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We describe surprising relationships between automorphic forms
of various kinds, imaginary quadratic number fields and a certain
system of six finite groups that are parameterized naturally by the
divisors of 12. The Mathieu group correspondence recently discov-
ered by Eguchi–Ooguri–Tachikawa is recovered as a special case.
We introduce a notion of extremal Jacobi form and prove that it
characterizes the Jacobi forms arising by establishing a connection
to critical values of Dirichlet series attached to modular forms of
weight 2. These extremal Jacobi forms are closely related to certain
vector-valued mock modular forms studied recently by Dabholkar–
Murthy–Zagier in connection with the physics of quantum black
holes in string theory. In a manner similar to monstrous moon-
shine the automorphic forms we identify constitute evidence for the
existence of infinite-dimensional graded modules for the six groups
in our system. We formulate an Umbral moonshine conjecture
that is in direct analogy with the monstrous moonshine conjec-
ture of Conway–Norton. Curiously, we find a number of Ramanu-
jan’s mock theta functions appearing as McKay–Thompson series.
A new feature not apparent in the monstrous case is a property
which allows us to predict the fields of definition of certain homo-
geneous submodules for the groups involved. For four of the groups
in our system we find analogues of both the classical McKay cor-
respondence and McKay’s monstrous Dynkin diagram observation
manifesting simultaneously and compatibly.
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1. Introduction

The term monstrous moonshine was coined by Conway in order to describe
the unexpected and mysterious connections between the representation the-
ory of the largest sporadic group — the Fischer–Griess monster, M — and
modular functions that stemmed from McKay’s observation that 196883 +
1 = 196884, where the summands on the left are degrees of irreducible rep-
resentations of M and the number on the right is the coefficient of q in the
Fourier expansion of the elliptic modular invariant [1]

J(τ) =
∑

m≥−1
a(m)qm = q−1 + 196884q + 21493760q2 + 864299970q3 + · · · .

(1.1)

Thompson expanded upon McKay’s observation in [2] and conjectured the
existence of an infinite-dimensional monster module

(1.2) V =
⊕

m≥−1
Vm

with dimVm = a(m) for all m. He also proposed [3] to consider the series,
now known as McKay–Thompson series, given by

(1.3) Tg(τ) =
∑

m≥−1
trVm

(g) qm

for g ∈ M, and detailed explorations [1] by Conway–Norton led to the aston-
ishing moonshine conjecture.
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For each g ∈ M the function Tg is a principal modulus for some
genus zero group Γg.

(A discrete group Γ < PSL2(R) is said to have genus zero if the Riemann
surface Γ\H is isomorphic to the Riemann sphere minus finitely many points,
and a holomorphic function f on H is called a principal modulus for a genus
zero group Γ if it generates the field of Γ-invariant functions on H.)

Thompson’s conjecture was verified by Atkin, Fong and Smith (cf. [4,
5]). A more constructive verification was obtained by Frenkel–Lepowsky–
Meurman [6, 7] with the explicit construction of a monster module V = V �

with graded dimension given by the Fourier expansion (1.1) of the elliptic
modular invariant. They used vertex operators — structures originating in
the dual resonance theory of particle physics and finding contemporaneous
application [8, 9] to affine Lie algebras — to recover the non-associative
Griess algebra structure (developed in the first proof [10] of the existence of
the monster) from a subspace of V �. Borcherds found a way to attach vertex
operators to every element of V � and determined the precise sense in which
these operators could be given a commutative associative composition law,
and thus arrived at the notion of vertex algebra [11], an axiomatization of
the operator product expansion of chiral conformal field theory (CFT). The
closely related notion of vertex operator algebra (VOA) was subsequently
introduced by Frenkel–Lepowsky–Meurman [12] and they established that
the monster is precisely the group of automorphisms of a VOA structure on
V �; the Frenkel–Lepowsky–Meurman construction of V � would ultimately
prove to furnish the first example of an orbifold conformal field theory.

Borcherds introduced the notion of generalized Kac–Moody algebra in
[13] and by using the VOA structure on V � was able to construct a par-
ticular example — the monster Lie algebra — and use the corresponding
equivariant denominator identities to arrive at a proof [14] of the Conway–
Norton moonshine conjectures. Thus by 1992 monstrous moonshine had
already become a phenomenon encompassing elements of finite group the-
ory, modular forms, vertex algebras and generalized Kac–Moody algebras,
as well as aspects of conformal field theory and string theory.

Recently Eguchi–Ooguri–Tachikawa have presented evidence [15] for a
new kind of moonshine involving the elliptic genus ofK3 surfaces (the elliptic
genus is a topological invariant and therefore independent of the choice ofK3
surface) and the largest Mathieu groupM24 (cf. Section 3.1). This connection
between K3 surfaces andM24 becomes apparent only after decomposing the
elliptic genus into characters of the N = 4 superconformal algebra (cf. [16–
18]). This decomposition process (cf. Section 2.4) reveals the presence of a
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mock modular form of weight 1/2 (cf. Section 2.1) satisfying

H(2)(τ) =
∞∑

n=0

c
(2)
1 (n− 1/8)qn−1/8(1.4)

= 2q−1/8(−1 + 45q + 231q2 + 770q3 + 2277q4 + · · · )

and one recognizes here the dimensions of several irreducible representations
of M24 (cf. Table B.1).

One is soon led to follow the path forged by Thompson in the case of
the monster: to suspect the existence of a graded infinite-dimensional M24-
module

(1.5) K(2) =
∞⊕

n=0

K
(2)
n−1/8

with dimK
(2)
n−1/8 = c(2)(n− 1/8) for n ≥ 1, and to study the analogues H(2)

g

of the monstrous McKay–Thompson series obtained by replacing c(2)(n−
1/8) = dimK

(2)
n−1/8 with trK(2)

n−1/8
(g) in (1.4). This idea has been implemented

successfully in [19–22] and provides strong evidence for the existence of such
an M24-module K(2). A proof of the existence of K(2) has now been estab-
lished in [23] although no explicit construction is yet known. In particular,
there is as yet no known analogue of the VOA structure which conjecturally
characterizes [12] the monster module V �.

The strong evidence in support of the M24 analogue of Thompson’s
conjecture invites us to consider the M24 analogue of the Conway–Norton
moonshine conjectures — this will justify the use of the term moonshine
in the M24 setting — except that it is not immediately obvious what the
analogue should be. Whilst the McKay–Thompson series H(2)

g is a mock
modular form of weight 1/2 on some Γg < SL2(Z) for every g in M24 [22], it
is not the case that Γg is a genus zero group for every g, and even if it were,
there is no obvious sense in which one mock modular form of weight 1/2 on
some group can “generate” all the others, and thus no obvious analogue of
the principal modulus property.

A solution to this problem — the formulation of the moonshine conjec-
ture for M24 — was found in [24] (see also Section 5.2) via an extension
of the program that was initiated in [25]; the antecedents of which include
Rademacher’s pioneering work [26] on the elliptic modular invariant J(τ),
quantum gravity in three dimensions [27–29], the anti-de sitter (AdS)/CFT
correspondence in physics [30–32], and the application of Rademacher sums
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to these and other settings in string theory [33–39] (and in particular [40]).
To explain the formulation of the moonshine conjecture for M24 we recall
that in [25] a Rademacher sum RΓ(τ) is defined for each discrete group Γ <
PSL2(R) commensurable with the modular group in such a way as to natu-
rally generalize Rademacher’s Poincaré series-like expression for the elliptic
modular invariant derived in [26]. It is then shown in [25] that a holomorphic
function on the upper-half plane (with invariance group commensurable with
PSL2(Z)) is the principal modulus for its invariance group if and only if it
coincides with the Rademacher sum attached to this group. Thus the genus
zero property of monstrous moonshine may be reformulated as follows.

For each g in M we have Tg = RΓg
where Γg is the invariance

group of Tg.

Write R(2)Γ to indicate a weight 1/2 generalization of the (weight 0) Rade-
macher sum construction RΓ studied in [25]. (Note that a choice of multi-
plier system on Γ is also required.) Then the following naturalM24-analogue
of the Conway–Norton moonshine conjecture comes into view.

For each g inM24 we have H
(2)
g = R

(2)
Γg

where Γg is the invariance

group of H(2)
g .

This statement is confirmed in [24] for the functions H(2)
g that are, at this

point, conjecturally attached to M24 via the conjectural M24-module K(2).
Through these results we come to envisage the possibility that both

monstrous moonshine and theM24 observation of Eguchi–Ooguri–Tachikawa
will eventually be understood as aspects of one underlying structure which
will include finite groups, various kinds of automorphic forms, extended
algebras and string theory, and will quite possibly be formulated in terms
of the AdS/CFT correspondence in the context of some higher-dimensional
string or gravitational theory.

In fact, we can expect this moonshine structure to encompass more
groups beyond the monster and M24: in this paper we identify the M24

observation as one of a family of correspondences between finite groups
and (vector-valued) mock modular forms, with each member in the fam-
ily admitting a natural analogue of the Conway–Norton moonshine con-
jecture according to the philosophy of [24, 25] (see also [41]). For each
� in Λ = {2, 3, 4, 5, 7, 13} — the set of positive integers � such that �− 1
divides 12 — we identify a distinguished Jacobi form Z(�), a finite group
G(�) and a family of vector-valued mock modular forms H(�)

g for g ∈ G(�).
The Jacobi forms Z(�) satisfy an extremal condition formulated in terms



108 Miranda C. N. Cheng et al.

of unitary irreducible characters of the N = 4 superconformal algebra (cf.
Section 2.5), the mock modular form H(�) = H

(�)
e is related to Z(�) as H(2)

is to the elliptic genus of a K3 surface (cf. Sections 2.4, 2.5), the Fourier
coefficients of the McKay–Thompson series H(�)

g support the existence of an
infinite-dimensional graded module K(�) for G(�) playing a rôle analogous
to that of K(2) for G(2) �M24 (cf. Section 5.1), and the following Umbral
moonshine conjecture is predicted to hold where R(�)Γ is an (�− 1)-vector-
valued generalization (cf. Section 5.2) of the Rademacher sum construction
R
(2)
Γ studied in [24].

For each g in G(�) we have H(�)
g = R

(�)
Γg

where Γg is the invariance

group of H(�)
g .

In addition to the above properties with monstrous analogues we find the
following new discriminant property. The exponents of the powers of q hav-
ing non-vanishing coefficient in the Fourier development of H(�) determine
certain imaginary quadratic number fields and predict the existence of dual
pairs of irreducible representations of G(�) that are defined over these fields
and irreducible over C. Moreover, these dual pairs consistently appear as
irreducible constituents in homogeneous G(�)-submodules of K(�) in such a
way that the degree of the submodule determines the discriminant of the
corresponding quadratic field (cf. Section 5.4).

A main result of this paper is Theorem 2.2, which states that the
extremal condition formulated in Section 2.5 characterizes the Jacobi forms
Z(�) for � ∈ {2, 3, 4, 5, 7, 13}. To achieve this we establish a result of indepen-
dent interest, which also serves to illustrate the depth of the characterization
problem: We show in Theorem 2.3 that the existence of an extremal Jacobi
form of index m− 1 implies the vanishing of L(f, 1) for all new forms f of
weight 2 and level m, where L(f, s) is the Dirichlet series naturally attached
to f . According to the Birch–Swinnerton–Dyer conjecture the vanishing of
L(f, 1) implies that the elliptic curve Ef , attached to f by Eichler–Shimura
theory, has rational points of infinite order. Thus it is extremely unexpected
that an extremal Jacobi form can exist for all but finitely many values of
m, and using estimates [42] due to Ellenberg together with some explicit
computations we are able to verify that the only possible values are those
for which no non-zero weight two forms exist, i.e., Γ0(m) has genus zero.
The last step in our proof of Theorem 2.2 is to check the finitely many cor-
responding finite-dimensional spaces of Jacobi forms, for which useful bases
have been determined by Gritsenko in [43]. In this way we obtain that the
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Z(�) for � ∈ {2, 3, 4, 5, 7, 13} are precisely the unique, up to scale, weak Jacobi
forms of weight zero satisfying the extremal condition (2.37).

In contrast to the monstrous case the McKay–Thompson series H(�)
g

arising here are mock modular forms, and these are typically not in fact
modular but become so after completion with respect to a shadow function
S
(�)
g . It turns out that all the McKay–Thompson series H(�)

g for fixed � ∈ Λ
have shadows that are (essentially) proportional to a single vector-valued
unary theta function S(�) (cf. Section 2.2) and so it is in a sense the six
moonlight shadows S(�) for � ∈ Λ that provide the irreducible information
required to uncover the structure that we reveal in this paper. We therefore
refer to the phenomena investigated here as Umbral moonshine.

According to the Oxford English Dictionary, a flame or light that is
lambent is playing “lightly upon or gliding over a surface without burning
it, like a “tongue of fire”; shining with a soft clear light and without fierce
heat.” And since the light of Umbral moonshine is apparently of this nature,
we call the six values in Λ = {2, 3, 4, 5, 7, 13} lambent, and we refer to the
index � ∈ Λ as the lambency of the connections relating the Umbral group
G(�) to the Umbral forms Z(�) and H(�)

g .
The rest of this paper is organized as follows. In Section 2 we discuss

properties of Jacobi forms, Siegel forms, mock modular forms and mock
theta functions. We explain two closely related ways in which Jacobi forms
determine mock modular forms, one involving the decomposition into char-
acters of the N = 4 superconformal algebra and the other involving a decom-
position of meromorphic Jacobi forms into mock modular forms following
[44] and [45]. In Section 2.5 we introduce the Jacobi forms Z(�) of weight
0 and index �− 1 for lambent � and their associated vector-valued mock
modular forms H(�). We prove (Theorem 2.2) that these functions are char-
acterized by the extremal property (2.37) and we establish the connection
(Theorem 2.6) to critical values of automorphic L-functions. We note that
the coefficients in the q-expansions of the mock modular forms H(�) appear
to be connected to the dimensions of irreducible representations of groups
G(�) which we introduce and study in Section 3. In Sections 3.5 and 3.6
we discuss the remarkable fact that some of these groups manifest both
the McKay correspondence relating ADE Dynkin diagrams to finite sub-
groups of SU(2) as well as a generalization of his monstrous E8 observa-
tion. In Section 4, we discuss analytic properties of the McKay–Thompson
series H(�)

g which are obtained by twisting the mock modular forms H(�)

by elements g ∈ G(�). We determine the proposed McKay–Thompson series
H
(�)
g =

(
H
(�)
g,r

)
precisely in terms of modular forms of weight 2 for all but a
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few g occurring for � ∈ {7, 13}, and we find that we can identify many of the
component functions H(�)

g,r either with ratios of products of eta functions or
with classical mock theta functions introduced by Ramanujan (and others).
In Section 5, we collect our observations into a set of conjectures. These
include the analogue of Thompson’s conjecture (cf. Section 5.1), the Umbral
counterpart to the Conway–Norton moonshine conjecture (cf. Section 5.2),
and a precise formulation of the discriminant property mentioned above (cf.
Section 5.4). In Section 5.5 we mention some possible connections between
our results, the geometry of complex surfaces, and string theory.

Our conventions for modular forms appear in Appendix A, the character
tables of the Umbral groups G(�) appear in Appendix B, tables of Fourier
coefficients of low degree for all the proposed McKay–Thompson series H(�)

g

appear in Appendix C, and tables describing the G(�)-module structures
implied (for low degree) by the H(�)

g are collected in Appendix D.
It is important to mention that much of the data presented in the tables

of Appendix C was first derived using certain vector-valued generalizations
of the Rademacher sum construction that was applied to the functions
of monstrous moonshine in [25], and in [24] to the functions attached to
M24 via the observation of Eguchi–Ooguri–Tachikawa. In particular, these
vector-valued Rademacher sums played an indispensable rôle in helping us
arrive at the groups G(�) specified in Section 3, especially for � > 3, and
also allowed us to formulate and test hypotheses regarding the modular-
ity of the (vector-valued) functions H(�)

g , including eta product expressions
and the occurrences of classical mock theta functions; considerations which
ultimately developed into the discussion of Section 4. A detailed discussion
of the Rademacher construction is beyond the scope of this article but a
full treatment is to be the focus of forthcoming work. The fact that the
Rademacher sum approach proved so powerful may be taken as strong evi-
dence in support of the Umbral moonshine conjecture, Conjecture 5.4.

2. Automorphic forms

In this section we discuss the modular objects that play a rôle in the con-
nection between mock modular forms and finite groups that we will develop
later in the paper. We also establish our notation and describe various rela-
tionships between Jacobi forms, theta functions, and vector-valued mock
modular forms, including mock theta functions.

In what follows, we take τ in the upper half-plane H and z ∈ C, and
adopt the shorthand notation e(x) = e2πix. We also define q = e(τ) and y =
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e(z) and write

(2.1) γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL2(Z)

for the natural action of SL2(Z) on H and

(2.2) γ(τ, z) =
(
aτ + b

cτ + d
,

z

cτ + d

)

for the action of SL2(Z) on H× C.

2.1. Mock modular forms

Mock theta functions were first introduced in 1920 by Ramanujan in his
last letter to Hardy. This letter contained 17 examples divided into four
of order 3, ten of order 5 and three of order 7. Ramanujan did not define
what he meant by the term order and to this day there seems to be no
universally agreed upon definition. In this paper, we use the term order only
as a historical label. Ramanujan wrote his mock theta functions as what he
termed “Eulerian series” that today would be recognized as specializations
of q-hypergeometric series. A well studied example is the order 3 mock theta
function

(2.3) f(q) = 1 +
∞∑

n=1

qn2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
=

∞∑
n=0

qn2

(−q; q)2n
,

where we have introduced the q-Pochhammer symbol

(2.4) (a; q)n =
n−1∏
k=0

(1− aqk).

Interest in and applications of mock theta functions has burgeoned dur-
ing the last decade following the work of Zwegers [44] who found an intrinsic
definition of mock theta functions and their near modular behaviour, and
many applications of his work can be found in combinatorics [46, 47], charac-
ters of infinite-dimensional Lie superalgebras [48, 49], topological field theory
[50–53], the computation of quantum invariants of 3-dimensional manifolds
[54], and the counting of black hole states in string theory [45]. Descriptions
of this breakthrough and some of the history of mock theta functions can
be found in [55–57].
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Mock theta functions are now understood as a special case of more gen-
eral objects known as mock modular forms. A holomorphic function h(τ)
on H is called a (weakly holomorphic) mock modular form of weight k for a
discrete group Γ (e.g., a congruence subgroup of SL2(Z)) if it has at most
exponential growth as τ → α for any α ∈ Q, and if there exists a holomor-
phic modular form f(τ) of weight 2− k on Γ such that the completion of h
given by

(2.5) ĥ(τ) = h(τ) + (4i)k−1
∫ ∞

−τ̄
(z + τ)−kf(−z̄) dz

is a (non-holomorphic) modular form of weight k for Γ for some multiplier
system ν say. In this case the function f is called the shadow of the mock
modular form h. Even though h is not a modular form, it is common practice
to call ν the multiplier system of h. One can show that ν is the conjugate
of the multiplier system of f . In most of the examples in this paper we
will deal with vector-valued mock modular forms so that the completion in
fact transforms as ν(γ)ĥ(γτ)(cτ + d)−k = ĥ(τ) in case the weight is k for all
γ = ( ∗ ∗c d ) ∈ Γ where ν is a matrix-valued function on Γ.

The completion ĥ(τ) satisfies interesting differential equations. For
instance, completions of mock modular forms were identified as weak Maass
forms (non-holomorphic modular forms which are eigenfunctions of the
Laplace operator) in [46] as a part of their solution to the longstanding
Andrews–Dragonette conjecture. Note that we have the identity

(2.6) 21−kπ�(τ)k ∂ĥ(τ)
∂τ̄

= −2πif(τ)

when f is the shadow of h.
Thanks to Zweger’s work we may define a mock theta function to be a q-

series h =
∑

n anq
n such that for some λ ∈ Q the assignment τ �→ qλh|q=e(τ)

defines a mock modular form of weight 1/2 whose shadow is a unary (i.e.,
attached to a quadratic form in one variable) theta series of weight 3/2.

In this paper we add one more rôle for mock theta functions to the list
mentioned earlier; namely we conjecture that specific sets of mock theta
functions appear as McKay–Thompson series associated to (also conjec-
tural) infinite-dimensional modules for a sequence of groups G(�) which we
refer to as the Umbral groups and label by the lambent integers � ∈ Λ =
{2, 3, 4, 5, 7, 13}, which are just those positive integers that are one greater
than a divisor of 12.

Many of the mock theta functions that appear later in this paper appear
either in Ramanujan’s last letter to Hardy or in his lost notebook [58]. These
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include an order 2 mock theta function

(2.7) μ(q) =
∑
n≥0

(−1)n qn2
(q; q2)n

(−q2; q2)2n

and an order 8 mock theta function

(2.8) U0(q) =
∑
n≥0

qn2
(−q; q2)n

(−q4; q4)n ,

both of which appear at lambency 2 in connection with G(2) �M24. The
function f(q) of (2.3) together with

φ(q) = 1 +
∞∑

n=1

qn2

(1 + q2)(1 + q4) · · · (1 + q2n)
,

χ(q) = 1 +
∞∑

n=1

qn2

(1− q + q2)(1− q2 + q4) · · · (1− qn + q2n)
,

ω(q) =
∞∑

n=0

q2n(n+1)

(1− q)2(1− q3)2 · · · (1− q2n+1)2 ,

ρ(q) =
∞∑

n=0

q2n(n+1)

(1 + q + q2)(1 + q3 + q6) · · · (1 + q2n+1 + q4n+2)

(2.9)

constitute five order 3 mock theta functions appearing at lambency 3, and
the four order 10 mock theta functions

φ10(q) =
∞∑

n=0

qn(n+1)/2

(q; q2)n+1
,

ψ10(q) =
∞∑

n=0

q(n+1)(n+2)/2

(q; q2)n+1
,

X(q) =
∞∑

n=0

(−1)nqn2

(−q; q)2n ,

χ10(q) =
∞∑

n=0

(−1)nq(n+1)2
(−q; q)2n+1

(2.10)

appear at lambency 5.
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More mock theta functions were found later by others. At lambency 4
we will encounter order 8 mock theta functions discussed in [59] with q-
expansions

S0(τ) =
∑
n≥0

qn2
(−q; q2)n

(−q2; q2)n ,

S1(τ) =
∑
n≥0

qn(n+2)(−q; q2)n
(−q2; q2)n ,

T0(τ) =
∑
n≥0

q(n+1)(n+2)(−q2; q2)n
(−q; q2)n ,

T1(τ) =
∑
n≥0

qn(n+1)(−q2; q2)n
(−q; q2)n .

(2.11)

It is curious to note that the order is divisible by the lambency in each
example.

2.2. Jacobi forms

We now discuss Jacobi forms following [60]. We say a holomorphic function
φ : H× C → C is an unrestricted Jacobi form of weight k and index m for
SL2(Z) if it transforms under the Jacobi group SL2(Z)� Z2 as

φ(τ, z) = (cτ + d)−ke(−m cz2

cτ+d)φ(γ(τ, z)),(2.12)

φ(τ, z) = e(m(λ2τ + 2λz))φ(τ, z + λτ + μ),(2.13)

where γ ∈ SL2(Z) and λ, μ ∈ Z. In what follows, we refer to the transforma-
tions (2.12) and (2.13) as the modular and elliptic transformations, respec-
tively. The invariance of φ(τ, z) under τ → τ + 1 and z → z + 1 implies a
Fourier expansion

(2.14) φ(τ, z) =
∑

n,r∈Z

c(n, r)qnyr

and the elliptic transformation can be used to show that c(n, r) depends
only on the discriminant r2 − 4mn and r mod 2m, and so we have c(n, r) =
C(r2 − 4mn, r̃) for some function D �→ C(D, r̃) where r̃ ∈ {−m, . . . ,m− 1},
for example. An unrestricted Jacobi form is called a weak Jacobi form, a
(strong) Jacobi form, or a Jacobi cusp form according as the Fourier coef-
ficients satisfy c(n, r) = 0 whenever n < 0, C(D, r̃) = 0 whenever D > 0, or
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C(D, r̃) = 0 whenever D ≥ 0, respectively. In a slight departure from [60]
we denote the space of weak Jacobi forms of weight k and index m by Jk,m.

In what follows, we will need two further generalizations of the above
definitions. The first is straightforward and replaces SL2(Z) by a finite index
subgroup Γ ⊂ SL2(Z) in the modular transformation law. The second is more
subtle and leads to meromorphic Jacobi forms which obey the modular and
elliptic transformation laws but are such that the functions z �→ φ(τ, z) are
allowed to have poles lying at values of z ∈ C that map to torsion points of
the elliptic curve C/(Zτ + Z). Our treatment of meromorphic Jacobi forms
follows [44, 45].

