z2

.
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The residue matrices at yi = 0 have been displayed in (4.25). The solutions
of the PF operators take the form
(4.27)
π0(y) = s0(y),

π1(y) = s0 log
(
y1y2

2
3

)
+ s1(y),

π2(y) = s0 log
(
y1y2

2
3

)2
+ 2 s1(y) log

(
y1y2

2
3

)
+ s2(y),

π3(y) = s0 log
(
y1y2

2
3

)3
+ 3 s1 log

(
y1y2

2
3

)2
+ 3 s2(y) log

(
y1y2

2
3

)
+ s3(y),

π4(y) = y2
1
3 s4(y),

π5(y) = y2
2
3 s5(y),

with

s0(y) = 1 +
5
36
y1y2 +O

(
y4
)
,

s1(y) =
31
36
y1y2 +O

(
y4
)
,

s2(y) =
5
18
y1y2 +O

(
y4
)
,(4.28)

s3(y) = −y2 +
(
− 9
40
y2

2 − 5
6
y1y2

)
+O
(
y3
)
,

Table 2: xxx.

D(1,0) (T − 1)4 = 0
D(0,1) (T − 1)3 = 0
D(1,−1) (T 3 − 1)4 = 0
D(1,−2) (T 3 − 1)4 = 0
D(0,−1) T 18 − 1 = 0
D(−1,0) T 6 − 1 = 0
D1 (T − 1)2 = 0
D2 (T − 1)2 = 0
E0 T 6 − 1 = 0
E1 (T 3 − 1)4 = 0
E2 (T 3 − 1)4 = 0
E3 (T − 1)4 = 0
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s4(y) = 1 +
1
24
y2 +

(
4
315

y2
2 +

5
72
y1y2

)
+O
(
y3
)
,

s5(y) = 1 +
(
− 5
18
y1 +

2
15
y2

)
+O
(
y2
)
.

We obtain the symplectic form Q at p in the same way as the connection
matrices Ai, by changing the variables in (2.22). Then, inserting the solutions
πi(y) yields the intersection form

(4.29) Q(πi(y), πj(y)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1
9 0 0

0 0 − 1
27 0 0 0

0 1
27 0 0 0 0

−1
9 0 0 0 0 0

0 0 0 0 0 1
27

0 0 0 0 − 1
27 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This allows us the choose the flat coordinates as follows:

(4.30)
t1(y) =

π1(y)
π0(y)

= log
(
y1y2

2
3

)
+
31
36
y1y2 +O

(
y4
)
,

t2(y) =
π4(y)
π0(y)

= y2
1
3

(
1 +

1
24
y2 +O

(
y2
))

.

4.4. The partition function for small genus

Having the flat coordinates at all the intersections points p at the boundary
at hand, we can proceed to apply the boundary conditions discussed in
Section 3. In genus 1, we use c2J1 = 102 and c2J2 = 36 to fix the si in (3.17)
to be s1 = −15

4 , s2 = −7
6 , and furthermore we find r1 = r2 = −1

6 .
For higher genus we proceed as follows. We first compute the propaga-

tors near each of the intersection points p using (3.14) and (3.15). For this
purpose, we need to determine the various ingredients in these equations.
Since Cijk are known as a rational functions in z, we can simply substitute
the change of variables z = z(y). For the holomorphic limits of Ki and Γk

ij

we use the expressions in terms of the periods at p:

(4.31) K̂(y) = − log π0(y), Γ̂k
ij(y) = −∂yk

∂tl

∂2tl
∂yiyj

,
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where π0(y) is the period that appears in the denominator of the mirror
map; see e.g., (4.30). Since we do not know the analytic continuation of the
periods from the point of maximal unipotent monodromy z = (0, 0) to p in
general, we pull the Christoffel symbols and Ki from p back to (0, 0), still
expressing them as functions of y, i.e.,

(4.32)
Ki(y) = zi(y)

∂yk

∂zi

∂

∂yk
K̂(y),

Γk
ij(y) =

zi(y)zj(y)
zk(y)

(
∂zk
∂yn

∂yl

∂zi

∂ym

∂zj
Γ̂n

lm(y)−
∂zk
∂yl

∂2yl

∂zi∂zj
(y)
)
.

The ambiguities are simply obtained by substituting z = z(y) in the rational
functions determined in Section 4.1. This yields all the information needed
to determine the propagators at all the intersection points p.

In the next step, we make an ansatz for F (g), g ≥ 2, as a polynomial
of degree 3g − 3 in formal variables Sij , Si, S,Ki with weights 1, 2, 3, 1,
respectively. Then we compute both sides of the holomorphic anomaly equa-
tion (3.12) and compare the coefficients of 1,Ki,KiKj . This yields equations
for the coefficients in the ansatz of the polynomial F (g). The solution to this
overdetermined system of equations is unique up to a constant which can be
absorbed into the holomorphic ambiguity (3.24). To determine the latter, we
make an ansatz for the numerator p(g)(z) as a series in z, i.e., near the point
the of maximal unipotent monodromy. Then we run through all the intersec-
tion points p ∈ ⋂j∈J Dj , J ⊂ I, |J | = dimM. In our example, these are the
first nine intersection points in Table 1. For each of these points we substi-
tute the propagators computed in the previous paragraph for the variables
Sij , Si, S,Ki into the polynomial expression of F (g). Finally, we compute
the expansion in terms of the flat coordinates t = t(y) at each point p:

(4.33) F (g)(t) =
1

π0(y(t))2
F (g)(y(t)),

where π0(t) is again the period that appears in the denominator of the
definition of the flat coordinates. To each of these expansions we then apply
our discussion of the boundary conditions in Section 3.4.

