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Second-quantized Mathieu moonshine

Daniel Persson, Roberto Volpato

We study the second-quantized version of the twisted twining gen-
era of generalized Mathieu moonshine, and prove that they give rise
to Siegel modular forms with infinite product representations. Most
of these forms are expected to have an interpretation as twisted
partition functions counting 1/4 BPS dyons in type II superstring
theory on K3× T 2 or in heterotic CHL-models. We show that all
these Siegel modular forms, independently of their possible physical
interpretation, satisfy an “S-duality” transformation and a “wall-
crossing formula”. The latter reproduces all the eta-products of an
older version of generalized Mathieu moonshine proposed by Mason
in the 1990s. Surprisingly, some of the Siegel modular forms we find
coincide with the multiplicative (Borcherds) lifts of Jacobi forms
in umbral moonshine.
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1. Introduction and summary

Mathieu moonshine [1–16] and its generalized version [17, 18] pertain to
the association of a class of weak Jacobi forms φg,h(τ, z), called twisted
twining genera, to each commuting pair of elements (g, h) in M24. It has
been verified that these functions satisfy all the requirements of Norton’s
generalized moonshine conjectures [19]; in particular, they decompose into
(projective) graded characters of the centralizer of g in M24. Many of these
Jacobi forms arise as supersymmetric indices in certain non-linear sigma
models with target space K3; in particular, φe,e is the K3 elliptic genus.
The obvious idea that M24 might be the symmetry group of some of these
non-linear sigma models has been ruled out quite quickly [8, 10, 11] and
the most recent works on the subject [20–22] seek for an explanation of
Mathieu moonshine in the framework of K3 compactifications of full-fledged
superstring theory rather than within conformal field theory (CFT).

In this paper, we adopt a similar viewpoint, and construct the second-
quantized1 version Ψg,h of the twisted twining genera. From a mathematical
perspective, the functions Ψg,h are obtained from the Jacobi forms φg,h via
a certain twisted equivariant version of Borcherds multiplicative lift. Physi-
cally, many of these functions can be interpreted as twisted supersymmetric
indices counting 1/4 BPS states in type II superstring theory compactified
on K3× T 2 and in CHL models [24–27]. A similar construction for the twin-
ing genera of the ordinary Mathieu moonshine was first proposed by Cheng
[2].

We show that these multiplicative lifts are Siegel modular forms, gen-
eralizing results for the case (g, h) = (e, h) [2, 28, 29]. In some cases we
can identify Ψg,h with known Siegel modular forms which have previously
appeared in the context of umbral moonshine [30]. Furthermore, they satisfy
a “wall-crossing formula”, which reproduces all of Mason’s generalized eta-
products ηg,h for M24 [31–34]. This therefore establishes the link between
the two existing versions of generalized moonshine for M24.

1.1. Background

The first hint of Mathieu moonshine was found by Eguchi et al. [1], who
noticed a connection between the the elliptic genus of K3 and the largest
Mathieu group M24. The elliptic genus of K3 φK3(τ, z) is the unique (up

1The terminology “second-quantized” originates in the work of Dijkgraaf, Moore,
Verlinde, Verlinde [23].
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to normalization) weak Jacobi form of weight 0 and index 1 and it can be
defined as a supersymmetric index of non-linear sigma models with target
space K3. It therefore is natural to consider a decomposition of φK3(τ, z)
into characters of the N = 4 superconformal algebra. The authors of [1]
noticed that the coefficients in this decomposition are sums of dimensions
of irreducible representations of M24. This observation led to the Mathieu
moonshine conjecture: for each conjugacy class [g] of M24 there should exist
a weak Jacobi form φg : H× C → C such that the Fourier coefficients of φg

are the characters of these M24-representations evaluated at g. In particular,
for the identity element e of M24, φe(τ, z) coincides with the elliptic genus of
K3. In subsequent work [2–5], all the functions φg, dubbed “twining elliptic
genera”, were found and substantial evidence was given for the validity of
Mathieu moonshine, namely the existence of a graded M24-module such that
the φg’s are its graded characters. This conjecture has now been proven
rigorously by Gannon [12].

The story outlined above is of course in close analogy with Monstrous
moonshine [35–37] which assigns modular functions Tg : H → C (McKay–
Thompson series) with each conjugacy class [g] of the Fischer–Griess Mon-
ster groupM, the largest of the finite sporadic simple groups. After the initial
conjecture [35], Norton proposed his generalized Monstrous moonshine [19],
which assigns modular functions f(g, h; τ) to each commuting pair g, h ∈ M.
For fixed g ∈ M, these generalized moonshine functions should then have
(possibly rational) Fourier coefficients that correspond to projective charac-
ters of the centralizer CM(g) = {k ∈ M | gk = kg}. Dixon–Ginsparg–Harvey
subsequently suggested that Norton’s functions f(g, h; τ) naturally arise in
string theory as the path integral on a torus C/(Z+ τZ) with boundary
conditions twisted by (g, h) along the (a, b)-cycles. Although the full gener-
alized Monstrous moonshine conjecture is still open, considerable progress
has been made toward proving it [38–44].

In earlier work [17, 18], we gave substantial evidence that Norton’s gen-
eralization also holds, with small modifications, for Mathieu moonshine. We
found that for each commuting pair g, h ∈ M24 there exists a weak Jacobi
form φg,h(τ, z), dubbed twisted twining genus, whose Fourier coefficients are
characters of a projective representation of CM24(g). Inspired by orbifolds of
holomorphic CFTs [45–48], we further showed that the modular properties
of the functions φg,h are controlled by a cohomology class [α] in the third
cohomology group H3(M24, U(1)), as was anticipated in [49] (see also [12]).

A different kind of generalized moonshine for M24 had in fact already
been established in old work by Mason [31, 33, 34]. Mason associated to each
commuting pair g, h in M24 a so-called multiplicative eta product ηg,h(τ),
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based on the action of M24 on 24 chiral-free bosons. This leads to the nat-
ural question: Is there a relation between the recently discovered Mathieu
moonshine, pertaining to weak Jacobi forms, and Mason’s M24-moonshine
involving eta-products?

For the special case of commuting pairs (g, h) = (e, h), where e is the
identity element of M24, this was given an affirmative answer by Cheng in
[2]. Cheng’s idea was to generalize the known fact that the elliptic genus of
K3, φe(τ, z), exhibits an exponential Borcherds lift to the unique weight 10
Siegel modular form for Sp(4;Z), referred to as the “Igusa cusp form” and
commonly denoted by Φ10. She proposed that to all twining genera φh(τ, z)
one should have a similar lift of the form

(1.1) Φh(σ, τ, z) = pqy
∏

(n,m,�)>0

exp

[
−

∞∑
k=1

chk(4mn− �2)
k

(pmqny�)k
]

,

where q = e2πiτ , y = e2πiz, p = e2πiσ, and cg denotes the Fourier coefficients
of φg(τ, z):

(1.2) φg(τ, z) =
∑

m≥0,�∈Z

cg(m, �)qmy�.

It was conjectured in [28] that Φh is automorphic with respect to a sub-
group Γ(2)

h of Sp(4;Z). This was then proven by Raum [29] for most of the
conjugacy classes [h] ⊂ M24.

A central point for us is that Φh(σ, τ, z) has a double pole at z = 0 and
in the limit one finds

(1.3) lim
z→0

Φh(σ, τ, z)
(2πiz)2

= ηh(τ) ηh(σ),

where ηh = ηe,h are the eta-products of Mason’s M24-moonshine [31]. Hence,
the process of taking the multiplicative lift of φh followed by studying the
limiting behavior as z → 0 provides a link between the two moonshines.

1.2. Summary of results

In this paper, we answer the question above in the general case of com-
muting pairs (g, h) in M24. In other words, we establish a link between
the generalized Mathieu moonshine proposed in [17, 18] and the general-
ized eta-products of Mason. To describe our results, we recall the notion
of “second-quantized elliptic genus” as defined in [23]. Suppose φX(τ, z) is
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the elliptic genus of some Calabi–Yau manifold X. Then one defines the
second-quantized genus ΨX as the generating function of the elliptic genus
φSnX for the n:th symmetric product SnX: ΨX =

∑
n≥0 pnφSnX . In [23],

the following remarkable formula is proved:

(1.4) ΨX(σ, τ, z) = exp
[ ∞∑

n=1

pnTnφX(τ, z)
]
,

where p = e2πiσ, and Tn is the standard Hecke operator acting on Jacobi
forms. Subsequently, Gritsenko showed [50] that by multiplying the inverse
Ψ−1

X by a certain factor AX(σ, τ, z) (the “Hodge anomaly”) one obtains a
Siegel modular form

(1.5) ΦX(σ, τ, z) =
AX(σ, τ, z)
ΨX(σ, τ, z)

,

of weight cX(0, 0)/2 for a subgroup Γ
(2)
X ⊂ Sp(4;Z), where cX(m, n) are the

Fourier coefficients of φX .
Inspired by these results, we define for each commuting pair (g, h) in

M24 the associated second-quantized twisted twining genus Ψg,h via a gen-
eralization of the formula (1.4):

(1.6) Ψg,h(σ, τ, z) = exp
[ ∞∑

n=1

pnT α
n φg,h(τ, z)

]
,

where T α
n is now a certain twisted equivariant Hecke operator (for the precise

definition see Section 3.2) which reduces to the Tn in (1.4) in the special
case (g, h) = (e, e). Note that, when g = e, the presence of a non-trivial 3-
cocycle α governing the modular properties of the twisted twining genera
can be safely ignored (see [17] and Section 2.2). This leads to the simpler
definition of the multiplicative lift adopted in [28]. However, for the general
case considered in this paper, the technical subtleties associated with non-
trivial 3-cocycles cannot be avoided.

Multiplying the second-quantized twisted twining genera by a correction
Ag,h(σ, τ, z) (see Equation (3.53) for the explicit form of Ag,h) we obtain a
new class of functions

(1.7) Φg,h(σ, τ, z) =
Ag,h(σ, τ, z)
Ψg,h(σ, τ, z)

,

and the main result of this paper is:
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Theorem. The functions Φg,h(σ, τ, z) defined by (1.7) are meromorphic
Siegel modular forms for certain discrete subgroups Γ(2)

g,h ⊂ Sp(4;R), such

that Γ(2)
g,h ∩ Sp(4, Z) is a congruence subgroup of Sp(4, Z).

For a more precise formulation, see Theorem 5.3 in Section 5.2.
The most noticeable new automorphic property is the “S-duality” transfor-
mation

(1.8) Φg,h(σ, τ, z) = Φg,h′

( τ

Nλ
, Nλσ, z

)
,

where N is the order of g and λ is the length of the shortest cycle of g in
the 24-dimensional permutation representation. Notice that h, h′ ∈ CM24(g)
are not necessarily in the same conjugacy class. This is related with the
“relabeling” phenomenon described in [17]. In particular, as described in
Section 5.1.2, when g is an element of an M23 subgroup, then h′ is the
symmetry induced by h in the g-orbifold theory. We proved (1.8) for at
least one commuting pair of generators (g, h) in each group 〈g, h〉, but we
conjecture that similar relations hold for all commuting pairs.

In Section 4, we prove the following “wall-crossing formula”:

(1.9) lim
z→0

Φg,h(σ, τ, z)
(2πiz)2

= ηg,h(τ)ηg,h′(Nλσ),

which generalizes (1.3). This shows that the limit z → 0 of Φg,h(σ, τ, z) repro-
duces all of Mason’s generalized eta-products ηg,h [32, 33], thus providing
the desired link between the two moonshines. See figure 1 for a pictorial
overview of the relation between the various modular objects.

When (g, h) lies in the conjugacy classes (2A, 2A), (3A, 3A) and (4B, 4B)
we can identify Φg,h with known Siegel modular forms:

(2A, 2A) : Φg,h = (Δ2)2 = Φ(3),

(3A, 3A) : Φg,h = (Δ1)2 = Φ(4),

(4B, 4B) : Φg,h = (Δ1/2)
2 = Φ(5),

(1.10)

where the first equality identifies them with the squares of the weight k
Siegel modular forms Δk obtained by Gritsenko and Nikulin [51], and the
second equality with the umbral Siegel modular forms Φ(�) of lambency
� = 3, 4, 5 [30]. Thus we obtain a surprising connection between generalized
Mathieu moonshine and umbral moonshine, which clearly deserves further
investigation.2

2We thank Miranda Cheng for a discussion that pointed us in this direction.
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Figure 1: Pictorial description of the relation between generalized Mathieu
moonshine, involving the twisted twining genera φg,h, and Mason’s general-
ized eta-products ηg,h. Starting from φg,h one constructs a second-quantized
twisted twining genus Ψg,h, whose reciprocal becomes a Siegel modular form
Φg,h after multiplying by a factor Ag,h. This is the content of the multiplica-
tive (automorphic) lift indicated in the leftmost arrow. At the level of the
Siegel modular form Φg,h one then takes the limit z → 0 which produces the
generalized eta-products ηg,h(τ)ηg,h′(Nλσ). Here, h′ is possibly in a different
class from h, as a consequence of the “relabeling phenomenon” described in
[17]. See Section 4.2 for more details.

Finally, we would like to comment further on the possible physical inter-
pretation of the functions Φg,h. For Φe,e = Φ10, it is of course well-known
that the reciprocal 1/Φ10 is the generating function of 1/4-BPS dyons in
heterotic string theory on T 6 [52], and in this case the decomposition (1.3)
becomes 1/Φ10 ∼ η(τ)−24η(ρ)−24, where each factor on the right-hand side
is identified with the partition function of 1/2 BPS-states. More generally,
1/Φe,h should correspond to the partition function of “twisted dyons”, and
the limit (1.3) reflects the wall-crossing phenomenon when a 1/4 BPS-state
splits into two 1/2 BPS-states. Similarly we expect that in general 1/Φg,h

should be the generating function of certain “twisted dyons” in CHL orb-
ifolds T 6/ZN of heterotic string theory [24–27]. In particular, this should be
true whenever g, h can be interpreted as a pair of commuting symmetries of
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some K3 surface and the orbifold by g is consistent. Given the results of [8],
the first condition amounts to the group 〈g, h〉 having at least four orbits in
the standard 24-dimensional permutation representation of M24, while the
second condition simply requires g to belong to some M23 subgroup of M24.
From the tables in Appendix F, it is easy to check that the first condition
is satisfied by all 34 groups except the groups numbered 22, 30, 31, 32. As
for the remaining groups, the second condition is satisfied by at least one
generator g, except for groups 4, 5, 6, 13, 14.

1.3. Outline

Our paper is organized as follows. In Section 2, we recall some relevant
facts about holomorphic orbifolds, focusing on properties of the associated
twisted twinining partition functions. We explain the important role played
by the third cohomology group H3(G, U(1)), where G is a finite automor-
phism group of the holomorphic CFT. In particular, this cohomology group
controls the modular properties of the twisted twining partition functions.
After discussing these properties in a general context we restrict to the rele-
vant case of G = M24 for which we recall the main results of [17, 18]. Section
3 introduces some aspects of symmetric products of holomorphic CFTs and
the connection with Hecke operators. In Section 3.2 we then introduce the
key notion of twisted equivariant Hecke operators that will play a crucial role
in what follows. In Section 3.3 we use the twisted equivariant Hecke opera-
tors to define second-quantized twisted twining genera Ψg,h and we compute
their infinite product expansions. The connection with Mason’s eta-products
is then made in Section 4 by evaluating Ψg,h in the limit z → 0. The modular
properties of the second-quantized twisted twining genera are analyzed in
Section 5.2. Finally, in the concluding Section 6 we summarize our results
and give some ideas for future research. Various background material, tech-
nical calculations and tables have been relegated to the appendices.

2. Twisted twining partition functions

In this section we review the main properties of the twisted twining partition
functions associated with the orbifold of a CFT C by a finite group G of sym-
metries [39, 53, 54]. When C is a bosonic CFT, these are modular functions
Zg,h(τ) on the upper-half plane H, associated with each commuting pair
g, h ∈ G. For superconformal field theories the analogous functions include
the twisted twining genera φg,h(τ, z), which are Jacobi forms on H× C. Our
main interest is the case when C is a putative N = 4 super-vertex algebra at
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central charge c = 6 with automorphism group G = M24, but we shall keep
the discussion general whenever possible. We emphasize that the existence
of such a super-vertex algebra is not established and its definition seems to
be problematic. Despite these issues, the properties satisfied by the twisted-
twining genera are analogous to the ones expected for a non-linear sigma
model with target space K3, although no such model has a group of sym-
metries containing M24. Finally, we will provide an abstract formulation of
Mathieu moonshine [1–5, 12] and of its generalized version [17, 18].

2.1. Definition and basic properties

Consider a two-dimensional CFT C and let G be its symmetry group, i.e.,
the group of linear automorphisms of its space of states H that preserves
the OPE of the corresponding fields and fixes (at least) the left- and right-
moving Virasoro algebra. Given such data, one can construct a new CFT by
considering the orbifold of C by (a subgroup of) G. The first step in the orb-
ifold construction consists in introducing, for each g ∈ G, the g-twisted fields
Ξg, generating a g-twisted space of states Hg. The defining property of the
g-twisted fields is that every field of C has a non-trivial monodromy g when it
is moved along a (sufficiently small) closed path encircling the twisted field
Ξg. The orbifold theory is defined by including all twisted sectors in the
spectrum and then restricting to the G-invariant part. The orbifold theory
is a consistent CFT provided certain conditions (in particular, the level-
matching condition), assuring the locality of the OPE of twisted fields, are
satisfied.

Even if the consistency conditions for the orbifold theory are not satis-
fied, it makes sense to consider the g-twisted sector Hg as a module over the
Virasoro algebra (or more generally, over the G-invariant part of the chiral
algebra of C). Let us consider the case where C is a holomorphic CFT, so
that it coincides with its chiral algebra, which is a self-dual vertex opera-
tor algebra (VOA). Then, under suitable assumptions, there exists a unique
irreducible g-twisted sector Hg for each g ∈ G [39]. The action of a generic
element h ∈ G on C induces a linear map

(2.1) ρg(h) : Hg → Hh−1gh,

from the g-twisted to the h−1gh-twisted sector. In particular, when h
commutes with g, it defines an endomorphism of Hg, so that Hg carries
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a representation ρg of the centralizer

(2.2) CG(g) := {h ∈ G : gh = hg},

of g in G. It should be noticed that the representation ρg of CG(g) is in
general only projective. This fact will play a crucial role in what follows.

Let us define a g-twisted h-twining partition function on the upper half-
plane H+ by

(2.3) Zg,h(τ) = TrHg
(ρg(h)qL0− c

24 ), q := e2πiτ , g, h ∈ G, gh = hg.

When g and h are the identity, this reduces to the usual torus partition
function for C. On general physical grounds, one expects the twisted twining
partition function Zg,h to be given by a path-integral on an elliptic curve
Eτ
∼= C/(Z+ τZ) with modular parameter τ , where the fields have mon-

odromies g and h around the generators −1, τ of the first homology group
H1(Eτ , Z) ∼= Z+ τZ. Furthermore, each twisted twining partition function
Zg,h is a holomorphic function of the modular parameter τ and is expected
to be a modular function under the subgroup Γg,h ⊂ SL(2, Z), that preserves
the monodromies of the fields around the non-trivial cycles of the torus.

Analogous properties are expected for the twisted twining genera in
superconformal field theories with an extended (at least N = (2, 2)) super-
conformal algebra and a group G of symmetries preserving such an algebra.
The twisted twining genera are defined as traces

φg,h(τ, z) = TrHRR
g
(hqL0− c

24 q̄L̃0− c̃

24 (−1)F+F̃ yJ0), q := e2πiτ , y := e2πiz,

(2.4)

over the Ramond–Ramond (RR) g-twisted sector HRR
g . Here J0 is the zero

mode of a u(1) current algebra contained in the left N = 2 superconformal
algebra (normalized so that the charges are integral) and (−1)F+F̃ is the
total fermion number. This trace is computed by a path-integral with the
same g- and h-twisted periodicity conditions for both bosonic and fermionic
fields, with the insertion of an operator yJ0 . Although these conformal field
theories are not chiral, the twisted twining partition functions are holomor-
phic with respect to both τ and z and are expected to be Jacobi forms of
weight 0 and index c

6 under the same subgroup Γg,h ⊂ SL(2, Z) as above.
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2.2. Modular properties and the α-twist

We mentioned above that for a holomorphic CFT C with automorphism
group G, the twisted sectors Hg, carry projective representations ρg of the
centralizer CG(g). This implies that ρg satisfies

(2.5) ρg(h)ρg(h′) = cg(h, h′)ρg(hh′), h, h′ ∈ CG(g),

where cg(h, h′) is a phase, or, more precisely, a 2-cocycle representing a class
[cg] in H2(CG(g), U(1)). As a consequence, the twisted twining partition
function Zg,h is not an honest class function on G, but rather satisfies

(2.6) Zg,h(τ) =
cg(h, k)

cg(k, k−1hk)
Zg,k−1hk(τ), k ∈ CG(g),

which puts strong constraints on Zg,h (see Appendix B and [18]). The same
formula also applies to the twisted twining elliptic genera φg,h.

The role of the cohomology groupH2(CG(g), U(1)) can in fact be derived
from a more fundamental property of C, namely that consistent orbifolds of
a holomorphic CFT are classified by the third cohomology H3(G, U(1)).
Concretely, this implies there exists a U(1)-valued 3-cocycle α(g, h, k), with
(g, h, k) ∈ G×G×G, representing a class [α] in H3(G, U(1)), which in turn
determines the class [cg] ∈ H2(CG(g), U(1)) via the formula [47, 48]

(2.7) cg(x, y) :=
α(g, x, y)α(x, y, (xy)−1g(xy))

α(x, x−1gx, y)
, g, x, y ∈ G.

Thus, α characterizes the projective representations ρg. The 3-cocycle α is
normalized, i.e., α(g, h, k) = 1 whenever at least one of its arguments g, h, k
is the identity. The cohomology groupH3(G, U(1)) also controls the modular
properties of the twisted twining partition functions Zg,h, in the sense that
under a modular transformation ( a b

c d ) ∈ SL(2, Z) they satisfy

(2.8) εg,h( a b
c d )Zgdh−c,g−bha

(
aτ + b

cτ + d

)
= Zg,h(τ),

where εg,h( a b
c d ) is a U(1)-valued multiplier system3 for SL(2, Z) that can

be explicitly constructed from the 3-cocycle α(g, h, k) (see Appendix B).

