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Graphical functions and single-valued multiple
polylogarithms

OLIVER SCHNETZ

Graphical functions are single-valued complex functions which arise
from Feynman amplitudes. We study their properties and use their
connection to multiple polylogarithms to calculate Feynman peri-
ods. For the zigzag and two more families of ¢* periods we give
exact results modulo products. These periods are proved to be
expressible as integer linear combinations of single-valued multiple
polylogarithms evaluated at one. For the larger family of “con-
structible” graphs, we give an algorithm that allows one to cal-
culate their periods by computer algebra. The theory of graphical
functions is used in [19] to prove the zig-zag conjecture.

1. Introduction
1.1. Feynman periods

In four-dimensional ¢* theory the period map assigns positive real numbers
to 4-regular! internally 6-connected? graphs [38]. The periods determine
the contributions of primitive logarithmically divergent graphs to the beta
function of the underlying quantum field theory.

Although periods are originally associated with sub-divergence free four-
point [4] graphs, it is convenient to complete the graph by adding an extra
vertex. This vertex, henceforth labeled oo, is glued to the four external (half-)
edges of the graph (see figure 1). As a remnant of conformal symmetry,
graphs with the same completion have identical period. By choice of oo

LA graph is 4-regular if every vertex has four edges.
2A 4-regular graph is internally 6-connected if the only way to split the graph
with four edge cuts is by separating off a vertex.
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Figure 1: Completed (Z,) and uncompleted (Z,) zig-zag graphs with five
and six loops.
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Figure 2: Position space Feynman rules: edges correspond to quadrics
(or 1).

one can consider the completed graph as an equivalence class of four-point
graphs with the same period.

The structure of ¢ periods was first studied systematically by Broad-
hurst and Kreimer in 1995 [7] (see also [8]). They found by exact numerical
methods that up to seven loops (the number of independent cycles in the
four-point graph) many periods are multiple zeta values (MZVs), i.e., ratio-
nal linear combinations of multiple zeta sums

1 .
(11) C(nl,ng,...,nr) == Z W, with Ny Z 2.
1<k <ko< <k, L2 "

Multiple zeta sums (1.1) span a Q vector space H which is conjectured to
be graded by the weight n =n1 +ng + -+ 4+ n,.

There are four equivalent ways to define the period of a graph: position
space, momentum space, parametric space and dual parametric space [38].
In the context of algebraic geometry, one often uses Feynman (or Schwinger)
parameters [2, 11]. In this paper, however, it is essential to use position space.

In a completed Feynman graph, we label the V' > 3 vertices by 0, 1, oo,
x1, ..., xy_3, where 0 is the origin of R*, 1 corresponds to a unit vector eq,
and x; € R* for 1 <i <V — 3. Edges of the Feynman graph correspond to
propagators (see figure 2). The propagator is the constant function 1 if the
edge has one vertex oo or if it connects 0 and 1. Otherwise the propagator

of an edge e from z = (2!, 22,23, 2%) to y = (y', 92,93, y*) is the reciprocal
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of the quadric
Qe =z —yl? = (@' —y')? + (2* = ¢*)* + (2" = ¢*)* + (2" = y")%.

The period of the completed Feynman graph I' is then given by the 4(V — 3)-
dimensional integral

d*z, 1
(1.2) Py = I | /R o

v¢{0,1,00

where the products are over vertices v and edges e of I'.

Because edges that connect to infinity do not contribute to the integral
we can remove infinity before we apply the Feynman rules. It is often useful
to generalize the definition of a period to non-¢* graphs. The Fourier iden-
tity [7], for example, maps ¢* graphs to non-¢* graphs without changing the
period. This map will be used to link the period of the zig-zag graphs to the
sequential family of graphs defined in the next subsection. Although com-
pletion is also possible for non-¢* graphs if one introduces edges of negative
weights (similar to Section 3.4) we use non-¢* graphs in an uncompleted
form. In this form, graphs have no vertex oo and the definition of the period
(1.2) remains unchanged. We use capital Greek letters for completed and
Latin letters for uncompleted graphs.

Position space Feynman rules were used in [7, 8], and in most calculations
of Feynman periods. In fact, until 2012 only eight ¢* periods have been
calculated: the trivial period 1 (= P(Z;)), the wheels with three [22] and
with four [23] spokes which are Z3 and Z, respectively.® The period of the
zig-zag graph (see figure 1) with five loops was calculated by Kazakov in
1983 [31]. The six loop zig-zag period was derived by Broadhurst in 1985
[4] and confirmed by Ussyukina in 1991 [44]. Until 2012 the only calculated
non-zig-zag periods were G(3,1,0) in [7] which is Ps2 in [38], Fs3 by E.
Panzer, and the bipartite graph Ky 4 in [36] which is P4 in [38]. By exact
numerical methods 24 more periods were determined up to eight loops [6, 38|
all of which are MZVs.

Recent methods, partially based on the theory of graphical functions,
allows one to calculate several hundred distinct periods up to eleven loops
[35].

The zig-zag periods were conjectured to all orders in [7]:

3Wheels with any number of spokes can be calculated [5]. However, wheels with
more than four spokes do not exist in ¢* theory.
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Conjecture 1.1 (Zig-zag conjecture). The period of the graph Z, is
given by

(1.3) P(Z,) = 47512(7;__21);! (1- ! ;25;;)”)4(271 —3),

In spite of its seeming simplicity the zig-zag conjecture remained open
for 17 years.

Until 2012 all known ¢* periods were MZVs. Recently ¢* periods with
extensions of MZVs by second and sixth roots of unity were calculated [35].
Assuming transcendentality conjectures these periods are not MZVs. There
exists strong mathematical evidence that ¢* periods in general are of an
even more general type [16, 17].

In this paper, we develop a method that allows one to calculate the zig-
zag periods and two more families of ¢* periods (and “sequential” non-¢*
periods). Modulo products of MZVs an explicit formula for these periods
is given. For a more general class of “constructible” periods, we present a
computer algorithm that works up to eleven loops.

Finally, the zig-zag conjecture is proved in [19] using Corollary 3.28.

1.2. Sequential graphs

An important family of graphs can be encoded by words in the three letter
alphabet 0,1, 2.

Definition 1.2. Let w be a word in 0,1,2. The sequential graph G, is
the graph with two distinguished vertices 0 and 1 and a horizontal chain
of vertices that connect either to 0, to 1, or to both 0 and 1 (see figure 3).
Reading from left to right the connections are encoded in the letters 0, 1 or
2, respectively.

Sequential graphs have well-defined periods P(G,) in four dimensions if
the word w begins and ends in 2 (Corollary 3.7).

Certain sequential graphs are related by duality to zig-zag graphs. With
the notation

(1.4) wi™ = ww .. w
~—

n
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0

Figure 3: The sequential graph G21120012-

for the n-fold iteration of a word w the graphical dual Z; of the uncompleted
zig-zag graph with n loops is

Z3mis = Goorytmig U{eor} or  Gagyema U{eot},

(1.5) >
Z3mia = Goorytmioa U{eor} or  Ganoyimine U{eot},

where eg; is the edge 01. The period of an uncompleted graph with a planar
embedding equals the period of its planar dual [7, 38]. Hence we can express
the zig-zag period in terms of the period of a sequential graph,

P(Zam+s) = P(Gyorytmz) = P(Gaa10)tmi2),

(1.6)
P(Zaymta) = P(Gayo1)tmi02) = P(Gagoytmii2),

where we have dropped the edge ep; because its propagator 1 does not
contribute to the period.
Sequential graphs were independently analyzed in [25].

1.3. Graphical functions

A graphical function is the evaluation of a graph G with three distinguished
vertices 0, 1, z with position space Feynman rules and no integration over z,

d*z 1
(1.7) fol2) = i [
v¢%l0_’[172} /I‘Q‘* w2 He Qe

Here we assume four dimensions. Arbitrary dimensions greater than two
are considered in Section 3. A special case are graphical functions in two
dimensions which we will define in Section 5.
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1 1

0 0

Figure 4: The graphical function fi(z) and the sequential function
fo1120012(2). Note that fi(z) is not a sequential function because z has “ver-
tical” edges.

By symmetry f depends only on two real parameters: the norm ||z||
and the angle between z and the unit vector e;. We can hence consider fg
as a function on the complex plane C where we identify e; with 1 and choose
any of the two possible orientations.

Graphical functions are single-valued functions which are real analytic in
C\{0,1} [28]. Independence of the orientation in C results in the reflection
symmetry

fa(z) = fa(Z).

Graphical functions also arise as conformal integrals in N = 4 supersym-
metric Yang-Mills theory [26].

Sequential graphs give rise to sequential (graphical) functions by append-
ing a horizontal edge connected to z (see figure 4). The four-dimensional
graphical function

1
2Z2(z—1)(z—-1)

serves as an initial case for constructing sequential functions.

The sequential function f,,(z) is well defined in four dimensions if the
word w begins with 2 (Lemma 3.6). Zig-zag periods can be expressed as
special values of sequential functions at 0 or 1,

(1.8) fi(z) =

P(Zomts) = fao1)t11(0) = foor)ytmio(1)
= foqoytm11(0) = f2 10)tmi0(1),
P(Zam+4) = fa01)tm01(0) = faorytmioo(1)
( ( (

0) = faaoytmr10(1)-

(1.9)

= fagoytmin1
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Summarizing the notions of graphical and sequential functions we have

Feynman rules
—

graph with vertex z graphical function

Feynman rules
—

sequential graph with horizontal edge to z sequential function.

1.4. Single-valued multiple polylogarithms

For any word w in the two letter alphabet 0, 1 we inductively define multiple
polylogarithms L., (z) by
L
82Lu)a(2) = w(z), for a S {0, 1},

zZ—a

and Ly, (0) = 0 unless w = 0™} in which case we have Ly (2) = (In2)"/n!.
Multiple polylogarithms are multi-valued analytic functions on C\{0,1}.
The weight of L, is the length |w| of the word w.

By taking appropriate linear combinations of products of multiple poly-
logarithms with their complex conjugates one can construct single-valued
multiple polylogarithms (SVMPs), see [9, 10]. SVMPs span a shuffle-algebra
over C which is graded by the total weight

(1.10) P=EPPn

n>0

For every word w in 0 and 1 of length n there exists a basis element P, (z) €
Pn.

By construction the regularized (setting In(0) = 0) limit of SVMPs at 0
vanishes. With the notation

(1.11) Grotmi-11 10t -1 = (=1)"C(n1, ..., ny)

we have L, (1) = (. Hence at 1 (and at co) SVMPs evaluate to MZVs. For
any ring R C C we set

(1.12) H*(R) = (Py(1), w word in 0,1)g.

The Q algebra H*Y = H%V(Q) is a proper subalgebra of H, the Q algebra of
MZVs. One can construct H*Y as the largest Q sub-algebra of H with only
odd weight generators on which the Galois coaction on H coacts [14].
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By holomorphic and antiholomorphic differentiation 0, and 9z SVMPs
generate a bi-differential algebra

(1.13) A—C[z,l, 1 21 1 ]P.
z z

z—1’ z—1

We present results of the theory of SVMPs (many of which are due to F.
Brown [9, 10]) in Section 2. In particular there exist integrals with respect
to z and 7 in A,

(1.14) /dz,/dz A — A
0 0

We give an algorithm that allows one to integrate in A up to high weights
(~30). A residue theorem in Section 2.8 facilitates the integration of func-
tions in A over the complex plane. In practice the integration over the com-
plex plane is more memory and time consuming so that the implementation
is limited to smaller weights.

The connection to graphical functions is established by the fact that in
many cases graphical functions are expressible in terms of SVMPs in the
sense that

9(2)
1.15 =
(1.15) fatz) = 2L
with ¢g(z) = —g(z) € A. Let B denote the vector space of such g(z)/(z —
Z). Likewise we define B C B as the set of functions (1.15) where g(z) =
—g(Z) € P. An example is fi, (1.8), which is in B but not in B°. By Corol-
lary 3.28 all sequential functions f,, (w # I) are in B°.

1.5. Completion

There exist relations between graphical functions of different graphs. The
best way to formulate these relations is by completing the graph. The com-
pletion is obtained by adding a vertex oo in much the same way as for
periods.

The completed graph has four labeled vertices 0, 1, z, co. For some edges
e in the completed graph we need to introduce propagators of negative inte-
ger weight v, which correspond to quadrics @), in the numerator of the inte-
gral (1.16). Graphically we indicate negative weight propagators by multiple
wavy lines. Completion adds edges to co and from 0 to 1 in such a way that
all unlabeled vertices have total degree four and the vertices 0, 1, z, oo have
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Figure 5: The completion of the graphical functions fi(z) and f21120012(2).

total degree zero (see figure 5). Completion is always possible and unique
(Lemma 3.18).

In four dimensions the graphical function of a completed graph I is given
by

d*z, 1
(116) fF(Z) B H }/R4 7T2 He QZE ‘

v¢{0,1,z,00

Clearly, a graphical function does not change under completion,

(1.17) fr(z) = fa(2).

Because only completed graphs have a vertex co we use the same symbol
for their graphical functions.

It will be shown in Section 3.4 that a permutation of the four labels
0,1, z, 00 induces a Mobius transformation of the argument z. Concretely,
double transpositions of labels leave the argument z invariant while a per-
mutation ¢ of {0,1,00} acts on z. For a graph I'(a,b,c,d) with external
labels a,b,¢,d € {0,1, z,00} we have

fl"((],l,z,oo) = fl"(l,O,oo,z) = fl"(z,oo,(],l) = fl"(oo,z,l,O)>

(1.18)
Jr(0,1,2,00) = Jr(6(0),6(1),6(2),6(00)) >

where we indicate the action of ¢(z) € {z,1 — z, Z;—l, =, %, %} on the
argument z by transforming the label z. In total we obtain a 24-fold per-
mutation symmetry which stabilizes the cross-ratio of the four labels. The
transformation ¢ maps B into B and B into BY so that the class of graphi-
cal functions that is expressible in terms of SVMPs in the sense of (1.15) is

invariant under the permutation of external labels.
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1 1
0 0

Figure 6: Appending an edge to the vertex z in G gives G1.

1.6. Appending an edge

A key result in the theory of graphical functions is that in many cases
the graphical function is mapped from B into B’ by appending an edge
to the vertex z (see figure 6). Under quite general assumptions given in
Theorem 3.26 we obtain

(119)  fo () = —2(21_@ (/0 dz/odz —i—/odz/o dz) (== %) fal2).

The simplicity of this equation is special to four dimensions. In arbitrary
dimensions appending an edge is significantly more complicated, see Propo-
sition 3.22.

1.7. Constructible graphs

We have seen that permuting the labeled vertices and appending an edge to
z maps B into B. A third operation that is trivially of this type is adding
an edge that connects two labeled vertices. In fact, this edge contributes
non-trivially to the graphical function only when it connects 0 or 1 to z. In
this case the graphical function picks up a factor of 1/2z or 1/(z — 1)(z — 1),
respectively.

The empty graph with four vertices is the completion of the sequential
graph of the empty word. Its graphical function is one,

(1.20) fo=1.

With the help of the above three transformations we can construct graphs
from the empty graph and calculate their graphical functions (see figure 7).
For these “constructible” graphs the graphical functions can be calcu-
lated by computer up to weights ~30 which corresponds to 15 internal (unla-
beled) vertices. In particular, all sequential graphs are constructible.
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LN

w(e) () -

Figure 7: Construction of graphical functions which are in B. The bullets o
stand for one of the four labels 0, 1, z, 00 and 7 is a permutation of 0,1, z, oo
together with a transformation of z which is generated by (1.18).

The periods of completed primitive Feynman graphs can be calculated
by using two-dimensional complex integration if the graph decomposes into
at most two constructible graphs under the following steps:

e Label four vertices by 0, 1, z, cc.

e Delete 0,1, z,00 and decompose the graph into its connected compo-
nents.

e Add 0,1, z, 00 to each connected component in the same way the ver-
tices of the component are connected to 0, 1, z, co in the original graph.

e Complete each component by adding edges between labeled vertices.

Such “constructible” periods can be calculated by computer up to eleven
loops [40, 41].

It was observed in [38] that the known ¢* periods have an integer struc-
ture in the sense that they are integer linear combinations of MZVs. This
phenomenon is partially explained in Remark 3.36 where we argue that con-
structible periods are in H®*V(Z) (the proof will be in [43]).

1.8. Reduction modulo products

Although integration in A is well-suited for computer calculation, closed
results are hard to obtain. An all orders result for sequential functions is
only available in three cases: For the case of a 2 followed by a sequence of 0Os
(or 1s), see Example 3.31, for the case of a 2 followed by a string of Os which
contains one 1, see [25], and for the case of the zig-zag graphs, see [19]. The
result for zig-zag graphs leads to the proof of the zig-zag conjecture (1.3).
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A practical option to obtain general results is to calculate in the ideal
I,, generated by MZVs of weights between two and n. Iterating (1.19) gives
results for all sequential functions f,, modulo I},,|_o. By setting the external
variable z to 1 this leads to a formula for the periods of sequential graphs
modulo products of MZVs: We extend the definition of (, (1.11), to the
letter 2 by

(121) CUQU = Culv - CuOv

for words u,v in 0,1,2 and define H2>0 as the Q vector space spanned by
non-trivial products of MZVs. Then the sequential period of a word 2w2 is
given by (see Theorem 4.3)

(1.22) P(Gaw2) = 2(=1)"(Caorwo — Catowo) mod H,

where w is w in reversed order,

(1.23) W= ApGn_1---agaq if w=ajas - apn_1an.
1.9. Zig-zag graphs and generalizations

The periods of three families of ¢* graphs are sequential. One family is the
zig-zag family (see (1.6) and figure 1). Equation (1.22) gives in this case
(Proposition 4.6)

P(Zonys) = 2¢ (21,3, 2(nh) —o¢(2in=1 3 olntlhy mod 12,

1.24
(1.24) P(Zonya) = 2¢(211, 3, 2001y o (2intl} 3 ofnhy mod H2,,.

