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On an extension of the universal monodromy
representation for P1\{0,1, co}

SHELDON T JOYNER

The ideas behind the TSUCHIYA—KANIE representations of braid
groups on spaces of N-point correlation functions are emulated to
represent the modular group PSL(2,Z) on a space of degenerate
3-point correlation functions. This extends the CHEN series map
giving the universal monodromy representation of P! \ {0,1, 00} to
an injective 1-cocycle of PSL(2,7) into power series with complex
coefficients in two non-commuting variables, twisted by an action of
S3. The definition of the 1-cocycle is effected by parallel transport
of flat sections of the bundle, also with an S5 twisting, along paths
in P!\ {0,1,00} which are explicitly associated with elements of
PSL(2,7). Injectivity is proven using a DE RHAM-type theorem
due to CHEN. The resulting action of PSL(2,Z) on the polyloga-
rithm generating function is shown to yield a family of proofs of
the analytic continuation and functional equation of the RIEMANN
zeta function.
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Introduction

In the work [18] in which they gave a rigorous mathematical foundation
to groundbreaking developments brought forward by V. G. Knizhnik and
A. B. Zamolodchikov, A. Tsuchiya and Y. Kanie produced explicit mon-
odromy representations of the braid group on N strands, By, on spaces of
N-point correlation functions. A key idea facilitating these representations
is the lifting of the braid groups, which act as the fundamental groups of
the quotients of the configuration spaces

Configy = {(20,...,2n-1) € CN|z # z; if i # j}

by the action of the symmetric groups Sy, to spaces of paths on Configy
itself. Thereby, one obtains monodromy representations of By on any suit-
able space of functions from Configy into some Sy-module, via analytic
continuation twisted by the Sy action coming from the surjection By — Sy

In this paper, a similar circle of ideas is used to represent the modu-
lar group PSL(2,7) on a space of degenerate 3-point correlation functions.
In particular, we give an explicit lifting of PSL(2,Z) as the fundamen-
tal group of the quotient stack [Sg\(Pl\{O, 1, oo})], to homotopy classes of
paths in P*\{0, 1, 00}. Next, interpreting the degenerate 3-point correlation
functions as flat sections of the universal unipotent bundle with connection
on P1\{0, 1, oo}, parallel transport along the elements of the modular group,
twisted by the S3 action on P'\{0, 1, 00}, gives rise to an injective 1-cocycle
of PSL(2,7Z) on an Ss-module comprising formal non-commuting power
series in two variables over C, which extends the monodromy representation
of the fundamental group of P!\ {0, 1, 00}.
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The PSL(2,7Z) action is then shown to yield a family of proofs of the
analytic continuation and functional equation of the RIEMANN zeta function.

Here are some details and relevant background: consider the curve in
Configs (with notation as above) cut out by the equations zp = 0 and z; = 1.
This is P!\ {0, 1, 00}, isomorphic via the cross-ratio to the moduli space
Mo 4 of genus 0 curves with four marked points. Owing to work of BELYI,
DELIGNE, DRINFEL’'D, THARA and many others, the arithmetic significance
of P1\ {0,1, 00} is well known. Now via the covering map  : Configg — P!\
{0,1, 00} the structures of [18] degenerate to P!\ {0,1,00}. Among these is
the degenerate version of the KNIZHNIK—ZAMOLODCHIKOV (KZ) equations

Haiz’iw(zo, ey ZN_l)

Q.-
=) Uz, en—1) i=0,...,N—1
JAL0<jEN—1 Tt Fd

(where the €;; are operators on tensor products of duals of highest weight
modules over a certain affine LIE algebra — see [18] or [6] for the details),
which takes the form

) et = |22 22 ),

As is shown in Proposition 4.2.1 of [6], this equation is auxilliary to solving
the KZ system in the case N = 3. As the equation for flat sections of the
universal unipotent bundle with connection on P!\ {0, 1, 0o}, this equation
has geometric significance, in addition to the above-mentioned arithmetic
significance, which this paper aims to explore.

As is well known the monodromy representation corresponding to the
universal prounipotent bundle U with connection ¥V on P!\ {0,1, 00} (cf.
Section 1 of [12]) may be described by means of the CHEN series map on
homotopy classes of paths [y] € 71 (P \ {0, 1, 00}, ¢):

(2) [’Y]'—’Z/wil"'wisz‘l"‘Xim
w Y

where the sum is taken over all words in the non-commuting formal variables
Xo and X (including the empty word, for which the corresponding integral
is 1), ¢ is any (possibly tangential) basepoint, and if z denotes the usual
parameter on P!\ {0,1,00}, wy = % while wy = % (see Proposition 11

in [7)). '
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The CHEN iterated integrals appearing here are defined in the general
case of a piecewise smooth path 4 on a smooth manifold M as integrals over
time-ordered simplices (pulling back via the path) as follows:

Leorar= [ Grane nn G

where A" denotes the r-fold time-ordered simplex {0 <t¢; <--- <t, <1}
and the o; are 1-forms on M. For further details see the classic reference
[3]. The CHEN series in (2) can thus be interpreted as a time-ordered expo-
nential. -

When ¢ is the tangential basepoint 01 and « is a path from ¢ to z
which does not cut the real axis unless z is real, the series which results
is called the polylogarithm-generating series, and is denoted Li(z, X, X1)
or Li(z) for short. Here, the integrals which appear are regularized in the
usual way — cf. [11]. For such v, the coefficients of the terms of the form of
X1 Xy X1 X" -+ XX are the multiple polylogarithm functions.

Because the bundle U is given by

U = lim [(C< Xo, X1 > /(X0, X)) ® Op1\ (0.1,00}]

and V is the formal KZ connection

d d
V:d—<ZX0+ : X1>,
z 1—z2

where we set Q9; = X7 for = 0,1 in (1), one verifies without difficulty that
Li(z) is a flat section of (U, V). An excellent presentation of general KZ
equations and related mathematical structures appearing in conformal field
theory may be found in [6].

Here we prove:

Theorem A. The monodromy representation
Fo:m(P'\ {0,1,00},01) = C< Xg, X1 >*
admits an extension to an injective 1-cocycle
Fo: PSL(2,Z) — C< Xo, X1>} .

(See 1.15 and 1.17 below.)
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C<« Xy, X1> denotes the algebra of power series with complex coef-
ficients in Xy and X7, and C<« Xg, X1 >>X denotes invertible power series
with an action of PSL(2,7Z) which factors through A ~ S3 via the usual
surjection A of (3) below. The S3 action on power series is induced by the
action of the group of automorphisms A of P!\ {0,1, 00} on the connection
V, and was given in (25) of [16]. It is also described in Section 1.1 below.

The existence of this extension is facilitated by the following short exact
sequence:

(3)
1 —T(2)/{£1} ~ m (P'\ {0,1,00},¢) — PSL(2,Z) & SL(2,2/2Z) — 1.

Where the flat section Li(z) is concerned, we prove in Proposition 1.15 below
that the parallel transport action of PSL(2,7Z) twisted by S3 amounts to
multiplying the section by a power series. This power series gives the exten-
sion of the monodromy representation to a 1-cocycle on PSL(2,7Z), and is
given by the formula:

w o

Y =aXi,

with sum and w;, notation as above, writing @ for the reduction of a €
PSL(2,Z) to SL(2,Z/2Z) ~ S3, and aX;, for the action of @ € S3 on Xj,.

