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Counting hyperelliptic curves on an Abelian surface

with quasi-modular forms

Simon C. F. Rose

In this paper, we produce a generating function for the number
of hyperelliptic curves (up to translation) on a polarized Abelian
surface using the crepant resolution conjecture and the Yau–Zaslow
formula. We present a formula to compute these in terms of
MacMahon’s generalized sum-of-divisors functions, and prove that
they are quasi-modular forms.
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1. Introduction

Let (Ah−1, Lh−1) be a polarized Abelian surface with polarization of type
(1, h− 1). Up to translation in Ah−1, there is an (h− 2)-dimensional fam-
ily of curves of arithmetic genus h in the homology class c1(Lh−1)∨. The
codimension of the hyperelliptic locus in Mh,0 is h− 2, and so the following
natural question arises.

Question 1.1. Given a polarized Abelian surface (Ah−1, Lh−1), how many
curves (up to translation in Ah−1) of geometric genus g in the class c1(Lh−1)∨

are hyperelliptic?

We will often write Ah−1 or Lh−1 simply as A or L if there is no possibil-
ity of confusion, and when the degree of the polarization is not important.
We will also for convenience make the substitution

n = h− 1,

which works to make most of the formulae cleaner. Furthermore, throughout
this paper, whenever we say “the number of curves in A. . . ” we will always
be referring to the number of curves in the class c1(L)∨ up to translation in
A. Let Ng,h denote the number of hyperelliptic curves of geometric genus g
and arithmetic genus h in a fixed (A, L). Let

Fg(u) =
∞∑

h=g

Ng,huh−1

be the generating function for these numbers. We will give an explicit for-
mula for Fg(u) in terms of quasi-modular forms.
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Remark 1.2. Note that in the case g = 2, all curves are hyperelliptic. In
[11], it is shown that

F2(u) =
∞∑

d=1

σ1(d)ud = E2(u) +
1
24

,

where σ1(d) =
∑

k|d k, and E2 is the Eisenstein series of weight 2. Thus we
see that F2 is in the ring of quasi-modular forms.

The goal of this paper is to transform this natural enumerative problem
into the language of orbifold Gromov–Witten theory, and to use the crepant
resolution conjecture [5] and the Yau–Zaslow formula [19] to compute the
generating functions Fg for all g.

We should remark that this numberNg,h is not necessarily well defined—
that is, independent of the choice of A — nor necessarily finite. In Section 2.2
we will interpret it in terms of Gromov–Witten invariants which will be
defined for all polarized A with c1(L)∨ primitive; in the case that A is
sufficiently generic, we expect that this will coincide with the honest count of
hyperelliptic curves of geometric and arithmetic genera g and h, respectively.

In fact, we provide a refinement of this count. Let A[2] denote the collec-
tion of 2-torsion points in A. As we will see in Section 2.2, we can translate a
hyperelliptic curve so that all of its Weirstrass points all lie on points of A[2].
We can then use the number of Weirstrass points lying over each v ∈ A[2]
to refine our count, as follows.

Let k : A[2]→ Z≥0 be a function, denote by |k| =
∑

v∈A[2] k(v), and let
g be such that 2g + 2 = |k|. Let Nk,h denote the number of curves C ⊂
A of geometric genus g and arithmetic genus h whose normalizations C
are hyperelliptic and with k(v) Weirstrass points lying over v for each v ∈
A[2] (See Section 2.2, Equation (5) for a precise definition). Let P be the
collection of v ∈ A[2] so that k(v) is odd. The main theorem of this paper
is the following.

Theorem 1.3. Assume the Gromov–Witten crepant resolution conjecture
for the resolution Km(A)→ A/±1 (see Section 3.2). Then the generating
function Fg,k(u) =

∑∞
h=g Nk,huh−1 is given by

(1) Fg,k(u) = E(u)
1
2 |P |−2

∏
v∈P

A k(v)−1
2

(u4)
∏
v/∈P

Ck(v)
2
(u2),
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when P satisfies an easily verified condition (see Remark 3.2), and is zero
otherwise. The functions E(q), Ai(q) and Ci(q) are given by

E(q) =
∞∑

k=0

σ1(2k + 1)q2k+1,

Ai(q) =
∑

0<m1<···<mi

qm1+···+mi

(1− qm1)2 · · · (1− qmi)2
,

Ci(q) =
∑

0<m1<···<mi

q2m1+···+2mi−i

(1− q2m1−1)2 · · · (1− q2mi−1)2
,

which are all quasi-modular forms of weights (no more than) 2, 2i, 2i, respec-
tively.

We provide for reference a few computations of these series, all pertaining
to genus three curves. From the description above, the only functions which
will contribute to curves of genus three are

A2(u4) C2(u2) E(u)2 A1(u4)C1(u2)

C1(u2)2 E(u)A1(u4) E(u)C1(u2)

a few of whose coefficients are given in Table 1. In particular, the function
F3(u) counting all curves of genus 3 is given by

F3(u) = A2(u4) + 3C2(u2) + 12A1(u4)C1(u2) + 21C1(u2)2

+ 10E(u)C1(u2) + 6E(u)A1(u4) + 3E(u)2,

which is also included in Table 1.

Table 1: Some coefficients of the generating functions for genus 3 curves.

q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

E(u)2 1 8 28 64 126 224
E(u)C1(u2) 1 6 18 40 75
C1(u2)2 1 4 12 24 44
E(u)A1(u4) 1 4 9 20
A1(u4)C1(u2) 1 2 7 10
C2(u2) 1 2 4
A2(u4) 1
F3(u) 3 10 45 66 180 204 471 454 972 870 1729
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The structure of the paper will be as follows. In Section 2, we review some
preliminary material regarding the Kummer surface of an Abelian surface
and in particular the Kummer lattice K ⊂ H2

(
Km(A)

)
. We also discuss

the basic construction in orbifold Gromov–Witten theory which allows us
to study hyperelliptic curves with genus 0 invariants. We provide a partial
description of the relevant moduli space in the case that the Picard number of
A is 1, and we explain how to obtain enumerative invariants from decidedly
non-enumerative ones.

Section 3 consists of a proof of Theorem 1.3 obtained by computing a
restricted form of the Gromov–Witten potential (see Definition 3.4), followed
by applying the crepant resolution conjecture to obtain the corresponding
potential function on [A/±1]. Lastly, we simplify this by accounting for
collapsing components to prove Theorem 1.3.

Section 4 consists of a proof of the genus one and two case independent
of the crepant resolution conjecture. This involves specializing to the case
that A ∼= S × F for generic elliptic curves S and F . From there the problem
is reduced to counting covers of an elliptic curve, which is classically known.

Lastly, Appendix A consists of an analysis of the moduli space of genus
0 twisted stable maps into [A/±1], as well as a discussion of its reduced
virtual fundamental class.

2. Preliminaries

2.1. Abelian surfaces and Kummer surfaces

For the duration of this paper, unless otherwise noted, all coefficients are
integral. The majority of the results in this section follows [4], and as such,
proofs are omitted.

Let A be an Abelian surface. Then A is a complex torus C2/Γ with Γ
of rank 4. As an Abelian group, A has an involution given by multiplication
by ±1. This has as fixed points the collection A[2] ∼= Γ/2Γ of 16 2-torsion
points. The quotient by this action has these as its only singularities, and
so by blowing them up we obtain the (crepant) resolution Km(A) which is
a smooth K3 surface called the Kummer surface of A.

If instead we blow up A at the 16 2-torsion points to produce A, we can
take the quotient of this space by the lifted involution to obtain the diagram

(2) A
σ ��

s

��

Km(A)

p

��
A π

�� A/±1

.
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There are a few facts that this yields, all of which are connected to the
affine F2-geometry of A[2]. We begin by introducing some notation.

(1) Let Ev ∈ H2

(
Km(A)

)
denote the class of the (−2)-curve lying over a

given v ∈ A[2].

(2) Let Λ denote the sublattice of H2

(
Km(A)

)
generated by the classes

Ev.

(3) Let K denote the minimal primitive sublattice of H2

(
Km(A)

)
which

contains Λ. This is called the Kummer lattice.

Furthermore, let P(A[2]) denote the power set of A[2] (which is a group
under the operation S + S′ = S ∪ S′ \ (S ∩ S′)) and let Πk for 0 ≤ k ≤ 4
denote the subgroups generated by all of the affine k-planes in A[2]. Then
we have that

Z/2 = Π4 ⊂ Π3 ⊂ Π2 ⊂ Π1 ⊂ Π0 = P(A[2]).

Remark 2.1. We will use throughout this paper the letters η and ε (possi-
bly with subscripts) to denote elements of Πk. Note also that for each element
η ∈ Πk we can think of η as an element of 1

2Λ via the correspondence

η ↔ η̂ =
∑
v∈η

1
2
Ev.

We will also throughout use the notation |η| to denote the number of ele-
ments in η.

Remark 2.2. We should note that there are two notions of summation at
play here — summation in P(A[2]), and summation in 1

2Λ. When we write
η1 + η2 we will always mean the former, and when we write η̂1 + η̂2 we will
always mean the latter, so no confusion should arise.

As Km(A) is a smooth real 4-manifold, the group H2

(
Km(A)

)
comes

with a natural intersection form 〈 , 〉 which turns it into a unimodular lattice.
When restricted to Λ this is (−2)Id, and so we have that Λ∨ = 1

2Λ. Thus
we have that

Λ ⊂ K ⊂ K∨ ⊂ 1
2
Λ

and so every w ∈ K (and in K∨) can be written as

w =
∑

v∈A[2]

av

2
Ev.
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From this we have a natural map r : 1
2Λ→ Π0 given by∑

v∈A[2]

av

2
Ev �→

{
v ∈ A[2] | av ≡ 1 (mod 2)

}
.

Note that for w =
∑

v∈A[2]
av

2 Ev, that r̂(w) is nothing but the reduction of
the coefficients av of w mod 2.

Remark 2.3. It follows further that the intersection form on K can be
extended linearly to an intersection form on 1

2Λ which we also denote by
〈 , 〉. In particular, using the correspondence of Remark 2.1, we can define
for any two subsets η1, η2 of A[2] the pairing 〈η̂1, η̂2〉 by

〈η̂1, η̂2〉 =
〈∑

v∈η1

1
2
Ev,
∑
v∈η2

1
2
Ev

〉
= −1

2
|η1 ∩ η2|.

The condition that w ∈ K can now be stated as the following.

Proposition 2.4 ([4, Proposition 5.5, Chapter VIII]). An element
w =

∑
v∈A[2]

av

2 Ev ∈ 1
2Λ is in K if and only if r(w) ∈ Π3. That is, w ∈ K if

and only if the collection of those v ∈ A[2] such that av is odd is either

(1) empty

(2) an affine 3-plane

(3) all of A[2].

This then yields a description of the Kummer lattice as follows.

Corollary 2.5. There is a short exact sequence

0 �� Λ �� K
r �� Π3

�� 0 .

Following prior remarks, this permits us to consider each element η ∈ Π3

as an element η̂ ∈ K.
We next describe the relationship betweenH2(A) andH2

(
Km(A)

)
. Con-

sider again the diagram (2), and in particular, consider the map

α = σ∗ ◦ s! : H2(A)→ H2

(
Km(A)

)
.