3This was called χg,h in [18].
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Furthermore, (2.6) generalizes to

(2.9) Zg,h(τ) =
cg(h, k)

cg(k, k−1hk)
Zk−1gk,k−1hk(τ), k ∈ G,

where conjugation is taken within the whole group G. In [17, 18] these
properties were used to constrain and determine all of the twisted twining
elliptic genera φg,h for g, h a commuting pair in M24.

Given the rather complicated modular action in (2.8) it turns out to
be very convenient to introduce a certain slash operator which combines the
action of SL(2, Z) on (τ ; g, h) with the conjugation by G in (2.9). In addition
this must incorporate the multiplier induced by the cocycle twist. To define
the slash operator we must first define the following twisted modular action
on commuting pairs of elements (g, h) in G:

(2.10) (γ, k) : (g, h) 	→ (kgk−1, khk−1)γ−1 = (kgdh−ck−1, kg−bhak−1).

Here, (γ, k) =
((

a b
c d

)
, k
)
∈ SL(2, Z)×G.

When acting on twisted twining partition functions Zg,h the α-twisted
equivariant slash operator is defined as follows:

Zg,h(τ)|α(γ, k) := εg,h(γ, k)Z(γ,k)·(g,h)(γ · τ), (γ, k) ∈ SL(2, Z)×G,
(2.11)

where εg,h(γ, k) ∈ U(1) is a phase which depends on the choice of 3-cocycle α
representing a class [α] ∈ H3(G, U(1)) (see Appendix B.2. for more details).
When k = e this phase reduces to the phase εg,h(γ, e) = εg,h(γ) in (2.8),
while for γ = 1 we have that εg,h(1, k) is identified with the phase in (2.9).4

The class [α] ∈ H3(G, U(1)) is part of the defining data of a holomorphic
CFT C with finite automorphism group G. In general the twisted twining
partition functions Zg,h(τ) associated with C are invariant under the α-
twisted slash operator

(2.12) Zg,h(τ)|α(γ, k) = Zg,h(τ).

Different choices of representative α in the class [α] are related to each other
by rescalings of Zg,h(τ) by overall (g, h)-dependent phases. More precisely,

4This phase was called ξg,h in [18].
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if two normalized 3-cocycles α and α′ differ by a 3-coboundary ∂β, i.e.,

(2.13) α(g1, g2, g3) = α′(g1, g2, g3)
β(g1, g2g3)β(g2, g3)
β(g1g2, g3)β(g1, g2)

,

for some β : G×G → U(1), with β(e, g) = β(g, e) = 1 for all g ∈ G, then the
corresponding twisted twining partition functions Zg,h and Z ′g,h are related
by

(2.14) Z ′g,h(τ, z) =
β(g, h)
β(h, g)

Zg,h(τ, z).

We also define the α-twisted slash operators on the twisted twining gen-
era φg,h by the natural generalization of (2.11) to Jacobi forms of weight 0
and index 1:
(2.15)

φg,h(τ, z)|α (γ, k) := εg,h(γ, k)e−
2πimcz2

cτ+d φk gdh−c k−1, k g−bha k−1

(
γ · τ, z

cτ + d

)
.

2.3. (Generalized) Mathieu moonshine

The elliptic genus of K3 is defined in physics as a refined partition function

φK3(τ, z) = TrH(qL0− c

24 q̄L̃0− c̃

24 (−1)F+F̃ yJ0), q := e2πiτ , y := e2πiz,

(2.16)

of certain conformal field theories with N = (4, 4) superconformal algebra
at central charge c = 6, namely non-linear sigma models with target space
K3. The only states contributing to this partition function are the RR right-
moving ground states, i.e., with L̄0 − c̄

24 = 0.
In [1], Eguchi, Ooguri and Tachikawa conjectured a relationship (subse-

quently dubbed Mathieu moonshine) between the elliptic genus of K3 and
the largest Mathieu group M24. It is useful to formulate the Mathieu moon-
shine conjecture (now a theorem, thanks to [12]) in terms of an abstract
representation H of the (holomorphic) N = 4 superconformal algebra at
central charge c = 6, which is also a module for the Mathieu group M24.
Heuristically, H can be interpreted as the spectrum of R–R right-moving
ground states in a generic K3 model, although it is known that no such
model has M24 as its symmetry group [8, 11]. The module H also admits a
Z2-grading by a “right-moving fermion number” (−1)F̄ , which is preserved
both by the N = 4 superconformal algebra and by the action of M24. The
precise statement of the conjecture is as follows.



418 Daniel Persson and Roberto Volpato

Theorem (Mathieu moonshine). There exists unitary Ramond repre-
sentation H of the N = 4 superconformal algebra at central charge c = 6,
Z2-graded by the “right-moving fermion number” (−1)F̄ , that carries a non-
trivial action of the Mathieu M24 commuting with both the N = 4 algebra
and the Z2-grading. Furthermore, for each g ∈M24, the twining genus

(2.17) φg(τ, z) := TrH(g qL0− c

24 yJ3
0 (−1)F+F̄ ), g ∈M24,

(q := e2πiτ , y := e2πiz) is a weak Jacobi form of weight 0 and index 1 (pos-
sibly with multiplier) under Γ0(N), where N is the order of g. In particular,
φe is the elliptic genus of K3.

A list of Jacobi forms φg, g ∈M24, satisfying the expected modular prop-
erties was proposed in [2–5] (see Table A in Appendix F for the explicit
expressions) and the existence of the corresponding module H was proved
in [12]. The module H is not uniquely determined by this description, since
one can always adjoin toH a pair of isomorphic representations of theN = 4
algebra and M24 with opposite right-moving fermion number, so hat they do
not contribute to any twisted twining genus. However, there is a “minimal”
module that contains no such pair of representations and this is uniquely
determined by the twining genera φg. Remarkably, in this minimal module,
the only N = 4 representations with negative (−1)F̄ are the BPS ones. It is
believed that the module H and the Jacobi forms φg of [2–5] are the unique
solutions of the Mathieu moonshine conjecture, although this has not been
proved yet.

In the same spirit, generalized Mathieu moonshine can be expressed in
terms of the existence of twisted modules Hg and twisted twining genera
φg,h.

Conjecture (Generalized Mathieu moonshine). For each g ∈ M24,
there exists a Z2-graded unitary Ramond representation Hg of the N =
4 algebra at central charge c = 6, that carries a projective representation
ρg : CM24(g)→ GL(Hg) of the centralizer of g in M24, with group law

(2.18) ρg(h)ρg(k) = cg(h, k)ρg(hk), h, k ∈ CM24(g),

where cg(h, k) is defined by (2.7) in terms of a normalized 3-cocyle α rep-
resenting a primitive class in H3(M24, U(1)) ∼= Z12. The operators ρg(h)
commute with the N = 4 algebra and with the right-moving fermion number
(−1)F̄ , and we have

(2.19) ρg(g) = e2πi(L0− c

24
).
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Furthermore, for each pair of commuting elements g, h ∈M24, the function

(2.20) φg,h(τ, z) := TrHg
(ρg(h)qL0− c

24 yJ3
0 (−1)F+F̄ ),

satisfies the following properties:

(A) For g = e, where e is the identity element of M24, the functions φe,h

coincide with the twining genera φh constructed in [2]–[5]. In partic-
ular, φe,e is the elliptic genus of K3.

(B) Elliptic properties:

φg,h(τ, z + �τ + �′) = e−2πi(�2τ+2�z) φg,h(τ, z), �, �′ ∈ Z.(2.21)

(C) Invariance under the α-twisted slash operator (see Equation (2.15))

(2.22) φg,h(τ, z)|α(γ, k) = φg,h(τ, z), (γ, k) ∈ SL(2, Z)×M24.

In particular, each φg,h is an even weak Jacobi form of weight 0 and
index 1 under a group Γg,h ⊆ PSL(2, Z), with multiplier χg,h depend-
ing on α.

These conditions were presented in [17] where all the functions φg,h were
explicitly found, and strong numerical evidence was given that they decom-
pose into projective characters of CM24(g) with respect to the N = 4 alge-
bra. It was also proven in [17] that there exists a unique cohomology class
[α] ∈ H3(M24, U(1)) for which (A) to (C) can be satisfied and that, for each
choice of a normalized representative α, the functions φg,h satisfying (A) to
(C) are uniquely determined. If two normalized 3-cocycles α and α′ differ
by a 3-coboundary ∂β, as in (2.13), then the corresponding twisted twining
genera φg,h and φ′g,h are related as in (2.14)

(2.23) φ′g,h(τ, z) =
β(g, h)
β(h, g)

φg,h(τ, z).

The explicit expressions for φg,h derived in [17] are collected in Table
Appendix F in Appendix F. Although the existence of the modules Hg

matching (2.20) is not proven yet for g different from the identity, strong
evidence in this direction has been given [17]. In the rest of the paper, we
will assume that the conjecture holds. As in the ordinary moonshine case,
one can choose minimal modules Hg, such that the only states with neg-
ative (−1)F̄ are contained in irreducible BPS representations of N = 4. In



420 Daniel Persson and Roberto Volpato

fact, the results of [17] suggest that such states only appear in the untwisted
sector Hg=e.

2.4. Geometric perspective

Before we close this section we shall offer a more geometric perspective on the
twisted twining genera which will be useful later on. In [55], Ganter showed
that the natural home for the Norton series f(g, h; τ) [19] is the equivariant
elliptic cohomology developed in [56]. We shall here give a short review of
Ganter’s perspective, adapted to the case of Jacobi forms on H+ × C, as
opposed to modular forms on H+.

Let P be the set of pairs of commuting elements of M24

(2.24) P := {(g, h) ∈ M24 | gh = hg},

and P̄ the set of conjugacy classes of such pairs, i.e., the quotient of P
with respect to (g, h) ∼ (k−1gk, k−1hk), for any k ∈M24. The set P̄ can be
identified with the set of isomorphism classes of principal M24-bundles over
the elliptic curve Eτ = C/(Z+ τZ). One can then consider the associated
moduli space5 of principal M24-bundles on Eτ

(2.25) M = P × (H+ × C) / M24 × (SL(2, Z)� Z2).

For each pair (g, h) ∈ P there exists an (SL(2, Z)× Z2)-equivariant line bun-
dle

(2.26)
Lα

g,h

↓
M

which is twisted by the 3-cocycle α ∈ H3(M24, U(1)) [55]. Thus, for fixed
(g, h) we can think of the twisted twining genus φg,h as a section of Lα

g,h. The
twist by α in the bundle Lα

g,h accounts for the α-dependent multiplier phases
occurring in the modular transformations of the twisted twining genera. In
the cases when α describes a trivial class in H3(M24, U(1)), the bundle Lα

g,h

is canonically trivialized and the associated φg,h exhibits no multiplier phase.
The interpretation of the twisted twining genera as sections of Lα

g,h will in
particular play a role in Section 3.3 when we discuss twisted equivariant
Hecke operators.

5This should really be a moduli stack but we ignore this technical point; see [55]
for a more precise description.
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3. Second quantization of Mathieu moonshine

In this section we construct the second-quantized twisted twining genera
Ψg,h as the exponentiated generating function of certain twisted equivariant
Hecke operators acting on φg,h. The forms Ψg,h have a natural interpreta-
tion in terms of generating functions of the twisted twining genera in the
symmetric orbifold CFTs and we therefore begin by reviewing some relevant
facts about symmetric orbifold theory. Having defined the functions Ψg,h we
also show that they have infinite product expansions.

3.1. Symmetric Orbifolds and Hecke Operators

Given a holomorphic CFT, or self-dual VOA, C with a group G ⊆ Aut(C) of
automorphisms, let us consider the theory C⊗L obtained by taking the tensor
product of L copies of C, for some L ≥ 1. The group of automorphisms of
C⊗L contains the direct product of the symmetric group SL and the group G
acting diagonally on all copies of C.6 The twisted twining partition function
ZC⊗L

g,h of the theory C⊗L, associated with a pair of commuting elements (g, h)
of the diagonal group G, is simply the L:th-power of the twisted twining
partition function Zg,h in the original theory C:

(3.1) ZC
⊗L

g,h (τ) = Zg,h(τ)L.

In other words, the path integral on the torus with boundary conditions
g, h in the product theory C⊗L is simply the product of L copies of the
path integral in the original theory with the same boundary conditions. In
particular, if Zg,h is invariant under the α-twisted slash operator for some
3-cocycle α, then ZC⊗L

g,h is invariant under the αL-twisted slash operator.
The L:th symmetric orbifold SLC of C is defined as the orbifold of C⊗L

by SL, and its group of automorphisms contains the diagonal G. Therefore,
one can define the twisted twining partition functions

(3.2) Z
(L)
g,h (τ) ≡ ZSLC

g,h (τ)

in each symmetric product. These partition functions can be computed using
the usual formulae for orbifold CFTs.

6Actually, Aut(C⊗L) contains the wreath product SL �G := SL � (G× · · · ×G),
i.e., the semidirect product of SL and the direct product GL := G× · · · ×G of L
copies of G, with SL acting on GL by the obvious permutation.
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The orbifold formula for Z
(L)
g,h can be nicely understood in the geometric

setting of Section 2.4. Recall that the twisted twining partition function
Zg,h(τ) of a VOA C with Aut(C) = G is a section of a (α-twisted) line bundle
Lα

g,h over the moduli spaceMG of G-bundles over the elliptic curve E = C/Λ
with Λ = Z+ τZ. In this picture, g and h correspond to the monodromies
around the cycles −1 and τ of the elliptic curve.

As shown in [23], Z
(L)
g,h can be expressed as a sum of contributions from

all isomorphism classes of unramified L-fold coverings Υ : E′ → E, namely

(3.3) Z
(L)
g,h (τ) ∼

∑
isomorphism classes of

L-fold coverings
Υ:E′→E

Υ∗Zg,h(τ),

up to a suitable normalization. Here, Υ∗Zg,h is simply the partition function
associated with the pull-back Υ∗Lα

g,h → E′ of the line bundle Lα
g,h.

Up to isomorphisms, we can consider coverings that preserve the base-
point of the elliptic curve. Any connected unramified base-point preserving
L-fold cover of E = C/Λ is given by E′ ∼= C/Λ′ → E, z 	→ z, where Λ′ is a
sublattice of index L in Λ. In turn, the sublattices of index L are given by
Λ′ = MΛ for any M in the set

(3.4) MatL(Z) :=
{(

a b
c d

)
| a, b, c, d ∈ Z, ad− bc = L

}

of integral 2× 2 matrices M of determinant L. In particular, when L =
1, the covers Υ : E′ → E are actually isomorphisms and are classified by
Mat1(Z) ≡ SL(2, Z). Let Υγ denote the isomorphism associated with a spe-
cific choice of γ ∈ SL(2, Z). The pull-back Υ∗γZg,h then coincides with the
slash operator

(3.5) Υ∗γZg,h(τ) = Zg,h(τ)|α(γ, e), γ ∈ SL(2, Z).

For generic L > 0, the isomorphism classes of coverings are in one to one
correspondence with the cosets

(3.6) SL(2, Z)\MatL(Z),

and a set of coset representatives is given by

(3.7)
(

a b
0 d

)
, ad = L, a, d > 0, 0 ≤ b < d.
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Therefore, the contribution to the partition function Z
(L)
g,h (τ) from the

connected L-fold coverings is given by

T α
L Zg,h(τ) :=

1
L

∑
M∈SL2(Z)\MatL(Z)

Υ∗MZg,h(τ)(3.8)

≡ 1
L

∑
M∈SL2(Z)\MatL(Z)

Zg,h(τ)|α(M, e),

where |α(M, e) is a suitable generalization of the slash operator to MatL(Z),
that will be discussed in the following sections and in Appendix C.

The full twisted twining partition function Z
(L)
g,h is given by the sum over

connected and disconnected L-coverings. The result is most easily expressed
in terms of a generating function, which is given by the plethystic exponential
of the connected contribution

(3.9)
∞∑

L=0

pLZ
(L)
g,h (τ) = exp

( ∞∑
L=1

pLT α
L Zg,h(τ)

)
.

Explicit formulae for the (α-twisted) equivariant Hecke operators T α
L defined

by (3.8) will be discussed in more detail in Section 3.2 and Appendix C.

3.2. Twisted equivariant Hecke operators

The exponential lifts Ψg,h of the twisted twining genera φg,h are the ana-
logue of the generating functions (3.9) for superconformal field theories. In
particular, they can be defined in terms of some set of Hecke operators that
are compatible with the properties (A) to (C) in Section 2.3. This means
that the Hecke action should be compatible, i.e., equivariant, with respect
to the M24-action on the pair (g, h), and it should incorporate the α-twist in
the modular transformation. Equivariant versions of Hecke operators acting
on modular forms was proposed by Ganter [55] in the context of generalized
Monstrous moonshine, and we shall see that this result also applies here
after some minor modifications.

3.2.1. Generalities on Hecke operators. Hecke operators are linear
operators acting on modular forms. Specifically, for each L ≥ 1 there is an
operator TL that acts on a weight k modular form f(τ) and produces another
modular form TLf(τ) of the same weight. On modular functions, i.e., weight
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k = 0 modular forms, the Hecke operator is defined by

(3.10) TLf(τ) :=
1
L

∑
(

a b
c d

)
∈SL(2,Z)\MatL(Z)

f

(
aτ + b

cτ + d

)
.

These operators have a natural generalization to Jacobi forms given by [57]
(restricting to the weight 0, index m case)

(3.11) TLφ(τ, z) :=
1
L

∑
(

a b
c d

)
∈SL(2,Z)\MatL(Z)

e
−mLcz2

cτ+d φ

(
aτ + b

cτ + d
,

Lz

cτ + d

)
.

In fact, on Jacobi forms there exists an additional Hecke operator UL with
the simple action

(3.12) ULφ(τ, z) := φ(τ, Lz).

These operators map Jacobi forms of weight 0 and index m to Jacobi forms
of weight 0 and index Lm and L2m, respectively. They also form a Hecke
algebra, with the relations

Tm · Tn = Tmn, for gcd(m, n) = 1,(3.13)
Um · Un = Umn,(3.14)
Tm · Un = Un · Tm,(3.15)

Tp · Tpm = Tpm+1 +
1
p
Tpm−1 · Up, for p prime.(3.16)

It is easy to see that a set of representatives for the quotient SL(2, Z)\
MatL(Z) can always be chosen of the form (3.7). This allows us to write the
action of TL on φ(τ, z) as follows

(3.17) TLφ(τ, z) =
1
L

∑
a,d>0,ad=L

d−1∑
b=0

φ

(
aτ + b

d
, az

)
.

3.2.2. Twisted equivariant Hecke operators: main definition. The
standard Hecke-operators TL map weak Jacobi forms of weight 0, index 1 to
weak Jacobi forms of weight 0, index L. In the generalized setting the analo-
gous statement implies that we should have equivariant Hecke operators TL

that map sections of Lα
g,h to sections of the product bundle (Lα

g,h)
⊗L, where

Lα
g,h →M is the line bundle discussed in Section 2.4. In fact, because of the
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cocycle-dependent multiplier phases arising in the modular transformations
of the φg,h we need to introduce a certain α-twisted version T α

L of the equiv-
ariant Hecke operator. More explicitly, if the sections of Lα

g,h correspond to
holomorphic functions φg,h on the covering space P ×H+ × C of M, with
an automorphy factor determined by a 3-cocycle α, then T α

L φg,h should cor-
respond to holomorphic functions whose automorphy factor derives from the
L:th power αL of the 3-cocycle.

Since the detailed analysis is rather technical, we will postpone it to
Appendix C and just quote the explicit formula for the action of the Hecke
operators on a twisted twining character φg,h

T α
L φg,h(τ, z) :=

1
L

∑
a,d>0,
ad=L

d−1∑
b=0

εg,h

(
a b
0 d

)
φgd,g−bha

(
aτ + b

d
, az

)
,(3.18)

Uα
Lφg,h(τ, z) := εg,h

(
L 0
0 L

)
φgL,hL(τ, Lz),(3.19)

where

(3.20) εg,h

(
a b
0 d

)
:=

∏a−1
i=1 cg(h, hi)d∏d−1

j=1 cg−bha(g, gj)
∏b

k=1 cg(g, g−kha)d
,

and cg(x, y), g, x, y ∈ G, depends on the cocycle α that determines the auto-
morphy factor of φg,h via (2.7).

As discussed in Appendix C, these Hecke operators satisfy the Hecke
algebra (3.13) to (3.16). The explicit expressions for T α

L φg,h, for L = 1, 2, 3, 4,
in the case of Mathieu moonshine are collected in Appendix F.

Note that the phases εg,h

(
a b
c d

)
are trivial whenever g is the identity

or when the restriction of the cocycle α to the group 〈g, h〉 is trivial. An
example where non-trivial phases appear is given by T α

2 φg,g, where g is in
class 2B of M24. These phases can be understood by first considering

(3.21) T α
2 φe,g(τ, z) =

1
2

(
φe,e(2τ, 2z) + φe,g

(τ

2
, z
)
+ φe,g

(
τ + 1
2

, z

))
,

and then imposing the relations

T α
2 φg,e(τ, z) = e

−4πiz2

τ T α
2 φe,g

(
−1

τ
,
z

τ

)
, T α

2 φg,g(τ, z) = T α
2 φg,e(τ + 1, z).

(3.22)
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Using the modular properties of φe,g, we obtain

T α
2 φg,e(τ, z) =

1
2

(
φg,e(2τ, 2z) + φe,e

(τ

2
, z
)
− φe,g

(
τ + 1
2

, z

))
,(3.23)

T α
2 φg,g(τ, z) =

1
2

(
−φg,e(2τ, 2z)− φe,g(

τ

2
, z) + φe,e

(
τ + 1
2

, z

))
,(3.24)

where the minus signs in the last two equations are due to the non-trivial
multiplier system of the twining genus φe,g.

3.2.3. Central extensions. Rather than considering the projective rep-
resentation ρg of the centralizer CM24(g), it is often useful to work with a
linear representation of a central extension

(3.25) 1→ U(1)→ Cα
M24

(g)→ CM24(g)→ 1.