The proof of the injectivity rests on CHEN’S m; DERHAM Theorem (cf.
Theorem 10 of [7]).

Extending the monodromy representation to PSL(2,7Z) yields an addi-
tional symmetry on Li(z) which can be used to prove the analytic contin-
uation of RIEMANN’S zeta function ((s). This allows us to draw parallels
between the classical theta function technique used to prove the analytic
continuation and functional equation of ((s), and RIEMANN’S original con-
tour integral approach. As HECKE noticed in [9], the following two facts
comprise the essence of the theta function proof:

TO0. The JACOBI theta function #(, z) is modular in 7 in the usual sense,
with respect to the congruence subgroup I'(2) of PSL(2,Z). (This explains
the existence of the FOURIER series expansion for 0(7, z).)

T1. 6(7, z) satisfies an additional symmetry property with respect to the
involutive generator o of PSL(2,7Z) (given by o : 7 +— —1/7 in the action
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on H), namely the functional equation of (7, z), which is regarded as an
additional modularity property in 7.

Here, we show that RIEMANN’S contour integral expression for ((s) fits
into the context of a family of integral expressions, each of which may be
used to prove the analytic continuation and functional equation for ((s).
Taken together, these proofs result from the following facts:

PO. The monodromy of the polylogarithm generating function Li(z) may
be calculated (as for example in [15]) by directly performing the analytic
continuation along the paths of the fundamental group of P!\ {0, 1, c0}.
The equations which result may be thought of as transformation rules for
Li(z) with respect to elements of I'(2)/{£1} ~ w1 (P! \ {0,1,00},¢) (where
¢ is any basepoint — possibly tangential).
P1. Li(z) satisfies an additional symmetry property with respect to o €
PSL(2,7), namely a functional equation involving the DRINFEL’D associator.
Properties PO and P1 represent particular instances of the above-
mentioned action of the modular group on sections of (U, V). PO encapsu-
lates monodromy data which are essential to the proofs, while P1 facilitates
the analytic continuation in that it gives rise to the EULER connection for-
mulae (see Proposition 5 in [16]). The latter allow us to avoid non-integrable
monodromy terms by shifting monodromy of the integrands from 0 € C to
oo — for the details see Section 2.2.

1. The extension of the monodromy representation

1.1. Explicit lifting of PSL(2,7Z) to classes of paths in
P\ {0,1, 00}

Suppose that X = X \ S is a smooth curve over C where S is some finite
set of points. In [5], DELIGNE introduced a notion of fundamental group of
X based at any given omitted point a € .S, in the direction of some specified
tangent vector to X at a. Classically, as in [8] such fundamental groups with
tangential basepoint may be defined as follows: If v € Ty, is a tangent vector
at aj € S for j =0,1, set

PvT),v_i = {'7 : [07 1] - Yh’l(o) = UB?’Y,(l) = _U_ivV((O? 1)) - X}

Definition 1.1. The fundamental path space 71 (X, 09, v7) is the set of path
components of Py ;.
When 07 = v, this is the fundamental group denoted 71 (X, vg).
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This naive description is sufﬁment for the use of the paper. For our
purposes, X = PL, S = {0,1,00}, and ab will denote the tangent vector of
unit length over X at a € S, pointing in the direction of b € S for any b # a.

Definition 1.2. Any fundamental path space of the form of
1 —_—
m1(P*\ {0, 1, 00}, agbo, a1b1),

where a;,b; € {0,1,00} and a; # b; for j = 0,1 will be called a real- based

fundamental path space of P!\ {0,1, 00}, and the tangential basepoints a]b
will be referred to as real tangential basepoints.

Fix a real tangential basepoint ab. Then form the set
1 — -
Ga—>b = UTl'l(IP) \ {0,1,00},0]),&0[)0),

where the union is taken over all ag, by € {0, 1,00} with ag # by. The utility
of restricting attention to the real tangential basepoints lies in the fact that
they admit an action of SL(2,Z/2Z) (see below). Using this action, G— will
be endowed with a group structure, by means of which it can be identified
with PSL(2,7Z).

Now as is described in [2], the symmetries of the classical A function
effecting the covering of P!\ {0,1,00} by H are captured by the classi-
cal anharmonic group A, to which SL(2,Z/27) is isomorphic. A is given
explicitly as the following group of linear fractional automorphisms of P!\
{0,1, 00}:

A 1 A—1 1
A:{)\'—))\7)\H1_/\7)\HH’)\HA’)\HA’/\'_)l—)\}'

It is evident from the topology that A is exactly the group of all such linear
fractional automorphisms of P!\ {0,1, co}.

Note that these transformations necessarily permute the real tangential
basepoints, as is also immediate from the above explicit description. In fact,
the elements of A are characterized by the corresponding permutations of
the symbols 0, 1 and oo so that also A ~ Ss.

Once and for all fix isomorphisms

(4) SL(2,Z)27) ~ A ~ S3 ~ (7,p[5*> = > = 1;5p5 = pop)
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by identifying the respective generators

[‘1) (1)]<—>(>\'—>1—)\)<—>(01)Ha

and
11 A _
[0 1}<—>()\»—>)\_1><—>(1oo)<—>,0.

Now suppose given the real tangential basepoint ab = 01. Then let s
denote the homotopy class of paths in P!\ {0,1,00} represented by the
tangential path [0,_}] and_}et r be the homotopy class of paths represented
by the loop from 01 to Oco in the upper half-plane, as pictured below.

° —— > o

o0 0 1
T

, .

oo 0 1

The use of tangential basepoints prevents homotopies which would oth-
erwise occur — in particular, the homotopy classes can detect an upper
half-plane owing to the rigidity of the real line with respect to a choice of a
pair of real tangential basepoints. In this way, one sees that r is well defined
as a homotopy class of paths which differs from the class of a similar loop
in the lower half-plane.

The group structure on G- is facilitated by the distinct presentations
of SL(2,Z/27Z) coming from (4): Firstly, we define the surjection [ - |4 of
G— onto SL(2,Z/2Z) ~ Ss by sending a given homotopy class ¢ in G— with
endpoint c?bt), to the permutation [t],, of {0,1,00} sending a to a; and b
to b;. Next, we exploit the fact that the fractional linear automorphisms
A are also isomorphic to SL(2,Z/2Z) to define an action of this group on
G- : Any @ € A is a self-mapping of P1\ {0,1,00} and as such sends any
homotopy class u of paths between real tangential basepoints, to some other
such homotopy class of paths. We denote the latter by a * u.

Sythesizing these definitions, we have a map of Ga—>b X GE; into GJE
given by

(t,u) — [t]ap * u.



An extension of the monodromy representation 377

Remark 1.3. When ab = 01 we write [-] for [-]o1. Then notice that,
viewed as linear fractional transformations of P!\ {0, 1, o0},

while

[s]:2—1—2.

—

Furthermore, for any t € G0—1> with endpoint a1b;, one checks by direct
computation that [¢] x r may be represented by a loop in the upper or lower
half-plane (according to the corresponding permutation [¢t] being even or
odd, respectively), beginning at a1b; and ending at ajci where ¢; # by, while
[t] * s may be represented by a straight line segment beginning at a1b; and
ending at bya;.

Using this action, we define a concatenation procedure for homotopy
classes of paths in G; according to the following inductive prescription: if
1 is a homotopy class of paths formed from the concatenation procedure
applied successively to classes in {r, s}, and v is either r or s, let nv be the
homotopy class of n followed by [n] * v. Since [n] sends v to a homotopy
class of paths originating at the endpoint of the paths in 7, it follows that
nv € Ggi.