We have the following proposition which relates the two intersection forms.
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Proposition 2.6 ([4, Proposition 5.1, Chapter VIII]). The map α
multiplies the intersection form by 2. That is, α(a) · α(b) = 2a · b for every
a, b ∈ H2(A). Moreover, for each v ∈ A[2] and for each class a ∈ H2(A),
Ev · α(a) = 0.

It follows from this proposition that the map α embeds H2(A) as a
sublattice of H2

(
Km(A)

)
which is orthogonal to the Kummer lattice K.

We examine now one of the important properties of this map. Recall
that A = C2/Γ, let u : C2 → A be the quotient map, and let λ1, λ2 be basis
elements of Γ. Define V = u

(〈λ1, λ2〉 ⊗ R
)
(the image of the 2-plane spanned

by λ1, λ2), and let C = [V ]. Then α(C) is the class of the proper transform
of π(V + t) in Km(A) for some generic t ∈ A (i.e., such that V + t does not
intersect A[2]).

Next, consider the rational curve V/±1 ⊂ A/±1, and let β ∈ H2(
Km(A)

)
be the class of the proper transform of V/±1. Let ε denote the

collection of 2-torsion points in V . We have the following relation between
the classes α(C) and β.

Proposition 2.7. Let V , C and β be as above. The classes α(C) and β
satisfy the relationship

β =
1
2
α(C)− ε̂

=
1
2
α(C)− 1

2

∑
v∈ε

Ev.

Proof. As α(C) is the class of the proper transform in Km(A) of a generic
translate of V , we see that in Km(A) we must have that

β =
1
2
α(C)− 1

2

∑
v∈A[2]

avEv

for some integers av. Since β · Ev = av, we see that av = 1 if v ∈ ε and is
zero otherwise, as claimed. �

Recall that there is a canonical isomorphism H2(A) ∼= ∧2 H1(A)∨, and
so we can regard elements of H2(A) as alternating forms on H1(A). Suppose
now that (An, Ln) is a polarized Abelian surface with polarization of type
(1, n). That is, there is a basis e1, f1, e2, f2 of H1(An) so that c1(Ln) (when
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viewed as an alternating form) can be written as

(3)

⎛⎜⎜⎝
0 0 n 0
0 0 0 1
−n 0 0 0
0 −1 0 0

⎞⎟⎟⎠ .

On this basis, we can write c1(Ln)∨ = (e1 ∧ f1) + n(e2 ∧ f2).

2.2. Gromov–Witten theory of hyperelliptic curves

We aim to compute the number of hyperelliptic curves in A via orbifold
Gromov–Witten theory following the ideas of [9, 12, 17]. Let X be a smooth
Deligne–Mumford stack with projective coarse moduli space X. We will use
the notation

M (X ; 2g + 2;β)

to denote the moduli stack of twisted stable maps of genus 0 curves into the
stack X in the curve class β ∈ H2(X) with (2g + 2) Z/2-stacky points. In
the case where A is a polarized Abelian surface with polarization of type
(1, n), we will use the notation

M ([A/±1]; 2g + 2;n)

to denote the moduli stack where the class β is the class 1
2π∗c1(Ln)∨.

As with ordinary Gromov–Witten theory, there are evaluation maps from
the moduli stack of twisted stable maps. However, they do not lie in X , but
in its rigidified inertia stack, IX (see [1, 2]). In the case that X = [X/G]
is a global quotient, this has a particularly simple description.

Definition 2.8 Let X = [X/G] be a global quotient stack. We define the
rigidified inertia stack to be

IX =
∐

(g)⊂G

[Xg/Hg],

where the disjoint union is taken over all conjugacy classes (g) ⊂ G, where
Xg is the fixed-point set of g, and where Hg = C(g)/〈g〉 is the quotient of
the centralizer of g in G by the subgroup generated by g. The component
corresponding to (e) ⊂ G is called the untwisted sector, while all others are
called twisted sectors.
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For the case of the quotient stack [A/±1], it is easy to see that

I[A/±1] = A�A[2]

and so the twisted sector is identified with A[2], the set of 2-torsion points
of A.

As before, let (A, L) be a polarized Abelian surface. We have a map

A ��

Δ

��
A×A �� Sym2A

where the first map is given by a �→ (a,−a). Next, we consider the moduli
space

M

(
[Sym2A]; 2g + 2;

1
2
Δ∗c1(L)∨

)
(where the factor of 1

2 comes from the fact that a curve in A is a double cover
of the corresponding curve in Sym2A). This parameterizes genus 0, twisted
stable maps into the stack [Sym2A]. As these maps are representable, we
may complete them to a diagram

C̃

��

�� A×A

��
C �� [Sym2A]

with C̃ a scheme and the top map equivariant. If C is smooth, then C̃ is
a smooth hyperelliptic curve and the projection onto either factor yields a
hyperelliptic curve in A in the class c1(L)∨. It follows that the moduli space
M
(
[Sym2A]; 2g + 2; 1

2Δ∗c1(L)∨
)
is a compactification of the moduli space

of smooth hyperelliptic curves in A.
So far this follows very closely [9, 17]. In our case, we can simplify matters

significantly. As above, we look at the diagram

A
a 	→(a,−a) ��

π
��

A×A

��
[A/±1] ι

�� [Sym2A]

where the map ι : [A/±1]→ [Sym2A] is given by [a] �→ [a,−a].
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Theorem 2.9. We have the following isomorphism of stacks:

M ([A/±1]; 2g + 2;β)×A ∼= M
(
[Sym2A]; 2g + 2; ι∗β

)
Proof. The map in one direction is easy to produce. A family of objects in
M ([A/±1]; 2g + 2;β) over a base scheme B consists of a diagram

C̃ ��

��

A

��
C ��

��

A/±1

B

si

��

with C of genus 0 and with (2g + 2) sections si (thus if C is smooth, C̃ is
hyperelliptic of genus g). Given an element a0 of A we can construct a map
A→ A×A given by

a �→
(
1
2
a0 + a,

1
2
a0 − a

)
,

which we then complete to

C̃ ��

��

A

��

�� A×A

��
C ��

��

A/±1 �� Sym2A,

B

si

��

which yields the first half.
For the second half, note that there is a map + : Sym2A → A given by

[a, b] �→ a+ b. Thus given the diagram

C̃ ��

��

A×A

��
C ��

��

Sym2A
+ �� A

B

si

��
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with C a rational curve. Since there are no rational curves in Abelian sur-
faces, the composition C → Sym2A → A must be constant, and so the dia-
gram factors through the inclusion of a fibre of the map to A. As these are
all isomorphic to A/±1, the claim follows. �

We can interpret this theorem as saying that counting hyperelliptic
curves in A is equivalent to counting certain stacky rational curves in the
orbifold [A/±1]. Using the crepant resolution conjecture, this should be the
same as counting certain rational curves in the smooth K3 surface Km(A).
This has been studied in [7, 19].

In [6], it is shown that the (reduced) Gromov–Witten invariants for an
Abelian surface only depend on the divizibility and square of the class β.
This follows because of the fact that the moduli space A2n of polarized
Abelian surfaces whose polarizations have square 2n is connected, and from
the deformation invariance of Gromov–Witten invariants.

We can use this fact to show that the same holds true in our case;
indeed, there is a surjective map from A2n to the moduli space of singular
Kummer surfaces with polarizations with square 2n (given by taking the
quotient by ±1), and so the same result holds. This justifies our notation of
M ([A/±1]; 2g + 2;n) (specifically its lack of dependence on the class β).

As twisted stable maps are representable, we see that each of the (2g + 2)
evaluation maps evi : M ([A/±1]; 2g + 2;n)→ I[A/±1] must all lie in the
twisted sector, which is A[2]. Let ev denote the map

ev : M ([A/±1]; 2g + 2;n)→ A[2]2g+2

and let v1, . . . , v16 denote an arbitrary labelling of A[2].
Given k : A[2]→ Z≥0 with |k| = 2g + 2, we define

M ([A/±1];k;n) = ev−1(v1, . . . , v1︸ ︷︷ ︸
k(v1)

, . . . , v16, . . . , v16︸ ︷︷ ︸
k(16)

).

This is the moduli space of those orbifold maps with k(v) stacky points
whose image lies on each v ∈ A[2]. This space has a degree 0 reduced virtual
fundamental class (see A), and so we define

GWk,n = deg
[
M ([A/±1];k;n) ]red.

It should be noted that in the definition of GWk,n, the specific labelling
of the element in A[2]|k| is not relevant; any rearrangement of those terms
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comes simply from a permutation of the labelling of the marked points, and
will yield the same Gromov–Witten invariant.

We would like to use this invariant to count hyperelliptic curves, but it
is not enumerative; it includes contributions from collapsing components. In
the case that A is suitably generic (i.e., has Picard number 1), we can use
this to determine the enumerative count as follows ([12, 17]).

Definition 2.10 An n-marked comb curve is a genus 0 twisted stable map
f : Σ→ [A/±1] with 0 ordinary marked points and n Z/2-marked points
such that there is a unique irreducible component Σ0 which has non-zero
degree; this component is called the handle. All other components are called
teeth.

It is clear that the locus of (2g + 2)-marked comb curves U2g+2,n is a
closed substack of M ([A/±1]; 2g + 2;n). Similarly, define Uk,n = U|k|,n ∩
M ([A/±1];k;n). In the case that the Picard number of A is 1, it turns
out that all curves are comb curves, as the following proposition shows.

Proposition 2.11. If the Picard number of A is 1, then it follows that the
moduli spaces U2g+2,n and M ([A/±1]; 2g + 2;n) are equal, and similarly for
Uk,n.

Proof. Suppose that there were more than one component with non-zero
degree. Since the class in [A/±1] is primitive, this would immediately yield
that the Picard number is greater than 1. �

As discussed in A, this moduli space splits up into components based
on how the marked points partition among the teeth (see figure 1). From
Lemma A.6, we see that all partitions with even parts contribute zero to the
Gromov–Witten invariant, and so for each comb curve Σ and each v ∈ A[2]
we obtain a partition λv = (λv

1, . . . , λ
v
rv
) of k(v) (where rv denotes the length

of the partition λv) into odd parts based on how the marked points are split
up among the teeth of Σ (with λv

i = 1 being interpreted as there being no
collapsing component — that is, it represents a stacky marked point on the
handle). Let Uλ,n denote the component consisting of those comb curves
with partition type λ = (λv)v∈A[2]. If we define kλ(v) = rv, then since the
smoothing of any node is obstructed (see Proposition A.5) and since all
collapsing components must have image a stacky point in [A/±1], it is clear
that

Uλ,n = M◦ ([A/±1];kλ;n)×
∏

v∈A[2]

rv∏
i=1

M (BZ/2;λv
i + 1; 0) ,
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Figure 1: A map in the component of M ([A/±1];k;n) corresponds to the
partitions λ = (λ1, λ2, λ3, λ4) =

(
[3], [3 5], [1], [1 3]

)
where M◦ ([A/±1];k;n) denotes the component consisting of those curves
with no collapsing components.

Let pλ denote the projection Uλ,n →M◦ ([A/±1];kλ;n).We have the
following theorem, whose proof we defer to A.