In our example, we see from Table 2 that D(0,−1), D(−1,0), and E0 are of
orbifold type, while D1 and D2 are of conifold type. The condition that F (g)

be regular at a divisor with finite monodromy, i.e., at D(0,−1), and D(−1,0)
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ensures that the holomorphic function p(g)(z) is a polynomial. The degrees
(d1, d2) of its monomials are bounded by

d1 ≤ 7(g − 1), d2 ≤ 6(g − 1)− 1, 3d2 − d1 ≤ 9(g − 1).(4.34)

In addition, regularity at D(1,−1) fixes the coefficients of the monomials in
p(g)(z) with degrees 3d2 − d1 > 3(2g − 2), while regularity at D(−1,0) fixes
those with d1 > 6(g − 1). The divisor E0 does not yield additional condi-
tions. In particular, the holomorphic ambiguity takes now the form of a
rational function, for which we can now substitute z = z(y) if necessary.

Since D1 and D2 are of conifold type, we can use the expansion (3.22).
In order to do so, we have to take into account that the flat coordinates
t1, t2 obtained from process described in Section 4.3 are only determined up
to normalization. Hence we expect relations ti = kitc,i, i = 1, 2, where tc,i
are the flat coordinates in the expansion (3.22). The gap condition for this
expansion yields an overdetermined system of relations among the remain-
ing coefficients of p(g)(z). For low genus, this system has a unique solution
depending only on the parameter k1. This normalization factor could in
principle be determined by an explicit analytic continuation of the periods
π(z) at the point of maximal unipotent monodromy to the periods π(y) at
D1 ∩D2, though this is highly complicated.

Finally, at the point of maximal unipotent monodromy D(0,1) ∩D(1,0)

we can apply the Gopakumar–Vafa (GV) expansion [3]:

F(Z, t, λ) = c(t)
λ2

+ l(t) +
∑

β

∑
m>0

∑
r≥0

1
m
n

(g)
β (Z)

(
2 sin

(
mλ
2

))2g−2
qmβ ,

where c(t) and l(t) are a cubic and linear polynomials, respectively, depend-
ing on topological invariants of Z. Using the fact that there are no degree
1 curves of genus 2 in the base, n(2)

0,1 = 0 allows us to determine k1 as well.
Moreover, the constant term of F (g) is determined by (3.21).

For genus g = 2, 3 all these conditions lead to a unique solution for the
coefficients in the ansatz of p(g). It turns out that considering all the divisors
at all the intersection points yields a lot of redundant information. Unless we
have better understanding of the boundary behavior of the F (g) it is not clear
how to improve this procedure to minimize the number of computations.
The resulting GV invariants n(g)

β are listed in C. The resulting expressions
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for the ambiguities f (2)(z) and f (3)(z) can be found in B. For g > 3 the
computations turn out to be too involved. Moreover, we expect that the
boundary conditions known so far will not be sufficient to fix the holomorphic
ambiguity. We observe that the F (g) also show a particular behavior at the
other boundary divisors Di, however, it is not possible to give a precise
formulation of this behavior just from the resulting series expansion.

4.5. Recursion in terms of modular forms of SL(2, Z)

Having computed the topological string partition function up to genus 3 we
proceed in the following with exploring the manifestation of the SL(2,Z)
subgroup of the modular group. To do so we examine the large complex
structure expansion of F (g) in terms of the special coordinates. We need
further to choose a section of the corresponding line bundle L2−2g. We do
so by fixing the gauge π0(z) = 1, where π0 is the analytic solution at large
complex structure given in Equation (A.7). The special, flat coordinates in
this patch of moduli space are given by

tE := t1 =
π1

π0
, tB := t2 =

π2

π0
, qE := q1 = e2πit1 , qB := q2 = e2πit2 .

(4.35)

where the periods πi are given in A. We consider the functions

(4.36) F (g)(tE , tB) = π0(z(t))2g−2 F (g)(z(t)),

and expand these in the exponentiated base modulus qB:

(4.37) F (g)(tE , tB) =
∑

n

f (g)
n (tE)qBn =

∑
n

1
n!
∂nF (g)

∂qBn

∣∣∣
qB=0

qB
n,

our Conjecture 1.1 then states that the f (g)
n can be written as

f (g)
n = P (g)

n (E2, E4, E6)
q
3n/2
E

Δ3n/2
,

where P (g)
n denotes a quasi-modular form constructed out of the Eisenstein

series E2, E4, E6 of weight 2g + 18n− 2. The structure and weights of this
quasi-modular form was made as an ansatz guided by similar results for the
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canonical bundle over the 1
2 K3 surface in [13, 14]. The link between the

geometries considered there and our example is the geometry of an elliptic
fibration over a Hirzebruch surface F1, which was considered in [63]. In that
geometry, it is possible to take a limit in the Kähler moduli space which leads
to the non-compact geometry of the canonical bundle over the 1