Due to a result by Zagier on MZVs of the above type [49] (see also [34]) this
proves the zig-zag conjecture modulo products.

It is remarkable that the periods of the zig-zag graphs reduce to MZVs
in the Hoffman basis [30] whereas the somewhat similar but much simpler
periods of the wheels with spokes (see (3.47)) directly reduce to single Rie-
mann zeta sums. The different scenarios seem to reflect the difference in
topology of the corresponding graphs.

The second and the third family of sequential ¢* periods arise from
alternating words in 0 and 1 with one internal letter 2 (on the left of figure 8).
The A type sequence has different letters immediately to the left and to the
right of the middle letter 2 whereas the B type sequence has equal letters.
The A and B graphs are the planar duals of the sequential graphs (on the
right of figure 8). The number of letters in the left and right sequences is
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0
G201202

1

0
G210202 Ba

Figure 8: The completed A and B families of ¢* graphs.

one less than the number of internal arcs on the left and right side of the A
and B graphs. We have A, ,, = Apm, Bmn = Bnm, Ano = Bn,o; otherwise
the graphs are non-isomorphic. Their periods are given modulo products by
MZVs of 2s with 1 or 3 in three slots, see e.g. (4.8).

By Corollary 3.30 the (constructible) periods of the A and B families are
in H*V(Z). They can be calculated and reduced to a standard basis of MZVs
up to loop order 12. Assuming standard transcendentality conjectures, type
A and B periods are examples of ¢* periods which are proved up to 12 loops
to be MZVs which cannot be expressed in terms of a single Riemann zeta
sum.

1.10. Two dimensions

A special case are graphical functions in two dimensions. Whereas in higher
dimensions propagators correspond to bosonic particles, in two dimension
we consider holomorphic and antiholomorphic propagators which are more
closely related to fermionic particles. A definition of two-dimensional graphi-
cal functions is given in Section 5. In 5.12 it is conjectured that the maximum
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weight piece of the periods of graphical functions in two dimensions reduce
modulo products to the sum of two cell zeta values [15].

1.11. Computer implementation

All algorithms of this article are implemented in Maple and available under
[40]. In particular constructible periods can be calculated by a
period(edgeset) command. A more powerful implementation is currently
developed [41].

2. Single-valued multiple polylogarithms
2.1. Preliminaries on shuffle algebras and formal power series

Let R be a commutative unitary ring. Consider the two letter alphabet
X = {xo,x1} and let X* be the set of words in X together with the empty
word 1. The shuffle algebra Shr(X) is the free R-module over X* together
with the shuffle product which is defined recursively by wml = 1lmw = w
and

aumby = a(umbv) + b(aumv)

for all a,b € X, and w,v,w € X*. The shuffle product, extended linearly,
makes Shp(X) into a commutative unitary ring.

A Lyndon word is a non empty word [ € X* which is inferior to each of
its strict right factors (for the lexicographical ordering), i.e., if | = uv, u # 1
then | < v. By Radford’s theorem the Q algebra Shg(X) is the polynomial
algebra generated by Lyndon words. For every word w € X* let w denote
the word w in reversed order. We linearly extend ® to elements in Shr(X).
The length (i.e., the number of letters) of a word w is |w|. The shuffle algebra
is graded by the length.

The deconcatenation coproduct is defined to be the linear map

A : Shp(X) — Shr(X) ®r Shr(X)
Alw) = Z U@

Uuv=w

and the antipode is the linear map defined by w +— (—1)*l@w. With these
definitions, Shr(X) is a commutative, graded Hopf algebra over R.
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The dual of Shr(X) is the R-module of non-commutative formal power

R{(X)) = {s = > Sew, Sy€ R}

weX*

equipped with the concatenation product. We define on R((X)) a (com-
pleted) coproduct

A*: R((X)) — R((X)®rR{(X))

for which the elements xg,x; are primitive: A*(x;) =1 ®x; +x; ® 1 for i =
0, 1. The same antipode as in Shz(X) turns R((X)) into a completed cocom-
mutative but not commutative Hopf algebra. The duality between T €
Shr(X) and S € R((X)) is defined as

(2.1) (T|S) = > TwSu.

weX*

The set of Lie monomials in R((X)) is defined by induction: the let-
ters xg, x; are Lie monomials and the bracket [z,y] = zy — yx of two Lie
monomials z and y is a Lie monomial. A Lie polynomial (respectively a Lie
series) is a finite (respectively infinite) R-linear combination of Lie mono-
mials. The set Lieg(X) of Lie polynomials is a free Lie algebra and the set
of Lie series Lier((X)) is its completion with respect to the augmentation
ideal kere, where € : R((X)) — R projects onto the empty word. The bracket
form of Lyndon words is recursively defined as P(z) = z for all z € X and
P(¢) = [P(u), P(v)] if £ = uv for Lyndon words u,v and v being as long as
possible. A basis for Lieg(X) is given by the bracket forms P(¢) of Lyndon
words.

An invertible series S € R((X))* (i.e., with invertible leading term S;)
is group-like if A*(S) =S ® S. Equivalently, the coefficients S,, of S define
a homomorphism for the shuffle product: Sy, = Sy, for all u,v € X*,
where S, is extended by linearity on the left-hand side. The condition for
S € R((X))* to be group-like is equivalent to the condition that S is a Lie
exponential, i.e., that there exists an L € Lieg(X) such that S = exp(L). By
the formula for the antipode, it follows that for such a series S = S(xg,x1),
its inverse is given by

(22) S(Xo,xl)_l :S<—X0,—X1>.

In the following we often use the letters “0” and “1” for x¢ and x;.



604 Oliver Schnetz

2.2. Iterated integrals

In [21] Chen develops the theory of iterated path integration on general
manifolds. Here we need only the elementary one-dimensional case. For a
fixed path ~:[0,1] — C\{0, 1} from y = v(0) to z = (1) and differential
forms wq(t) = dt/t and wq(t) = dt/(t — 1) we define

(2.3) I(y;a1...an;2)y = / Vwa, (t1) A oo Ay wa,, (tn),
0<t; <<t <1

ai,...,a, € {0,1}

(where the simplex 0 < t; < --- < t, < 1 is endowed with the standard ori-
entation and y*w is the pullback of w by ) as the iterated path integral of
the word ay ...a, along . Iterated path integrals have the following prop-
erties:

10: I(y;z)y =1 (by definition).
I1: I(y;w;z), is independent of the parametrization of ~.

I2: I(y;w;z), is a homotopy invariant; it only depends on the homotopy
class of 7.

I3: I(z;w;2), = 0 for the constant path v = z and |w| > 1.

I4: I(z;w;y),— = (=1)"II(y; @; 2)., (path reversal), where the inverse
v~ ! of 7 is v with reversed orientation.

I5:
n

I(y;a1...an;2)y = ZI(y; ai...ap; )y, (x5 ap41 . an; 2),
k=0

(path composition), where v;(1) = 12(0) =z € C\{0,1} and v = 1172
is the composition of (first) v; and (second) 7s.

16:

I(y; ag ... Qr; z)’)/I(y; Qr41 - .- Qr4s; Z)’Y = Z I(Z/v Ao (1) - - - Ao (r4s)3 Z)’Y
oeS(r,s)

(shuffle product), where S(r,s) is the set of (r, s)-shuffles: with n =
r + s and S,, the group of permutations of {1,...,n},

S(r,s)={oceS,:0'(1)<---<ot(r)and o (r+1) <--- <o '(n)}
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I7:
I(p(y); w; ¢(2)) g(y) = L(y; o w3 2)

(chain rule), where ¢ is a Mdbius transformation that permutes the
singular points 0,1,00 and ¢*(a;) is induced by ¢*w,,. Concretely,

¢ is one out of the six transformations z — {z,1 — z, %, = 1;, %}
which induce the transformations of letters “0”, “1” (extended linearly

to words and to iterated integrals)

(2.4)
z: ld, 1— 2 (44077 —s 4(177’ 44177 —s 4(077)7
z—1 . (44077 — — 0" + 441777 “r o _44077)7 il . (44077 — 40”7 — uln7 “r o, _44177)7

z z—1

i i . . (“0” — 7“1777 S AN L ‘4177)7 % . (“077 — 74:0757 “17 s — 407 4 “157).
18:

1
O:1(y; was z) = —I(y;w; 2),  Oyl(y;aw;z) = —Hf(y;ww)-

By I6 the vector space of iterated path integrals for fixed v is a shuffle
algebra. It is convenient to form the generating (Chen) series

(2.5) Sy(xo,x1) = > I(y;w;2)yw € C{(X)),

weX*

where we identify the letters xg and x; with 0 and 1 in /. From the properties
of the iterated path integral S, inherits the properties

S1: §, is independent of the parametrization of ~.

S2: §, is a homotopy invariant.

S3: 5, =1 for the constant path ~.

S4: S, = (9,)" L

S5: 5,5, = Sy, if 71(1) =72(0) and 7172 is the path v; followed by
Y2-

S6: S, is a Lie exponential: A*S, = 5, ® S,.

ST: Sy(y) = ¢* 5y for a Mobius transformation ¢ that permutes 0, 1, cc.
The action of ¢ on xg, x; is dual (transpose) to its action on “0” and
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“17 in (2.4)%,
(2.6)
z @ id, 1 —2z: (X0 — X1,X1 — Xo),
z—1 z
. : (X0 — —x0 — X1,X1 — Xo), o : (X0 ¥ X0, X1 — —Xo — X1),
1 1
1> :(Xof—>X1,X1'—>—X0—X1), ;:(X0|—>—X0—X1,X1'—>X1).
S8:

X0 X1 X0 X1
9.9, = S, <Z+Z_1>, aysvz—(y+y_1>57,

if v(0) =y and y(1) = =.

If the homotopy class of the path v from a to b is clear from the context we
write S(a,b) and consider S as a function of the initial and the end point.

If the path « approaches the singular values 0 and 1 the following limits
are well-defined [10],

lin% oS (e, 2) = Fy(), liH(l) g1 — ¢, 2) = Fi(z),
2.7) -
@7 lir% S(y, el = Fy (), liﬂ(l) Sy, 1 — el = py ()~

To write the above equations in more convenient form we define regularized
limits by nullifying every positive power of Ine in the limit € — 0. In our
context this prescription is equivalent to regularization by tangential base
points introduced by Deligne in [24]. With this notation we have S(0, z) =
S(2,0)7t = Fy(2) and S(1,2) = S(2,1)7! = Fy(2).

2.3. Multiple zeta values

Regularized iterated integrals for the path id : [0,1] — [0, 1] span the shuffle
algebra H of MZVs,

(2.8) H = (Cw, w € X )g, Cuw=1I(0;w;1).

Regularization extends H to all words. In particular, ( = (1 = 0. If w begins
with 1 and ends with 0 then (, can be converted into a sum by (1.11)

4Here the letters 0 and 1 are dual to the letters xg, x;.
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and (1.1). The generating function of regularized MZVs (denoting xp,x; as
indices)

(2.9) Zyors = Y Cow = S5(0,1) € C{(X))

weX*

is Drinfeld’s associator. It is group-like and by (2.2) and (2.6) for z — 1 — z,

(210) ZXo,Xl = Zx_l,lxo = Z*Xh*Xo = Z:io,fxl'

The weight |w| of ¢, induces a filtration on H. The conjecture that the
weight gives a grading on H is proved in the motivic analogue. We define
subspaces Hj C H of weight £ MZVs.

Shuffling the summation indices of a product of two MZVs in the sum
representation yields the set of quasi-shuffle identities. Conjecturally regular-
ized shuffle and quasi-shuffle relations generate all relations between MZVs.
The dimension of Hy is conjectured (and proved in the motivic analogue
[13]) to have the following generating series

o
1

By the shuffle identity, MZVs span a ring over the integers,
(2.12) H(Z) = (Cw, w € X )z CH.

An important factor algebra of H is obtained by factorizing out the ideal
generated by ((2). This factor algebra coacts on H by

(2.13) A:H— H/C2)H @ H.

An explicit formula for A is given in [29].

The reduction of A modulo ¢(2) on both sides of ® in (2.13) turns
‘H/C¢(2)H into a Hopf algebra. A main conjecture on MZVs (a theorem for
the motivic analogue) states that this Hopf-algebra is non-canonically iso-
morphic to the shuffle Hopf-algebra on words in letters of odd weight greater
or equal three [12]. Conventionally one uses the “f-alphabet” fs, f5,... for
the letters. The isomorphism into the f-alphabet extends to H by adding
a generator fo of weight two. The polynomial algebra generated by fs is
tensored to the right to the Hopf-algebra in odd letters so that an MZV
maps under the isomorphism to a sum of words in odd letters concatenated
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to the right by a power of fs. The coaction A deconcatenates the word in
the f-alphabet and fulfills A fé“ =1® ff.

The number of odd letters in a word w in the f-alphabet is the coradi-
cal depth of w. The coradical depth gives the f-alphabet a second grading
(together with the weight). A computer implementation of the basis depen-
dent isomorphism into the f-alphabet is in [39].

2.4. Multiple polylogarithms

Multiple polylogarithms for words w in the letters 0 and 1 are recursively
defined by

(2.14) Lya(2) :/I:“_(Za)dz, a € 0,1},

with initial condition L,,(0) =0 unless w is a sequence of zeros in which
case we have Ly (z) = (In2)"/n!. Multiple polylogarithms are multi-valued
analytic functions on P*C\{0, 1, co} with monodromies around 0, 1 and oo.
They can be expressed as regularized iterated integrals from 0 to z,

(2.15) Lu(2) = 1003 2),,

where the dependence on the homotopy class of v gives rise to the multi-
valuedness of the multiple polylogarithm. If z is in the unit ball |z| < 1 and
not on the negative real axis we assume that + is homotopic to a straight
line from O to z.

The generating series of multiple polylogarithms is denoted by

(2.16) Ly, (2) = Y Lu(z)w = 5(0,2),

weX*

where we often suppress the indices xg,x1. It is the unique solution to the
Knizhnik—Zamolodchikov equation [27, 32]

(2.17) 8.L(2) = L(z) <X°+ a )

z z—1

which satisfies the asymptotic condition (see [10] where the opposite con-
vention is used: differentiation of L, (z) corresponds to deconcatenation of
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w to the left.)
(2.18) L(z) = €@ hg(2)

for all z in the neighborhood of the origin, where hy(z) is a function taking
values in C((X)) which is holomorphic at 0 and satisfies h(0) = 1.

The series L(z) is a group-like formal power series. In particular, the
polylogarithms L,,(z) satisfy the shuffle product formula

(2.19) Lymw (2) = Ly(2) Ly (2) for all w,w' € X*.
Drinfeld’s associator Z is the regularized limit of L(z) at the point z = 1.

Lemma 2.1. There exists a function hi(z) taking values in the series
C((X)), which is holomorphic at z =1 where it takes the value h(1) =1,
such that

(2.20) L(z) = Ze*m(1=2)p, (2),

Proof. For 0 < z <1 we obtain from (2.6) for z — 1 — z that Ly, «,(2) =
Sy, x0 (1,1 —2). By S5 we have Sy, «, (1,1 — 2) = S, 2,(1,0) Ly, x, (1 — z) and
from S4, (2.2) and (2.10) this equals Zy, ,, exp(xqIn(1 — 2))ho(1 — 2).
Depending on the sheet of L at z = 1 there exists a k € Z such that hi(z) =
ho(1 — 2z) exp(2kmix; ) which has the required properties. O

For i € {0,1}, let M; denote analytic continuation around a path wind-
ing once around the point ¢ in the positive direction. The operators M; act
on the series L(z) and its complex conjugate L(Z), commute with multipli-
cation, d, and 0s.

Lemma 2.2 ([33]). The monodromy operators Mg, My act as follows:

MoL(z) = ™0 [(2),

2.21 .
(2.21) MiL(z) = Ze*™a 771 (2).

Proof. The formulae follow from (2.18), (2.20) and the equations Mylnz =
Inz 4+ 271, M;In(1 — 2) =In(1 — 2) + 2. O
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A sum representation of multiple polylogarithms in the unit ball can be
derived from

s

(222) (—].)rLlo{nl—1}._.10{nr—1} (Z) = Linl,...,n,,.(z) = W,
1 - Rr

1<ky,...<k,

which expresses Ljp(»-1y in terms of the classical polylogarithm in the case
r=1.

Lemma 2.3. We have the following explicit expression of Ly, in terms of
the Lis.

(2.23)  Lotmorigtm-1r_10tn-1 (2)

ooty (ki — 1\ (Inz)ko
= Z (71)k0+ ot H (TL _ 1> ( k‘o') lel ----- kr(z)7

kg=>0,k;>n; (i>1) i=1
S k=3 n;

where Lip = 1.