The group Cα
M24

(g) can be constructed explicitly in terms of generators and
relations. Let q(x) := e2πix, x ∈ R/Z, be the generator of the central U(1)
factor and consider one generator hα for each h ∈ CM24(g). Then, Cα

M24
(g)

is generated by all such elements subject to the relations

(3.26) hαkα = q (μg(h, k)) (hk)α, q(x)hα = hαq(x)

for all h, k ∈ CM24(g). Here, μg(h, k) ∈ R/Z is defined by

(3.27) e2πiμg(h,k) = cg(h, k),

where cg(h, k) is the 2-cocycle determining the projective representation ρg

as in (2.5). This definition provides also a canonical lift

(3.28) h 	→ hα,

from CM24(g) to its central extension Cα
M24

(g). By construction, the g-twisted
sector carries a genuine representation ρ̃g of Cα

M24
(g), with

(3.29) ρ̃g(q(x)) = e2πix, ρ̃g(hα) = ρg(h),

for all h ∈ CM24(g), x ∈ R/Z. A less trivial observation is that also the
gr-twisted sectors, for all r ∈ Z≥0, carry a genuine representation ρ̃g,r of
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Cα
M24

(g), defined by7

(3.30) ρ̃g,r(q(x)) := e2πirx, ρ̃g,r(hα) ≡ ρ̃g,r(h) :=
ρgr(h)
fg,r(h)

,

for all h ∈ CM24(g) ⊆ CM24(g
r), x ∈ R/Z, r ∈ Z≥0, where

(3.31) fg,r(h) =
r−1∏
i=1

ch(g, gi).

The fact that ρ̃g,r are well defined representations of Cα
M24

(g) is an immediate
consequence of the identity

(3.32) cgr(h, k) =
fg,r(h)fg,r(k)

fg,r(hk)
cg(h, k)r, h, k ∈ C(g),

which follows from the definition of cg in terms of α and repeated appli-
cations of the cocycle condition for α. Notice that fg,1(h) = 1 for all h ∈
CM24(g), so that ρ̃g ≡ ρ̃g,1.

If α and α′ are different cocycle representatives of the same cohomology
class [α], then the central extensions are isomorphic Cα

M24
(g) ∼= Cα′

M24
(g),

although the corresponding lifts hα and hα′ are different. In particular, for
special choices of the representative cocycle α, it is sufficient to consider a
central extension of CM24(g) by a finite subgroup of U(1). With slight abuse
of notation, we will denote also these finite central extensions by Cα

M24
(g).

See Appendix D.2 for more details on these special choices for α.

3.2.4. Twisted equivariant Hecke operators: alternative definition.
The α-twisted equivariant Hecke operators are more easily defined in terms
of the central extension Cα

M24
(g) described in Section 3.2.3. Set

(3.33) φgr
α,hα

(τ, z) := TrHgr

(
ρ̃g,r(hα)qL0− c

24 yJ3
0 (−1)F+F̄

)

7We denote by the same symbol ρ̃g,r also the projective representation of CM24(g)
on Hgr with ρ̃g,r(h) := ρgr (h)/fg,r(h).
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so that

φgd
α,g−b

α ha
α
(τ, z) = TrHgd

(
ρ̃g,d(g)−bρ̃g,d(h)aqL0− c

24 yJ3
0 (−1)F+F̄

)(3.34)

=
∏a−1

i=1 cg(h, hi)d∏b
k=1 cg(g, g−kha)d

TrHgd

(
ρ̃g,d(g−bha)qL0− c

24 yJ3
0 (−1)F+F̄

)

=
∏a−1

i=1 cg(h, hi)d∏d−1
j=1 cg−bha(g, gj)

∏b
k=1 cg(g, g−kha)d

× TrHgd

(
ρgd(g−bha)qL0− c

24 yJ3
0 (−1)F+F̄

)
= εg,h

(
a b
0 d

)
φgd,g−bha(τ, z).

Therefore, we can reinterpret the α-twisted Hecke operators T α
L acting on

the twisted twining genera φg,h as (untwisted) equivariant operators acting
on the twisted twining genera φgα,hα

(3.35) T α
L φg,h(τ, z) =

1
L

∑
ad=L

d−1∑
b=0

φgd
α,g−b

α ha
α

(
aτ + b

d
, az

)
=: TLφgα,hα

(τ, z).

This form of the Hecke operators will turn out to be very useful for some of
the calculations in sections 3.3 and 4.

3.3. Second-quantized twisted twining genera

3.3.1. Definition. For any Calabi–Yau manifold X, one can define its
second-quantized elliptic genus ΨX as the exponentiated generating function
of the orbifold elliptic genus φSLX(τ, z) of the symmetric products SLX [23].
In fact, [23] gave three equivalent expressions for ΨX :

ΨX(σ, τ, z) =
∞∑

L=0

pLφSLX(τ, z) = exp

[ ∞∑
L=1

pL(TLφX)(τ, z)

]
(3.36)

=
∏

n>0,m≥0,
�∈Z

(
1− pnqmy�

)−c(mn,�)
,

where we have set

(3.37) q = e2πiτ , y = e2πiz, p = e2πiρ,
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and c(mn, �) are the Fourier coefficients of the elliptic genus of X:

(3.38) φX(τ, z) =
∑

m≥0,�∈Z

c(m, �)qmy�.

Here, TL are standard Hecke operators defined in (3.17).
It was shown in [50] that Φ ≡ AX/ΨX , where AX is a simple correction

factor (“Hodge anomaly”) that is determined by the Hodge numbers of
X, transforms as a Siegel modular form for some congruence subgroup of
Sp(4;Z).

Taking the formula (3.36) as a starting point, we now wish to define the
second-quantized twisted twining genera as follows:

(3.39) Ψg,h(σ, τ, z) := exp

[ ∞∑
L=1

pL(T α
L φg,h)(τ, z)

]
,

where T α
L is the twisted equivariant Hecke operator defined in (3.18). We

will later show that after including a correction factor Ag,h the functions
Ψg,h transform as Siegel modular forms for some discrete subgroup Γ(2)

g,h ⊂
Sp(4;R) that contains the invariance group Γg,h ⊂ SL(2, Z) of the twisted
twining genera φg,h.

Note that the definition (3.39) depends on the choice of a normalized
3-cocycle α. If α and α′ differ by a 3-coboundary ∂β as in(A.5), the corre-
sponding twisted twining genera are related as

(3.40) T α′
L φ′g,h(τ, z) = e2πiνg,hLT α

L φg,h(τ, z),

where νg,h ∈ R/Z is defined as

(3.41) e2πiνg,h =
β(g, h)
β(h, g)

,

so that

Ψ′g,h(σ, τ, z) = exp
( ∞∑

L=1

pLT α′
L φ′g,h(τ, z)

)(3.42)

= exp
( ∞∑

L=1

(e2πiνg,hp)L T α
L φg,h(τ, z)

)
= Ψg,h(σ + νg,h, τ, z).(3.43)

Therefore, a different choice for the cocycle representative α simply amounts
to a redefinition σ → σ + νg,h of the variable σ.
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3.3.2. Infinite product representation. We shall now derive infinite
product representations for the second-quantized twisted twining genera
Ψg,h in terms of the Fourier coefficients of φg,h.

Let us consider a generic commuting pair of elements g, h ∈M24, with
the cocycle α inducing a possibly non-trivial multiplier for φg,h. LetN = o(g)
be the order of g and λ the length of the shortest cycle of g in the 24-
dimensional permutation representation (see Table A in Appendix F). Then,
the lift gα of g to the central extension Cα

M24
(g), as defined in Section 3.2.3,

has order Nλ (see Appendix D.2). For any h ∈ CM24(g) the associated
twisted twining genus φg,h has a Fourier expansion of the form

(3.44) φg,h(τ, z) =
∞∑

n=0

∑
�∈Z

cg,h

( n

Nλ
, �
)

q
n

Nλ y�,

where, in particular, cg,h

(
n

Nλ , �
)
= 0 unless n ≡ −1 mod λ. Let M = o(hα)

be the order of the lift hα of h to the central extension Cα
M24

(g).8 The
logarithm of the second-quantized twisted twining genus of φg,h is

logΨg,h(σ, τ, z) =
∞∑

L=1

pLT α
L φg,h(τ, z)

(3.45)

=
∞∑

a,d=1

1
ad

d−1∑
b=0

∑
�∈Z

∞∑
n=0

εg,h

(
a b
0 d

)
cgd,g−bha

( n

Nλ
, �
)

e
2πibn

Nλd q
an

Nλd ya�pad

=
∞∑

a,d=1

1
ad

∑
�∈Z

∞∑
n=0

d−1∑
b=0

cgd
α,g−b

α ha
α

( n

Nλ
, �
)

e
2πibn

Nλd q
an

Nλd ya�pad

=
∞∑

a,d=1

1
a

M−1∑
t,k=0

e
2πit(a−k)

M

M

∑
�∈Z

∞∑
n=0

1
d

d−1∑
b=0

cgd
α,g−b

α hk
α

( n

Nλ
, �
)

e
2πibn

Nλd q
an

Nλd ya�pad

=
∞∑

a,d=1

1
a

M−1∑
t,k=0

e
2πit(a−k)

M

M

∑
�∈Z

Fg,h(a, d, k, �)ya�pad,

8We assume that α is chosen in such a way that the order is finite.
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where

(3.46) Fg,h(a, d, k, �) :=
∞∑

n=0

1
d

d−1∑
b=0

e
2πibn

Nλd εg,h

(
k b
0 d

)
cgd,g−bhk

( n

Nλ
, �
)

q
an

dNλ .

In Appendix D.1, we show that this sum can be rewritten as follows:
(3.47)

Fg,h(a, d, k, �) =
∞∑

m=0

1
Nλ

λN−1∑
b=0

e
2πibm

Nλ εg,h

(
k b
0 d

)
cgd,g−bhk

(
md

Nλ
, �

)
q

am

Nλ .

By plugging this expression into (3.45) we obtain

logΨg,h(σ, τ, z) =
∞∑

d=1

∞∑
m=0

∑
�∈Z

M−1∑
t=0

ĉg,h(d, m, �, t)
∞∑

a=1

1
a

(
e

2πit

M q
m

Nλ y�pd
)a

(3.48)

= −
∞∑

d=1

∞∑
m=0

∑
�∈Z

M−1∑
t=0

ĉg,h(d, m, �, t)

× log
(
1− e

2πit

M q
m

Nλ y�pd
)

,

where

ĉg,h(d, m, �, t) :=
M−1∑
k=0

λN−1∑
b=0

e−
2πitk

M

M

e
2πibm

λN

λN
εg,h

(
k b
0 d

)
cgd,g−bhk

(
md

Nλ
, �

)(3.49)

=
M−1∑
k=0

λN−1∑
b=0

e−
2πitk

M

M

e
2πibm

λN

λN

× TrHgd ( md

Nλ
,�)

(
ρ̃g,d(g)−bρ̃g,d(h)k(−1)F+F̄

)
.

Equation (3.49) implies that ĉg,h(d, m, �, t) admit an interpretation as a Z2-
graded dimension (with the grading given by (−1)F+F̄ ) of the simultane-
ous eigenspace for ρ̃g,d(g) and ρ̃g,d(h), restricted to Hgd(md

Nλ , �), relative to
the eigenvalues e

2πim

λN and e
2πit

M , respectively. In particular, ĉg,h(d, m, �, t) is
always an integer.
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Thus, for the inverse of the second-quantized twisted twining genus we
obtain the infinite product expression

1
Ψg,h(σ, τ, z)

= exp

(
−

∞∑
L=1

pLT α
L φg,h(τ, z)

)
(3.50)

=
∞∏

d=1

∞∏
m=0

∏
�∈Z

M−1∏
t=0

(
1− e

2πit

M q
m

Nλ y�pd
)ĉg,h(d,m,�,t)

.

Note that (3.49) makes sense also for d = 0, so that the infinite product in
d and m can be symmetrized to obtain

Φg,h(σ, τ, z) := pq
1

Nλ y
∏

(d,m,�)>0

M−1∏
t=0

(
1− e

2πit

M q
m

Nλ y�pd
)ĉg,h(d,m,�,t)

,(3.51)

where the first product runs over

(3.52) d, m ∈ Z≥0 and

{
� ∈ Z, � < 0, if m = 0 = d,

� ∈ Z, otherwise.

The prefactor pq
1

Nλ y in (3.51) has been chosen in such a way that Φg,h sat-
isfies suitable automorphic properties, that will be described in Section 5.2.

One can rewrite Φg,h in terms of the original Ψg,h as

(3.53) Φg,h(σ, τ, z) =
pψg,h(τ, z)
Ψg,h(σ, τ, z)

,

where ψg,h includes the d = 0 factors in (3.51) and takes the form

ψg,h(τ, z) = q
1

Nλ y
M−1∏
t=0

(∏
�<0

(1− e
2πit

M y�)ĉg,h(0,0,�,t)

)
(3.54)

×
(∏

�∈Z

∞∏
m=1

(1− e
2πit

M q
m

Nλ y�)ĉg,h(0,m,�,t)

)
.

The numerator in (3.53) is the analogue of the “Hodge anomaly” in [50].
Infinite products of the form (3.51) were studied in [37], where it was

shown that they converge for ( τ z
z σ ) in a suitable domain of the Siegel upper
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half-space of 2× 2 complex symmetric matrices with positive-definite imag-
inary part

(3.55) H2 :=
{

Z ∈ Mat2(C) | Z = Zt, ImZ > 0
}

.

Furthermore, these products can be analytically continued to meromorphic
functions on the whole H2, with zeroes and (possibly) poles along the ratio-
nal quadratic divisor [58] (see Section 4.2). As will be discussed in Sec-
tion 5.2, the Φg,h are Siegel modular forms under certain discrete subgroups
of Sp(4, R).

The forms Φg,h depend on the choice of the cocycle representative α. If
α and α′ differ by a 3-coboundary ∂β, then the corresponding forms Φg,h

and Φ′g,h are related by a shift in σ and an overall phase

(3.56) Φ′g,h(σ, τ, z) = e−2πiνg,hΦg,h(σ + νg,h, τ, z),

where νg,h satisfies e2πiνg,h = β(g,h)
β(h,g) .

3.3.3. Multiplicative versus additive lift. The construction of a Siegel
modular form Φ(σ, τ, z) from a (weak) Jacobi form φ(τ, z) via an infinite
product representation, as exemplified by (3.51), is generally referred to
as a multiplicative (automorphic) lift. The Jacobi form φ is said to be the
multiplicative seed of the lift (see, for instance, [50, 51, 58, 59]), and we write

(3.57) Φ = Mult[φ].

It should be stressed that the definition of Φg,h in this paper is based on the
(α-twisted) equivariant Hecke operators T α

L rather than the ordinary TL, as
in the standard multiplicative lifts. As a consequence, the infinite product
expression (3.51) involves the Fourier coefficients of many distinct Jacobi
forms φgd,g−bha , rather than a unique φ as, for example, in [58].

In some cases, one can also obtain the Siegel modular form using a dif-
ferent procedure, known as the additive lift.9 In this case, the Siegel modular
form is constructed as a certain generating function (without exponentia-
tion) of Hecke operators acting on a different Jacobi form ψ, which is then
called the additive seed. For ψ(τ, z) a Jacobi form of weight k we write

9This generalizes the Saito–Kurokawa–Maass lift defined in [57].
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ψ̃(σ, τ, z) = pψ(τ, z) and define the additive lift as

(3.58) Φ = Add[ψ] :=
∑
m≥1

m2−k(T−m ψ̃)(σ, τ, z),

where T−m is a certain Hecke operator; see, e.g., [60] for the precise definition
and properties of the right-hand side.

As an example, consider the case of the Igusa cusp form Φ10 (correspond-
ing to Φe,e). The multiplicative seed is the K3 elliptic genus φe,e = φ0,1 which
is the unique weak Jacobi form of weight 0 and index 1. The multiplicative
lift yields an infinite product formula for Φ10 [61]:

(3.59) Φ10 = Mult[φ0,1] = pqy
∏

(d,m,�)>0

(
1− qmy�pd

)c(d,m,�)
,

where c(d, m, �) are the Fourier coefficients of φ0,1. This is indeed obtained
from (3.51) by restricting to (g, h) = (e, e). As explained in [51] one can also
obtain this Siegel modular form via an additive lift from the seed φ10,1 (the
unique weak Jacobi form of weight 10 and index 1):

(3.60) Φ10 = Add[φ10,1].

We now observe that the additive seed φ10,1 can be expressed as ϑ(τ, z)2

η(τ)18 which is precisely the symmetrization factor ψg,h in (3.54) when
restricting to (g, h) = (e, e). This is in fact a general feature that holds when-
ever a Siegel modular form can be realized both as an additive lift as well as
a multiplicative lift. It is a consequence of the fact that the additive seed ψ
is the first Fourier–Jacobi coefficient in the expansion of Φ and it is precisely
this coefficient which appears as the prefactor in the symmetrization of the
infinite product. For purposes we thus expect that for all (g, h) for which an
additive lift exists we should have the following equalities:

(3.61) Φg,h = Mult[φg,h] = Add[ψg,h].

We stress that one can of course define an additive lift of a Jacobi form
via (3.58). However, it is not guaranteed that when applying this proce-
dure to ψg,h one will always reproduce the functions Φg,h. Moreover, not
all automorphic infinite products have associated additive lifts. In general,
we expect that whenever Φg,h can be represented through an additive lift,
the seed will be ψg,h. In Section 5.3 we indeed verify this for a number of
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examples. For (g, h) = (e, h) modified versions of these additive lifts have
also been considered in [62].

4. Wall-crossing and Mason’s generalized moonshine for M24

Already in 1990, Mason proposed an M24 version of Norton’s generalized
moonshine conjecture [32, 33]. In this section, we will establish the connec-
tion between Mason’s generalized moonshine forM24 and the recent Mathieu
moonshine involving the K3 elliptic genus. This involves taking the multi-
plicative lift φg,h → Φg,h, defined in Section 3, after which the limit z → 0
reproduces the generalized eta-products ηg,h constructed by Mason [33].
Thus, the exponential lift Φg,h links Mason’s generalized M24-moonshine
to the M24/K3-moonshine considered here. This connection was first sug-
gested in [2] for the special case of the twining genera φ1,h = φh. A pictorial
overview of this relation is given in figure 1. We begin by reviewing Mason’s
construction of the generalized eta-products ηg,h and explain their interpre-
tation in terms of partition functions of twisted chiral bosons. Physically,
the Siegel modular forms Φg,h have interpretations as generating functions
of twisted dyons in (CHL) orbifolds of N = 4 string theory, and the eta-
products emerge as a result of a wall-crossing formula, generalizing the one
written down in [2] for Φe,h.

4.1. Mason’s generalized M24-moonshine

For each commuting pair (g, h) ∈M24, Mason associates a modular func-
tion on the upper half-plane satisfying the requirements posed by Norton
in [19]. The starting point of Mason was the 24-dimensional permutation
representation of M24 in which each element can be associated to a cycle
shape, which describes the element as a product of cycles of permutations.
For instance, in this representation the identity element is represented by
the cycle shape 124, corresponding to the product of 24 identity permuta-
tions, while the elements in class 2A are represented by 1828, corresponding
to the product of 8 identity permutations followed by 8 consecutive order 2
permutations.

Mason’s functions were all given in terms of so-called eta-products,
namely products of Dedekind eta-functions. Suppose an order M element
h ∈M24 has cycle shape

(4.1)
∏
�|M

�i(�),
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on the 24-dimensional representation of M24, for some integers i(�). Then
one can associate an eta-product to h by

(4.2) ηh(τ) :=
∏
�|M

η(�τ)i(�).

Mason found a generalization of such eta-products associated to “gener-
alized cycle shapes” labelled by commuting pairs (g, h) in M24. We shall
denote these generalized moonshine functions by ηg,h(τ).10 Let g, h ∈M24

be a pair of commuting elements of order o(g) = N and o(h) = M and con-
sider their action in the standard 24-dimensional representation V of M24.
Let v1, . . . , v24 be a basis of simultaneous eigenvectors for g and h, rel-
ative to the eigenvalues (e

2πiri
N , e

2πiti
M ), i = 1, . . . , 24, with 1 ≤ ri ≤ N and

1 ≤ ti ≤M . Then, the eta-product ηg,h is defined as

(4.3) ηg,h(τ) = q
1

Nλ

24∏
i=1

∞∏
n=0

(1− e
2πiti

M q
ri
N

+n),

where λ is the length of the shortest cycle of g. In particular, the eta-products
ηh of Equation (4.2) correspond to (g, h) = (e, h). The products ηg,h (or
rather their inverse) can be interpreted as h-twining partition functions for
24 g-twisted chiral free bosons.

As proven in [32], the eta products ηg,h satisfy the modular transforma-
tions

(4.4) υg,h

(
a b
c d

)
(cτ + d)−wηgdh−c,g−bha

(
aτ + b

cτ + d

)
= ηg,h(τ),

for some υg,h

(
a b
c d

)
∈ U(1). The full list of Mason’s generalized eta-products

and the corresponding weights w can be found in Table C. Furthermore, by
definition, ηg,h are invariant under conjugation in M24

(4.5) ηkgk−1,khk−1(τ) = ηg,h(τ).

4.2. Connecting the two moonshines via wall-crossing

The connection between the K3/M24-moonshine for twining genera φh(τ, z)
and the M24-moonshine associated with the functions ηh(τ) was pointed
out in [2]. We now want to use our results above to establish this link also
between the two different generalized moonshines for M24.

10In [33] these functions were denoted by f(g, h; τ).
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As already mentioned, infinite products of the form (3.51) have been
considered by Borcherds [58]. Although in general Φg,h are not expected to
be Borcherds products in a strict sense [29], the same argument as in [58]
shows that the infinite products (3.51) converge in some region of the Siegel
upper half-space H2 and they can be analytically continued to meromor-
phic functions on the whole of H2. Furthermore, in the domain of absolute
convergence of the infinite products (3.51), the zeroes and poles of Φg,h can
only be located at rational quadratic divisors of the form:

(4.6) Hd,m,�,v =
{
( τ z

z σ ) | m
Nλτ + �z + dσ +

v

M
= 0
}

,

where d, m, �, v ∈ Z are coprime integers (gcd(d, m, �, v) = 1) that satisfy a
positive discriminant condition

(4.7) �2 − 4md

Nλ
> 0.