Theorem 2.12. Let λ = (λv)v∈A[2] be a collection of partitions of k, all of

which consist of odd parts. Then the virtual degree of pλ is
(−1

4

) 1
2
(|k|−|kλ|).

That is,

(pλ)∗[Uλ,n]red =
(
−1
4

) 1
2
(|k|−|kλ|)[

M◦ ([A/±1];kλ;n)
]red

.

We note that Uk,n is the disjoint union of the Uλ,n taken over all partition
types λ. In particular, there is a component M◦

k which consists of those
curves with no collapsing components (corresponding to the partitions 1k(v)).
We can now define

(4) GW ◦
k,n = deg[M◦

k]
red.

From this number we obtain our expected count of hyperelliptic curves.
More precisely, in the generic setting we expect that this counts the number
of hyperelliptic curves together with the extra data of an ordering on the
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marked points which collapse to a given 2-torsion point. As such, define

(5) Nk,n =
GW ◦

k,n∏
v∈A[2] k(v)!

.

Our main theorem of this section describes this relationship. Define the
generating functions

Fn(zv) =
∑

k:A[2]→Z≥0

GWk,n

∏
v∈A[2]

z
k(v)
v

k(v)!
,

F ◦n(xv) =
∑

k:A[2]→Z≥0

GW ◦
k,n

∏
v∈A[2]

x
k(v)
v

k(v)!
.

Theorem 2.13. The two generating functions Fn and F ◦n are equal after
the substitution xv = 2 sin(zv/2).

A proof of this theorem will be provided in Appendix A. However, from
equation (5), we immediately obtain the following.

Corollary 2.14. Let k : A[2]→ Z≥0 be a function and let g be such that
|k| = 2g + 2. Then the function Fg,k of Theorem 1.3 is given by the coeffi-
cient of

∏
v∈A[2] x

k(v)
v in

∞∑
n=0

F ◦n(xv)un =
∞∑

n=0

∑
k:A[2]→Z≥0

GW ◦
k,n

∏
v∈A[2]

x
k(v)
v

k(v)!
un

=
∞∑

n=0

∑
k:A[2]→Z≥0

Nk,n

∏
v∈A[2]

xk(v)
v un.

Remark 2.15. In the case that the Picard number of A is 1, we can
define GW ◦

k,n and Nk,n directly via Equations (4) and (5). However, they
are defined for all Abelian surfaces A via the relationships given by Theo-
rem 2.13.

2.3. The case A ∼= S × F

We will sometimes have need to specialize to the case that A ∼= S × F for
generic elliptic curves S and F . In such a case, the quotient A/±1 comes
equipped with an elliptic fibration A/±1→ S/±1 whose general fibre is
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the elliptic curve F . This has four distinguished fibres over S[2] which are
isomorphic to F/±1.

So let f : Σ→ [A/±1] be a genus 0 twisted stable map in the class
[S/±1] + n[F/±1] (which we will assume without loss of generality col-
lapses no components). In such a case, the source must be a tree of rational
curves Σ0 ∪ Σ1 ∪ · · · ∪ Σk. We can label these so that f∗[Σ0] = [S/±1] and
f∗[Σi] = ni[F/±1] for i ≥ 1. In particular, f |Σ0 is an isomorphism (and so
must contain exactly 4 stacky points), while f |Σi

is a ramified cover of one
of the distinguished fibres, i.e., the rational orbi-curve [F/±1].

As a (representable) ramified cover of an orbi-curve, it follows that

(1) The image of each stacky point is stacky.

(2) The pre-image of each stacky point is a collection of stacky points (with
odd ramification) and some non-stacky points (with even ramification).

In such a case, the moduli space M ([A/±1]; 2g + 2;n) will be isomorphic
to a product of spaces of Hurwitz covers of the fibre F/±1, a fact which will
be necessary in order to compute the orbifold Gromov–Witten theory of
[A/±1] without using the crepant resolution conjecture.

3. Main work

3.1. Computation of the invariants on Km(An)

The goal of this section is to compute the relevant part of the Gromov–
Witten potential function for Km(An).

Let f : Σ→ An be a hyperelliptic curve representing the class c1(Ln)∨

and such that f(w) ∈ A[2] for all Weirstrass points w. Let βn be the class
in H2

(
Km(An)

)
of the proper transform of (π ◦ f)(Σ); note that this is

a rational curve. Let Hn = α
(
c1(Ln)∨

)
. If we choose a basis of H1(An) as

in Section 2.1, then we can write Hn = S + nF where S = α(e1 ∧ f1) and
F = α(e2 ∧ f2).

Recall now that, given two basis elements λ1, λ2 of Λ, we can consider
the image V in A of the real 2-plane spanned by λ1, λ2. We can further
consider the homology class βV of the proper transform of V/±1 in Km(A),
which by Proposition 2.7 can be written as

βV =
1
2
α
(
[V ]
)− 1

2

∑
v∈εV

Ev.
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We see that to each pair of basis elements we can associate en element
εV ∈ Π0 (since λ1, λ2 span a plane, this will in fact be in Π2).

Let ε0 be the element so obtained from the basis elements e1, f1, let ε∗1
be the element so obtained from the basis elements e2, f2, and let finally
ε1 = ε0 + ε∗1 (where, recall, the summation is done in P(A[2]) and is hence
the symmetric difference of the two elements).

Proposition 3.1. We have the following congruences:

β2k ≡ 1
2
H2k − ε̂0 (mod K),

β2k+1 ≡ 1
2
H2k+1 − ε̂1 (mod K).

Proof. We assume as per Section 2.2 that the image curve is fixed by ±1 and
so descends to a genus 0 map f̃ : Σ→ [A/±1]. We assume further (by defor-
mation invariance) that A ∼= S × F , which puts us in the situation described
in Section 2.3. We will further assume that n is even, the odd case being
similar.

Let Σ = Σ0 ∪ Σ1 ∪ · · · ∪ Σk be the source curve. Since n is even, we must
have that either the degree of each Σi is even, or that any odd ones come
in pairs. As in the proof of Proposition 2.7, we have that Hn is the class of
a double cover of the proper transform of the image of f̃ in Km(A), and so
we have that

βn =
1
2
Hn − 1

2

∑
v∈A[2]

avEv,

where av is the intersection multiplicity of the proper transform with the
exceptional curve Ev. This is given by the sum of all the ramification indices
over all points p ∈ Σ which map to v ∈ A[2]. Since Ev ∈ K, this only depends
(mod K) on the ramification indices mod 2. Since f̃∗[Σi] = ni[F/±1], it
follows that the image of all the stacky points on a given Σi lie in ε∗1, or
some translation thereof.

Recall from Section 2.3 that the ramification must be even at each non-
stacky point in the pre-image, and is odd at each stacky point in the pre-
image, and hence av ≡ k(v) (mod 2).

Consider first a component Σi with f̃ |Σi
of even degree. Due to these

ramification considerations, it follows that over each v ∈ A[2] the number
of stacky pre-images must be even, and so (mod K) this contributes zero
to βn.
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Consider next components Σi,Σj with f̃ |Σi
and f̃ |Σj

of odd degree (recall
that these must come in pairs). We see that for both of these the number of
stacky pre-images of a given v must be odd, and so one of two things occur.

(1) Σi and Σj map via f̃ to the same fibre.

(2) Σi and Σj map to different fibres.

In the first case, the contribution to the number of stacky pre-images winds
up being even, and so (mod K) contributes zero. In the second case, the
stacky points form an affine 3-plane η in A[2] — but since η̂ ∈ K, it follows
that (mod K) these also contribute nothing. As such, all that contributes
(mod K) are the stacky points coming from the curve Σ0. But this is exactly
ε0, which completes the proof. �

Remark 3.2. The condition on P so that the generating function Fg,k(u)
is non-zero can be now explained as follows. Recall that P is the collection
of those v ∈ A[2] such that k(v) is odd. It will arise naturally during the
proof of Theorem 1.3 that we must have P ≡ εi (mod K). One consequence
of this is that if P ≡ ε0 (mod K), then only even polarizations can occur
(and conversely for P ≡ ε1 (mod K)).

We are now ready to compute the potential function. We first recall the
definition of the Gromov–Witten potential of a smooth projective variety.

Definition 3.3 Let X be a smooth projective variety, and let γ0, . . . , γa be
an additive basis of H∗(X). The genus 0 Gromov–Witten potential function
is defined by

FX(y0, . . . , ya, q) =
∞∑

m0,...,ma=0

∑
β∈H2(X)

〈γm0
0 · · · γma

a 〉Xβ
ym0
0

m0!
· · · y

ma
a

ma!
qβ .

As stated in the Introduction section, we are only concerned with a
restricted form of this function. More specifically, we are only concerned
with homology classes β such that p∗β = 1

2π∗c1(Ln)∨, and so we make the
following definition.

Definition 3.4 Define the restricted genus 0 potential function as

Fn := FKm(An)(y0, . . . , ya, q)

=
∞∑

m0,...,ma=0

∑
w∈K

〈γm0
0 · · · γma

a 〉Km(An)
βn+w

ym0
0

m0!
· · · y

ma
a

ma!
qβn+w.
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Remark 3.5. Due to dimension considerations, the only classes that will
produce non-zero invariants will be divisor classes. As such, we choose as a
basis of H2

(
Km(An)

)
the classes γv which are dual to the exceptional curve

classes Ev, as well as classes γS , γF dual to S and F , respectively (these
will have corresponding formal variables yv, yS , yF ). As such, if we define
m = (mv1 , . . . , mv16 , mS , mF ) then we can write the function Fn as

Fn(yv1 , . . . , yv16 , yS , yF , q) =
∑
m

∑
w∈K

〈
γmS

S γmF

F

∏
v∈A[2]

γmv
v

〉
βn+w

× ymS

S

mS !
ymF

F

mF !

∏
v∈A[2]

ymv
v

mv!
qβn+w,

where we omit for simplicity of notation the superscript on the brackets
〈· · · 〉Km(An)

β .
Moreover, define the generating function

F :=
∞∑

n=0

Fn(yv1 , . . . , yv16 , yS , yF , q).

A priori this does not make sense, but as we will see, the formal variable q
used to define Fn permits this to be well defined as a formal power series in
the variables yα and q. It is this function that we will use (with the crepant
resolution conjecture) to compute the number of hyperelliptic curves in A.

Theorem 3.6. The restricted genus 0 potential function F is given by

F = λ0
u2

Δ(u2)

∑
w∈K

u−〈w,w−2ε̂0〉 ∏
v∈A[2]

exp
(
(
∫
w γv)yv

)
qw

+ λ1
u2

Δ(u2)

∑
w∈K

u−〈w,w−2ε̂1〉+1
∏

v∈A[2]

exp
(
(
∫
w γv)yv

)
qw,

where 〈 , 〉 is the intersection form on K ⊂ Km(An), where u and λi are
given by

u =
(
exp(yF )qF

)1/2(6)

λi =
(
exp(yS)qS

)1/2
∏

v∈A[2]

exp
(
(
∫
−ε̂i

γv)yv

)
q−ε̂i
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and where Δ(q) the weight 12 cusp form defined as Δ(q) = q
∏∞

k=1(1− qk)24

which satisfies

q

Δ(q)
= 1 + 24q + 324q2 + 3200q3 + · · · .