A property of (weak) Jacobi forms that will be important for us later is
that they admit an expansion in terms of the index m theta functions

(2.15) θ(m)
r (τ, z) =

∑
n∈Z

q(2mn+r)2/4my2mn+r,

given by

(2.16) φ(τ, z) =
∑

r(mod 2m)

h̃r(τ)θ(m)
r (τ, z)

in case the index of φ is m, where the theta-coefficients h̃r(τ) constitute the
components of a vector-valued modular form of weight k − 1/2 when k is
the weight of φ. Recall that a vector-valued function h̃ = (h̃r) is called a
vector-valued modular form of weight k for Γ ⊂ SL2(Z) if

(2.17) h̃r(τ) =
1

(cτ + d)k
∑

s

νrs(γ)h̃s(τ)

for all γ ∈ Γ and τ ∈ H for some matrix-valued function ν = (νrs) on Γ called
the multiplier system for h̃.

The modular transformation law (2.12) with γ = −I2 implies that
φ(τ,−z) = (−1)kφ(τ, z). Combining this with the identity θ

(m)
−r (τ, z) =

θ
(m)
r (τ,−z) we see that h̃r(τ) = (−1)kh̃−r(τ) and in particular we can recover
a weak Jacobi form of weight k and indexm from them− 1 theta-coefficients
{h̃1, . . . , h̃m−1} in case k is odd.

In what follows, we will encounter only weight 0 and weight 1 Jacobi
forms; a typical such form will be denoted by φ(τ, z) or ψ(τ, z) according
as the weight is 0 or 1 and we will write the theta-expansion of a weight 1
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Jacobi form ψ as

(2.18) ψ(τ, z) =
m−1∑
r=1

h̃r(τ)θ̂(m)
r (τ, z),

where θ̂(m)
r (τ, z) = θ

(m)
−r (τ, z)− θ(m)

r (τ, z) (cf. (2.15)) for r ∈ {1, 2, . . . ,m−
1}.

2.3. Meromorphic Jacobi forms

We now explain a connection between the vector-valued mock modular forms
we shall consider in this paper and meromorphic Jacobi forms. We specialize
our discussion to weight 1 meromorphic Jacobi forms of a particular form
that arise in our pairing of Jacobi forms with groups G(�), and later in our
computation of McKay–Thompson series; namely, we consider meromorphic
weight 1 and index m Jacobi forms which can be written as

(2.19) ψ(τ, z) = Ψ1,1(τ, z)φ(τ, z)

for some weight 0 index m− 1 (holomorphic) weak Jacobi form φ where
Ψ1,1 is the specific meromorphic Jacobi form of weight 1 and index 1 given
by

(2.20) Ψ1,1(τ, z) = −i θ1(τ, 2z) η(τ)
3

(θ1(τ, z))2
=
y + 1
y − 1

− (y2 − y−2)q + · · · .

We note that ψ(τ, z) has a simple pole at z = 0 with residue φ(τ, 0)/πi.
Since φ(τ, z) is a weak Jacobi form of weight 0 the function τ �→ φ(τ, 0) is a
modular form of weight 0 (with no poles at any cusps) and is hence equal
to a constant; we denote this constant by

(2.21) χ = φ(τ, 0).

It was shown by Zwegers [44] that meromorphic Jacobi forms have a
modified theta-expansion (cf. (2.16)) in terms of vector-valued mock modu-
lar forms; in [45] this expansion was recast as follows. Define the averaging
operator

(2.22) Av(m)
[
F (y)

]
=

∑
k∈Z

qmk2
y2mkF (qky),
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which takes a function of y = e(z) with polynomial growth and returns a
function of z which transforms like an indexm Jacobi form under the elliptic
transformations (2.13). Now define the polar part of ψ = Ψ1,1φ by

(2.23) ψP(τ, z) = χAv(m)

[
y + 1
y − 1

]
,

where χ = φ(τ, 0) and define the finite part of ψ by

(2.24) ψF (τ, z) = ψ(τ, z)− ψP(τ, z).

The term finite is appropriate because with the polar part subtracted the
finite part no longer has a pole at z = 0.

It follows from the analysis in [45] that ψF (τ, z) is a weight 1 index m
mock Jacobi form, meaning that it has a theta-expansion

(2.25) ψF (τ, z) =
m−1∑
r=1

hr(τ)θ̂(m)
r (τ, z)

(cf. (2.18)) where the theta-coefficients hr comprise the components of a
vector-valued mock modular form of weight 1/2.

In the above we have again used the fact that ψ, ψP and hence also
ψF pick up a minus sign under the transformation z → −z. Moreover, the
vector-valued mock modular forms obtained in this way always have shadow
function given by the unary theta series

(2.26) S(m)
r (τ) =

1
2πi

∂

∂z
θ(m)
r (τ, z)

∣∣∣∣
z=0

=
∑
n∈Z

(2mn+ r)q(2mn+r)2/4m.

To see why this is so, and for later use, we introduce the functions

μ
(m)
j (τ, z) = (−1)1+2j

∑
k∈Z

qmk2
y2mk (yq

k)−2j + (yqk)−2j+1 + · · ·+ (yqk)1+2j

1− yqk

(2.27)

for m a positive integer and 2j ∈ {0, 1, . . . ,m− 1}. Note that μ(m)
0 (τ, z) is

proportional to the polar part of ψ, as identified in (2.23),

(2.28) μ
(m)
0 (τ, z) = Av(m)

[
y + 1
y − 1

]
.
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Remark 2.1. The function μ(2)0 is closely related to the Appell–Lerch sum
μ(t, z) which features prominently in [44].

The μ(m)
0 enjoy the following relation to the modular group SL2(Z).

Define the completion of μ(m)
0 (τ, z) by setting

μ̂(m)(τ, τ̄ , z) = μ
(m)
0 (τ, z) +

1√
2m

1
(4i)1/2

m−1∑
r=−m

θ(m)
r (τ, z)(2.29)

×
∫ i∞

−τ̄
(z + τ)−1/2S(m)

r (−z̄) dz.

Then μ̂(m) transforms like a Jacobi form of weight 1 and index m for SL2(Z)
but is not holomorphic. Therefore, from the transformation of the polar part

(2.30) ψP(τ, z) = χμ
(m)
0 (τ, z)

we see that the shadow of h = (hr) is given by χS(m) =
(
χS

(m)
r

)
, as we

claimed. This means that the vector-valued mock modular forms arising in
this way are closely related to mock theta functions: By the definition given
in Section 2.1 we have hr(τ) = qλMr for some λ ∈ Q with Mr a mock theta
function.

2.4. Superconformal algebra

In Section 2.3 we saw how to associate a vector-valued mock modular form
(hr) to a weight 1 meromorphic Jacobi form ψ satisfying ψ = Ψ1,1φ for some
weak Jacobi form φ via the theta-expansion of the finite part of ψ. It will
develop that the weight 0 forms φ of relevance to us have a close relation to
the representation theory of the 2-dimensional N = 4 superconformal alge-
bra. To see this recall (cf. [16–18]) that this algebra contains subalgebras
isomorphic to the affine Lie algebra ŝl2 and the Virasoro algebra, and in a
unitary representation the former of these acts with level m− 1, for some
integer m > 1, and the latter with central charge c = 6(m− 1), and the
unitary irreducible highest weight representations V (m)

h,j are labelled by the
two quantum numbers h and j which are the eigenvalues of L0 and 1

2J
3
0 ,

respectively, when acting on the highest weight state. (We adopt a normal-
ization of the SU(2) current J3 such that the zero mode J30 has integer
eigenvalues.) In the Ramond sector of the superconformal algebra there are
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two types of highest weight representations: the massless (or Bogomol’nyi–
Prasad–Sommerfield (BPS), supersymmetric) ones with h = m−1

4 and j ∈
{0, 12 , . . . , m−1

2 }, and the massive (or non-BPS, non-supersymmetric) ones
with h > m−1

4 and j ∈ {12 , 1, . . . , m−1
2 }. Their (Ramond) characters, defined as

(2.31) ch(m)
h,j (τ, z) = trV (m)

h,j

(
(−1)J3

0 yJ3
0 qL0−c/24

)
,

are given by

(2.32) ch(m)
m−1

4
,j
(τ, z) = (Ψ1,1(τ, z))−1μ

(m)
j (τ, z)

and

(2.33) ch(m)
h,j (τ, z) = (−1)2j+1(Ψ1,1(τ, z))−1 qh−m−1

4
− j2

m θ̂
(m)
2j (τ, z)

in the massless and massive cases, respectively, [17] where the function
μ
(m)
j (τ, z) is defined as in (2.27) and θ̂(m)

r (τ, z) is as in the sentence following
(2.18).

We can use the above results to derive a decomposition of an arbitrary
weight 0 index m− 1 Jacobi form φ(τ, z) into N = 4 characters as follows.
Set ψ(τ, z) = Ψ1,1(τ, z)φ(τ, z) as in Section 2.3 and write

hr(τ) =
∑

n

cr(n− r2/4m)qn−r2/4m(2.34)

for the Fourier expansion of the theta-coefficient hr of the finite part ψF

of ψ (cf. (2.25)). Then use (2.24), (2.25) and (2.30) along with (2.32) and
(2.33) to obtain

φ = χ ch(m)
m−1

4
,0
+

m−1∑
r=1

(−1)r+1cr
(
− r2

4m

)(
ch(m)

m−1
4

, r

2

+ 2ch(m)
m−1

4
, r−1

2

+ ch(m)
m−1

4
, r−2

2

)(2.35)

+
m−1∑
r=1

(−1)r+1
∞∑

n=1

cr

(
n− r2

4m

)
ch(m)

m−1
4
+n, r

2

,

where χ = φ(τ, 0) is the constant such that χS(m) is the shadow of h = (hr)
(cf. Section 2.3). In deriving (2.35) we have used the relation

(2.36) μ
(m)
r−2
2

+ 2μ(m)
r−1
2

+ μ
(m)
r

2
= (−1)r+1 q− r2

4m θ̂(m)
r

subject to the understanding that μ(m)

− 1
2

= ch(m)
m−1

4
,− 1

2

= 0.
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One way a weak Jacobi form of weight 0 and index m− 1 having integer
coefficients can arise in nature is as the elliptic genus of a 2-dimensional
N = 4 superconformal field theory with central charge c = 6(m− 1). There
is a unique weak Jacobi form of weight 0 and index 1 up to scale and this
(suitably scaled) turns out to be the elliptic genus of a superconformal field
theory attached to a K3 surface. Then the above analysis at m = 2 recovers
the mock modular form H(2) (the vectors have m− 1 = 1 components in
this case) exhibiting the connection to the Mathieu group M24 observed by
Eguchi–Ooguri–Tachikawa in [15].

In the next section we will construct a distinguished family of extremal
weight 0 weak Jacobi forms φ(�)(τ, z) with corresponding vector-valued
weight 1/2 mock modular forms H(�)(τ) according to the procedure (2.19) to
(2.25) of Section 2.3. In Section 3 we will specify finite groups G(�) for which
the forms H(�) will serve as generating functions for the graded dimensions
of conjectural bi-graded infinite-dimensional G(�)-modules.

2.5. Extremal Jacobi forms

In this section we identify the significance of the divisors of 12 from the point
of view of the N = 4 superconformal algebra. We introduce the notion of an
extremal (weak) Jacobi form of weight 0 and integral index and we prove
that the space Jext0,m−1 of extremal forms with index m− 1 has dimension 1
if m− 1 divides 12, and has dimension 0 otherwise. Several of the extremal
Jacobi forms we identify have appeared earlier in the literature in the context
of studying decompositions of elliptic genera of Calabi–Yau manifolds [43,
48, 61] and in a recent study of the connection between black hole counting
in superstring theory and mock modular forms [45].

For m a positive integer and φ a weak Jacobi form with weight 0 and
index m− 1 say φ is extremal if it admits an expression

φ = am−1
4

,0ch
(m)
m−1

4
,0
+ am−1

4
, 1
2
ch(m)

m−1
4

, 1
2

+
∑

0<r<m

∑
n∈Z

r2−4mn<0

am−1
4
+n, r

2
ch(m)

m−1
4
+n, r

2

(2.37)

for some ah,j ∈ C (cf. (2.35)) where the N = 4 characters are as defined
in (2.32) and (2.33). Write Jext0,m−1 for the subspace of J0,m−1 consisting of
extremal weak Jacobi forms. Note that the extremal condition restricts both
the massless and massive N = 4 representations that can appear, for gener-
ally there are non-zero massive characters ch(m)

m−1
4
+n, r

2

with r2 − 4mn ≥ 0.
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We observe here that the extremal condition has a very natural interpre-
tation in terms of the mock modular forms of weight 1/2 attached to weak
Jacobi forms of weight 0 via the procedure detailed in Section 2.3. By com-
paring with (2.35) we find that the condition (2.37) on a weak Jacobi form
φ of index m− 1 is equivalent to requiring that the corresponding vector-
valued mock modular form (hr) obtained from the theta-expansion (2.25) of
the finite part of the weight 1 Jacobi form ψ = Ψ1,1φ has a single polar term
q−

1
4m in the first component h1 and has all other components vanishing as

τ → i∞.
Our main result in this section is the following characterization of

extremal Jacobi forms.

Theorem 2.2. If m is a positive integer then dimJext0,m−1 = 1 in case m− 1
divides 12 and dimJext0,m−1 = 0 otherwise.

In preparation for the proof of Theorem 2.2 we now summarize (aspects
of) a useful construction given in [43]. The graded ring

(2.38) J0,∗ =
⊕
m≥1

J0,m−1

of (weak) Jacobi forms of weight 0 and integral index has an ideal

(2.39) J0,∗(q) =
⊕
m>1

J0,m−1(q) =

⎧⎪⎪⎨
⎪⎪⎩φ ∈ J0,∗ | φ(τ, z) =

∑
n,r∈Z

n>0

c(n, r)qnyr

⎫⎪⎪⎬
⎪⎪⎭

consisting of Jacobi forms that vanish in the limit as τ → i∞ (i.e., have
vanishing coefficient of q0yr, for all r, in their Fourier development). This
ideal is principal and generated by a weak Jacobi form of weight 0 and index
6 given by

(2.40) ζ(τ, z) =
θ1(τ, z)12

η(τ)12

(cf. Appendix A for θ1 and η). Gritsenko shows [43] that for any positive
integerm the quotient J0,m−1/J0,m−1(q) is a vector space of dimensionm− 1
admitting a basis consisting of weight 0 indexm− 1 weak Jacobi forms ϕ(m)

n

(denoted ψ(n)0,m−1 in [43]) for 1 ≤ n ≤ m− 1 such that the coefficient of q0yk
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in ϕ(m)
n vanishes for |k| > n but does not vanish for |k| = n. In fact, Gritsenko

works in the subring JZ

0,∗ of Jacobi forms having integer Fourier coefficients
and his ϕ(m)

n furnish a Z-basis for the Z-module JZ

0,∗/JZ

0,∗(q).
We show now that there are no non-zero extremal Jacobi forms in the

ideal J0,∗(q).

Lemma 2.3. If φ is an extremal weak Jacobi form belonging to J0,∗(q) then
φ = 0.

Proof. If φ belongs to J0,∗(q) then the coefficients of q0yk in the Fourier
development of φ vanish for all k. This implies the vanishing of am−1

4
,0 and

am−1
4

, 1
2
in (2.37) where m− 1 is the index of φ, and this in turn implies that

the meromorphic Jacobi form ψ = Ψ1,1φ of weight 1 and index m coincides
with its finite part ψ = ψF =

∑
r hrθ̂

(m)
r (cf. (2.21), (2.23) and (2.25)) and

has theta-coefficients hr that remain bounded as τ → i∞. In particular, ψ is
a (strong) Jacobi form of weight 1 and integral index but the space of such
forms vanishes according to [62], so φ must vanish also. �

As a consequence of Lemma 2.3 we obtain that there are no extremal Jacobi
forms with vanishing massless contribution at spin j = 1/2.

Lemma 2.4. If φ is an extremal weak Jacobi form of index m− 1 such
that am−1

4
, 1
2
= 0 in (2.37) then φ = 0.

Proof. If φ is of weight 0 and index m− 1 satisfying (2.37) then φ = a+
b(y + y−1) +O(q) as τ → i∞ where a = am−1

4
,0 and b = −am−1

4
, 1
2
. Following

[43] we set

(2.41) φ̃(τ, z) = exp(−8π2(m− 1)G2(τ)z2)φ(τ, z),

where G2(τ) = − 1
24 +

∑
n>0 σ1(n)q

n is the unique up to scale mock mod-
ular form of weight 2 for SL2(Z) (with shadow a constant function) and
consider the Taylor expansion φ̃(τ, z) =

∑
n≥0 fn(τ)zn. Then f0(τ) = χ =

a+ 2b and more generally fn(τ) is a modular form of weight n for SL2(Z).
In particular f2(τ) = 0. On the other hand, the constant term of f2(τ) is
1
3π

2(m− 1)χ− 4π2b so (m− 1)χ = 12b. By hypothesis b = 0 so χ = 0 and
φ belongs to J0,m−1(q) and thus vanishes according to Lemma 2.3. �

Applying Lemma 2.4 we obtain that the dimension of Jext0,m−1 is at most
1 for any m.
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Proposition 2.5. We have dimJext0,m−1 ≤ 1 for any positive integer m.

Proof. If φ′ and φ′′ are two elements of Jext0,m−1 then there exists c ∈ C such
that φ = φ′ − cφ′′ is extremal and has vanishing am−1

4
, 1
2
in (2.37). Then φ = 0

according to Lemma 2.4 and thus φ′ belongs to the linear span of φ′′. �

We now present a result which ultimately shows that there are only
finitely many m for which Jext0,m−1 �= {0}, and also illustrates the depth of
the characterization problem. In preparation for it let us write S2(m) for
the space of cusp forms of weight 2 for Γ0(m) and recall that f ∈ S2(m)
is called a newform if it is a Hecke eigenform, satisfying T (n)f = λf (n)f
whenever (n,m) = 1 for some λf (n) ∈ C, that is uniquely specified (up to
scale) in S2(m) by its Hecke eigenvalues {λf (n) | (n,m) = 1} (cf. [63, Sec-
tion IX.7]). Write Snew2 (m) for the subspace of S2(m) spanned by newforms.
Given f ∈ S2(m) define L(f, s) =

∑
n>0 af (n)n−s for (s) > 1 when f(τ) =∑

n>0 af (n)qn. Then L(f, s) is called the Dirichlet L-function attached to f
and admits an analytic continuation to s ∈ C (cf. [63, Section IX.4] or [64,
Section 3.6].) To a newform f in S2(m) (i.e., a Hecke eigenform in Snew2 (m))
Eichler–Shimura theory attaches an elliptic curve Ef defined over Q (cf. [63,
Section XI.11]), and the Birch–Swinnerton-Dyer conjecture predicts that Ef

has rational points of infinite order whenever L(f, s) vanishes at s = 1 (cf.
[65, 66]).

Theorem 2.6. If m is a positive integer and Jext0,m−1 �= {0} then L(f, 1) = 0
for every f ∈ Snew2 (m).

Proof. Let m be a positive integer. For L =
√
2mZ the spaces H+

k,L and
S2−k,L− of [67, Section 3] are naturally isomorphic to Jk+1/2,m and Sskew5/2−k,m,
respectively, where Jk,m denotes the space of weak (pure) mock Jacobi forms
of weight k and indexm (cf. [45, Section 7.2]) and Sskewk,m denotes the space of
cuspidal skew-holomorphic Jacobi forms of weight k and index m (cf. [68]).
Translating the construction (3.9) of [67] into this language, and taking
k = 1/2, we obtain a pairing

{· , ·} : Sskew2,m × J1,m → C.(2.42)

If Jext0,m−1 �= {0} then let φ ∈ Jext0,m−1 be a non-zero extremal Jacobi form
and set ψ = Ψ1,1φ as in Section 2.3. Then the finite part ψF of ψ belongs
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to J1,m and the shadow of ψF (cf. [45, Section 7.2]) is the cuspidal skew-
holomorphic Jacobi form χσ(m) ∈ Sskew2,m where χ = φ(τ, 0) and

σ(m)(τ, z) =
∑

r mod 2m

S
(m)
r (τ)θ(m)

r (τ, z).(2.43)

Consider the linear functional λφ on Sskew2,m defined by setting λφ(ϕ) =
{ϕ,ψF }. According to the definition of (2.42) (i.e., (3.9) of [67]) we have

λφ(ϕ) = Cm〈ϕ, χσ(m)〉(2.44)

for some (non-zero) constant Cm (depending only on m) where 〈· , ·〉 denotes
the Petersson inner product on Sskew2,m (cf. [68]). On the other hand, inspec-
tion reveals that h±1(τ) = ∓am−1

4
, 1
2
q−1/4m(1 +O(q)) when ψF =

∑
rmod 2m

hrθ
(m)
r so

λφ(ϕ) = −2am−1
4

, 1
2
Cϕ(1, 1)(2.45)

according to Proposition 3.5 of [67] where ϕ(τ, z) =
∑
Cϕ(Δ, r)q̄Δ/4m

qr2/4myr is the Fourier expansion of ϕ (cf. [68]). Applying Lemma 2.4 we
deduce from (2.45) that λφ(ϕ) = 0 for ϕ ∈ Sskew2,m if and only if Cϕ(1, 1) = 0.

Now let f be a newform in S2(m). If Λ(f, s) = (2π)−sms/2Γ(s)L(f, s)
then either Λ(f, s) = Λ(f, 2− s) or Λ(f, s) = −Λ(f, 2− s). In the latter case
L(f, 1) necessarily vanishes. In the former case Theorem 1 of [69] attaches a
skew-holomorphic Jacobi form ϕf ∈ P skew

2,m to f having the same eigenvalues
as f under the Hecke operators T (n) for (n,m) = 1. (Cf. [69] for the action
of Hecke operators on skew-holmorphic Jacobi forms.) Here P skew

2,m denotes
the subspace of Sskew2,m spanned by cuspidal Hecke eigenforms which are not of
the trivial type: say ϕ ∈ Sskew2,m is of the trivial type if the Fourier coefficients
Cϕ(Δ, r) are non-vanishing only when Δ is a perfect square. Cusp forms of
the trivial type are orthogonal to P skew

2,m with respect to the Petersson inner
product (cf. the proof of Theorem 3 in [69]) and σ(m) is a cusp form of the
trivial type, so we have λφ(ϕf ) = 0 by virtue of (2.44) and hence Cϕf

(1, 1) =
0 according to the previous paragraph. The proposition now follows by tak-
ing (Δ, r) = (1, 1) in the formula at the bottom of p. 503 of [68]. �

Applying Theorem 2.6 we see, for example, that there are no non-zero
extremal Jacobi forms of index 10, for it is known that L(f, 1) �= 0 for f =
η(τ)2η(11τ)2 ∈ S2(11). (Cf. [68, p. 504] where the corresponding Jacobi form
ϕf is computed explicitly.)
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Duke showed [70] that there is a constant C such that at least Cm/ log2m
newforms f ∈ S2(m) satisfy L(f, 1) �= 0 when m is a sufficiently large prime,
and Ellenberg proved an effective version of this result [42] that is valid also
for composite m. We will apply the formulas of Ellenberg momentarily in
order to deduce an upper bound on the m for which Jext0,m−1 �= {0}, but since
these formulas give better results for values of m with fewer divisors we first
show that Jext0,m−1 must vanish whenever m is divisible by more than one
prime, and whenever m = pν is a prime power with ν > 2.

Proposition 2.7. If m is divisible by more than one prime
then Jext0,m−1 = {0}.

Proof. Suppose that m = pνd with p prime, ν > 0, d > 1 and (p, d) = 1.
With notation as in the proof of Theorem 2.6 we suppose φ ∈ Jext0,m−1 is non-
zero and consider the linear functional λφ : Sskew2,m → C. The Atkin–Lehner
involution Wp∞ (cf. [45, Section 4.4]) acts on Sskew2,m in such a way that

(Wp∞ϕ)(τ, z) =
∑

r mod 2m

gr∗(τ)θ(m)
r (τ, z),(2.46)

when ϕ =
∑

r mod 2m grθ
(m)
r is the theta-decomposition of ϕ ∈ Sskew2,m and

where the map r �→ r∗ is defined so that r∗ is the unique solution (mod
2m) to r∗ ≡ −r (mod 2pν) and r∗ ≡ r (mod 2d).