Proof. With the above expression for L we have 0, Ly, (2) = Ly (2)/(z — a).
Because Lo (2) = (In2)"/n! and L,(0) =0 if w # 0{"} the lemma
follows. O

Example 2.4. For r = 1 we obtain

wu ny+k—1\ (Inz)=F_
220 Lowor = D (-4 ) Gz bine4(2)

k=0
2.5. Brown’s construction of SVMPfs

Multiple polylogarithms L, (z) can be combined with their complex conju-
gates L, (Z) to kill the monodromy at 0, 1 and oo, rendering the function
single-valued on P'C\{0, 1, 00}. Because the monodromy (2.21) is homoge-
neous in the weight (if one gives 7 the weight one) a single-valued expres-
sion will decompose into components of pure weight, where the weight of a
product of multiple polylogarithms with MZVs is the sum of the weights of
the polylogarithms plus the weight of the MZVs (see Examples 2.8, 2.9 and
Corollary 2.12). The vector space P of single-valued multiple polylogarithms
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(SVMPs) has a direct decomposition with respect to the weight

(2.25) P=EPPn

n>0

At weight one single-valued logarithms are Py(z) = Lo(z) + Lo(Z) = In(2%)
and Pi(z) =Li(2) + Li1(Z) =In((z —1)(Z—1)). They span the two-
dimensional vector space P;. The differential operator 9, maps SVMPs into
the differential algebra of SVMPs over O = C|z, %, Zfll] Likewise antiholo-
morphic differentiation 0> generates an O algebra. Together A = OOP is
the 0,, 0z bi-differential algebra generated by SVMPs. It is a direct sum of

its weighted components,

(2.26) A=P A,

n>0

where functions in OO have weight zero.

Because 0, (or dz) decreases the weight of a SVMP by one while gener-
ating a denominator z or z — 1 it is clear that the dimension of the vector
space P, is at most 2". The following theorem states that P is a shuffle
algebra with dimP,, = 2".

Theorem 2.5 (F. Brown, [9]). There exists a unique family of single-
valued functions {P,(z): we X*, z € C\{0,1}}, each of which is an
explicit linear combination of the functions Lqy,(Z) Ly (2) where w,w’ € X*,
which satisfy the differential equations

Py(2)
z—a’

(2.27) 0, Pypa(2) = fora € {0,1},

such that Py(z) =1, Pyt (2) = 5 (In22)" for alln € N, and lim,_g Py(2) =
0 if w is not of the form 01" The functions Py (2) satisfy the shuffle rela-
tions, and are linearly independent over OO. Every linear combination of
the functions Ly, (Z) Ly (z), where w,w' € X*, which is single-valued, can be
written as a unique linear combination of functions Py (z).

The functions P, (z) can be constructed explicitly. To this end we make
for the generating series

(2.28) Py (2) = D Pu(z)w

weX*
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the ansatz [10]

(229) PX07X1 (Z) = LXo,X/l (E)LX(MXI (Z)

for a yet to be determined series x}; € C((X)) which is substituted in L. For
any x)j the monodromy of P «,(z) at zero vanishes: from (2.21) we have

MOPXO,Xl (Z) = zxo,x’1 (E)G_Qﬂ—ixoe%ﬂquXo,m (Z) = PXO,X1 (Z)

For the monodromy at one we obtain

MlPXnyl(z) = EXO,X’l (z)(Z_l)xO,X’le_%iXIl Zx ZXO,xle%inZ_l LXOaXI(Z)’

’
05X X0,X1

With (2.10) a sufficient condition for trivial monodromy at one is

—2mix!, 7—1 o —2mixy r7—1
Z*Xo,*xlle 1Z—xo,—x/1 - ZX07X1e ZXQ,X17
which holds if
(2.30) Z XNZTY = T 12t
. X0, =Xy ML g, x| T AXoxa ML Hxg xg -

Recall that H(Z) is the ring of integer MZVs.

Lemma 2.6. There exists an x| € Lieyz)((X)) such that (2.30) holds.
Moreover, x| = x1 modulo words with at least two x1s (depth two) or modulo
words of length greater than or equal to four.

Proof. Define the function

HX07X1 (t) = Z><07X16tXl Zil

X0,X1 "

Because Z, L, = Z,XO’,XU Equation (2.10), we have H € H(Z)[t]((X)). As a
product of three Lie exponentials H(t) = e“®) is a Lie exponential. Because
G(0) =0 we have %\tZOH(t) = %]tZOG(t) € Lieyz) ((X)). Differentiation
yields

F(x0,%1) = Zxgy X125 5 — X1 € Lieyz)((X))-

X0,X1

Explicitly,

F(xo,x1) = €(2)[[x0, x1], x1] + C(3)([[[x0, x1],x1], x1] = [xo, [[x0, xa], xa]]) + -+ -
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Clearly, F' =0 modulo depth two and F = ((2)[[x0,x1],x1] modulo weight
four. We recursively solve (2.30) by defining

’(k))'

KO =, = %1 + F(x0,%1) + F(—x0, x|

/(k+1)
X1

Because F' has lowest weight three, the recursion converges in the weight
filtration. Define x| as the limit of the recursion. Then x| = x; + F(xg,x1) +
F(—xp, —x}) fulfills (2.30). Because by induction every xll(k) € Lieyz) ((X))
we have x} € Lieyz)((X)). Modulo depth two xll(k) = x for all k. 1(\;I)odulo

weight four the recursion stabilizes after £ = 1 for which we have x'1 =x
modulo weight four. O

In (2.72) we will show that only certain (single-valued) MZVs appear in the
series of x|. The first non-trivial contributions to x| have four generators.
Explicitly,

(2.31) xy = x1 + 2¢(3)([[[x0, x1], x1], 1] = [xo, [[x0, x1], x1]])
+COB) )+

where the ((5) contribution consists of eight bracket words in six generators

(see [40]).

For later use we define the following — in general multi-valued — mul-
tiple polylogarithms.

Definition 2.7. For any word w in 0 and 1 let

(2.32) Pz = 3 La()L(2).

Uv=w

The multiple polylogarithms P9 equal P, modulo #(Z). Their generat-
ing series is the untwisted version of Equation (2.29)

(2.33) Pg,xl(@ = Z><o,X1 (Z) Ly, (2)-

Up to weight three or depth one the SVMPs P, equal P?.
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Example 2.8. At weight two we obtain

(2.34) POQ(Z) = Loo(f) + L()(E)L()(Z) + Loo(Z) = %Po(Z)Q = *(111 23)2,
POl(Z) = Lm(f) + Lo(f)Ll(Z) + Lo1 (Z),
Pio(2) = Lo1(Z) + L1(2)Lo(2) + L1o(2),
Pu(Z) = L11<§) + Ll(f)Ll(Z) + Lll(z) =-P (2)2

(In(z — 1)(z — 1))2.

By the shuffle identity Py 1 + P10 = FyP1 so that there exists only one gen-
uinely new SVMP of weight two. One may take Py — P as this new
function and, by the shuffle identity on L,,, we obtain

(2.35)
Po1(2) — Pio(2) = 2L10(Z) — 2L10(2) + (L1(2) — L1(Z))(Lo(z) + Lo(Z))
= 4iIm(Lia(z) + In(1 — 2) In |z]) = 4iD(=),
where D is the Bloch-Wigner dilogarithm [48].

Example 2.9. At weight four the following SVMPs gain a ((3)-term from
(2.31),

(2.36) Py(2) = P2(2) + cwL1(Z), with
(2.37) coorr = —2¢(3), coror = 4¢(3), cro10 = —4¢(3), c1100 = 2¢(3),
cor11 = 2¢(3), cro11 = —6¢(3), c1101 = 6¢(3), c1110 = —2¢(3).

A formula for ¢,, will be given in Lemma 2.27, Equation (2.59).

Example 2.10. With (2.24) we obtain at weight ng +n; + 1

no - —k
ny + k\ (Inzz)™ % _
(2.38)  Pyrorioesy = Y (—1)k+1< n >(no_k)!L1n1+k+1(2)
k=0

@l n nzz)m -k
+ Z(—l)k+1< 0+ k) (l(nl—)k)!LinﬁkH(z).

n
=0 0
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From (2.30) we obtain for the function xj = X} (xo,x1) the identities

(2.39) x4 (—x0, —x1) = —x (x0,x1),

x’l(xo,x’l) = x'l(xo,x'l) = X.

The holomorphic and antiholomorphic differentials of the generating series
P, x, are

X X
(2.40) 02 Py xi = Py (; + > _1 1> ’
/
&ZPXO,Xl = <XO =+ 7X1 ) PXO7X1'
Z z—1

Upon projection (e|law) (see (2.1)) onto the word aw the second identity
gives

5 1

(2.41) 8=Pop(2) = E,0 Pu(2) + —— a;v(xﬁw)ﬂ(z)
_ Pw(z) 1 /
= —— awz_;w(ﬁ —x1|u)Py(2).

To study the number theoretic content of SVMPs we now reduce to the
ground field Q. In P,, — due to contributions from x| — multiple polylog-
arithms of lower weights mix with MZVs.

Definition 2.11. The total weight of a product of MZVs with holomorphic
and antiholomorphic multiple polylogarithms is the sum of the individual
weights.

Corollary 2.12. P, is homogeneous of total weight |w|.

Proof. Let the generators xg, x; have weight —1. Then L(z), L(Z), Z have
weight 0. From the proof of Lemma 2.6 it follows that the total weight of x}
equals —1. Hence Py, x, has total weight 0. g

By construction the regularized values of the P, (z) at 0 vanish. Their
regularized values at 1 form a ring which by Lemma 2.6 is a sub-ring of

H(Z).
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Definition 2.13. For any ring R C C define the ring
(2.42) HY(R) = (Py(1), we X™)p,

and let H®V = H*V(Q) C H be the Q algebra of regularized values of SVMPs
at 1.

We will see in the next section that the regularized values P,(z) at
infinity equivalently span H*Y(R). Moreover, xj € Lieys(z)({(X)) by Theo-
rem 2.33.

Remark 2.14. In [14] F. Brown shows that the Q algebra H* of “single-
valued” MZVs has a deep algebraic structure. In particular, assuming tran-
scendentality conjectures we can characterize H®'. As a shuffle algebra H5Y
is generated as an algebra by MZVs of odd weight on which A :H% —
H/C(2)H @ H®Y coacts. The number of generators at weight 2k 4+ 1 equals
the number of weight 2k + 1 Lyndon words in odd generators of weight
greater or equal three. There exists a canonical map ¢ : H — H*®".

Example 2.15. Up to weight ten H*" is generated by ((3), ¢(5), ¢(7), ¢(9).
At weight 11 we have in addition to ((11) the MZV

g5 = €(3,3,5) ~ 2CEIC(2)° + pC(TIC2)? + 45¢(0)C(2)

corresponding to the Lyndon word 335. In fact, for Az =Ar - 1@z —2®1,
5
Algags = ((3,5) ©(3) = 5¢(5) ©((3)* € H/C(H @ H™.

The ring H*V(Z) is spanned up to weight eleven by 2¢(3), ¢(5), 2¢(3)?, %C(?),
C(3)C(5), 7€(9), 5¢(3)%, §C(B3)C(T), 3C(5)% 3C(1L), 5(gs35 + C(11)) +
3(32((5). and 2((3)%((5)

2.6. Permuting 0,1, co

A special property of SVMPs on P'C\{0, 1,00} is that there exists a group
of Mébius transformations that permute the singular points.

Definition 2.16. Let S3 be the group of Mobius transformations of P'C
that permute {0, 1, 00},

z Tz—1"1—-2"2

(2.43) 83—{z—>¢(z),qﬁ(z)e{z,l—z,z_l, CE 1}}
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The generating series Py, x, of SVMPs transforms as follows:

Lemma 2.17. The following identities hold

(2.44) X (x0, —x0 — x1) = —x0 — X} (x0,%1)-

(2.45) PX07X1(1 - Z) = Ly, x, (E)ZXO,X’IZXO,lexl,Xo (2)
= PX07X1(]‘)PX17XO (Z) = PX/17>Z71(X/17X0)(Z)PX07X1(1)7

z—1 ~ =
PX07X1 ( > ) = L—Xo—Xll,Xo(Z)ZXO,—XO—XQZXOy*XO*XlL*XO*Xl,Xo(Z)

= PXO,*XO*Xl(l)P*XU*XhXo (Z)
= P_XO_X’I’XN’l(_XO_x’l’XO)(Z)PX07_X0_X1 (1),

= zXo,—xO—X’l (Z)LX07_XD_X1(Z) = Pxy,—x0—x: (2),

I\

PX07X1 (

1 - ~
Pxo,xl (1 — Z) = Lx’l,—xo—x’l (z)ZXo,Xi ZX07X1LX1,—X0—X1 (Z)
= PXO,X1(1)PX1,*X0*X1 (2) = Px’ly):’l(x’l’fxofx’l)(Z)PX():Xl (1),
PXqul () = E*XO*XLX; (Z)ZXO,*XO*XS ZX07—X0—X1L—X0—X17X1 (Z)

- PXO,—XO—Xl (1)P—X0—X1,X1 (Z)

= Pt (0 ) (3 P o (1):

I\
—

NI

Proof. We first prove the first set of equations in (2.45). The first formula
for P, x, (;%7) is a consequence of (2.29) and (2.6). By the argument in the
proof of Lemma 2.1

LXle(l - Z) = ZXU,X1LX17X0 (Z),

leading to the first formula for Py, «, (1 — z). If we apply the transformation
z— 25 to P (1 —2) we obtain the first formula for P x, (7=). The
transformation z — 1 — z applied to Py, x, (;%7) gives with the above formula
for Ly, x, (1 — z) the result for Py, 4, (£21). Another transformation z — %5
yields the first formula for Py, 4, (1) by (2.6).

The second set of equations is equivalent to the first because they fulfill
the same differential equations with respect to 0,. An initial value is easily
checked for the transformations 7:2 — 1 —2 and o : 2z — _%7. The other

cases follow by iterating 7 and o.
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The third set of equations follows like the second set of equations by
antiholomorphic differentiation 9z using (2.40) and the second identity in
(2.39).

Because Ly, —x,—x, (%) is invertible (it is a Lie exponential) we obtain

from the transformation z — —*5

LXU,XQ (Xo ,—Xo —X1) (E) = LXo ,—Xo—X] (E) .

By the independence of the multiple polylogarithms in Z we obtain (2.44).
O

If we substitute z = 1 in Py x, (357) = Px,—xo—x (2) We obtain Py, (00) =
P, —xy—x, (1). The ring of SVMPs generates at oo the same MZVs as at 1.
If we set z =1 in Py, 4, (1) we get the following corollary:

Corollary 2.18. Let a,b, c be linear expressions in Xg,x1 such that a + b +
c=0. Then Xy, x, = ZapZv,cZca fulfills the identity

(2.46) Xyt Xy = 1.

Proof. If we substitute z = 1 into Py, x, (1) in (2.45) we obtain the identity

z

Z—xo—x/l X4 Zxo,—x(,—x’1 ZXU,fxofxl foofxl X1 Zy

ZX07X1 .

’
(Jaxl

By (2.10) we have Zy, x, = Zy% and (2.46) is true for a = xg, b = —xg — x1,

X1,X0
¢ = x;1. By a change of variables this proves (2.46) for linearly independent
a and b. If @ and b are linearly dependent then — because Z is a Lie-
exponential — Zg, = Zy o = Zeq = 1. O

Note that in general X, 4, is not 1. It follows from the second identity for
Py x, (1) that the canonical map v : H — H* maps Xy, x, to 1.

2.7. Integration of SVMPs

A consequence of Theorem 2.5 is that the integrals [dz/z, [dz/(z—1)
of SVMPs of weight n are unique in P,4;. If we integrate (2.41) and use
induction over the weight we see that the antiholomorphic integrals [ dz/z
and [ dz/(z — 1) also exist. However, from the induction they pick up terms
of lower weights so that the antiholomorphic integrals are unique in Psg =
D,,~, Prn where only weights up to n+ 1 contribute. The weight grading
hence singles out holomorphic integration; only the filtration by weights less
or equal n is symmetric under complex conjugation.
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Both holomorphic and antiholomorphic integrals have the property that
their regularized limit at zero vanishes. They are henceforth written as fo.

Definition 2.19. For P € P let [~ Pz) “ldz, a € {0, 1} be the umque func-
tion F' € P~¢ such that 0,F(z) = (z) leeW1se G(z fo = adz € P> is
uniquely deﬁned by (‘%G( ) = (z) For be{l, oo} we define [, Z)d =

F(z) — F(b) and fb = dz=G(z ) — G(b), where F(b) and G(b) are regular-
ized hmlts

The integral [, dz/(z — a) is calculated by appending the letter a to the
basis SVMPs P,. The antiholomorphic integral is inductively defined by
integrating (2.41),

ean  [Zapue - ¥ -l [ 25

zZ—a 0z—1
aw=uv

where a € {0,1}. Note that u has at least length 4 so that an inductive
algorithm rapidly terminates.

Example 2.20. For words w with length at most two we have

Py (2)

OZ*CL

(2.48) ——2dz = Puy(z), if |w| < 2.
For words w of length three with ¢4, # 0 in (2.37) antiholomorphic integra-
tion picks up a ¢(3) term (for PY(z) see Definition 2.7),

Pu(z)

0 z_aCF PO ( ) Cale(Z) = Paw(Z) —cawPl(z),

Equation (2.47) uses x| to give a formula for antiholomorphic integra-
tion. Likewise the construction of the basis P, uses X}. The series X} grows
rapidly with the weight. Therefore x} is only accessible up to weight ~11.
An alternative approach to integration of MZVs provides holomorphic and
antiholomorphic integration without using x} and enables us to construct
the basis P, to high weights (~30). We need the following propositions:

Proposition 2.21. Let P € P be a SVMP. Then

P
(2.49) lin%) 20, = (ZZL dz = 8q,0P(0), fora € {0,1},
zZ— 0 —

where 04,0 1s the Kronecker delta.
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Proof. By linearity we may assume without restriction that P = P, for some
word w. We use induction over the length of w. If w =0 then [, s1-dz =

In(z —a)(Z — a) and (2.49) follows. For the word wb, b € {0,1}, we obtain
from (2.47) by induction

P,
lim 20, ,wb(Z) dz
z—0 0 #—a
P,
0. Fo) 04ty [ 2
PCL'LU
= lim 2 (2) = 5b,0Paw(0) = 0.

z—0 z—0>

Proposition 2.22. Let P € P be a SVMP. Then

Pz)
0Z—a

Proof. Substituting z — 1 — z in (2.49) yields for all Q € P, b € {0,1}

(2.50) hrr{(z - 1)0, dz = 8,1 P(1), forac {0,1}.