Proof. Let (An, Ln) be a polarized Abelian surface with polarization type
(1, n) and with Kummer surface Km(An). As stated in Definition 3.4, the
(restricted) Gromov–Witten potential function for this is

Fn =
∑
m

∑
w∈K

〈
γmS

S γmF

F

∏
v∈A[2]

γmv
v

〉
βn+w

ymS

S

mS !
ymF

F

mF !

∏
v∈A[2]

ymv
v

mv!
qβn+w.

Since on Km(An), as stated above, we only need to consider divisor classes
the divisor equation simplifies this to

Fn =
∑
m

∑
w∈K

〈 〉βn+w

(
∫
βn+w γS)mSymS

S

mS !

(
∫
βn+w γF )mF ymF

F

mF !
·

×
∏

v∈A[2]

(
∫
βn+w γv)mvymv

v

mv!
qβn+w

=
∑
w∈K

〈 〉βn+wexp
(
(
∫
βn+w γS)ys

)
exp
(
(
∫
βn+w γF )yF

)·
×
∏

v∈A[2]

exp
(
(
∫
βn+w γv)yv

)
qβn+w,

(where 〈 〉βn+w is the Gromov–Witten invariant with no insertions in the
class βn + w).

Since we are summing over K, by Proposition 3.1 we can replace βn + w
with 1

2Hn + w − ε̂i (with i ≡ n (mod 2)), and so noting that (see
Remark 3.5) ∫

1
2Hn+w−ε̂i

γS =
1
2
,

∫
1
2Hn+w−ε̂i

γF =
n

2
,

∫
1
2Hn+w−ε̂i

γv =
∫

w−ε̂i

γv,
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we can write this as

F2k = exp
(
1
2
yS

) ∑
w∈K

〈 〉 1
2
H2k+w−ε̂0

exp
(
1
2
yF

)2k

×
∏

v∈A[2]

exp
(
(
∫
w−ε̂0

γv)yv

)
q

1
2H2k+w−ε̂0

(and similarly for F2k+1).
Let Cd be a primitive curve class in a K3 surface X satisfying C2

d = 2d−
2, and let Nd = 〈 〉XCd

be the (reduced) genus 0 Gromov–Witten invariant.
Then the Yau–Zaslow theorem [7, 19] states that these numbers satisfy

∞∑
d=0

Ndq
d =

q

Δ(q)
,

where Δ(q) is defined above to be
∏∞

k=1(1− qk)24. Since Hn ∈ Λ⊥, and
H2

n = 4n, we have that(
1
2
H2k + w − ε̂0

)2

= 2k − 2 + 〈w, w − 2ε̂0〉

(and similarly for the odd case). Thus we find

〈 〉 1
2
H2k+w−ε̂0

= N
k+

1
2 〈w,w−2ε̂0〉,

〈 〉 1
2
H2k+1+w−ε̂0

= N
k+

1
2 〈w,w−2ε̂1〉.

As mentioned in Remark 3.5, let F =
∑∞

n=0 Fn. We have

F =
∞∑

k=0

F2k +
∞∑

k=0

F2k+1

= exp
(
1
2
yS

) ∞∑
k=0

∑
w∈K

N
k+

1
2 〈w,w−2ε̂0〉exp

(
1
2
yF

)2k

×
∏

v∈A[2]

exp((
∫
w−ε̂0

γv)yv

)
q

1
2H2k+w−ε̂0

+ exp
(
1
2
yS

) ∞∑
k=0

∑
w∈K

N
k+

1
2 〈w,w−2ε̂1〉exp

(
1
2
yF

)2k+1

×
∏

v∈A[2]

exp
(
(
∫
w−ε̂1

γv)yv

)
q

1
2H2k+1+w−ε̂1 .
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If we then perform the substitutions given in Equation (6), this simplifies to

F = λ0

∞∑
k=0

∑
w∈K

N
k+

1
2 〈w,w−2ε̂0〉u

2k
∏

v∈A[2]

exp
(
(
∫
w γv)yv

)
qw

× λ1

∞∑
k=0

∑
w∈K

N
k+

1
2 〈w,w−2ε̂1〉u

2k+1
∏

v∈A[2]

exp
(
(
∫
w γv)yv

)
qw.

To simplify this we perform the substitution n = k + 1
2〈w, w − ε̂i〉 which

yields

F = λ0

∞∑
n=0

∑
w∈K

Nnu2nu−〈w,w−2ε̂0〉 ∏
v∈A[2]

exp
(
(
∫
w γv)yv

)
qw

+ λ0

∞∑
n=0

∑
w∈K

Nnu2nu−〈w,w−2ε̂1〉+1
∏

v∈A[2]

exp
(
(
∫
w γv)yv

)
qw

= λ0
u2

Δ(u2)

∑
w∈K

u−〈w,w−2ε̂0〉 ∏
v∈A[2]

exp
(
(
∫
w(γv)yv

)
qw

+ λ1
u2

Δ(u2)

∑
w∈K

u−〈w,w−2ε̂1〉+1
∏

v∈A[2]

exp
(
(
∫
w(γv)yv

)
qw

as claimed. �

3.2. Application of the crepant resolution conjecture

We now apply the crepant resolution conjecture of [5] to compute the poten-
tial function of the orbifold [A/±1]. This conjecture is given as follows.
Conjecture 3.7 ([5, Conjecture 1.2]). Given an orbifold X satisfying
the hard Lefschetz condition and admitting a crepant resolution Y , there
exists a graded linear isomorphism

L : H∗(Y )→ H∗
orb(X )

and roots of unity c1, . . . , cr such that the following conditions hold.

(1) The inverse of L extends the map π∗ : H∗(X )→ H∗(Y ).

(2) Regarding the potential function F Y as a power series in y0, . . . , ya,
and in q1, . . . , qs, the coefficients admit analytic continuations from
(qs+1, . . . , qr) = (0, . . . , 0) to (qs+1, . . . , qr) = (cs+1, . . . cr).
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(3) The potential functions FX and F Y are equal after the substitution

yi =
∑

j

Lj
ixj qi =

{
ci for i > s,

citi for i ≤ s.

It should be noted that the crepant resolution conjecture, as stated,
only applies to ordinary Gromov–Witten invariants and not to reduced
Gromov–Witten invariants as we use in our case. The short explanation
is simply that it appears to work. The longer explanation is that our sit-
uation (dealing with fibrewise Gromov–Witten invariants of a non-Kähler
3-fold) is similar enough to the CY3 case that it should work. Moreover, the
local picture around the singular points is the same as that of the resolu-
tion T ∗P1 → [C2/±1], a case where the equivariant version of the crepant
resolution conjecture has been proven [5]. The only issue is whether or not
we can extant this globally to the orbifold [A/±1], which appears to be the
case.

As is usually the case, the change-of-variables is forced upon us by know-
ing a few of the invariants and choosing data to match those. In our case,
this comes from two sources. As stated above, we have a good understanding
of the local picture around a singular point, so we can use that knowledge.
Moreover, we already know the number of genus 2 curves in an Abelian
surface due to Göttsche [11]. These two facts allow us to derive the full
change-of-variables for the restricted potential function, which is given as
follows.

The function L : H∗(Km(A))→ H∗
orb([A/±1]) used in the crepant res-

olution conjectures is the following. Let yv denote the formal cohomological
variable corresponding to the dual of an exceptional divisor Ev, and let
zv denote the variable corresponding to the class in the twisted sector of
[A/±1]. Similarly, let yS and yF denote the formal variables corresponding
to the classes S and F (with zS and zF downstairs), respectively. Then the
map L on the formal variables is given by

L(yv) = izv L(yS) = zS L(yF ) = zF ,

while the roots of unity are given by applying, for w =
∑

v∈A[2]
av

2 Ev

qw �→ (−1)w := (−1)
∑

v∈A[2]
av

2

and the substitutions

qS/2 �→ tS/2 qF/2 �→ −tF/2.
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As in the statement of Theorem 3.6, we will continue with the equivalent
substitution of

u =
(
exp(zF )tF

)1/2
,

which yields that u �→ −u under this substitution. All of this together yields
the following.

Proposition 3.8. Assume that the crepant resolution conjecture holds for
the resolutions Km(An)→ [An/±1]. Then the restricted genus 0 orbifold
Gromov–Witten potential function for [A/±1], when summed over all polar-
izations, is given by

F [A/±1] =
(
exp(zS)tS

)1/2 u2

Δ(u2)

×
( ∏

v∈ε0

e−izv/2
∑
w∈K

u−〈w,w−2ε̂0〉 ∏
v∈A[2]

exp
(
i(
∫
w γv)zv

)
(−1)w

+
∏
v∈ε1

e−izv/2
∑
w∈K

u−〈w,w−2ε̂1〉+1
∏

v∈A[2]

exp
(
i(
∫
w γv)zv

)
(−1)w

)
,

where (−1)w := (−1)
∑

v∈A[2]
av

2 for w =
∑

v∈A[2]
av

2 Ev.

Proof. If we combine all of the transformations given above, we find that
the remaining composite terms in the potential transform as

λ0 �→
(
exp(zS)tS

)1/2
∏
v∈ε0

eizv/2 λ1 �→ −( exp(zS)tS
)1/2

∏
v∈ε1

eizv/2.

This yields the result as claimed. �

Remark 3.9. We should remark that for simplicity, we will omit the term(
exp(zS)tS

)1/2 occurring at the beginning of the expression, which con-
tributes no further enumerative information.

To simplify this, we recall that from corollary 2.5 we can write any
element w̄ ∈ K as w̄ = w + η̂ for w ∈ Λ and η ∈ Π3. This allows us to replace
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the summation over K by a double summation over Λ and over Π3. More
precisely, let η ∈ Π3, and (noting that (−1)η̂ = 1 by the definition above)
define

F [A/±1]
η =

u2

Δ(u2)

( ∏
v∈ε0

e−izv/2
∑
w∈Λ

u−〈w+η̂,w+η̂−2ε̂0〉

×
∏

v∈A[2]

exp
(
i(
∫
w+η̂ γv)zv

)
(−1)w

×
∏
v∈ε1

e−izv/2
∑
w∈Λ

u−〈w+η̂,w+η̂−2ε̂1〉+1

×
∏

v∈A[2]

exp
(
i(
∫
w+η̂ γv)zv

)
(−1)w

)
.

Then we have that F [A/±1] =
∑

η∈Π3
F

[A/±1]
η . Since the intersection form

restricted to Λ is diagonal, the functions F
[A/±1]
η can now be computed. For

simplicity, the superscript [A/±1] will now be omitted.

Lemma 3.10. The function Fη can be written as

Fη =
u2

Δ(u2)

(
u

1
2 |η+ε0|−2

∏
v∈η+ε0

h(zv, u)
∏

v/∈η+ε0

g(zv, u)

+ u
1
2 |η+ε1|−2

∏
v∈η+ε1

h(zv, u)
∏

v/∈η+ε1

g(zv, u)
)
,

where

h(z, u) = 2
∞∑

k=0

(−1)k sin
(
(2k + 1)

z

2

)
u2k2+2k,

g(z, u) = 1 + 2
∞∑

k=1

(−1)k cos(kz)u2k2
.