By the definition of λφ we have λφ(ϕ) = {ϕ,ψF } = χ
∑

r〈gr, S
(m)
r 〉 with

ϕ as above since the shadow of ψF is χσ(m) = χ
∑

r S
(m)
r θ

(m)
r . Taking ϕ =

Wp∞σ
(m) we see that λφ(Wp∞σ

(m)) = χ
∑

r〈S(m)
r∗ , S

(m)
r 〉 is not zero according

to the computation

〈S(m)
r∗ , S(m)

r 〉 = 1
26πm3/2

(
δr∗,r (mod 2m) − δr∗,−r (mod 2m)

)
(2.47)

which can be obtained using the Rankin–Selberg formula. (Cf., e.g., (3.15) of
[45]. A very similar computation is carried out in Proposition 10.2 of [45].)
On the other hand, for ϕ =Wp∞σ

(m) we have Cϕ(1, 1) = 0 since r∗ �≡ ±1
(mod 2m) for r ≡ ±1 (mod 2m), and S

(m)
r = O(q2/4m) for r �≡ ±1

(mod 2m). So λφ(Wp∞σ
(m)) = 0 in light of (2.45). This contradiction proves

the claim. �

Proposition 2.8. If m is a prime power m = pν and ν > 2 then
Jext0,m−1 = {0}.
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Proof. The proof is very similar to that of Proposition 2.7, computing λφ(ϕ)
two ways using (2.44) and (2.45), but taking now ϕ(τ, z) = σ(p)(τ, pμz) or
ϕ(τ, z) = σ(p

2)(τ, pμz) according as ν = 2μ+ 1 or ν = 2μ+ 2 with μ > 0.
The transformation ϕ(τ, z) �→ ϕ(τ, tz) maps Jacobi forms of index m to
Jacobi forms of index t2m, and is one of the Hecke-like operators of [45,
Section 4.4]. We leave the remaining details — the expression of ϕ in terms
of S(m)

r and θ(m)
r , and an application of (2.47) — to the reader. �

We require one more result in advance of the proof of Theorem 2.2.

Lemma 2.9. If m = p2 for some prime p and there exists a newform f ∈
S2(p) with L(f, 1) �= 0 then Jext0,m−1 = {0}.

Proof. Letm, p and f ∈ S2(p) be as in the statement of the lemma. Then, as
in the proof of Theorem 2.6, there exists a uniquely determined ϕf ∈ P skew

2,p

with the same Hecke eigenvalues as f according to the results of [68, 69],
and since L(f, 1) �= 0 we have Cϕf

(1, 1) �= 0. Now set ϕ′f = ϕf |Vp where Vp

is the Hecke-like operator (cf. [45, (4.37)]) that maps Jacobi forms of index
m to forms of index pm, and whose action is given explicitly by

Cϕ|Vp
(Δ, r) =

∑
d|
(
Δ−r2

4p2 ,r,p

) dCϕ

(
Δ
d2
,
r

d

)
(2.48)

in our special case that ϕ = ϕf ∈ J skew2,p when ϕ =
∑
Cϕ(Δ, r)q̄Δ/4pqr2/4pyr

is the Fourier expansion of ϕ.
To prove that Jext0,m−1 = {0} suppose that φ is a non-zero extremal form

of index m− 1 = p2 − 1 and consider the functional λφ : Sskew2,p2 → C con-
structed in the proof of Theorem 2.6. Since Cϕf

(1, 1) �= 0 we have Cϕ′f (1, 1) �=
0 according to (2.48). So λφ(ϕ′f ) �= 0 thanks to (2.45) and Lemma 2.4. On the
other hand, the Hecke-like operator Vp commutes with all Hecke operators
T (n) (with, in our case, (n, p) = 1) and so restricts to a map P skew

2,p → P skew
2,p2 .

Thus ϕ′f is a Hecke-eigenform in P skew
2,p2 and we have λφ(ϕ′f ) = 0 by virtue

of (2.44) and the fact that P skew
2,p2 is orthogonal to the cusp form σ(p

2) of the
trivial type. This contradiction completes the proof. �

Proof of Theorem 2.2. We have that dimJext0,m−1 ≤ 1 for all m according to
Proposition 2.5, and dimJext0,m−1 = 0 unless m = p or m = p2 for some prime
p by virtue of Propositions 2.7 and 2.8. Applying Theorem 1 of [42] with
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σ = 13/25π, for example, shows that some f ∈ Snew2 (p) satisfies L(f, 1) �= 0
whenever p is a prime greater than or equal to 3001. The tables of arithmetic
data on newforms posted at [71] give the non-vanishing or otherwise for every
newform of level up to 5134, and inspecting the entries for the 430 prime
levels less than 3000 we see that S2(p) has a newform f with L(f, 1) �= 0 for
every prime p so long as S2(p) has a newform. We have Snew2 (p) = S2(p) =
{0} just when p ∈ {2, 3, 5, 7, 13}, so we conclude from Theorem 2.6 that
Jext0,m−1 = {0} for every prime m = p such that p− 1 does not divide 12.
Also, we conclude from Lemma 2.9 that Jext0,m−1 = {0} whenever m = p2 is
the square of a prime and p− 1 does not divide 12. We inspect the tables
of [71] again to find newforms with non-vanishing critical central value at
levels 72 = 49 and 132 = 169, and apply Theorem 2.6 to conclude Jext0,48 =
Jext0,168 = {0}.

So we now require to determine the dimension of Jext0,m−1 for m ∈ {2, 3, 4,
5, 7, 9, 13, 25}, which are the primes and squares of primes m for which
S2(m) = {0}. For this we utilize the basis {ϕ(m)

n } for J0,∗ determined by
Gritsenko [43], and discussed, briefly, after the statement of Theorem 2.2
above. In more detail, the ring J0,∗ is finitely generated, by ϕ

(2)
1 , ϕ(3)1 and

ϕ
(4)
1 , where

ϕ
(2)
1 = 4

(
f22 + f23 + f24

)
,

ϕ
(3)
1 = 2

(
f22 f

2
3 + f23 f

2
4 + f24 f

2
2

)
,

ϕ
(4)
1 = 4f22 f

2
3 f

2
4 ,

(2.49)

and fi(τ, z) = θi(τ, z)/θi(τ, 0) for i ∈ {2, 3, 4} (cf. A.2). If we work over Z

then we must include ϕ(5)1

(2.50) ϕ
(5)
1 =

1
4

(
ϕ
(4)
1 ϕ

(2)
1 − (ϕ(3)1 )2

)

as a generator also, so that JZ

0,∗ = Z[ϕ(2)1 , ϕ
(3)
1 , ϕ

(4)
1 , ϕ

(5)
1 ]. Following [43] we

define

ϕ
(7)
1 = ϕ

(3)
1 ϕ

(5)
1 − (ϕ(4)1 )2,

ϕ
(9)
1 = ϕ

(3)
1 ϕ

(7)
1 − (ϕ(5)1 )2,

ϕ
(13)
1 = ϕ

(5)
1 ϕ

(9)
1 − 2(ϕ(7)1 )2,

(2.51)
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and define ϕ(m)
1 for the remaining positive integers m according to the fol-

lowing recursive procedure. For (12,m− 1) = 1 and m > 5 we set

ϕ
(m)
1 = (12,m− 5)ϕ(m−4)1 ϕ

(5)
1 + (12,m− 3)ϕ(m−2)1 ϕ

(3)
1(2.52)

− 2(12,m− 4)ϕ(m−3)1 ϕ
(4)
1 .

For (12,m− 1) = 2 and m > 10 we set

ϕ
(m)
1 =

1
2
(
(12,m− 5)ϕ(m−4)1 ϕ

(5)
1 + (12,m− 3)ϕ(m−2)1 ϕ

(3)
1(2.53)

− 2(12,m− 4)ϕ(m−3)1 ϕ
(4)
1

)
.

For (12,m− 1) = 3 and m > 9 we set

ϕ
(m)
1 =

2
3
(12,m− 4)ϕ(m−3)1 ϕ

(4)
1 +

1
3
(12,m− 7)ϕ(m−6)1 ϕ

(7)
1(2.54)

− (12,m− 5)ϕ(m−4)1 ϕ
(5)
1 .

For (12,m− 1) = 4 and m > 16 we set

ϕ
(m)
1 =

1
4
(
(12,m− 13)ϕ(m−12)1 ϕ

(13)
1 + (12,m− 5)ϕ(m−4)1 ϕ

(5)
1(2.55)

− (12,m− 9)ϕ(m−8)1 ϕ
(9)
1

)
.

For (12,m− 1) = 6 and m > 18 we set

ϕ
(m)
1 =

1
3
(12,m− 4)ϕ(m−3)1 ϕ

(4)
1 +

1
6
(12,m− 7)ϕ(m−6)1 ϕ

(7)
1(2.56)

− 1
2
(12,m− 5)ϕ(m−4)1 ϕ

(5)
1 .

Finally, for (12,m− 1) = 12 and m > 24 we set1

ϕ
(m)
1 =

1
6
(12,m− 4)ϕ(m−3)1 ϕ

(4)
1 − 1

4
(12,m− 5)ϕ(m−4)1 ϕ

(5)
1(2.57)

+
1
12
(12,m− 7)ϕ(m−6)1 ϕ

(7)
1 .

1Our expression gives one possible correction for a small error in the last line on
p. 10 of [43].
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The ϕ(m)
2 are defined by setting

ϕ
(3)
2 = (ϕ(2)1 )2 − 24ϕ(3)1 ,

ϕ
(4)
2 = ϕ

(2)
1 ϕ

(3)
1 − 18ϕ(4)1 ,

ϕ
(5)
2 = ϕ

(2)
1 ϕ

(4)
1 − 16ϕ(5)1

(2.58)

and

ϕ
(m)
2 = (12,m− 4)ϕ(m−3)1 ϕ

(4)
1 − (12,m− 5)ϕ(m−4)1 ϕ

(5)
1 − (12,m− 1)ϕ(m)

1

(2.59)

for m > 5, and the remaining ϕ(m)
n for 2 ≤ m ≤ 25 are given by

ϕ(m)
n = ϕ

(m−3)
n−1 ϕ

(4)
1 ,

ϕ
(m)
m−2 = (ϕ(2)1 )m−3ϕ(3)1 ,

ϕ
(m)
m−1 = (ϕ(2)1 )m−1,

(2.60)

where the first equation of (2.60) holds for 3 ≤ n ≤ m− 3.
Next we calculate that ϕ(m)

1 defines a non-zero element of Jext0,m−1 when
m− 1 divides 12, so dimJext0,m−1 = 1 for m ∈ {2, 3, 4, 5, 7, 13}, and it remains
to show that Jext0,m−1 = {0} for m ∈ {9, 25}. To do this we first observe that
a weight zero form with vanishing Fourier coefficients of q0yk for |k| > 1
necessarily has the form

(2.61) c0,1 ϕ
(m)
1 +

�m−1
6
�∑

i=1

m−6i−1∑
j=1

ci,j ζ
iϕ
(m−6i)
j

for some ci,j ∈ C. One has to show that the only such linear combina-
tion satisfying the extremal condition (2.37) necessarily has ci,j = 0 for all
i, j (including (i, j) = (0, 1)). An explicit inspection of the coefficients of
terms qnyr with r2 − 4mn ≥ 0 for n = 1, 2, 3, 4 is sufficient to establish that
dimJext0,m−1 = 0 when m = 9. For m = 25 we notice that there are at least as
many possible polar terms in the above sum as the number of parameters
ci,j . Indeed, by explicitly solving the system of linear equations we find that
there is no accidental cancellation and the only solution to (2.61) that also
satisfies the extremal condition (2.37) is zero. In this way we conclude that
there is no solution to (2.37) in J0,m−1 for m ∈ {9, 25}. This completes the
proof of the Theorem. �
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The quantity Z(2)(τ, z) = 2ϕ(2)1 (τ, z) is equal to the elliptic genus of
a(ny) K3 surface and the factor of two relating Z(2) to ϕ(2)1 is required in
the K3/M24 connection in order for the mock modular form H(2) = (H(2)

1 )
derived from Z(2) to have coefficients compatible with an interpretation as
dimensions of representations of M24 for which the corresponding McKay–
Thompson series H(2)

g have integer Fourier coefficients. Inspired by this we
define the Umbral Jacobi forms

Z(�)(τ, z) = 2ϕ(�)1 (τ, z)(2.62)

for � ∈ Λ = {2, 3, 4, 5, 7, 13}. We also set χ(�) to be the constant Z(�)(τ, 0)
and find that χ(�) = 24/(�− 1) for all � ∈ Λ.

Remark 2.10. The identity (m− 1)χ = 12b for φ = a+ b(y + y−1) +O(q)
established in Lemma 2.4 shows that there is no such Jacobi form with b = 1
and a an integer unless m− 1 divides 12. In particular, there is no extremal
Jacobi form φ ∈ Jext0,m−1 such that am−1

4
, 1
2
= 1 and am−1

4
,0 is an integer unless

m− 1 divides 12. Inspecting the Z(�) we conclude that the divisors of 12 are
exactly the values of m− 1 for which such a Jacobi form exists.

Following the discussion in Sections 2.3 and 2.4, each of the Umbral
Jacobi forms Z(�) leads to an (�− 1)-vector-valued mock modular form
H(�) =

(
H
(�)
r

)
through the decomposition of Z(�) into N = 4 characters, or

equivalently through the decomposition of ψ(�) = Ψ1,1Z
(�) into its polar and

finite parts and the theta-expansion of the finite part,

ψ(�),F (τ, z) =
�−1∑
r=1

H(�)
r (τ)θ̂(�)r (τ, z).(2.63)

As we have explained above, the extremal condition translates into a natural
condition on the vector-valued mock modular forms H(�): The requirement
that Z(�) takes the form (2.37) is equivalent to requiring that the only polar
term in H(�) =

(
H
(�)
r

)
is −2q− 1

4� in the component H(�)
1 and all the other

components H(�)
r for r �= 1 vanish as τ → i∞, so that

(2.64) H(�)
r (τ) = −2δr,1q− 1

4� +O(q
1
4� )

for 0 < r < �.
Some low-order terms in the Fourier expansions of the component func-

tions H(�)
r obtained from the extremal forms Z(�) for � ∈ {2, 3, 4} are given
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as follows:

H
(2)
1 (τ) = 2q−1/8

(−1 + 45q + 231q2 + 770q3 + 2277q4 + 5796q5 + · · · ) ,(2.65)

H
(3)
1 (τ) = 2q−1/12

(−1 + 16q + 55q2 + 144q3 + 330q4 + 704q5 + · · · ) ,
H
(3)
2 (τ) = 2q2/3

(
10 + 44q + 110q2 + 280q3 + 572q4 + 1200q5 + · · · ) ,

(2.66)

H
(4)
1 (τ) = 2q−1/16

(−1 + 7q + 21q2 + 43q3 + 94q4 + 168q5 + · · · ) ,
H
(4)
2 (τ) = 2q3/4

(
8 + 24q + 56q2 + 112q3 + 216q4 + 392q5 + · · · ) ,

H
(4)
3 (τ) = 2q7/16

(
3 + 14q + 28q2 + 69q3 + 119q4 + 239q5 + · · · ) .

(2.67)

As a prelude to the next section we note that the coefficients 16, 55 and
144 appearing in H(3)

1 are dimensions of irreducible representations of the
Mathieu group M12 and that χ(3) = 12 is the dimension of the defining per-
mutation representation of M12 just as χ(2) = 24 is the dimension of the
defining permutation representation of M24. We further note that the low-
lying coefficients appearing in H

(3)
2 are dimensions of faithful irreducible

representations of a group 2.M12. Here the notation 2.G denotes a group
with a Z/2Z normal subgroup such that 2.G/(Z/2Z) = G. Note also that
2.M12 has a faithful (and irreducible) 12-dimensional signed permutation
representation (cf. Section 3.2). The pattern that the coefficients of H(�)

r

for r odd are dimensions of representations of a group Ḡ(�) with a permu-
tation representation of dimension χ(�) and the coefficients of H(�)

r for r
even are dimensions of faithful representations of a group G(�) = 2.Ḡ(�) with
a signed permutation representation of degree χ(�) persists for all � ∈ Λ;
detailed descriptions of the (unsigned) permutation and signed permutation
representations of Ḡ(�) and G(�) are given in Sections 3.3 and 3.4.

The leading terms in the q-expansions of the mock modular forms H(�)
1

that correspond via the procedure described earlier to the Jacobi forms Z(�)

for � ∈ {5, 7, 13} are

H
(5)
1 (τ) = 2q−1/20

(−1 + 4q + 9q2 + 20q3 + 35q4 + 60q5 + · · · ) ,
H
(7)
1 (τ) = 2q−1/28

(−1 + 2q + 3q2 + 5q3 + 10q4 + 15q5 + 21q6 + · · · ) ,
H
(13)
1 (τ) = 2q−1/52

(−1 + q + q2 + q4 + q5 + 2q6 + 3q7 + · · · ) .

(2.68)
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To avoid clutter we refrain from describing low order terms in the q-
expansions of H(�)

r for � ∈ {5, 7, 13} and r > 1 here, but these can be read
off from the 1A entries in Tables C.8–C.10, C.12–C.16, and C.18–C.28.

We conclude this section with a comparison of our condition (2.37) with
other notions of extremal in the literature. A notion of extremal holomorphic
conformal field theory was given in [27] following earlier related work on
vertex operator superalgebras in [72]. Extremal CFT’s have central charge
c = 24k with k a positive integer and are defined in such a way that their
partition function satisfies

(2.69) Z = q−k
∞∏

n>1

1
1− qn

+O(q)
∞∏

n>0

1
1− qn

as τ → i∞ where the term O(q) is presumed to be a series in q with integer
coefficients, so that the second term O(q)

∏
n>0(1− qn)−1 in (2.69) repre-

sents an integer combination of irreducible characters of the Virasoro alge-
bra. The first term in (2.69) is the vacuum character of the Virasoro algebra,
generated by the vacuum state, and thus any Virasoro primaries above the
vacuum are only allowed to contribute positive powers of q to the partition
function. At this time the only known example of an extremal CFT is that
determined by the monster VOA V � whose partition function has k = 1 in
(2.69) so this notion is, at the very least, good at singling out extraordinary
structure.

If φ is a weak Jacobi form of weight 0 and index m− 1 that is extremal
in our sense then we have

(2.70) φ = am−1
4

,0ch
(m)
m−1

4
,0
+ am−1

4
, 1
2
ch(m)

m−1
4

, 1
2

+
∑

0<r<m

O(q)
θ̂
(m)
r

Ψ1,1

as τ → i∞ for some am−1
4

,0 and am−1
4

, 1
2
, and the third term in (2.70) is a

natural counterpart to the second term in (2.69) since the massive N = 4
characters (in the Ramond sector with (−1)F insertion) are all of the form
qαθ̂

(m)
r /Ψ1,1 for some α and some r. It is harder to argue that the massless

N = 4 contributions in (2.70) are in direct analogy with the first term in
(2.69) since the vacuum state in a superconformal field theory with N = 4
supersymmetry will generally (i.e., when the index is greater than 1) give
rise to non-zero massless N = 4 character contributions with spin greater
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than 1/2. We remark that the stronger condition

(2.71) φ = am−1
4

,0ch
(m)
m−1

4
,0
+

∑
0<r<m

O(q)
θ̂
(m)
r

Ψ1,1

has no solutions according to Lemma 2.4. According to Theorem 2.2 the six
Jacobi forms Z(�) of Umbral moonshine are the unique solutions to (2.70)
having am−1

4
, 1
2
= −2.

A notion of extremal conformal field theory with N = (2, 2) supercon-
formal symmetry was introduced in [73] and the Ramond sector partition
function of such an object defines a weak Jacobi form of weight 0 and some
index but will generally not coincide with a Jacobi form that is extremal in
our sense since, as has been mentioned, our functions are free from contribu-
tions arising from states in the Ramond sector that are related by spectral
flow to the vacuum state in the Neveu–Schwarz sector, except in the case of
index 1.

Despite the absence of a notion of extremal conformal field theory under-
lying our extremal Jacobi forms it is interesting to reflect on the fact that the
one known example of an extremal CFT is that (at k = 1) determined by the
moonshine VOA of [12] with partition function Z(τ) = J(τ). This function
encodes dimensions of irreducible representations of the monster and, as we
have seen to some extent above and will see in more detail below, the quan-
tities which play the same role with respect to the groups G(�) of Umbral
moonshine are precisely the mock modular forms H(�)(τ) =

(
H
(�)
r (τ)

)
which

arise naturally from the extremal Jacobi forms Z(�)(τ, z) according to the
procedure of Section 2.3. One of the main motivations for the notion of
extremal CFT introduced in [27] was a possible connection to pure (chiral)
gravity theory in 3-dimensional Anti-de Sitter space via the AdS/CFT corre-
spondence and it is interesting to compare this with the important rôle that
Rademacher sum constructions play in monstrous moonshine [25], Umbral
moonshine at � = 2 [24], and in Umbral moonshine more generally (cf. Sec-
tions 1 and 5.2). We refer to [28, 29, 74–85] for further discussions on the
AdS/CFT correspondence and extremal CFT’s.

2.6. Siegel modular forms

Siegel modular forms are automorphic forms which generalize modular forms
by replacing the modular group SL2(Z) by the genus n Siegel modular group
Sp2n(Z) and the upper half-plane H by the genus n Siegel upper half-plane
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Hn. Here we restrict ourselves to the case n = 2. Define

(2.72) J =
(
0 −I2
I2 0

)

with I2 the unit 2× 2 matrix and let Sp4(Z) be the group of 4× 4 matrices
γ ∈M4(Z) satisfying γJγt = J . If we write γ in terms of 2× 2 matrices with
integer entries A,B,C,D,

(2.73) γ =
(
A B
C D

)

then the condition γJγt = J becomes

(2.74) ABt = BAt, CDt = DCt, ADt −BCt = 1.

Just as SL2(Z) has a natural action on H, the (genus 2) Siegel modular
group Sp4(Z) has a natural action on the (genus 2) Siegel upper half-plane,
H2, defined as the set of 2× 2 complex, symmetric matrices

(2.75) Ω =
(
τ z
z σ

)

obeying

(2.76) Im(τ) > 0, Im(σ) > 0, det(Im(Ω)) > 0.

The action of γ ∈ Sp4(Z) is given by

(2.77) γΩ = (AΩ+B)(CΩ+D)−1

when γ is given by (2.73). A Siegel modular form of weight k for Γ ⊂ Sp4(Z)
is a holomorphic function F : H2 → C obeying the transformation law

(2.78) F ((AΩ+B)(CΩ+D)−1) = det(CΩ+D)kF (Ω)

for γ ∈ Γ. We can write a Fourier–Jacobi decomposition of F (Ω) in terms of
p = e(σ) as

(2.79) F (Ω) =
∞∑

m=0

ϕm(τ, z)pm

and the transformation law for F (Ω) can be used to show that the Fourier–
Jacobi coefficient ϕm(τ, z) is a Jacobi form of weight k and index m. (This
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is one of the main motivations for the notion of Jacobi form; see [86] for an
early analysis with applications to affine Lie algebras.) We can thus write

(2.80) ϕm(τ, z) =
∑

n,r∈Z

4mn−r2≥0

c(m,n, r)qnyr

and then

(2.81) F (Ω) =
∑

m,n,r

c(m,n, r)pmqnyr.

A special class of Siegel modular forms, called Spezialschar by Maass,
arise by taking the Jacobi–Fourier coefficients ϕm to be given by ϕm = ϕ1|Vm

where ϕ1 ∈ Jk,1 and Vm is the Hecke-like operator defined so that if ϕ1 =∑
n,r c(n, r)q

nyr then

(2.82) ϕ1|Vm =
∑
n,r

⎛
⎝ ∑

j|(n,r,m)

jk−1c
(
nm

j2
,
r

j

)⎞
⎠ qnyr.

It develops that the function

(2.83) F (Ω) =
∞∑

m=0

(ϕ1|Vm)(τ, z)pm

is a weight k Siegel modular form known as the Saito–Kurokawa or additive
lift of the weight k and index 1 Jacobi form ϕ1. An important example arises
by taking the additive lift of the Jacobi form

(2.84) ϕ10,1(τ, z) = −η(τ)18θ1(τ, z)2

(cf. Appendix A) which produces the Igusa cusp form

(2.85) Φ10(Ω) =
∞∑

m=1

(ϕ10,1|Vm)(τ, z)pm.

The Igusa cusp form also admits a product representation obtained from
the Borcherds or exponential lift of the Umbral Jacobi form Z(2) = 2ϕ2,1
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((2.49)) which is

(2.86) Φ10(Ω) = pqy
∏

m,n,r∈Z

(m,n,r)>0

(1− pmqnyr)c
(2)(4mn−r2),

where the coefficients c(2) are defined by the Fourier expansion of Z(2)

(2.87) Z(2)(τ, z) =
∑
n,r

c(2)(4n− r2)qnyr

and where the condition (m,n, r) > 0 is that either m > 0 or m = 0 and
n > 0 or m = n = 0 and r < 0.

According to Theorem 2.1 in [87] the Umbral Jacobi form Z(�) defines
a Siegel modular form Φ(�) on the paramodular group Γ+�−1 < Sp4(Q) via
the Borcherds lift for each � ∈ Λ. (We refer the reader to [87] for details.)
For small values of � these Siegel forms Φ(�) have appeared in the literature
(in particular in the work [87, 88] of Gritsenko–Nikulin). Taking � ∈ Λ and
defining c(�)(n, r) so that

(2.88) Z(�)(τ, z) =
∑
n,r

c(�)(n, r)qnyr,

we have the exponential lift Φ(�) of weight k = c(�)(0, 0)/2 for Γ+�−1 given by

(2.89) Φ(�)(Ω) = pA(�)qB(�)yC(�)
∏

(m,n,r)>0

(1− pmqnyr)c
(�)(mn,r),

where

A(�) =
1
24

∑
r

c(�)(0, r), B(�) =
1
2

∑
r>0

rc(�)(0, r),(2.90)

C(�) =
1
4

∑
r

r2c(�)(0, r).