This property is an immediate consequence of the infinite product repre-
sentation (3.51) of Φg,h; the divisors of Borcherds products admit a similar
description [37, 58, 63]. Using the fact that every point in the Siegel upper
half-space can be brought into a domain of convergence using an Sp(4;Z)-
transformation, and that the family of functions Φg,h is preserved under this
action (see Section 5), it follows that all divisor components can be brought
to the form (4.6), for suitable Nλ, M , by some Sp(4;Z)-transformation.11

This formula can be viewed as a generalization of the rational quadratic divi-
sor found in [25] in the context of twisted dyon counting in CHL-models.

The multiplicity of the zero or pole of Φg,h at the divisor Hd,m,�,v is
given by ĉg,h(d, m, �, v). In particular, Φg,h is holomorphic if and only if
ĉg,h(d, m, �, v) is non-negative at every rational quadratic divisor. As will be
shown in Section 5, Φg,h is an automorphic form for a discrete subgroup
Γ(2)

g,h ⊂ Sp(4, R). Therefore, one only needs to consider the distinct orbits of

rational quadratic divisors under the action of Γ(2)
g,h to determine the full

divisor of Φg,h. The precise calculation of the divisor of each Φg,h requires
knowledge of the modular group Γ(2)

g,h for each commuting pair (g, h) and
will be left to future work.

A special role is played by (the modular orbit of) the divisor H0,0,−1,0,
corresponding to the locus z = 0 in H2. Since ce,g(0,−1) = 2 for all g ∈M24,

11Note that Sp(4, Z) acts non-linearly on the variables σ, τ, z; therefore, even
though the divisor (4.6) is defined by a linear equation in σ, τ, z, this is in general
not true for its modular images.
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we have

(4.8) ĉg,h(0, 0,−1, 0) =
1

MNλ

M−1∑
k=0

λN−1∑
b=0

ce,g−bhk(0,−1) = 2.

It follows that every Φg,h has a double zero at this divisor. Using the relation

(4.9)
∑
�∈Z

cg,h(r, �) = 0, for r > 0,

together with the relations

TrHe(0,±1)(g
−bhk(−1)F+F̄ ) = 2,(4.10)

TrHe(0,±�)(g
−bhk(−1)F+F̄ ) = 0 for � > 1,(4.11) ∑

�∈Z

TrHe(0,�)(g
−bhk(−1)F+F̄ ) = Tr24(g−bhk),(4.12)

we obtain

lim
z→0

Φg,h(σ, τ, z)
(2πiz)2

(4.13)

= lim
z→0

y(1− y−1)2

(2πiz)2
(
q

1
Nλ

M∏
t=1

∞∏
m=1

(1− e
2πit

M q
m

Nλ )
∑

�∈Z
ĉg,h(0,m,�,t)

)

×
(
p

M∏
t=1

∞∏
d=1

(1− e
2πit

M pd)
∑

�∈Z
ĉg,h(d,0,�,t)

)
.

Next we use the relations (4.10) to (4.12) to find an expression for ψg,h in
(3.54) in terms of ηg,h and known modular objects. Using the aforementioned
equations we obtain

ψg,h(τ, z)

(4.14)

= q
1

Nλ y

M−1∏
t=0

(
(1− e

2πit

M y−1)ĉg,h(0,0,−1,t)
∞∏

m=1

∏
�∈Z

(1− e
2πit

M q
m

Nλ y�)ĉg,h(0,m,�,t)
)

= q
1

Nλ y(1− y−1)2
∞∏

n=1

(1− qny)2(1− qny−1)2

(1− qn)4

×
M−1∏
t=0

(1− e
2πit

M q
m

Nλ )
∑

�∈Z
ĉg,h(0,m,�,t).
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To proceed we note the identity

q
1

Nλ

M−1∏
t=0

∞∏
m=1

(1− e
2πit

M q
m

Nλ )
∑M−1

k=0

∑Nλ−1
b=0

e
− 2πitk

M

M

e
2πibm

Nλ

Nλ
Tr24(g−bhk)

(4.15)

= q
1

Nλ

M−1∏
t=0

∞∏
m=1

(1− e
2πit

M q
m

Nλ )
∑ 24

i=1
1

M

∑M−1
k=0

1
Nλ

∑Nλ−1
b=0 e−

2πi(t−ti)k
M e

2πib(m−λri)
Nλ

= q
1

Nλ

24∏
i=1

∞∏
n=0

(1− e
2πiti

M qn+
ri
N ) = ηg,h(τ),

where 1 ≤ ri ≤ N and 1 ≤ ti ≤ M are such that (e
2πiri

N , e
2πiti

M ), i = 1, . . . , 24,
are the (g, h)-eigenvalues of a basis of simultaneous eigenvectors for g and
h in the 24-dimensional representation of M24. Using this relation in (4.14)
we obtain

(4.16) ψg,h(τ, z) = −
ϑ1(τ, z)2

η(τ)6
ηg,h(τ) = φ−2,1(τ, z)ηg,h(τ),

where φ−2,1 is the standard weak Jacobi forms of weight −2 and index 1 for
SL(2, Z) (see Appendix E).

To complete the analysis of the limit in (4.13) we note that

lim
z→0

y(1− y−1)2

(2πiz)2
(
q

1
Nλ

M∏
t=1

∞∏
m=1

(1− e
2πit

M q
m

Nλ )
∑

�∈Z
ĉg,h(m,0,�,t)

)
(4.17)

= lim
z→0

ψg,h(τ, z)
(2πiz)2

= ηg,h(τ).

For the pair (g, h) = (e, e), the function Φe,e(σ, τ, z) is invariant under the
exchange σ ↔ τ . From a physical viewpoint, this is a consequence of S-
duality of type II superstring compactified on K3× T 2. In Section 5.2, we
will prove that Φg,h satisfy analogous transformations

(4.18) Φg,h(σ, τ, z) = Φg,h′

( τ

Nλ
, Nλσ, z

)
,

where h′ ∈ CM24(g) is not necessarily in the same conjugacy class as h. Using
this identity, we conclude that

(4.19) lim
z→0

Φg,h(σ, τ, z)
(2πiz)2

= ηg,h(τ)ηg,h′(Nλσ).
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We conjecture that this equation has a physical interpretation as a wall-
crossing formula whenever 1/Φg,h is the generating function of BPS-states
in string theory. Indeed, for some pairs (g, h) we know that Φ−1

g,h corresponds
to the generating function for the h-twisted degeneracies of 1/4 BPS states in
a CHL model. More precisely, these degeneracies are the Fourier coefficients
of the automorphic form Φ−1

g,h and the region where the Fourier expansion is
performed depends on the moduli. These multiplicities jump as one crosses
the pole at z = 0; the physical interpretation is that some 1/4 BPS dyon
corresponding to a bound state of 1/2 BPS configurations becomes unstable
in a certain region of the moduli space and thus disappears from the spec-
trum. The mismatch ηg,h(τ)−1ηg,h′(Nλσ)−1 between the Fourier coefficients
at the two sides of the pole represents the degeneracy of a bound state of
two 1/2 BPS states.

5. Automorphic properties

In this final section, we analyze the modular transformation properties of
Φg,h(σ, τ, z) with respect to discrete subgroups of Sp(4, R). We show that
they are Siegel modular forms and in some cases we are able to identify
them with previously known objects. Our proof of modularity is done in two
steps. The crucial first step is to determine the transformation properties
of Φg,h(σ, τ, z) with respect to the interchange σ ↔ τ . We refer to this as
“S-duality” since in the cases when Φg,h has an interpretation as a partition
function in anN = 4 string theory this corresponds precisely to the S-duality
that exchanges electric and magnetic charges (see, e.g., [24, 25, 52, 64, 65]). It
turns out that this transformation involves the subtle concept of “relabeling”
of the group elements (g, h) introduced in [17]. By a careful analysis of this
relabeling phenomenon we establish the S-duality symmetry in Section 5.1.
To complete the analysis of the automorphic properties of Φg,h(σ, τ, z) we
must also verify the transformation properties with respect to the remaining
generators of the relevant modular subgroups of Sp(4, R). This is rather
straightforward since it essentially follows from the modularity of the seed
functions φg,h(τ, z) and ψg,h(τ, z). We present this analysis in Sections 5.2
and 5.3 we also investigate some examples in detail.

5.1. Relabeling and S-duality

In this section, we will show that the functions Φg,h(σ, τ, z) defined by the
infinite product (3.51) satisfy some “S-duality” identities that exchange σ
and τ . This property, together with the modular properties of the twisted
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twining genera φg,h proved in [17], will be sufficient to prove that all Φg,h are
automorphic functions under some subgroup of Sp(4, R) (see Section 5.2).
5.1.1. Orbifolds and relabeling. In the case where g belongs to some
M23 subgroup of M24, the main step in the derivation of S-duality for Φg,h

is the relabeling phenomenon [17]. This can be understood by considering
the example of a holomorphic CFT by a cyclic group. In this subsection, we
review some of the standard properties of these orbifolds. See, for example,
[39, 53, 54] for more details.

Let C be a holomorphic CFT with automorphism group G. Given an
element g ∈ G of order N , let C′ be the orbifold12 of C by 〈g〉. The spec-
trum H′ of C′ is constructed by considering the direct sum of the gr-twisted
representations Hgr of C, for all r = 0, . . . , N − 1 and then restricting to the
g-invariant sector, i.e.,

(5.1) H′ = ⊕N−1
r=0

(
H〈g〉gr

)
,

where H〈g〉gr denotes the g-invariant part of the gr-twisted sector. The orb-
ifold theory is a well-defined CFT, provided that one can define a con-
sistent (in particularly, local) OPE between the g-invariant twisted fields.
A necessary and sufficient consistency condition is that the cohomology
class [α] ∈ H3(G, U(1)) is trivial when restricted to H3(〈g〉, U(1)) (level-
matching). In what follows, we will assume that this condition is satisfied.

Each twisted sector carries a representation of some central extension
Cα

G(g) of the centralizer CG(g) of g in G, that is compatible with the struc-
ture of twisted C-module. As explained in Section 3.2.3, there is an ambiguity
in the definition of this representation. If the orbifold is consistent, the action
of Cα

G(g) can be always chosen to be compatible also with the OPE of g-
invariant twisted fields, so that it defines a group of automorphisms of the
orbifold theory. In particular, for any r, s ∈ Z, the representation of Cα

G(g)
corresponding to the gr+s-twisted sector must be contained in the tensor
product of the representations corresponding to the gr- and gs-twisted sec-
tors. A central extension satisfying this constraint can be chosen of the form

(5.2) 1→ 〈Q〉 ∼= ZN → Cα
G(g)→ CG(g)→ 1,

where the central element Q (quantum symmetry) acts by e
2πir

N on the gr-
twisted sector.

12Here and in the following, we use the word “orbifold” in the physicists’ sense,
i.e., as a full-fledged two dimensional CFT with modular invariant partition func-
tion.
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Since the spectrum H′ of C′ consists of g-invariant states, the group
acting faithfully on H′ is Cα

G(g)/〈g〉. We conclude that Cα
G(g)/〈g〉 must be

a subgroup of the group G′ of automorphisms of the orbifold CFT C′. For
each h ∈ Cα

G(g), one can define the h-twining genera Z ′e,h as in (2.3), such
that

(5.3) Z ′e,h(τ) =
1
N

∑
r,s∈Z/NZ

Zgr,gsh(τ).

Note that Z ′e,h(τ) only depends on the image of h in the projection Cα
G(g)→

Cα
G(g)/〈g〉 ⊆ G′.
The group G′ of automorphisms of C′ contains, in particular, an element

g′ corresponding to the quantum symmetry g′ ≡ Q. It is well known that by
taking the orbifold of C′ by the cyclic group 〈g′〉 one re-obtains the original
CFT C. More precisely, the g′n-twisted sector H′g′n can be identified with
the direct sum

(5.4) H′g′n = ⊕N−1
r=0 Hgr,n,

where Hgr,n is the g-eigenspace with eigenvalue e
2πin

N in the gr-twisted sector
Hgr of the CFT C. Under the identification (5.4), the g′-invariant sector of
the direct sum ⊕N−1

n=0 H′g′n corresponds indeed to the spectrum H of the
original theory C and the quantum symmetry Q′ corresponds to g. The
identification (5.4) can be refined as

(5.5) H′g′n,r
∼= Hgr,n,

where H′g′n,r is the g′-eigenspace with eigenvalue e
2πim

N in the twisted sector
H′g′n . Equation (5.5) is an isomorphism between (untwisted) modules over
the common subalgebra C〈g〉 = C′〈g′〉 of C and C′.

Each eigenspace Hgr,n is a representation of Cα
G(g). Analogously, each

twisted sector H′g′n (and, in fact, each eigenspace H′g′n,r) carries an action
of a suitable central extension

(5.6) 1→ 〈Q′〉 → Cα′
G′(g

′)→ CG′(g′)→ 1,

of CG′(g′) for some 3-cocycle α′ representing a class in H3(G′, U(1)). In fact,
there is an isomorphism ϕ : Cα

G(g)
∼=→ Cα′

G′(g
′) such that ϕ(Q) = g′, ϕ(g) = Q′
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and the identification (5.5) is equivariant with respect to the action of the
corresponding groups. As a consequence, Equation (5.3) can be generalized
to obtain the formulae for the twisted twining partition functions in the
theory C′

(5.7) Z ′g′n,ϕ(h)(τ) =
1
N

∑
r,s∈Z/NZ

e−
2πins

N Zgr,gsh(τ), h ∈ Cα
G(g).

A special case occurs when the two CFTs C′ and C are isomorphic, so
that G′ ∼= G. If, in addition, g′ and g are in the same conjugacy class of G,
the isomorphism ϕ can be chosen to be an outer automorphism of the group
Cα

G(g) that exchanges g and Q, i.e., ϕ(g) = Q and ϕ(Q) = g and such that

(5.8)
N−1∑
b=0

e
2πirb

N

N
Zgm,g−bϕ(h)(τ) =

N−1∑
s=0

e
2πims

N

N
Zgr,g−sh(τ).

5.1.2. Relabeling for Mathieu moonshine. The construction
described in the previous section in the case of a holomorphic CFT can
be repeated with minor modifications for the abstract modules Hg under-
lying the generalized Mathieu Moonshine. It should be stressed, however,
that since no consistent CFT with automorphism group M24 and spectrum
H exists, these properties do not follow directly from the general theory of
holomorphic CFTs and need to be proved independently.

Consider an element g ∈ G = M24 of order N and letHg be the g-twisted
sector in the generalized Mathieu Moonshine conjecture. Let H′ be the g-
invariant subspace of the direct sum of all twisted sectors

(5.9) H′ = ⊕N−1
r=0

(
H〈ρ̃g,r(g)〉

gr

)
,

where H〈ρ̃g,r(g)〉
gr denotes the ρ̃g,r(g)-invariant part of the gr-twisted sector.

The level-matching condition, i.e., the requirement that the restriction of the
cohomology class [α] is trivial in H3(〈g〉, U(1)), is satisfied if and only if g is
contained in some M23 subgroup of M24, so we will consider only this case.
If H can be interpreted as the spectrum of R–R right-moving ground states
in a non-linear sigma model on K3 with a symmetry g, then H′ corresponds
to the spectrum of right-moving ground states in the g-orbifold theory. The
orbifold is a consistent N = (4, 4) SCFT with central charge 6, which turns



444 Daniel Persson and Roberto Volpato

out to be again a non-linear sigma model on K3, since its elliptic genus is

TrH′
(
qL0− c

24 q̄L̄0− c̄

24 yJ3
0 (−1)F+F̄

)
(5.10)

=
N−1∑
r,s=0

1
N
TrHgr

(
ρ̃g,r(g)sqL0− c

24 q̄L̄0− c̄

24 yJ3
0 (−1)F+F̄

)

=
1
N

∑
r,s=1

φgr,gs(τ, z) = φe,e(τ, z).

Here, the twisted twining genera φgr,gs are relative to a cocycle α satisfying
the conditions (D.17) and (D.21), in particular with trivial restriction to
〈g〉. As shown in Appendix D.2, in this case the associated central extension
Cα

M24
(g) is finite

(5.11) 1→ 〈Q〉 ∼= ZN → Cα
M24

(g)→ CM24(g)→ 1.

In the theory of orbifold CFTs, the conditions (D.17) and (D.21) ensure
that the action of Cα

M24
(g) is compatible with the OPE of the twisted fields.

The identity (5.10) can be verified case by case for all g ∈ M24 satisfying
the level-matching condition, and holds independently of the existence of a
physical interpretation in terms of orbifolds of K3 sigma models.

By (5.10), the space H′ defined by (5.9) is isomorphic to H as a module
over the N = 4 superconformal algebra. As a consequence, one can define
a representation of G′ = M24 over H′ satisfying the properties of Mathieu
moonshine. Furthermore, H′ also carries a representation ρ′ of Cα

M24
(g)/〈gα〉

given by the restriction of ⊕N−1
r=0 ρ̃g,r to H′. It can be proved that, as an

abstract group, Cα
M24

(g)/〈gα〉 is isomorphic to a subgroup of M24 [17]. More
precisely, Q is identified with an element g′ ∈ G′ ∼= M24 in the same conju-
gacy class as g and the image of Cα

M24
(g)/〈g〉 is the centralizer CM24(g

′) of g′.
Therefore, the “orbifold” construction for the Mathieu moonshine modules
is perfectly analogous to the case, described in the Section 5.1.1, where a
holomorphic CFT C and its orbifold C′ are isomorphic.

In analogy with the Section 5.1.1, we can introduce some g′n-twisted
sectors H′g′n satisfying (5.4) and (5.5), now considered as isomorphisms of
N = 4 modules. Each twisted sectorH′g′n carries a representation of a central
extension Cα′

M24
(g′) defined as in Equation (5.6). It is natural to conjecture

that there is an isomorphism ϕ : Cα
M24

(g)
∼=→ Cα′

M24
(g′) such that the identi-

fications (5.5) are equivariant with respect to the action of the correspond-
ing groups. Since g ∈ G and g′ ∈ G′ belong to the same conjugacy class of
G ∼= G′ ∼= M24, they can be identified through a suitable choice of the iso-
morphismG ∼= G′. With this identification, ϕ defines an outer automorphism
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of Cα
M24

(g) exchanging g andQ. Furthermore, we expect the analogue of (5.8)
to hold. More precisely, we can state the following:

Conjecture 5.1. For all g ∈ M23 ⊂ M24 and all choices of cocycle α sat-
isfying (D.17) and (D.21) and the corresponding central extension Cα

M24
(g)

as in (5.11), there is an automorphism ϕ : Cα
M24

(g)→ Cα
M24

(g) such that
ϕ(g) = Q, ϕ(Q) = g, and for all k ∈ Cα

M24
(g), m, r ∈ Z,

(5.12)
N−1∑
b=0

e
2πirb

N

N
φgα

m,gα
−bϕ(k)(τ, z) =

N−1∑
s=0

e
2πims

N

N
φgr

α,g−s
α k(τ, z).

The existence of automorphisms that exchange g and Q is easy to check
for the elements g of order higher than 4 (thus, excluding the classes 2A and
4B of M24). Indeed, in all these cases the central extension of CM24(g) has
the form Cα

M24
(g) ∼= 〈Q〉 × (〈Qg〉.G). This group clearly admits an automor-

phism that fixes the factor 〈Qg〉.G and exchanges Q and g. For the classes
2A and 4B, the existence of such automorphisms can be verified with the
aid of the software GAP (see also the ancillary files in the arXiv version of
[17]).

In order to prove the conjecture, one needs to show that, for each g,
one of these automorphisms ϕ satisfies (5.12). Heuristically, by standard
CFT arguments, a conjecture of the form 5.1 and the corresponding iden-
tities (5.12) are expected to hold for any group H ⊆ CM24(g) admitting an
interpretation as a group of symmetries of a K3 sigma model. According
to the analysis in [8], such an interpretation exists whenever H ⊂ M24 has
at least four orbits in the 24-dimensional permutation representation; this
condition is satisfied by most of the non-cyclic abelian groups 〈g, h〉 ⊂M24

(see Table Appendix F in Appendix F).
A more rigorous and general proof can be obtained through a direct

computation. To this aim, it is useful to rephrase Equation (5.12) in terms
of identities among the twisted twining genera φg,h relative to the central-
izer CM24(g) rather than the genera φgα,hα

relative to its central extension
Cα

M24
(g). Recall that any element k ∈ Cα

M24
(g) can be written as k = Qxhα,

for some x ∈ Z/NZ, h ∈ CM24(g). Therefore, one needs to show that, for each
h ∈ CM24(g), the image ϕ(hα) = Qx′h′α of the lift hα ∈ Cα

M24
(g) satisfies

e
2πimx′

N

N−1∑
b=0

e
2πirb

N

N
εg,h′

(
1 b
0 m

)
φgm,g−bh′(τ, z)(5.13)

=
N−1∑
s=0

e
2πims

N

N
εg,h ( 1 s

0 r )φgr,g−sh(τ, z),
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for all m, r ∈ Z. Given the explicit knowledge of the twisted twining genera
φg,h, the proof of the conjecture then amounts to verifying a long series of
identities between Jacobi forms.

We have verified that, for each conjugacy class of g, there is essentially
only one choice for the conjugacy class h′ and x′ ∈ Z/NZ for which all these
identities can be possibly satisfied. In particular, if g is not in one of the
classes 2A or 4B, then the automorphism ϕ necessarily satisfies

(5.14) h′ = h, x′ = 0,

for all h ∈ CM24(g)\〈g〉. For g in one of the classes 2A or 4B, the conjugacy
class of h′ in CM24(g) for each CM24(g)-conjugacy class of h is reported in
Tables D and E. Notice that, in general, h and h′ might belong to different
conjugacy classes of M24; this phenomenon has been dubbed “relabeling”
in [17]. When h and h′ are in different conjugacy classes of CM24(g), we can
choose the cocycle α in such a way that x′ = 0. When h and h′ are conjugated
in CM24(g), then x′ can be set to 0 if and only if ϕ(hα) is conjugated with
hα in the central extension Cα

M24
(g). This is always the case, except for g

in M24-class 4B and h in one of the classes 2B3 or 4B1 of CM24(g). In both
these cases, the pair g, h generates group 20 in the list of Appendix F and
ϕ(hα) is conjugated with Q2hα, i.e., x′ = 2.

We have proved a subset of the identities (5.13), required for the analysis
in Section 5.1.3. This leads to the following theorem:

Theorem 5.2. Conjecture 5.1 holds for all g in the classes 1A, 2A, 3A,
4B and 8A of M24.