Tlﬁ construction may be r_e)peat_e)d for any choice of real tangential base-
point ab. In cases other than ab = 01 write 7, agi Sap for the corresponding
generators. To be precise, ry is a loop based at ab of the form of r as above,
which is in the upper half-plane for ab = o000 and ab = 1oo but in the lower

H . _) % _) . . . .
half—p@)ne W_}}en ab is 10, 0oco, or ool; while s4 is a straight line segment
from ab to ba.

Throughout write - for concatenation of (homotopy classes of) paths.

Definition 1.4. The mapping
Sab:Ga—{)XG(ﬂ;—)Gﬁj
with

Sab(n, ) = np =1+ ([N]ap * 1)

for any 7, i € G, will be referred to as SL(2,Z/2Z) concatenation of tan-
gential paths in Ga;.
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One checks that for any n, u € Ga—é,

(5) [nu] = [n] o [u].

Using this fact, one readily proves the associativity of successive application
of Sgp: 1.e., for any 7, p and v in G,

Sab(nv Sab(:uv V)) = Sab(‘s’ab(na 'u)a V)'

Because of the associativity, for any n > 1, the SL(2,7Z/27Z) concatena-
tion vy - - - vy, of elements v; € {r, s} is uniquely determined. It is given by

v ([l/l] * 1/2) . ([1/1 . [Vl] * 1/2] * 1/3) .

(1] xve e[ [ (] R ve] kxus] L] k] k),

where - again denotes concatenation of (homotopy classes of) paths. Apply-
ing (5) iteratively, one sees that for any m <mn,

[Ul...ym}:[yl}o...o[ym]’

S0 vy - - - Uy may be rewritten

vi - (] xv2) - (] o [v2]) x v3) -+ (1] 0 -+ - 0 [vp—1]) * ).

Now it is possible to show that for any real tangential basepoint ﬁ;, Ga—é
may be endowed with a group structure witﬁ) mul_t)iplication given by Sg;. To
simplify the notation, consider the case of ab = 01. Begin by observing that
the class e of the trivial path acts as the identity. Also, s is its own inverse,
since [s] * s is the homotopy class of paths represented by the tangential
path [1,0], which is inverse to [0, 1]. The_i}nvers_e) of r is the homotopy class
q of paths represented by the loop from 01 to Ooco in the lower half-plane —
one checks easily that rq = gr = e. We write ¢ = r~1. Of course [r] = [r~1].

With the group structure induced in this way, it is easy to prove that

Ga; = <Tab7 Sab>/(8§b7 (Sabrab)3)7

where (rqp, sqp) = Fo denotes the free group on the two generators rq, and
Sab-
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Now it is a well-known fact that
PSL(2,Z) = (p,0)/ (0%, (po0)?),

where (p,0) = Fy, the free group on two generators. (For example, con-
sult [13], in which the BRUHAT decomposition is given, by means of which
one can write down generators and relations for SL(2,R).) Viewing PSL(2,Z)
as a group of linear fractional transformations of H, generators may be
given by

p:T— 14T
and
1
0T ——.
T

It then follows that for any real tangential basepoint a,_)b,
(6) G ~ PSL(2,7).
Since we now have
1 —
m(P"\ {0,1,00}, ab) 1 G,

the isomorphism of (6) gives the isomorphism of the fundamental group with
the congruence subgroup I'(2)/{%1} on the level of the generators p and o.

Notational remark 1.5. The multiplication in PSL(2,7Z) is written in
the functional order, whereas concatenation of paths in Ga; occurs in the
order in which the paths are written.

Remark 1.6. Denote the isomorphism of (6) by

Uy : G= = PSL(2,7),

o . . . — -
writing ¥ := Wy in the special case of ab = 01

We know that for any given u € G—=, V4p(u) is a transformation of the
ab’,

upper half-plane which sends the lift of ab under the covering map A : H —
P\ {0, 1,00} in some fixed fundamental domain for P! \ {0,1, 00}, to some
lift of the endpoint of w under A.
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Finally, we remark that with notation as above,
(W (Nap : PSL(2,Z) — SL(2,Z/2Z)

is the usual projection (i.e., A of (3)).

Subsequently write A(v) = for any v € PSL(2,7Z), and suppress the
mapping W from the notation (i.e., implicitly identify elements of PSL(2,7Z)
with those of G—).

1.2. Extending the monodromy representation

1.2.1. The universal prounipotent bundle with connection on P! \
{0,1,00}. For definitions and properties of CHEN iterated integrals, the
reader is referred to [7] or [11], and for general facts related to bundles with
connections on curves (and parallel transport), to [4] or [10].

Concretely, the universal prounipotent bundle with connection (cf. [12])
on P!\ {0,1,00} is constructed as follows: with X, and X; formal non-
commuting variables as above and I = (Xj, X;) the augmentation ideal, let

Uy, == C(Xo, X1) /1",

i.e. the algebra comprising linear combinations of words in the X; of length
less than or equal to n. The inverse limit of the U, is the power series algebra
in the non-commuting variables

U:=limU, =C< Xy, X;>.

Now we set Uy, :=U, ® OPI\{0717OO} and U := lim. U,,. With the w; defined
as above for j = 0,1, and |w| denoting the length of the word w in the X},
a compatible family of connections on the U, can be defined, giving rise to
a connection on U: Indeed, let

Z fuw € Uy,

[w|<n
be arbitrary, and set
m
Vo | D0 Juw | = D dfow—pra Y fu ) wiwk;,
lw|<n lw|<n lwl<n  i=1

where pry, is the projection to U,, — i.e., the augmented words [wX;] having
length greater than n are disregarded. One checks readily that V,, is a
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connection on U,,, which is unipotent (that is to say, a successive extension of
trivial bundles (O%I\ (01,00} d); for a similar computation see [12]). Moreover,
for k > 0 the (suitably interpreted) restriction of the connection on U, to
U,, evidently agrees with V,,. Hence (U, V) is the inverse limit of unipotent
connections on X.

V is identical to the formal KZ equation

d d
dG(z, Xo, X1) = (;Xo+ : z

X1> G(Z,Xo,Xl).

—Z

A fundamental solution to this equation asymptotic to exp(Xglogz) as z
approaches 0 is the polylogarithm-generating function Li(z, Xo, X1), given
by the CHEN series

Ll(Z,XO,Xl) :Z/_) Wzlwllelek)
w [0172}

where [ﬁ, z] denotes a tangential path from 01 to 2 which winds around nei-
ther 1 nor co in P!\ {0,1, 0c}; and other notation is as in the introduction.

1.2.2. The reduced action on sections of U. The A action on P!\
{0,1,00} by linear fractional transformations lifts to the (global) sections
of Op1\{0,1,00) i the obvious way. This produces an action on sections of U
once a suitable action of A on the formal variables Xy and X is defined.
The latter was determined by OKUDA and UENO in Section 3 of [16], in
which formal algebraic arguments and the theory of differential equations
were used to compute the A action on the fundamental solutions to the KZ
equation with specific asymptotics at 0, 1 and oo, respectively, generalizing
a calculation of DRINFEL’D. The action on Xy and X; arises from a simple
substitution action on the KZ equation:

Example 1.7. Consider the element 7 : z — 1 — z of A. Making this sub-
stitution in the KZ equation yields

d Xo X1
~ Y a0 - 2, X, X)) = ) G(1 - 2, Xo, X
ClZG( Z, A0, 1) <1—Z+ > >G( Z, A0, 1)
— i.e.
d =~ X -X ~
) 0 X0 X0) = (T2 720 ) G o, ).
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This equation is identical to the original KZ equation but for the interchang-
ing of Xy < —X;. Therefore we define the action of @ on the pair (Xg, X;) of
formal non-commuting variables, as the involution (Xo, X1) — (—X1, —Xo).