1—2—0

: Ql—=z) .

1 -1)0, | ——2-dz = .

im (z—1)0 /12_ A=) dz = 8,0Q(0)

Because 9, fl =0, fo the proposition follows from a substitution a =1 — b,
P(z)=Q(1—z). O

The main tool for calculating holomorphic and antiholomorphic integrals is
an explicit formula for their commutator.

Lemma 2.23. Let P € P and a,b € {0,1}. The integrals Oz £ fo =5
fulfill the following commutation relation:

2.51
( ) (/Oz—a Oz—b Oz—b Oz—a)

_< Oz_bp(z) ”_/Oz_ap(z) Zb) Pi(z).

Proof. Applying 0.0z = 020, to the left-hand side of the above equation
leads to the ansatz

(/oz—a/oz—b oz—b/oz—a> z) =c+ coPo(z) + c1 P ().

In the regularized limit z — 0 the left-hand side vanishes, hence ¢ = 0.
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Applying 0. to both sides of the above equation yields

1 _ o €1
2.52 — .
( ) (z—a/oz—b /Oz—b/oz—a) z+z—1

Multiplication by z and taking the limit z — 0 gives

z dz dz
‘lli%(Z_a/oz_b%)‘zaz/oz_z)@(z)) :

where Q(z fo dz ~P(z). The first term on the right-hand side vanishes. By
Proposfmon 2.21 we get for the second term on the right-hand side —d ¢Q(0).
From Q(0) = 0 we obtain ¢y = 0.

Multiplication of (2.52) by z — 1 and taking the limit z — 1 gives

. z—1 dz

With Proposition 2.22 we have

c1 = 0a,1 /dsz(z)
0

— 0p1Q(1).

z=1

This completes the proof. ]
Remark 2.24. The integrals [,dz/z and [;dz/Z commute.

Remark 2.25. The above lemma allows us to construct the integrals fo dz
and fo dz by the following steps. Assume P € P, of weight n > 0. Then

0zP(z) = Qo(2)/Z+ Q1(2)/(Z — 1) with Qo, Q1 € P,—1 and

P(z) = /0 (QOZ(Z) + C’jf’?) dz.

The integral Z(z) = 0 }:(Za) dz is given up to a multiple polylogarithm in Z
by integrating the holomorphic multiple polylogarithms in P(z). Using the
above equation and (2.51) we obtain

(2.53)

(2) Qp(2)
Z/Oz_b Oz_ad 2+ [ Pla) - > Oz_adz - Pi(2).

b=0,1 b=0,1 b

Now QO,Q1 are of smaller weight than P. We hence may assume that
g Y
@) 7, is known by induction for b = 0, 1. The above equation fixes Z by
0 z—a
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integration of the antiholomorphic multiple polylogarithms up to a holomor-

phic multiple polylogarithm. Altogether 7 is given up to a constant which

is fixed by the condition that the regularized limit of Z at z = 0 vanishes.
Antiholomorphic integration is given by the analogous algorithm.

Definition 2.26. Let I,, be the ideal in H generated by MZVs of weights
between two and n.

So (assuming transcendentality conjectures, otherwise we only have
inclusions) Iy = I} =0, Iy = ((2)H and I3 = ((2)H + ((3)H. Recall the def-
inition of PJ(2) in (2.32). We have for a,b € {0, 1},

(2.54) 8.P° (z) = b 3(2), 8:P0 (z) = w(2)

Z—a zZ—b

Moreover, from (2.2) we have for words w of positive length

(2.55) o+ (1)l =0 mod I, ;.
Hence
(2.56) P(1) = (1— (-1)"N¢, mod I, ;.

Because P, is of total weight |w| and P,(0) = 0 we have
(2.57) Py(2) = P(2) mod I ;.
Lemma 2.27. Leta,b € {0,1} and w be a word in 0 and 1. Then

Py (2 _
(2.58) /0de = P2, .(2) + chwal1(Z) mod L)

Z—aQ

P’LU(Z —
/ — (Z)dz = P.u(2) = chwal1(2) mod L),
0o <”— b

where (see Examples 2.9 and 2.20)
(259) Chwa = (1 + (_1)‘w‘)<5a,1wa - 5b,l§wa)-

Proof. We prove (2.58) by induction over the length of w using Remark 2.25.
The statement reduces to Lemma 2.6 and (2.48) if w = (). Taking 9, on both
sides, the first equation in (2.58) reduces to an identity by (2.57). Hence
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the result holds up to an antiholomorphic function. Moreover, we have by
induction and (2.57)

Py
Py (2) E/(Zb)d? mod 1.
0

z —

Using Lemma 2.23 we obtain

Mdz = /d_Z/waa(Z) + (Ppw(a) = Pua(D))P1(2) mod I}y
0 Z2—a 0Z

Applying 0z to the right-hand side we obtain from (2.57) and the second
identity in (2.54)

/ Pou(2) 4, Ppya + (60,1 Py, (1) = 051 P (1)) L1 (2) + f(2)  mod Iy,
0

z—a
for some analytic function f. The constant in front of L;(Z) reduces to (2.59)
by (2.56). Altogether the first equation in (2.58) holds up to a constant. The
constant is zero by the regularized limit z — 0.

Because P)(z) = PY(z) the second equation in (2.58) follows from com-
plex conjugating the first and swapping a and b. O

Note that for any word w

(2.60) Cw = —C-

We obtain a refinement of (2.57), see Example 2.9,

(2.61) Py(2) = P2(2) + cwL1(Z) mod L) —2-
2.8. A residue theorem

From the series expansions of the multiple polylogarithms L,, at zero we
know that every f € A (see (1.13)) has a Laurent series of the form

Ky 00 0
(2.62) f(z) = Z Z Z c%mm(lnz?)kzmén,

k=0 m=My n=Ny
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for Ky € N, My, Ny € Z and constants c% mn € C. The Laurent series con-
verges for 0 < |z| < 1. Likewise at z = 1 we have the expansion

K, 00 [ee]
(263) f(2)=> > Y chmalnz-DE-1) E-1)"E-1"
k=0 m=M; n=N;
for K1 € N, My, N, € Z, Cl%:,m,n €C,and 0 < |z — 1] < 1. At z = oo we have
Koo My  No
(2.64) FEH=>> > &anzz)zmzn,
k=0 m=—0o0 n=—00

for Koo € N, Moo, Noo € Z, 75, ,, € C, and |z| > 1.

Definition 2.28. With the above expansions of f € A the holomorphic
and the antiholomorphic residues at z = a, a € {0, 1,00}, are

(2.65) resq(f) = €0,—1,00 Tes,(f) = €0.0,-1-

For certain f € A the two-dimensional integral over the complex plane
f(c f(2)d?z is well-defined. In this case, the integral is given by residues.

Theorem 2.29. Assume f € A such that the integral [, f(z)d*z exists. Let
F € A be an antiholomorphic primitive of f, 0zF (z) = f(z). Then

(2.66) % /C F(2)d22 = reso(F) — reso(F) — ress (F).

Proof. Firstly, notice that

2, _ &) g p e — qF )
f(z)d*z = 5 dzNdz=d 5 dz

is exact on P'C\{0, 1, 0c}. Let S (r) be the & oriented sphere around a with

radius r and 0 < € < 1. Let M, be the oriented manifold with boundaries

S (e71), Sy (€), and Sy (e). Then f(2)d%z is exact on M, and by Stokes’

theorem we have

/Me f(2)d*z = % (/sg(e—l) +/SO(6) +/Sl(€)> F(2)dz.
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Using (2.62) to (2.64), and the parametrization S, (¢) = {a + €e'?, ¢ € [0,27)}
we obtain

/ F(z)dz = —27riz Chm,m+1(21n €)F ¥ 2 for a € {0,1},
Sa ()

k,m
/ F(2)dz = 27i Z Cromm1(—21In €)fe2m=2,
Sy (e™) km
Because fc 2)d?z exists we have for a = 0,1 that Chmmyr = 01 m < —1
orifm=—1 and k # 0. Likewise ¢p%,, .1 = 0 if m > —Torifm=—1and
k #£ 0. In the limit € — 0 only the m = —1, k = 0 terms survive. These terms
give (2.66). O

Remark 2.30. Theorem 2.29 remains valid if we interchange the role of z
and Z.

Moreover, notice that F = [ fdz always exists in A. It is unique up
to a function G € O. After a partial fraction decomposition G is a linear
combination of z™ for m € Z and (z — 1)" for a negative integer n. If m,n #
—1 these terms do not contribute to the residues in (2.66). If m,n = —1 the
contributions of these terms cancel in (2.66). This confirms that (2.66) is
independent of the choice of F'.

Note that the right-hand side of (2.66) is well-defined even if the integral
on the left-hand side diverges.

Example 2.31. The two dimensional integral of powers of the Bloch—
Wigner dilogarithm fc 2)"d?z exist for n > 3. Because of the reflection
symmetry D(1 —z) = ( ) the integrals of odd powers of D vanish. A
computer calculation yields with gsss from Example 2.15

(2. 67
/ D)z = 20(8) — 2 (5) + (),
/ D(z)ﬁdQZ 2025C( 5) + 1214454(7) B 5(;%454(9) B 331004264834(11)
81

+135¢(3)%¢(5) + 5 9335

Note that by Theorem 2.33 and (2.35) the right-hand side is in H*V(Z)/4".
The right-hand side of (2.66) gives for n = 2 the value ((3)/2.
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2.9. Stability of SVMPs with coefficients in H5V(Z)

SVMPs over the ring H%Y(Z) (see Definition 2.13) are stable under canonical
operations.

Definition 2.32. Let

(2.68) P = (Py, w € X" )psv(z)
be the shuffle ring of SVMPs over H*V(Z) and
(2.69) A = 0gO0g P,

where Og = Q[z, 1, 15] and Og = Q[z, £, 2], its bi-differential Q algebra.

)2 z—1 1 ZzrZz—-1

Let H(Z)n, P and A5 denote the subspaces of total weight n.

We do not assume that the decomposition into total weight subspaces is
direct. In the following theorem and the subsequent corollary, we prove that
the natural number theoretic framework of SVMPs are the ring H*V(Z) and
the Q algebra H*¥ of single-valued MZVs.

Theorem 2.33. The Z module P;Y is stable under the S3 group of Mobius
transformations permuting {0,1,00}. The integrals [ dz/z, [ dz/(z—1),
[, dz/z, [ dz/(Z—1) for a € {0,1,00} map Py into P3Y,,. Moreover,

SV SV SV SV
9. 3 sV __ n—1 n—1 . sV _ n—1 n—1 ]
(2.70) 0:Pn z +z—1’ 0=Pn zZ +§—1
We have
(2.71) P (0) =Py (1) =Py (00) = HY(Z)y, C H(Z)p,

where H(Z),, is the Z module of integer MZVs of weight n. The series of X}
18 single-valued,

(2.72) X} € Lieyv(z)((X)),

with total weight —1. Finally, for f €
{0, 1,2},

with «, B,7,0 €

2970 (2—1)7(z—1)°

(2.73) resq(f) € HY(Z), T654(f) € HY(Z), for a € {0,1,00}
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and
l Py 22, sV
(2.74) 7r/Cf( )2z € H(Z).

Proof. The following statements are obvious: the stability of P under the
transformation z — %5 by (2.45) and the stability of P% under [, dz/z,
Jodz/(z —1). P¥(0) = H*(Z) is trivial, P*Y(1) = H*(Z) because H>(Z)
is a ring and P*V(o0) = H*V(Z) because P (c0) = P%(1) by (2.45). From
Lemma 2.6 we have x| € Liey(z)((X)) hence H*(Z) = P*(1) C H(Z). The
integrals [, dz/(z —a), [_dz/(z—a), a € {0,1}, differ from [ dz/(z —a)
by a value in P*Y(1), or P5V(o0), respectively. The first equation in (2.70) is
also clear.

The group 83 is generated by 2 — -%5 and 2z — 1 — 2. The stability
of P?V under z — 1 — z is proved by induction over the total weight. The
statement is trivial for weight zero. Assume P € P,. Then from

Pl = [ (924 LB e Py

z z—1

we have Qo, Q1 € P.Y; and

P(1-z) = /0 (QO(l —2) Ql(lz_ Z>> dz +P(1) € Py

z—1

by induction.

Next, we show by induction that x| € Liey(z)((X)). Consider P, for a
word w of length n. We start with the observation from (2.41) that for any
word u, lim,_,0Z0zP,,(2) = 04,0Pu(0) € H*V(Z). By stability of P under
z — 1 — z we obtain

lim (Z — 1)0zPy (2) = lim Z0: P, (1 — 2) € H™(Z).

Z—)l

On the other hand from (2.41), we obtain

lin(z ~ )0=Pu(=) = 3 (4l P(1) = (fw) + 32 (41w ().

e ful<lwl

This proves (2.72) by induction over the length of w. It was already proved
in Corollary 2.12 that x; is of total weight —1 (the weight of x;).

From (2.41) we obtain the second equation in (2.70). It follows by induc-

tion and (2.47) that the antiholomorphic integrals [ dz/z, [, dz/(Z — 1) map

from P}V into PyY, ;.
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The stability of the residue (2.73) follows for a = 0 by expanding all
multiple polylogarithms L, (z) and L./ (Z) in f up to the linear term: in
(2.23) only the terms with ky = 0 contribute to the residue so that this
expansion does not generate denominators. At a = 1 the result follows from
a =0 by res; f(z) = —resof(1 — 2z). At a = oo the result follows from a = 0
by ressof(2) = respz=2f(1/z). The result for Tes follows by complex conju-
gation.

For (2.74) we first prove using integration by parts and induction over the
weight that [, dz(z — a)™ for m € {-2, 1,0} and a € {0, 1} maps from P*"
into P%(Z — a)™*! 4 P*. Then we use the residue Theorem 2.29. Repeat-
ing the argument that lead to (2.73) the residues in z of [ f(z)dz are in
HY(Z). O

Corollary 2.34. The Q algebra A% is stable under Ss transformations,
0., 0z, [, dz, [ dz for a € {0,1,00}. We have

(2.75) AN (0) = A3V (1) = AV (00) = H, C Hy,
whenever the reqularized limits exist. For f € A and a € {0,1, 00},

1
(2.76) resof € H*Y, Tes,f € HY, = / f(2)d?z € H.
C

Proof. The corollary follows from the previous theorem by taking the tensor
product over Z with Q and using integration by parts. To show (2.75) and
(2.76) one also needs (2.23). O

3. Graphical functions
3.1. Definition and convergence

In this subsection, we define graphical functions in
d=2\+2>2

dimensions. Although we are mainly interested in four dimensions, graph-
ical functions exist in any dimensions greater than or equal to two. Two
dimensions, however, are a special case that is postponed to Section 5.
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The position space propagator of an edge e with vertices x and y is

11
Q2 e =yl

The power in the denominator originates from Fourier transforming a ||p|| =2
momentum space propagator. We first define uncompleted graphical func-
tions and turn to completion in Section 3.4.

Definition 3.1. The graphical function fé/\)(z) is defined by applying posi-
tion space Feynman rules to the graph GG with distinguished vertices 0, 1, z,
namely

A dxv
o1 W= 1[5 g
v¢{0,1,z}

where the first product is over all vertices # 0,1, z and the second product
is over all edges of G. The vertex 0 corresponds to the origin in R? whereas
1 stands for any unit vector e; € R% and z # 0, e;.

By rotational symmetry fg\)(z) only depends on ||z|| and the angle
between z and e;. If we identify e; with 1 € C we can consider féf\) (2) as a

function on the complex plane with the symmetry fg‘) (z) = fg‘) (Z) under
comgolex conjugation. In the following, we always do so unless the argument
of f&” is explicitly specified as a d-dimensional vector. We can calculate the
graphical functions of a complex argument z by the integral (3.1) with the
identification R% = C x R%~2,

9 ~ (1 {d—l} - z2+ZzZ z— {d 2}
(32) er~ (L0 ), 2 2,2Z.

In four dimensions (A = 1) we often drop the superscript (1).

A wvariant of graphical functions can be defined in momentum space
where massive propagators are algebraic. We do not pursue this here.

For graphical functions in N = 4 supersymmetric Yang—Mills theory see
[25, 26].
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Example 3.2. Our main examples are sequential functions (see figure 4).
The initial case is

(3.3) 16 = ===

Sequentially appending edges gives for any word w that begins with 2 the
graphical functions fﬁ? (z) as a d|w|-dimensional integral. In particular,

()\)(Z) 1 / d?z
? 72 Jra ||2]PA]Jz = 1P|z — 2[]>A
which can be calculated with Gegenbauer techniques (see Example 3.10).

Next, we give a criterion when the integral (3.1) is well defined. We need
the following definition:

Definition 3.3. For a subgraph g of a graph G a vertex v is called internal
if v #£ 0,1, z and all edges adjacent to v in GG are in g. All other vertices are
called external. An edge in ¢ is internal if both vertices are internal otherwise
it is external.

Note that the notion “internal” crucially depends on the subgraph g. A
vertex that is internal in g may fail to be internal in a smaller subgraph.
Only if g = G all vertices # 0, 1, z are internal.

Lemma 3.4. The integral in Definition 3.1 is convergent if and only if it
1s “infrared” and “ultraviolet” finite. The integral f((;)‘) 1s infrared finite if
and only if for every subgraph g of G with Vg”1t internal vertices and Ny > 0
edges,

(3.4) (d—2)Ng > dV,"™.