Note that for � ∈ {2, 3, 4, 5} we have Φ(�) = (Δk)2 in the notation of [87]
where k is given by k = (7− �)/(�− 1). These four functions Δk appear
as denominator functions for Lorentzian Kac–Moody Lie (super)algebras in
[87, Section 5.1] (see also [89]) and in connection with mirror symmetry for
K3 surfaces in [87, Section 5.2]. We refer the reader to Section 5.5 for more
discussion on this.
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3. Finite groups

In this section we introduce the Umbral groups G(�) for � ∈ Λ = {2, 3, 4, 5,
7, 13}. It will develop that the representation theory of G(�) is intimately
related to the vector-valued mock modular form H(�) of Section 2.5.

We specify the abstract isomorphism types of the groups explicitly in
Section 3.1. Each group admits a quotient Ḡ(�) which is naturally realized as
a permutation group on 24/(�− 1) points. We construct these permutations
explicitly in Section 3.3. In order to construct the G(�) we use signed per-
mutations — a notion we discuss in Section 3.2 — and explicit generators
for the G(�) are finally obtained in Section 3.4. The signed permutation con-
structions are then used (again in Section 3.4) to define characters for G(�)

— the twisted Euler characters — which turn out to encode the automorphy
of the mock modular forms H(�)

g that are be described in detail in Section 4.
In Sections 3.5 to 3.6 we describe curious connections between the G(�) and
certain Dynkin diagrams.

3.1. Specification

For � ∈ Λ let abstract groups G(�) and Ḡ(�) be as specified in Table 1. We
will now explain the notation used therein (moving from right to left).

We write n as a shorthand for Z/nZ (in the second and third rows of
Table 1) and Symn denotes the symmetric group on n points. We write
Altn for the alternating group on n points, which is the subgroup of Symn

consisting of all even permutations.
We say that G is a double cover of a group H and write G � 2.H (cf.

[90, Section 5.2]) in case G has a subgroup Z of order 2 that is normal
(and therefore central, being of order two) with the property that G/Z is
isomorphic to H. We say that G is a non-trivial double cover of H if it is
a double cover that is not isomorphic to the direct product 2×H. (We do
not usually write G � 2.H unless G is a non-trivial cover of H.) The cyclic
group of order 4 is a non-trivial double cover of the group of order 2.

Table 1: The Umbral Groups.

� 2 3 4 5 7 13

G(�) M24 2.M12 2.AGL3(2) GL2(5)/2 SL2(3) 4
Ḡ(�) M24 M12 AGL3(2) PGL2(5) L2(3) 2
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For n a positive integer and q a prime power we write GLn(q) for the
general linear group of invertible n× nmatrices with coefficients in the finite
field Fq with q elements, and we write SLn(q) for the subgroup consisting of
matrices with determinant 1. We write PGLn(q) for the quotient of GLn(q)
by its centre but we adopt the ATLAS convention (cf. [90, Section 2.1]) of
writing Ln(q) as a shorthand for PSLn(q) — being the quotient of SLn(q)
by its centre — since this group is typically simple. In the case that q = 3
and n is even the centre of SLn(q) has order 2 and SLn(q) � 2.Ln(q) is a
non-trivial double cover of Ln(q).

In case q = 5 the centre of GLn(q) is a cyclic group of order 4 and
so GLn(5) has a unique central subgroup of order 2. We write GLn(5)/2
for the quotient of GLn(5) by this subgroup. In case n = 2 the exceptional
isomorphism PGL2(5) � Sym5 tells us then that GL2(5)/2 is a double cover
of the symmetric group Sym5. For n ≥ 4 there are two isomorphism classes
of non-trivial double covers of Symn with the property that the central
subgroup of order 2 is contained in the commutator subgroup of the double
cover — these are the so-called Schur double covers (cf. [90, Section 4.1,
Section 6.7]). The group GL2(5)/2 is curious in that its only subgroup of
index 2 is a direct product 2×Alt5 and its commutator subgroup is a copy
of Alt5, so it is a non-trivial double cover of Sym5 that is not isomorphic to
either of the Schur double covers.

The symbols AGLn(q) denote the affine linear group generated by the
natural action of GLn(q) on Fn

q and the translations x �→ x+ v for v ∈ Fn
q .

The group AGLn(q) may be realized as a subgroup of GLn+1(q) so in par-
ticular AGL3(2) embeds in GL4(2). The group GL4(2) is unusual amongst
the GLn(2) in that it admits a non-trivial double cover 2.GL4(2), which is
a manifestation of the exceptional isomorphism GL4(2) � Alt8. There are
two conjugacy classes of subgroups of 2.Alt8 of order 2688, which is twice
the order of AGL3(2). The groups in both classes are isomorphic to a par-
ticular non-trivial double cover of AGL3(2) and this is the group we denote
2.AGL3(2) in Table 1.

The symbols M24 and M12 denote the sporadic simple Mathieu groups
attached to the binary and ternary Golay codes, respectively. The groupM24

is the automorphism group of the binary Golay code, which is the unique
self-dual linear binary code of length 24 with minimum weight 8 (cf. [91]).
The ternary Golay code is the unique self-dual linear ternary code of length
12 with minimum weight 6 (cf. [91]) and its automorphism group is a non-
trivial double cover ofM12. There is a unique such group up to isomorphism
(cf. [90]) which we denote by 2.M12 in Table 1.
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Observe that for � > 2 the group G(�) has a unique central subgroup of
order 2. Then Ḡ(�) may be described for � > 2 by Ḡ(�) = G(�)/2 and G(�) is a
non-trivial double cover of Ḡ(�) for each � > 2. It will develop in Section 3.2
that Ḡ(�) is a permutation group of degree n = 24/(�− 1) for each � ∈ Λ.
Since G(2) �M24 has trivial centre and is already a permutation group of
degree 24 = 24/(2− 1) we set Ḡ(2) = G(2).

Generalizing the notation used above for double covers we write G �
N.H to indicate that G fits into a short exact sequence

1→ N → G→ H → 1(3.1)

for some groups N and H. We write G � N:H for a group of the form N.H
for which the sequence (3.1) splits (i.e., in case G is a semi-direct product
N �H). Then we have AGL3(2) � 23:L2(7) according to the exceptional
isomorphism L3(2) � L2(7) where 23 denotes an elementary abelian group
of order 8.

3.2. Signed permutations

The group of signed permutations of degree n or hyperoctahedral group of
degree n, denoted here by Octn, is a semi-direct product 2n:Symn where 2n

denotes an elementary abelian group of order 2n. We may realize it explic-
itly as the subgroup of invertible linear transformations of an n-dimensional
vector space generated by sign changes and permutations in a chosen basis.
(This recovers 2n:Symn so long as the vector space is defined over a field of
characteristic other than 2. In case the characteristic is 2 the sign changes are
trivial and we recover Symn.) When we write Octn we usually have in mind
the data of fixed subgroups N � 2n and H � Symn such that N is normal
and Octn/N � H, such as are given by sign changes and coordinate per-
mutations, respectively, when we realize Octn explicitly as described above.
In what follows, we assume such data to be chosen for each n and write
Octn → Symn for the composition Octn → Octn/N � Symn.

We will show in Section 3.4 that each G(�) for � ∈ Λ admits a realization
as a subgroup of Octn for n = 24/(�− 1) such that the image of G(�) under
the map Octn → Symn is Ḡ(�).

In Section 3.4 we use the following modification of the usual cycle nota-
tion for permutations to denote elements of Octn. Suppose Ω is a set with
n elements and V is the vector space generated over a field k by the sym-
bols {ex}x∈Ω. Whereas the juxtaposition xy occurring in a cycle (...xy...)
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indicates a coordinate permutation mapping ex to ey, we write xȳ to indi-
cate that a sign change is applied so that ex is mapped to −ey. Then, for
example, if Ω = {∞, 0, 1, 2, 3, 4} we write σ = (∞̄23̄4)(0̄) for the element of
GL(V ) determined by

σ : e∞ �→ e2, e2 �→ −e3, e3 �→ e4, e4 �→ −e∞, e0 �→ −e0.(3.2)

(We think of the bar over the 3 in (. . . 23̄4 . . .) as “occurring between” the
2 and 3.) We call the symbol 1 a fixed point of σ and we call 0 an anti-fixed
point.

We define the signed permutation character of Octn by setting

χ : Octn → Z

g �→ χg = hg,+ − hg,−,
(3.3)

where hg,+ is the number of fixed points of g and hg,− is the number of
anti-fixed points. Then χ is just the character of the ordinary representation
of Octn furnished by V that obtains when the field k is taken to be C.
Writing χ̄ for the composition of Octn → Symn with the usual permutation
character of Symn we have

χ̄ : Octn → Z

g �→ χ̄g = hg,+ + hg,−
(3.4)

and we call χ̄ the unsigned permutation character of Octn. Then the signed
and unsigned permutation characters χ and χ̄ together encode the number
of fixed and anti-fixed points for each g ∈ Octn.

Let us take k = C in the realization of Octn as a subgroup of GL(V ).
Then to each element g ∈ Octn we assign a signed permutation Frame shape
Πg which encodes the eigenvalues of the corresponding (necessarily diago-
nalizable) linear transformation of V in the following way. An expression

Πg =
∏
k≥1

kmg(k)(3.5)

with mg(k) ∈ Z and mg(k) = 0 for all but finitely many k indicates that g
defines a linear transformation with mg(k) eigenvalues equal to e(j/k) for
each 0 ≤ j < k in the case that all themg(k) are non-negative. If somemg(k)
are negative then we find the number of eigenvalues equal to ξ say by look-
ing at how many copies of ξ are present in Π+g =

∏
k≥1, mg(k)>0

kmg(k) and
subtracting the number of copies indicated by Π−g =

∏
k≥1, mg(k)<0

k−mg(k).
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Observe that the signed permutation character of Octn is recovered from the
signed permutation Frame shapes via χg = mg(1). Also, the Frame shape is
invariant under conjugacy.

The map Octn → Symn (which may be realized by “ignoring” sign
changes) furnishes a (non-faithful) permutation representation of Octn on
n points; we call it the unsigned permutation representation of Octn. We
write g �→ Π̄g for the corresponding cycle shapes and call them the unsigned
permutation Frame shapes attached to Octn. Observe that the unsigned
permutation character of Octn is recovered from the unsigned permutation
Frame shapes via χ̄g = m̄g(1) when Π̄g =

∏
k≥1 k

m̄g(k).
Observe that we obtain a faithful permutation representation Octn →

Sym2n by regarding g ∈ Octn as a permutation of the 2n points {±ex}x∈Ω.
We denote the corresponding cycle shapes Π̃g and call them the total permu-
tation Frame shapes attached to Octn. Then the total permutation Frame
shapes can be recovered from the signed and unsigned permutation Frame
shapes for if we define a formal product on Frame shapes by setting

ΠΠ′ =
∏
k≥1

km(k)+m′(k)(3.6)

in case Π =
∏

k≥1 k
m(k) and Π′ =

∏
k≥1 k

m′(k) then we have Π̃g = ΠgΠ̄g for
all g ∈ Octn.

Suppose that G is a subgroup of Octn with the property that the inter-
section G ∩N has order 2. (This will be the case for G = G(�) when � ∈ Λ
and � �= 2.) Let z be the unique and necessarily central involution in G ∩N
and write Ḡ for the image of G under the map Octn → Symn. Then the con-
jugacy class of zg depends only on the conjugacy class of g and we obtain
an involutory map [g] �→ [zg] on the conjugacy classes of G. We call [g] and
[zg] paired conjugacy classes and we say that [g] is self-paired if [g] = [zg].
Observe that z must act as −1 times the identity in any faithful irreducible
representation of G so if g �→ χ(g) is the character of such a representation
then χ(zg) = −χ(g). In particular, χ(g) = 0 if g is self-paired.

3.3. Realization part I

In this section, we construct the groups Ḡ(�) as subgroups of Symn where
n = 24/(�− 1). This construction will be nested in the sense that each group
Ḡ(�) will be realized as a subgroup of some Ḡ(�′) for �′ − 1 a divisor of �− 1.

For � = 2 let Ω(2) be a set with 24 elements and let G ⊂ P(Ω(2)) be a
copy of the Golay code on Ω(2). Then the subgroup of the symmetric group
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SymΩ(2) of permutations of the set Ω(2) that preserves G is isomorphic to
M24. So we may set

Ḡ(2) = {σ ∈ SymΩ(2) | σ(C) ∈ G, ∀C ∈ G} .

For � = 3 the largest proper divisor of �− 1 = 2 is 1 = 2− 1. Choose a
partition of Ω(2) into 2/1 = 2 subsets of 24/2 = 12 elements such that each
12-element set belongs to G and denote it P (3) = {Ω(3),Ω(3)′}. Equivalently,
take Ω(3) to be the symmetric difference of the sets of fixed-points of elements
σ, σ′ ∈ Ḡ(2) of cycle shape 1828 such that σσ′ has order 6. (That is, Ω(3)

consists of the points that are fixed by σ or σ′ but not both. In turns out
that if the product σσ′ has order 6 then its cycle shape is 12223262 and
so the fixed-point sets of σ and σ′ have intersection of size 2 and Ω(3) and
Ω(3)

′
= Ω(2) \ Ω(3) both have 12 elements.) Then the group of permutations

of Ω(3) induced by the subgroup of Ḡ(2) that fixes this partition is a copy
of Ḡ(3) �M12. Explicitly, and to explain what we mean here by fix, if Ḡ

(2)
P (3)

denotes the subgroup of Ḡ(2) that fixes the partition P (3) in the sense that

Ḡ
(2)
P (3) =

{
σ ∈ Ḡ(2) | σ(C) = C, ∀C ∈ P (3)

}
,(3.7)

and if � : Ḡ(2)
P (3) → SymΩ(3) denotes the natural map obtained by restricting

elements of Ḡ(2)
P (3) to Ω(3),

� : Ḡ(2)
P (3) → SymΩ(3)

σ �→ σ|Ω(3) ,
(3.8)

then Ḡ(3) is the image of �. The kernel of this map is the subgroup

Ḡ
(2)
P (3),Ω(3) =

{
σ ∈ Ḡ(2)

P (3) | σ(x) = x, ∀x ∈ Ω(3)
}

(3.9)

comprised of permutations in Ḡ(2)
P (3) that fix every element of Ω(3) so we have

Ḡ(3) = �
(
Ḡ
(2)
P (3)

)
� Ḡ

(2)
P (3)/Ḡ

(2)
P (3),Ω(3) �M12.

For � = 4 the largest proper divisor of �− 1 = 3 is 1 = 2− 1. Choose
a partition of Ω(2) into 3/1 = 3 subsets of 24/3 = 8 elements that belong
to G and denote it P (4) = {Ω(4),Ω(4)′ ,Ω(4)′′}. Equivalently, choose Ω(4) and
Ω(4)

′
to be the fixed-point sets of respective elements σ and σ′ of order

2 in Ḡ(2) having cycle shapes 1828 and disjoint fixed-point sets and the
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property that σσ′ has order 3. Then the group of permutations of Ω(4)

induced by the subgroup of Ḡ(2) that fixes this partition is a copy of the
group Ḡ(4) � AGL3(2) and we have

Ḡ(4) = �
(
Ḡ
(2)
P (4)

)
� Ḡ

(2)
P (4)/Ḡ

(2)
P (4),Ω(4) � AGL3(2),

where Ḡ(2)
P (4) , the map � and the subgroup Ḡ

(2)
P (4),Ω(4) are defined according to

the natural analogues of (3.7)–(3.9), respectively.
For � = 5 the largest proper divisor of �− 1 = 4 is 2 = 3− 1. Choose a

partition P (5) = {Ω(5),Ω(5)′} of Ω(3) into 4/2 = 2 subsets of 12/2 = 6 ele-
ments such that neither of the sets in P (5) is contained in a set of size 8
in G. Equivalently, take Ω(5) to be the symmetric difference of the sets of
fixed-points of elements σ, σ′ ∈ Ḡ(3) of cycle shape 1424 such that σσ′ has
order 6. (This condition forces the fixed-point sets of σ and σ′ to have a
single point of intersection so that Ω(5) and Ω(5)

′
= Ω(3) \ Ω(5) both have 6

elements.) Then the group of permutations of Ω(5) induced by the subgroup
of Ḡ(3) that fixes this partition is a copy of Ḡ(5) � PGL2(5).

Ḡ(5) = �
(
Ḡ
(3)
P (5)

)
� Ḡ

(3)
P (5)/Ḡ

(3)
P (5),Ω(5) � PGL2(5)

For � = 7 the largest proper divisor of �− 1 = 6 is 3 = 4− 1. Choose a
partition P (7) = {Ω(7),Ω(7)′} of Ω(4) into 6/3 = 2 subsets of 8/2 = 4 elements
such that Ω(7) (and therefore also Ω(7)

′
= Ω(4) \ Ω(7)) is the set of fixed

points of an element of order 2 in Ḡ(4) having cycle shape 1422. (There are
three conjugacy classes of elements of order 2 in Ḡ(4) but for just one of
these classes do the elements have the cycle shape 1422.) Then the group of
even permutations of Ω(7) induced by the subgroup of Ḡ(4) that fixes this
partition is a copy of the group Ḡ(7) � L2(3), which is of course isomorphic
to the alternating group on four points.

Ḡ(7) = �
(
Ḡ
(4)
P (7)

)
∩AltΩ(7) � L2(3).

(The quotient Ḡ(4)
P (7)/Ḡ

(4)
P (7),Ω(7) is isomorphic to the full symmetric group on

4 points so the restriction to even permutations is not redundant.)
The next largest divisor of 7− 1 = 6 is 2 = 3− 1. An alternative con-

struction of Ḡ(7) is obtained by choosing a partition P (7)= {Ω(7),Ω(7)′ ,Ω(7)′′}
of Ω(3) into 6/2 = 3 subsets of 12/3 = 4 elements such that Ω(7) and Ω(7)

′
are

the fixed-point sets of respective elements σ and σ′ of order 2 in Ḡ(3) having
cycle shapes 1424 and disjoint fixed-point sets and the property that σσ′ has
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order 3. Then the group of permutations of Ω(7) induced by the subgroup
of Ḡ(3) that fixes this partition is again a copy of the group Ḡ(7) � L2(3):

Ḡ(7) = �
(
Ḡ
(3)
P (7)

)
� Ḡ

(3)
P (7)/Ḡ

(3)
P (7),Ω(7) � L2(3).

For � = 13 the largest proper divisor of �− 1 = 12 is 6 = 7− 1. Choose
a partition P (13) = {Ω(13),Ω(13)′} of Ω(7) into 12/6 = 2 subsets of 4/2 = 2
elements such that Ω(13) is the orbit of an element of order 2 in Ḡ(7). (That
is, choose any partition of Ω(7) into subsets of size 2. The elements of order
2 in Ḡ(7) all have cycle shape 22.) Then the group of permutations of Ω(13)

induced by the subgroup of Ḡ(7) that fixes this partition is a copy of the
group Ḡ(13) � Sym2:

Ḡ(13) = �
(
Ḡ
(7)
P (13)

)
� Ḡ

(7)
P (13)/Ḡ

(7)
P (13),Ω(13) � Sym2.

The next largest divisor of 13− 1 = 12 is 4 = 5− 1. An alternative con-
struction of Ḡ(13) is obtained by choosing a partition P (13) = {Ω(13),
Ω(13)

′
,Ω(13)

′′} of Ω(5) into 12/4 = 3 subsets of 6/3 = 2 elements such that
Ω(13) and Ω(13)

′
are the fixed-point sets of respective elements σ and σ′ of

order 2 in Ḡ(3) having cycle shapes 1222 and disjoint fixed-point sets and
the property that σσ′ has order 3. Then the group of permutations of Ω(13)

induced by the subgroup of Ḡ(5) that fixes this partition is a copy of the
group Ḡ(13) � Sym2.

Ḡ(13) = �
(
Ḡ
(5)
P (13)

)
� Ḡ

(5)
P (13)/Ḡ

(5)
P (13),Ω(13) � Sym2.

Remark 3.1. The group Ḡ
(�′)
P (�),Ω(�) is trivial in every instance except for

when (�′, �) is (2, 4) or (4, 7) so apart from these cases we have Ḡ(�) � Ḡ
(�′)
P (�) .

The group Ḡ(2)
P (4),Ω(4) has order 8 and Ḡ

(4)
P (7),Ω(7) has order 4.

Remark 3.2. A Steiner system with parameters (t, k, n) is the data of an
n-element set Ω together with a collection of subsets of Ω of size k, called
the blocks of the system, with the property that any t-element subset of Ω is
contained in a unique block. It is well known thatM24 � Ḡ(2) may be realized
as the automorphism group of a Steiner system with parameters (5, 8, 24)
and M12 � Ḡ(3) may be described as the automorphism group of a Steiner
system with parameters (5, 6, 12). Indeed, for Ḡ(2) �M24 we may take the
blocks to be the

(
24
5

)
/
(
8
5

)
= 759 sets of size 8 in a copy G of the Golay code

on the 24 element set Ω = Ω(2) and for Ḡ(3) �M12 regarded as the subgroup
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of Ḡ(2) preserving a set Ω(3) of size 12 in G we may take the blocks to be the(
12
5

)
/
(
6
5

)
= 132 subsets of size 6 that arise as an intersection C ∩ Ω(3) for C ∈

G having size 8. The group Ḡ(4) � AGL3(2) also admits such a description:
it is the automorphism group of the unique Steiner system with parameters
(3, 4, 8). The blocks of such a system constitute the

(
8
3

)
/
(
4
3

)
= 14 codewords

of weight 4 in the unique doubly even linear binary code of length 8, the
length 8 Hamming code.

Remark 3.3. Following [92, Ch. 11] let n be a divisor of 12, take n cards
labelled by 0 through n− 1 and consider the group Mn < Symn generated
by the reverse shuffle rn : t �→ n− 1− t and the Mongean shuffle sn : t �→
min{2t, 2n− 1− 2t}. Then the notation is consistent with that used above,
for the group M12 just defined is indeed isomorphic to the Mathieu group
of permutations on 12 points. So we have M12 � Ḡ(3) according to Table 1
and it turns out that in fact Mn � Ḡ(�) whenever n = 24/(�− 1), and so
this shuffle construction recovers all of the Ḡ(�) except for G(2) �M24 and
G(4) � AGL3(2) (i.e., all Ḡ(�) for � odd).

3.4. Realization part II

Having constructed the Ḡ(�) as permutation groups we now describe the
Umbral groupsG(�) as groups of signed permutations. We retain the notation
of Section 3.3.

To construct G(3) choose an element τ of order 11 in Ḡ(3) and (re)label
the elements of Ω(3) so that

Ω(3) = {∞, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X}

and the action of τ on Ω(3) is given by x �→ x+ 1 modulo 11 (where X = 10).
Then for any set C ⊂ Ω(3) of size 4 there is a unique element σ ∈ Ḡ(3) with
cycle shape 1424 such that the fixed-point set of σ is precisely C. In case
C = {0, 1, 4, 9} for example σ = (∞6)(2X)(35)(78) and Ḡ(3) is generated by
σ and τ . Let Ω̂(3) = {ex | x ∈ Ω(3)} be a basis for a 12-dimensional vector
space over C say, let τ̂ be the element of the hyperoctahedral group OctΩ̂(3) �
Oct12 given by τ̂ : ex �→ ex+1, so that τ̂ = (0123456789X) in (signed) cycle
notation (cf. Section 3.2), and set σ̂ = (∞6)(2̄X̄)(35)(7̄8̄). Then for G(3) the
group generated by σ̂ and τ̂ we have that G(3) � 2.M12 and the image of
G(3) under the map OctΩ̂(3) → SΩ(3) is Ḡ(3).
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To construct G(4) choose an element τ of order 7 in Ḡ(4) and (re)label
the elements of Ω(4) so that

Ω(4) = {∞, 0, 1, 2, 3, 4, 5, 6}

and the action of τ on Ω(4) is given by x �→ x+ 1 modulo 7. There is a unique
conjugacy class of elements of Ḡ(4) having cycle shape 1422 and the fixed-
point sets of these elements are the 14 subsets of Ω(4) of size 4 comprising the
blocks of a (3, 4, 8) Steiner system preserved by Ḡ(4) (cf. Remark 3.2). The
particular block C = {0, 1, 3, 6} is the unique one with the property that σ
and τ generate Ḡ(4) in case σ is any (of the 3) involution(s) with C as its
fixed-point set. Take σ = (∞5)(24) and let Ω̂(4) = {ex | x ∈ Ω(4)} be a basis
for an 8-dimensional vector space over C say, let τ̂ be the element of the
hyperoctahedral group OctΩ̂(4) � Oct8 given by τ̂ : ex �→ ex+1, so that τ̂ =
(0123456), and set σ̂ = (∞5)(0̄)(1̄)(24). Then for G(4) the group generated
by σ̂ and τ̂ we have that G(4) � 2.AGL3(2) and the image of G(4) under the
map OctΩ̂(4) → SΩ(4) is Ḡ(4).