2 K3, in a
different limit, it is furthermore possible to extract expressions for the ellip-
tic genera of a K3 surface [67], which are modular forms in E4 and E6. The
compact elliptic fibration over P2, which we consider here, can be considered
as another limit of the same geometry, where F1 is blown down to P2. We
confirm this ansatz by computing higher genus topological string amplitudes
using their polynomial structure in terms of special geometry generators as
discussed in Section 4.4. Expanding the resulting expressions as in Equa-
tion (4.37), we confirm our conjecture for all the f (g)

n which we computed.
Some examples of these are given in Appendix (D.2). We furthermore find
that the f (g)

n satisfy the following recursion:

(4.38)
∂f

(g)
n

∂E2
= − 1

24

g∑
h=0

n−1∑
s=1

s(n− s)f (h)
s f

(g−h)
n−s +

n(3− n)
24

f (g−1)
n .

This recursion is analogous to a recursion which was conjectured for higher
genus in [13, 14]. The geometry considered in these works was that of a
1
2K3. The recursion at genus 0 was motivated by a recursion in the BPS
state counting of the non-critical string [12, 21, 22] and its relation to the
prepotential of the geometry used to construct these [63].8

The recursion at genus zero can be verified explicitly either from the
construction of the polynomial expressions from integrals of the underly-
ing Seiberg–Witten-type curve [21, 22] or from the properties of the PF
equations [13]. The higher genus version of the equation is verified for low
genera by the explicit construction of the polynomials. In particular, the
explicit knowledge of the holomorphic ambiguities f (2) and f (3) allow us to
determine the E2 independent part of the polynomials P (g)

n which is not
determined by (4.38). Moreover, the higher genus version is conjectured to
be equivalent to the BCOV anomaly equation [14, 50]. In the following, we
want to relate qualitatively Equation (4.38) to the anomaly equations for
the amplitudes with insertions in its polynomial form (3.12), and (3.13).

8More recently this geometry has also been studied in [68].



Topological strings on elliptic fibrations 773

We work with the coordinates centered at large complex structure z1
and z2 and consider the free energy with n insertions w.r.t z2:

F (g)
n := (π0)2g−2F (g)

2. . . 2︸︷︷︸
n

since z2 is not the flat coordinate, the insertions are defined using covari-
ant derivatives on T ∗M. We will use however that z2 = q2 + · · · and hence
to leading order derivatives w.r.t q2 are captured by the amplitudes with
insertions w.r.t z2.

We are now interested in the appearance of E2 in the q2 → 0 limit in
the polynomial generators of the full problem, we find an occurrence in two
of the generators:9(

S22

z2
2

)
|q2=0 = − 1

12
E2 + E

1/2
4 +

1
12
E6

E4
,(4.39)

K1|q2=0 =
E

3/2
4

Δ
(E2E4 − E6) .(4.40)

We hence have

(4.41)
∂F

(g)
n

∂E2

∣∣∣
q2=0

=

(
∂F

(g)
n

∂S22

∂S22

∂E2
+
∂F

(g)
n

∂K1

∂K1

∂E2

)∣∣∣
q2=0

,

the two terms on the r.h.s can be computed from Equations (3.12) and
(3.13). The second of which vanishes in this case due to the vanishing of the
Kähler metric G1̄2 on the r.h.s of Equation (3.13) in the limit q2 → 0.

We therefore have from (3.12):

(4.42)
∂F

(g)
n

∂S22
=
1
2

g∑
h=0

n∑
s=0

D2F
(h)
s D2F

(g−h)
n−s +

1
2
D2D2F

(g−1)
n

and furthermore:

∂F
(g)
n

∂E2

∣∣∣
q2=0

= −z
2
2

24

(
g∑

h=0

n∑
s=0

D2F
(h)
s D2F

(g−h)
n−s +D2D2F

(g−1)
n

)∣∣∣
q2=0

.

(4.43)

9Since S22 is a section of L−2 we fix a section by multiplying by π2
0 , we moreover

have π0|q2=0 = E
1/4
4 .
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We further compute z2Γ2
22|q2=0 = −1 and note that

z2D2F
(g)
n |q2=0 =

(
θ2F

(g)
n − nz2Γ2

22F
(g)
n

)
|q2=0 = n

(
F (g)

n

)
|q2=0.

Relating the f (g)
n ∼ F

(g)
n

∣∣
q2=0

it is possible to see the characteristic traits of
Equation (4.38). Due to the multiplication with z2

2 the non-vanishing con-
tribution of the first term on the r.h.s of (4.43) is coming from the product
of the connections with prefactor s(n− s), from the second term, a contri-
bution of n(n+ 1) is coming from the contribution of the product of the two
connections. Further contributions come from derivatives acting on the con-
nections. This completes our qualitative relation of refined recursion (4.38)
to the polynomial form of the holomorphic anomaly equation with insertions
(3.12). A more thorough matching of the two equations is beyond the scope
of this work and will be discussed elsewhere.

4.6. Further examples

The expansion (4.38) also holds for other elliptic fibrations. We present here
some more examples. The first is a section of the anti-canonical bundle over
the resolved weighted projective space P(1, 1, 1, 3, 6). The charge vectors for
this geometry are given by:

(4.44)
x0 x1 x2 x3 x4 x5 x6

(l1) = (−4 2 1 1 0 0 0 ),
(l2) = ( 0 0 0 −3 1 1 1 ).