This example may be imitated for each element of A, and as in (25) of
[16] it is convenient to summarize all transformations of (Xo, X;) which arise
in this way. The associated linear fractional transformations of P! \ {0,1, 0o}
are also tabulated:

Elt. of SL(2,Z/2Z) Lin. frac. tr. Action on (Xg, X;)

1: z+ 2 (Xo, X1) — (X0, X1),
T z—1—2z (Xo, X1) — (X1, —Xo),
Pz 5 (Xo, X1) = (Xo, Xo — X1),
Gop: 2/ T (Xo, X1) = (=X71, Xo — X1),
poT: zZr> 221 (XO,Xl) — (X1 — X ,—Xo),
pOGOP=0COpPoO0 : z>—>% (X0, X1) — (X7 — Xo, X1)

Now one can state the

Definition 1.8. For every v € SL(2,Z/2Z) and every global section
L(z, X9, X1) of U, set

LY(z, Xo, X1) := L(v(2),0X0,0X1)
and refer to this as the SL(2,7Z/2Z)-action on global sections of U.
Example 1.9. We compute Li?(z, X, X1) : By construction,
Li%(z,5Xo,0X1) = Li(1 — 2, Xo, X1)

is a fundamental solution to (7). Formally, Li(z, —X1,—Xp) is also. Recall
from Section 1.2.1 that

Li(z, Xo, X1) exp(—Xplogz) — 1
as z — 0. Hence
(8) Li(z, =X, —Xp) exp(Xilogz) — 1
as z — 0. Now recall from [1]

hIq Li(Z,Xo,Xl) exp(X1 10g<1 - Z)) = @Kz(Xo, Xl),
zZ—
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where ®kz(Xo, X1) denotes the DRINFEL’D associator!, or equivalently,
lir%Li(l — 2, X0, X1) exp(Xi log 2) = Pz (Xo, X1).
Z—

But then ®xyz(Xo, X1)Li(z, —X1, —Xo) and Li(1 — z, X, X7 ) share the same
asymptotics near zero and both are solutions to the KZ equation. By unique-
ness of such solutions, then

Li%(z, X, X1) = Li(1 — 2z, — X1, —Xo) = Pz (—X1, —Xo)Li(z, X0, X1).

We remark that by the symmetry in the above computation, it is evident
that ®xz(Xo, X1)™! = ®xz(—X1, —Xo), a fact which will be used often in
what follows.

With the notation of 1.8, the computations of Propostion 2 of [16],
(which run in the same vein as 1.9), may be summarized by

Proposition 1.10.

Li%(z, Xg, X1) = ®Prz(—X1, —Xo)Li(z, X0, X1),

Li(z, Xo, X1) = exp(FXoin)Li(z, Xo, X1),
Li"°?(z, Xo, X1) = exp(£X1i7) Pz (— X1, —Xo)Li(z, X0, X1),
LiP% (2, Xo, X1) = ®Pxz(Xo, Xo — X1) ! exp(FXoin)Li(z, Xo, X1)

and

LiP°7°P(z, Xo, X1) = exp(£(Xo — X1)im) Pz (X1 — Xo, —Xo)
x exp(FXoim)Li(z, Xo, X1)
= Li"P%(z, Xo, X1)
= (I)Kz(Xl — Xo, Xl) eXp(:lzXliﬂ')q)Kz(—Xl, —Xo)
X Ll(zv Xo, Xl)a

where the ambiguity in sign is according to z being in the upper or lower half
plane respectively.

The ambiguity in sign will be resolved in lifting the action to P.S L(2,7).
We remark that the equality Li?°7°? = Li?°?°? follows from the well-
definedness of the A action and is a means of using the braid relation po

IThis expression can be taken as the definition of ®kz, but this formal power
series can also be given more explicitly. See [14].
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Gop=00po7T to establish the (highly non-trivial) hexagonal relations of
DRINFEL’'D, to wit

q)KZ(Xl — Xo, Xl) eXp(ﬂ:XliTF)(I)Kz(—Xl, —XQ)
= exp(:l:(XO — XﬂiTr)‘I)Kz(Xl — X(), —X()) eXp(:FXoiﬂ').

1.2.3. Lifting the action on sections of U to PSL(2,Z). The action
of SL(2,Z/2Z) on the formal variables Xy and X; as given in the table in
Section 1.2.2 extends by linearity to polynomials in the X; with complex
coefficients, and thereby to the quotients

C(Xo, Xp)/IN T

(where I = (Xo,X;) denotes the augmentation ideal); and hence to the
inverse limit C <X, X1>>. More precisely, we have:

Definition 1.11. The action of @ € SL(2,Z/27) on a formal power series
F(Xo,X1) € C<Xp, X1>> is given by

F(Xo, X1)* := F(@Xo,aX).

A given element o € PSL(2,7Z) then acts on power series by reduction
to SL(2,Z/2Z). In this case we replace @ by « in the notation for the above
action — i.e., we set

(9) F(Xo, X1)* := F(Xo, X1)*.

Now let V, be some open neighbourhood of a € {0, 1,00} in P! for which
(Vo \ {a}) N {0,1, 00} is empty. Then set U, := V, \ {a}. This is an open set
in P\ {0,1,00}. Suppose that L,(z, Xo, X1) is a section of (U, V) defined
over U, — i.e., Ly(z, Xo, X1) € I'(Uy, U). As above, let T denote the image
of v € PSL(2,Z) under the usual projection map to SL(2,Z/2Z). By iden-
tifying the elements of PSL(2,7Z) with those of G- as in Section 1.1, the
SL(2,7Z/2Z)-action on section of U as in Definition 1.8 can be lifted to an
action of PSL(2,Z) as follows:

Definition 1.12. Fixing a choice of basepoint ﬁ), then given v € PSL(2,7Z),
analytically continue L,(z,7Xo,7X1) along any path of the corresponding
homotopy class of paths ¥ !(v) in G—. This is an action of PSL(2,Z) for
which the image of L(z, Xo, X1) will be denoted by

Lg(Z,Xo,Xl).
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We proceed to compute this action for the distinguished section
Li(z, X0, X1) € T'(Up, U). Begin by setting

dz dz
w(Xo, X1) == —Xo+ —

X1

and write
w(X(),Xl)a = w(@Xo,aXl).

The following results will prove to be essential. The proofs are elementary.

Lemma 1.13. For any o € PSL(2,Z),

T w(Xo, X1) = [a* (d’zﬂ Xo + [a* < dz )] X1 = w(Xo, X1)® .

z 1—=z2

Lemma 1.14. For any o, 3 € PSL(2,7Z),

-1

T [B w(Xo, X1)] = w(Xo, X1)@D ™" = (@o B)*w(Xo, X1).