Proof. Throughout this proof we will only work with the terms involving ε0;
all of the proofs for ε1 are nearly identical. We begin by noting that

〈w + η̂, w + η̂ − 2ε̂0〉 = 〈w, w + 2η̂ − 2ε̂0〉+ 〈η̂, η̂〉 − 2〈η̂, ε̂0〉.
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Since |ε0| = 4, and for any two subsets η1, η2 ∈ Π0, we have 〈η̂1, η̂2〉 =
−1

2 |η1 ∩ η2| (see Remark 2.3), it follows that

〈η̂, η̂〉 − 2〈η̂, ε̂0〉 = 〈η̂, η̂〉 − 2〈η̂, ε̂0〉+ 〈ε̂0, ε̂0〉+ 2

= −1
2
(|η| − 2|η ∩ ε0|+ |ε0|

)
+ 2

= −1
2
|η + ε0|+ 2,

where we recall that the summation is done in Π0 (and so is the symmetric
difference of the two sets).

We work now to simplify the expression∏
v∈ε0

e−izv/2
∑
w∈Λ

u−〈w,w+2η̂−2ε̂0〉 ∏
v∈A[2]

exp
(
i(
∫
w+η̂ γv)zv

)
(−1)w.

To begin with, we note that exp
(
i(
∫
η̂ γv)zv

)
= exp(izv/2) if v ∈ η (and is 1,

otherwise), and so this term is∏
v∈ε0\η

e−izv/2
∏

v∈η\ε0

eizv/2
∑
w∈Λ

u−〈w,w+2η̂−2ε̂0〉 ∏
v∈A[2]

exp
(
i(
∫
w γv)zv

)
(−1)w

Because of the fact that the intersection form restricted to Λ is diagonal, we
can write the latter sum as a product∑

w∈Λ

u−〈w,w+2η̂−2ε̂0〉 ∏
v∈A[2]

exp
(
i(
∫
w γv)zv

)
(−1)w

=
∏

v∈η\ε0

∞∑
k=−∞

(−1)ku2k2+2keikzv

×
∏

v∈ε0\η

∞∑
k=−∞

(−1)ku2k2−2keikzv

×
∏

v/∈η+ε0

∞∑
k=−∞

(−1)ku2k2
eikzv .

By rearranging the summation index on the middle product it can be written
as ∏

v∈ε0\η

∞∑
k=−∞

(−1)ku2k2−2keikzv =
∏
ε0\η

(− eizv
) ∞∑

k=−∞
(−1)ku2k2+2keikzv
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and so the whole term becomes∏
v∈ε0\η

e−izv/2
∏

v∈η\ε0

eizv/2
∑
w∈Λ

u−〈w,w+2η̂−2ε̂0〉 ∏
v∈A[2]

exp
(
i(
∫
w γv)zv

)
(−1)w

=
∏

v∈η+ε0

eizv/2
∞∑

k=−∞
(−1)ku2k2+2keikzv

∏
v/∈η+ε0

∞∑
k=−∞

(−1)ku2k2
eikzv .

Since we have that
∞∑

k=−∞
(−1)ku2k2

eikz = 1 + 2
∞∑

k=1

(−1)k cos(kz)u2k2

and also that

eiz/2
∞∑

k=−∞
(−1)ku2k2+2keikz = 2

∞∑
k=0

sin
(
(2k + 1)z/2

)
u2k2+2k

the conclusion follows. �

3.3. Proof of Theorem 1.3

To prove Theorem 1.3 it remains to study the functions h and g given above.
As they are written in terms of trigonometric functions, we begin by writing
them in terms of Chebyshev polynomials.

Recall that Chebyshev polynomials Tn(x) are given by the relationship

Tn(cos θ) = cos(nθ).

They can equivalently be defined recursively via

T0(x) = 1,(7)
T1(x) = x,

Tn(x) = xTn−1(x)− Tn−2(x).

They also satisfy the relationships

T2n+1(sin θ) = (−1)n sin((2n+ 1)θ
)

and
Tn(1− 2x2) = (−1)nT2n(x).

With these last two in mind, we have the following fact.
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Proposition 3.11. The functions h(x, u) and g(x, u) can be written as

h(z, u) = 2
∞∑

n=0

T2n+1

(
sin(z/2)

)
u2n2+2n,

g(z, u) = 1 + 2
∞∑

n=1

T2n

(
sin(z/2)

)
u2n2

.

Proposition 3.11 and Lemma 3.10 give us an explicit description for the
(relevant portion of the) potential function of the orbifold [A/±1]. We now
perform the substitution xv = 2 sin(zv/2) (see Theorem 2.13), and use the
following result from [3].

Theorem 3.12. Let H(x, q) be defined as 2
∑∞

n=0 T2n+1(x/2)qn2+n and let
G(x, q) be defined as 1 + 2

∑∞
n=1 T2n(x/2)qn2

. Then

H(x, q) = (q2; q2)3∞
∞∑

k=0

Ak(q2)x2k+1,

G(x, q) =
(q; q)∞
(−q; q)∞

∞∑
k=0

Ck(q)x2k,

where (a; q)∞ =
∏∞

k=0(1− aqk) is a q-Pockhammer symbol, and Ak, Ck are
MacMahon’s generalized sum-of-divisors functions (See [15]).

Theorem 3.13. The functions Ak and Ck satisfy the recursive definitions

A1(q) =
∞∑

k=1

σ1(k)qk,

C1(q) = A1(q)−A1(q2),

Ak(q) =
1

(2k + 1)2k

((
6A1(q) + k(k − 1)

)
Ak−1(q)− 2q

d

dq
Ak−1(q)

)
,

Ck(q) =
1

2k(2k − 1)

((
2C1(q) + (k − 1)2

)
Ck−1(q)− q

d

dq
Ck−1(q)

)
and as such are in the ring of quasi-modular forms.

We are now in a position to prove Theorem 1.3.
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Proof of Theorem 1.3. From Lemma 3.10, Proposition 3.11 and Theorem 3.12,
we can write

Fη =
u2

Δ(u2)

(
u

1
2 |η+ε0|−2

∏
v∈η+ε0

(u4;u4)3∞
∞∑

k=0

Ak(u4)x2k+1
v

×
∏

v/∈η+ε0

(u2;u2)∞
(−u2;u2)∞

∞∑
k=0

Ck(u2)x2k
v

+ u
1
2 |η+ε1|−2

∏
v∈η+ε1

(u4;u4)3∞
∞∑

k=0

Ak(u4)x2k+1
v

×
∏

v/∈η+ε1

(u2;u2)∞
(−u2;u2)∞

∞∑
k=0

Ck(u2)x2k
v

)
.

Collecting all the Pockhammer symbols (and the extra powers of u) we
find (for the ε0 term)

u
1
2 |η+ε0|−2 u2

Δ(u2)
(
(u4;u4)3∞

)|η+ε0|
(

(u2;u2)∞
(−u2;u2)∞

)16−|η+ε0|
.

Using the fact that u2

Δ(u2) = (u2;u2)−24∞ and that (q; q)∞(−q; q)∞ = (q2; q2)∞
this simplifies to

(
u
(
(u2;u2)∞(−u2;u2)2∞

)4)1
2 |η+ε0|−2

.

Using a theorem of Legendre [14] which states that
(
(q; q)∞(−q; q)2∞

)4 =∑∞
k=0 σ1(2k + 1)qk, it follows that this term is in fact E(u)

1
2 |η+ε0|−2 where

E(u) =
∞∑

k=0

σ1(2k + 1)u2k+1 =
1
16

ϑ2(u)4

and where ϑ2 is the Jacobi theta function ϑ2(q) =
∑∞

k=0 q(k+1/2)2 . An iden-
tical computation yields that the terms in front of the ε1 term simplify to
E(u)

1
2 |η+ε1|−2.
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We can now rewrite Fη as

Fη = E(u)
1
2 |η+ε0|−2

∏
v∈η+ε0

∞∑
k=0

Ak(u4)x2k+1
v

∏
v/∈η+ε0

∞∑
k=0

Ck(u2)x2k
v

+ E(u)
1
2 |η+ε1|−2

∏
v∈η+ε1

∞∑
k=0

Ak(u4)x2k+1
v

∏
v/∈η+ε1

∞∑
k=0

Ck(u2)x2k
v .

This is the generating function for counting hyperelliptic curves f : Σ→
An with the property that f(w) ∈ A[2] for all Weirstrass points w where
we include the data of how many Weirstrass points lie on a given 2-torsion
point. Specifically, the coefficient of the monomial

∏
v∈A[2] x

k(v)
v gives the

number of such curves with k(v) Weirstrass points having as image the
point v ∈ A[2]. From this description, the conclusion follows. �

Corollary 3.14. The coefficient of a monomial
∏

v∈A[2] x
k(v)
v in the gen-

erating function F (see definition in Remark 3.5) lies in the ring of quasi-
modular forms.

Proof. This follows directly from Theorem 1.3 and from Theorem 3.13. �

3.4. A simple consequence

One consequence of this formula is a prediction for the lower bound on the
arithmetic genus of a hyperelliptic curve in an Abelian surface A, which we
prove.

Note that the lowest degree terms of Ak(q) and Ck(q), respectively, are(
k+1
2

)
and k2. Thus the lowest degree term of

E(u)
1
2 |S|−2

∏
v∈S

A k(v)−1
2

(u4)
∏
v/∈S

Ck(v)
2
(u2)

(see Equation (1)) is given by

−2 +
∑
v∈S

1
2
+
∑
v∈S

4
(1

2(k(v)− 1) + 1
2

)
+
∑
v/∈S

2
(k(v)

2

)2
= −2 +

∑
v∈A[2]

1
2k(v)

2.
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It follows that this formula predicts that the minimal arithmetic genus of a
hyperelliptic curve in A (with discrete data k) is

−1 +
∑

v∈A[2]

1
2
k(v)2

by the definition of Fg,k(u). We now show without assuming the crepant
resolution conjecture that this is true.

Theorem 3.15. Fix k, and let g be such that 2g + 2 = |k|, and suppose that
A has Picard number 1. Then the minimal arithmetic genus of a hyperelliptic
curve in A with discrete data k is

∑
v∈A[2]

1
2k(v)

2 − 1.

Proof. Given such discrete data, the geometric genus is given by g = 1
2 |k| −

1. For each v ∈ A[2] with k(v) > 1, we note that any curve which produces
such data must be nodal, since more than one Weirstrass point will have the
same image. More specifically, we introduce at least

(
k(v)

2

)
nodes for each

k(v) > 1. As such, the total arithmetic genus is given by

1
2
|k| − 1 +

∑
v∈A[2]

(
k(v)
2

)
=
1
2

∑
v∈A[2]

k(v)− 1 +
∑

v∈A[2]

1
2
(
k(v)2 − k(v)

)
= −1 +

∑
v∈A[2]

1
2
k(v)2

as claimed. �

Corollary 3.16. There are no smooth hyperelliptic curves in A of genus
greater than 5.

Proof. We first note that if any k(v) > 1, then there must be at least one
node in the image curve, as we have two Weirstrass points with the same
image, v.