If we take the derivative with respect to E2(2τ) instead of E2(τ), then (4.38)
holds with the first initial condition given as

(4.45) f
(0)
1 =

3
8
F2G2

3
(
16F2

4 − 51F2
2G2

2 + 51G2
4
)
Δ−3/2,

where F2 and G2 are modular forms of weight 2 and generate the ring of
modular forms for Γ(2). They can be expressed in terms of Jacobi theta
functions as

(4.46)
F2(τ) = θ2(τ)4 + θ3(τ)4,

G2(τ) = θ2(τ)4 − θ3(τ)4.
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The same is true, if we consider a section of the anti-canonical bundle over
the resolved weighted projective space P(1, 1, 1, 3, 3) whose charge vectors
are

(4.47)
x0 x1 x2 x3 x4 x5 x6

(l1) = (−3 1 1 1 0 0 0 ),
(l2) = ( 0 0 0 −3 1 1 1 ).

Taking the derivative with respect to E2(3τ) instead of E2(τ), then (4.38)
holds with initial condition

(4.48) f
(0)
1 = 9E1

(
E1

6 − 87F3E1
3 + 2349F3

2
) (
E1

3 − 27F3

)3Δ−3/2,

where E1 and F3 are modular forms of weight 1 and 3, respectively, and
generate the ring of modular forms for Γ1(3). They can be expressed in
terms of the Dedekind eta functions as

(4.49)
E1(τ) =

(
η(τ)12 + 27η(3τ)12

) 1
3

η(τ)η(3τ)
,

F3(τ) =
η(3τ)9

η(τ)3
.

Another elliptic fibration whose associated congruence subgroup is Γ1(3) is
the degree (3, 3) hypersurface in P

2 × P
2. Its charge vectors are

(4.50)
x0 x1 x2 x3 x4 x5 x6

(l1) = (−3 1 1 1 0 0 0 ),
(l2) = ( −3 0 0 0 1 1 1 ).

and the first initial condition for the recursion is

(4.51) F
(0)
1 = 27E1

(
7E1

3 + 54F3

)
Δ−1/2.

A similar example as (4.44) and (4.47) is a complete intersection of two
sections of the anti-canonical bundle over the resolved weighted projective
space P(1, 1, 1, 3, 3, 3) whose charge vectors are

(4.52)
x0,1 x0,2 x1 x2 x3 x4 x5 x6 x7

(l1) = (−2 −2 1 1 1 1 0 0 0 ),
(l2) = ( 0 0 0 0 0 −3 1 1 1 ).
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Taking the derivative with respect to E2(4τ) instead of E2(τ), then (4.38)
holds with initial condition

(4.53) f
(0)
1 = 3E1

3F1
9
(
4E1

4 − 13E1
2F1

2 + 13F1
4
)
Δ−3/2,

where E1 and F1 are modular forms of weight 1, and generate the ring of
modular forms for Γ1(4). They can be expressed in terms of the Dedekind
eta functions as

(4.54)
E1(τ) =

(
η(τ)8 + 16η(4τ)8

) 1
2

η(2τ)2
,

F1(τ) =
η(τ)4

η(2τ)2
.

The argument of the previous subsection also applies to elliptic fibra-
tions over Hirzebruch surfaces Fn, n = 0, 1, 2. They have more than one base
modulus. For example, the elliptic fibration given by the charge vectors

(4.55)

x0 x1 x2 x3 x4 x5 x6 x7

(l1) = (−6 3 2 1 0 0 0 0 ),
(l2) = ( 0 0 0 −2 1 1 0 0 ),
(l3) = ( 0 0 0 −2 0 0 1 1 ).

has base F0. In this case, the recursion (4.38) takes the following form:

(4.56)

∂f
(g)
m,n

∂E2
=− 1

24
(2mn− 2m− 2n) f (g−1)

m,n

− 1
24

g∑
h=0

m∑
s=0

n∑
t=0

(s(n− t) + t(m− s)) f (g−h)
s,t f

(h)
m−s,n−t

with first initial condition

(4.57) f
(0)
0,1 = −2E4E6

Δ
.

and f (g)
m,n = f

(g)
n,m. The fact that the f

(g)
m,n can be expressed in the form f

(g)
m,n =

P
(g)
m,n(E2, E4, E6)Δ−m−n where P (g)

m,n(E2, E4, E6) is a quasi-modular form of
weight 2g − 2 + 12m+ 12n has already been observed in [15].
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Next, we consider an elliptic fibration over the Hirzebruch surface F1

which has two phases. In the phase with charge vectors

(4.58)

x0 x1 x2 x3 x4 x5 x6 x7

(l1) = (−6 3 2 1 0 0 0 0 ),
(l2) = ( 0 0 0 −2 1 1 0 0 ),
(l3) = ( 0 0 0 −1 0 −1 1 1 )

the recursion turns out to be
(4.59)
∂f

(g)
m,n

∂E2
=− 1

24
(
2mn− 2m− n− n2

)
f (g−1)

m,n

+
1
24

g∑
h=0

m∑
s=0

n∑
t=0

(t(n− t)− s(n− t)− t(m− s)) f (g−h)
s,t f

(h)
m−s,n−t

with first initial conditions

(4.60) f
(0)
0,1 =

E4

Δ1/2
, f

(0)
1,0 = −2E4E6

Δ
.