Now let fa @™ denote the n-fold CHEN iterated integral of the form ©
along @ — i.e., an iterated integral in which & is repeated n times. Also
write [ & = 1. Then we have

Proposition 1.15. For any o € PSL(2,7Z),
Lia(Z,Xo,Xl) = Fa(Xo,Xl)Li(Z,XQ,Xl),

where Fy(Xo, X1) is a formal power series given by the CHEN series

F,(Xo, X1) ::Z/w(aXo,aXl)".

n>0v ¢

Implicitly here, PSL(2,Z) is identified with Gg;.

Proof. When the CHEN iterated integrals are suitably interpreted — regu-

larizing % at z = 0 and {2 at z =1 in the usual way (cf. [11]) — for z ¢

(—00,0) U (1, 00) the polylogarithm-generating function may be expressed as

Li(z, Xo, X1) :Z/ﬁ w(Xo, X1)"
n>0 [01,2]

with notation as above.
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—
Now consider « € G—> Denote the endpoint thereof by cd, and a path

from ¢d to @z which does not cross the real axis by [cd @z|. Then composing
paths in the order as written (i.e., not the functional order), the analytic
continuation of Li(z, Xy, X1) along « is given by

Z/ _ w(XO,Xl)”.
a-[ed,a(z)]

n>0

Consider a typical integral which appears here. Using the coproduct
formula for iterated integrals (since w(Xo, X1) is a 1-form),

/_) w(Xo, X1)" Z/ (X0, X1) ~/_} w(Xg,Xl)"_k
a-[ed,az) e [ed,az]

Now

/_) w(Xo,Xl)"_k:/_) E*w(Xg,XQ"_k
[cd,az] [01,2]
- / W@ Xo,a 1 X,)"
[01,]

by the Lemma 1.13. Hence, replacing X; by @X; for j =0, 1, Li*(z, Xo, X1)
is the same as

Yy / @Xoax)* [ w@toaXea toak)

n>0 k=0 [01,2]

Z/ (@Xo,aX1)"| - Li(z, Xo, X1).

n>0

Now we can prove the fundamental
Corollary 1.16.

Lip(Z,Xo,Xl) = GXp(iTFX[))Li(Z,Xo,Xl),
LiU(Z,Xo,Xl) = CI)Kz<X0,X1)ULi(Z,X0,X1).

Proof. Recall that ¥(r) = p and ¥(s) = o in the notation of Section 1.1.
Also, p(Xo, X1) = (Xo, Xo — X1), while 5(Xo, X1) = (=X1, —Xp).
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One computes

/ dz dz "Xy /dz " (imXo)"
XO = — _— = - —
, 11—z n! r Z n!

by repeatedly using the shuffle product for iterated integrals and the fact
that the integrals in which % occur vanish along r. Thence

Fp(Xo, X1) Z/(dzxo
(i Xo)™
znzon!

= exp(imXp).

(Xo - X1)>n

It is well known that

dz "
o XX
(X0, X, 2/0”( +rEx)

in which expression we understand the integrals to be regularized at 0 and
1 as before, and the shuffle regularization of iterated integrals is applied
to those terms which otherwise diverge (see 3.4 of [1], for example). From
Proposition 1.15 the second assertion of the corollary follows. O

The power series which arise here do not look too different from those
which result in the case of the SL(2,7Z/27Z) action as in Section 1.2.2. Where
o is concerned, the reason for this is that @ has a unique lift to PSL(2,Z).
On the other hand, unlike that of p the action of p is not involutive.

Theorem 1.17. F,(Xy, X1) is an injective 1-cocycle for PSL(2,7Z) in the
multiplicative group of formal power series in the non-commuting variables
Xo and X1 equipped with the action of PSL(2,7Z) factoring through that of
SL(2,7/2Z). Specifically, for any v,v" € PSL(2,7Z),

Fy(Xo, X1)” Fyp (X0, X1) = Fyron(Xo, X1).

Proof. Consider such arbitrary v and v" € PSL(2,7Z) and identify them with
some choices of paths in the corresponding homotopy classes of G:b. Also,
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interpret fv w" as 1 so that

> dz dz "
Fyou(Xo, X1) = Z/ <Y0 +t1 Y1>
o \ 2 —z

Now recall from Section 1.1 that vv' = v - [v] 0/, write Y; =7 00X for
j=0,1 as above, and use the coproduct formula for iterated integrals to
compute

dz dz "
/ (YO + Y1>
v’ \ % 1-=2
n
= Z/w(YO,Yl)k/ w(@/OUXQ,U/ O@Xl)n_k
k=0 YV [v]*v’

n
:Z/w(YO,Yl)k/ T'w(v 0 UXo, T o UX)"F
k—0 /v v’

Y;=0'00X;: j=0,1

n
=3 [wt 1) [ (@ 0w on Ko, (o om0 Xy
k=0"" v
using Lemmas 1.13 and 1.14. Hence

n
FU/OU(X07X1) = ZZ w(U/OUX(),U/O'IJX1>k/ w(UXo,UXl)nik
n>0k=0""Y C
= F,(Xo, X1)" Fyy (X0, X1).

Finally we prove the injectivity: consider any o € PSL(2,Z) for which
Fr(Xo,X1) = 1. We show that such « is necessarily trivial. First observe
that because @ is invertible, also F,, (@Xp,@X1) = 1. But then

/ w(Xo,X1>n =0

for each n > 1, since each such integral expression is homogeneous of degree
n in the X;. Even further, the coefficients of the monomials X;, --- X; here
are all of the form of
[
«

where i; is either 0 or 1. Consequently, all such integrals are necessarily
zero. But then by CHEN’S m; DE RHAM Theorem (given for this case in
Theorem 10 in [7]), necessarily « is trivial, as was to be shown. O
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Let T" denote an arbitrary fixed subgroup of PSL(2,7Z) and define
Ir = {Fa(Xo,Xl) eC <<X0,X1>>‘Oé S F}.
Lemma 1.18. The elements of Fpgp(27) are group-like.

Proof. ®xz(Xo, X1) is group-like by construction. e/™*° is group-like since
Xy is primitive. In fact, replacing (X, X7) in each of these formal series
by any pair of primitive elements of C(Xy, X1), the resulting series are also
group-like. Now the images of Xy and X7 under the action of the elements of
SL(2,Z/2Z) are all primitive. Consequently, each F, (X, X;) is a product
of group-like elements, making it group-like too, since the LIE exponentials
form a group. ]

Endow Jr with a multiplication ® coming from the SL(2,Z/2Z) action
— i.e., set

F3(Xo, X1) ® Fo(Xo, X1) := Fo(Xo, X1)? F5(Xo, X1) = Fpoa(Xo0, X1).
This is well defined by 1.17. Also from 1.17 one obtains

Theorem 1.19. (I, ®) is a group which is isomorphic to (I',0).

1.3. Monodromy of polylogarithms

Identifying any g € 71 (P! {0,1700},&[)) with v € PSL(2,Z) via (3), as
made explicit in Section 1.1, the monodromy of Li(z, Xy, X1) about g is
equal to Li?(z, Xo, X1), since 7 is trivial. As a consequence of 1.15 and 1.17,
determining the monodromy is now an easy calculation. For example, about
the generators of the fundamental group, as first proven in [15] by means of
direct methods, we have

Proposition 1.20. The monodrz}my of Li(z, X9, X1) around the loop r?
about 0 in P\ {0,1,00} based at 01 is given by

Li” (2, X0, X1) = exp(2im Xo)Li(z, Xo, X1),
while that about the loop sr’s about 1 in P!\ {0,1, 00} is given by

Liapzo(Z,Xo, Xl) = @Kz(XO,Xl)U eXp(—QTI'Z'Xl)(I)Kz(Xo,Xl)Li(Z,Xo,Xl).
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Proof. Recall that the loop 72 about 0 in P!\ {0, 1, 00} based at 01 corre-
sponds to p? in PSL(2,Z). Now

Li”" (2, Xo, X1) = F,(Xo, X1)"F,(Xo, X1)Li(2, X0, X1)
= exp(miXo)” exp(miXo)Li(z, Xo, X1)
= eXp(27TiX0)Li(Z, X(), Xl),

since p(Xo) = Xp. _
The loop about 1 in P!\ {0, 1, co} based at 01 is sr%s in former notation,
corresponding to op?c in PSL(2,7).