Next, note that due to the requirement that P , the set of those v with
k(v) odd must be congruent to εi mod K (or more accurately, mod Π3)
yields that no more than twelve of the sixteen 2-torsion points can have
k(v) = 1 (this maximal case is when P is the complement of ε0). In this
case, we have that 2g + 2 = 12, or g = 5. �
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4. Proofs for low genera

4.1. Introduction

We will prove the formula (1) for the case of genus 1 and genus 2 curves.
Recall that a hyperelliptic curve of genus g yields a P1 with 2g + 2 stacky
points, and so to enumerate genus g curves we need only to consider those
monomials of total degree 2g + 2. For genus 1, this is degree 4 (we will
explain below what a genus one curve in A, which should generically have
no elliptic curves, means), and for genus 2, this is of degree 6.

We assume as in Section 2.3 that the Abelian surface is a product A ∼=
S × F of non-isogenous elliptic curves. Recall that there is then an elliptic
fibration A/±1→ S/±1 with general fibre F , and with four special fibres
F/±1 over the points v ∈ S[2]. We will further (by abuse of notation) denote
by S and by F the classes in A/±1 of a section S/±1 and fibre F/±1,
respectively.

In the case that the Picard number of A is 1 and that the curve class is
primitive, the source curves are combs with collapsing teeth. This allows us
to perform the substitution given in Theorem 2.13. When the Picard number
of A is greater than 1 — as is the case when A ∼= S × F — or when the class
is not primitive, it is possible that there are collapsing components which
join two components mapped into A with non-zero degree (see figure 2).

These do not contribute to the Gromov–Witten invariant (see Proposi-
tion A.9). From these two considerations, we can consider only those maps
which do not collapse any components.

Let f : Σ→ [A/±1] be a rational curve. As we saw, the source is a
tree of rational curves Σ = Σ0 ∪ Σ1 ∪ · · · ∪ Σk, and such that f∗[Σ0] = S

Figure 2: A collapsing component joining two non-collapsing ones.



Hyperelliptic curves on Abelian surfaces 275

and f∗[Σi] = niF for i ≥ 1 with
∑

ni = n (and ni > 0, as discussed above).
Moreover, the leaves of the tree of curves must have at least 3 stacky points
on them (plus a node which connects them to the tree).

For convenience, we now need to label the 2-torsion points of A. We
label them as

(8) 2-torson from F �� E3
�� ��

�� �	

E7 E11 E15

E2 E6 E10 E14 Translates of S��

�����������

�����������

E1 E5 E9 E13

E0

� ��� ��E4 E8 E12 2-torsion from S��

with monomials labelled similarly. With this labelling, we have the explicit
descriptions ε0 = 1

2(E0 + E4 + E8 + E12) and ε1 = 1
2(E1 + E2 + E3) + 1

2(E4

+ E8 + E12).

4.2. Genus 1

The genus 1 case is somewhat of an aberation; there are of course no ellip-
tic curves in a generic Abelian surface. It turns out that the genus 1 case
corresponds to a “polarization” of type (1, 0). By Poincaré’s Reducibility
Theorem [13, Chapter 5, Theorem 3.5], such an A is isogenous to a product
of elliptic curves.

Since the source curve is genus 1, on the orbifold side we have exactly 4
marked stacky points. From the description above, if the source curve were to
consist of more than one component, it would have at least 6 marked points,
and so the source curve must be irreducible with f mapping it isomorphically
onto a section S/±1. There is only one such map (as S, F were chosen to be
generic).

The only term with monomials of degree 4 from all of the functions Fη

are x0x4x8x12, x1x5x9x13, x2x6x10x14, and x3x7x11x15. If we look at the
formula (1), the prediction for each of these is also 1, and so the conjecture
is verified.

It should be noted that in terms of computing the actual number of such
curves, these latter three monomials yield curves that are simply translations
of the first, and so the number of genus 1 curves in A in the class S is 1, as
we would expect.
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4.3. Genus 2

The component which maps isomorphically onto a section curve S/±1 must
have three of the six marked points, and so our source curve must consist
of exactly two components, Σ = Σ0 ∪ Σ1, and where f∗[Σ1] = nF . Thus the
component Σ1 is an n-fold cover of F/±1 (with certain data about the images
of the stacky points in Σ1), and so we are reduced to computing the number
of such covers.

Analogous to the genus 1 case, since we only care up to translation in
A, we need only focus on certain monomials. These are

x1x2x3x4x8x12 x3
0x4x8x12 x0x4x8x12x

2
1 x0x4x8x12x

2
2 x0x4x8x12x

2
3

and the corresponding predictions are

E(u) A1(u4) C1(u2) C1(u2) C1(u2).

The first comes simply from the term ε1 and the others all come from ε0.
In each case, we are counting maps Σ1 → [F/±1] of a curve with four

Z/2-points to the orbifold [F/±1]. In this case, we can lift to the cover

E ��

��

F

��
Σ1

�� F/±1

and so we can compute this by counting covers of F by elliptic curves E
satisfying certain conditions based on the image of the 2-torsion of E. These
are the following.

(1) The first monomial corresponds to those maps E → F such that the
2-torsion of E surjects onto the 2-torsion of F .

(2) The second monomial corresponds to those maps such that all 2-torsion
of E maps to 0 ∈ F .

(3) The last three monomials all correspond to the three possible cases
where E[2] surjects onto a subgroup 〈ei〉 for ei a non-zero 2-torsion
point in F .

We first need a classically known fact.
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Proposition 4.1. Let E be an elliptic curve. Then the number of degree n
isogenies F → E is given by σ1(n) =

∑
d|n d.

Proof. As maps of Abelian varieties are determined by their lattices, count-
ing degree n isogenies F → E is the same as counting index n sublattices of
a fixed rank 2 lattice. Up to change of basis of the respective lattices, this
is the same as counting matrices of the form(

a b
0 d

)
with ad = n and 0 ≤ b < d. This is clearly equal to σ1(n) as claimed. �

All that is now required are the following lemmata. We will provide a
proof of Lemma 4.4, the rest of them having a similar flavour.

Lemma 4.2. Suppose that g : E → F is a map of elliptic curves. Then the
degree of g is odd if and only if the 2-torsion surjects.

In this case, the generating function is simply the odd-degree part of
A1(u), i.e., E(u).

Lemma 4.3. Suppose that g : E → F is a map of elliptic curves such that
g(E[2]) = 0. Then g factors through the degree 4 map

E
g ��

		

F

F/F [2]



���������

In this case, we are actually counting all covers of the curve F/F [2] —
but this is of course the same as counting covers of degree n/4 of an arbitrary
curve. That is, we obtain the function A1(u4) as desired.

Lemma 4.4. Suppose that g : E → F is a map of elliptic curves such that
g(E[2]) surjects onto the subgroup 〈v〉 for some non-zero v ∈ F [2]. Then g
factors through the degree 2 map

E
g ��

��

F

F/〈v〉

����������
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Proof. As before, we consider maps of elliptic curves via the maps on their
underlying lattices. That is, we consider the map g̃ : ΛE ↪→ ΛF . Choose a
basis λ1, λ2 of ΛF , and μ1, μ2 of ΛE such that 1

2λ1 represents the 2-torsion
point v. We will show that its image lies in the sublattice 〈λ1, 2λ2〉, which
proves the lemma.

The condition above yields (up to labelling) that

g

(
1
2
μ1

)
≡ 1
2
λ1 (mod ΛF ) and g

(
1
2
μ2

)
∈ ΛF

or equivalently that

g(μ1)− λ1 ∈ 2ΛF and g(μ2) ∈ 2ΛF .

It follows that g(ΛE) ⊂ 〈λ1, 2ΛF 〉 = 〈λ1, 2λ2〉 as claimed. �
In this final case, we are counting those covers of degree n/2 of F/〈ei〉

(i.e., A1(u2)) less those whose 2-torsion is all mapped to zero (i.e., A1(u4),
from before). That is, the generating function is A1(u2)−A1(u4) = C1(u2).

These three lemmas together prove the conjecture for the genus 2 case.

4.4. Proof of Göttsche’s genus 2 formula

If we consider all the previous cases, it follows that the number of genus 2
curves in A up to translation in A is given by the sum of all of the given
terms above. That is, if we let F2(u) denote the number of genus 2 curves
in A up to translation, then we have

F2(u) = E(u) +A1(u4) + 3
(
A1(u2)−A1(u4)

)
(9)

= E(u) + 3A1(u2)− 2A1(u4).

It is clear that the odd powers of u in the right-hand side are the same as
those in A1(u). The fact that the even powers match those of A1(u) will
follow from the following lemmata. We once more prove only the second,
the first being similar.

Lemma 4.5. Let n > 0 be congruent to 2 (mod 4). Then

σ1(n) = 3σ1(n/2).

Lemma 4.6. Let n > 0 be congruent to 0 (mod 4). Then

σ1(n) = 3σ1(n/2)− 2σ1(n/4).
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Proof. Write n = 2km with 2 � m and with k ≥ 2. Then as σ1 is a multi-
plicative function, we have that

σ1(n) = σ1(2k)σ1(m)

= (2k+1 − 1)σ1(m)

=
(
3(2k − 1)− 2(2k−1 − 1)

)
σ1(m)

= 3σ1(n/2)− 2σ1(n/4)

as claimed. �
In [11], the following is proven.

Theorem 4.7 (Göttsche, Theorem 3.2). Let (A, L) be a polarized
Abelian surface with polarization of type (1, n). Then the generating function
for the number of genus 2 curves in the linear system |L|, summed over all
polarization types, is given by

F̃2(u) =
∞∑

n=1

n2σ1(n)un = D2A1(u)

To see that these are equivalent, we note that the difference between
the two counts — that is, curves in a fixed linear system vs. curves up
to translation — comes from translating by elements in the kernel of the
isogeny A → Â = Pic0(A) given by a �→ L⊗ t∗aL−1. If the polarization is of
type (1, n), then the map on lattices H1(A)→ H1(Â) can be represented by
the matrix (3) (see Section 2.1). The map is thus of degree n2, and so the
kernel consists of exactly n2 elements. This yields the claim.

Appendix A. Structure of the moduli space

In this appendix, we gather a few facts about the structure of the moduli
space M ([A/±1];k;n), and in particular about its reduced virtual funda-
mental class. All throughout we assume that A is a generic Abelian surface
and has Picard number 1.

As stated before, the Gromov–Witten theory of an Abelian or K3 surface,
strictly speaking is trivial, as any of these can be deformed into a non-
algebraic surface. To account for that, we look at a reduced theory for these
surfaces. For more detail, see [6, 7, 16].

To construct the reduced class on M ([A/±1]; 2g + 2;n), we use the fol-
lowing approach. LetA be a fixed polarized Abelian surface with polarization
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of type (1, n), and let B be the family of Kähler metrics arising from the
hyperkähler structure. Note that B ∼= S2, the real 2-sphere.

Let A
π−→ B be the family of Abelian surfaces over B given by this family

of metrics. That is, Ab = π−1(b) is A with the Kähler structure given by b.
We can take the fibrewise quotient to obtain the family [A /±1] π−→ B which
we use to construct our reduced class.

Remark A.1. The family A is not an algebraic family. In fact, to work
with this we must leave the algebraic setting and move into the complex
analytic category. However, while it is not algebraic, it is fibrewise Kähler,
and so we are still able to work with Gromov–Witten invariants of this
family.