In this case, the quasi-modular form P
(g)
m,n(E2, E4, E6) has weight 2g − 2 +

12m+ 6n. The modularity of f (0)
0,1 has been analyzed in detail in [63].

Finally, for the elliptic fibration over F2 given by the charge vectors
charge vectors

(4.61)

x0 x1 x2 x3 x4 x5 x6 x7

(l1) = (−6 3 2 1 0 0 0 0 ),
(l2) = ( 0 0 0 −2 1 1 0 0 ),
(l3) = ( 0 0 0 0 0 −2 1 1 )

we find that the recursion turns out to be
(4.62)
∂f

(g)
m,n

∂E2
=− 1

24
(
2mn− 2m− 2n2

)
f (g−1)

m,n

+
1
24

g∑
h=0

m∑
s=0

n∑
t=0

(2t(n− t)− s(n− t)− t(m− s)) f (g−h)
s,t f

(h)
m−s,n−t
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with first initial conditions

(4.63) f
(0)
1,0 = −2E4E6

Δ
, f

(0)
0,1 = 0.

In this case, the quasi-modular form P
(g)
m,n(E2, E4, E6) has weight 2g − 2 +

12m.
As last example, we consider Schoen’s CY, i.e., a complete intersection of

two equations of degrees (3, 1, 0) and (0, 1, 3), respectively, in P
2 × P

1 × P
2,

i.e., the charge vectors are

(4.64)

x0,1 x0,2 x1 x2 x3 x4 x5 x6 x7 x8

(l1) = (−3 0 1 1 1 0 0 0 0 0 ),
(l2) = (−1 −1 0 0 0 1 1 0 0 0 ),
(l3) = ( 0 −3 0 0 0 0 0 1 1 1 ).

This is an elliptic fibration over the rational elliptic surface dP9 studied
in detail in [64] (see also [65]). For simplicity, we have restricted the Kähler
classes of the rational elliptic surface to the class of the fiber and the section.
The recursion turns out to be

(4.65)

∂f
(g)
m,n

∂E2
=− 1

24
(
9mn+ 3n2 − 3n

)
f (g−1)

m,n

+
1
24

g∑
h=0

m∑
s=0

n∑
t=0

(−s(n− t)− t(m− s)) f (g−h)
s,t f

(h)
m−s,n−t

with first initial conditions

(4.66) f
(0)
1,0 = 81

1
Δ1/6

, f
(0)
0,1 = 0.

In this case, the quasi-modular form P
(g)
m,n(E2, E1, F1) for Γ1(3) has weight

2g − 2 + 2m with E1 and F1 given in (4.49). The modularity of f
(0)
1,0 has been

proven in [66].
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5. Conclusions

In this work, we studied topological string theory and mirror symmetry
on an elliptically fibered CY. We computed higher genus amplitudes for
this geometry using their polynomial structure and appropriate boundary
conditions. The implementation of the boundary conditions required the
use of techniques to single out the preferred coordinates on the deformation
space of complex structures on the B-model side of topological strings. To do
this we used the Gauss–Manin connection and the special, flat coordinates
which could be found in various loci in the moduli space. At the large volume
limiting point on the A-side which is mirror to the B-model large complex
structure limit, the topological string free energies reduce to the Gromov–
Witten generating functions allowing us thus to make predictions for these
invariants at genus 2 and 3 in their resumed version giving the GV integer
BPS degeneracies.

Having computed the higher genus topological string amplitudes we
showed that these carry an additional interesting structure which exhibits
the elliptic fibration. Namely the order by order expansion in terms of the
moduli of the base of the elliptic fibration can be expressed in terms of the
characteristic modular forms of SL(2,Z) which is a subgroup of the full mod-
ular group due to the elliptic fibration. Along with this refined expansion in
terms of E2, E4 and E6 we found a refined anomaly equation which could
be related to the holomorphic anomaly equations of BCOV for the corre-
lation functions. This type of anomaly is the analog of an anomaly which
was studied in the study of BPS states of exceptional non-critical strings
[12, 21, 22] which are captured by the prepotential of the geometry used in
their construction [63]. It was furthermore shown in [12] that this anomaly
is related to an anomaly found in the study of partition functions of N = 4
topological SYM theory [69]. The anomaly for the that latter theory on P

2

found in [69] marks the first physical appearance of what became to be know
as mock modular forms (see [70] for an introduction). The relation of the
non-holomorphicity of mock modular forms and the recursion at genus 0
was further studied in [67, 71–73]. The recursion found in this work (4.38)
is expected to shed more light on the higher rank N = 4 topological SYM
theory on P

2, since the main example of this paper is an elliptic fibration
over P

2 and the elliptic fibration structure is the analogous setup to [12].
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It would be furthermore interesting to give the higher genus amplitudes an
interpretation in the SYM theory.
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Appendix A. Gauss–Manin connection matrices

The vector w(z) with 2h2,1 + 2 components:

(A.1) w(z) =
(
Ω(z) θ1Ω(z), θ2Ω(z) θ1θ2Ω(z), θ2

2Ω(z), θ1θ
2
2Ω(z)