The identities (5.13) can be easily verified by considering the modu-
lar properties of both sides and comparing a sufficient number of Fourier
coefficients. This is a tedious but totally straightforward calculation, so we
omit the details. We leave a systematic analysis of these identities and the
complete proof of the conjecture to future work.

Note that whenever a generator g of a non-cyclic abelian subgroup
〈g, h〉 ⊂M24 is also an element of M23 ⊂M24, then it is necessarily in one
of the classes 2A, 3A, 4B or 8A and Theorem 5.2 applies (see Appendix F
for a list of all such groups and their generators). As will be explained in the
Section 5.1.3, the identities (5.13) are sufficient to establish the “S-duality
invariance” of the corresponding automorphic forms Φg,h. The conjecture 5.1
is trivially true in the degenerate case where g is the identity, so the automor-
phic forms Φe,h associated with cyclic groups satisfy an analogous property
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[28, 29]. For the groups 〈g, h〉 that have no generator in M23, the modular
properties of Φg,h will be determined in a different way in Section 5.1.3.

5.1.3. S-duality invariance. In this section, we will show that the func-
tions Φg,h(σ, τ, z) defined in terms of the infinite product (3.51), satisfy iden-
tities of the form

(5.15) Φg,h(σ, τ, z) ∼ Φg,h′

( τ

Nλ
+ x, Nλσ, z

)
,

for some suitable h′ ∈ CM24(g) and real x that depends on the cocycle α.
Here, ∼ denotes equality up to a phase, that depends on the cocycle α. More
precisely, for each abelian subgroup 〈g, h〉 ⊂M24, we will prove identities of
the form (5.15) for at least one pair of generators (g, h). Furthermore, in
all such cases the cocycle α can be chosen in such a way that x = 0. For
the remaining pairs (g, h) ∈ P, the identities (5.15) can be derived through
a complete analysis of the automorphic properties of Φg,h, as discussed in
Section 5.2.

When the function Φg,h admits a physical interpretation as the generat-
ing functions for twisted multiplicities of 1/4 BPS states in a CHL model,
the identity (5.15) corresponds to S-duality exchanging electric and mag-
netic charges in the low energy effective action.

Case 1: g in one of the classes 1A, 2A, 3A, 4B or 8A

Let g be an element of M23 ⊂M24 of order N in one of the classes considered
in theorem 5.2. The restriction of [α] to H3(〈g〉, U(1)) is trivial, so that λ = 1
and we can choose a representative α satisfying (D.17) and (D.21). Consider
an element h ∈ CM24(g) and letM be the order of the lift hα ∈ Cα

M24
(g). Then

Equation (5.13) implies that for any d, m, k ∈ Z≥0, there are h′ ∈ CM24(g)
and x′ ∈ Z/NZ such that

N−1∑
s=0

e
2πids

N

N
εg,h

(
k s
0 m

)
φgm,g−sh′k(τ, z) =

N−1∑
b=0

e
2πim(b−kx′)

N

N
εg,h

(
k b
0 d

)
φgd,g−bhk(τ, z).

(5.16)

Thus,

ĉg,h(d, m, �, t) =
M−1∑
k=0

e−
2πitk

M

M

N−1∑
b=0

e
2πibm

N

N
εg,h

(
k b
0 d

)
cgd,g−bhk

(
md

N
, �

)(5.17)
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=
M−1∑
k=0

e
2πikmx′

N
e−

2πitk

M

M

N−1∑
s=0

e
2πids

N

N
εg,h′

(
k s
0 m

)
cgm,g−sh′k

(
md

N
, �

)
(5.18)

= ĉg,h′

(
m, d, �, t+mx′

M

N

)
.(5.19)

If h and h′ are in different conjugacy classes of CM24(g), we can choose the
representative cocycle α in the class [α] in such a way that x′ = 0, so that

Φg,h(σ, τ, z) = pq
1
N y

∏
(d,m,�)>0

M−1∏
t=0

(1− e
2πit

M q
m

N y�pd)ĉg,h(d,m,�,t)(5.20)

= pq
1
N y

∏
(d,m,�)>0

M−1∏
t=0

(1− e
2πit

M q
m

N y�pd)ĉg,h′ (m,d,�,t)(5.21)

= Φg,h′

( τ

N
, Nσ, z

)
.(5.22)

When h and h′ are in the same conjugacy class of CM24(g), then x′ cannot be
eliminated in general. This corresponds to the case when ϕ(hα) is conjugated
with Qx′hα in the central extension Cα

M24
(g). In particular, since ϕ(hα)M =

ϕ(hM
α ) = e, this implies that Qx′ has order M , i.e., there is an integer x such

that

(5.23) x′M = xN.

Thus,

Φg,h(σ, τ, z) = pq
1
N y

∏
(d,m,�)>0

M−1∏
t=0

(
1− e

2πit

M q
m

N y�pd
)ĉg,h(d,m,�,t)

(5.24)

= pq
1
N y

∏
(d,m,�)>0

M−1∏
t=0

(
1− e

2πit

M q
m

N y�pd
)ĉg,h(m,d,�,t+mx)

(5.25)

= pq
1
N y

∏
(d,m,�)>0

M−1∏
t′=0

(
1− e

2πit′
M e−

2πixm

M q
m

N y�pd
)ĉg,h(m,d,�,t′)

(5.26)
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= pq
1
N y

∏
(d,m,�)>0

M−1∏
t′=0

(
1− e

2πit′
M e−

2πix′m
N q

m

N y�pd
)ĉg,h(m,d,�,t′)

(5.27)

= e
2πix′

N Φg,h

(
τ − x′

N
, Nσ, z

)
.(5.28)

In fact, x′ �= 0 only when g is in class 4B and h in one of the classes 2B3 or
4B1 of CM24(g). In both cases, the pair g, h generates group 20 in the list of
Appendix F and x′ = 2. For such pairs (g, h), however, since Tα

L φg,h = 0 for
L odd, the function Φg,h satisfies the identity

(5.29) Φg,h(σ, τ, z) = −Φg,h

(
σ +

1
2
, τ, z

)
.

Using this identity, we conclude

(5.30) Φg,h(σ, τ, z) = Φg,h

( τ

N
, Nσ, z

)
.

If the conjecture 5.1 holds, then an S-duality property holds for all Φg,h such
that g is an element of M23 ⊂ M24.

Case 2: g in one of the classes 2B, 3B, 4C, 6B, 12B

The calculations in this case are rather technical and have therefore been
relegated to Appendix D.3. Below we summarize the results.

For a suitable choice of the representative 3-cocycle α, we have

(5.31) Φg,h(σ, τ, z) = Φg,h−1

( τ

N2
, N2σ, z

)
,

if h and h−1 are not conjugated within CM24(g), and

(5.32) Φg,h(σ, τ, z) = Φg,h

( τ

N2
, N2σ, z

)
,

otherwise.

5.2. Automorphic properties

Using the results of the previous sections, we can now prove that the func-
tions Φg,h(σ, τ, z), defined by the analytic continuation of the infinite product
(3.51) to the Siegel upper half-space H2 are automorphic forms under certain
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subgroups of Sp(4, R) acting by

(5.33)
(

A B
C D

)
· Z = (AZ +B)(CZ +D)−1,

(
A B
C D

)
∈ Sp(4, R)

where

(5.34) Z =
(

τ z
z σ

)
.

Recall that the function Φg,h can be written as

(5.35) Φg,h(σ, τ, z) = pψg,h(τ, z) exp

[
−

∞∑
N=1

pL(T α
L φg,h)(τ, z)

]
,

where the right-hand side converges on a suitable domain in H2.
Let us consider the action of various generators of Sp(4, R) on Φg,h.

• The Heisenberg subgroup H(Z) of Sp(4, Z) is defined as

(5.36) H(Z) =

⎧⎪⎪⎨
⎪⎪⎩[ζ, μ, κ] :=

⎛
⎜⎜⎝
1 0 0 μ
ζ 1 μ κ
0 0 1 −ζ
0 0 0 1

⎞
⎟⎟⎠ , ζ, μ, κ ∈ Z

⎫⎪⎪⎬
⎪⎪⎭ ,

and acts by

(5.37) [ζ, μ, κ] · (σ, τ, z) = (σ + κ+ 2ζz + ζ2τ, τ, z + μ+ ζτ).

By (5.35), using the elliptic properties of the Jacobi forms ψg,h and
T α

L φg,h, we conclude easily that every Φg,h is invariant under H(Z).

• For many commuting pairs g, h ∈M24, the genera T α
L φg,h vanish

unless L is an integer multiple of some r ≡ rg,h ∈ Z. Therefore, Φg,h

is invariant up to a multiplier under σ 	→ σ + 1
r , i.e.,

(5.38) Φg,h

([
0, 0,

κ

r

]
· (σ, τ, z)

)
= e−

2πiκ

r Φg,h(σ, τ, z),

where [0, 0, κ
r ] · (σ, τ, z) = (σ + κ

r , τ, z). In particular, rg,h = 1 when
g, h generate a cyclic group and for groups 13, 23, 24 and 27, r = 3
for groups 33 and 34, r = 4 for groups 25 and 26 and r = 2 in all the
other cases. Note that rg,h always divides Nλ.
More generally, the transformation [0, 0, κ

Nλ ] relates the functions Φg,h
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relative to two distinct choices of the cocycle α, that differ from one
each other by a Nλ-root of unity.

• The twisted twining genera T α
L φg,h are Jacobi forms of weight 0 and

index L under a group Γg,h ⊂ SL(2, Z) (see the tables in Appendix F),
up to a multiplier χL

g,h. As noticed above, for each group 〈g, h〉, there
is an integer r ≡ rg,h such that T α

L φg,h vanishes unless r|L. Therefore,
only the power χr

g,h needs to be a well-defined character of Γg,h. On
the other hand, the properties (4.4) and (4.5) imply that the eta
products ηg,h are modular forms of weight w and multiplier υg,h under
the same group Γg,h associated with φg,h. Equivalently, each ψg,h is a
weak Jacobi form of weight w − 2, index 1 and multiplier υg,h under
Γg,h.
For each (γ, k) ∈ SL(2, Z)×M24, let us choose μg,h(γ, k) ∈ R/Z such
that

(5.39) e2πirg,hμg,h(γ,k) =
(
εg,h(γ, k)

)rg,h

, γ ∈ SL(2, Z).

Then for any γ =
(

a b
c d

)
∈ SL(2, Z) and k ∈ M24, we have

υg,h(γ)Φ(γ,k)·(g,h)

(
ξ(γ) · Z

)
= det(cτ + d)w−2Φg,h(σ + μg,h(γ, k), τ, z),

(5.40)

where Z = ( τ z
z σ ) and

(5.41) ξ

(
a b
c d

)
:=

⎛
⎜⎜⎝

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎟⎠ ,

so that

(5.42) ξ(γ) ·
(

τ z
z σ

)
=

⎛
⎜⎜⎝

aτ + b

cτ + d

z

cσ + d

z

cσ + d
σ − z2

cσ + d

⎞
⎟⎟⎠ .

In particular, by taking (γ, k) ∈M24 stabilizing (g, h), we obtain

υ′g,h(γ, k)Φg,h

(
[0, 0,−μg,h(γ, k)] · (ξ(γ) · Z)

)
= det(cτ + d)w−2Φg,h(σ, τ, z),

(5.43)
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where γ ∈ Γg,h and

(5.44) υ′g,h(γ, k) = υg,h(γ)e−2πiμg,h(γ,k).

• Finally, for several pairs (g, h) of commuting elements of M24, we have
proved that

(5.45) Φg,h(Z) = Φg,h′(VNλ · Z),

for a suitable h′ ∈ CM24(g) and a suitable choice of the cocycle α,
where

(5.46) Vt =
1√
t

⎛
⎜⎜⎝
0 t 0 0
1 0 0 0
0 0 0 1
0 0 t 0

⎞
⎟⎟⎠ ,

acts by

(5.47) Vt ·
(

τ z
z σ

)
=

⎛
⎝tσ z

z
τ

t

⎞
⎠ .

Note that in each of the 55 conjugacy classes of abelian subgroups
〈g, h〉 ⊂M24, an identity of the form (5.45) has been proved for at
least one pair of generators.

As discussed in [51, 63], for any integers N, t > 0, the elements

(5.48) Vt; ξ(γ), γ ∈ Γ0(N); [ζ, μ, κ/t], ζ, μ, κ ∈ Z,

generate the group Γ+
t (N) = 〈Γt(N), Vt〉 ⊂ Sp(4, R) which is a normal dou-

ble extension of the paramodular group

(5.49) Γt(N) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
∗ t∗ ∗ ∗
∗ ∗ ∗ t−1∗

N∗ Nt∗ ∗ ∗
Nt∗ Nt∗ t∗ ∗

⎞
⎟⎟⎠ ∈ Sp(4, Q), ∗ ∈ Z

⎫⎪⎪⎬
⎪⎪⎭ .

From the discussion above, it follows that every Φg,h is a modular function
under some finite index subgroup Γ(2)

g,h of a paramodular group Γt ≡ Γt(1),
for some suitable t. The image of Φg,h under the action of a generic element
of Γt is expected to be again a function Φg′,h′ for some (possibly different)
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commuting pair g′, h′ ∈ M24, and defined with respect to a suitable choice
of the cocycle α.

Under the action of Sp(4, Z), the functions Φg,h(σ, τ, z), for all com-
muting g, h ∈ M24, are mapped into one another, up to shifts and rescalings
of the arguments, i.e., schematically, Φg,h(γ · (σ, τ, z)) ∼ Φg′,h′(σ/t+ x, tτ, z)
for suitable t ∈ Z, x ∈ R (we dropped the automorphy factors). In particu-
lar, Φg,h is a Siegel modular form for some congruence subgroup of Sp(4, Z),
as proved in the following theorem.

Theorem 5.3. For each pair of commuting elements g, h ∈ M24 and for
a suitable choice of the cocycle α, the function Φg,h(Z) is a meromorphic
Siegel modular function of weight w − 2 and level H for a suitable H, i.e.,
it is a meromorphic function on the upper half space H2 such that

(5.50) Φg,h

(
(AZ +B)(CZ +D)−1

)
= det(CZ +D)w−2Φg,h(Z),

for all
(

A B
C D

)
∈ Γ(2)(H) := ker(Sp(4, Z)→ Sp(4, Z/HZ)). Here, w is the

weight of the corresponding Mason’s eta function ηg,h.

Proof. It is sufficient to prove the statement for those “special pairs” (g, h)
for which we proved that Φg,h(σ, τ, z) = Φg,h′(τ/t, tσ, z) for a suitable choice
of representative cocycle α. Here, h′ is some element in CM24(g) (possibly
different from h) and t = Nλ, where, as usual, N denotes the order of g and
λ the length of the shortest cycle of g as a permutation of 24 objects. Every
other commuting pair of M24 elements can be obtained by an SL(2, Z)
transformation (g, h) · γ of one such “special pair” (g, h), so that Φ(g,h)·γ
is related to Φg,h by an Sp(4, Z) transformation ξ(γ). Thus, if Φg,h is a
modular function under Γ(2)(H), then Φ(g,h)·γ is a modular function under
ξ(γ)Γ(2)(H)ξ(γ)−1 = Γ(2)(H).

There is some integer n such that the functions T α
L φg,h, L ∈ Z>0, and

ψg,h are weak Jacobi forms of weight 0 and index L (respectively, w −
2 and 1) with trivial multiplier under the congruence subgroup Γ(n) :=
ker(SL(2, Z)→ SL(2, Z/nZ)). We can choose n so that also T α

L φg,h′ and
ψg,h′ are weak Jacobi forms with trivial multiplier under the same group.
Note that n is necessarily a multiple of t = Nλ, since this is the small-
est integer for which φg,h(τ +Nλ, z) = φg,h(τ, z). Thus, both Φg,h(Z) and
Φg,h′(Z) = Φg,h(Vt · Z) transform as modular forms of weight w − 2 under
ξ(Γ(n)) and [ζ, μ, 0], for all ζ, μ ∈ Z. Equivalently, Φg,h transforms as a Siegel
modular form of weight w − 2 under the group generated by

(5.51) ξ(Γ(n)), Vtξ(Γ(n))Vt, [ζ, μ, 0], Vt[ζ, μ, 0]Vt ζ, μ ∈ Z,
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which is a subgroup of Sp(4, Z), since t|n. We will prove that this group
contains Γ(2)(H), with H = nt. By Theorem 12.4 and Proposition 13.2 of
[66], Γ(2)(nt) is generated by ξ(Γ(nt)) together with matrices of the form
( I ntB

0 I
), ( I 0

ntC I
), with B, C arbitrary 2× 2 integral symmetric matrices. It

is easy to check that every element of the form ( I ntB
0 I

) ∈ Γ(2)(nt) is contained
in the group generated by [ζ, μ, 0] and ξ( 1 bn

0 1 ), with ζ, μ, b ∈ Z, and every
element of the form ( I 0

ntC I
) ∈ Γ(2)(nt) is contained in the group generated by

ξ( 1 0
cn 1 ), Vtξ( 1 0

cn 1 )Vt and Vt[ζ, 0, 0]ξ( 1 0
n 1 )[−ζ, 0, 0]Vt, for all ζ, c ∈ Z. Clearly

ξ(Γ(nt)) is a subgroup of ξ(Γ(n)), and this concludes the proof. �
In Section 5.3, we will discuss the precise automorphic properties of some
of these functions Φg,h. We leave the detailed description of the groups Γ(2)

g,h
for all pairs g, h to a future work.

5.3. Examples

Having established that the Φg,h are indeed Siegel modular forms we now
wish to analyze some specific examples in detail. We denote the pairs (g, h)
by the M24-conjugacy class of g and the CM24(g)-conjugacy class of h. See
Appendix F for more details.

Φ2A,2A2,3,5 (Groups 1, 2, 3)
Groups 1, 2 and 3 are Z2 × Z2 groups that contain three elements in class
2A of M24. The corresponding Φg,h are identical

(5.52) Φ2A,2A2(σ, τ, z) = Φ2A,2A3(σ, τ, z) = Φ2A,2A5(σ, τ, z).

The 3-cocycle α can be chosen to have trivial restriction to these groups. The
Hecke transforms of the twisted twining genera TLφg,h vanish unless L is a
multiple of r = 2; in this case, they are Jacobi forms under Γg,h = SL(2, Z)
with trivial multiplier χ2

g,h = 1. The eta products for these elements are
given by

(5.53) ηg,h(τ) = η(τ)12,

and are modular forms of weight w = 6 under SL(2, Z) with multiplier (see
Equation (5.40))

(5.54) υg,h(T ) = −1 υg,h(S) = −1.
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Furthermore, from the results of Section 5.1.3 we deduce that, since g ∈M23

(with N = 2 and λ = 1), Φg,h satisfies

Φ2A,2A2(σ, τ, z) = Φ2A,2A3

(τ

2
, 2σ, z

)
, Φ2A,2A5(σ, τ, z) = Φ2A,2A5

(τ

2
, 2σ, z

)
.

(5.55)

Thus, Φg,h is a modular form of weight w − 2 = 4 with a multiplier υg,h

given above under the subgroup of Sp(4, R) generated by the Heisenberg
group H(Z), by SL(2, Z) and under V2. These elements of Sp(4, R) generate
the paramodular group Γ+

2 (1). Furthermore, Φg,h has a double zero at the
rational quadratic divisor z → 0 and at all modular images of this divisor.
This allows to identify Φg,h as

(5.56) Φg,h(Z) = Δ2(Z)2,

where Δ2 is the modular form of weight 2 under Γ+
2 (1) defined by Gritsenko

and Nikulin in [51]. Notice that in this case the function ψg,h in (4.16) is
given by

(5.57) ψg,h(τ, z) = −ϑ1(τ, z)2η(τ)6,

which is the additive seed for Δ2(Z) [51]. Hence we conclude that in this
case

(5.58) Φg,h = Add[ψg,h],

as claimed in Section 3.3.3. The Siegel modular form (Δ2)2 also appears
in the context of umbral moonshine, where it corresponds to the Siegel
modular form Φ(3)(Z) (see Section 2.6 of [30]). In this context Φ(3) arises as
the multiplicative lift of the umbral Jacobi form Z(3)(τ, z) of weight 0 and
index 2. It is therefore interesting to ask how this relates to our construction
of Φg,h as the multiplicative lift (3.51). By comparing Fourier coefficients one
can verify that we have the identity (see the table in Appendix F for the
result of the Hecke action)

(5.59) T2φg,h(τ, z) = Z(3)(τ, z).

However, this does not necessarily imply that the two lifts are the same,
since a priori our multiplicative lift in (3.51) differ from that in [30] since
we are constructing it from the seed function φg,h, which is a weak Jacobi
form of weight 0 and index 1, using the equivariant Hecke operator TL (the
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twist by the 3-cocycle α is trivial in this case). Even so, by virtue of (5.58),
in the case at hand it turns out that the lifts do coincide and we thus have

(5.60) Mult[φg,h] = Φ(3).

Φ2A,2A4 (Group 7)
The function Φ2A,2A4 of group 7 satisfies

(5.61) Φ2A,2A4(V2 · Z) = Φ2A,4B1(Z),

where h′ in class 4B1 of CM24(g) is such that h′2 = g. Therefore, the right-
hand side is a Sp(4, Z) transformation of Φe,4B , which is a Siegel modular
form under Γ1(4) = Γ(2)

0 (4) [28, 29].

Φ2A,2B1,2 (Groups 8,9)
The functions Φg,h for groups 8 and 9 are identical

(5.62) Φ2A,2B1(Z) = Φ2A,2B2(Z).

The twisted twining genera T α
L φg,h vanish unless L is a multiple of r = 2; in

this case, they are Jacobi forms under Γg,h = Γ0(2) with trivial multiplier.
The eta products are given by

(5.63) ηg,h(τ) = η(τ)4η(2τ)4,

and are modular forms of weight w = 4 under Γ0(2) with multiplier

(5.64) υg,h( 1 1
0 1 ) = −1 υg,h( 1 0

2 1 ) = −1.