It is worth noting that the construction of the reduced class for families
of K3 surfaces has been done in [16] purely in the algebraic category. It
seems likely that their methods would work similarly to obtain an algebraic
reduced class for the moduli space of maps into an Abelian surface, and that
we should similarly be able to do this for the orbifold [A/±1]. We do not
however pursue this approach in this work.

In the end, we use the notion of the Twistor family as it is a well-
understood and concrete approach. This concrete approach suits us well, as
it permits us to define our invariants with as little pain as possible.

Note that we have an inclusion ι : [A/±1]→ [A /±1] as one of the fibres.
For brevity’s sake, define

M = M ([A/±1]; 2g + 2;β) and M ′ = M ([A /±1]; 2g + 2; ι∗β) .

We have the following lemma.

Lemma A.2. Let [A/±1] be as above, and suppose that C ⊂ [A/±1] is a
holomorphic curve. Then the only Kähler structure in B that has a holo-
morphic curve in the class [C] is the original Kähler structure for which C
is holomorphic.

Proof. Suppose that there are two complex structures b, b′ for which there
are curves in the class [C] which are holomorphic. We can then lift these to
the cover A → [A/±1] to obtain two differing complex structures on A which
support curves in a fixed homology class; this contradicts [6, Lemma 3.4]. �

From this we obtain the following.
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Proposition A.3. The moduli spaces M and M ′ are isomorphic in the
category of complex analytic stacks.

Proof. There is an obvious map M → M ′ induced by the inclusion ι. Specif-
ically, for a family

C̃ ��

��

A

��
C ��

��

[A/±1]

T

si

��

we can compose with the inclusion ι to obtain

C̃ ��

��

A

��

�� A

��
C ��

��

[A/±1] ι
�� [A /±1]

T

si

��

For the reverse direction, note that all holomorphic curves in [A /±1] land
in a fixed fibre [A/±1]b. This given a diagram

C̃ ��

��

A

��
C

f
��

��

[A /±1]

T

si

��

we note that the map f factors through this fixed fibre [A/±1]b. This yields
the inverse map j : M ′ →M . �

We compute the virtual dimension of M ′ to be∫
ι∗β

c1

(
[A /±1])+ (1− g)(dim[A /±1]︸ ︷︷ ︸

=3

−3) + (2g + 2)−
2g+2∑
i=1

age(pi)︸ ︷︷ ︸
=1

= 0
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and so we have a virtual fundamental class [M ′]vir in degree zero.

Definition A.4 We define the reduced virtual fundamental class on M to
be

[M ]red = j∗[M ′]vir.

We next investigate the structure of the space Mk,n = M ([A/±1];k;n).
Recall that, for k : A[2]→ Z≥0, this is the moduli space of genus 0 twisted
stable maps into [A/±1] such that k(v) stacky points have as image k(v).

Denote by λ � k a “multipartition” of k. That is, a collection of parti-
tions λv � k(v) with parts (λv

1, . . . , λ
v
rv
), indexed by v ∈ A[2]. We say that a

twisted stable map has partition type λ if we can write the source curve as

Σ = Σ0 ∪
⋃

v∈A[2]

rv⋃
i=1

Σv
i

with each Σv
i a (potentially nodal) genus 0 curve with λv

i marked Z/2-points,
and where Σv

i is attached to the curve Σ0 at some point, which is will be
stacky depending on the parity of λv

i . The map then collapses each Σv
i to

the stacky point in [A/±1] corresponding to v ∈ A[2].
Lastly, denote by Mλ,n the closed substack consisting of those maps with

partition type λ. The main result is the following.

Proposition A.5. If the Picard number of A is 1, then

Mk,n =
∐
λ�k

Mλ,n.

Proof. As stated before, each Mλ,n is a closed substack, and so we must
show that they are also open in Mk,n. We claim that any deformation of the
nodes connected a tooth to the handle cannot be smoothed.

We first note that the collection of rational curves (excluding collapsing
components) in [A/±1] is 0-dimensional. Indeed, if it were not then by look-
ing at the proper transform we would obtain a positive dimensional family
of rational curves in Km(A), which cannot exist (see, e.g., [8]).

Now, since the Picard number is 1 and the curve class is primitive, the
source curve must be the normalization of its image. We will assume for
simplicity that the number of teeth on the curve is 1, and that this tooth is
itself irreducible. Thus if we were to smooth the node joining this tooth, the
resulting source curve must be irreducible.
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Consider now a flat family of twisted stable maps into [A/±1] over a
punctured base T ′ = T \ {p}.

C ��

��

[A/±1]

T ′

Since each fibre is the normalization of the image curve in [A/±1], this
family must be constant. As the moduli spaces Mk,n are separated and
proper, there is a unique way to fill in the central fibre, which in this case
must also be a constant family. In particular, the resulting central fibre is
also the normalization of the image, and so must have no teeth. It follows
then that no nodes joining the teeth to the handle can be smoothed. �

The main result of this decomposition is the following. Recall (See Propo-
sition 2.11) that all curves in M ([A/±1]; 2g + 2;n) are comb curves. We
claimed that the components corresponding to even parts contribute zero to
the Gromov–Witten invariant — this is equivalent to saying that if a comb
curve has a tooth which is joined to the handle at a non-orbifold point, then
it contributes zero to the total invariant.

Lemma A.6. Let v ∈ A[2] be fixed, and let M0;2g+2|2k,v denote the com-
ponent consisting of those twisted stable maps into [A/±1] which collapse a
component to v with 2k marked stacky points, and with 2g + 2 marked stacky
points elsewhere. Then ∫

[M0;2g+2|2k,v]red
1 = 0.

Proof. We will assume without loss of generality (by induction on the num-
ber of collapsing components) that the source curve consists of two compo-
nents, Σ1 and Σ2 joined at a non-stacky point P , and with Σ1 being the
handle.

We begin with a little notation. Define

M1 = M◦ ([A/±1]; 2g + 2, 1;n)

to be the moduli space of twisted stable maps into [A/±1] with no collapsing
components and with one ordinary (i.e., non-stacky) marked point. This has
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(reduced) virtual dimension 1. Similarly, define

M2 = M (BZ/2; 2k, 1; 0)

to be the moduli space of twisted stable maps into BZ/2 = [C2/±1], which
we think of as the local model for one of the stacky points in [A/±1]. This
also has virtual dimension 1.

Now, unlike the case where the node is stacky, we do not have an iso-
morphism

M0;2g+2|2k,v
∼= M1 ×M2

due to the fact that the curves are joined at a non-stacky point. What we
do have, however, is a morphism ι : M0;2g+2|2k,v → M1 ×M2 which fits into
the gluing diagram

M0;2g+2|2k,v

��

ι �� M1 ×M2

ev×ev

��
I[A/±1]

Δ
�� I[A/±1]× I[A/±1]

where the evaluation maps on the right are from the non-stacky points. From
this we obtain (see [2, Proposition 5.3.1]) that

[M0;2g+2|2k,v]
red = Δ!

(
[M1]red × [M2]red

)
.

Now, since the evaluations are at non-stacky points, they in fact lie in the
non-twisted sector, which is [A/±1]. Since [A/±1] satisfies Poincaré duality
(rationally, at least), we can choose a basis (γi) of the cohomology of A/±1
so that this is given by

Δ!
(
[M1]red × [M2]red

)
=
∑

i

∫
ev∗[M1]red

γi

∫
ev∗[M2]red

γi.

Since [M1]red and [M2]red are classes in H2, we see that the only cohomology
classes which may contribute are those in dimension 2. However, since the
map ev : M2 → [A/±1] is constant (recall that this is a collapsing compo-
nent), it does not intersect any classes in H2, and so each of the integrals∫
ev∗[M2]red

γi are zero. It follows then that [M0;2g+2|2k,v]red = 0 as claimed. �

We will next provide the proofs of several facts concerning the non-
enumerative nature of the Gromov–Witten invariants stated in Section 2.2.
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First, recall that we have the decomposition of moduli spaces

Uλ,n = M◦ ([A/±1];kλ;n)×
∏

v∈A[2]

rv∏
i=1

M (BZ/2;λv
i + 1; 0)

together with a projection map pλ : Uλ,n → M◦ ([A/±1];kλ;n).

Theorem A.7 (Theorem 2.12). Let λ = (λv)v∈A[2] be a collection of par-
titions of k, all of which consist of odd parts. Then the virtual degree of pλ

is
(−1

4

) 1
2
(|k|−|kλ|). That is,

(pλ)∗[Uλ,n]red =
(
−1
4

) 1
2
(|k|−|kλ|)[

M◦ ([A/±1];kλ;n)
]red

.

The proof of this is virtually identical to that in [17, Section 3.6]. Let π :
C → Uλ,n denote the universal curve, and let Σ = Σ0 ∪ Σ1 ∪ · · · ∪ Σk denote
a comb curve. Since all deformations of the nodes which join the teeth to
the handle are obstructed, we have the exact sequence

(A.1) 0→
⊕
Pi

π∗(TPi
Σ0 ⊗ TPi

Σi)→ Obs(f)→ Obs(Σ, f)→ 0.

We will compute Obs(f), and use this exact sequence to compute the
obstruction bundle Obs(Σ, f).

Lemma A.8. Over a point [f : Σ→ A /±1], the bundle Obs(f) is isomor-
phic to

Obs(f) ∼= H1
(
Σ0, f

∗T [A /±1]|Σ0

)⊕ k⊕
i=1

H1(Σi, ρ1 ⊕ ρ1),

where ρ1 is the non-trivial representation of Z/2.

Proof. As above, let f : Σ→ [A /±1] be a comb curve with teeth Σi for
1 ≤ i ≤ k, and let T = f∗T [A /±1]. Recall that over such a point that

Obs(f) ∼= H1(Σ, T ).
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To compute this, we look at the normalization sequence

H0(Σ0, T )⊕
k⊕

i=1

H0(Σi, T |Σi
)→

k⊕
i=1

H0(Pi, T |Pi
)→ H1(Σ, T )

→
k⊕

i=0

H1(Σi, T |Σi
)→ 0,

where Pi is the node joining Σi to Σ0. As f is representable, the image of Pi

must lie in the twisted sector, and so we see that T |Σi
∼= T |Pi

∼= ρ1 ⊕ ρ1 ⊕ ρ0

where ρ1 and ρ0 denote the non-trivial and trivial representations of Z/2,
respectively. Since Σi has stacky points, and since Pi

∼= BZ/2, we have that
H0(Σ0, ρ1) ∼= 0 (and similarly for Pi). Moreover, it is clear thatH0(Σi, ρ0)→
H0(Pi, ρ0) is surjective. It follows then that

Obs(f) ∼= H1(Σ, T ) ∼= H1(Σ0, T |Σ0)⊕
k⊕

i=1

H1(Σi, T |Σi
).