)t
.

was picked such that its entries span the filtration quotient groups (F 3,

F 2/F 3, F 1/F 2, F 0/F 1) of respective orders (1, h2,1, h2,1, 1). Further multi-
derivatives of Ω(z) can be expressed in terms of the elements of this vector
using the PF equations, derivatives and linear combinations thereof. We find
the following relation for the remaining double derivative:

(A.2) θ1
2 =

3 (θ2θ1 + 144 z1θ1 + 20 z1)
Δ3

,

as well as relations for the triple derivatives, for example:

θ1
3 =

3
(
164 z1θ1 + 53568 z1

2θ1 + 20 z1 + 1296 θ2θ1z1 + 8640 z1
2 + 3 θ2

2θ1 + 60 θ2z1

)
Δ3

2
,

θ1
2θ2 =

3 θ2 (20 z1 + 144 z1θ1 + θ1θ2)

Δ3
.

(A.3)
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The fourth-order derivatives can be expressed in terms of the Gauss–
Manin connection acting on the period matrix:

(A.4) (θi −Ai(z))Π(z)
α

β = 0, i = 1, . . . , h2,1,

In the following, we give these matrices at the large complex complex
structure limit for the example discussed in this work:
(A.5)

A1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

60 z1
Δ3

432 z1
Δ3

0
3
Δ3

0 0

0 0 0 1 0 0

0 0
60 z1
Δ3

432 z1
Δ3

0
3
Δ3

0 0 0 0 0 1

3 a1

Δ3Δ1

3 a2

Δ3Δ1

3 a3

Δ3Δ1

3 a4

Δ3Δ1

60 z1Δ3
2Δ2

Δ1

a5

Δ3Δ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A2(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a6

Δ3
2Δ2

a7

Δ3
2Δ2

a8

Δ3
2Δ2

a9

Δ3
2Δ2

−27 z2
Δ2

a9

Δ3
2Δ2

a1

Δ1

a2

Δ1

a3

Δ1

a3

Δ1

60 z1a9

Δ1

a10

Δ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

with

a1 = 720 z12z2 (5 + 91152 z1) ,

a2 = −12 z2z1
(
5− 12960 z1 − 35645184 z12

)
,

a3 = 180 z2z1
(
1− 2160 z1 + 1679616 z12

)
,

a4 = −36 z2z1
(
5− 8640 z1 − 71103744 z12

)
,(A.6)
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a5 = 432 z1
(
Δ1(z) + 30233088 z12z2

)
,

a6 = −120 z1z2 (1− 864 z1) ,

a7 = −2 z2
(
1− 1266 z1 + 546912 z12

)
,

a8 = −6 z2
(
1− 804 z1 + 147744 z12

)
,

a9 = 9 z2
(
1− 1296 z1 + 559872 z12

)
,

a10 = 4353564672 z13z2.

A fundamental solution is given by

(A.7)

π0(z) = s0(z),

π1(z) = s0(z) log z1 + s1(z),

π2(z) = s0(z) log z2 + s2(z),

π3(z) = s0(z)
(
9
2
(log z1)

2 + 3 log z1 log z2

)
+ s1(z) log z2

+ s2(z) log z1 + s3(z),

π4(z) = s0(z)
(
9
2
(log z1)

2 + 3 log z1 log z2 +
1
2
(log z2)

2

)
+ s2(z) (3 log z1 + log z2) + s4(z),

π5(z) = s0(z)
(
3
2
(log z1)

3 +
3
2
(log z1)

2 log z2 +
1
2
log z1 (log z2)

2

)
+
s1(z)
2

(log z2)
2 + s2(z)

(
3
2
(log z1)

2 + log z1 log z2

)
+ s3(z) log z2 + s4(z) log z1 + s5(z),

where

(A.8)

s0(z) = 1 +
5
36
z1 +

385
5184

z1
2 +O(z3),

s1(z) =
13
18
z1 − 2

27
z2 +

719
1728

z1
2 − 5

243
z2

2 +
5
972

z2z1 +O(z3),

s2(z) =
5
12
z1 +

2
9
z2 +

385
1152

z1
2 +

5
81
z2

2 − 5
324

z2z1 +O(z3),

s3(z) = −1
3
z2 +

13
4
z1

2 − 47
324

z2
2 +O(z3),

s4(z) =
15
4
z1 +

10183
768

z1
2 +O(z3),

s5(z) = −15
2
z1 +

2
3
z2 − 965

256
z1

2 +
13
108

z2
2 − 5

108
z2z1 +O(z3).
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Appendix B. Holomorphic ambiguity

f (2)(z) =
1

155520
(−111885 z̄1 + 25523 z̄2 + 671310 z̄2

1 + 111447 z̄2z̄1

(B.1)