The integral fg‘) is ultraviolet finite if and only if for every subgraph g of G
with Ng > 0 and with at most one of its V, vertices in {0,1,z} one has

(3.5) (d—2)N, < d(V, —1).

Proof. In [47] it is shown that a Feynman integral is finite if the integral is
finite by power-counting for every subgraph g of G. If N, = 0 convergence is
trivial. Otherwise there are two sources for divergences: infrared, when the
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integral does not converge for large values of the integration variables; ultra-
violet, when the coincidence of integration variables generates a singularity
that cannot be integrated over.

Infrared convergence by power-counting is equivalent to the condition
that the sum of degrees of the denominators is larger than the dimen-
sion of the integral. This gives (3.4). If g is minimal with an ultraviolet
divergence by power-counting then the integral diverges when all vertices
in g coincide in the integral of f,. Because {0,1,z} are distinct g has at
most one labeled vertex. The locus where all integration variables coincide
is d(V,; — 1)-dimensional. Power-counting gives (3.5). O

Remark 3.5. A ¢* graph in d = 4 dimensions is never infrared divergent:
counting half-edges gives 2N}"* 4+ N¢** = 4V** which implies (3.4) because
the number N, ;Xt of external edges is positive.

Lemma 3.6. The graphical function fqgjl)(z) of a non-empty word w is well-
defined in d = 4 dimensions if and only if w begins with 2.

Proof. If w does not begin with 2 then the leftmost vertex has valence two
leading to an infrared divergence.

Let w begin with 2. To show infrared finiteness we observe that every
internal vertex has at least valence three. Counting half-edges gives

int int t
3Vt < gNint . Next,

Moreover, every internal vertex is connected to at least one external vertex
Oorl,
int ext
Vg < Ng ™.

The inequality is strict because either V;nt = 0 or the leftmost vertex in Vgint
has at least two external edges. Together we obtain

int int xt
AVt < 2N 4 2N = 2N,

Ultraviolet convergence is trivial if neither 0 nor 1 is in g because in this
case 0 < Ny <V, — 1. Otherwise we can assume without restriction that
0 € g. Let v be the valence of 0 in g. Every other vertex in g has at most
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valence three, hence by counting half-edges
v+3(Vy—1) > 2N,.

The inequality is strict because the leftmost vertex in g has valence at most
two. Moreover, v < V; — 1 because every edge in g which is connected to 0
is adjacent to a vertex in g\{0}. Together we obtain

4V, — 1) > 2N, -

Corollary 3.7. The sequential period P(G,) of a non-empty word w is
well defined in four dimensions if and only if w begins and ends in 2.

Proof. We add a disconnected vertex z to G, to make P, a constant graph-
ical function. With Lemma 3.4 the proof is analogous to the proof of Corol-
lary 3.6. U

3.2. General properties

Graphical functions have the following general properties

Lemma 3.8. Let G be a graph with three distinguished vertices 0,1, z which
has a graphical function fg‘) :C\{0,1} — R. Then

(G1)

(3.6) 162 = 16"
(G2) fg‘) is a single-valued.
(G3) fg‘) is real analytic in C\{0,1}.

Proof. (G1) follows from using coordinates (3.2) in (3.1) and the substitution
zy = (), 22,22, . 2d) — (x), —22, 23, ... 2d).

To prove (G2) we first consider the graphical function as a function of
z € RY We add a small € > 0 to the quadrics in the denominator of the
propagators so that the singular locus of the integrand does not intersect
the chain of integration. If we vary the argument z along a closed smooth
path in R? the graphical function changes smoothly until it is back to its
initial value. Transition to C by the decomposition R% 2 C @ R%~2 yields

(G2) in the limit € — 0.
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(G3) can be proved in general using parametric representations of graph-
ical functions [28]. We will only need the result for sequential functions which
we state separately in the following corollary. For self-containedness we prove
the corollary in the next subsection. O

Corollary 3.9. Let w be a word in 0,1,2 that begins with 2. Then f,g,l)(z)
is real analytic in C\{0,1}.

3.3. Gegenbauer polynomials

Most conveniently Gegenbauer polynomials are defined by the following gen-
erating series [1, 22, 46]:

(37) (1- 2xt + 12)A Z e

With (3.7) we can expand a position space propagator in Gegenbauer poly-
nomials. Let Z(z,y) be the angle between z and y and let o = min{x,1/z}.
Then

(3.8) ! ZC’ (cos Z(z,y)) <M>n+)\
' ERIRE HCL’HAH?JHA ol /)«

The main property of Gegenbauer polynomials is their orthogonality with
respect to d-dimensional angular integrations. If we denote the integral over
the d — 1-dimensional unit-sphere in d dimensions by [ di, normalized by
[ 1di =1, we have

A6
min (A)
n—i—)\Cn (cos £(z, 2)).

(3.9) /dy CWN(cos £(z,y))CM (cos L(y, z)) =
Example 3.10. The sequential function fQ(/\) exists for all A > 1/2. It can
be calculated with Gegenbauer techniques. Series expansion of ||z — e1|| =2
and ||z — z||72} with (3.9) plus an elementary radial integration gives for
|z|]| <1 (one may specify azmn = brmn = 0000mmn, P=0, ¢ =2\, aa= X
in (A.2))

() = 1 Infl¢| n
(3.10) 220 cosézel))<(n+l)2 1) Al
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and for A > 1

(3.11)
HZ’ ‘n72)\+2

N el
f2 (Z)_F(A)O\_l)nzocr(l)‘)(cosé(z,el))< n4+1 _n+2)\_1>'

The result for ||z|| > 1 can be deduced from ||z|| < 1 by the inversion formula

(3.12) VP = 121172 2),

which follows from the defining integral by a coordinate transformation x —

/||z]]-

Now we set z € C and e; = 1. In the case A = 1, we use the identity

n+1 _ sn+1
C(cos £(z,1))|2|" = Z—Z—,

Z—Z

which we obtain from the generating series. This relates f2(1) to the diloga-
rithm,

313) V() = %(Lb(z) ~ Lis(2) + [In(1 = 2) — In(1 — 2)] In2|).

The combination of logarithms and dilogarithms in the bracket is 2i times
the Bloch-Wigner dilogarithm (2.35). We obtain

_ 41D(z)

z—Z

(3.14) £V(2)

By the symmetry of D under inversion z — 1/z the above equation holds also
for |z| > 1. We will re-derive Equation (3.14) using SVMPs in Example 3.27.

In the case A > 1, we obtain from the generating series of the Gegenbauer
polynomials by elementary integration for z € C and |z| < 1,

o0

M (cos Z(z,1))|z|" ! totdt
(3.15) 2 n+a N /0 (1—t2) (1 - t2)>

n=0

This allows us to express fg(/\) as an integral,

o - 1 1 (ZE)I—)\ _ t2/\—2
(3.16) fa (2) = T(A)(A—1) /0 (1— tz))‘(l _ tz))\dt'
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For integer A the above integral has vanishing residues in ¢. For A = 2 we

obtain

£ = 22z — 11)(z —1y

The simplicity of the result stems from the fact that in d = 6 dimensions
the three-valent vertex is “unique” in the sense of [31]. For A = 3 we have

22—z —Z+2

2(3)(z) T 2E(z-D)E- )2

For general even dimensions greater than four we obtain a rational expression
in z and Z with singularities in z = 0 and z = 1. It is trivially single-valued
and extends unchanged to |z| > 1.

For odd dimensions one also obtains a logarithm-free result. It is a ratio-
nal expression in z,Z, |z, |z — 1| with singularities at z =0 and 1 which
extends unchanged to |z| > 1. The expression is explicitly single-valued.

To prove Corollary 3.9 we need to define certain classes of functions

Definition 3.11. A function f : R — Ris in C,(,,Aq) for p, q € 7Z if there exist
constants A, B, «, 8 > 0, L € N such that f admits the following expansions:

gan)
F =35 S a2 PO (cos L(zea)), for |12 < 1
=0 m=0n=0
and
(3.18)

L oo m
FE =Y b |[2|) (|2l 9CM (cos £(z,e1))  for [|2]| > 1,

/=0 m=0n=0

with

(3.19)  |apmn| < Am® and  |bppn| < BmP  for all £ < L,m,n < m.
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Example 3.12. By (3.8) we have ||z — e1||7* € Cé>‘2)/\. Replacing ¢t by —t
in the generating series (3.7) gives

1 n n
B e s SO o L el

hence also ||z + e1|| 72} € C(()AZ))\'

Proposition 3.13. If f in C;(,,Aq) for some p,q € Z then f is real analytic in

RA ({0} U {]]2]| = 1}).

Proof. Assume without restriction that e; = (1,0,...,0). The Gegenbauer
polynomials C’,(f‘)(cos /(z,e1)) are polynomials in z!/||z|| and hence real
analytic for z # 0. The norm ||z|| is real analytic for z # 0 and so is In||z||.
Due to (3.19) the sum in (3.17) is absolutely convergent for ||z|| < 1 and
the sum in (3.18) is absolutely convergent for ||z|| > 1. Hence the analytic
expansions commute with the sums and the claim follows. O

Proposition 3.14. The function classes Cz(x)\q) have the following properties:

(C1)
A M)
61(71 )Q1 CI()z )lh - Cp1 +p2,91+4q2
(C2) If f e Cz(:;]) and o € R with
(3.21) 2—qg<2a0<2X+2—p

then
(3.22) / dx /() ec®
R

. /2 Hﬂl’||2a||l‘ _ Z||2/\ max{0,p+2a—2},min{2\,¢g+2a—2}"

The proof of the proposition is technical, so we moved it to Appendix A.
Proposition 3.15. Let w be a word that begins with 2. Then fl(ul) € CS}Q).

Proof. We use Example 3.12 and (3.22) to prove the result for fo. The gen-
eral case follows by straight forward induction over the length of w using
Proposition 3.14. O

Proposition 3.16. Let w be a word that begins with 2 and let g(y) =
S (v +e1)/2). Then g € .
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Proof. We substitute x, — (z, + e1)/2 in the integral (3.1) defining f,ﬁ}).
The integration measure changes by a constant. After extracting all fac-
tors 1/2 from the propagators we find that a propagator from z, to 0 is
changed to a propagator from xz, to —e; and the propagator from z,, (say)
to z is changed to a propagator from x, to 2z — e;. After a substitution
z = (y +e1)/2 the latter becomes a propagator from z, to y. All other
propagators remain intact. Because the propagator from x; to —ep is in
C(()}Q) (Example 3.12) we can use induction over the length of the word w to
prove the result with Proposition 3.14. O

Proof of Corollary 3.9. By Propositions 3.13 and 3.15 fqg,l)(z) is real analytic
for all z except 0 and the unit sphere. By Propositions 3.13 and 3.16 fl(ul) (gy +
e1)/2) is real analytic for all y except 0 and the unit sphere in y. Hence fﬂ} (2)
is real analytic except for z = e;/2 and the vectors z with [[2z —e|| =1
which is a sphere of radius 1/2 around e;/2. The intersection of the two
loci of possible non-analycities are 0 and ej. Transition to C proves the
lemma. O

3.4. Completion

There exists a 24-fold symmetry relating graphical functions of different
graphs. For the formulation of this symmetry we need to complete the graph
in a way similar to the completion of periods.

Completion adds a vertex with label co. We weight the edges of the graph
by real exponents. Positive integer weights may be graphically represented
by multiple lines. For the weight —1 which lifts the edge-quadric into the
numerator we choose to draw a wavy line. Integer negative weights may be
represented by multiple wavy lines (see figure 5). We will see that integer
weights suffice to complete graphs in three and four dimensions.

Definition 3.17. A graph I' is completed in d = 2\ + 2 dimensions if it

has the labels 0,1, z,00 and weights such that every unlabeled (internal)
vertex has weighted valence

(3.23) it =

and every labeled (external) vertex has valence

(3.24) v = 0.
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The graphical function of I' is

d
) B d®x, 1
(3.25) T () = H /Rd rd/2 IL. Qé\ue'

v¢{0,1,z,00}
If I"'\{oo} equals G up to an edge from 0 to 1 of any weight then flg)‘) = g\)
(Definition 3.1). In this case, I' is the completion of G.

Because I', in contrast to G, has a vertex oo we may use the same symbol
f.()‘) for completed and for uncompleted graphical functions.
Every graph has a unique completion.

Lemma 3.18. Let G be a graph with three labeled vertices 0,1, z. Then G
has a unique completion. In dimensions three and four the completed graph
has integer edge-weights if G has integer edge-weights.

Proof. Let v be an internal vertex of G with weighted edge-valence n,. Com-
pletion uniquely connects v to oo by an edge of weight vyo, = 2d/(d — 2) —
ny. Clearly, in three or four dimensions vy € Z if n, € Z. Let the vertex z
in G have weighted edge-valence n,. Then completion connects z to co by
an edge of weight —n, which is integer if n, is. With these edges we par-
tially complete G to 'y in which the vertices 0, 1, co have weighted valence
ng, N1, Neo, respectively. In I' we have to add to I'g a weighted triangle 0, 1, co
with the edge-weights

—ng — N1 + Neo —ng + N1 — Neo ng — N1 — Neo

9 y MYooo = 9 y  Vieo = 5

Vo1 =

This completes the graph. The completion is unique: changing the edge-
weights v;; by ov;; (4,5 € {0, 1, 00}) without changing the valence v; = 0 of
the external vertices leads to the non-degenerate linear system

Ovol + 010 = 0, 0191 + 1o = 0, 0Vgoo + 01100 = 0.

Finally, counting weighted half-edges in 'y gives

2d

i 2V1i§t +ng + N1 + N = 2NT,

where Vlif)‘t is the number of internal vertices in I'g and Nt is the weighted

sum of edges in I['y. In three and four dimensions, we have deVIiIO“ € Z and
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hence ng + n1 + ne € 2Z if Ny, € Z. This gives the integrality of vo1, Yo
and Nieo- O

Lemma 3.19. A completed graph I' has a convergent graphical function
(3.25) if and only if every subgraph v of I' with at most one of its V,, > 2
vertices in {0,1, z,00} has

(3.26) (d—=2)N, <d(V, —1),
where N, is the weighted edge sum of .

Proof. For subgraphs v with oo ¢ 7 condition (3.26) is equivalent to (3.5)
for subgraphs in G =I'\{oco}. It remains to show that for v with oo € ~
condition (3.26) is equivalent to (3.4).

Let g be a subgraph of G. To check infrared finiteness we can assume
without restriction that every external edge of g connects to exactly one
internal vertex. From g we construct a graph ~ by connecting all internal
vertices to co such that their weighted valence becomes % and then cutting
all other external edges. Now, v is a subgraph of I' which connects to co but
not to 0,1, z. Conversely deleting oo in v and adding external edges such
that all vertices become internal leads back to g. We have to show that
(3.26) for v is equivalent to (3.4) for g.

We have N, = N + N, ;“t is the weighted sum of edges that connect

with oo plus the number of internal edges in g. Moreover, by completion we

have
2d
Noo: -7 5 T,
> (75 )

where the sum is over internal vertices v of ¢ and n, is the valence of v in
g. Because

V,—1=VrM=>"1

v int

we have that (3.26) is equivalent to
dV* < (d—2) [(Z nv> - N;“t] :
vint

Counting half-edges in g gives > ;. 1y = 2N, ;nt + N, 5’“ implying (3.4).
Reversing the arguments shows that (3.4) implies (3.26). O
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0 9]
VAN
o 0 1 o~ 0 )
1 1/z 0 1-2  1/z 1

Figure 9: The S84 symmetry of completed graphs is generated by three
transformations.

Let &4 be the symmetric group that permutes the four external vertices
0,1, z,00. It is generated by the transpositions (0,00), (0,1), (1,z). The
symmetric group Sy has a factor group S3 which in our context is realized as
Moébius transformations on P*C\{0, 1, 00}. The homomorphism ¢ : Sy — S3
is determined by the images of the generating transpositions. Concretely we
have

(321) o[0.00) =21, (O] =212 (1) =z 1.

z

Let 0 € 84 be a permutation of the external labels and m = ¢(0) oo be o
followed by a transformation of the label z (see figure 9) indicating that the
transformed graphical function has the argument ¢(o).

Theorem 3.20. Completed graphical functions are invariant under

™=¢(0)o0,
(3.28) Y (2) = 130 (6(0)(2)).

If we consider the graphical function as a function on R% we have to
interpret 1 — z as e; — 2 for the unit vector e; € R% and 1/z as z/||z||2.

Proof. Because the Sy is generated by the three transpositions in (3.27) it is
sufficient to prove the identities depicted in figure 9. Let x;, i = 5,6,...,V
denote the internal vertices of I and for v € {0,1, z,00} let N,, be the sum
of the weights of all the edges from internal vertices to v. The weighted
sum of internal edges is N'™. Counting weights of half-edges that connect
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to internal vertices we obtain

d )
(3.29) X(V —4) = 2N™ 4 Nyo + N1 + Nyz + Nyoo.

For v,w € {0,1, z,00} let 14, be the weight of the edge connecting v with
w. In particular, v, = 0 if there exists no edge from v to w. Indexed by the
labels 0,1, z, 00 the integral in (3.25) is of the shape (working in d dimen-
sions)

1 1
3.30 =
( ) f(),l,z,oo HZHQ)\VOZ 5 — 61H2>\u12

0
fO,l,z,cxw

where fO has no edges that connect external vertices.