For the remaining � ≥ 5 we can construct G(�) from G(3) by proceeding
in analogy with the constructions of Ḡ(�) from Ḡ(3) (and its subgroups) given
earlier in this section. Concretely, for � = 5 we may set

G(5) = �̂
(
G
(3)

P̂ (5)

)
� G

(3)

P̂ (5)
/G

(3)

P̂ (5),Ω̂(5)
� GL2(5)/2,

where Ω̂(5) = {ex | x ∈ Ω(5)} is a basis for 24/(5− 1) = 6-dimensional vec-
tor space over C, we define Ĉ = {ex | x ∈ C} for C ⊂ Ω(5) and set P̂ (5) =
{Ω̂(5), Ω̂(5)′} for P (5) = {Ω(5),Ω(5)′} as in the construction of Ḡ(5) given
above, the groups G(3)

P̂ (5)
and G(3)

P̂ (5),Ω̂(5)
are defined by

G
(3)

P̂ (5)
=

{
σ ∈ G(3) | σ(Span Ĉ) ⊂ Span Ĉ, ∀Ĉ ∈ P̂ (5)

}
,(3.10)

G
(3)

P̂ (5),Ω̂(5)
=

{
σ ∈ G(3)

P̂ (5)
| σ(ex) = ex, ∀x ∈ Ω(5)

}
(3.11)

and �̂ is the map G(3)

P̂ (5)
→ OctΩ̂(5) obtained by restriction.

�̂ : G(3)

P̂ (5)
→ OctΩ̂(5)

σ �→ σ|Span Ω̂(5)

(3.12)
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In direct analogy with this we have that

G(7) = �̂
(
G
(3)

P̂ (7)

)
� G

(3)

P̂ (7)
/G

(3)

P̂ (7),Ω̂(7)
� SL2(3),

G(13) = �̂
(
G
(5)

P̂ (13)

)
� G

(5)

P̂ (13)
/G

(5)

P̂ (13),Ω̂(13)
� 4,

when G(�′)

P̂ (�)
and G(�′)

P̂ (�),Ω̂(�)
are defined as in (3.10) and (3.11), respectively,

for P (�) = {Ω(�), · · · } as specified in the construction of Ḡ(�′) given above,
and �̂ as in (3.12).

We conclude this section with explicit signed permutation presentations
of the G(�) as subgroups of the OctΩ̂(�) for � ≥ 3. The presentations for � = 3
and � = 4 were obtained above, and the remaining ones can be found in
a similar manner. In each case we label the index set Ω(�) so that Ω(�) =
{∞, 0, . . . , n− 1} where n = 24/(�− 1)− 1 = (25− �)/(�− 1) and seek a
presentation for which the coordinate permutation ex �→ ex+1 (with indices
read modulo n) is an element of order n in G(�) (although we must take this
element to be trivial in case � = 13).

G(3) =
〈
(∞6)(2̄X̄)(35)(7̄8̄), (0123456789X)

〉
,(3.13)

G(4) = 〈(∞5)(0̄)(1̄)(24), (0123456)〉 ,(3.14)

G(5) = 〈(∞0̄)(31̄)(24̄), (01234)〉 ,(3.15)

G(7) = 〈(∞0̄)(1̄2), (012)〉 ,(3.16)

G(13) = 〈(∞0̄)〉 .(3.17)

Equipped now with explicit realizations G(�) < Octn of the Umbral
groups G(�) as signed permutation groups we define symbols Π(�)g , χ(�)g , Π̄(�)g

and χ̄(�)g as follows for � ∈ Λ and g ∈ G(�). We write Π(�)g for the signed per-
mutation Frame shape attached to g ∈ G(�) (when regarded as an element of
Octn) as defined in Section 3.2 and we write Π̄

(�)
g for the cycle shape attached

to the image of g ∈ G(�) under the composition G(�) → Octn → Symn. We
define g �→ χ

(�)
g by restricting the signed permutation character (cf. (3.3)) to

G(�) and we define g �→ χ̄
(�)
g by restricting the unsigned permutation charac-

ter (cf. (3.4)) to G(�). We call χ(�)g the signed twisted Euler character attached
to g ∈ G(�) and we call χ̄(�)g the unsigned twisted Euler character attached
to g ∈ G(�).

As is explained in Section 3.2 the data g �→ Π(�)g is sufficient to determine
the cycle shapes Π̄(�)g and the twisted Euler characters χ(�)g and χ̄(�)g . We will
attach vector-valued mock modular forms H(�)

g to each g ∈ G(�) in Section 4
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and it will develop that the shadows and multiplier systems of these functions
are encoded in the Frame shapes Π(�)g . We list the Frame shapes Π(�)g and
Π̄(�)g and the twisted Euler characters χ(�)g and χ̄(�)g for all g ∈ G(�) and � ∈ Λ
in the tables of B.2.

We conclude this section with an extraordinary property relating the
Frame shapes Π(�)g and Π̄(�)g attached to the Umbral groups G(�) at � = 2
and � = 4 which can be verified explicitly using the tables of B.2.

Proposition 3.4. Let g ∈ G(4) and suppose that the Frame shape Π(4)g =∏
k k

mg(k) is a cycle shape, so that mg(k) ≥ 0 for all k. Then there exists
g′ ∈ G(2) with o(g′) = 2o(g) such that

Π̄(2)g′ =
∏
k

km̄g(k)(2k)mg(k),(3.18)

when Π̄(4)g =
∏

k k
m̄g(k) except in case g is of class 4B.

As will be explained in Section 4 this result implies direct relationships
between the functions H(2)

g′ and H(4)
g when g and g′ are as in the statement

of the proposition.

3.5. Dynkin diagrams part I

The McKay correspondence [93] relates finite subgroups of SU(2) to the
affine Dynkin diagrams of ADE type by associating irreducible representa-
tions of the finite groups to nodes of the corresponding diagrams and by
now is well understood in terms of resolutions of simple singularities C2/G
for G < SU(2) [94, 95]. A more mysterious Dynkin diagram correspondence
also due to McKay is his monstrous E8 observation [93] (see also [96, Sec-
tion 14]) which associates nine of the conjugacy classes of the monster group
to the nodes of the affine E8 Dynkin diagram and extends to similar corre-
spondences relating certain subgroups of the Monster to other affine Dynkin
diagrams [97]. We find analogues of both McKay’s Dynkin diagram obser-
vations manifesting in the groups G(�), as we shall now explain.

For � ∈ Λ = {2, 3, 4, 5, 7, 13} the number (25− �)/(�− 1) is an odd inte-
ger p such that p+ 1 divides 24 and is a prime in case � is not 13. Recall the
construction of Ḡ(�) as permutations of Ω(�) from Section 3.3. By inspection,
with the assistance of [98], we obtain the following lemma.

Lemma 3.5. Let � ∈ {2, 3, 4, 5, 7} and set p = (25− �)/(�− 1). Then the
group Ḡ(�) has a unique conjugacy class of subgroups isomorphic to L2(p)



Umbral Moonshine 149

that act transitively on the degree p+ 1 = 24/(�− 1) permutation represen-
tation of Ḡ(�) on Ω(�).

Armed with Lemma 3.5 we pick a transitive subgroup of Ḡ(�) isomorphic
to L2(p) for each � in {2, 3, 4, 5, 7}— these being the cases that (25− �)/(�−
1) is prime — and denote it L̄(�). For future reference we note that there
are two conjugacy classes of subgroups of Ḡ(�) isomorphic to L2(p) in case
� ∈ {3, 4} but in each case only one of these classes contains subgroups acting
transitively.

Lemma 3.6. For � ∈ {3, 4} and p = (25− �)/(�− 1) there is a unique con-
jugacy class of subgroups of Ḡ(�) isomorphic to L2(p) that does not act tran-
sitively in the degree p+ 1 = 24/(�− 1) permutation representation of Ḡ(�)

on the set Ω(�).

It is a result due to Galois (proven in a letter to Chevalier written on
the eve of his deadly duel [92, Ch. 10]) that the group L2(p) has no transi-
tive permutation representation of degree less than p+ 1 if p > 11. However
for the remaining primes p not exceeding 11 there are transitive permuta-
tion representations on exactly p points, and in fact we have the following
statement.

Lemma 3.7. Let p ∈ {2, 3, 5, 7, 11} and set L̄ = L2(p). Then there is a sub-
group D̄ < L̄ of index p with the property that L̄ = 〈σ〉D̄ for σ an element of
order p in L̄, so that every element g ∈ L̄ admits a unique expression g = sd
where s ∈ 〈σ〉 and d ∈ D̄.

Remark 3.8. See [92, Ch. 10] for applications of the result of Lemma 3.7
to exceptional isomorphisms among finite simple groups of small order, and
see [99, 100] for an application of the case that p = 11 to the truncated
icosahedron (which describes the structure of buckminsterfullerenes, a.k.a.
buckyballs).

According to Lemma 3.7 we obtain a permutation representation of
degree p for L̄ by taking the natural action of L̄ on cosets of D̄ and this
action is transitive since σ induces a p-cycle. Using this result we choose a
copy of D̄ in L̄ = L̄(�) for each � ∈ {3, 4, 5, 7} and denote it D̄(�). (Such sub-
groups are uniquely determined up to isomorphism, but there are as many
conjugacy classes of subgroups of L̄ isomorphic to D̄ as there are conjugacy
classes of elements of order p in L̄, which is to say there are 2 classes in case
p ∈ {11, 7} and a unique class in case p ∈ {5, 3}.) We describe the groups
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Table 2: The Umbral Groups and Dynkin Data.

� 2 3 4 5 7 13
p 23 11 7 5 3 1

G(�) M24 2.M12 2.AGL3(2) GL2(5)/2 SL2(3) 4
L(�) SL2(11) SL2(7) SL2(3)
D(�) 2.Alt5 2.Sym4 Q8

Ḡ(�) M24 M12 AGL3(2) PGL2(5) L2(3) 2
L̄(�) L2(23) L2(11) L2(7) L2(5) L2(3)
D̄(�) Alt5 Sym4 Alt4 22

Δ(�) Ê8 Ê7 Ê6 D̂4

D̄(�) in Table 2 and observe that each one is isomorphic to a finite group
D̄0 < SO3(R). As such there is a corresponding finite groupD0 < SU(2) that
maps onto D̄0 via the 2-fold covering SU(2)→ SO3(R), and a corresponding
Dynkin diagram Δ(�) according to the McKay correspondence. We list the
Dynkin diagrams Δ(�) also in Table 2.

Traditionally finite subgroups of SO3(R) are called ternary, owing to
the fact that their elements are described using 3× 3 matrices, and finite
subgroups of SU(2) are called binary. The map SU(2)→ SO3(R) determines
a correspondence between binary and ternary groups whereby the ternary
polyhedral groups (of orientation preserving symmetries of regular polyhe-
dra) correspond to binary groups of the form 2.Alt5, 2.Sym4 and 2.Alt4
(depending upon the polyhedron), a dihedral subgroup Dihn < SO3(R) cor-
responds to a generalized quaternion group of order 4n in SU(2), and a
binary cyclic group corresponds to a ternary cyclic group of the same order.
Thus, given a finite subgroup D̄0 < SO3(R), we may speak of the associated
binary group D0 < SU(2).

Next we observe that each group G(�) contains a subgroup D(�) isomor-
phic to the binary group associated to D̄(�) (when D̄(�) is regarded as a
subgroup of SO3(R)) for all of the above cases except when � = p = 5. More
particularly, for � ∈ {3, 7} there is a unique conjugacy class of subgroups iso-
morphic to the binary group attached to D̄(�) while for � = 4 there are two
such conjugacy classes and for � = 5 there are none. For each � ∈ {3, 4, 7}
we pick a subgroup isomorphic to the binary group attached to D̄(�) and
denote it D(�) and we display the (isomorphism types of the) groups D(�) in
Table 2. We write Q8 there for the quaternion group of order 8.
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To see how the D(�) arise in G(�) (and fail to do so in the case that
� = 5) recall from Lemma 3.5 that Ḡ(�) contains a unique transitive subgroup
isomorphic to L2(p) up to conjugacy for � ∈ {3, 4, 5, 7}. The preimage of such
a subgroup under the natural map G(�) → Ḡ(�) (cf. Section 3.4) is a double
cover of L2(p) that is in fact isomorphic to SL2(p) (cf. Section 3.1) except
when � = 5. In case � = 5 we have G(5) � GL2(5)/2 which has the same order
as SL2(5) but is not isomorphic to it. We see then that for � ∈ {3, 4, 7} we
may find a copy of SL2(p) in the preimage of L̄(�) under the map G(�) → Ḡ(�);
we do so and denote it L(�). Then we may take D(�) to be the preimage of
D̄(�) under the map L(�) → L̄(�). The fact that there is no SL2(5) in G(5)

explains why there is no group D(5).
Observe that the rank of Δ(�) is given by 11− � for each � ∈ {3, 4, 5, 7}.

This may be taken as a hint to the following uniform construction of the Δ(�).
Starting with the (finite type) E8 Dynkin diagram, being star shaped with
three branches, construct a sequence of diagrams iteratively by removing the
end node from a branch of maximal length at each iteration. In this way we
obtain the sequence E8, E7, E6, D5, D4, A3, A2, A1, and it is striking to
observe that our list Δ(�), obtained by applying the McKay correspondence
to distinguished subgroups of the G(�), is a subsequence of the one obtained
from this by affinization.

We summarize the main observations of this section as follows:

For � ∈ {3, 4, 5, 7} the group Ḡ(�) admits a distinguished isomor-
phism class of subgroups D̄(�). This connects Ḡ(�) to a Dynkin
diagram of rank 11− �, for the group D̄(�) is the image in SO3(R)
of a finite subgroup D(�) in SU(2) which corresponds to the
affinization Δ(�) of a Dynkin diagram of rank 11− � according
to McKay’s correspondence. The Dynkin diagrams arising belong
to a naturally defined sequence.

3.6. Dynkin diagrams part II

Recall from Lemma 3.6 that the cases � ∈ {3, 4} are distinguished in that for
such � the group Ḡ(�) has a unique conjugacy class of subgroups isomorphic
to L2(p) and not acting transitively in the degree p+ 1 permutation repre-
sentation (cf. Section 3.3). Since such an L2(p) subgroup acts non-trivially
on Ω(�) it follows from Lemma 3.7 that it must have one fixed point and act
transitively on the remaining p points of Ω(�), and thus we have witnesses
within G(�) to the exceptional degree p permutation representations of L2(p)
in case � ∈ {3, 4} and p ∈ {11, 7}. For these two special cases of lambency
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3 and 4 we find direct analogues of McKay’s monstrous E8 observation [93]
attaching certain conjugacy classes of G(�) to the nodes of Δ(�). At lambency
5 and 7 (where p is 5 and 3, respectively) we find similar analogues where
the diagram Δ(�) is replaced by one obtained via folding with respect to a
diagram automorphism of order 3.

In case � = 3 let T denote the conjugacy class of elements g of order 2
in G(3) � 2.M12 such that g has four fixed points in both the signed and
unsigned permutation representations of G(3). This is the conjugacy class
labelled 2B in Table B.2 and we have χ(3)g = χ̄

(3)
g = 4 in the notation of

Table B.8. Then T 2 = {gh | g, h ∈ T} is a union of conjugacy classes of G(3)

and in fact there are exactly 9 of the 26 conjugacy classes ofG(3) that appear.
In (3.19) we use these classes (and the notation of Table B.2) to label the
affine E8 Dynkin diagram.

(3.19) 1A 2B 3A 4C 5A 6C

3B

4B 2C

Observe that the labelling of (3.19) recovers the highest root labelling when
the classes are replaced with their orders. In (3.20) we replace the labels
of (3.19) with the cycle shapes attached to these classes via the total per-
mutation action (cf. Section 3.2) of G(3) on the 24 = 2.24/(�− 1) elements
{±ei | i ∈ Ω(3)} appearing in the signed permutation representation of G(3)

(cf. Section 3.4).

124 1828 1636 142244 1454 12223262

38

2444 212

(3.20)

Explicitly, the cycle shape attached to g ∈ G(3) is the total permutation
Frame shape Π̃(3)g = Π(3)g Π̄(3)g realized as the product (cf. Section 3.2) of
the signed and unsigned permutation Frame shapes attached to G(3) (cf.
Table B.8).

Remark 3.9. The conjugacy class labelled 2C in Table B.2 consists of ele-
ments of the form gz where g belongs to the class 2B (denoted T above) and
z is the central involution of G(3), so we obtain exactly the nine conjugacy
classes of (3.19) by considering products gh where g and h are involutions
in the class 2C.
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Remark 3.10. In [101] an analogue of McKay’s monstrous E8 observation
is found forM24. Namely, it is observed that there are exactly nine conjugacy
classes of elements ofM24 having representatives of the form gh where g and
h belong to the class labelled 2A in Table B.1 — this is the class with cycle
shape 1828 in the defining degree 24 permutation representation — and
the nodes of the affine E8 Dynkin diagram can be labelled by these nine
classes in such a way that their orders recover the highest root labelling.
This condition leaves some ambiguity as to the correct placement of the
two classes of order 2, and similarly for the pairs of orders 3 and 4, but
an analogue of the procedure described in [102] is shown to determine a
particular choice that recovers the original correspondence for the monster
group via the modular functions of monstrous moonshine. Observe that if
we express the G(2) �M24 labelling of the affine E8 diagram given in [101]
using cycle shapes to name the conjugacy classes then we recover exactly
the labelling (3.20) obtained here from G(3) � 2.M12.

In case � = 4 let T denote the conjugacy class of elements g of order 2
in G(4) such that g has four fixed points in the unsigned permutation repre-
sentation of G(4) but has two fixed points and two anti-fixed points in the
signed permutation representation. This is the conjugacy class labelled 2C
in Table B.3 and we have χ(4)g = 0 and χ̄(4)g = 4 in the notation of Table B.9.
Then T 2 is the union of eight of the sixteen conjugacy classes of G(4) and
we use these classes (and the notation of Table B.3) to label the nodes of
the affine E7 Dynkin diagram in (3.21):

(3.21) 1A 2C 3A 4C 6A 4A

2B

2A

In (3.22) we replace the labels of (3.21) with the cycle shapes Π̄(4)g (Table B.9)
attached to these classes via the degree 8 permutation action of G(4) on
Ω(4). The orders of these permutations are the orders of the images of the
corresponding elements of G(4) under the map G(4) → Ḡ(4) so the labelling
(3.22) demonstrates that we recover the highest root labelling of the affine
E7 Dynkin diagram when we replace the conjugacy classes of (3.21) with
the orders of their images in Ḡ(4):

(3.22) 18 1422 1232 122141 1232 24

24

18
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In (3.23) we replace the labels of (3.21) with the cycle shapes of degree
24 given by the products Π(4)g Π̄(4)g Π̄(4)g (cf. Table B.9) for g an element of
G(4) arising in (3.21). Observe that all the cycle shapes in (3.23) are bal-
anced, meaning that they are invariant (and well-defined) under the opera-
tion

∏
k≥1 k

m(k) �→∏
k≥1(N/k)

m(k) for some integer N > 1, and constitute
a subset of the cycle shapes attached to G(3) in (3.20). Observe also that
the order two symmetry of the affine E7 diagram that identifies the two
long branches is realized by squaring: the cycle shapes obtained by squaring
permutations represented by the cycle shapes on the right-hand branch of
(3.23) are just those that appear on the left-hand branch:

(3.23) 124 1828 1636 142244 12223262 2444

212

1828

Remark 3.11. It is interesting to note that while the conjugacy class 2C is
stable under multiplication by the central involution there are just eight con-
jugacy classes of G(4) that are contained in T 2 when T is the class labelled 4A
in Table B.3. In fact, the eight conjugacy classes appearing are 8A together
with all those of (3.21) except for 4C. Thus we obtain analogues of the label-
ings (3.21), (3.22) and (3.23) where 4C, 122141 and 142244, respectively, are
replaced by 8A, 42 and 4282, respectively. Under this correspondence the
highest root labelling is again obtained by taking orders in Ḡ(4), but while
the eta product attached to 4282 is multiplicative it only has weight 2 (i.e.,
less than 4) and so does not appear in [101].

Remark 3.12. The correspondence of [101] may be viewed as attaching the
nine multiplicative eta products of weight at least 4 to the nodes of the affine
E8 Dynkin diagram when we regard a cycle shape

∏
k≥1 k

m(k) as a shorthand
for the eta product function

∏
k≥1 η(kτ)

m(k) (cf. A.1). Observe that the cycle
shapes appearing in (3.23) are just those whose corresponding eta products
are multiplicative, have weight at least 4, and have level dividing 24. (The
eta products defined by 1454 and 38 have level 5 and 9, respectively.)

For � = 5 the Dynkin diagram Δ(5) = Ê6 admits a Sym3 group of auto-
morphisms. Folding by either of the 3-fold symmetries we obtain the affine
Dynkin diagram of type G2. Let T be either of the two conjugacy class
of elements g of order 4 in G(5) such that g2 is central. Then we have
χ
(5)
g = χ̄

(5)
g = 0 in the notation of Table B.10 and T is either the class labelled

4A in Table B.4 or the class labelled 4B, and there are exactly three of the
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fourteen conjugacy classes of G(5) that are subsets of T 2. In (3.24) we use
these classes (and the notation of Table B.4) to label the affine G2 Dynkin
diagram:

(3.24) 2A 2C 6A

In (3.25) we replace the labels of (3.24) with the cycle shapes Π̄(5)g (cf.
Table B.10) attached to these classes via the degree 6 permutation action of
G(5) on Ω(5). The orders of these permutations are the orders of the images
of the corresponding elements of G(5) under the map G(5) → Ḡ(5) so the
labelling (3.25) demonstrates that we recover the highest root labelling of
the affine G2 Dynkin diagram — which is the labelling induced form the
highest root labelling of Ê6 — when we replace the conjugacy classes of
(3.24) with the orders of their images in Ḡ(5):

(3.25) 16 1222 32

For � = 7 the Dynkin diagram Δ(7) = D̂4 admits a Sym4 group of auto-
morphisms. Folding by any 3-fold symmetry we again obtain the affine
Dynkin diagram of type G2. Let T be the unique conjugacy class of ele-
ments of order 4 in G(7). Then we have χ(7)g = χ̄

(7)
g = 0 in the notation of

Table B.11 and T is the class labelled 4A in Table B.5, and there are exactly
three of the seven conjugacy classes of G(7) that have a representative of the
form gh for some g, h ∈ T (and T 2 is the union of these three conjugacy
classes). In (3.26) we use these classes (and the notation of Table B.5) to
label the affine G2 Dynkin diagram:

(3.26) 1A 4A 2A

In (3.27) we replace the labels of (3.26) with the cycle shapes Π̄(7)g (cf.
Table B.11) attached to these classes via the degree 4 permutation action of
G(7) on Ω(7). The orders of these permutations are the orders of the images
of the corresponding elements of G(7) under the map G(7) → Ḡ(7) so the
labelling (3.27) demonstrates that we recover the labelling of the affine G2

Dynkin diagram that is induced by the highest root labelling of D̂4 when
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we replace the conjugacy classes of (3.26) with the orders of their images in
Ḡ(7):

(3.27) 14 22 14

We summarize the results of this section with the following statement.

For � ∈ {3, 4, 5, 7} there is an analogue of McKay’s monstrous
E8 observation that relates G(�) to (a folding of) the affinization
of a Dynkin diagram of rank 11− �, and the diagrams arising
are precisely those that appear in Section 3.5.

We conclude by mentioning that McKay’s monstrous observation has
partially been explained, using VOA theory, by the work of Sakuma [103]
and Lam–Yamada–Yamauchi [104, 105]. Important related work appears in
[106, 107].

4. McKay–Thompson series

In Section 2.5 we made the observation that the first few positive degree
Fourier coefficients of the vector-valued mock modular forms H(�) =

(
H
(�)
r

)
coincide (up to a factor of 2) with dimensions of irreducible representations
of the group G(�) described in the previous section. This observation suggests
the possibility that

H(�)
r (τ) =

∑
k∈Z

c(�)r (k − r2/4�)qk−r2/4�(4.1)

= −2δr,1q−1/4� +
∑
k∈Z

r2−4k�<0

dimK
(�)
r,k−r2/4�q

k−r2/4�

for some Z×Q-graded infinite-dimensional G(�)-module K(�) =
⊕

r,dK
(�)
r,d .

To further test this possibility we would like to see if there are similar vector-
valued mock modular forms H(�)

g =
(
H
(�)
g,r

)
whose positive degree Fourier

coefficients recover characters of representations of G(�). In other words, for
an element g of the group G(�) we would like to see if we can find a mock
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modular form H
(�)
g compatible with the hypothesis that

H(�)
g,r(τ) =

∑
k

c(�)g,r(k − r2/4�)qk−r2/4�(4.2)

= −2δr,1q−1/4� +
∑
k∈Z

r2−4k�<0

trK(�)
r,k−r2/4�

(g)qk−r2/4�

for a hypothetical bi-graded G(�)-module K(�). We refer to such a generating
function as a McKay–Thompson series. Notice that we recover the gener-
ating functions of the dimK

(�)
r,d when g is the identity element. Moreover,

the McKay–Thompson series attached to g ∈ G(�) is invariant under conju-
gation, since the trace is such, so H(�)

g depends only on the conjugacy class
[g] of g.