− 56842 z̄2
2 − 1678275 z̄3

1 − 1204665 z̄2z̄2
1 + 148602 z̄2

2 z̄1 + 29375 z̄3
2

+ 2237700 z̄4
1 + 3455528 z̄2z̄3

1 + 302070 z̄2
2 z̄

2
1 − 136500 z̄3

2 z̄1

− 1678275 z̄5
1 − 5125329 z̄2z̄4

1 − 1693290 z̄2
2 z̄

3
1 + 202125 z̄3

2 z̄
2
1

+ 671310 z̄6
1 + 4481781 z̄2z̄5

1 + 3357810 z̄2
2 z̄

4
1 − 107721 z̄3

2 z̄
3
1

− 111885 z̄7
1 − 2233705 z̄2z̄6

1 − 3969738 z̄2
2 z̄

5
1 − 390927 z̄3

2 z̄
4
1

+ 58750 z̄4
2 z̄

3
1 + 489420 z̄2z̄7

1 + 2634295 z̄2
2 z̄

6
1 + 1228482 z̄3

2 z̄
5
1

− 96750 z̄4
2 z̄

4
1 − 836700 z̄2

2 z̄
7
1 − 1223340 z̄3

2 z̄
6
1 − 62250 z̄4

2 z̄
5
1

+ 692430 z̄3
2 z̄

7
1 + 122065 z̄4

2 z̄
6
1 − 273015 z̄4

2 z̄
7
1

+29375 z̄5
2 z̄

6
1 + 39750 z̄5

2 z̄
7
1

)
Δ1

−2Δ2
−2,

f (3)(z) =− 1
38093690880

(−15917050800 z̄1 + 456232932 z̄2

(B.2)

+ 192660441750 z̄2
1 + 62590386030 z̄2z̄1 + 211279484 z̄2

2

− 1070395338600 z̄3
1 − 794525009166 z̄2z̄2

1 − 114611573748 z̄2
2 z̄1

− 7115156792 z̄3
2 + 3611036097900 z̄4

1 + 4485991204548 z̄2z̄3
1

+ 1373729024769 z̄2
2 z̄

2
1 + 172908712632 z̄3

2 z̄1 + 12595354536 z̄4
2

− 8243223219000 z̄5
1 − 15328771143252 z̄2z̄4

1− 7619382247178 z̄2
2 z̄

3
1

− 1534203320118 z̄3
2 z̄

2
1 − 182097732804 z̄4

2 z̄1 − 8683469900 z̄5
2

+ 13425941147850 z̄6
1 + 35631125168634 z̄2z̄5

1

+ 25991656710522 z̄2
2z1

4 + 7513251658918 z̄3
2 z̄

3
1

+ 1210003720515 z̄4
2 z̄

2
1 + 107250300570 z̄5

2 z̄1 + 2195637500 z̄6
2

− 16018774002000 z̄7
1 − 59707988600022 z̄2z̄6

1

− 61303837831056 z̄2
2 z̄

5
1 − 24166432738356 z̄3

2 z̄
4
1

− 4928943313826 z̄4
2 z̄

3
1 − 611530831590 z̄5

2 z̄
2
1 − 26041575000 z̄6

2 z̄1

+ 14136293140200 z̄8
1 + 74311755828120 z̄2z̄7

1

+ 106181883486822 z̄2
2 z̄

6
1 + 56186770195008 z̄3

2 z̄
5
1

+ 14124546987582 z̄4
2 z̄

4
1 + 2183901301478 z̄5

2 z̄
3
1
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+ 141417906000 z̄6
2 z̄