A variable transformation z; — 1 — x; leaves the integration measure
invariant. Propagators between internal vertices remain intact, whereas a
propagator from an internal vertex x; to an external vertex v is mapped to
a propagator from x; to 1 — v. Hence f&LZ,OO = f{),O,l—zpo and by swapping
the labels 0 and 1 in (3.30) we have

1 1 .
”61 — ZHQ)‘VlZ — ZHQ)‘VOZ f1,071_z’oo = fO,l,Z,oo.

fl,O,l—z,oo —

This proves the middle identity in figure 9.

A variable transformation x — x/||z||* changes the integration measure
by dez; — ||x;||72?d%x; (as can be seen e.g. in angular coordinates). Propa-
gators between internal vertices change according to

s = 12 = (sl = 2kl | cos £, 25) + Iyl )
R
= T ?
s =

where v;; is the weight of the edge between z; and x;. Similarly internal
edges that connect to 0,1, z transform as

a2 = a2,

l|z; —e ||—2)\u,-1 s ( ||le ) o
7 1 ] )

200
[les — 2| 725 < [|zl] > ’
(2 .
1211 Mlzi = 2/1121 1]
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If z; is connected to oo by a weight v then by completeness (3.23)

Avio +vin + vz + Zl/ij) =d— M-
J

Altogether, after the transformation wx; still connects to x; by the weight
vij, to z/||z]|* by weight v;, but the connection to 0 has now the weight
Viso- Moreover, we pick up a total factor of ||z||72*V+= yielding f(()),l,zoo =
||2||~2ANe- &7171 /»0- Including fully external edges and swapping labels 0
and oo we obtain from (3.30)

2\v1
f _ Hz||2>\yzoc HZH o 0
00,1,1/2,0 Hel — ZH 00,1,1/2,0

’2/\(1/200 +vo:+viz+Na:

= ||2| ) fo,1,2,00-

Due to (3.24) this equals fo 1 -0 establishing the left-hand side of figure 9.
A variable transformation z +— ||z||x changes the integration measure

by d?z; — ||z||%d%z;. Propagators between internal vertices and propagators
that connect internal vertices to 0,1, z change according to
i = gl 722 o (el s = )72,
[lazsl |72 = (2] - [l ) 722,
[lzs = ex]| 72 = (|[2]] - s — e/ |21 ()72,
[lzs = 21|72 = (2] - |l = 2/1]=1] 1) 2=

Now, we rotate the coordinate system in such a way that z points
into the direction of e; and e; points into the direction of z changing
z/||z|| to e; and vice versa. This swaps labels 1 and z together with a
substitution z + z/||z||? plus an overall power of ||z|], f&l’zm = fg,l/Z,Loo
|| 2] |V =) =2AN" 4 Nao+Nar +N22) - By (3.29) and by swapping labels 1 and z
in (3.30) we obtain

Av
[EIRNE
Jo/z1,00 = [ [Arer ( f(()),l/z,l,oo

llex — 2]

|)‘(21/01+2y0z+2ylz+Nm0+le+Nmz_Nmoo)fo 1
y1,2,00

= |l=]
Zero valence at external vertices (3.24) gives rise to the four equations

Vo1 + Yoz + Vooo + Neo = 0, vo1 + V12 + View + N1 =0,
Voz + Viz + Veco + Niz = 0, Vooo + Vieo + Vaoo + Nzoo = 0,
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0 [e9)
VAN
co__ 0 1 z oz 1
z 1 0 o SIS 0

Figure 10: Double transpositions leave the label z unchanged.

Adding the first three and subtracting the fourth equation proves the
right-hand side of figure 9.

This establishes the theorem in d dimensions. Transition to C maps
2/||2||? to 1/z. Because of (3.6) we may replace 1/Z by 1/z. O

Theorem 3.20 is equivalent to (1.18). In particular, the homomorphism
¢ has the kernel Z/27Z x Z/27 of double transpositions which is a normal
subgroup in Sy. These transformations leave the argument z unchanged (see
figure 10). They give rise to the twist identity on periods [38]: In a completed
primitive graph I" with three labeled vertices {0, 1,00} we specify a fourth
vertex z and write the period as integral over z as in Section 3.7. If deleting
0,1, z, 00 splits I' into two connected components then the integrand splits
into two factors, each of which is given by a graphical function in z. These
graphical functions can be completed and thereafter one of the two may be
transformed by a double transposition. If the result can be interpreted again
as the period of a primitive graph I' then I' has the same period as I'. The
smallest example of such an identity is P74 = Pr 7 at seven loops with the
notation from [38].

Example 3.21. The graphical function of the complete graph with four
vertices was calculated in Example 3.10: after adding the external edges we
obtain from (3.14) in four dimensions

(3:31) Tri(2) = 2Z(z—-1)zZ—-1)(z—2)°

The graphical function of the complete graph with five vertices reduces
after the removal of the external edges 0z, 1z, 01 to three triangles that are
glued together at a common edge. Its completion is depicted in the middle
of figure 11. After swapping z with co and 0 with 1 we obtain a graphical
function that upon removal of the edges 0z and 1z reduces to a constant. By
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1 0 z 1 0 z 0 1
o0 z
Figure 11: The graphical function of K5 can be calculated by completion.

adding four edges 01 this constant becomes the period of the uncompleted
K4 which is 6¢(3). Altogether we have

6¢(3)

Dy —
(3.32) le5 () = 2z - D)z - DI

If a completed graph I' has n external edges we can consider I' as the
Feynman graph of an n-point function in ¢* theory where certain external
points are identified. The full amplitude of this Feynman graph is encapsu-
lated in the graphical function fr [43].

3.5. Appending an edge

In this subsection, GG is a graph with three marked vertices 0,1, z and Gy
results from G by appending an edge to the vertex z thus creating a new
vertex z (see figure 6). We will assume that G and G; are uncompleted
graphs of well-defined graphical functions.

Proposition 3.22. The following identity holds

(3.33) ((z—lz)A 8,05 (= —2)* + ?9_;)12)> F(2) = —F(lA) §(2),

where T(X) = [;° 2! exp(—z)dx is the gamma function.
Proof. In this proof, we use d-dimensional angular coordinates

(3.34) a' = rcos(¢h),
z? = rsin(pl) cos(¢?),

231 = rsin(¢l)--- Sin(gbdiz) COS(¢d71))

z? = rsin(¢l) - - - sin(¢?2) sin(¢? 1),
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where r ranges from 0 to oo, ¢!,...,¢% 2 range from 0 to 7, and ¢¢~! ranges
from 0 to 27r. The metric tensor g,,, is diagonal with entries 1, r2, (rsin ¢1)?,
(rsing!sin¢?)?, ..., (rsing'---sin ?=2)2. The volume measure is

VG = 1" (sing!)? 2 (sin )0 - sin ¢ 2

and the Laplacian is

1
AD = —%"0,/39" 0,
\/§ Z u\/ﬁg

1 _ 1 . _
= de&md 18r+ 2 a¢1(81n¢1)d 28¢1

eI
! - 2\d—3
(TSin¢1)2(Sin¢2)d733¢2(5m¢) 02
+...

1

* (rsing! - --sin ¢d—3)2 gin ¢d—2
1

+ (rsing! - - sin ¢pd—2

8¢d—2 sin ¢d_26¢d—2

2
)26@‘1'

Z||—2)\

The propagator ||y — is proportional to the Green’s function of the

d-dimensional Laplacian:

47T)\+1

WF(Z)’

1
3.35 A@/F —dly = —
5:5) W=

whenever the integral on the left-hand side exists. To prove the above equa-
tion we use angular coordinates to Fourier transform the function ||z||~*: A
standard calculation using the definition and the properties of the gamma
function yields for 0 < a < d in the limit € \, 0

el (2)I((d - 0)/2)
/ e @7 = <p> T(af2)

Specifying « = 2\ yields (3.35) by the convolution property of the Fourier
transform.
If we specify F(y) to the graphical function f(G)‘) (y) in (3.35) we obtain

(3.36) AD ) = —pos 5.
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If we choose the unit vector ey in fé’\l) to point into the 1-direction then

fg;)(z) becomes in angular coordinates a function of r and ¢' only. The
above formula for the d-dimensional Laplacian hence simplifies when applied
on fé’\l) to

@ N gty = (24 221y L 2hcosol ) oy
A fGl(r,¢)—<8T+ O+ O+ o0 ) £ V(r, ¢h).

Comparison with

1

(rsingh)?
220 +1 2 cos ¢! AA—1)
— 2 |
ot — 0+ a‘bl r2sing! * ' (rsing!)?

A®) (rsin qbl))‘

yields the proposition upon transition to C where A® =49.9: and
2 — % = 2irsin ¢’ ([l

Example 3.23. Let G be I plotted in figure 4 (Example 3.2). Then fg;) =

f2()‘) is the sequential function of the word 2. Its graphical function was
calculated in Example 3.10. For the case A = 1 differentiation of (3.13) yields

_zif <z(zl— 1) z(zl— 1)) ’

which gives (3.3). If A > 1 we write the differential operator in (3.33) as

(z —72)? z2—Z

1 _
B 0,05 (z —2)* +

and check by direct computation (compare Equations (3.3) and (3.16))

1—t2)\1—tz)> —o [2z(tz — 1)(tz — )M

(8 o _ Aaz - 8;) (22)17A — 1222 (A—1)t
Yz (

z2—z

Example 3.24. The graphical function of G in figure 12 leads in four
dimensions to the differential equation (see (3.14))

_ 1 o) 4iD(z) 2
z—?az(%(z Z)st_(z—z

The above differential equation cannot be solved in terms of SVMPs. For
the solution one needs primitives of iterated integrals with differential form
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0 z

Figure 12: The graphical function of Gg cannot be expressed in terms of

SVMPs.

dz/(z — Z). This more general case is first discussed by F. Chavez and C.
Dubhr in [20]. A comprehensive treatment of this setup will be given in [42]
with an implementation in [41].

Up to six vertices félﬁ) is the only graphical function which is not express-
ible in terms of SVMPs. At seven vertices there exist graphical functions
which involve multiple elliptic polylogarithms.

Definition 3.25. Let

z
(3.37) B:{;(_)z:feA,f(z):—f(z)}.
Likewise B?, BV are defined with f € P, f € PV in (3.37), respectively. Let
B; be the piece of B® with (total) weight n.

The differential operator in Equation (3.33) generates denominators of
the form z — z. If fg;) is an element of the bi-differential algebra A divided
by (z — Z)* then fg‘) is an element in A divided by (z — 2)**2. It is unclear
if solving (3.33) for fg;) stays in the space of SVMPs even if one allows
for denominators with arbitrary powers of (z — Z) and square roots in odd
dimensions. Due to completion none of these complications shows up in f2()‘).

The structure of (3.33) is substantially different in four dimensions. If
A = 1 the second term drops out and the differential operator maps graphical
function in B into B. By integration in A the differential operator can be
inverted in B:

Theorem 3.26. Assume the graphical function fgl)(z) s real analytic in
C\{0,1} and for z € R4, fc(;ll)(z), fc(;ll)(el —z) € Cﬁ) Moreover, let

(3.38) P = 9a0(2)
G a,beZ{O,l} (z—a)Z-0)(z—72)
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for gap € P be a SVMP. Then

(339) D) = 2(21_2) (/Odz/odz+/odz/0dz>(z—z)fg>(z>.

The function fC(Jll) is the unique solution of (3.33) in B°.

Proof. We denote the right-hand side of (3.39) by F. Clearly F solves the
differential Equation (3.33). The kernel of 9,05 is a sum of a function h with
Ozh =0 and a function h with 9,h = 0. By (3.6) the graphical functions

f(l) and fG1 are symmetric under exchanging z and Z. This symmetry is

preserved in F' which restricts fgl)(z) to
[Q) = F(z) + =———=.

Because by assumption fgl) and by construction F' are real analytic in
C\{0,1} we may take the derivative of z — Z times the above equation with
respect to z yielding

W(z) = 8.(z - 2)(f§)(z) — F(2)).

Now, R/ is a single-valued real analytic function in C\{0,1} with 9zh’ = 0.
Hence A’ is holomorphic in C\{0,1}. We study its behavior at the singular-
ities 0, 1, oco.

Because féll)(z) E C]Ell) we have fél)( ) = o(]z|717¢) for
(meaning lim,_,o fG (2)|z|**€ = 0). Therefore 9,(z — z)fé
From (3.38) we have (2 —z)F(z) € P. Hence (z—z)F( o(|z|7¢) and
0.(z —2)F(z) = o(|z|7'7¢). We conclude h/(z) = o(|z|7'¢) and therefore
22h/(2) = o(|z|'€). In particular, z?h’(z) is continuous at z =0 and by
Riemann’s removable singularity theorem it is holomorphic at 0. It vanishes
at 0 and therefore zh/(z) is holomorphic at 0.

The analogous argument for z = 1 glves that (z — 1)h/(2) is holomor—
phic at 1. For z — oo we have from fé (2) €C§1 that 0, (z—z)fG (2) =
o(|z|~1+¢). Because (z — 2)F(2) € P we also have 0, (z — 2)F(z) = o(|z| 146y,
Altogether this restricts ' to be of the form ¢/z+d/(z — 1), for some
constants ¢, d € C. Therefore

o(|27179).

z—0and e >0
)=

(-
)

f(1)< ) (Z) _ C(ln('z) - hl(?)) + d(lngz - 1) — 111(5 — 1))

zZ—z
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The single-valuedness of the left-hand side gives ¢ =d =0 and hence
9 =F.

Moreover, fgl) € BY is clear from (3.38) and (3.39). Assume f € B solves
(3.33). The kernel of 9,05 in P is the constant function. Hence f(Gll)(Z) =

f(2) + ¢/(z — Z). By the symmetry of fgl) and f under z < Z we have ¢ = 0.
O

Example 3.27. Straightforward integration of (3.3) gives

LX1><0 (2) + LX() (g)Lxl (Z) + LX0X1 (Z) — Exlxo (Z) — LXU (Z)Lxl (E) _ LX(J><1 (2)

NOE

which by the shuffle identity Ly, Lx, = Lx,x, + Lx,x, 18 equivalent to (3.13).
The fact that the right-hand side of (3.13) is in B° and that it reduces
by (3.33) to fl(l)7 see Example 3.23, gives an alternative proof of (3.13).

Our main application of Theorem 3.26 is on sequential functions. The
following corollary is used in the proof of the zig-zag conjecture [19].

Corollary 3.28. Let w be a word in 0,1,2 that begins with 2. The sequential
function in four dimensions fqﬁ}) is the unique solution in B° of the tower of
differential equations

1 (1) .
= Juw (Z) ifa=0,1,
(3.40) —%aza%(z ) fW () = (2 —a)(z—a)
o ! f&l)(z) ifa=2

2Z2(z—1)(z—-1)
with initial condition (3.14).

Proof. The proof is induction over the length of the word w. Corollary 3.9
states that fqgjl) is real analytic in C>{>O, 1}. From Proposition 3.15 we have
fzgjl) € Cé}Q) C Cﬁ) The function fw1 (e —z) is by Theorem 3.20 the
sequential function of the word with Os and 1s flipped. Hence fful)(el —z) €
Cﬂ). We add edges from 0 to z or from 1 to z and append an edge to z to
g07 from f, to fue. Equation (3.38) is immediate for a = 0,1 and follows by
a partial fraction decomposition in z and Zz for a = 2. The statement of the
corollary for wa follows from the last statement in Theorem 3.26. O

The solution of the tower of differential equations can be given explicitly.
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Corollary 3.29. Let w be a word in 0,1,2 that begins with 2. The sequential
function in four dimensions fl(vl) is recursively given by Equation (3.14) and

(3.41) F(z) = —2(21_2) (/Odz/oder/odz/Odz)
= £(1)

=2fw'z)
y (z—a)(z—a) fa=01,
=) £(1)
C=2f(2)

2zZ(z —1)(z - 1)

Moreover, f&l) € Bgm.

Proof. Equation (3.41) is clear from Theorem 3.26 and Corollary 3.28. To
prove that the coefficients of fl(ul) are in H*Y(Z) we proceed by induction. The
case w = 2is (3.42). If qujl) € B°*¥ then in the case a = 0 we have [ dz [,dz =
Jo dZ [, dz from Remark 2.24. The factor of two in the denominator cancels
and by Theorem 2.33 we obtain fgo) € B%v,

If a =1 we use (2.51) to trade [,dz [, dz for [ dz [,dZ canceling the
factor of two in the denominator. Using the notation

we pick up the term (Q1(1)+ Q1(1))Pi(z) (note that fqgjl)(z) = qujl)(é))
Because fl(ul) € B%Y we obtain from theorem 2.33 that Q1 € P5¥ and Q1(1) €

H?V(Z). In particular, @Q1(1) = Q1(1). Altogether

(1) _ 1 B Ql(z)dz
Mo = (- [2EE L qmne
and fzgjll) € B%V follows from Theorem 2.33.
If a = 2 we analogously obtain

M, 1 - Q2(2)dz .

fuo (2) = 7 —% ( (1) + Q2(1)Py(2) ) with
_ [

Qa(2) = /0 Zz-1)

By Theorem 2.33 Q)2 € P%V and fqg)lz) € B%V. The total weight 2|w| also fol-
lows by induction from Theorem 2.33. O
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Corollary 3.30. In four dimensions P(G.) € H* (Z)g)y|—1 for every word
w which begins and ends in 2.