Having such McKay–Thompson series for each conjugacy class of G(�)

not only provides strong evidence for the existence of the G(�)-module K(�)

but in fact it uniquely specifies it up to G(�)-module isomorphism. This is
because, since there are as many irreducible representations as conjugacy
classes of a finite group, given the characters trK(�)

r,d
(g) for all [g] ⊂ G(�) we

can simply invert the character table to have a unique decomposition of the
conjectural moduleK(�)

r,d into irreducible representations. What is not clear, a
priori, is that we will end up with a decomposition into non-negative integer
multiplies of irreducible representations of G(�), but remarkably it appears
that this property holds for all � ∈ Λ and all bi-degrees (r, d). For evidence
in support of this see the explicit decompositions for small degrees tabulated
in Appendix D.

In this section we construct a set of vector-valued mock modular forms
H
(�)
g =

(
H
(�)
g,r

)
for each lambency � and we formulate a precise conjecture

implying (4.2) in Section 5.1.

4.1. Forms of higher level

In Section 2 we have discussed the relation between certain vector-valued
mock modular forms, meromorphic Jacobi forms of weight 1 and Jacobi
forms of weight 0 under the group SL2(Z). In order to investigate the
McKay–Thompson series of the groups G(�) we need to generalize the dis-
cussion in Section 2.5 to modular forms of higher level and consider forms
transforming under Γ0(N) (cf. (A.2)) with N > 1.

As in Section 2 we would like to consider (�− 1)-vector-valued mock
modular forms

(
H
(�)
g,r

)
for a group Γ0(Ng) < SL2(Z) with shadow given by the
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unary theta series S(�) (cf. (2.26)). The levels Ng will be specified explicitly
for all g in Section 4.8. A first difference between the case of Ng = 1 and
Ng > 1 is the following. Since the components of S(�) =

(
S
(�)
r

)
have more

than one orbit under Γ0(Ng) when Ng is even it is natural to consider mock
modular forms with shadows given by

(
χ
(�)
g,rS

(�)
r

)
where the χ(�)g,r are not

necessarily equal for different values of r. It will develop that in the cases of
interest to us χ(�)g,r depends only on r modulo 2. In fact, we will find that

χ(�)g,r =

{
χ
(�)
g , for r ≡ 0 (mod 2),
χ̄
(�)
g , for r ≡ 1 (mod 2),

(4.3)

where χ
(�)
g and χ̄

(�)
g are as defined in Section 3.4 and as tabulated in

Appendix B.2.
Group theoretically the multiplicities χ̄(�)g and χ

(�)
g appearing in the

shadow of H(�)
g are determined by the number of fixed points and anti-

fixed points in the signed permutation representation of the group G(�), as
explained in Section 3.2. For instance, we have χ̄(�)g = χ

(�)
g = χ(�) for the

identity element g = e. From this interpretation we can deduce that the
vanishing of χ̄(�)g implies the vanishing of χ(�)g , while it is possible to have
χ
(�)
g = 0 and χ̄(�)g �= 0. It will also turn out that

(4.4) χ̄(�)g = χ(�)g unless 2|Ng.

For later use we define the combinations

(4.5) χ
(�)
g,+ =

1
2
(
χ̄(�)g + χ(�)g

)
, χ

(�)
g,− =

1
2
(
χ̄(�)g − χ(�)g

)
,

which enumerate the number of fixed and anti-fixed points, respectively, in
the signed permutation representation of G(�) (cf. (3.3) and (3.4)). Of course
in the cases where χ̄(�)g = χ

(�)
g = 0 the function H(�)

g =
(
H
(�)
g,r

)
has vanishing

shadow and is a vector-valued modular form in the usual sense.
Interestingly, just as in the SL2(Z) case that was considered in Sec-

tion 2.3, the higher level vector-valued mock modular forms with shadows
as described above are again closely related to the finite parts of mero-
morphic Jacobi forms of weight 1. More explicitly, from the transformation
(2.29) and the simple fact θ(�)r (τ, z + 1/2) = (−1)rθ(�)r (τ, z) it is not difficult
to check that the function

ψ(�)g (τ, z) = χ
(�)
g,+μ

(�)
0 (τ, z)− χ(�)g,−μ

(�)
0 (τ, z + 1/2) +

�−1∑
r=1

H(�)
g,r(τ)θ̂

(�)
r (τ, z)

(4.6)
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transforms as a Jacobi form of weight 1 and index � under the congruence
subgroup Γ0(Ng) whenH

(�)
g is a mock modular form of weight 1/2 for Γ0(Ng)

with shadow S
(�)
g =

(
χ
(�)
g,rS

(�)
r

)
. Observe that, for those g with both χ(�)g,+ and

χ
(�)
g,− being non-zero, the weak Jacobi form ψ

(�)
g (τ, z) has a pole not only at

z = 0 but also at z = 1/2. From

(4.7) μ
(�)
0 (τ, z) = Av(�)

[
y + 1
y − 1

]
, −μ(�)0 (τ, z + 1/2) = Av(�)

[
1− y
1 + y

]
,

we see that the last two terms of the decomposition given in (4.6) have the
interpretation as the polar parts at the poles z = 0 and 1/2, respectively. In
other words, we again have a decomposition ψ(�)g = ψ

(�),P
g + ψ

(�),F
g into polar

and finite parts given by

ψ(�),Pg (τ, z) = χ
(�)
g,+μ

(�)
0 (τ, z)− χ(�)g,−μ

(�)
0 (τ, z + 1/2),

ψ(�),Fg (τ, z) =
�−1∑
r=1

H(�)
g,r(τ)θ̂

(�)
r (τ, z),

(4.8)

and the components H(�)
g,r of the mock modular form H

(�)
g may again be

interpreted as the theta-coefficients of a meromorphic Jacobi form; namely,
ψ
(�)
g (τ, z).
Moreover, analogous to the SL2(Z) case, the mock modular form H

(�)
g

also enjoys a close relationship with a weight 0 index �− 1 weak Jacobi form
Z
(�)
g which admits a decomposition into characters of the N = 4 supercon-

formal algebra at level �− 1. To see this, observe that

ψ(�)g (τ, z) =
χ
(�)
g,+

χ̄
(�)
g

Ψ1,1(τ, z)Z(�)g (τ, z)− χ
(�)
g,−
χ̄
(�)
g

Ψ1,1(τ, z + 1/2)Z(�)g (τ, z + 1/2)

(4.9)

when χ̄(�)g �= 0 and

(4.10) ψ(�)g (τ, z) = Ψ1,1(τ, z)Z(�)g (τ, z)

when χ̄(�)g = 0, where Ψ1,1(τ, z) is as in (2.20) and Z(�)g is the weak Jacobi
form of weight 0 and index �− 1 given by

Z(�)
g (τ, z) =

1

Ψ1,1(τ, z)

(
χ̄(�)

g μ
(�)
0 (τ, z) +

∑
0<r<�

(
1 +

χ̄
(�)
g − χ

(�)
g,r

χ
(�)
g

)
H(�)

g,r(τ)θ̂(�)
r (τ, z)

)(4.11)
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for χ(�)g �= 0 and

(4.12) Z(�)g (τ, z) =
1

Ψ1,1(τ, z)

(
χ̄(�)g μ

(�)
0 (τ, z) +

∑
0<r<�

H(�)
g,r(τ)θ̂

(�)
r (τ, z)

)

otherwise.
Anticipating their relation to the conjugacy classes [g] of G(�), another

comment on the weight 0 forms Z(�)g is in order here. As discussed in Sec-
tion 3.2, if � ∈ Λ and � > 2 then G(�) has a unique central element z of order
2 and for any g ∈ G(�) the conjugacy casses [g] and [zg] are said to be paired,
and a class [g] is said to be self-paired if [g] = [zg]. We have

(4.13) χ̄(�)g = χ̄(�)zg , χ(�)g = −χ(�)zg ,

and as a consequence Z(�)g (τ, z) = Z
(�)
zg (τ, z). Therefore, while the vector-

valued mock modular forms H(�)
g and the weight 1 meromorphic Jacobi

forms ψ(�)g (τ, z) are generally distinct for different conjugacy classes [g] of
the group G(�), the weight 0 index �− 1 weak Jacobi forms Z(�)g cannot
distinguish between two classes that are paired in the above sense and are
more naturally associated to the group Ḡ(�) which is the quotient of G(�) by
the subgroup 〈z〉.

Equipped with the H(�) defined in terms of decompositions of Jacobi
forms as discussed in Section 2.5 it will develop that a convenient way to
specify the vector-valued mock modular forms H(�)

g =
(
H
(�)
g,r

)
corresponding

to non-identity conjugacy classes of G(�) will be to specify certain sets of
weight 2 modular forms. To see how a weight 2 modular form is naturally
associated with a vector-valued modular form with the properties described
above, observe that we can eliminate the presence of the polar part in the
weight 1 Jacobi form ψ

(�)
g (τ, z) (cf. (4.6)) by taking a linear combination

with ψ(�)(τ, z). To be more precise, note that

ψ̂(�)g (τ, z) =
�−1∑
r=1

Ĥ(�)
g,r(τ)θ̂

(�)
r (τ, z)(4.14)

= ψ(�)g (τ, z)− χ
(�)
g,+

χ(�)
ψ(�)(τ, z) +

χ
(�)
g,−
χ(�)

ψ(�)(τ, z + 1/2)
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is a weight 1 index � Jacobi form for Γ0(Ng) with no poles in z, and the
functions

(4.15) Ĥ(�)
g,r(τ) = H(�)

g,r(τ)−
χ
(�)
g,r

χ(�)
H(�)

r (τ)

are the components of a vector-valued modular form Ĥ
(�)
g for Γ0(Ng) in the

usual sense (i.e., a mock modular form with vanishing shadow). From this
we readily conclude that the function

(4.16) F (�)
g (τ) =

�−1∑
r=1

Ĥ(�)
g,r(τ)S

(�)
r (τ) = − 1

4πi
∂

∂z
ψ̂(�)g (τ, z)

∣∣
z=0

is a weight 2 modular form for the group Γ0(Ng).
For general values of �, specifying the weight 2 form F

(�)
g (τ) is not suf-

ficient to specify the whole vector-valued modular form Ĥ
(�)
g since we have

evidently collapsed information in taking the particular combination (4.16).
However, for � ∈ {2, 3} we are in the privileged situation that specifying the
weight 2 form F

(�)
g (τ) completely specifies all the components of H(�)

g , as
will be explained in more detail in the following section. For � > 3 we need
more weight 2 forms, and we will also consider

(4.17) F (�),2
g (τ) =

�−1∑
r=1

(−1)r+1Ĥ(�)
g,r(τ)S

(�)
�−r(τ).

In the next section we give our concrete proposals for the McKay–
Thompson series H(�)

g for all but a few of the conjugacy classes [g] arising.
We give closed expressions for all the H(�)

g in case � ∈ {2, 3, 4, 5} and we par-
tially determine the H(�)

g for � = {7, 13}. Although we do not offer analytic
expressions for all the H(�)

g with � = 7 or 13 we have predictions for the low
degree terms in the Fourier developments of all the McKay–Thompson series
at all lambencies � ∈ Λ and these are detailed in the tables of Appendix C.

4.2. Lambency two

When � = 2 the vector-valued mock modular form H
(2)
g has only one com-

ponent H(2)
g,1 and our conjecture relating the H(2)

g and the group G(2) is
nothing but the conjecture relating (scalar-valued) mock modular forms and
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the largest Mathieu group M24 that has been investigated recently [15, 19–
22, 24, 108, 109]. See also [41, 110] for reviews and [111, 112] for related dis-
cussions. Explicit expressions for the McKay–Thompson series arising from
the M24-module that is conjectured to underlie this connection have been
proposed in [19–22]. As mentioned before, one convenient way to express
them is via a set of weight 2 modular forms F (2)

g (τ). In this case (4.15) and

Table 3: The list of weight 2 modular forms F (2)
g (τ) for Γ0(Ng).

[g] Ng F
(2)
g (τ)

1A 1 0

2A 2 −16Λ2
2B 4 24Λ2 − 8Λ4 = −2η(τ)8/η(2τ)4
3A 3 −6Λ3
3B 9 −2η(τ)6/η(3τ)2
4A 8 −4Λ2 + 6Λ4 − 2Λ8 = −2η(2τ)8/η(4τ)4
4B 4 4(Λ2 − Λ4)

4C 16 −2η(τ)4η(2τ)2/η(4τ)2
5A 5 −2Λ5
6A 6 2(Λ2 + Λ3 − Λ6)

6B 36 −2η(τ)2η(2τ)2η(3τ)2/η(6τ)2
7AB 7 −Λ7
8A 8 Λ4 − Λ8
10A 20 −2η(τ)3η(2τ)η(5τ)/η(10τ)
11A 11 2

5(−Λ11 + 11f11)

12A 24 −2η(τ)3η(4τ)2η(6τ)3/η(2τ)η(3τ)η(12τ)2
12B 144 −2η(τ)4η(4τ)η(6τ)/η(2τ)η(12τ)
14AB 14 1

3(Λ2 + Λ7 − Λ14 + 14f14)

15AB 15 1
4(Λ3 + Λ5 − Λ15 + 15f15)

21AB 63 1
3(−7η(τ)3η(7τ)3/η(3τ)η(21τ) + η(τ)6/η(3τ)2)

23AB 23 1
11(−Λ23 + 23f23,a + 69f23,b)
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(4.16) simply reduces to

(4.18) H
(2)
g,1 (τ) =

χ
(2)
g

24
H
(2)
1 (τ) +

F
(2)
g (τ)
η(τ)3

,

where we have used χ(2) = 24 and S
(2)
1 (τ) = η(τ)3. For later use and for

the sake of completeness we collect the explicit expressions for F (2)
g (τ) for

all conjugacy classes [g] ⊂M24 in Table 3. They are given in terms of eta
quotients and standard generators of the weight 2 modular forms of level
N . Among the latter are those denoted here by ΛN (τ) and fN (τ) and given
explicitly in Appendix A.

4.3. Lambency three

We would like to specify the two components H(3)
g,1 (τ) and H

(3)
g,2 (τ) of the

vector-valued mock modular form
(
H
(3)
g,r (τ)

)
which we propose to be the

McKay–Thompson series arising from the G(3)-module K(3). As mentioned
earlier, to specify H(3)

g,1 (τ) and H
(3)
g,2 (τ) it is sufficient to specify the weight 2

forms defined in (4.16). To see this, recall that to any given conjugacy class
[g] we can associate a conjugacy class [zg] such that (4.13) holds. From this
we obtain

H
(3)
g,1 (τ) =

χ̄
(3)
g

χ(3)
H
(3)
1 (τ) +

1
2
η(4τ)2

η(2τ)5
(
F (3)

g (τ) + F (3)
zg (τ)

)
,

H
(3)
g,2 (τ) =

χ
(3)
g

χ(3)
H
(3)
2 (τ) +

1
4

η(2τ)
η(τ)2η(4τ)2

(
F (3)

g (τ)− F (3)
zg (τ)

)
,

(4.19)

where we have used the eta quotient expressions

(4.20) S
(3)
1 (τ) =

η(2τ)5

η(4τ)2
, S

(3)
2 (τ) = 2

η(τ)2η(4τ)2

η(2τ)
,

for the components of the unary theta series at � = 3.
The explicit expressions for F (3)

g (τ) are listed in Table 4.
We also note that for the classes 3B and 6B we also have the follow-

ing alternative expressions for the McKay–Thompson series in terms of eta
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Table 4: The list of weight 2 modular forms F (3)
g (τ) for Γ0(Ng).

[g] Ng F
(3)
g (τ)

1A 1 0

2A 4 0

4A 16 −2η(τ)4η(2τ)2/η(4τ)2
2B 2 −16Λ2
2C 4 16(Λ2 − Λ4/3)

3A 3 −6Λ3
6A 12 −9Λ2 − 2Λ3 + 3Λ4 + 3Λ6 − Λ12

3B 9 8Λ3 − 2Λ9 + 2 η6(τ)/η2(3τ)

6B 36 −2η(τ)5η(3τ)/η(2τ)η(6τ)
4B 8 −2η(2τ)8/η(4τ)4
4C 4 −8Λ4/3
5A 5 −2Λ5
10A 20

∑
d|20 c10A(d)Λd + 20

3 f20

12A 144 −2η(τ)η(2τ)5η(3τ)/η(4τ)2η(6τ)
6C 6 2(Λ2 + Λ3 − Λ6)

6D 12 −5Λ2 − 2Λ3 + 5
3Λ4 + 3Λ6 − Λ12

8AB 32 −2η(2τ)4η(4τ)2/η(8τ)2
8CD 8 −2Λ2 + 5

3Λ4 − Λ8

20AB 80 −2η(2τ)7η(5τ)/η(τ)η(4τ)2η(10τ)
11AB 11 −2

5Λ11 − 33
5 f11

22AB 44
∑

d|44 c22AB(d)Λd(τ)− 11
5

∑
d|4 c

′
22AB(d)f11(dτ) +

22
3 f44(τ)

c10A(d) = −5, 53 ,−2
3 , 1,−1

3 for d = 2, 4, 5, 10, 20

c22AB(d) = −11
5 ,

11
15 ,− 2

15 ,
1
5 ,− 1

15 for d = 2, 4, 11, 22, 44

c′22AB(d) = 1, 4, 8 for d = 1, 2, 4
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quotients:

H
(3)
3B,1(τ) = H

(3)
6B,1(τ) = −2

η(τ)η(6τ)5

η(3τ)3η(12τ)2
,

H
(3)
3B,2(τ) = −H(3)

6B,2(τ) = −4
η(τ)η(12τ)2

η(3τ)η(6τ)
.

(4.21)

Coincidences with Ramanujan’s mock theta functions will be discussed in
Section 4.7.

4.4. Lambency four

The McKay–Thompson series for lambency 4 display an interesting relation
with those for lambency 2. To see this, notice the following relation among
the theta functions:

(4.22) S
(4)
1 (2τ)− S(4)3 (2τ) = S

(2)
1 (τ).

Given this relation it is natural to consider the function

(4.23) H
(4)
g,∗ (τ) := H

(4)
g,1 (τ)−H(4)

g,3 (τ)

for each conjugacy classe [g] of G(4). Note that H(4)
g,1 (τ) and H

(4)
g,3 (τ) can be

reconstructed from H
(4)
g,∗ (τ) since they are q-series of the form q−1/16 times

a series of even or odd powers of q1/2, respectively. Explicitly, we have

H
(4)
g,1 (τ) =

1
2

(
H
(4)
g,∗ (τ) + e

(
1
16

)
H
(4)
g,∗ (τ + 1)

)
,

H
(4)
g,3 (τ) =

1
2

(
−H(4)

g,∗ (τ) + e

(
1
16

)
H
(4)
g,∗ (τ + 1)

)
.

(4.24)

In order to obtain an expression for H(4)
g,∗ (τ) we rely on the following

two observations. First, recall in Section 3.4 we have observed a relation
between the Frame shapes of g ∈ G(4) and g′ ∈ G(2). It turns out that for a
pair of group elements g ∈ G(4) and g′ ∈ G(2) related in the way described
in Proposition 3.4 their McKay–Thompson series H(4)

g (2τ) and H(2)
g′ (τ) are
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also related in a simple way. As examples of this we have

H
(4)
1A,∗(τ) = H

(4)
2A,∗(τ) = H

(2)
2A (τ/2),

H
(4)
2B,∗(τ) = H

(2)
4A (τ/2),

H
(4)
2C,∗(τ) = H

(2)
4B (τ/2),

H
(4)
3A,∗(τ) = H

(4)
6A,∗(τ) = H

(2)
6A (τ/2),

H
(4)
4C,∗(τ) = H

(2)
8A (τ/2),

H
(4)
6BC,∗(τ) = H

(2)
12A(τ/2),

H
(4)
7AB,∗(τ) = H

(4)
14AB,∗(τ) = H

(2)
14AB(τ/2).

(4.25)

This leaves us just the classes 4A, 4B, and 8A that are not related to
any element of G(2) �M24 in the way described in Proposition 3.4. All
of these classes have χ(4)g = χ̄

(4)
g = 0. A second observation is that all the

H
(3)
g,r (τ) for those classes [g] ⊂ G(3) with χ(3)g = χ̄

(3)
g = 0 have an expression

in terms of eta quotients according to Table 4, and so do the H(2)
g (τ) for

those classes [g] ⊂ G(2) with χ(2)g = 0. This is consistent with our expecta-
tion that the shadow of the vector-valued mock modular form

(
H
(�)
g,r(τ)

)
is

given by
(
χ
(�)
g,rS

(�)
r (τ)

)
, and hence

(
H
(�)
g,r(τ)

)
is nothing but a vector-valued

modular form in the usual sense when χ(�)g = χ̄
(�)
g = 0. Given this it is nat-

ural to ask whether we can find similar eta quotient expressions for H(4)
g,∗ (τ)

with χ(�)g = χ̄
(�)
g = 0 when � > 3. We find

H
(4)
4A,∗(τ) = −2

η(τ/2)η(τ)2

η(2τ)2
,

H
(4)
4B,∗(τ) = −2

η(τ/2)η(τ)4

η(τ)2η(4τ)2
,

H
(4)
8A,∗(τ) = −2

η(τ)3

η(τ/2)η(4τ)
.

(4.26)

Together with (4.24) and Table 3, the above equations completely specify
H
(4)
g,1 (τ) and H

(4)
g,3 (τ) for all conjugacy classes [g] of G(4). We are left to

determine the second components H(4)
g,2 (τ). To start with, we have H

(4)
2 (τ) =

H
(4)
1A,2(τ) = −H(4)

2A,2(τ) given in terms of the decomposition of the weight 0
Jacobi form as explained in Section 2.5. To determine the rest, notice that
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(4.13) and (4.16) implies that

(4.27) S
(4)
2 (τ)

(
H
(4)
g,2 (τ)−

χ
(4)
g,2

χ(4)
H
(4)
2 (τ)

)

should be a weight 2 modular form. Employing this consideration we arrive
at

H
(4)
3A,2(τ) = −H(4)

6A,2(τ)

=
1
4
H
(4)
2 (τ) +

1
2η(2τ)3

(−3Λ2(τ)− 4Λ3(τ) + Λ6(τ)),

H
(4)
7AB,2(τ) = −H(4)

14AB,2(τ)

=
1
8
H
(4)
2 (τ)+

1
12 η(2τ)3

(−7Λ2(τ)− 4Λ7(τ)+Λ14(τ)+ 28f14(τ)),

(4.28)

where we have used S(4)2 (τ) = 2η(2τ)3 and the hypothesis that

(4.29) H
(4)
g,2 (τ) = 0

for all classes not in the set {1A, 2A, 3A, 6A, 7AB, 14AB}. This finishes our
proposal for the McKay–Thompson series

(
H
(4)
g,r

)
at � = 4. Coincidences

between some of the H(4)
g,r and Ramanujan’s mock theta functions will be

discussed in Section 4.7.

4.5. Lambency five

As mentioned before, for � = 5 it is no longer sufficient to specify the weight
2 forms F (�)

g (τ) as defined in (4.16). In this case we also need to specify the
weight 2 forms F (�),2

g (τ) defined in (4.17).
With the data of F (5)

g (τ) and F (5),2
g (τ) we can determine the H(5)

g,r using
the relations

(4.30) H(5)
g,r (τ) = Ĥ(5)

g,r (τ) +
χ
(5)
g,r

6
H(5)

r (τ)
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Table 5: The list of weight 2 modular forms F (5)
g (τ) on Γ0(Ng) and the other

set of weight 2 modular forms F (5),2
g (τ).