2
1 − 9190359208800 z̄9

1 − 69493182032628 z̄2z̄8
1

− 139262199819120 z̄2
2 z̄

7
1 − 99607604872014 z̄3

2 z̄
6
1

− 31105605508380 z̄4
2 z̄

5
1 − 5666669637756 z̄5

2 z̄
4
1

− 499739411500 z̄6
2 z̄

3
1 + 4321388090250 z̄10

1 + 48656803865922 z̄2z̄9
1

+ 139798606371588 z̄2
2z1

8 + 137955097456758 z̄3
2 z̄

7
1

+ 55201398291783 z̄4
2 z̄

6
1 + 11744735794614 z̄5

2 z̄
5
1

+ 1356336265200 z̄6
2 z̄

4
1 + 8782550000 z̄7

2 z̄
3
1 − 1414808425800 z̄11

1

− 25014405127866 z̄2z̄10
1 − 106841517162632 z̄2

2 z̄
9
1

− 149905707199956 z̄3
2 z̄

8
1 − 79956636322806 z̄4

2 z̄
7
1

− 20332329285174 z̄5
2 z̄

6
1 − 2995433412300 z̄6

2 z̄
5
1 − 77818650000 z̄7

2 z̄
4
1

+ 300289531500 z̄12
1 + 9067187221092 z̄2z̄11

1

+ 60845356108857 z̄2
2 z̄

10
1 + 126488366264360 z̄3

2 z̄
9
1

+ 93969651592314 z̄4
2 z̄

8
1 + 29701731464910 z̄5

2 z̄
7
1

+ 5375737341495 z̄6
2 z̄

6
1 + 305868024000 z̄7

2 z̄
5
1 − 35787036600 z̄13

1

− 2148868232604 z̄2z̄12
1 − 24743599592694 z̄2

2 z̄
11
1

− 80849417068920 z̄3
2 z̄

10
1 − 88089834084720 z̄4

2 z̄
9
1

− 36636047127000 z̄5
2 z̄

8
1 − 7904357952642 z̄6

2 z̄
7
1

− 752243946300 z̄7
2 z̄

6
1 + 1655832150 z̄14

1 + 286405678230 z̄2z̄13
1

+ 6642190971806 z̄2
2 z̄

12
1 + 37427283757680 z̄3

2 z̄
11
1

+ 63913185937407 z̄4
2 z̄

10
1 + 37575505804186 z̄5

2 z̄
9
1

+ 9831162295782 z̄6
2 z̄

8
1 + 1360789452540 z̄7

2 z̄
7
1 + 13173825000 z̄8

2 z̄
6
1

− 14575439970 z̄2z̄14
1 − 1005306836100 z̄2

2 z̄
13
1

− 11572589903500 z̄3
2 z̄

12
1 − 34202435930730 z̄4

2 z̄
11
1

− 30897046296546 z̄5
2 z̄

10
1 − 10439016904684 z̄6

2 z̄
9
1

− 1915988002740 z̄7
2 z̄

8
1 − 77206500000 z̄8

2 z̄
7
1 + 56821108680 z̄2

2 z̄
14
1

+ 2028431619060 z̄3
2 z̄

13
1 + 12418135213655 z̄4

2 z̄
12
1

+ 19333958170350 z̄5
2 z̄

11
1 + 9305421434772 z̄6

2 z̄
10
1

+ 2108401264068 z̄7
2 z̄

9
1 + 187661061000 z̄8

2 z̄
8
1 − 129039404760 z̄3

2 z̄
14
1

− 2587173466500 z̄4
2 z̄

13
1 − 8403448711600 z̄5

2 z̄
12
1

− 6725788007592 z̄6
2 z̄

11
1 − 1892891215014 z̄7

2 z̄
10
1
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− 277132387700 z̄8
2 z̄

9
1 + 188761664700 z̄4

2z1
14

+ 2155595370600 z̄5
2 z̄

13
1 + 3522052783964 z̄6

2 z̄
12
1

+ 1456170527574 z̄7
2 z̄

11
1 + 293531487060 z̄8

2 z̄
10
1

+ 8782550000 z̄9
2 z̄

9
1 − 185488839900 z̄5

2 z̄
14
1 − 1165840766580 z̄6

2 z̄
13
1

− 868288332856 z̄7
2 z̄

12
1 − 221357393880 z̄8

2 z̄
11
1 − 25123350000 z̄9

2 z̄
10
1

+ 123701472720 z̄6
2 z̄

14
1 + 389322265500 z̄7

2 z̄
13
1

+ 124275425135 z̄8
2 z̄

12
1 + 23389674000 z̄9

2 z̄
11
1 − 55116605880 z̄7

2 z̄
14
1

− 69934264260 z̄8
2 z̄

13
1 − 15944383000 z29z̄12

1 + 15644258910 z̄8
2 z̄

14
1

+ 3981361650 z̄9
2 z̄

13
1 + 2195637500 z̄10

2 z̄
12
1 − 2542777650 z̄9

2 z̄
14
1

+306075000 z̄10
2 z̄

13
1 + 178731000 z̄10

2 z̄
14
1

)
Δ1

−4Δ2
−4.
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Appendix D. Modular forms

D.1. Definitions

We summarize the definitions of the modular objects appearing in this work.

(D.1) η(τ) = q
1
24

∞∏
n=1

(1− qn), Δ(τ) = η(τ)24

and transforms according to

(D.2) η(τ + 1) = e
iπ

12 η(τ), η

(
−1
τ

)
=
√
τ

i
η(τ).

The Eisenstein series are defined by

(D.3) Ek(τ) = 1− 2k
Bk

∞∑
n=1

nk−1qn

1− qn
,

where Bk denotes the k-th Bernoulli number. Ek is a modular form of weight
k for k > 2 and even. The discriminant form is

(D.4) Δ(τ) =
1

1728
(
E4(τ)3 − E6(τ)2

)
= η(τ)24.

The modular completion of the holomorphic Eisenstein series E2 has the
form

(D.5) Ê2(τ) = E2(τ)− 3
πImτ

.

D.2. Expansions of f (g)
n

f
(0)
1 =

1
48
Δ−

3
2E4

(
113E6

2 + 31E4
3
)
,(D.6)

f
(0)
2 =

1
221184

Δ−3 (E4E6(D.7)

× (196319E6
4 + 755906E6

2E4
3 + 208991E4

6
)

+4E4
2
(
113E6

2 + 31E4
3
)2
E2

)
,
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f
(0)
3 =

1
557256278016
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2
(
E4

(
360744024241E6

8

+ 4311836724416E6
6E4

3 + 6966210848730E6
4E4

6

+1904214859592E6
2E4

9 + 49789907821E4
12
)

+ 8748E4
2E6

(
113E6

2 + 31E4
3
)

× (196319E6
4 + 755906E6

2E4
3 + 208991E4

6
)
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3
(
113E6

2 + 31E4
3
)3
E2

2
)
,(D.8)
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(1)
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1
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Δ−
3
2E4

(
113E6

2 + 31E4
3
)
E2,(D.9)

f
(1)
2 =

1
31850496

Δ−3
(−1322175E6

4E4
3 − 1941621E6

2E4
6

−21935E6
6 − 197917E4

9 + 12E4E6

(
196319E6

4
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2E4
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6
)
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2
(
113E6

2 + 31E4
3
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743008370688
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4E4
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)
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)
,(D.12)
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