Proof. For w =v2 we have P(Gy2) = fﬁ)(O) with fv(})(z) =g(z)/(z —2)
and g € P37 . Substituting (e.g.) z = ie and taking the limit ¢ — 0 using
L'Hopital gives P(Gy2) = 5(9.9(0) — 8z9(0)). Because g(z) = —g(z) we have
P(Gy2) = 0,9(0) = Q1(0) — Q1(1) € H*¥(Z) with @ from the proof of
Corollary 3.29 for w = v. O

Example 3.31. The graphical function of the word 20{"~1} can be calcu-
lated explicitly. The initial case f2(1) is given by (3.13) and (2.34),

(3.42) sy = Pon®) = Pro(z)

z—z

Integration of Pyayjges with [jdz/z or [,dZ/Z is given by appending or
prepending a 0 (see (2.47) and Lemma 2.6). Therefore Corollary 3.29 gives
(see also [25])

n— Py n-1}(2) — Pyin-1 n} (2
(3.43) fééznfl}(z) =(-1) 1 Poty 10t i_zo{ 110t ( )

Using (2.38) the above expression can be converted into polylogarithms,

(3.44) ) (2) = i(_l)n—k <’f + ”) (In 22)" " Linx(2) — Lin k(%)

Otn=1} n (n —k)! z2—Z

This result was first derived by N. Ussyukina and A. Davydychev in 1993
[45].

If we specify the variable z to 1 we obtain the period of the wheel with
n + 1 spokes. Substituting z = 1 + ie in (3.43) yields in the limit € \, 0

(3.45)
_1\n—1
PWS,, ) = D"

5 (0= = 02)(Pormnnorn- (2) = Porn-ni1p0m (2))

z=1

The polylogarithms are differentiated by deconcatenating the index. Because
the second polylogarithm is the complex conjugate of the first we obtain

(3.46) P(WSpi1) = (=1)" " (Potm 1ot (1) = Pooe-ny 1o (1)).
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In particular, the period of the wheel is in H®¥(Z). With (2.38) we obtain

2
(3.47) P(WSp11) = < :) ¢(2n — 1).
This result was first derived by D. Broadhurst in 1985 [5].

3.6. A convolution product

In four dimensions, we can generalize the formula for appending an edge by
a convolution product. Because we will not use this in the following we state
it as a remark which can be proved using Gegenbauer polynomials.

Remark 3.32. With the notation of figure 13 we have

(3.48) (2. —20)(= - 2)/(2) = /(C @y (y = 1) 15 )

zzZ\ . * ~Noy 1,
- (y y) fe. (y> ()™

where Ng, and Vg;t are the number of edges and internal vertices of G,
respectively. The residue Theorem 2.29 generalizes to hyperlogarithms
defined in [10]. This implies that there exists a convolution product

m: A A — A,

roam [ 1n(3) 2.

which guarantees that the right-hand side of (3.48) is in A if f((;ll) and f&)
are in 3. The above equation unambiguously determines fg) because the
kernel of the differential operator on the left-hand side are functions of |z|
and fél) has the symmetry (3.6).

Example 3.33. The graphical function of figure 14 can be solved using
the convolution product. The result is an expression in terms of SVMPs of
weight six divided by (z — Z)(1 — 2%) [41].
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0 0 0
1 z 1 z
z 1
G G Gy
Figure 13: The convolution product: the graphical function of G can

be calculated as two-dimensional convolution of the graphical functions
G1 and Gs.

1 z

Figure 14: The above six vertex graph has a graphical function which is
expressible in terms of SVMPs.

3.7. Constructing periods

As explained in the introduction, we can construct graphical functions from
the empty function fy =1 by adding external edges, appending edges to
external vertices and by permuting external vertices (see figure 7). This
construction is programmed as graphical function(edgeset) in [40]. The
algorithm is quick and works for graphs up to 15 internal vertices.

Sequential functions at z = 0 or 1 give sequential periods. In the cases
of the zigzags and the type A and B families (see Section 4.2) one can relate
these periods by the Fourier identity to ¢* theory. Their calculation is quick
and up to loop order 12 the MZVs in the result are of weights less than
or equal to 21 which allows us to reduce them to a standard basis by the
datamine [3] or by zeta_procedures [39].

There exists another method to calculate periods which is more general
and directly applicable to ¢* graphs. This method works for periods which
are “constructible” by the following procedure (see figure 15):

(1) Start from a completed ¢* graph I' and label any four vertices by
0,1, z, 00.

(2) Reduce I'\{0, 1, z, 00} into its connected components Gy, i = 1,..., N.
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1 1
0 0
e
(0.¢] (.9]
z z
I Iy Iy

Figure 15: Constructing periods. The completed primitive graph I' is split
into two completed graphs I'y and I's.

(3) Every component G; is turned into a completed graph I'; by completing
the graph one obtains by attaching 0, 1, z, oo to GG; in the way they were
attached in T'.

Then

1
s — 1”2>\Vlz ’

d’z 71 .0
(349) P(F) = / 1d/2 Hfl_‘l (Z)HZH?/\VOZ
i=1

where v,, = 1 is the weight of the edge from v =0,1 to z in I.
The integral is converted into an integral over the complex plane by the
following lemma (see proposition 4 in [36]):

Lemma 3.34. Let f:RY — R be a function that depends after the intro-
duction of angular coordinates (3.34) on v and ¢' only. Let fc(z) with
z = rexp(i¢') be its complex counterpart. Then

1
7Td/2 R4

1
()2/al((d - 1)/2)

Proof. Use angular coordinates to write the integral on the left-hand side of
(3.50) as

(3.50) f(z)d%z =

[ fe@)z -2y
C

ﬁf((dz— 1)/2) /07r /000(7“ sin 1) 2 f(re'? rdrdg!.

With 2 [T d¢' = 77 d¢" the result follows. O

If the graphical functions flgl) are constructible in four dimensions then

g) € B. If N <2 then the integrand in (3.49) is in A and the two-
dimensional integral can be evaluated by the residue Theorem 2.29.
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Example 3.35. The example pictured in figure 15 gives a construction of
the Z4y = WS, period. With (3.14) and the residue Theorem 2.29 we have
(compare (3.47))

(3.51) P(WS,) = —/ ;16178 5= 20¢(5).

Remark 3.36. It can be proved by analyzing Equation (3.38) in all possible
situations that constructible graphical functions are in B%". Because for the
proof one also needs (G3) in Lemma 3.8 which is beyond the scope of this
paper we refer the reader to [43].

As a consequence one can also prove that primitive constructible n loop
periods are in H*(Z)2,—3. In [11] it was shown that uncompleted Feyn-
man graphs with “vertex-width” < 3 give MZV periods. The completion
of a Feynman graph with vertex-width < 3 has vertex-width < 4. Because
graphs with vertex-width < 4 are constructible we obtain the stronger result
that completed Feynman graphs with vertex width < 4 have periods of max-
imum weight in H®V(Z). It is easy to show that those graphs are always
“Ks-descendants” defined in [38].

Note that beginning at six loops there exist periods in ¢* theory which
are MZVs but not in H*V(Z). Integration of Ps 3 or Fs 4 in [38] using graphical
functions inevitably leads to the problem of finding single-valued primitives
of iterated integrals with differential forms dz/(z —Z) or dz/(z —Z) (see
Example 3.24). The periods Ps 3 and Ps 4 can be calculated with [41].

A Maple algorithm that uses theorems 2.29 and 3.26 to calculate con-
structible periods is period(edgeset) in [40]. The algorithm works (by mem-
ory and time limitations) for graphs with up to eleven loops. In particular,
the zigzags and the type A and B periods are constructible. Up to five loops
all irreducible primitive periods are zigzags. At six loops two out of four
periods are constructible, at seven loops three out of nine, at eight loops six
out of at most 31 periods. All these periods are zigzag or type A or B. At
nine loops there exist at most 134 different primitive periods ten of which
are constructible. In the labeling of [37] they are Py = Zy, Pyo = A5 =
Bsgo, Po3 = Ay, Poa= By, Pog = Po19 = A3z, Por, Pog = Pyg = B33,
Py 17 = Py ag, Po1g = Py 22 = Py 26, Po20 = Po21 = Py 24. At ten loops 54 out
of 1182 irreducible primitive graphs are constructible, at 11 loops 154 out
of 8687.

The period command in a recent implementation of “generalized single-
valued hyperlogarithms” [41, 42] is able to calculate constructible and many
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more periods up to eleven loops. The main result of these calculations is the
“coaction conjecture” for ¢* periods [35].

4. Sequential functions and ¢* periods

In this section, we study sequential functions in four dimensions. We drop
the superscript (1) throughout this section.

4.1. Reduction modulo products

In Corollary 3.29, we showed that we can construct sequential functions
starting from the Bloch—Wigner dilogarithm by successively integrating in
A. In general these integrals generate multiple polylogarithms multiplied by
MZVs. To obtain closed expressions for sequential functions we calculate
modulo the ideal I, generated by MZVs of weights between two and n
(Definition 2.26).

Vertices in sequential graphs that connect to 0 and 1 are encoded by
the letter 2. They lead to differential forms dz/z(z — 1) =dz/(z — 1) — dz/z
and dz/z(zZ — 1) = dz/(Z — 1) — dz/Z. Accordingly the Definition 2.7 of P?
is extended to words with the letter 2.

Definition 4.1. For a word w in 0,1,2 let P be given by (2.32) if w has
no 2s and inductively by

(4.1) Pihy(2) = Py, (2) = Py ()

u2v

for any words u,v in 0,1,2. Similarly, we extend the definition of (,, in (2.8)

by
(4.2) Cu2o = Gulv — Guov
and the definition of ¢, in (2.59) by
(4.3) Cu2v = Culv — Culu-
With this definition we have in addition to (2.54)

EACON
2(z—1)’

Py ()

(4.4) 0:Ppo(2) = E-1)

0z Py, (2) =

Equations (2.55) and (2.56) remain valid for words that include the letter 2.
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Proposition 4.2. Let w be a word in 0,1,2. Then

(4.5)
fane) = (1ol Poo1u(?) = Plhioy(2) = caonul(1(2) = 1(2))

— mod I2\w\'
z2—Z
Proof. The proof is by induction over |w|. The statement reduces to (3.42)
for the empty word. Let w = wa for a € {0,1,2}. Because ¢, is of weight
|w| — 1 we have by induction from (2.57)
Pr01u(2) — Paiou(2
foule) = (- Brnle) = Poronl®) g g,

zZ—z

We use Corollary 3.29 and obtain by Lemma 2.27 and (2.57) for a € {0,1}

foua(2) = — : Uo = (=)™ (Pagoru(2) — Pagiou())

2(z —2) z—a

+ / az (*D‘u'(PﬁOlua(Z) - PﬁlOua(z)) mod 12|w|'
0

ZzZ—a

Again with Lemma 2.27 we have for fo,.(z) modulo Iy,

(=1t [ 0

1 _
Paﬁ()lua(z) - Pc?ﬁlOua(Z) - §(Ca601ua - caﬁlOua)(Ll (Z) — L (Z))

Zz—Z

and by (2.60) Equation (4.5) follows.
If a = 2, then a partial fraction decomposition in z and Z leads to (4.5)
by an analogous calculation. O

Theorem 4.3. Let w be a word in 0,1,2. Then

(4.6) P(Gaw2) = 2(=1)"(Czo1w0 — Carowo) mod H2g.

Proof. To derive the period from the sequential function, we use the word
2w0, set z =1+ ie and use L'Hopital on € — 0. Because O¢[Li(1 + ie) —
Lyi(1 — ie)] = 0 we obtain by (2.54) modulo I5|,|42

(=Dt 0 0 0
T(P()@Olw(l) — Pio1w0(1) = Poziow(1) + Paiowo(1))-

With the extension of (2.55) and (2.56) to words with 2s we obtain (4.6)
modulo  Ipj,42. Because P(Gayz2) is homogeneous of weight 2|w|+ 3

(Corollary 3.30) calculating modulo Iy),,|42 is equivalent to calculating mod
H2,. O

P(Ggwg) =
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Note that from words w that end in 0 or 2 singular MZVs arise in (4.6). In
a full calculation, these singularities are canceled by terms in Ipj,42. The
singular words have to be treated as regularized values by (un-)shuffling
to the left with (o = 0 [24]. As an example the regularized limit of In(z) at
z = 0 is zero which leads to 0 = (p. Shuffling with (; gives 0 = (o1 + (10 which
provides the regularized limit of the singular word 01: {y; = —C10 = ((2).

Example 4.4. For the empty word w = () we have

P(G22) = 2(Co10 — C100)  mod H2,,.

Because ’H2>0 is trivial at weight three the above equivalence is an identity.
From 0 = (010 = Co10 + 2¢100 and (100 = —¢(3) we obtain

P(Ga2) = 6¢(3).

Upon adding an edge 01 from 0 to 1, G2 becomes the complete graph with
four vertices which is the wheel with three spokes and the uncompleted
zig-zag graph with three loops (compare (3.47) for n = 3).

For w =1 we get modulo H2>0

P(G212) = —2(Cro110 — C11010) = 2(¢(2,1,2) —((1,2,2))
= 20¢(5) — 10¢(2)¢(3)-

Because P(Ga12) € H®V(Z)5 by Corollary 3.30 we obtain from Example 2.15
P(Ga12) = 20¢(5).

By adding an edge 01 the graph Ga12 becomes the wheel with four spokes
which is the uncompleted zig-zag graph with four loops (n =4 in (3.47)).

4.2. ¢* periods
Three families of ¢* periods are related to sequential periods.

Lemma 4.5. The sequential graph G, can be made the planar dual of an
uncompleted primitive ¢* graph by (possibly) adding an edge from 0 to 1 in
exactly one of the three cases

(1) w=2010...2 orw =2101..,2,
SN—— SN——

n—3 n—3
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(2) w=2...1012010...2 orw=2_...0102101...2,
—— >~ —— Y=

m n m n
(3) w=2...1012101...2 orw=2_...0102010...2,
= ==
m n m n

where dotted sequences are alternating in 0 and 1. In the first case, the ¢*
graph is the zig-zag graph Z,,. In the second and the third case, the ¢* graphs
are Ay, and By, ,,, respectively.

Proof. A sequence of n 0s or 1s in w implies that the graph G,, has a face
with n + 3 edges. The dual of an uncompleted ¢* graph with V' > 4 vertices
has four triangles and V' — 4 squares. Therefore n < 1.

An internal 2 in w gives rise to two triangles. An external 2 gives rise
to one triangle. Because by Corollary 3.7 the word w begins and ends in
2 we know that w has at most one internal 2. If we add an edge 01 in
the case of no internal 2 the above three cases give rise to three families
of uncompleted ¢* graphs. Because in all three cases the sequential period
exists the corresponding ¢* graphs are primitive. O

Figure 8 shows type A and B graphs after completion. We have proved in
Corollary 3.30 that the A, B and zig-zag periods are in H*V(Z). For the
zigzags we obtain the following proposition:

Proposition 4.6. Modulo products the zig-zag periods for n > 4 loops are
given by

(4.7)
2¢(21(n=3)/2} '3 of(n=3)/2}) _ 2((2{(n—5)/2}73’2{(n—1)/2})’ n odd,
P(Z0) =4 o0 @t-02) 3 9(0-2/21) _ 9f(21-2/2) 3 9(=0/2Y) 1 eyen,

Proof. For odd n we use the first word w in (1) of Lemma 4.5. Because by
(1'11) Ca01wo = _C(Q{(n_5)/2}’ 3, 2{(n—1)/2}) and (z10w0 = _C(2{(n—3)/2}’ 3,
21(n=3)/2}) the result follows. For even n we use the second word w in (1) of
Lemma 4.5. We use (2.10) to reverse the order and simultaneously swap 0
and 1 in w01lw0 and w10w0. This gives an overall minus sign. O

Corollary 4.7. The zig-zag Conjecture 1.1 holds modulo products.

Proof. From [49] (see also [34]) we have an explicit formula for MZVs of 2s
with a single 3 in terms of single zetas. Modulo products the result simplifies
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to
c 3,200 Zo—y [( 2 Y —a—22y( 2 V] c@r+)
2a + 2 2b+1 ’
where = a + b+ 1. With Proposition 4.6 the theorem follows. (]

Corollary 4.8. The zig-zag Conjecture 1.1 holds for n < 13 loops.

Proof. For n < 12 loops the zig-zag period is of weight < 21. A direct calcu-
lation of the zig-zag period with polylog procedures can be reduced to a
single zeta using zeta_procedures. For a weight 23 MZV this is not possible.
However, for n = 13 we can show with zeta_procedures that the reduced
coaction A’z = Az — 1 ® x — x ® 1 of P(Z3) vanishes. Due to Corollary 4.7
this is equivalent to proving the zig-zag conjecture for n = 13. [l

In [19] the zig-zag conjecture is proved in general.

Corollary 4.9. The periods of the A and B type ¢* graphs are in
HY (Z)2m+2n+5 and given modulo H2, by MZVs of a string of 2s with 1s or
3s in three slots.

Proof. Theorem 4.3 together with Lemma 4.5. O
To illustrate the above corollary we consider the following example.

Example 4.10. The type A period for even arguments is given modulo
products by

(4.8) P(Agpon) = ¢(21n71 3,21m) 3 9lm=1} 3 oin})
+¢(2 oln=1} 3 olm} 3 oim—1} 172{n+1})
C(Q{n_l}’ 3,2im=1} 3 olm} 3 Q{n})
— ¢t 3,2t 3,00 1 ol
+¢(2in 1, 2{m} 3 olm=1} 3 oin})
+ ¢(2{n 1, 2tmd 3 ofm=1} 1§ ofnti}y
— (217} 1,2Um=1} 3 9lm} 3 oln})

(

—¢ oin} 1, 2{m—1}, 3, olm} 1, 2{n+1})_

Summary. Completed primitive ¢* graphs with vertex connectivity three
reduce to products of lower loop order graphs [38]. For irreducible ¢* periods
we have:
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The zig-zag periods exhaust the irreducible primitive ¢* periods up to 5
loops. Their periods are proved to all orders in [19] as (1.3). The type A and
B periods start to differ from the zigzags at six loops where Ay = By =
Ps 2 in [38]. The type A and B periods can be calculated and reduced to
a standard MZV basis up to 12 loops with polylog_procedures. The first
constructible periods which are neither zigzags nor type A or B arise at nine
loops. Constructible periods can be calculated and reduced to a standard
basis up to eleven loops with the period command in [40] or in [41]. They
are in H*(Z).