Since T |Σi
∼= ρ1 ⊕ ρ1 ⊕ ρ0 and ρ0, being the trivial representation, has no

higher cohomology, the lemma follows. �

Proof of Theorem 2.12. SinceM◦
0;kλ

is 0-dimensional, on components of Uλ,n

the summand of Obs(f) coming from H1
(
Σ0, f

∗T [A /±1]|Σ0

)
is a fixed vec-

tor space, and so it corresponds to a trivial summand. Moreover, as discussed
in [18], the terms H1(Σi, ρ1 ⊕ ρ1) contributed a dual Hodge bundle sum-
mand; that is, Obs(f) ∼= O⊕d ⊕⊕k

i=1 E∨i ⊕ E∨i . Our exact sequence (A.1)
thus reads

0→
⊕
Pi

π∗(TPi
Σ0 ⊗ TPi

Σi)→ O⊕d ⊕
k⊕

i=1

E∨i ⊕ E∨i → Obs(Σ, f)→ 0

from which we compute that the total Chern class of Obs(Σ, f) over Uλ,n is
given by

c(O⊕d)︸ ︷︷ ︸
=1

k∏
i=1

c(E∨i )
2

c
(
π∗(TPi

Σ0 ⊗ TPi
Σi)
) .

We need to integrate this obstruction class over the fibres of the projection
map pλ : Uλ,n → M◦ ([A/±1];kλ;n). Specifically, we need to compute the
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integrals (using the notation of [10])

(A.2)
∫

M(BZ/2;2gi+2;0)

c(Ei)2

1− 1
2ψ1

which are computed in [10, 18] to be (−1
4)

gi .
Since the fibre is the product

∏
v∈A[2]

rv∏
i=1

M (BZ/2;λv
i + 1; 0)

it follows that the degree of the pushforward is

∏
v∈A[2]

rv∏
i=1

(
− 1
4

)1
2 (λv

i−1)
=
∏

v∈A[2]

(
−1
4

)1
2k(v)−1

2 rv

=
(
−1
4

)1
2 (|k|−|kλ|)

as claimed. �

Consider now case that A ∼= S × F . The same reasoning as above yields
that on any component of M ([A/±1]; 2g + 2;n) which collapses a compo-
nent between two non-collapsing components (see figure 2), the virtual class
is obtained by computing the integral∫

M(BZ/2;2g+2;0)

c(E)2

(1− 1
2ψ1)(1− 1

2ψ2)
,

which arises due to the two nodes whose smoothings are obstructed.

Proposition A.9. Let g > 0. Then the integral∫
M(BZ/2;2g+2;0)

c(E)2

(1− 1
2ψ1)(1− 1

2ψ2)

is zero.

Proof. We follow a method similar to the one given in [10] to prove that
(A.2) is equal to

(−1
4

)g. More specifically, we assemble the Gromov–Witten
invariants into a generating function, which we will see must be equal to
zero.
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Let X = [C2/±1]. Let 1 and v, respectively, denote the generators of the
untwisted and twisted sectors of H∗(X ), and let 〈· · · 〉 denote the integral∫

M
· · · ,

where the integral is over the appropriate moduli space of genus 0 twisted
stable maps into X . Let g > 1, and let a, b be non-negative integers. The
topological recursion relations in this case yield

〈v2g−1, τa+1v, τbv, v〉 = 2
g−1∑
i=1

(
2g − 1
2i

)
〈v2i, τav, v〉〈v2(g−i)−1, τbv, v, v〉

+ 2
g∑

i=1

(
2g − 1
2i− 1

)
〈v2i−1, τav, 1〉〈v2(g−i), τbv, v, 1〉

= 2
g−1∑
i=1

(
2g − 1
2i

)
〈v2i+1, τav〉〈v2(g−i)+1, τbv〉

+ 2
g∑

i=1

(
2g − 1
2i− 1

)
〈v2i−1, τa−1v〉〈v2(g−i)+1, τb−1v〉,

where the second equality is given by the string equation. For g = 1, this
reads

〈v2, τa+1v, τbv〉 = 2〈v, τav, 1〉〈v, τbv, 1〉

due to the requirement that each component of the curve have an even
number of stacky points.

Multiplying both sides of this by 2−a−b−1 and summing a and b from 0
to ∞ yields〈

v2g,
v

1− 1
2ψ1

,
v

1− 1
2ψ2

〉
−
〈

v2g+1,
v

1− 1
2ψ2

〉
(A.3)

=
g−1∑
i=1

(
2g − 1
2i

)〈
v2i+1,

v

1− 1
2ψ1

〉〈
v2(g−i)+1,

v

1− 1
2ψ2

〉

+
1
4

g∑
i=1

(
2g − 1
2i− 1

)〈
v2i−1,

v

1− 1
2ψ1

〉〈
v2(g−i)+1,

v

1− 1
2ψ2

〉
.
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We now assemble these into a generating series. Let H(q) and h(q) be
given by

H(q) =
∞∑

g=1

〈
v2g,

v

1− 1
2ψ1

,
v

1− 1
2ψ2

〉
q2g−1

(2g − 1)!
,

h(q) = q +
∞∑

g=1

〈
v2g+1,

v

1− 1
2ψ

〉
q2g+1

(2g + 1)!
.

From [10], we see that h(q) = 2 sin(q/2). Moreover, if we multiply (A.3) by
q2g−1

(2g−1)! and sum from g = 1 to ∞, we obtain

H(q)− h′′(q) =
∞∑

g=1

g−1∑
i=1

〈
v2i+1,

v

1− 1
2ψ1

〉
q2i

(2i)!

〈
v2(g−i)+1,

v

1− 1
2ψ2

〉(A.4)

× q2(g−i)−1

(2g − 2i− 1)!
+
1
4

∞∑
g=1

g∑
i=1

〈
v2i−1,

v

1− 1
2ψ1

〉
q2i−1

(2i− 1)!

×
〈

v2(g−i)+1,
v

1− 1
2ψ2

〉
q2(g−i)

(2g − 2i)!
.

A somewhat tedious computation yields that the right-hand side of (A.4) is
equal to

(
h′(q)− 1

)
h′′(q) +

1
4
h(q)h′(q) = h′(q)h′′(q)− h′′(q) +

1
4
h(q)h′(q).

Since h′′(q) = −1
4h(q), this is simply equal to −h′′(q). It follows then that

H(q) = 0. Since

〈
v2g,

v

1− 1
2ψ1

,
v

1− 1
2ψ2

〉
=
∫

M(BZ/2;2g+2;0)

c(E)2

(1− 1
2ψ1)(1− 1

2ψ2)

the claim follows. �
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Next, recall that we defined the generating functions

Fn(zv) =
∑

k:A[2]→Z≥0

GWk,n

∏
v∈A[2]

z
k(v)
v

k(v)!
,

F ◦n(xv) =
∑

k:A[2]→Z≥0

GW ◦
k,n

∏
v∈A[2]

x
k(v)
v

k(v)!
.

We prove now the following.

Theorem A.10 (Theorem 2.13). The two generating functions Fn and
F ◦n are equal after the substitution xv = 2 sin(zv/2).

Proof. We prove this by computing F ◦n
(
2 sin(zv/2)

)
, and showing that this

is equal to Fn(zv). For simplicity we use the notation A∨ = Map(A[2], Z≥0).
Note that

2 sin(zv/2) =
∞∑


=0

(
−1
4

)
 z2
+1
v

(2�+ 1)!
.

Substituting this into the definition for F ◦n we obtain

F ◦n
(
2 sin(zv/2)

)
=
∑

k∈A∨

GW ◦
k,n

∏
v∈A[2]

1
k(v)!

( ∞∑

=0

(
−1
4

)
 z2
+1
v

(2�+ 1)!

)k(v)

=
∑

k∈A∨

GW ◦
k,n

∏
v∈A[2]

∞∑

=0

(
−1
4

)


× z
2
+k(v)
v

(2�+ k)(v)!
s
(
2�+ k(v),k(v)

)
,

where

s(k, �) =
1
�!

∑
a1+···+a�=k

ai odd

(
k

a1, . . . , a


)
.
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Exchanging the order of the summation over � and the product over v in
this expression we find that

F ◦n
(
2 sin(zv/2)

)
=
∑

k∈A∨

GW ◦
k,n

∑

∈A∨

(
−1
4

)|
|
×
∏
v∈A

z
(2
+k)(v)
v

(2�+ k)(v)!
s
(
(2�+ k)(v),k(v)

)
=
∑

k,
∈A∨

GW ◦
k,n

(
−1
4

)|
|
×
∏
v∈A

z
(2
+k)(v)
v

(2�+ k)(v)!
s
(
(2�+ k)(v),k(v)

)
.

If we then re-index the summation by letting k′ = 2�+ k (and for simplicity
of notation omitting the ′), we find

F ◦n
(
2 sin(zv/2)

)
=
∑

k,
∈A∨

GW ◦
k−2
,n

(
−1
4

)|
|∏
v∈A

z
k(v)
v

k(v)!
s
(
k(v), (k− 2�)(v)

)
.

The claim then that these two generating functions are equal is equivalent
then to the claim that

GWk,n =
∑

∈A∨

GW ◦
k−2
,n

(
−1
4

)|
|∏
v∈A

s
(
k(v), (k− 2�)(v)

)
.

This follows from Theorem 2.12 and from the following interpretation of the
numbers s(k, �).

The number s(k, �) gives the count of all possible ways of partitioning k
marked points into � (unordered) odd-sized collections of points.

In our case, by summing over all possible functions � : A[2]→ Z≥0, the
numbers s

(
k(v), (k− 2�)(v)

)
yield the count of all possible ways of parti-

tioning the k(v) points mapping to a given 2-torsion point v by bubbling
off collapsing components (all of which must have odd numbers of marked
points). Order does not matter as they all map to the same point. For each
such possibility, the Gromov–Witten invariant is then GW ◦

k−2
 (the invari-
ant coming from the non-collapsing component) times

(−1
4

)|
| (the virtual
degree of the map which forgets the collapsing components), as discussed
above. This proves the theorem. �



292 Simon C. F. Rose

References

[1] D. Abramovich, T. Graber and A. Vistoli, Algebraic orbifold quan-
tum products, in ‘Orbifolds in mathematics and physics (Madison, WI,
2001)’, 310 Contemp. Math., Amer. Math. Soc., Providence, RI, 2002,
1–24.

[2] D. Abramovich, T. Graber and A. Vistoli, Gromov–Witten theory of
Deligne–Mumford stacks, Amer. J. Math. 130(5) (2008), 1337–1398.

[3] G.E. Andrews and S.C.F. Rose, MacMahon’s sum-of-divisors functions,
Chebyshev polynomials, and quasi-modular forms, J. Reine Angew.
Math. 676 (2013), 97–103.

[4] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces,
chapter VIII, Springer-Verlag, 1984.

[5] J. Bryan and T. Graber, The crepant resolution conjecture, in ‘Algebraic
geometry — Seattle 2005. Part 1’, 80 Proc. Symp. Pure Mathematics,
Amer. Math. Soc., Providence, RI, 2009, 23–42.

[6] J. Bryan and N.C. Leung,Generating functions for the number of curves
on Abelian surfaces, Duke Math. J. 99(2) (1999), 311–328.

[7] J. Bryan and N.C. Leung, The enumerative geometry of K3 surfaces and
modular forms, J. Amer. Math. Soc. 13(2) (2000), 371–410, (electronic).

[8] X. Chen, Rational curves on K3 surfaces, J. Algebraic Geom. 8 (1999),
245–278.

[9] W. Gillam, Hyperelliptic Gromov–Witten theory, PhD thesis, Columbia
University, 2008.

[10] W. Gillam, Letter to J. Wise, 2008.
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