Therefore, Φg,h transforms as a modular form of weight w − 2 = 2 under
ξ(γ), γ ∈ Γ0(2), with multiplier υg,h(γ). Furthermore, for a suitable choice
of the cocycle α, we have

Φ2A,2B1,2(V2 · Z) = Φ2A,2B1,2(Z).(5.65)

We conclude Φg,h is a modular form of weight 2 under the paramodular
group Γ2(2). Assuming that it is holomorphic, then it can be identified as

(5.66) Φg,h(Z) = Q1(Z)2,

where Q1 is the modular form of weight 1 defined by Gritsenko and Clery
in [63]. This conjecture is also supported by the fact that in this case ψg,h
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is given by

(5.67) ψg,h(τ, z) = −
ϑ1(τ, z)2

η(τ)2
η(2τ)4,

which is the square of the additive seed for Q1 (see Equation (16) in [63]).

Φ2A,4B4 (Group 12)
The function Φ2A,4B4 of group 12 satisfies

(5.68) Φ2A,4B4(V2 · Z) = Φ2A,8A1(Z),

where h′ in class 8A1 of CM24(g) is such that h′4 = g. Therefore, the right-
hand side is a Sp(4, Z) transformation of Φe,8A, which is a Siegel modular
form under Γ1(8) = Γ(2)

0 (8) [29].

Φ2A,4B2,3,5 (Groups 17,18,19)

The functions Φg,h for groups 17, 18, 19 are identical

(5.69) Φ2A,4B2(Z) = Φ2A,4B3(Z) = Φ2A,4B5(Z).

The Jacobi forms T α
L φg,h for these groups have exactly the same modular

properties as the ones for groups 8 and 9; the eta products are also the same.
Therefore, Φg,h is a modular function of weight 2 under the paramodular
group Γ2(2).

Φ4B,4B4,7 (Groups 25,26)
The functions Φg,h for groups 25 and 26 are identical

(5.70) Φ4B,4B4(Z) = Φ4B,4B7(Z).

The 3-cocycle α can be chosen to be trivial when restricted to 〈g, h〉. The
Hecke-transformed twisted twining genera TLφg,h vanish unless L is a multi-
ple of r = 4; in this case, they are Jacobi forms under Γg,h = SL(2, Z) with
trivial multiplier. The eta products are given by

(5.71) ηg,h(τ) = η(τ)6,

and are modular forms of weight w = 3 under SL(2, Z) with multiplier

(5.72) υg,h( 1 1
0 1 ) = −i υg,h( 1 0

2 1 ) = −i.

Furthermore,

(5.73) Φ4B,4B4(V4 · Z) = Φ4B,4B7(Z).
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We conclude Φg,h is a modular function of weight w − 2 = 1 under the
paramodular group Γ+

4 (1) and the multiplicity at the rational quadratic
divisor z → 0 is non-negative. It follows that

(5.74) Φg,h(Z) = Δ1/2(Z)
2,

where Δ1/2 is the modular form of weight 1/2 defined in [51]. Also in this
case the additive lift matches since

(5.75) ψg,h(τ, z) = −ϑ1(τ, z)2

is the square of the additive seed for Δ1/2(Z), and hence Add[ψg,h] = (Δ1/2

(Z))2.
The function (Δ1/2(Z))2 also corresponds to the umbral Siegel modular

form Φ(5)(Z), which is the multiplicative lift of the umbral Jacobi form
Z(5)(τ, z) of weight 0 and index 4 [30]. The relation between Z(5)(τ, z) and
the twisted twining genus φg,h is now:

(5.76) (T4φg,h)(τ, z) = Z(4)(τ, z).

Again, it is not a priori clear that the equivariant multiplicative lift of φg,h,
defined by (3.51), will coincide with the ordinary multiplicative Borcherds
lift of Z(5)(τ, z) considered in [30]. However, in the case at hand they do:

(5.77) Mult[φg,h] = Φ(5).

Φ3A,3A3 (Group 33)
Consider the function Φ3A,3A3 of groups 33. The twisted twining genera
T α

L φg,h vanish unless L is a multiple of r = 3; in this case, they are Jacobi
forms under Γg,h = SL(2, Z) with trivial multiplier. The eta product is given
by

(5.78) ηg,h(τ) = η(τ)8,

and is a modular form of weight w = 4 under SL(2, Z) with multiplier

(5.79) υg,h( 1 1
0 1 ) = e−

2πi

3 υg,h( 0 −1
0 1 ) = 1.

Furthermore,

(5.80) Φ3A,3A3(V3 · Z) = Φ3A,3A3(Z).
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We conclude Φg,h is a modular function of weight w − 2 = 2 under the
paramodular group Γ+

3 (1) and the analysis of the multiplicities at its divisors
shows that it is holomorphic with a double zero at z = 0. It follows that

(5.81) Φ3A,3A3(Z) = Δ1(Z)2,

where Δ1 is the modular form of weight 1 defined in [51]. Also here we find
that

(5.82) ψg,h(τ, z) = −ϑ1(τ, z)2η(τ)2

is the square of the additive seed for Δ1(Z). The function Δ1(Z)2 coincides
with the umbral Siegel modular form Φ(4)(Z), which is the multiplicative
lift of the umbral Jacobi form Z(4)(τ, z) of weight 0 and index 3. In this case
we have that, for a suitable choice of cocycle α,

(5.83) (T α
3 φg,h)(τ, z) = Z(3)(τ, z),

and the equivariant and multiplicative lifts coincide:

(5.84) Mult[φg,h] = Φ(4).

Φ3A,3B1 (Group 34)
Consider the function Φ3A,3B1 of group 34. The twisted twining genera

T α
L φg,h vanish unless L is a multiple of r = 3; in this case, they are Jacobi
forms under Γg,h = Γ0(3) with trivial multiplier. The eta product is given
by

(5.85) ηg,h(τ) = η(τ)2η(3τ)2,

and is a modular form of weight w = 2 under SL(2, Z) with multiplier

(5.86) υg,h( 1 1
0 1 ) = e−

2πi

3 υg,h( 1 0
3 1 ) = e

2πi

3 .

Furthermore,

(5.87) Φ3A,3B1(V3 · Z) = Φ3A,3B1(Z).

We conclude Φg,h is a modular function of weight w − 2 = 0 under the
paramodular group Γ+

3 (3). Since the weight vanishes, it must necessarily
be meromorphic.
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6. Conclusions

In this paper, we have proposed a second-quantized version of (generalized)
Mathieu moonshine, involving a class of Siegel modular forms Φg,h for dis-
crete subgroups Γ(2)

g,h ⊂ Sp(4, R), constructed from a multiplicative lift of the
twisted twining genera φg,h. For certain pairs of conjugacy classes of M24

we were able to identify Φg,h with known Siegel modular forms. It would be
interesting to extend these results and perform a more detailed investigation
of all the modular groups Γ(2)

g,h and determine whether the remaining Φg,h

coincide with known objects, or perhaps constitute new examples of Siegel
modular forms. In [29], Raum proved modularity for most of the cases Φe,h

and found that not all of them are of a standard Borcherds product type, but
in fact correspond to certain rescaled products of Borcherds modular forms.
One would like to extend this analysis to determine whether the Φg,h for
g �= e also contain such rescaled Borcherds products, or some generalization
thereof.

As already mentioned in the introduction, an interesting by-product of
our analysis is the fact that some of the Siegel modular forms Φg,h coin-
cide with multiplicative lifts of the umbral Jacobi forms analyzed in [30].
This might be a simple consequence of the constraints from modularity,
but it might also indicate some deeper relation between umbral moonshine
and generalized Mathieu moonshine which would be interesting to uncover.
Could it be that some of the other products Φg,h also coincide with lifts of
the more general Dn or En Niemeier-umbral Jacobi forms in [67]?

It is natural to wonder whether our products Φg,h have interpretations
in terms of denominator formulas of some generalized Kac–Moody algebras
(GKMs). It is well known that the inverse square root of the Igusa cusp
form Φ10 = Φe,e constitutes one side of the denominator formula for a rank
3 GKM-algebra of hyperbolic type [61] (the other side corresponds to the
additive lift in (3.60)). In the terminology of Borcherds [37], the other func-
tions Φe,h then correspond to twisted denominator formulas for the same
algebra. On the other hand, by analogy with generalized Monstrous moon-
shine [42, 44], we would expect that the functions Φg,e give denominator
formulas for a class of rank 3 GKM-algebras. For some of the elements g of
small order these algebras have indeed been constructed in [68–71] in the
context of CHL-models (see also [51, 60, 61] for earlier mathematical results).
In this context the prefactor pq

1
Nλ y in (3.51) should have an interpretation as

the exponential of the Weyl vector ρ of the algebra. If true one would expect
that for fixed g, the associated twisted denominator formulas Φg,h all have
the same prefactor involving the Weyl vector of the original GKM-algebra
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determined by the class [g]. In other words, the prefactor should be inde-
pendent of the twining element h, and this is indeed what we find. In fact,
the Weyl vectors extracted from pq

1
Nλ y reduces to the ones in [68, 69] when

the length of the shortest cycle λ equals one.
As stressed in the introduction, we think that our results could have

immediate applications to the understanding of dyon counting in CHL-
orbifolds. In particular, most of the functions Φg,h are expected to have
interpretations as partition functions of twisted dyons, and we hope to inves-
tigate this relation in more detail in a future publication.
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Appendix A. Some group cohomology

In this appendix, we summarize some general results about group cohomol-
ogy. See [72] for more details.

For a finite group G, a 2-cochain β : G×G → U(1) is closed (and hence
defines a cocycle) provided it satisfies

(A.1) β(g1, g2g3)β(g2, g3) = β(g1g2, g3)β(g1, g2)
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for g1, g2, g3 ∈ G. The second cohomology H2(G, U(1)) then consists of the
closed 2-cochains, modulo the ambiguity

(A.2) β(g1, g2)→ β(g1, g2)
γ(g1)γ(g2)

γ(g1g2)
,

where γ : G → U(1) is an arbitrary 1-cochain, i.e., an arbitrary function
γ : G→ U(1).

A 3-cochain α,

(A.3) α : G×G×G → U(1)

is closed provided it satisfies
(A.4)

α(g1, g2, g3)α(g1, g2g3, g4)α(g2, g3, g4) = α(g1g2, g3, g4)α(g1, g2, g3g4).

In the cohomology group H3(G, U(1)) closed 3-cochains are then identified
modulo

(A.5) α(g1, g2, g3)→ α(g1, g2, g3)
β(g1g2, g3)β(g1, g2)
β(g1, g2g3)β(g2, g3)

.

Note that the multiplying factor is trivial if β is closed, i.e., if it satisfies
the 2-cocycle condition (A.1). In particular, for each cocycle α and element
x ∈ G, the 3-cocycle αx, defined by

(A.6) αx(g, h, k) := α(x−1gx, x−1hx, x−1kx),

differs from α just by a 3-coboundary [47]

(A.7) α(g1, g2, g3) = αx(g1, g2, g3)
ηx(g1g2, g3)ηx(g1, g2)
ηx(g1, g2g3)ηx(g2, g3)

,

where

(A.8) ηz(x, y) :=
α(x, y, z)α(z, z−1xz, z−1yz)

α(x, z, z−1yz)
.

Given a 3-cocycle α, we can define, for any h ∈ G, a map ch : G×G →
U(1) via

(A.9) cg(h1, h2) =
α(g, h1, h2)α(h1, h2, (h1h2)−1g(h1h2))

α(h1, h
−1
1 gh1, h2)

.
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It is shown in [45] that cg defines a 2-cocycle of the stabilizer subgroup
CG(g) ⊆ G (i.e., the subgroup of all elements h1, h2 which commute with g).
When h1, h2 ∈ CG(g), we have the simplified expression

(A.10) cg(h1, h2) =
α(g, h1, h2)α(h1, h2, g)

α(h1, g, h2)
, h1, h2 ∈ CG(g).

It is straightforward to check this by inserting (A.9) into (A.1), and making
repeated use of the 3-cocycle condition (A.4) (twice on each side of the
equality sign) together with the fact that g commutes with h1, h2, h3.

Under the “gauge transformation” (A.5), cg transforms as
(A.11)

cg(h1, h2)→ c̃g(h1, h2) := cg(h1, h2)
γg(h1)γg(h2)

γg(h1h2)
, h1, h2 ∈ CG(g),

where we defined the 1-cochain γg by

(A.12) γg(h) ≡
β(g, h)
β(h, g)

.

This is indeed of the form (A.2), and hence, for all g ∈ G, cg defines a map

(A.13) cg : H3(G, U(1))→ H2(CG(g), U(1)).

In fact, if cg is the 2-cocycle associated to a projective representation ρg of
CG(g), i.e.,

(A.14) ρg(h1)ρg(h2) = cg(h1, h2)ρg(h1h2),

then c̃g is the 2-cocycle associated with the projectively equivalent represen-
tation

(A.15) ρ̃g(h) := γg(h)ρg(h).

In the context of holomorphic CFTs, the transformation (A.5) corresponds
to a redefinition (A.15) of the projective representations ρg of the centralizer
CG(g) over the twisted sector Hg, which induces the analogous transforma-
tion of the twisted twining partition functions

(A.16) Zg,h → Z̃g,h = γg(h)Zg,h.

Indeed, the new partition functions Z̃g,h satisfy the expected modular prop-
erties with respect to the new cocycle α̃.
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In particular, it the case (A.7) of conjugation by x ∈ G, we have β ≡ η−1
x ,

so that

(A.17) γg(h) =
ηx(h, g)
ηx(g, h)

=
cg(x, x−1hx)

cg(h, x)
, h ∈ Cg(G),

where the latter equality follows from [46, 47]. From this identity, one recov-
ers

(A.18) Z(I,x−1)·(g,h)(τ) ≡ Zx−1gx,x−1hx(τ) =
cg(x, x−1hx)

cg(h, x)
Zg,h(τ),

from which the formula (B.8) for εg,h(I, x) follows.
One further useful identity is [47]

(A.19)
cx1x2(z1, z2)

cx1(z1, z2)cx2(z1, z2)
=

cz1(x1, x2)cz2(x1, x2)
cz1z2(x1, x2)

,

that holds for pairwise commuting x1, x2, z1, z2 ∈ G.
For most applications, only the restriction of a 3-cocycle α to sub-

groups of the form 〈g, h〉 ∼= ZN1 × ZN2 is needed. For such groups, we have
H3(ZN1 × ZN2 , U(1)) = ZN1 × ZN2 × Zgcd(N1,N2) and a set of normalized rep-
resentatives for the generators are [73]

αvi
(ga1ha2 , gb1hb2 , gc1hc2) := e

2πiviai
N2

i
([bi]Ni

+[ci]Ni
−[bi+ci]Ni

)
(A.20)

where vi ∈ Z/NiZ, i = 1, 2, and

αv12(g
a1ha2 , gb1hb2 , gc1hc2) := e

2πiv12a1
N1N2

([b2]N2+[c2]N2−[b2+c2]N2 )(A.21)

where v12 ∈ Z/ gcd(N1, N2)Z and [·]x : Z → {0, . . . , x− 1} denotes the reduc-
tion modulo x. Note that, with this choice for the generators, we have the
simplified formula

(A.22) cx(y, z) = α(x, y, z), x, y, z ∈ ZN1 × ZN2 .

Appendix B. Modular properties of twisted twining
partition functions

In this appendix, we include some details on the modular properties of
twisted twining partition functions. In particular, we analyze the combined
action of SL(2, Z) and G on the set of commuting pairs (g, h) in G. Here we
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must also take into account the presence of a non-trivial 3-cocycle α which
leads to a certain twisted action. We introduce a convenient “twisted equiv-
ariant slash-operator” that simplifies many expressions since it combines
(twisted) SL(2, Z)-equivariance with G-equivariance. Finally, we discuss a
reformulated version of the cohomological obstructions found in [17].

Appendix B.1. SL(2, Z) × G - action on PG

It is clear from (2.8) that modular transformations act on τ ∈ H as well as
on the set of commuting pairs (g, h) ∈ G×G. In addition G acts on itself
by conjugation and thereby on the set of pairs g, h. In order to determine
the subgroups Γg,h ⊂ SL(2, Z) under which Zg,h (and φg,h) are invariant for
fixed g, h ∈ G, we must classify the orbits of the combined SL(2, Z)×G-
action on the commuting pair (g, h). We are mainly interested in the case
G = M24 but we only make this specification at the end of the subsection.

For any finite group G, let PG ⊂ G×G be the set of commuting pairs
of elements:

(B.1) PG = {(g, h) ∈ G×G | gh = hg}.

The group SL(2, Z)×G has a left action as a permutation over this set by

((
a b
c d

)
, k

)
· (g, h) := (k g k−1, k h k−1)

(
a b
c d

)−1

(B.2)

= (kgdh−ck−1, kg−bhak−1),

where (g, h) ∈ PG,
(

a b
c d

)
∈ SL(2, Z) and k ∈ G. This action can be extended

to an action of GL(2, Z)×G in the obvious way.

Appendix B.2. Twisted action on PG: generalized permutation

As explained in Section 2.2, in order to include the possibility of non-trivial
multipliers in the modular properties of the twisted twining genera one needs
to consider the “twisting” of the action (B.2) by a 3-cocycle α, representing
a cohomology class in H3(G, U(1)). This α-twisted action is a generalized
permutation

(B.3) CPG × SL(2, Z)×G→ CPG,
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on the complex vector space CPG freely generated by the elements of PG.
We define this action by the formula

(B.4) (γ, k)α : (g, h) 	→ εg,h(γ, k)(kgk−1, khk−1)γ−1.

Here, (γ, k) ∈ SL(2, Z)×G and εg,h(γ, k) ∈ U(1) is a phase which depends
on the choice of 3-cocycle α. More precisely, in terms of the 2-cocycle
cg(h1, h2) in (2.7) the phases εg,h(γ, k) are defined as

εg,h(γ1γ2, k1k2) := ε(γ2,k2)·(g,h)(γ1, k1) εg,h(γ2, k2),(B.5)

εg,h(T, e) :=
1

cg(g, g−1h)
,(B.6)

εg,h(S, e) := cg(h−1, h),(B.7)

εg,h(I, k) :=
cg(h, k−1)

cg(k−1, khk−1)
, k ∈ G,(B.8)

where

(B.9) S :=
(
0 −1
1 0

)
T :=

(
1 1
0 1

)
,

are the generators of SL(2, Z).

Appendix B.3. Modular properties of twisted twining partition
functions

We now wish to analyze the modular properties of the twisted twining parti-
tion function Zg,h in more detail. To this end we define the following equiv-
ariant slash operator

(B.10) f(g, h; τ)|(γ, k) := f ((γ, k) · (g, h); γ · τ) , (γ, k) ∈ SL(2, Z)×G,

acting on modular functions f : PG ×H+ → C. We can think of the twisted
twining partition functions Zg,h(τ) as functions on PG ×H+ that are equiv-
ariant under SL(2, Z)×G, up to a multiplier. In the simplest case when
the multiplier system is trivial, this property can be expressed as follows in
terms of the slash operator:

(B.11) Zg,h(τ)|(γ, k) = Zg,h(τ).
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In particular, for each fixed (g, h) ∈ PG, the function Zg,h(τ) is a modular
function under some subgroup Γg,h ∈ PSL(2, Z), i.e.,

(B.12) Zg,h(γ · τ) = Zg,h(τ), γ ∈ Γg,h ⊆ PSL(2, Z).

The group Γg,h is the image π(Γ̃g,h) of the stabilizer

(B.13) Γ̃g,h := {(γ, k) ∈ SL(2, Z)×G | (g, h) · (γ, k) = (g, h)},

under the homomorphism

(B.14) π : SL(2, Z)×G → PSL(2, Z).

Similar properties hold for the twisted twining genera φg,h(τ, z) of an N =
(4, 4) superconformal algebra: these are expected to be Jacobi forms of
weight zero and index 1 with respect to the same groups Γg,h. For this rea-
son, we need to extend the definition of the slash operator to an action on
the space of functions ψ : PG ×H+ × C → C. Specifically, for Jacobi forms
of weight 0 and index m with respect to some Γ ⊂ SL(2, Z) we define

(B.15)
ψ(g, h; τ, z)|(γ, k) := e−

2πimcz2

cτ+d ψ
(
k gdh−c k−1, k g−bha k−1; γ · τ, z

cτ + d

)
,

where (γ, k) =
(
( a b

c d ), k
)
∈ SL(2, Z)×G. Note that for theories with N =

(4, 4) superconformal symmetry, these genera are expected to be even func-
tions of z, so that the central element C = S2 ∈ SL(2, Z) acts trivially and
it makes sense to consider the action on such functions of the quotient
PSL(2, Z) = SL(2, Z)/Z2.

We are now ready to incorporate the α-twist in the modular properties
of the twisted twining genera. To this end we define the α-twisted general-
ization of the equivariant slash operator:

(B.16)
f(g, h, τ)|α(γ, k) := εg,h(γ, k)f ((γ, k) · (g, h); γ · τ) , (γ, k) ∈ SL(2, Z)×G,

for some 3-cocycle α representing a class [α] ∈ H3(G, U(1)). Similarly, we
define the α-twisted slash operators on Jacobi forms of weight 0 and index
m by

ψ(g, h; τ, z)|α (γ, k) := εg,h(γ, k)e−
2πimcz2

cτ+d(B.17)

ψ
(
k gdh−c k−1, k g−bha k−1; γ · τ, z

cτ + d

)
,

where (γ, k) =
(
( a b

c d ), k
)
∈ SL(2, Z)×G.
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Appendix B.4. Cohomological obstructions

When α represents a non-trivial class in H3(G, U(1)), the partition func-
tions Zg,h(τ) are modular functions under Γg,h ⊆ PSL(2, Z) only up to some
multiplier χg,h, which depends on α (see Section 2.2). In fact, by (B.13) and
(B.8), the restriction of εg,h to Γ̃g,h is a group homomorphism Γ̃g,h → U(1).
If

(B.18) εg,h(γ, k) = 1,

for all (γ, k) in

Γ̃g,h ∩ kerπ = {(e, k) ∈ SL(2, Z)×G | (k−1gk, k−1hk) = (g, h)}(B.19)

∪ {(S2, k) ∈ SL(2, Z)×G | (k−1gk, k−1hk) = (g−1, h−1)},(B.20)

then the restriction εg,h : Γ̃g,h → U(1) induces a well-defined homomorphism
χg,h : Γg,h → U(1) on the image Γg,h = π(Γ̃g,h). Explicitly, for each γ ∈ Γg,h

⊆ PSL(2, Z), one can choose a lift (γ, k) ∈ Γ̃g,h ⊆ SL(2, Z)×G and set

(B.21) χg,h(γ) := εg,h(γ, k), for γ = π(γ, k) ∈ Γg,h.