MZV periods (possibly not in H*Y(Z)) which are not constructible arise
first at six loops as Ps 3 and Ps4 in [38]. The period FPs 3 was calculated by
E. Panzer in 2012 by implementing the theory of F. Brown on integration in
parametric space [11]. The period Ps 4 was calculated in [36]. At seven loops
exact numerical methods showed that (at least) eight of the nine periods
are MZVs. Their results are in [6, 7, 38]. The missing seven loop period
features extensions of MZVs by sixth roots of unity [35]. At eight loops
exact numerical methods showed that at least 16 out of at most 31 periods
are MZVs [38]. For recent results see [35].

Conjectured non-MZV type periods start at eight loops where four peri-
ods with higher-dimensional geometries were found. They are Pg 37, Fx3g,
Py 39, Pg 41 in [38]. All geometries are modular [18]. The case Pg 37 was stud-
ied in detail in [17]. Its period is by standard transcendentality conjectures
not of MZV type [16].

Periods with geometries which are not modular (of small level) first
appear at nine loops. Their periods are conjectured to be not of MZV-type.
At very high loop order most periods are of this type.

5. Graphical functions in two dimensions

In this section, we cursorily discuss graphical functions in two dimensions.
In d > 2 dimensions we used massless bosonic propagators ||z — y||>~¢ to
define graphical functions. In two dimensions, the massless boson propagator
In ||z — y|| has an infrared singularity for x,y — oco. We resort to using a
fermion-type propagator in two dimensions.

5.1. Definition

In two dimensions, we can define graphical functions of several complex
variables.
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1 1
] . Y T —

*—> 0
T Yy

Y

Figure 16: In two dimensions, we define holomorphic e—e and antiholomor-
phic e=e propagators.

Definition 5.1. Let G be a graph with vertices V' labeled by complex
variables and two types of directed edges which we call holomorphic and
antiholomorphic (see figure 16). Assign to a holomorphic edge e from z to
y the propagator P. = (z —y)~! and to an antiholomorphic edge f from
z to y the propagator Py = (T — ) '. The graphical function associated
with G is defined as the integral over the internal vertices V™ C V of the
product of propagators. It depends on the external vertices {z1,...,22} =
yext — V\Vint,

(5.1) féo)(zl,...,zQ) - < H /(Cd:U> HPe

Uevint

if the integral on the right-hand side exists.

By power counting the existence of the two-dimensional graphical func-
tion is equivalent to the existence of the four-dimensional analog (see
Lemma 3.4). Note that in the above definition the integration domain inter-
sects the singular locus of the integrand. The integral may still exist because
in the generic case the singularity is of sufficiently low order.

The case of one internal vertex can be treated explicitly.

Proposition 5.2. Let a,b € C and R > max{|al, |b|}, then

1 1
(5.2) / d’z = —a,

T Jigl<r T — @

1 11 R?
/ ——d’r=In——— + O(R™?).
T Jja|l<R T =0T —b la — bl

Proof. In the second identity, we may assume without restriction that |a| <
|b]. We fix a small € >0 and calculate the integral over the domain D =
{lz| < la] — e} U{|a] + € < |z| < |b] — €} U{|b] +€ < |z| < R}. We split the
integral according to the three components of D,

1 1 1
/ — 7d21'211+12—|—13.
T Jpxr—axT—0>
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Taylor expansion and integrating first over the angle in angular coordinates
gives for the three integrals in the limit ¢ — 0

a R?
11_—1n<1—b>, I, =0, 15_1nﬁ—1n(1—3)+0(}2 2,

The first identity is proved by the same method. ]

Lemma 5.3. Leta;,b; €C fori=1,....m,j=1,...,n,n>2, m+n>
3, such that none of the a; is collinear with any of the b; then

1 1
I[Z (@ — a:) H;L:1(f —b)

> (11

i=1 \k# zaz—ak H] (T j)

A’z

(5.3)

3=
o~

n

N ) [ Iy ——
, k#bj—bk o [[Z(x—a)

Jj=1

where the integral contours are straight lines which originate from 0.

Proof. Let m > 1. If we replace the integral to infinity by an integral to R
a partial fraction decomposition yields for the right-hand side

m n

1 1 R? ai
S0 ) 2 (s ) (S o)

i=1 \k#i ' j=1 \k#j

The term Ina;/R drops out because > 7, (Hk# o > = limzoo T[],
— = 0. The term In R?/|a; — bj|* gives the left- hand side due to Proposi-

T— b
tion 5.2.

The case m = 0 reduces by a partial fraction decomposition to the com-
plex conjugate of the first identity in (5.2). O

Example 5.4. For the graphs G1 and G+ in figure 17, one obtains

b1(by — b3) + ba(bs — by) + bs(by — bo)

(5.4) fe, = — = — ;
(b1 — b2)(ba — b3)(b3 — by)
_ 2 al—bl
fG275—E al—bg :
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by by by by o as
by a1
bs by by b3 by bs
G1 e Gs e

Figure 17: Examples of graphical functions with one or two internal
vertices.

Note that unlike the higher-dimensional case it is possible to iterate
the above lemma to evaluate more complicated graphical functions in two
dimensions. This strategy leads to iterated integrals. In the case of two
internal vertices one obtains:

Example 5.5. For the graphs G3 and G4 in figure 17, one obtains

(5.5)
by — by by — by bs — by by — by
byl — byl b3l — byl
; 21nb1—b3 2 | T b — by | By — by
G3: 3 T N/77 T )
(b1 — b2)(bg — bs)
2 —b —b
ot (0(35) o (2)
b1 — by ar — a2 az — a1
—i—hrlal_b1 lnaQ_b2 —|—hr1a1_b1 111(12_62 ,
al — ag CLQ—bl al—bg as — aq

where D is the Bloch-Wigner dilogarithm (2.35).

In general, the minimum of the number of holomorphic and the number
of antiholomorphic edges is an upper bound for the weight of the graphical
function.

5.2. Completion

Now we return to the situation where we have three labeled vertices 0, 1,
z. To formulate a completion theorem we introduce a vertex co. We define
propagators that emanate from oo as 1 and propagators that lead into oo
as —1 (see figure 18).

We define the weight of holomorphic propagators as (1,0) and the weight
of antiholomorphic propagators as (0,1).
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Figure 18: Depending on the orientation propagators to oo are +£1.

Definition 5.6. A graph I' is completed in d = 2 dimensions if it has the
labels 0, 1, z oo and weights such that every unlabeled (internal) vertex has
weighted valence (2,2) and every labeled (external) vertex has valence (0,0).
The graphical function of I' is

22,
(5.6) O (2) = I1 /Cdﬁ 117

v¢{0,1,z,00}

where the products are over vertices and edges, respectively. The integer v,
is the total weight of the edge e.

Analogously to Lemma 3.18 we may uniquely complete a graph by
adding (possibly inverse) propagators +1 (i.e., adding propagators from 1
to 0 and propagators emanating from co). The graphical function does not
change under completion.

For the &4 group of permutation of external vertices we define a transfor-
mation m = ¢(0) o o as a permutation o € Sy followed by a transformation
of the label z as in figure 9. In complete analogy to Theorem 3.20 we have
the following theorem:

Theorem 5.7. The completed graphical function is invariant under ™=

d(0) o0,
(5.7) D (2) = £y (@(0)(2))-

Proof. The proof is analogous to the proof of Theorem 3.20 with extra signs
due to the orientation of the edges.

The transformation x — 1 — x followed by swapping the labels 0 and
1 and changing the label z to 1 — z contributes with a sign (—1)M—Ne
where Nt counts all propagators (holomorphic and antiholomorphic, normal
and inverse) and N, counts all propagators connected to co. Because oo
has weight (0,0) the number of normal propagators equals the number of
inverse propagators at co. Hence N, is even. Because every internal vertex
has weight (2,2) counting holomorphic minus inverse holomorphic half-edges
gives that the number of internal vertices is the difference of the number of
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holomorpic and the number of inverse holomorphic edges,
V" = N_ — N..

The same identity holds for antiholomorphic edges so that the total number
of edges Nr is even.

The transformation x — 1/z followed by swapping the labels 0 and
oo and changing the label z to 1/z changes the sign of every propagator.
Because Nt is even the overall sign does not change.

The transformation x — zx followed by changing z to 1 and 1 to 1/z
does not change the signs of propagators. ([

Due to the formula 9,Z27! = 972! = 76®)(2) edges can be appended
to two-dimensional graphical functions in much the same way as in higher
dimensions. Moreover, one can construct two-dimensional graphical func-
tions from graphical functions in many variables by equating external labels.
This leads to the following conjecture.

Conjecture 5.8. For any graph I the two-dimensional graphical function
flgo) is in A% (see Definition 2.32).

5.3. Periods

Periods of two-dimensional graphical functions arise from completed prim-
itive graphs, which are (2,2)-regular internally 6-connected graphs I'. We
label the vertices of I by 0, 1, 00, v1, ..., vy_3 and obtain in analogy to (1.2)
that the period

d?z,
(5.8) P(I) = 11 }/C - 1:[196

v¢{0,1,00

is independent of the labeling. We may obtain the period of a graph I' by
introducing an extra label z and integrating the graphical function over z
with 71 fC d?z. A consequence of Theorem 2.33 and Conjecture 5.8 is the
following conjecture.

Conjecture 5.9. The period of any two-dimensional completed primitive
graph is in HY (see Definition 2.13).

We may ask if the periods of two-dimensional completed primitive graphs
are in the ring H*V(Z).
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5.4. Cell zeta values

A two-dimensional primitive completed graph I' is (2,2)-regular. Holomor-
phic (and antiholomorphic) propagators form a union of cycles in I'. If T’
has at least six vertices then I' typically has several disjoint cycles. If there
exists only a single Hamiltonian holomorphic (or antiholomorphic) cycle we
may assign to I' a cell zeta value by the following definition (see figure 19).
In [15] it is proved that zell zeta values are MZVs.

Definition 5.10. Let I' be a (2,2)-regular graph with a holomorphic
Hamiltonian cycle. Label the vertices of I' by 0,1,00,21,...,zy_3. If the
Hamiltonian cycle is split at oo it gives rise to an ordering ¥ of the labels by
iy, <o <my, <0<y, <o <w, <1<uwg,, <--- <z, <oo.Thesign
o of ¥ is (—1) where N is the number of times that an edge points from
the smaller value to the bigger value (we assume co > z; for all 7). An anti-
holomorphic edge e from z; to x; gives rise to the (real-valued) propagator
P, = (z; — xj)_l. An edge from oo to x; is 1 and an edge from z; to oo is
—1. The cell zeta value of the graph is

V-3
(5.9) P_(T) = U/E I 2] d=

e antihol i=1

where the first product is over all antiholomorphic edges e.
Interchanging the role of holomorphic and antiholomorphic edges we
define P_(I") if " has an antiholomorphic Hamiltonian cycle.

It is possible to show that the definition is independent of the chosen
labeling.

Example 5.11. In the situation of figure 19, we have

1 1 1
P (T'y)= (=)' 1 —1)dzidzy = (2
Oy =0 [ gy - Ddndes = (@)

1 1 1
P_(T) = —11/ +1
(1) ( ) 12<0,1<m1( )1—332352—331-%1—0

(=1)dzrdzs = —((2),
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ry

Figure 19: Assuming Conjectures 5.9 and 5.12 the completed primitive
graphs I'; and I'y have periods 0 and 4¢(3), respectively.

and

1 11
Shy (+1)
0<z1<T2<23<1 €Tl — 11— T T2 — 0

1
0— 3 (—1)d$1d$2d1‘3 = 2C(3),
1 1 1

P_(T'9) = (-1 1/ +1
( ) ( ) m3<0<x2<1<x1( )1—$3$3—5E2f€2—$1

1
pa— 0(—1)d931da:2dx3 = 2¢(3).

P_(T9)

X

X

Iterating Lemma 5.3 leads to the following conjecture.

Conjecture 5.12. Let I' be a two-dimensional completed primitive graph
with V' vertices. The maximum weight piece of the period Pé?.d)x(l“) 18 equiva-
lent modulo products to the sum of the holomorphic and the antiholomorphic
cell zeta values,

(5.10) PP (T) = P_() + P_(T) mod HZ,,

max

where the (anti-)holomorphic cell zeta wvalue is 0 if there exists no
(anti- )holomorphic Hamiltonian cycle.

Example 5.13. Because 'H2>0 is trivial up to weight three we obtain for
the two graphs in figure 19:

P(T1) =0, P(T2)=4¢(3).

The vanishing period of I'y is consistent with Conjecture 5.9 because there
exist no even weight generators in H®'. The period of I'y is in H?V(Z) (see
Example 2.15).
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Appendix A. Proof of Proposition 3.14
A.1. Identity (C1)

We need an estimate for the product of two Gegenbauer polynomials. We
have

k+1
V@M@ = S o),
m=|k—{|

where only those terms contribute to the sum where n = (k + ¢+ m)/2 is
an integer. Dougall’s linearization formula [1] (p. 39) gives

m (m + )m!2A)n (NN n—re(N)n—m
B 2N ) m N ngt (n — k) (n — 0! (n —m)!

where (2), =I'(z +n)/I'(x) is Pochhammer’s symbol. We only need that
linearization coefficients are non-negative because in this case we can
specialize the argument to x = 1 and get the estimate

A A
< W)
oo
From
" n
we obtain

< (k+22 = 1) He 420 = )P < 2A(k + )2
Now, assume there exist A, o, A’, o’ > 0, Ly, Ly € N such that f € C;(,;\,)ql has
the expansion

L1 o0 mq
P =20 >0 D atmun Mzl 2™ 77O (cos £(z, e1))

61:0 m1:O TL1:0
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for ||z|] <1 and g € C,Sz,)qz has the expansion

Z Z Z @l g (] 2]]) |22 772 O (cs (2, 1))

=0m2=0mn2=0
for ||z|| < 1 with
< A'm§’.

|af1,m1,n1’ < Amtlx and |a€2,m2,n2| =

Then fg has the expansion

(A.1)
L1+L2 o0 o0
= > Y0 a2l 2l PO (cos £(2, 1))
/=0 m=0n=0

with

mi m—m;

Emn E E E : E : aflymlﬂha'f l1,m—my,na nl,nz

=0m1=0n,;=0 no=

We have ni + ny < m and because f,ﬁlm is zero if n > ny + ng the sum in
n in (A.1) terminates at m. Hence (A.1) has the desired shape and we have
only to check that a” is sufficiently bounded. By the previous considerations
we obtain

mip Mm—m;

< Z in: Z Z AmS A (m — m1)* 2\ (ny 4 ng)]* 2

l
"
Zl 0my :0n1:O n2—0

aﬁ,m,n

Sl

mip Mm—mi

i Z Z AA/(Q)\)4)\—2ma+a'+4>\—2

0m1=0n:=0 n=0
( )4/\ 2ma+a +4)\+1‘

This proves the boundedness in the case [|z|| < 1. The case ||z|]| > 1 is
analogous.
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A.2. Identity (C2)

Assume there exist A, a, B, 3 > 0, L € N such that f € CI(;,Aq) has the expan-
sions

L oo m
) =3 5N g (2|l PO (cos £(z, e1))
m=0n=0

=0

for ||z]] < 1 and

L oo m
=3 b (n||z])[|2]| T IC) (cos £(2, €1))
£=0 m=0n=0

for ||z|| > 1 with
’ag’m7”| < Am®  and |b€,m,n| < Bmﬁ-

Then

g9(z) = W;/2 / f(z) dh

re ||z][20 |z — 222

can be calculated using expansion (3.8) and the orthogonality (3.9) of the
Gegenbauer polynomials. A straight forward but tedious calculation gives
for g(z) if 2 — ¢ < 2a < 2X\ 4 2 — p in the case ||z]| < 1:

(A.2)

L o m

ZZZ T n—{—)\ CW(cos £(z,e1))

/=0 m=0n=0

l
x [ae,mnz “H(In[[z|])* (|2 EmRr

k=0
> 1 N 1-— 6m—n,p+2a—2
(m4+n—p+2\—2a+2)k1 (m—n—p—2a+2)-k+1

(=1

m—n—p—2a+ 2)HH!

+ aé,m,n(l - 5m—n,p+2a—2) ( — Amn

(In || z|[)*+! 1
X Oy gt 1} "
menpt2a=2T T + e’m’n(m+n+q+2a—2)£+1 IINE
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where d,, ,, is the Konecker §. In the case ||z|| > 1, we obtain

L oo m
# (A) COS zZ,e
ZZ;mZ::OT; F()\)(n+)\)cn ( 4( ) 1))

l
[be mn Z(ln [[2]1)* ]| 72t

% 1- 5m—n,—q+2)\—2a+2 )

m+n+q+2a—2)f FL T (m—n+4 g — 2\ + 20 — 2)/—k+1

1
+<b€mn -
+

Om—n,—g+2\- 2a+2)(m—n—|—q—2)\—|—2a—2)”1

(In ]2+
bEmn(Sm n,—q+22A—2a+2 f—l—l
(71)€ —n—2\
+ aé,m,n(m+n_p+2)\_2a+2)@+l HZH °

Every term in the square brackets is in C () and

max{0,p+2a—2},min{2\,¢g+2a—2}

M)
hence g € Cmax{ﬂ,p—‘,—QOA 2} m1n{2/\ q+204 2}
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