[g] Ng F
(5)
g (τ) F

(5),2
g (τ)

1A 1 0 0

2A 4 0 0

2B 4 16(Λ2 − Λ4/3) − 8
3
η(τ)8/η(τ/2)4

2C 2 −16Λ2 e( 1
4
) F

(5),2
2B (τ + 1)

3A 9 −2η6(τ)/η2(3τ) −2
η(τ)8η(3τ/2)2η(6τ)2

η(τ/2)2η(2τ)2η(3τ)4

6A 36 −2 η(τ)2η(2τ)2η(3τ)2/η(6τ)2 2 η(τ/2)2η(τ)2η(3τ)2/η(3τ/2)2

4AB 16 −2η(2τ)14/η(τ)4η(4τ)6 −16η(τ)2η(4τ)6/η(2τ)4

4CD 8 −8/3Λ4(τ) − 32
3

η(2τ)2η(4τ)2/η(τ)2

5A 5 −2Λ5 e( 1
4
) F

(5),2
10A (τ + 1)

10A 20
∑

d|20 c10A(d)Λd − 40
3

f20

∑
d|20 c10A,2(d)Λd(τ/4) + 10

3
f20(τ/4)

12AB 144 −2η(τ)2η(2τ)2η(6τ)4/η(3τ)2η(12τ)2 −4η(τ)2η(2τ)2η(12τ)2/η(6τ)2

c10A(d) = −5, 5
3
,− 2

3
, 1,− 1

3
for d = 2, 4, 5, 10, 20

c10A,2(d) = − 5
4
, 5

24
,− 1

3
, 1

4
,− 1

24
for d = 2, 4, 5, 10, 20

and

Ĥ
(5)
g,1 (τ)S

(5)
1 (τ) + Ĥ

(5)
g,3 (τ)S

(5)
3 (τ) =

1
2

(
F (5)

g (τ) + F (5)
zg (τ)

)
,

Ĥ
(5)
g,1 (τ)S

(5)
4 (τ) + Ĥ

(5)
g,3 (τ)S

(5)
2 (τ) =

1
2

(
F (5),2

g (τ) + F (5),2
zg (τ)

)
,

Ĥ
(5)
g,2 (τ)S

(5)
2 (τ) + Ĥ

(5)
g,4 (τ)S

(5)
4 (τ) =

1
2

(
F (5)

g (τ)− F (5)
zg (τ)

)
,

Ĥ
(5)
g,2 (τ)S

(5)
3 (τ) + Ĥ

(5)
g,4 (τ)S

(5)
1 (τ) =

1
2

(
−F (5),2

g (τ) + F (5),2
zg (τ)

)
,

(4.31)

where g and zg again form a pair satisfying (4.13).
Moreover, notice that in F

(5),2
g (τ) the part of the sum involving even

r has an expansion in q1/4+k for non-negative integers k, while the sum
over odd r has an expansion in q3/4+k. As a result, it is sufficient to specify
F
(�),2
g (τ) for one of the paired classes g and zg as they are related to each

other by

(4.32) F (5),2
zg (τ) = e

(
1
4

)
F (�),2

g (τ + 1).
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Using (4.30) to (4.32), the data recorded in Table 5 are sufficient to
explicitly specify all the mock modular forms H(5)

g (τ) for all [g] ⊂ G(5) at
lambency 5.

4.6. Lambencies seven and thirteen

For � = 7, apart from the 1A and 2A classes whose McKay–Thomson series
have been given in terms of the weight 0 Jacobi form Z(7) in Section 2.5,
there are five more classes 3AB, 4A, and 6AB whose McKay–Thomson series
H
(7)
g we would like to identify. We specify the weight 2 forms associated to

these classes. Notice that these expressions are not sufficient to completely
determine all the components H(7)

g,r . Nevertheless, they provide strong evi-
dence for the mock modular properties of the proposed McKay–Thompson
series.

F
(7)
4A (τ) = −2

η(τ)4η(2τ)2

η(4τ)2
,

F
(7),2
4A (τ) = 4

η(τ)6η(4τ)2

η(2τ)4
,

F
(7)
3AB(τ) = −6Λ3(τ),
F
(7)
6AB(τ) = −9Λ2(τ)− 2Λ3(τ) + 3Λ4(τ) + 3Λ6(τ)− Λ12(τ),

F
(7),2
6AB (4τ) = −

9
4
Λ2(τ)− Λ3(τ) +

3
8
Λ4(τ) +

3
4
Λ6(τ)− 1

8
Λ12(τ).

(4.33)

Similarly, for lambency 13 we have

F
(13)
4AB(τ) = −2

η(2τ)14

η(τ)4η(4τ)6
,

F
(13),2
4AB (τ) = −16η(τ)

2η(4τ)6

η(2τ)4
.

(4.34)

4.7. Mock theta functions

As mentioned in Section 2.1 we observe that in many cases across differ-
ent lambencies the components H(�)

g,r of the McKay–Thompson series coin-
cide with known mock theta functions. In particular, we often encounter
Ramanujan’s mock theta functions, and always in such a way that the order
is divisible by the lambency. In this section we will list these conjectural
identities between H

(�)
g,r and mock theta functions identified previously in

the literature.
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For � = 2 two of the functions H(2)
g (τ) are related to Ramanujan’s mock

theta functions of orders 2 and 8 (cf. (2.7)) through

H
(2)
4B (τ) = −2q−1/8μ(q),

H
(2)
8A (τ) = −2q−1/8U0(q).

(4.35)

For � = 3 we encounter the following order 3 mock theta functions of
Ramanujan:

H
(3)
2B,1(τ) = H

(3)
2C,1(τ) = H

(3)
4C,1(τ) = −2q−1/12f(q2),

H
(3)
6C,1(τ) = H

(3)
6D,1(τ) = −2q−1/12χ(q2),

H
(3)
8C,1(τ) = H

(3)
8D,1(τ) = −2q−1/12φ(−q2),

H
(3)
2B,2(τ) = −H(3)

2C,2(τ) = −4q2/3ω(−q),
H
(3)
6C,2(τ) = −H(3)

6D,2(τ) = 2q2/3ρ(−q).

(4.36)

(Cf. (2.9).) The description of the shadow of H(3)
g is consistent with the

fact that, among the seven order 3 mock theta functions of Ramanujan,
f(τ), φ(τ), ψ(τ) and χ(τ) form a group with the same shadow (S(3)1 (τ))
while the other three ω(τ), ν(τ) and ρ(τ) form another group with another
shadow (S(3)2 (τ)). Moreover, various relations among these order 3 mock
theta functions can be obtained as consequences of the above identification.

For � = 4 we encounter the following order 8 mock theta functions:

H
(4)
2C,1(τ) = q−

1
16
(−2S0(q) + 4T0(q)

)
,

H
(4)
2C,3(τ) = q

7
16
(
2S1(q)− 4T1(q)

)
,

H
(4)
4C,1(τ) = −2 q−

1
16S0(q),

H
(4)
4C,3(τ) = 2 q

7
16 S1(q).

(4.37)

(Cf. (2.11).) Comparing with (2.7) we see that our proposal implies the
identities

μ(q) = S0(q2)− 2T0(q2) + q
(
S1(q2)− 2T1(q2)

)
= U0(q)− 2U1(q),

U0(q) = S0(q2) + q S1(q2),

U1(τ) = T0(q2) + q T1(q2)

(4.38)
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between different mock theta functions of Ramanujan. See, for instance,
[113] for a collection of such identities.

For � = 5 we encounter four of Ramanujan’s order 10 mock theta func-
tions:

H
(5)
2BC,1(τ) = H

(5)
4CD,1(τ) = −2q−

1
20 X(q2),

H
(5)
2BC,3(τ) = H

(5)
4CD,3(τ) = −2q−

9
20 χ10(q2),

H
(5)
2C,2(τ) = −H(5)

2B,2(τ) = 2q−
1
5 ψ10(−q),

H
(5)
2C,4(τ) = −H(5)

2B,4(τ) = −2q
1
5 φ10(−q).

(4.39)

(Cf. (2.10).)

4.8. Automorphy

In this section we discuss the automorphy of the proposed McKay–Thompson
series H(�)

g =
(
H
(�)
g,r

)
. As mentioned in Section 4.1, the function H

(�)
g is a

vector-valued mock modular form with shadow
(
χg,rS

(�)
r

)
for some Γg ⊂

SL2(Z) with a certain (matrix-valued) multiplier νg. In this subsection we
will specify the group Γg and the multiplier νg. The multipliers we specify
here can be verified explicitly using the data given in Sections 4.2 to 4.6
(except for the few conjugacy classes at � = 7 and 13 for which the McKay–
Thompson series H(�)

g have not been completely determined).
We find that the automorphy of the vector-valued function H(�)

g is gov-
erned, in way that we shall describe presently, by the signed permutation
representation of G(�) arising from the construction (as a subgroup of Octm
form = 24/(�− 1)) given in Section 3.4. We use this representation to define
the symbols ng|hg which appear in the second row of each Tables C.1 to C.28,
and also in the twisted Euler character Tables B.7–B.12, and we will explain
below how to use these symbols to determine the multiplier system for
each H

(�)
g . It will develop also that the twisted Euler character g �→ χ

(�)
g

(cf. Tables B.7–B.12) attached to the signed permutation representation of
G(�) determines the shadow of H(�)

g .
Recall from Section 3.4 that the signed permutation representation of

G(�) naturally induces a permutation representation of the same degree,
and this permutation representation factors through the quotient Ḡ(�) =
G(�)/2 of G(�) by its unique central subgroup of order 2 (except in case
� = 2 when the signed and unsigned permutation representations coincide,
and we have G(2) = Ḡ(2)). Let g �→ ḡ denote the natural map G(�) → Ḡ(�)

and observe that (for � > 2) if the unique central involution of G(�) belongs
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to the cyclic subgroup 〈g〉 generated by g then o(g) = 2o(ḡ) and otherwise
o(g) = o(ḡ). We say that g ∈ G(�) is split over Ḡ(�) in case o(g) = o(ḡ) and we
call g non-split otherwise. (By this definition every element of G(2) = Ḡ(2)

is split.)
Recall from Section 3.4 that g �→ Π(�)g denotes the map attaching signed

permutation Frame shapes to elements of G(�) and g �→ Π̄(�)g denotes the
Frame shapes (actually cycle shapes) arising from the (unsigned) permu-
tation representation (on m = 24/(�− 1) points). Taking a formal product
of Frame shapes Π̃(�)g = Π(�)g Π̄(�)g (defined so that jm1jm2 = jm1+m2 , &c.) we
obtain the Frame shape of g ∈ G(�) regarded as a permutation of the 2m
points {±ei} for i ∈ Ω(�) (cf. Section 3.4). In particular, Π̃g is a cycle shape
and none of the exponents appearing in Π̃g are negative. Given g ∈ G(�) and
Π̃g = jm1

1 · · · jml

k with j1 < · · · < jk and mi > 0 define Ng = j1jk. That is,
set Ng to be the product of the shortest and longest cycle lengths appearing
in a cycle decomposition for g regarded as a permutation on the 2m points
{±ei}. Now define the symbols ng|hg by setting ng = o(ḡ) for all g ∈ G(�)

and all � ∈ Λ, and by setting hg = Ng/ng for all g ∈ G(�) and � ∈ Λ except
when � = 4 and g is non-split in which case set hg = Ng/2ng. The symbols
ng|hg are specified in Tables B.7 to B.12, and also in Tables C.1 to C.28, in
the rows labelled Γg. We omit the |hg when hg = 1, so ng is a shorthand for
ng|1 in these tables.

The significance of the value ng is that it is the minimal positive integer
n for which H(�)

g is a mock modular form (of weight 1/2) on Γ0(n), and the
significance of hg is that, as we shall see momentarily, it is the minimal pos-
itive integer h for which the multiplier for H(�)

g coincides with the conjugate
multiplier for the (vector-valued) cusp form S(�) when restricted to Γ0(nh)
(for n = ng). Since nghg ≤ Ng for all g the multiplier for H

(�)
g coincides with

the conjugate multiplier for S(�) when regarded as a mock modular form on
Γ0(Ng) for all g. It is very curious that this coincidence of multipliers extends
to the larger group Γ0(Ng/2) in the case that � = 4 and g is non-split (i.e.,
o(g) = 2o(ḡ)).

Given a pair of positive integers (n, h) we define a matrix-valued function
ρ
(�)
n|h on Γ0(n) as follows. For each � ∈ Λ let the integer v(�) be as specified

Table 6: Admissible v(�).

� 2 3 4 5 7 13

v(�) 1 5 3 7 1 7
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in Table 6. When h divides n we set

(4.40) ρ
(�)
n|h(γ) = e

(
−v(�) cd

nh

)
I�−1,

where I�−1 denotes the (�− 1)× (�− 1) identity matrix. When h does not
divide n and n is even we set

(4.41) ρ
(�)
n|h(γ) = e

(
−v(�) cd

nh

(n, h)
n

)
J

c(d+1)/n
�−1 K

c/n
�−1,

where (n, h) denotes the greatest common divisor of n and h, and J�−1 and
K�−1 are the (�− 1)× (�− 1) matrices given by

J�−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 −1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · (−1)�

⎞
⎟⎟⎟⎟⎟⎠ , K�−1 =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... . . .

...
...

...
1 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(4.42)

and when h does not divide n and n is odd we set

(4.43) ρ
(�)
n|h(γ) = e

(
−v(�) cd

nh

n

(n, h)

)
J

c(d+1)/n
�−1 K

c/n
�−1.

Now the multiplier system ν
(�)
g for the Umbral mock modular form H

(�)
g is

the matrix-valued function on Γ0(n) = Γ0(ng) given simply by

(4.44) ν(�)g = ν
(�)
n|h = ρ

(�)
n|hσ

(�),

where n = ng and h = hg and σ(�) = (σ(�)ij ) denotes the (matrix-valued) mul-
tiplier system for the (vector-valued) theta series S(�) (cf. (2.26)) and satisfies

(4.45) σ(�)(γ)S(�)(γτ)jac(γ, τ)3/4 = S(�)(τ)

for γ ∈ Γ0(1) = SL2(Z) where jac(γ, τ) = (cτ + d)−2 in case γ has lower
row (c, d).

Recall from Section 3.4 that the character of G(�) attached to its signed
permutation representation is denoted g �→ χ

(�)
g in Tables B.7–B.12 and that

of the (unsigned) permutation representation is denoted g �→ χ̄
(�)
g . Define

χ
(�)
g,r for 0 < r < � by setting χ(�)g,r = χ

(�)
g in case r is even and χ

(�)
g,r = χ̄

(�)
g

otherwise. Then the shadow of H(�)
g is the function S

(�)
g =

(
S
(�)
g,r

)
with
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components related to those of S(�) by S(�)g,r = χ
(�)
g,rS

(�)
r . In particular, H(�)

g is
a vector-valued modular form of weight 1/2 for Γ0(ng) when χ

(�)
g = χ̄

(�)
g = 0.

To summarize, we claim that our proposed McKay–Thompson series
H
(�)
g are such that if we define Ĥ(�)

g =
(
Ĥ
(�)
g,r

)
by setting

Ĥ(�)
g,r(τ) = Hg,r(τ)− χ

(�)
g,r√
2�

1
(4i)1/2

∫ i∞

−τ̄
(z + τ)−1/2S(�)r (z)dz(4.46)

for 0 < r < � then Ĥ(�)
g is invariant for the weight 1/2 action of Γ0(n) on

(�− 1)-vector-valued functions on H given by(
Ĥ(�)

g

∣∣∣
1/2,n|h

γ

)
(τ) = νn|h(γ)Ĥ(�)

g (γτ) jac(γ, τ)1/4,(4.47)

where n = ng and h = hg and νn|h is defined by (4.44). This statement com-
pletely describes the (conjectured) automorphy of the mock modular forms
H
(�)
g (cf. Section 5.3).

5. Conjectures

We have described the Umbral forms Z(�), H(�) and Φ(�) in Section 2 and the
Umbral groups G(�) in Section 3 and we have introduced families {H(�)

g | g ∈
G(�)} of vector-valued mock modular forms in Section 4. The discussions of
those sections clearly demonstrate the distinguished nature of these objects,
and we have mentioned some coincidences relating the groups G(�) and the
forms H(�)

g directly. In this section we present, in a more systematic fashion,
evidence that the relationship between the G(�) and the H(�) is more than
coincidental. Our observations lead naturally to conjectures that we hope
will serve as first steps in revealing the structural nature of the mechanism
underlying Umbral moonshine.

5.1. Modules

As was mentioned in Section 4, after comparison of the character tables
(cf. Appendix B.1) of the Umbral groups G(�) with the Fourier coefficient
tables (cf. Appendix C) for the forms H(�)

g it becomes apparent that the
low-degree Fourier coefficients of H(�) = H

(�)
e may be interpreted as degrees

of representations of G(�) in such a way that the corresponding coefficients
of H(�)

g are recovered by substituting character values at g; we have tabu-
lated evidence for this in the form of explicit combinations of irreducible
representations in Appendix D. This observation suggests the existence
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of bi-graded G(�)-modules K(�) =
⊕
K
(�)
r,d whose bi-graded dimensions are

recovered via Fourier coefficients from the vector-valued mock modular forms
H(�) =

(
H
(�)
r

)
.

Conjecture 5.1. We conjecture that for � ∈ Λ = {2, 3, 4, 5, 7, 13} there
exist naturally defined Z×Q-graded G(�)-modules

K(�) =
⊕
r∈Z

0<r<�

K(�)
r =

⊕
r,k∈Z

0<r<�

K
(�)
r,k−r2/4�,(5.1)

such that the graded dimension of K(�) is related to the vector-valued mock
modular form H(�) =

(
H
(�)
r

)
by

H(�)
r (τ) = −2δr,1q−1/4� +

∑
k∈Z

r2−4k�<0

dim
(
K
(�)
r,k−r2/4�

)
qk−r2/4�(5.2)

for q = e(τ) and such that the vector-valued mock modular forms H(�)
g =(

H
(�)
g,r

)
described in Section 4 (and partially in the tables of Appendix C) are

recovered from K(�) via graded trace functions according to

H(�)
g,r(τ) = −2δr,1q−1/4� +

∑
k∈Z

r2−4k�<0

trK(�)
r,k−r2/4�

(g)qk−r2/4�.(5.3)

Remark 5.2. Recall that a superspace is a Z/2Z-graded vector space and if
V = V0̄ ⊕ V1̄ is such an object and T : V → V is a linear operator preserving
the grading then the supertrace of T is given by strV T = trV0̄ T − trV1̄ T
where trW T denotes the usual trace of T onW . Since the coefficient of q−1/4�

in H(�)
g,1 is c

(�)
g,1(−1/4�) = −2 for all g ∈ G(�) for all � it is natural to expect

that this term may be interpreted as the supertrace of g ∈ G(�) on a trivial
G(�)-supermodule K(�)

1,−1/4� with vanishing even part and 2-dimensional odd
part. Thus Conjecture 5.1 implies the existence of aG(�)-supermoduleK(�) =⊕
K
(�)
r,d such that K

(�)
r,d is purely even or purely odd according as d is positive

or negative, and such thatH(�)
g,r =

∑
k strK(�)

r,k−r2/4�

(g)qk−r2/r� for each 0 < r <

� and g ∈ G(�).

Remark 5.3. For � ∈ Λ and 0 < r, s < � we have that r2 ≡ s2 (mod 4�)
implies r = s so the first index r in K(�)

r,d can be deduced from d since it is
the unique 0 < r < � such that d+ r2/4� is an integer. Thus we may dispense
with the first of the two gradings on the conjectural G(�)-modules K(�) and
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regard them as Q-graded K(�) =
⊕

dK
(�)
d by the rationals of the form d =

n− r2/4� for n ∈ Z and 0 < r < � without introducing any ambiguity.

5.2. Moonshine

In the case of monstrous moonshine the McKay–Thompson series Tg for g
in the monster group have the astonishing property that they all serve as
generators for the function fields of their invariance groups (cf. [1]). In other
words, if Γg is the subgroup of PSL2(R) consisting of the isometries γ : H →
H such that Tg(γτ) = Tg(τ) for all τ ∈ H then Tg induces an isomorphism
from the compactification of Γg\H to the Riemann sphere (being the one
point compactification of C). In particular, Γg is a genus zero subgroup of
PSL2(R), and so this property is commonly referred to as the genus zero
property of monstrous moonshine.

By now there are many methods extant for constructing graded vec-
tor spaces with algebraic structure whose graded dimensions are modular
functions — suitable classes of vertex algebras, for example, serve this pur-
pose (cf. [114, 115]) — and so one can expect to obtain analogues of the
McKay–Thompson series Tg by equipping such an algebraic structure with
the action of a group. But there is no guarantee that such a procedure will
result in functions that have the genus zero property of monstrous moon-
shine, and so it is this genus zero property that distinguishes the obser-
vations of McKay, Thompson, Conway and Norton regarding the Monster
group from any number of more generic connections between finite groups
and modular functions. In what follows, we will propose a conjecture that
may be regarded as the natural analogue of the Conway–Norton conjecture
for Umbral moonshine.

Suppose that T : H → C is a holomorphic function with invariance group
Γ < PSL2(R) and a simple pole in q = e(τ) as τ → i∞. Suppose also that
Γ is commensurable with PSL2(Z) and that the translation subgroup Γ∞,
consisting of the elements of Γ with upper-triangular preimages in SL2(R),
is generated by τ �→ τ + 1. It is shown in [25] that such a function T is
a generator for the field of Γ-invariant functions on H if and only if T (τ)
coincides with the weight 0 Rademacher sum

RΓ(τ) = Reg

⎛
⎝ ∑

γ∈Γ∞\Γ
q−1

∣∣
0
γ

⎞
⎠(5.4)

attached to Γ. The sum here is over representatives for the cosets of Γ∞ in
Γ and f �→ f |0γ denotes the weight 0 action of γ on holomorphic functions
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(viz., (f |0γ)(τ) = f(γτ)). We write Reg(·) to indicate a regularization pro-
cedure first realized by Rademacher (for the case that Γ = PSL2(Z)) in [26].
According then to the result of [25] the genus zero property of monstrous
moonshine may be reformulated in the following way.

For each element g in the monster group the McKay–Thompson
series Tg satisfies Tg = RΓg

when Γg is the invariance group of
Tg.

This may be compared with the article [24] which considers the mock
modular forms H(2)

g attached to the largest Mathieu group G(2) �M24 via
the observation of Eguchi–Ooguri–Tachikawa and applies some of the phi-
losophy of [25] to the problem of finding a uniform construction for these
functions. The solution developed in [24] is that the function H(2)

g coincides
with the weight 1/2 Rademacher sum

R
(2)
n|h(τ) = Reg

⎛
⎝ ∑

γ∈Γ∞\Γ0(n)

−2q−1/8
∣∣∣
1/2,n|h

γ

⎞
⎠ ,(5.5)

where n = ng and h = hg are integers determined by the defining permu-
tation representation of M24 (cf. Table B.7) and f �→ f |1/2,n|hγ denotes a
certain weight 1/2 action of Γ0(n) determined by n and h. (We refer to [24]
for full details.) By comparison with the previous paragraph we thus arrive
at a direct analogue of the genus zero property of monstrous moonshine that
holds for all the Umbral forms with � = 2.

For each element g in the largest Mathieu group the McKay–
Thompson series H(2)

g satisfies H(2)
g = R

(2)
n|h when n = ng and

h = hg.

We conjecture that this genus zero property extends to all the functions of
Umbral moonshine.

Conjecture 5.4 (Umbral moonshine). We conjecture that for each � ∈
Λ and each g ∈ G(�) we have H(�)

g = R
(�)
n|h where n = ng and h = hg are as

specified in Appendix B.2 and

R
(�)
n|h = Reg

⎛
⎜⎜⎜⎜⎝

∑
γ∈Γ∞\Γ0(n)

⎛
⎜⎜⎜⎝
−2q−1/4�

0
...
0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
1/2,n|h

γ

⎞
⎟⎟⎟⎟⎠(5.6)
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is a vector-valued generalization of the Rademacher sum R
(2)
n|h adapted to the

weight 1/2 action of Γ0(n) on (�− 1)-vector-valued functions on H that is
defined in (4.47).

5.3. Modularity

A beautiful feature of the Umbral moonshine conjecture is that it implies
the precise nature of the modularity of the Thompson series H(�)

g . We record
these implications explicitly as conjectures in this short section.

Conjecture 5.5. We conjecture that the graded supertrace functions (5.3)
for fixed � ∈ Λ and g ∈ G(�) and varying 0 < r < � define the components
of a vector-valued mock modular form H

(�)
g of weight 1/2 on Γ0(ng) with

shadow function S
(�)
g = (S(�)g,r) = (χ(�)g,rS

(�)
r ) where S(�) = (S(�)r ) is the vector-

valued theta series described in Section 2.3, the χ(�)g,r are determined from the
twisted Euler characters of G(�) (cf. Appendix B.2) by χ(�)g,r = χ̄

(�)
g for r odd

and χ(�)g,r = χ
(�)
g for r even, and ng denotes the order of the image of g ∈ G(�)

in the factor group Ḡ(�) (cf. Sections 3.1 and 3.4).

Recall from Section 4.8 that for � ∈ Λ and a pair (n, h) of positive integers
we have the matrix-valued function ν(�)n|h on Γ0(n) defined in (4.44). Recall
also that we have attached a pair (ng, hg) to each g ∈ G(�) for each � ∈ Λ in
Section 4.8.

Conjecture 5.6. We conjecture that the multiplier system of H(�)
g is given

by ν(�)n|h when n = ng and h = hg for all g ∈ G(�) for all � ∈ Λ.

5.4. Discriminants

One of the most striking features of Umbral moonshine is the apparently
intimate relation between the number fields on which the irreducible rep-
resentations of G(�) are defined and the discriminants of the vector-valued
mock modular form H(�). We discuss the evidence for this relation and for-
mulate conjectures about it in this section.

First we observe that the discriminants of the components H(�)
r of the

mock modular form H(�) = H
(�)
e determine some important properties of the

representations of G(�), where we say that an integer D is a discriminant of
H(�) if there exists a term qd = q−

D

4� with non-vanishing Fourier coefficient in
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at least one of the components. The following result can be verified explicitly
using the tables in Appendices B and C.