Li?*%(z, X0, X1)
= F,(Xo, Xl)"p2Fp(X0,X1)"pr(XO,Xl)”Fg(Xo, X1)Li(z, Xo, X1)
= @KZ(X07 Xl) exp(—m’Xl) exp(—le)(I)KZ(Xl, X())ULi(Z, Xo, Xl)

from the definition of the respective actions of & and p on Xp, X;.

2. Application: proving the analytic continuation and
functional equation of {(s)

As outlined in the Introduction, data encoded in the modular action on
Li(z, X0, X1) may be used to give a family of proofs of the analytic continu-
ation and functional equation of the RIEMANN zeta function. In particular,
the analytic continuation may be affected (as in Section 2.2 below) using
functional relations known as the EULER connection formulae. As shown in
Proposition 5 of [16], these arise from equating coefficients of the respective
sides of

Ll(l — Z, *Xl, *Xo) == (I)KZ(*XL *Xo)Li(Z, XQ, Xl)
This equation giving Li%(z, Xg, X1) is necessarily the same as
Li%(z, X0, X1) = Pxz(— X1, —X1)Li(z, X0, X1)

since ¢ and the reduction thereof are both involutions.

Monodromy data of polylogarithm functions is used to prove the func-
tional equation itself in Section 2.3. As shown in Proposition 1.20 above,
such information is given by an equation which is an easy consequence of
the modular action computed in Corollary 1.16.
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The proofs are modifications of RIEMANN’S contour integral method,
each based on a member of an infinite family of integral expressions for ((s)
given in Section 2.1.

2.1. Families of integral expressions for ((s)

In previous work, [11], the author developed a theory of complex iterated
integral generalizing the usual notion of iterated integral as in the work
of CHEN. In particular, on P!\ {0,1, 00}, if F(z) denotes a function with
F(0) = 0 having TAYLOR series expansion on the unit disc for which the nth
coefficient is O(n*) for some k > 0, then we define

Z (log z — log t)*~!
(10) L[F](s,z):/[o’z]F(t)(it> .:/0 (log F(ls)gt) oks

where the usual regularization of the logarithm at zero is understood, in
which case the integral can be shown to converge on PRe s > k + 1. In what
follows, we shall write L[F|(s) := L[F](s,1) and say that the functions F'(z)
satisfying the conditions given above are k-BIEBERBACH.

This complex iterated integral turns out to coincide under the change
of variables x = —logt with the fractional integral as defined by RIEMANN
and LIOUVILLE; for which the additive iterativity property

o (%) ] (s — w)

holds for those w for which all relevant integrals converge. (w should have
Rew >k + 1 and Re (s —w) > k + 1.) Although this much is classical, the
iterated integral perspective lends itself to powerful generalization and has
various number theoretic consequences (see [11]), among them the
non-classical multiplicative iterativity property

foaZe (1) = L e (2)”

for positive integer k.
Each of these respective iterativity properties gives rise to an infinite
family of integral expressions for the RIEMANN zeta function ((s):

(1) LIF|(s) = L
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In P!\ {0, 1,00} coordinates ABEL’S integral for ((s) becomes

12 =[5 (F) =rlis]o

and hence by (11) may be expressed by any one of the family of integrals

(13) o= [ 10 (4)

for integer i, with Li, (%) denoting the usual polylogarithm function

t dt\*
Li, (% ::/ — <)
u(2) o 11\ 1

when g > 0. On the other hand, by multiplicative iterativity and use of
ABEL’S integral, for positive integer k

((s) = /[0 . S (‘ff)”g

n=1

Observe that the case of k = 2 corresponds to the theta function integral
used in RIEMANN’S second proof of the functional equation of ((s), under
the change of variables ¢t = e™™%.

Since ABEL’S integral (12) (which forms the basis of RIEMANN’S first
proof of the functional equation) belongs to both families of integrals it is
interesting to exhibit a proof of the functional equation making use of an
integral which is a member of the additive family of integrals but not of the
multiplicative family. To this we next proceed.

2.2. Analytic continuation at integer parameter pu > 1

Consider the dilogarithm integral

o= [ 16 (£) = [Tt g,

(where we take x = —log z to obtain the last integral). For the analytic
continuation of this integral to complex values of s for which Re s < 2 the
standard (HANKEL) contour C' (as pictured below) is not suitable with this
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integrand, because the dilogarithm monodromy term arising from moving
about 0 is 27iz, which does not have finite MELLIN transform.

C
0 +00

Instead we use EULER’S dilogarithm inversion formula, which is a func-
tional equation of the dilogarithm effecting a change between z =0 and
z = 1. This shifts the monodromy of Liz(e™*) to z = 400, so that HANKEL'’S
contour may be used.

Now write Lis j «(n—2)(2) := Li211..1(2) with the index 1 repeated n — 2
times; i.e., the multiple polylogarithm

Liott.1(2) / dt dt dt dt dt
211...1 = te
o l—ttl—tl—t 1—t

in which the form 1d—_tt occurs a total of n — 1 times. Using a generalized

version of the dilogarithm inversion formula, we find in general:

Theorem 2.1. For each integer m > 2,

(s —m)I'(m)I'(1 —s) [ Ligixm-2)(1—e77) L
2 /C 2z (=)

¢(s) = —
for all complex s # 1 satisfying Re s < m.

For each fixed m, together with (13) this result gives the analytic con-
tinuation of ((s) to all values other than {1} U {fRe s = m}.

Proof. Throughout let m denote an integer with m > 2. Then

L e T dx . o x™ do
C(S):/O Lip, (e )F(S—m)fﬂ+/1 Lin (e )m?

_ /01 [Lim(ex) B C(m)} r(f_r;) 4 — nf)(;’(bl —

x x
o x57m dx
Lip(e™)=———.

+/1 im (e )I‘(s—m) x

This last expression holds also for m — 1 < fRe s < m by analytic continua-
tion, since Liy,(e?) = ¢(m). But on this vertical strip,

1 o0
= — 25 g,
S—m 1
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Consequently, provided that m — 1 < Re s < m, we can write

(14) ((s) = /OOO <Lim(6_m) - C(m)> Fxs_m dz.

x (s —m)

(This much is patterned on a similar analytic continuation in [17].)
Now from (45) in [16] using exponential coordinates and Lij(z) =
—log(1 — z), EULER’S connection formula takes the form of

m—1
Lin(e™®) = ((m) = ~Lig 1 (m—2)(1 — ¢ %) = 7 (~log(1 — e™*))
(m—1)!
m—2 2
fhmg(e—w) - %Lim,g(e_‘”) — aLip_1(e7®).