By (B.18), the definition is independent of the lift.
On the contrary, if (B.18) is not satisfied for some (γ, k) ∈ Γ̃g,h ∩ kerπ,

then Equation (2.12) implies that Zg,h(τ) must vanish identically. In this
case, we say that the twisted twining partition function is obstructed. Fol-
lowing the discussion in [17, 18], we can distinguish between two kinds of
obstructions:

(1) We say that, for a certain (g, h) ∈ PG, there is an obstruction of the
first kind if there is some element of the form (e, k) ∈ Γ̃g,h ∩ kerπ for
which (B.18) is not satisfied.

(2) We say that there is an obstruction of the second kind if (B.18) is
satisfied for all elements of the form (e, k) ∈ Γ̃g,h ∩ kerπ, but is vio-
lated by some element of the form (S2, k) ∈ Γ̃g,h ∩ kerπ. By (B.8),
this implies that (B.18) is false for all elements of the form (S2, k) ∈
Γ̃g,h ∩ kerπ.

Although not phrased this way in [17] these obstructions are equivalent to
the ones given there.
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Appendix C. Definition of twisted equivariant Hecke
operators

In this appendix, we shall discuss the definition and properties of the α-
twisted equivariant Hecke operators.

Appendix C.1. Twisted equivariant Hecke operator

Let us denote by Mat(Z) the ring of 2× 2 integral matrices with positive
determinant, graded by the determinant,

(C.1) Mat(Z) =
⋃
L>0

MatL(Z),

where MatL(Z) was defined in (3.4). For any u ∈ MatL(Z) denote by u∨ ∈
MatL(Z) the dual

(C.2)
(

a b
c d

)∨
:= L

(
a b
c d

)−1

=
(

d −b
−c a

)
,

(
a b
c d

)
∈ MatL(Z).

Note that Mat1(2, Z) ≡ SL(2, Z) is the group of invertible elements of Mat(Z)
and that each MatL(Z) is a bimodule over SL(2, Z).

In order to define the α-twisted equivariant Hecke operators T α
L , we need

to extend the action (B.3) of SL(2, Z)×G on CPG to an action

(C.3) CPG ×Mat(Z)×G → CPG,

by

(C.4) (u, k)α : (g, h) 	→ εg,h(u, k)(kgk−1, khk−1)u∨,

for a suitable εg,h(u, k) ∈ U(1), that reduces to the one discussed in Sec-
tion Appendix B.2. when u ∈ Mat1(Z) = SL(2, Z). Furthermore, the inter-
pretation of φg,h as a section of Lα

g,h suggests that the following composition
law should be imposed

(C.5) (u1u2, k1k2)α · (g, h) = (u1, k1)α · ((u2, k2)αL · (g, h)) ,
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where (u1, k1) ∈ MatL(Z)×G and (u2, k2) ∈ Mat(Z)×G. In terms of the
phases εg,h, this condition reads

(C.6) εg,h((u1, k1) · · · (un, kn)) =
n∏

i=1

ε(ui+1,ki+1)···(un,kn)·(g,h)(ui, ki)|u1···ui−1|,

where |ui| := detui.
Observe that Mat(Z), as a multiplicative semigroup, is generated by

SL(2, Z) together with the matrices of the form
(

p 0
0 1

)
for p prime. Therefore,

it is sufficient to specify the phases ε(( p 0
0 1 ), e) for all primes p and any other

phase εg,h(u, k), (u, k) ∈ Mat(Z)×G, is then determined by (C.6). The α-
twisted slash operator (2.15) can be trivially extended to an action with
respect to γ ∈ MatL(Z), in which case it maps a Jacobi form φ of weight 0
and index m to another Jacobi form φ|α(γ, k) of weight 0 and index Lm.
Notice that, by (C.6), the twisted slash operators satisfy the composition
relation

(C.7) |α(u1u2, k1k2) =|α(u1, k1)|αL(u2, k2)

We can now define the α-twisted equivariant Hecke operators acting on
the space of SL(2, Z)×G-equivariant Jacobi forms φg,h by

T α
L φg,h(τ, z) :=

1
L

∑
u∈SL(2,Z)\MatL(Z)

φg,h(τ, z)|α(u, e),(C.8)

Uα
Lφg,h(τ, z) := φg,h(τ, z)|α( L 0

0 L , e).(C.9)

One may check that these operators satisfy the Hecke algebra (3.13)–(3.16).
Furthermore, T α

L (respectively, Uα
L) maps the system of α-twisted SL(2, Z)×

G-equivariant (weak) Jacobi forms of weight 0 and index m to a system
of αL-twisted (respectively, αL2

-twisted) SL(2, Z)×G-equivariant (weak)
Jacobi forms of weight 0 and index Lm (respectively, index L2m). The proofs
of these properties are completely analogous to the case where α is trivial;
in fact, these properties follow directly from the definition of the Hecke
operators in terms of slash operators satisfying a composition law of the
form (C.7).

Appendix C.2. Definition of slash operator for Mat(Z) × G

In this subsection, we will describe the extension of the α-twisted slash
operators to Mat(Z)×G. As stressed in Section 3.2, it is sufficient to define
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such operators for matrices of the form ( L 0
0 1 ), since, together with SL(2, Z)

they generate the whole Mat(Z). We will make an ansatz for the phase
εg,h

(
( L 0

0 1 ), e
)
and verify that it extends consistently to the whole Mat(Z).

Our ansatz for the phase εg,h

(
( L 0

0 1 ), e
)
is based on the interpretation of

the corresponding slash operator within the theory of symmetric orbifolds of
conformal field theories. We recall that the twisted twining partition function
Zg,h(τ) in a holomorphic CFT is defined as a trace TrHg

(ρg(h)qL0− c

24 ), where
Hg is the g-twisted sector and ρg is the (possibly projective) representation
of the centralizer CG(g) on Hg. This partition function can be computed by
a path integral on a torus C/(Z+ τZ) where the fields are required to have
monodromies g and h along the cycles −1 and τ , respectively. The function

(C.10) Zg,h(τ)|α
(
( L 0

0 1 ), e
)
= Υ∗

( L 0
0 1

)
Zg,h,

is associated with the L-fold covering C/(Z+ LτZ) and has a natural inter-
pretation as a trace

(C.11) Zg,h(τ)|α
(
( L 0

0 1 ), e
)
= TrHg

(
(ρg(h)qL0− c

24 )L
)
.

Using the product law (2.5) for the projective representation ρg, we obtain

Zg,h(τ)|α
(
( L 0

0 1 ), e
)
=

L−1∏
i=1

cg(h, hi)TrHg
(ρg(hL)qLL0−Lc

24 )(C.12)

=
L−1∏
i=1

cg(h, hi)Zg,hL(Lτ).

This formula suggests the definition

(C.13) εg,h

(
( L 0

0 1 ), e
)
=

L−1∏
i=1

cg(h, hi),

so that

(C.14) f(g, h; τ)|α
(
( L 0

0 1 ), e
)
=

L−1∏
i=1

cg(h, hi)f
(
(g, h)( 1 0

0 L ); (
L 0
0 1 ) · τ

)
,

Any integer matrix of determinant L can be written as a product of
elements in SL(2, Z) and matrices of the form ( p 0

0 1 ) for prime p. For each
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(u, k) ∈ Mat(Z)×G, given a representation of u as a word u = a1 · · · an in
the generators a1, . . . , an of Mat(Z), one can use the composition law

(C.15) f(g, h; τ)|α(u1u2, k1k2) = f(g, h; τ)|α(u1, k1) |α|u1|(u2, k2),

where |u| := detu, to define the slash operator

f(g, h; τ)|α(a1 · · · an, k)(C.16)
:= f(g, h; τ)|α(I, k) |α(a1, e)|α|a1|(a2, e) · · · |α|a1···an−1|(an, e).

One needs to check that this definition is consistent, i.e., that the operator
|α(u, k) does not depend on representation of (u, k) ∈ Mat(Z)×G as a word
in the generators and that the composition law is respected. The outline of
the proof is given in the next subsection.

In particular, by (C.15), the identity

(C.17)
(
1 0
0 L

)
=
(
0 −1
1 0

)(
L 0
0 1

)(
0 1
−1 0

)

yields

(C.18) εg,h

(
( 1 0

0 L ), e
)
=

cg(h−1, h)L
∏L−1

i=1 ch−1(g, gi)
cgL(h−1, h)

=
1∏L−1

i=1 ch(g, gi)
,

where in the last step we use (A.19), while from the identity

(C.19)
(

a b
0 d

)
=
(
1 0
0 d

)(
1 1
0 1

)b(
a 0
0 1

)

we obtain the general formula

εg,h

(
a b
0 d

)
:= εg,h

(
( a b

0 d ), e
)
=

∏a−1
i=1 cg(h, hi)d∏d−1

j=1 cg−bha(g, gj)
∏b

k=1 cg(g, g−kha)d
.

(C.20)

Since for any coset of SL(2, Z)\Mat(Z) we can choose a representative of
the form ( a b

0 d ), this formula is sufficient to determine the Hecke operators
T α

L and Uα
L for all L. In particular, if the restriction of the 3-cocycle α to

the group 〈g, h〉 ∼= ZN1 × ZN2 is given by α = αv1αv2αv12 , in terms of the
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generators (A.20)–(A.21), then (N1, N2 > 1)

εg,h

(
( a b

0 d ), e
)
= e

2πi

N1
(v1b

∑ d−1
j=1 δ(N1)(j+1)−v1d

∑ b
j=1 δ(N1)(1−j)+v12d

∑a−1
j=1 δ(N2)(j+1)).

(C.21)

Appendix C.3. Proof of consistency

In the rest of this section, we will show that our proposal for the twisted
equivariant Hecke operators satisfies several consistency conditions. As a
first consistency, let us consider the effect of a “gauge transformation” (A.5),
under which the normalized 3-cocycle α is multiplied by a 3-coboundary ∂β
(with β(e, g) = β(g, e) = 1 to keep the normalization). Formally, this trans-
formation corresponds to a different choice of trivialization of the pull-back
π∗Lα

g,h, where π : P ×H+ × C →M is the covering map. As stressed in the
previous Appendix A, for a holomorphic CFTs C, the transformation (A.5)
corresponds to a redefinition (A.15) of the projective representations ρg of
the centralizer CG(g) over the twisted sector Hg and induces the transforma-
tion (A.16) of the partition functions. For the tensor product C⊗L and the
symmetric product SLC theories, the twisted twining partition functions Zg,h

are defined as traces over the representation induced by the (symmetrized)
L-tensor product of ρg, so that the appropriate transformation is

(C.22) Z
(L)
g,h 	→ Z̃

(L)
g,h := γg(h)LZ

(L)
g,h ,

where γg(h) = β(g, h)/β(h, g). Analogous properties hold for the twisted
twining genera φ

(L)
g,h in superconformal field theories. Using the identities

γe(g) = γg(e) = 1 and γg(h) = γh(g)−1, it is easy to check that, under (A.15)
and (A.11),

(C.23) (γg(h)f(g, h; τ))|α̃
(
( a b

0 d )γ, e
)
= γg(h)L

(
f(g, h; τ)|α

(
( a b

0 d )γ, e
))

,

where L = ad, and similar properties hold for Jacobi forms. As a conse-
quence, we obtain

(C.24) T α̃
L Z̃g,h = γg(h)LT α

L Zg,h,

and

T α̃
L φ̃g,h = γg(h)LT α

L φg,h, U α̃
L φ̃g,h = γg(h)L

2Uα
Lφg,h,(C.25)
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which indeed reproduce (C.22) and the analogous formula for twisted twin-
ing genera. More generally, given any representation of a matrix u ∈ MatL(Z)
as a word in the generators of Mat(Z), it is easy to check that (C.23) holds
for the slash operator |α(u, k), i.e

(C.26) γg(h)ε̃g,h(u, k) = γg(h)Lεg,h(u, k).

An easy corollary of this property is

f(g, h; τ)|α (u, k)|αL (I, x) = f(g, h; τ)|α (I, x)|α (u, k) ,(C.27)
(u, k) ∈ MatL(Z)×G, x ∈ G,

which follows by considering (C.26) for the transformation (A.7). As a con-
sequence of (C.27), one only needs to prove consistency of the slash operator
for elements of the form (u, e).

A set of generators of the multiplicative semigroup Mat(Z) is given by the
generators S, T of SL(2, Z) (see Equation (B.9)), together with all matrices
( p 0

0 1 ) for p prime. To check the consistency of the definition of the slash oper-
ator, one needs to verify that, for each relation a1 · · · an = b1 · · · bm among
the generators of Mat(Z), the following identities hold for all (g, h) ∈ PG

(C.28)
f(g, h; τ)|α(a1, e) · · ·|α|a1...an−1|(an, e) = f(g, h; τ)|α(b1, e) · · ·|α|b1...bm−1|(bm, e).

This is equivalent to checking the following identities for the phases

(C.29)
n∏

i=1

ε(g,h)a∨i+1···a∨n (ai, e)|a1···ai−1| =
m∏

i=1

ε(g,h)b∨i+1···b∨m(bi, e)|b1···bi−1|.

For the relations S4 = 1 and (ST )3 = S2 within SL(2, Z), these conditions
follow from the identities in [46, 47]; therefore, we will only consider the
independent relations within MatL(Z) for L > 1.

For each prime power p, the relations within Matp(Z) can be obtained
from the relations for SL(2, Z), together with relations of the form

(C.30) γ1

(
p 0
0 1

)
=
(

p 0
0 1

)
γ2,

for suitable γ1, γ2 ∈ SL(2, Z). It is easy to check that such a relation exists
if and only if γ2 is an element of Γ0(p), which is generated by T , S2 and
ST pS = ( 1 0−p 1 ). Therefore, the only independent relations within Matp(Z)
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are

T p

(
p 0
0 1

)
=
(

p 0
0 1

)
T,(C.31)

S2

(
p 0
0 1

)
=
(

p 0
0 1

)
S2,(C.32)

and

(C.33) STS

(
p 0
0 1

)
=
(

p 0
0 1

)
ST pS.

The only remaining relations in Mat(Z) are of the form

(C.34)
(

p 0
0 1

)
γ1

(
p′ 0
0 1

)
= γ2

(
p′ 0
0 1

)
γ3

(
p 0
0 1

)
γ4,

for all pairs of distinct primes p, p′ and suitable γ1, γ2, γ3, γ4 ∈ SL(2, Z). In
fact, it is easier to consider formula (C.20) as a definition of εg,h(( a b

0 d ), e)
and verify the identities (C.29) for the relations

(
a b
0 d

)(
p 0
0 1

)
=
(

pa b
0 d

)
,(C.35)

(
p 0
0 1

)(
a b
0 d

)
=
(

pa pb
0 d

)
,(C.36)

since the consistency conditions for the relations (C.34) then follow. The
consistency conditions are therefore

εg,hp

(
1 p
0 1

)
εg,h

(
p 0
0 1

)
= εg,g−1h

(
p 0
0 1

)
εg,h

(
1 1
0 1

)p(C.37)

εh−p,g

(
0 −1
1 0 )εg,hp

(
0 −1
1 0 )εg,h

(
p 0
0 1 ) = εg−1,h−1

(
p 0
0 1 )εh−1,p

(
0 −1
1 0 )pεg,h

(
0 −1
1 0 )p

(C.38)

εgp,h

(
1 1
0 1

)
εg,h

(
1 0
0 p

)
= εg,g−ph

(
1 0
0 p

)
εg,h

(
1 p
0 1

)p(C.39)

εg,hp

(
a b
0 d

)
εg,h

(
p 0
0 1

)ad = εg,h

(
pa b
0 d

)
(C.40)

εgd,g−bha

(
p 0
0 1

)
εg,h

(
a b
0 d

)p = εg,h

(
pa pb
0 d

)
.(C.41)
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The proof is a tedious but straightforward computation, consisting of a
repeated use of the cocycle conditions. For example, the proof of (C.40):

∏a−1
i=1 cg(h, hip)d∏d−1

j=1 cg−bhap(g, gj)
∏b

k=1 cg(g, g−khap)d
(C.42)

×
p−1∏
i=1

cg(h, hi)ad

∏d−1
j=1 cg−bhap(g, gj)

∏b
k=1 cg(g, g−khap)d∏pa−1

i=1 cg(h, hi)d

=
(∏a−1

i=1 cg(h, hip)
∏p−1

i=1 cg(h, hi)a∏pa−1
i=1 cg(h, hi)

)d
= 1,

where the last equality follows from the 2-cocycle condition on cg.

Appendix D. Some technical proofs

Appendix D.1. Proof of (3.47).

In this section, we will prove Equation (3.47). The sum Fg,h(a, d, k, �) can
be written as

(D.1) Fg,h(a, d, k, �) :=
∞∑

n=0

1
d

d−1∑
b=0

e
2πibn

Nλd cgd
α,g−b

α hk
α

( n

Nλ
, �
)

q
na

Nλd ,

in terms of the Fourier coefficients of the twisted twining genera φgd
α,g−b

α hk
α

introduced in Section 3.2.3. Note that the functions φgα,hα
satisfy

(D.2) φgr
α,g−r

α hα
(τ + 1, z) = φgr

α,hα
(τ, z),

so that

(D.3) cgd
α,gd

αhα
(r, �) = e

2πir

Nλ cgd
α,hα

(r, �),

for all hα ∈ Cα
M24

(g). Set

(D.4) e := gcd(d, Nλ), f :=
d

e
,

and note that

(D.5) gcd
(

f,
Nλ

e

)
= 1,
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otherwise e gcd(f, Nλ
e ) would be a common divisor of d and Nλ greater than

e. The order of gd
α is o(gef

α ) = o(ge
α) = Nλ/e, so that cgd

α,g−b
α hk

α
( n

Nλ , �) = 0
unless e|n. Thus, we can set r := n/e and obtain

(D.6) Fg,h(a, d, k, �) =
∞∑

r=0

1
d

d−1∑
b=0

e
2πibre

Nλd cgd
α,g−b

α hk
α

( re

Nλ
, �
)

q
ar

Nλf .

Note that, by (D.3), the general term of the sum over b is periodic under
b → b+ d. We can set b := se+ b′ and replace the sum over b ∈ Z/dZ by a
sum over b′ ∈ Z/eZ and s ∈ Z/fZ

(D.7)

Fg,h(a, d, k, �) =
∞∑

r=0

1
e

e−1∑
b′=0

1
f

f−1∑
s=0

e
2πi(b′+se)r

Nλf c
gd

α,g−b′
α g−se

α hk
α

( re

Nλ
, �
)

q
ar

Nλf .

Thus, the general term of the sum over b′ is periodic under b′ → b′ + e and
we can sum over Nλ/e periods and divide by Nλ/e
(D.8)

Fg,h(a, d, k, �) =
∞∑

r=0

1
Nλ

Nλ−1∑
b′=0

1
f

f−1∑
s=0

e
2πi(b′+se)r

Nλf c
gd

α,g−b′
α g−se

α hk
α

( re

Nλ
, �
)

q
ar

Nλf .

By (D.5), there are integers x, y such that

(D.9) xf + y
Nλ

e
= 1

so that se = sxd+ syNλ and we obtain

Fg,h(a, d, k, �) =
∞∑

r=0

1
Nλ

Nλ−1∑
b′=0

1
f

f−1∑
s=0

e
2πib′r
Nλf e

2πis(xd+yNλ)r

Nλf(D.10)

× c
gd

α,g−b′
α g−sdx

α hk
α

( re

Nλ
, �
)

q
ar

Nλf

=
∞∑

r=0

Nλ−1∑
b′=0

e
2πib′r
Nλf

Nλ

f−1∑
s=0

e
2πisyr

f

f
c
gd

α,g−b′
α hk

α

( re

Nλ
, �
)

q
ar

Nλf ,

where in the last step we used (D.3). Since by (D.9) gcd(y, f) = 1, the sum
over s just a projection

(D.11)
f−1∑
s=0

e
2πisyr

f

f
=

{
1 if f |r,
0 otherwise,
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so that, by setting r = mf , we obtain

(D.12) Fg,h(a, d, k, �) =
∞∑

m=0

Nλ−1∑
b′=0

e
2πib′m

Nλ

Nλ
c
gd

α,g−b′
α hk

α

(
md

Nλ
, �

)
q

am

Nλ ,

that is equivalent to (3.47).

Appendix D.2. Central extensions and special choices of the
cocycle

In Section 3.2.3, a central extension Cα
M24

(g) of the centralizer CM24(g) is
defined, together with the representations ρ̃g,r on the gr-twisted sector Hgr ,
for all r ∈ Z≥0. In this section, we will describe some special choices of the
cocycle α, for which these representations are particularly simple.

If two 3-cocycles α, α′ differ by a coboundary ∂β, then there is an iso-
morphism Cα′

M24
(g)

∼=−→ Cα
M24

(g) that relates the canonical lifts

(D.13) hα′ 	→ hα q(νg(h)),

where νg(h) ∈ R/Z is defined by e2πiνg(h) = β(g,h)
β(h,g) .

Under the shift α → α′ by a coboundary ∂β, the cocycle cg transforms
as

(D.14) cg(h, k)→ β(g, h)
β(h, g)

β(g, k)
β(k, g)

β(hk, g)
β(g, hk)

cg(h, k), h, k ∈ CM24(g).

Correspondingly, the phases fg,r(h) of Equation (3.31) transform as

(D.15) fg,r(h)→ fg,r(h)
β(h, g)r

β(g, h)r
β(gr, h)
β(h, gr)

, h ∈ CM24(g),

and, in particular,

(D.16) fg,N (h)→ fg,N (h)
β(h, g)N

β(g, h)N
, h ∈ CM24(g).

Therefore, we can choose β(g, h)/β(h, g) for each h ∈ CM24(g), h �∈ 〈g〉, in
such a way that

(D.17) fg,N (h) = 1, ∀h ∈ CM24(g)\〈g〉.
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This condition determines β(g, h)/β(h, g) for all h ∈ CM24(g)\〈g〉 up to Nth
roots of unity. Notice that, in general,

(D.18) ρ̃g,r+N (h) =
ρgr(h)

fg,r(h)fg,N (h)
=

ρ̃gr(h)
fg,N (h)

, h ∈ CM24(g),

so that, by imposing (D.17), we have

(D.19) ρ̃g,r+N (h) = ρ̃gr(h), h ∈ CM24(g)\〈g〉.

On the other hand, fg,N (g) depends only on the cohomology class [α]. Since
the restriction of [α]N to H3(〈g〉, U(1)) ∼= ZN is the trivial class, it follows
that fg,N (g) must be a Nth root of unity. In fact, for M24, we have

(D.20) fg,N (g) = e−
2πi

λ ,

where λ|N is the length of the shortest cycle of g in the 24-dimensional
permutation representation. It is also related to the spectrum of L0 − c

24 in
the g-twisted sector, which takes values in − 1

λN + 1
N Z and to the presence

of a non-trivial multiplier system for the twining genus φe,g. It is useful to
distinguishes the cases when λ = 1 and λ �= 1.

Appendix D.2.1. Case λ = 1 (trivial multiplier). This case occurs
whenever g is an element of some M23 subgroup of M24, i.e., when g belongs
to the classes

2A, 3A, 4B, 5A, 6A, 7A, 7B, 8A, 11A, 14A, 14B, 15A, 15B, 23A, 23B.

In this case, the restriction of [α] to H3(〈g〉, U(1)) is the trivial class and
one can choose β(gi, gj) in such a way that

(D.21) cgi(gj , gk) = 1.

In particular,

(D.22) fg,r(gi) = 1,

for all r, i. By specializing (3.32) to the case r = N , we obtain

(D.23) cg(h, k)N = cgN (h, k)
fg,N (hk)

fg,N (h)fg,N (k)
= 1, h, k ∈ C(g),
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so that cg(h, k) is an Nth root of unity for all h, k ∈ CM24(g), i.e., there is
μg(h, k) ∈ Z/NZ such that

(D.24) cg(h, k) = e
2πiμg(h,k)

N .

With this choice of cocycle, the central extension Cα
M24

(g) of Section 3.2.3
can be chosen to be finite

(D.25) 1→ 〈Q〉 ∼= ZN → Cα
M24

(g)→ CM24(g)→ 1.

where the central element Q is related to the U(1)-generator q(x) in Sec-
tion 3.2.3 by

(D.26) Q = q(1/N).

Appendix D.2.2. Case λ �= 1 (non-trivial multiplier). This case
occurs when g is in one of the M24-classes

2B, 3B, 4A, 4C, 6B, 10A, 12A, 12B, 21A, 21B.

Since H3(〈g〉, U(1)) ∼= ZN , we can choose the cocycle in such a way that

(D.27) cgi(gj , gk)N = 1,

for all i, j, k ∈ Z. This condition fixes β(gi, gj) up to Nth roots of unity. For
h, k ∈ CM24(g), with h, k, hk �∈ 〈g〉, we can apply again (3.32) with r = N
and obtain

(D.28) cg(h, k)N = 1, h, k, hk ∈ CM24(g)\〈g〉.

If α satisfies (D.17) and (D.27), then by (3.32) we have

(D.29) fg,N (gi)cg(gi, h)N = 1,
fg,N (gi)fg,N (gj)

fg,N (gi+j)
= 1,

so that

(D.30) fg,N (gn) = fg,N (g)n = e−
2πin

λ ,

and

(D.31) cg(gi, h)Nλ = 1.
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Therefore, cg(h, k) is a Nλ roots of unity for all h, k ∈ CM24(g) and we can
define μg(h, k) ∈ Z/NλZ such that

(D.32) cg(h, k) = e
2πiμg(h,k)

Nλ .

The discussion is similar to the case λ = 1. With this choice of cocycle, the
central extension Cα

M24
(g) of Section 3.2.3 can be chosen to be finite

(D.33) 1→ 〈q( 1
Nλ

)〉 ∼= ZNλ → Cα
M24

(g)→ CM24(g)→ 1.

It is convenient to define also a central element Q of order N by

(D.34) Q = q(1/N),

so that the gr-twisted sector is an eigenspace of Q with eigenvalue e
2πir

N .

Appendix D.3. S-duality for g in classes 2B, 3B, 4C, 6B, 12B

Here we prove the S-duality transformation property of Φg,h for g in the
classes 2B, 3B, 4C, 6B, 12B. Let g be an element of M24 in one of these
classes and let N be its order. In all these cases, the restriction of the class
[α] to H3(〈g〉, U(1)) is non-trivial and has order λ = N . Therefore,

ĉg,h(d, m, �, t)

(D.35)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πibm

N2

N2
TrHgd ( md

N2 ,�)

(
ρ̃g,d(g)−bρ̃g,d(h)k(−1)F+F̄

)
.

In the gr-twisted sector, for r and N coprime, the spectrum of L0 − c
24 takes

values in − 1
N2 + 1

N Z. More generally, if gcd(r, N) = e, then in the gr-twisted
sector the spectrum of L0 − c

24 takes values in − 1
(N/e)2 +

1
N/eZ. Notice that

ĉg,h(d, m, �, t) is a sum of traces in the gd-twisted sector at level md
N2 , so that

ĉg,h(d, m, �, t) = 0 unless md
N2 ∈ − 1

(N/e)2 +
1

N/eZ, where e = gcd(N, d). It is
easy to verify that this condition is equivalent to

(D.36) m ≡ −d mod N,

where we used the property

(D.37) gcd(x, N) = 1 ⇔ x2 ≡ 1 mod N,

which holds for all N that divide 24.
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As explained in Appendix D.2.2, we can choose the cocycle α in such a
way that

(D.38) fg,N (h) ≡
N−1∏
i=1

ch(g, gi) = 1, h ∈ CM24(g)\〈g〉,

while fg,N (gk) depends only on the cohomology class [α] and equals

(D.39) fg,N (gk) = e−
2πik

N .

With this choice of cocycle, we have

(D.40) ρ̃g,x+N (h) =
ρ̃g,x(h)
fg,N (h)

= ρ̃g,x(h), h ∈ CM24(g)\〈g〉,

while

(D.41) ρ̃g,x+N (g) =
ρ̃g,x(g)
fg,N (g)

= e
2πi

N ρ̃g,x(g).

For d ≡ −m ≡ 0 mod N , we have, for all x ∈ N,

ĉg,h(d = Nu, m = Nv, �, t)

(D.42)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πibv

N

N2
TrHe(uv,�)

(
ρ̃g,Nu(g)−bρ̃g,Nu(h)k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(v−u)

N

N2
TrHe(uv,�)

(
g−bhk(−1)F+F̄

)
.

Since the (untwisted) twining genera are invariant under charge conjugation,
i.e.,

(D.43) φe,g−bhk(τ, z) = φe,gbh−k(τ, z),
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we obtain

ĉg,h(Nu, Nv, �, t)(D.44)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(v−u)

N

N2
TrHe(uv,�)

(
gbh−k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(u−v)

N

N2
TrHe(uv,�)

(
g−bh−k(−1)F+F̄

)
= ĉg,h−1(Nv, Nu, �, t).

Similarly, for d ≡ x ≡ −m mod N , with x = 1, . . . , N − 1, we obtain

ĉg,h(d = Nu+ x, m = Nv +N − x, �, t)(D.45)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(Nv+N−x−Nu)

N2

N2

× TrHgx ( md

N2 ,�)

(
ρ̃g,x(g)−bρ̃g,x(h)k(−1)F+F̄

)
.

Using the relation

(D.46) φg,h(τ, z) =
1

ch(g, g−1)cg−1(h, h−1)
φg−1,h−1(τ, z),

and by

(D.47)
ρg−1(h−1)

cg−1(h, h−1)
= ρg−1(h)−1,

we obtain

TrHgx (n,�)(ρ̃g,x(h)) =
TrHgx (n,�)(ρgx(h))∏x−1

i=1 ch(g, gi)
=

TrHg−x(n,�)(ρg−x(h)−1)

ch(gx, g−x)
∏x−1

i=1 ch(g, gi)

(D.48)

=
TrHgN−x (n,�)(ρ̃g,N−x(h)−1)

ch(gx, gN−x)
∏x−1

i=1 ch(g, gi)
∏N−x−1

j=1 ch(g, gi)

=
TrHgN−x (n,�)(ρ̃g,N−x(h)−1)

fg,N (h)
,
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where the last equality follows from

(D.49) ch(gx, gN−x)
x−1∏
i=1

ch(g, gi) =
N∏

i=N−x

ch(g, gi),

that in turn is a consequence of the 2-cocycle condition for cg. It is easy
to verify that this identity is compatible with the product in the central
extension, i.e.,

(D.50)

TrHgx(n,�)(ρ̃g,x(h)ρ̃g,x(k)) =
TrHgN−x(n,�)(ρ̃g,N−x(k)−1ρ̃g,N−x(h)−1)

fg,N (k)fg,N (h)
.

Using this relation, we obtain

ĉg,h(d = Nu+ x, m = Nv +N − x, �, t)

(D.51)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(Nv−x−Nu)

N2

N2

× TrHgN−x ( md

N2 ,�)

(
ρ̃g,N−x(g)bρ̃g,N−x(h)−k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(Nu+x−Nv)

N2

N2

× TrHgN−x ( md

N2 ,�)

(
ρ̃g,N−x(g)−bρ̃g,N−x(h)−k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πib(Nu+x)

N2

N2

× TrHgN−x ( md

N2 ,�)

(
ρ̃g,Nv+N−x(g)−bρ̃g,Nv+N−x(h)−k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πibd

N2

N2
TrHgm ( md

N2 ,�)

(
ρ̃g,m(g)−bρ̃g,m(h)−k(−1)F+F̄

)
.

Finally, we notice that

(D.52) ρ̃g,r(h)−k = cg(h, h−1)−rkρ̃g,r(h−1)k,

where cg(h, h−1) is a Nth root of unity thanks to our choice of cocycle. We
recall that imposing the condition fg,N (h) = 1 still leaves the possibility of
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modifying the cocycle α by a coboundary ∂β with βN = 1. Under such a
modification, cg(h, h−1) transforms as

(D.53) cg(h, h−1)→ β(g, h)
β(h, g)

β(g, h−1)
β(h−1, g)

cg(h, h−1),

We distinguish two cases. If h−1 and h are not conjugated within CM24(g),
then one can choose the cocycle α in such a way that

(D.54) cg(h, h−1) = 1.

With this choice, we obtain

(D.55) ĉg,h(d, m, �, t) = ĉg,h−1(m, d, �, t),

so that

Φg,h(σ, τ, z) = pq
1

N2 y
M∏
t=1

∏
(d,m,�)>0

(1− e
2πit

M q
m

N2 y�pd)ĉg,h(d,m,�,t)(D.56)

= pq
1

N2 y
M∏
t=1

∏
(d,m,�)>0

(1− e
2πit

M q
m

N2 y�pd)ĉg,h−1(m,d,�,t)

= Φg,h−1

( τ

N2
, N2σ, z

)
.

In most cases, however, there is some w ∈ CM24(g) such that h−1 = w−1hw.
At the level of the central extension Cα

M24
(g), the relation hw = wh−1 leads

to a relation among the lifts

(D.57) h−1
α =

cg(w, h−1)
cg(h, w)cg(h, h−1)

w−1
α hαwα = w−1

α Qnhαwα,

where n ∈ Z/NZ is such that

(D.58) e−
2πin

N =
cg(h, w)cg(h, h−1)

cg(w, h−1)
,

and we used the fact that, with our choice of cocycle, the right-hand side is
an Nth root of unity. Since Qnhα is conjugated with h−1

α within Cα
M24

(g), it
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must have the same order M , so that nM ≡ 0 mod N or, equivalently,

(D.59) nM = sN,

for some s ∈ Z/MZ. Therefore,

ĉg,h(d, m, �, t) =
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πibd

N2

N2

(D.60)

× TrHgm( md

N2 ,�)

(
ρ̃g,m(g)−bρ̃g,m(h)kρ̃g,m(Qn)k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πitk

M

M

N2∑
b=1

e
2πibd

N2

N2
e

2πinmk

N

× TrHgm( md

N2 ,�)

(
ρ̃g,m(g)−bρ̃g,m(h)k(−1)F+F̄

)

=
M−1∑
k=0

e−
2πi(t−sm)k

M

M

N2∑
b=1

e
2πibd

N2

N2

× TrHgm( md

N2 ,�)

(
ρ̃g,m(g)−bρ̃g,m(h)k(−1)F+F̄

)
= ĉg,h(m, d, �, t− sm).

Using this identity, we obtain

Φg,h(σ, τ, z) = pq
1

N2 y
M∏
t=1

∏
(d,m,�)>0

(1− e
2πit

M q
m

N2 y�pd)ĉg,h(d,m,�,t)

(D.61)

= pq
1

N2 y
M∏
t=1

∏
(d,m,�)>0

(1− e
2πit

M q
m

N2 y�pd)ĉg,h(m,d,�,t−sm)

= pq
1

N2 y
M∏

t′=1

∏
(d,m,�)>0

(1− e
2πism

M e
2πit′

M q
m

N2 y�pd)ĉg,h(m,d,�,t′)

= pq
1

N2 y
M∏

t′=1

∏
(d,m,�)>0

(1− e
2πinm

N e
2πit′

M q
m

N2 y�pd)ĉg,h(m,d,�,t′)

= e−
2πin

N Φg,h

( τ

N2
+

n

N
, N2σ, z

)
= e

2πin

N Φg,h

( τ

N2
, N2σ −Nn, z

)
,
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where we used the property that the exponent ĉg,h(m, d, �, t′) is non-zero
only for d ≡ −m mod N2, so that

(D.62) e−
2πix

N2 Φg,h

(
σ +

x

N2
, τ, z

)
= e

2πix

N2 Φg,h(σ, τ − x, z), x ∈ Z.

The identity (D.61) can be simplified by a suitable choice of the 3-cocycle.
Let us shift the cocycle α by a 3-coboundary ∂β such that β(g,h)

β(h,g) = e
2πir

N2 for
some r ∈ Z, so that, by (3.56), the new form Φ′ satisfies

Φ′g,h(σ, τ, z) = e−
2πir

N2 Φg,h

(
σ +

r

N2
, τ, z

)
(D.63)

= e
2πi(Nn−r)

N2 Φg,h

( τ

N2
, N2σ + r −Nn, z

)

= e
2πi(r−Nn)

N2 Φg,h

(
τ

N2
+

Nn− r

N2
, N2σ, z

)

= e
2πi(2r−Nn)

N2 Φ′g,h

(
τ

N2
+

Nn− 2r
N2

, N2σ, z

)
.

By choosing r = n(N+N2)
2 , we finally obtain

(D.64) Φ′g,h(σ, τ, z) = Φ′g,h

( τ

N2
− n, N2σ, z

)
= Φ′g,h

( τ

N2
, N2σ, z

)
.

Appendix E. Modular forms and Jacobi forms

The Dedekind η function and Jacobi theta functions are defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn)

ϑ1(τ, z) = −iq
1
8 y

1
2

∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn−1)

ϑ2(τ, z) = 2 q
1
8 cos(πz)

∞∏
n=1

(1− qn) (1 + yqn)(1 + y−1qn)

ϑ3(τ, z) =
∞∏

n=1

(1− qn) (1 + yqn−1/2)(1 + y−1qn−1/2)

ϑ4(τ, z) =
∞∏

n=1

(1− qn) (1− yqn−1/2)(1− y−1qn−1/2).

(E.1)
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The standard weak Jacobi forms φ0,1 and φ−2,1 of index 1 and weight 0 and
2 can be defined as [57]

(E.2) φ0,1(τ, z) = 4
4∑

i=2

ϑi(τ, z)2

ϑi(τ, 0)2
, φ−2,1(τ, z) = −

ϑ1(τ, z)2

η(τ)6
.

Every weak Jacobi forms of weight 0 and index 1 under a congruence sub-
group Γ ⊆ SL(2, Z) is given by

(E.3) Aφ0,1(τ, z) + F (τ)φ−2,1(τ, z),

where A is a constant and F (τ) is a modular form of weight 2 for Γ.
The Eisenstein series

(E.4) ψ(N) = q
∂

∂q
log

η(Nτ)
η(τ)

= E2(τ)−NE2(Nτ),

where

(E.5) E2(τ) = −
1
24

+
∞∑

n=1

(∑
d|n

d
)
qn,

are modular forms of weight 2 under Γ0(N) ⊂ SL(2, Z). We will also need
the newforms

f23,a(τ) =q − q3 − q4 − 2q6 + 2q7 − q8 + 2q9 + 2q10 + · · · ,(E.6)

f23,b(τ) =− q2 + 2q3 + q4 − 2q5 − q6 − 2q7 + 2q8 + 2q10 + · · ·(E.7)

that are modular (cusp) forms of weight 2 for Γ0(23).

Appendix F. Tables

In the following tables, we collect information about the 55 abelian sub-
groups 〈g, h〉 of M24 and the corresponding twisted twining genera.

Table A describes the 21 cyclic subgroups 〈g〉, g ∈M24 and the corre-
sponding twining genera. For each group we report the conjugacy class of
the generators, the orbits in the 24-dim representation, the twisted twining
genera for some pairs of elements in the group. The twining genus φe,g is a
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weak Jacobi form of weight 0 and index 1 for the group

(F.1) Γ0(N) := {
(

a b
c d

)
∈ SL(2, Z) | c ≡ 0 mod N},

where N is the order of the g. Thus, φe,g is given by Tr24(g)
12 φ0,1(τ, z) +

Fe,g(τ)φ−2,1(τ, z), where φ0,1(τ, z), φ−2,1(τ, z) are the standard generators
of the ring of weak Jacobi forms of index 1 and Tr24(g) and Fe,g(τ) are
reported in the last two columns. The table is divided into two parts, the
first containing the groups whose generators are in some M23 subgroup of
M24 (equivalently, the groups have some fixed points in the 24-dimensional
permutation representation).

Table Appendix F contains information about the 34 conjugacy classes
of non-cyclic abelian groups of M24 (see [17]). For each such 〈g, h〉 ⊂M24

we have described the structure as an abelian group, i.e., as Zm × Zn, the
M24 classes of all its elements (excluding the identity), the order of the cen-
tralizer C(g, h) and its index |N(g, h)|/|C(g, h)| in the normalizer of 〈g, h〉
in M24, and the lengths of the orbits of 〈g, h〉 ⊂ M24 when acting as a group
of permutations of 24 objects. Furthermore, we give a classification of all
modular groups Γg,h ⊂ PSL(2, Z) and twisted twining genera φg,h for com-
muting pairs g, h ∈M24. The latter functions are denoted as φ[g],[h], where
the first subscript is the M24-class of g and the second is CM24(g)-class of
h; the names of the classes follow the conventions of [17]. Finally, for each
of the 34 groups we provide the explicit expressions of the twisted twining
genera φg,h and T α

L φg,h, L = 2, 3, 4, for a pair (g, h) of generators and for a
choice of cocycle α satisfying (D.17) and (D.21) (when g is in M23 ⊂ M24)
or (D.27) (otherwise).

Group 27 is the only case where the pairs (g, h) and (g−1, h−1) are not
conjugated within M24. Thus, in this case, charge conjugation gives the
identities φ2B,8A1 = φ2B,8A2 , φ8A,2B1 = φ8A,2B2 , and so on, and the respective
functions are denoted in the following tables by φ2B,8A1,2 , φ8A,2B1,2 , etcetera.

Most of the modular groups Γg,h are of the form Γ(1) = SL(2, Z), Γ0(N)
or conjugates of Γ0(N) in SL(2, Z). The exceptions are the group in case
32, where

(F.2) Γ2B,10A =
⋃

i∈Z/3Z,j∈Z/4Z

(
1 1−5 −4

)i (−3 −1
10 3

)j Γ2,10,

is a subgroup of index 12 in SL(2, Z) and
(F.3)
Γ2,10 := {

(
a b
c d

)
∈ SL(2, Z) | a ≡ 1, b ≡ 0 mod 2, c ≡ 0, d ≡ 1 mod 10},
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is the group of elements γ ∈ SL(2, Z) such that (g, h) · γ = (g, h); the group
in case 12, with

(F.4) Γ2A,4A = {
(

a b
c d

)
∈ SL(2, Z) | b ≡ 0 mod 2, c ≡ 0 mod 4},

which is a conjugate of Γ0(8) in SL(2, R); and the group in case 22, with

(F.5) Γ4A,4C = 〈
(−1 1
−2 1

)
, ( 1 2

0 1 ) , (
1 0
4 1 ) ,

(
3 −2
−4 3

)
〉.
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Table D: Relabeling for g in class 2A. Each line corresponds to a conjugacy
class in the central extension Cα

M24
(g). For each such class, we report the

corresponding class in CM24(g) with representative h, the group 〈g, h〉 gen-
erated by g and h, the “relabeled” class in CM24(g) with representative h′

and the group 〈g, h′〉 generated by g and h′.

〈g, h〉 h 〈g, h′〉 h′

Z2A 1A Z2A 1A
Z2A Q Z2A g
Z2A g Z2A Q
Z2A Qg Z2A Qg
Z4A 4A1 Z4A 4A1

Z4A 4A1 Z4A 4A1

Z4B 4B1 7 2A4

Z4B 4B1 7 2B3

Z6A 3A1 Z6A 3A1

Z6A 3A1 Z6A 6A1

Z6A 6A1 Z6A 3A1

Z6A 6A1 Z6A 6A1

Z8A 8A1 12 4B4

Z8A 8A1 12 4A4

Z12A 12A1 Z12A 12A1

Z12A 12A1 Z12A 12A1

Z14AB 7A1 Z14AB 7B1

Z14AB 7A1 Z14AB 14A1

Z14AB 7B1 Z14AB 7A1

Z14AB 7B1 Z14AB 14B1

Z14AB 14A1 Z14AB 7A1

Z14AB 14B1 Z14AB 7B1

〈g, h〉 h 〈g, h′〉 h′

Z14AB 14A1 Z14AB 14B1

Z14AB 14B1 Z14AB 14A1

1 2A2 2 2A3

2 2A3 1 2A2

3 2A5 3 2A5

7 2A4 Z4B 4B1

7 2B3 Z4B1 4B
8 2B1 8 2B1

9 2B2 9 2B2

10 4A2 11 4A3

11 4A3 10 4A2

12 4A4 Z8A 8A1

12 4B4 Z8A 8A1

15 4C1 15 4C1

16 4C2 16 4C2

17 4B2 18 4B3

18 4B3 17 4B2

19 4B5 19 4B5

28 6A2 29 6A3

28 6A2 29 6A3

29 6A3 28 6A2

29 6A3 28 6A2
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