In substituting this expression into (14) we notice immediately that all other
polylogarithm integral expressions as in (13) with p=1,...,m — 1 appear.
These expressions are also valid for m — 1 < fRe s < m, so in each case, the
resulting expression may be replaced by some multiple of {(s). We show this
explicitly when m = 2 : Then,

(15) C(s) = /0°° <log(1 —e™*)  Liy(l - e_z)> FxH N

x 2

whenever 1 < fRe s < 2. Here, for PRe s > 1 we have

((s) = /[0 ) (d) —— [T >F(‘”_1)d‘”

From (s — 2)I'(s — 2) = I'(s — 1) it then follows that

1o — e % 1.571
(16> /0 l g(lx >F<S—2)d$: _(5_2)4.(5)7

for 1 < Me s < 2. Then using (16) in (15),

14 — e % l.s—l
(s-1ee) = - [ O

Most generally, repeated use of the functional equation

(17) L(r+1)=1rT(r)
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together with (13) shows that for each integer k with 1 < k <m — 1,

B ooxm—kLik(e_m) 5—m . _(sfm)...(S*k—l) s
/0 (m—Kk)!z T(s —m)d - (m — k)] ¢(s)

s—k—1
Adding the negative of such expressions to both sides of our equation for
((s) (found by substitution of the EULER connection formula into (14)) and
using a simple inductive argument to add up the terms of the coefficient,

(adding first 1 4+ (s — m) to obtain s — m + 1 then taking this as a common
factor in summing with the next term and so on), the left side becomes

[1 + (s —1m> N (;:21)] ((s) = (;—_11) ¢(s)

while the right side is given by

. ey ™ dx
- / L12,1><(m72)(1 —e )F
0

(s—m) z

By equating coefficients of the first equation of 1.20, one sees that
Lig 1 x (m—2)(2) has no monodromy about z = 0. Thus, Lij 1y (m-2)(1 — ™)
has no monodromy about = 0. Now with C as above, consider

Li _(1l—e*
I(s) ::/ f21x(m-2)(1 € )(—x)s_ldx.
C

l.m

Here the branch cut for the logarithm is taken along the negative real axis,
so that for the portion of C' above the real axis from x = +o00 to x = 0,

(—33‘)8 _ es(log T—im)

and along the part of C' below the real axis back from 0 to +o0,

(—.CU)S _ 6s(log z+im) )

Now along the arc, say with |z| =&, which is the piece of C' around
x = 0, the integrand is bounded by

Me ’x(iﬁe s)—m‘ e?na

for some constant M > 0 because Liy 1y (m—2)(1 —e™*) vanishes at z = 0 at
least to the same order as does z. Now since PRe s > m — 1, the integral
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about |z| = e approaches 0 as € becomes very small. (The integral is of the
order of gT¢s—m+l )

Consequently, in the limit as € approaches 0, we have

T

. 0 Li (1 —e "
I(s) — —€Zm/ bixema(l—e™) de

o xm T
ims /OO Liy 1x(m-2)(1 —€7")  du
0 xm T
TS __ —ITS s—1 -
= (e e ) (m _ 1> (s —m){(s).

Now 2i sin(ms) = €™ — =™ and we may repeatedly use (17) to see that

(8_1>F(S_m)_ T(s) _I(y)

m—1 (s—m)-(m—1)! (s—m)I'(m)
Moreover,
silzrws =TI —s),
so that
(eiws B e—iﬂ's) <Ti:11> F(s — m) =0 Sil’l(ﬁS)(s_I,’;(j%‘(Tn)

2w

(s —m)T(m)['(1 —s)’

Hence

(s =m)L(m)C(1 — ) / Lig 1x(m-2(1 — ™)
c

27 rm

(18)  ¢(s) = (—2)*"da.

This expression has been proven for m > Re s > m — 1, but converges for all
s having PRe s < m with the possible exception of the poles s =1,...,m —
1 of I'(1 — s) in this region of the plane. (When e s > m, the integrand
exhibits unsuitable behavior at infinity.) However, for s =2,...,m — 1 the
integral vanishes by the usual argument: there is no monodromy about 0,
so the integrals above and below the real line differ by a factor of —1 and
approach the same absolute value in the limit as the contour approaches the
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real line; while near zero, one computes by L’HOPITAL’S Rule that

Lig 1 (m_o) (1 — e~ _qym-1
lim 2,1x(m 2)( ) — lim (#
z—0 xm z—0 mlz

This leaves only the simple pole at s = 1, for which we may compute the
residue using (18). Firstly,

Ress—1I'(1 — s) = —1,

. 271 s—m)['(m
Ress=1((s) = lim(s = DI = 8) eo—570 =7 ( 277)2' -
B (1—-m)(m—-1)!

as is well known.
The analytic continuation for (s) to Re s < m is achieved by (18). O

2.3. Dilogarithm proof of the functional equation

In principle, we may now imitate RIEMANN’S contour integral proof using
each of the integrals of (18). For each m > 2 this would be done using the
monodromy of LiQ’lx(m,Q)(z), as may be calculated using 1.20 (by equat-
ing the coefficients of terms of the respective power series). The interesting
aspect of the computation is that the monodromy terms coming from con-
sidering Lip 1 x (m—2)(1 — e™*) around oo have themselves monodromy about
2min for integer n, and this monodromy of the monodromy is what con-
tributes terms that add up to {(1 — s) multiplied by some factor.

Here is a sketch of some details in the case that m = 2:

As in RIEMANN’S original calculation, consider C with a logarithmic
branch cut along the negative real axis (viewed as a model for the punctured
surface Xjoqs — C\2miZ on which the logarithm function is single valued).
Assuming that fRe s < 0 we lift the contour C, negatively oriented, to a
closed path E in this space which excludes those points (of imaginary part
with absolute value bounded by 27(N + 1) for some large positive integer
N) where the integrand in (18) is singular — i.e., we exclude the positive
real axis and the points 27win for integer n with |n| < N + 1. We can take
this path to consist of translates of C' by 2min for such integers n, (where we
abuse notation and denote the negatively oriented path also by C'), joined by
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straight line segments forming a closed path which includes a portion of the
vertical line segment with real part —R for some large positive real number
R. Then the functional equation can be recovered from the statement of
CAUCHY’S Theorem when Re s < 0 :

(s—=2)I'(1—ys) / Lig(1 —e™?) sdr
(—x)*— =0.
En

2mi 2 x

Computing this integral in the limit as C' shrinks closer to the real axis and
extends to +o0o along the real axis, and N nears oo, under the assumption
that Re s < —2, yields the functional equation.

In performing this calculation, a term —((s) arises from the integral
along the contour straddling the positive real axis.

Next, if the path C' extends to +R and lies a distance of € > 0 to either
side of the real axis, consider

(e

(s —2)I'(1 — ) /R+2m’—i€ Lig(1 —e™®) da
X

2mi R+ie €T
Passage along this line segment produces a monodromy term from the
dilogarithm, of

2milog(l —e™ %)
23

(19) (—z)°,
which must be taken into account along all subsequent paths.

In computing the dilogarithm integral along the translate C' + 27i we
obtain

(s=2)I'(1—ys) / 2milog(l —e™%) sdz

2mi x? (=) x’

where v will denote the (negatively oriented) loop of radius ¢ about 2wik
for integer k, along with

RA-2mi+ie
il

(s — 2)0(1 — 5)(2ri) / (o) 2%,

2mi+6+ie x

the term arising from the monodromy of log(1 — e™) about 27i. As before,
this last integrand must be considered along all subsequent subpaths of E.
But notice that along the remaining translates of C'; this monodromy term
(from passage around 27i) is 0 (again in the limit as ¢ — 0) by CAUCHY’S
Theorem.
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Now let Dp, denote the rectangular path comprising straight line seg-
ments between successively: R+ 2nmi, R+ (2N + 1)mi, —R + (2N + 1)7i,
—R— (2N + 1)wi, R — (2N + 1)mi and R — 2nmi for non-negative integer
n < N. Continuing along Ex we find thus that the integrals which are yet
to be computed add to

(s —2)I'(1 —s) / Lig(1 —e %) (—:c)sd—x
2mi Dro x? x
N .
(s =2)I'(1 —s) n2milog(l — e™7) Az
+ nZ::l 27 ; x? (==) x
N R+2nmi+ie
—2)I(1 — d
+ (S : S Z / n(2ﬂi)2(—$)872£
m 1 \ J2nmitd+tie x
d
/ m(2mi)(—z)2 %%
Drn m=1 z

along with terms with integrand of the form of (19) integrated along the
outside contour, and certain similar terms for suitable negative values of n.

Now along the portion of Ey proceeding from the point —R + (2N +
1)mi, further monodromy terms arise from the dilogarithm terms, in this
instance the negatives of terms of the form of (19). All such terms themselves
exhibit monodromy each time the path traverses a segment of length 2m¢
along the line segment from —R + 2N7i to —R — 2N i since images of such
segments trace out circles of radius ef* about z = 1 under the mapping = —
1—e™™ =2z

These new dilogarithm monodromy terms cancel out those from the
first vertical portion of the path, so that all such terms add to zero by
when the point —R is reached along f%’fN. Below the real axis, negative
terms accumulate so that once one reaches the point —R — (2N + 1)7i, the
remaining dilogarithm monodromy terms add to

—27miN log(1 — e ®).

On the other hand, since the number of logarithmic terms as one moves
along —R + i« (for real decreasing «) decreases from N to N —1 to N — 2
and so on, the sum of the logarithmic monodromy terms number succes-
sively N(N +1)/2; N(N +1)/2+ N; then N(N +1)/24+ N + (N — 1) and
so on, until at the point — R, there are N(N + 1) such terms. Thereafter, the
increasing number of negative logarithmic terms decrease the total number
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of these second monodromy terms. Eventually, at —R — (2N + 1), the end
of the vertical line, the terms which remain sum to

(2mi)*[1 +2+---+ N].

By the same argument as before, the integral coming from the terms (27i)?
142+ -+ N —1] is zero around C —2Nmi, but because of the mon-
odromy of the log term about —2Ni, the integral

(s~ 2)0(1 - s) /—”m‘“-w o eade
R

, N(27i)*(—x)
2mi —ONmi—ic T
does need to be taken into account. Continuing back to the starting point
of Ep, similar terms add to

N p—onmitd—ic
(s =901~ 5) / n(2mi)(—a) 2L
2mi R—2nmi—ic T
This expression, along with its counterpart from the part of Ey with pos-
itive imaginary part, is readily computed in the limit as § and ¢ approach
0 while R tends to oo: indeed, using CAUCHY’S Theorem applied to rectan-
gular contours respectively below and above the real axis, we find that

—2nmi+d—ie d 9 s s—1
(20) lim / n(2mi)?(—z)* 22 = Mj
R—00i0,—=0 JR_opmi—ic x s—2
whereas
(21) lim /R+2”7"i+i5 n(27ri)2(_x)5—2dj _ (27'()5(_’6.)871571
R—00:6,6=0 Jonrits-tie x s—2 '

Adding all such terms of the integral along Ex then gives

(s —2)I'(1 — s) (2m)*[¢® — (—1)
2 s—2 Z”

s
223

T -9)
= T(1— )27 'sin (g) C(1—s).

= T(1— s)2°7°~ €8

Since this term added to —((s) gives 0, the functional equation follows.
Estimates of the usual kind suffice to show that in the limit, the remain-
ing terms approach 0.



An extension of the monodromy representation 401

Acknowledgments

The author is glad of the chance to express his thanks to MINHYONG KiM
for his unwavering encouragement and patient explanations, as well as for
sharing his insights. He would also like to thank the referees for their kind
comments and very helpful suggestions.

References

[1] P. Cartier, Fonctions polylogarithmes, nombres polyzétas et groupes
pro-unipotents. Sém. Bourbaki, exp. no 885, 2000-2001

[2] K. Chandrasekharan, Elliptic functions, Springer—Verlag, Berlin, 1980

[3] K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., 83 (1977),
831-879

[4] P. Deligne, Equations différentielles a points singuliers réguliers.
Number 163 in Lecture Notes in Mathematics, Springer—Verlag, Berlin,
1970

[5] P. Deligne, Le groupe fondamental de la droite projective moins trois
points, Galois Groups over Q, Springer—Verlag, Berlin, 1989, 19-297.

[6] P.I. Etingof, I.B. Frenkel and A.A. Kirillov, Lectures on Representation
Theory and Knizhnik—Zamolodchikov Equations, volume 58 of Math-
ematical Surveys and Monographs, American Mathematical Society,
1998

[7] R. Hain, Lectures on the Hodge—De Rham Theory of w1 (P! \ {0, 1, 00}),
Arizona Winter School 2003.

[8] R. Hain, Classical polylogarithms, In Motives (Seattle, WA, 1991),
volume 55 of Proc. Symp. Pure Mathematics, American Mathemati-
cal Society, 1994, 3-42

[9] E. Hecke, Uber die bestimmung dirichletscher reihen durch ihre funk-
tionalgleichung, Math. Ann., 112 (1936), 664-699

[10] S.T. Joyner, Zeta functions as iterated integrals, PhD thesis, Purdue
University, 2008

[11] S.T. Joyner, On a generalization of CHEN’S iterated integrals, J. Number
Theory, 130(2) (2010), 254288



402 Sheldon T Joyner

[12] M. Kim, The unipotent ALBANESE map and SELMER varieties for
curves, Publ. Res. Inst. Math. Sci., 45(1) (2009), 89-133

[13] S. Lang, SL2(R), volume 105 of Graduate texts in Mathematics,
Springer—Verlag, Berlin, 1985

[14] T.Q.T. Le and J. Murakami, KONTSEVICHS integral for the KAUFFMAN
polynomial, Nagoya Math. J., 142 (1996), 39-65

[15] H.N. Minh, M. Petitot and J. van der Hoeven, Shuffle algebra and
polylogarithms, Discr. Math., 225 (2000), 217-230

[16] J. Okuda and K. Ueno, The sum formula of multiple zeta values and
connection problem of the formal KNIZHNIK—ZAMOLODCHIKOV equation,
Zeta functions, topology and quantum physics, volume 14 of Develop-
mental Mathematics, Springer, 2005, 145-170

[17] E.C. Titchmarsh, The theory of the RIEMANN zeta function, Oxford
University Press, 1930

[18] A. Tsuchiya and Y. Kanie, Vertex operators in conformal field theory
on P' and monodromy representations of braid groups. In Conformal
field theory and solvable lattice models, number 16 in Advanced studies
in pure mathematics, pages 297-372. Academic Press, 1988

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
SUFFOLK UNIVERSITY

41 TEMPLE STREET

BosToNn, MA 02114

USA

E-mail address: stjoyner@suffolk.edu

RECEIVED MARCH 12, 2013




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