Proposition 5.7. Let � ∈ Λ. If n > 1 is an integer satisfying

(1) there exists an element of G(�) of order n, and

(2) there exists an integer λ that is co-prime to n such that D = −nλ2 is
a discriminant of H(�),

then there exists at least one pair of irreducible representations � and �∗ of
G(�) and at least one element g ∈ G(�) such that tr�(g) is not rational but

(5.7) tr�(g), tr�∗(g) ∈ Q(
√−n)

and n divides o(g).

The finite list of integers n satisfying the two conditions of Proposi-
tion 5.7 is given in Table 7.

From now on we say that an irreducible representation � of the Umbral
groupG(�) is of type n if n is an integer satisfying the two conditions of Propo-
sition 5.7 and the character values of � generate the field Q(

√−n). Evidently,
irreducible representations of type n come in pairs (�, �∗) with tr�∗(g) the
complex conjugate of tr�(g) for all g ∈ G(�). The list of all irreducible repre-
sentations of type n is given in Table 7. (Cf. Appendix B.1 for the character
tables of the G(�) and our notation for irreducible representations.)

Recall that the Frobenius–Schur indicator of an irreducible ordinary rep-
resentation of a finite group is 1, −1 or 0 according as the representation
admits an invariant symmetric bilinear form, an invariant skew-symmetric
bilinear form, or no invariant bilinear form, respectively. The representations

Table 7: The irreducible representations of type n.

� n (�, �∗)
2 7,15,23 (χ3, χ4), (χ5, χ6), (χ10, χ11), (χ12, χ13), (χ15, χ16)
3 5,8,11,20 (χ4, χ5), (χ16, χ17), (χ20, χ21), (χ22, χ23), (χ25, χ26)
4 3,7 (χ2, χ3), (χ13, χ14), (χ15, χ16)
5 4 (χ8, χ9), (χ10, χ11), (χ12, χ13)
7 3 (χ2, χ3), (χ6, χ7)
13 4 (χ3, χ4)
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admitting no invariant bilinear form are precisely those whose character val-
ues are not all real. We can now state the next observation.

Proposition 5.8. For each � ∈ Λ an irreducible representation � of G(�)

has Frobenius–Schur indicator 0 if and only if it is of type n for some n.

The Schur index of an irreducible representation � of a finite group G
is the smallest positive integer s such that there exists a degree s extension
k of the field generated by the character values tr�(g) for g ∈ G such that
� can be realized over k. Inspired by Proposition 5.8 we make the following
conjecture.

Conjecture 5.9. If � is an irreducible representation of G(�) of type n then
the Schur index of � is equal to 1.

In other words, we conjecture that the irreducible G(�)-representations
of type n can be realized over Q(

√−n). For � = 2 this speculation is in
fact a theorem, since it is known [116] that the Schur indices for M24 are
always 1. For � = 3 it is also known [116] that the Schur indices for Ḡ(3) =
M12 are also always 1. Moreover, the representations of G(3) � 2.Ḡ(3) with
characters χ16 and χ17 in the notation of Table B.2 have been constructed
explicitly over Q(

√−2) in [117]. Finally, Proposition 5.8 constitutes a non-
trivial consistency check for Conjecture 5.9 since the Schur index is at least
2 for a representation with Frobenius–Schur indicator equal to −1.

Armed with the preceding discussion we are now ready to state our
main observation for the discriminant property of Umbral moonshine. For
the purpose of stating this we temporarily write K(�)

r,d for the ordinary rep-

resentation of G(�) with character g �→ c
(�)
g,r(d) where the coefficients c

(�)
g,r(d)

are assumed to be those given in C.

Proposition 5.10. Let n be one of the integers in Table 7 and let λn be the
smallest positive integer such that D = −nλ2n is a discriminant of H(�). Then
K
(�)
r,−D/4� = �n ⊕ �∗n where �n and �∗n are dual irreducible representations of

type n. Conversely, if � is an irreducible representation of type n and −D
is the smallest positive integer such that K(�)

r,−D/4� has � as an irreducible
constituent then there exists an integer λ such that D = −nλ2.

Extending this we make the following conjecture.
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Conjecture 5.11. If D is a discriminant of H(�) which satisfies D = −nλ2
for some integer λ then the representation K(�)

r,−D/4� has at least one dual pair
of irreducible representations of type n arising as irreducible constituents.

We conclude this section with conjectures arising from the observation
(cf. Appendix D) that the conjectural G(�)-module K(�)

r,d is typically isomor-
phic to several copies of a single representation. Say a G-module V is a
doublet if it is isomorphic to the direct sum of two copies of a single repre-
sentation of G.

Conjecture 5.12. For �∈Λ= {2, 3, 4, 5, 7, 13} the representation K(�)
r,−D/4�

is a doublet if and only if D �= −nλ2 for any integer λ for any n satisfying
the conditions of Proposition 5.7.

To see some evidence for Conjecture 5.12 one can inspect the proposed
decompositions of the representations K(�)

r,d in the tables in Appendix D for
the following discriminants:

• −D = 7, 15, 23, 63, 135, 175, 207 for � = 2,

• −D = 8, 11, 20, 32, 44, 80 for � = 3,

• −D = 7, 12, 28, 63, 108 for � = 4,

• −D = 4, 16, 64, 144, 196 for � = 5,

• −D = 3λ2, λ = 1, . . . , 9, λ �= 7 for � = 7,

• −D = 4λ2, λ = 1, . . . , 11 for � = 13.

5.5. Geometry and physics

Beyond the conjectures already mentioned above several interesting and
important questions remain regarding the structural nature of Umbral moon-
shine. In the case that � = 2 there are strong indications that a deep rela-
tionship to K3 surfaces — extending in some way the relation [118, 119]
between finite groups of K3 surface symplectomorphisms and subgroups of
M23 — is responsible for the relationship between G(2) �M24 and H(2).
One such indication is the fact that the Jacobi form Z(2), from which H(2)

may be obtained by decomposing with respect to superconformal charac-
ters, coincides with the elliptic genus of a(ny) complex K3 surface. It is
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natural then to ask if there are analogous geometric interpretations for the
remaining extremal Jacobi forms Z(�) for � ∈ Λ, and a positive answer to
this question will be a first step in determining the geometric significance of
the Umbral groups G(�) and the attached mock modular forms H(�)

g .
In a series of papers [87–89, 120, 121] Gritsenko–Nikulin develop applica-

tions of Siegel modular forms to mirror symmetry for K3 surfaces (cf. [122]).
Many of the Siegel forms arising are realized as additive or exponential lifts
of (weak) Jacobi forms, and amongst many examples the exponential lifts
Φ(�) of the particular forms Z(�) for � ∈ {2, 3, 4, 5} ⊂ Λ appear in connection
with explicitly defined families of lattice polarized K3 surfaces in [87]. It
is natural to ask if there is an analogous relationship between the Umbral
Z(�) and suitably defined mirror families of K3 surfaces for the remaining �
in Λ.

As mentioned in the introduction, monstrous moonshine involves aspects
of conformal field theory and string theory and there are several hints that
Umbral moonshine will also play a role in string theory. The most obvious
hint at � = 2 is through the fact mentioned above that the weak Jacobi form
Z(2) coincides with the elliptic genus of a K3 surface and the fact that K3
surfaces play a prominent role in the study of superstring compactification.
The Siegel form Φ(2) = (Δ5)2 which is the multiplicative lift of the weak
Jacobi form Z(2) also plays a distinguished role in type II string theory on
K3× E where E is an elliptic curve and 1/Φ(2) occurs as the generating
function which counts the number of 1/4 BPS dyon states [123]. BPS states
in a supersymmetric theory are states that are annihilated by some of the
supercharges of the theory; the 1/4 BPS states of interest here are annihi-
lated by 4 of the 16 supercharges of a theory with N = 4 supersymmetry in
four spacetime dimensions and are termed dyons because they necessarily
carry both electric and magnetic charges. The relation between the zeros of
Φ(2) and the wall-crossing phenomenon in this theory has been studied in
[124–127] and this relation leads to a connection between the counting of
BPS black hole states in string theory and mock modular forms [45]. For a
pedagogical review of this material see [38, 128].

There are several hints that Umbral moonshine for � > 2 will also play
a role in string theory. The first of these occurs in the study of N = 2
dual pairs of string theories [129, 130]. An N = 2 dual pair consists of a
compactification of the heterotic string on a product of a K3 surface with
an elliptic curve E with a specific choice of E8 × E8 gauge bundle onK3× E
and a conjectured dual description of this model in terms of IIA string theory
on a Calabi–Yau 3-fold X which admits a K3 fibration. The low-energy
description of such theories involves a vector-multiplet moduli space which
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is a special Kähler manifold of the form

(5.8) Ms+2,2
vm =

SU(1, 1)
U(1)

×N s+2,2,

where N s+2,2 is the quotient Γ\Hs+1,1 of the generalized upper half-plane

(5.9) Hs+1,1 = O(s+ 2, 2;R)/(O(s+ 2)×O(2))

by an arithmetic subgroup Γ in SO(s+ 2, 2;R), with Γ depending on the
specific model in question. One-loop string computations in the heterotic
string lead to automorphic forms on N s+2,2 via a generalized theta lift con-
structed in [131, 132], cf. [133] for a review. In models with s = 1 this leads to
automorphic forms on Γ\O(3, 2;R)/(O(3)×O(2)), that is to Siegel modular
forms on the genus 2 Siegel upper half-space H2

∼= H2,1.
A particular example of such anN = 2 dual pair was studied in [134, 135]

with s = 1 and involving a dual description in terms of Type II string the-
ory on a Calabi–Yau 3-fold with Hodge numbers (h1,1, h2,1) = (4, 148). In the
heterotic description the arithmetic subgroup which appears is the paramod-
ular group Γ2, the Siegel modular form which occurs is the exponential lift
of Z(3) described in Section 2.6 and the Calabi–Yau 3-fold is also elliptically
fibred and the elliptic fibre is of E7 type. We thus see many of the ingredi-
ents of � = 3 Umbral moonshine appearing in the context of a specific dual
pair of string theories with N = 2 spacetime supersymmetry. It will be very
interesting to investigate whether other aspects of � = 3 Umbral moonshine
can be realized in these models and whether N = 2 dual pairs exist which
exhibit elements of Umbral moonshine for � > 3.

A second way that elements of Umbral moonshine for � > 2 are likely to
appear in string theory involves a generalization of the generating function
discussed above that counts 1/4 BPS states. Type II string theory on K3×
E preserves N = 4 spacetime supersymmetry. There exist orbifold versions
of this model that also preserve N = 4 spacetime supersymmetry that are
known in the physics literature as CHL models. To construct such a model
one chooses a K3 surface with a Z/mZ hyper-Kähler automorphism and
constructs the orbifold theory (K3× E)/(Z/mZ) where Z/mZ is a freely
acting symmetry realized as the product of a hyper-Kähler automorphism
of the K3 surface and an order m translation along E. For m = 2, 3, 4 it is
possible to find K3 surfaces with (Z/mZ)× (Z/mZ) symmetry, and in this
case one can construct a CHL model that utilizes the first Z/mZ factor in the
orbifold construction and has the second Z/mZ factor acting as a symmetry
which preserves the holomorphic 3-form of the Calabi–Yau space (K3×
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E)/(Z/mZ). It was proposed in [136] that the generating function which
counts 1/4 BPS states weighted by an element of Z/mZ is the reciprocal of
the Siegel form Φ(m+1) form ∈ {2, 3, 4}. In both this construction and in the
study of N = 2 dual pairs the appearance of some of the Umbral Siegel forms
Φ(�) can be anticipated, although many details remain to be worked out. The
action of the Umbral groups G(�) remains more elusive, and deeper insight
into possible connections between string theory and Umbral moonshine will
undoubtedly require progress in understanding the actions of these groups
in terms of their action on BPS states.

We plan to elaborate further on the topics mentioned above in future
work.
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Appendix A. Modular forms

A.1. Dedekind eta function

The Dedekind eta function, denoted η(τ), is a holomorphic function on the
upper half-plane defined by the infinite product

η(τ) = q1/24
∏
n≥1

(1− qn),

where q = e(τ) = e2πiτ . It is a modular form of weight 1/2 for the modular
group SL2(Z) with multiplier ε : SL2(Z)→ C∗, which means that

ε(γ)η(γτ)jac(γ, τ)1/4 = η(τ)

for all γ =
(
a b
c d

)
∈ SL2(Z), where jac(γ, τ) = (cτ + d)−2. The multiplier

system ε may be described explicitly as

(A.1) ε

(
a b
c d

)
=

{
e(−b/24), c = 0, d = 1,
e(−(a+ d)/24c+ s(d, c)/2 + 1/8), c > 0,

where s(d, c) =
∑c−1

m=1(d/c)((md/c)) and ((x)) is 0 for x ∈ Z and x− �x� −
1/2 otherwise. We can deduce the values ε(a, b, c, d) for c < 0, or for c = 0
and d = −1, by observing that ε(−γ) = ε(γ)e(1/4) for γ ∈ SL2(Z).

Let T denote the element of SL2(Z) such that tr(T ) = 2 and Tτ = τ + 1
for τ ∈ H. Observe that

ε(Tmγ) = ε(γTm) = e(−m/24)ε(γ)

for m ∈ Z.
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A.2. Jacobi theta functions

We define the Jacobi theta functions θi(τ, z) as follows for q = e(τ) and
y = e(z):

θ1(τ, z) = −iq1/8y1/2
∞∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1),

θ2(τ, z) = q1/8y1/2
∞∏

n=1

(1− qn)(1 + yqn)(1 + y−1qn−1),

θ3(τ, z) =
∞∏

n=1

(1− qn)(1 + y qn−1/2)(1 + y−1qn−1/2),

θ4(τ, z) =
∞∏

n=1

(1− qn)(1− y qn−1/2)(1− y−1qn−1/2).

Note that there are competing conventions for θ1(τ, z) in the literature and
our normalization may differ from another by a factor of −1 (or possibly
±i).

A.3. Higher level modular forms

The congruence subgroups of the modular group SL2(Z) that are most rel-
evant for this paper are

Γ0(N) =
{[
a b
c d

]
∈ SL2(Z), c = 0 mod N

}
.(A.2)

For N > 1 a (non-zero) modular form of weight 2 for Γ0(N) is given by

ΛN (τ) = N q∂q log
(
η(Nτ)
η(τ)

)
(A.3)

=
N(N − 1)

24

(
1 +

24
N − 1

∑
k>0

σ(k)(qk −NqNk)

)
,

where σ(k) is the divisor function σ(k) =
∑

d|k d.
Observe that a modular form on Γ0(N) is a modular form on Γ0(M)

whenever N |M , and for some small N the space of forms of weight 2 is
spanned by the Λd(τ) for d a divisor of N . By contrast, in the case that
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N = 11 we have the newform

(A.4) f11(τ) = η2(τ)η2(11τ),

which is a cusp form of weight 2 for Γ0(11) that is not a multiple of Λ11(τ).
We meet the newforms

f14(τ) = η(τ)η(2τ)η(7τ)η(14τ),(A.5)
f15(τ) = η(τ)η(3τ)η(5τ)η(15τ),(A.6)

f20(τ) = η(2τ)2η(10τ)2,(A.7)

at N = 14, 15 and 20, respectively, and together with fN the functions Λd(τ)
for d|N span the space of weight 2 forms on Γ0(N) for N = 11, 14, 15.

For N = 23 there is a 2-dimensional space of newforms. We may use the
basis

f23,a(τ) =
η(τ)3η(23τ)3

η(2τ)η(46τ)
+ 3η(τ)2η(23τ)2 + 4η(τ)η(2τ)η(23τ)η(46τ)(A.8)

+ 4η(2τ)2η(46τ)2

f23,b(τ) = η(τ)2η(23τ)2

satisfying f23,a = q +O(q3) and f23,b = q2 +O(q3). (The normalized Hecke-
eigenforms of weight 2 for Γ0(23) are f23,a − 1

2(1±
√
5)f23,b.)

For N = 44 there is a unique newform up to a multiplicative constant.
It satisfies

f44(τ) = q + q3 − 3q5 + 2q7 − 2q9 − q11 − 4q13 − 3q15 + 6q17 + 8q19

+ 2q21 − 3q23 + 4q25 − 5q27 +O(q28).

See [137] and Chapter 4.D of [138] for more details. A discussion of the ring
of weak Jacobi forms of higher level can be found in [139].

Appendix B. Characters

In Appendix B.1 we give character tables (with power maps and Frobenius–
Schur indicators) for each group G(�). These were computed with the aid
of the computer algebra package GAP4 [98] using the explicit presentations
for the G(�) that appear in Section 3.4. We use the abbreviations an =

√−n
and bn = (−1 +√−n)/2 in these tables.
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The tables in Appendix B.2 furnish the Frame shapes Π(�)g and char-
acter values χ(�)g attached to the signed permutation representations (cf.
Section 3.2) of the groups G(�) given in Section 3.4. These Frame shapes
and character values can easily be computed by hand; we detail them here
explicitly since they can be used to define symbols ng|hg which encode the
automorphy of the vector-valued mock modular forms H(�)

g according to the
prescription of Section 4.8. The symbols ng|hg are given in the rows labelled
Γg in Appendix B.2.
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Table B.5: Character table of G(7) � SL2(3).

[g] FS 1A 2A 4A 3A 6A 3B 6B

[g2] 1A 1A 2A 3B 3A 3A 3B
[g3] 1A 2A 4A 1A 2A 1A 2A

χ1 + 1 1 1 1 1 1 1
χ2 ◦ 1 1 1 b3 b3 b3 b3
χ3 ◦ 1 1 1 b3 b3 b3 b3
χ4 + 3 3 −1 0 0 0 0
χ5 − 2 −2 0 −1 1 −1 1
χ6 ◦ 2 −2 0 −b3 b3 −b3 b3
χ7 ◦ 2 −2 0 −b3 b3 −b3 b3

Table B.6: Character table of G(13) � 4.

[g] FS 1A 2A 4A 4B

[g2] 1A 1A 2A 2A

χ1 + 1 1 1 1
χ2 + 1 1 −1 −1
χ3 ◦ 1 −1 a1 a1
χ4 ◦ 1 −1 a1 a1

B.2. Euler characters

The tables in this section describe the Frame shapes Π(�)g and twisted Euler
characters χ(�)g attached to each group G(�) via the signed permutation rep-
resentations given in Section 3.4. The rows labelled Π̄(�)g and χ̄(�)g describe the
corresponding data for the (unsigned) permutation representations. Accord-
ing to the discussion of Section 4.8 the Frame shapes Π(�)g and Π̄(�)g (or even
just the Π(�)g ) can be used to define symbols ng|hg which encode the auto-
morphy of the vector-valued mock modular form H

(�)
g ; these symbols are

given in the rows labelled Γg. We write ng here as a shorthand for ng|1.
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Table B.9: Twisted Euler characters and Frame shapes at � = 4.

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

Γg 1 1|2 2|2 2|4 4|4 2 3 3|2 6|2 4|8 4 7 7|2
χ̄
(4)
g 8 8 0 0 0 4 2 2 0 0 2 1 1

χ
(4)
g 8 −8 0 0 0 0 2 −2 0 0 0 1 −1

Π̄(4)g 18 18 24 24 42 1422 1232 1232 2161 42 122141 1171 1171

Π(4)g 18 28

18 24 44

24 42 24 1232 2262

1232 2161 82

42 42 1171 21141

1171

We have χ(4)g = χ12 and χ̄
(4)
g = χ1(g) + χ8(g) in the notation of Table B.3.

Table B.10: Twisted Euler characters and Frame shapes at � = 5.

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

Γg 1 1|4 2|2 2 3|3 3|12 5 5|4 2|8 4 6|24
χ̄
(5)
g 6 6 2 2 0 0 1 1 0 2 0

χ
(5)
g 6 −6 −2 2 0 0 1 −1 0 0 0

Π̄(5)g 16 16 1222 1222 32 32 1151 1151 23 1241 61

Π(5)g 16 26

16
24

12 1222 32 62

32 1151 21101

1151
43

23 2141 121

61

We have χ(5)g = χ14(g) and χ̄
(5)
g = χ1(g) + χ6(g) in the notation of
Table B.4.

Table B.11: Twisted Euler characters and Frame shapes at � = 7.

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
χ̄
(7)
g 4 4 0 1 1

χ
(7)
g 4 −4 0 1 −1

Π̄(7)g 14 14 22 1131 1131

Π(7)g 14 24

14
42

22 1131 2161

1131

We have χ(7)g = χ6(g) + χ7(g) in the notation of Table B.5.
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Table B.12: Twisted Euler characters and Frame shapes at � = 13.

[g] 1A 2A 4AB

Γg 1 1|4 2|8
χ̄
(13)
g 2 2 0

χ
(13)
g 2 −2 0

Π̄(13)g 12 12 21

Π(13)g 12 22

12
41

21

We have χ(13)g = χ3(g) + χ4(g) in the notation of Table B.6.

Appendix C. Coefficients

In this section, we furnish tables of Fourier coefficients of small degree for
the vector-valued mock modular forms H(�)

g that we attach to the conjugacy
classes of the groups G(�) for � ∈ Λ. For each � and 0 < r < � we give a table
that displays the coefficients of H(�)

g,r for (g ranging over a set of representa-
tives for) each conjugacy class [g] in G(�). The first row of each table labels
the conjugacy classes, and the first column labels exponents of q (or rather
q1/4�), so that for the table captioned H(�)

g,r (for some � ∈ Λ and 0 < r < �)
the entry in the row labelled d and the column labelled nZ is the coeffi-
cient of qd/4� in the Fourier expansion of H(�)

g,r for [g] = nZ. Occasionally
the functions H(�)

g and H(�)
g′ coincide for non-conjugate g and g′ and when

this happens we condense information into a single column, writing 7AB
in Table C.1, for example, to indicate that the entries in that column are
Fourier coefficients for both H(2)

7A and H(2)
7B .
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C.3. Lambency four

Table C.4: McKay–Thompson series H(4)
g,1 .

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

Γg 1 1|2 2|2 2|4 4|4 2 3 3|2 6|2 4|8 4 7 7|2
−1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

15 14 14 −2 6 −2 −2 2 2 −2 2 −2 0 0

31 42 42 −6 −6 2 2 0 0 0 2 −2 0 0

47 86 86 6 6 −2 −2 −4 −4 0 −2 2 2 2

63 188 188 −4 −12 −4 4 2 2 2 0 0 −1 −1

79 336 336 0 16 0 −8 0 0 0 0 −4 0 0

95 616 616 −8 −16 0 8 −2 −2 −2 4 0 0 0

111 1050 1050 10 18 2 −6 6 6 −2 −2 2 0 0

127 1764 1764 −12 −28 −4 12 0 0 0 −4 0 0 0

143 2814 2814 14 38 −2 −18 −6 −6 2 2 −2 0 0

159 4510 4510 −18 −42 6 14 4 4 0 2 −2 2 2

175 6936 6936 24 48 0 −16 0 0 0 −4 4 −1 −1

191 10612 10612 −28 −60 −4 28 −8 −8 −4 −4 0 0 0

207 15862 15862 22 78 −2 −34 10 10 −2 2 −6 0 0

223 23532 23532 −36 −84 4 36 0 0 0 4 0 −2 −2

239 34272 34272 48 96 0 −40 −12 −12 0 0 4 0 0

255 49618 49618 −46 −126 −6 50 10 10 2 −6 2 2 2

271 70758 70758 54 150 −2 −66 0 0 0 6 −6 2 2

287 100310 100310 −74 −170 6 70 −10 −10 −2 6 −2 0 0

303 140616 140616 88 192 0 −72 18 18 −2 −4 8 0 0

319 195888 195888 −96 −232 −8 96 0 0 0 −4 0 0 0

335 270296 270296 104 272 0 −120 −22 −22 2 4 −8 −2 −2

351 371070 371070 −130 −306 6 126 18 18 2 6 −2 0 0

367 505260 505260 156 348 4 −140 0 0 0 −4 8 0 0

383 684518 684518 −170 −410 −10 174 −22 −22 −2 −10 2 2 2

399 921142 921142 182 486 −2 −202 28 28 −4 6 −10 −2 −2

415 1233708 1233708 −228 −540 12 220 0 0 0 8 −4 0 0

431 1642592 1642592 272 608 0 −248 −34 −34 2 −8 12 0 0

447 2177684 2177684 −284 −708 −12 292 32 32 4 −8 4 −2 −2

463 2871918 2871918 318 814 −2 −346 0 0 0 6 −14 0 0

479 3772468 3772468 −380 −908 12 380 −38 −38 −2 12 0 0 0

495 4932580 4932580 436 1020 4 −412 46 46 −2 −8 12 2 2

511 6425466 6425466 −486 −1174 −14 490 0 0 0 −14 2 −2 −2

527 8335418 8335418 538 1338 −6 −566 −52 −52 4 10 −14 0 0

543 10776290 10776290 −622 −1494 18 610 50 50 2 14 −6 0 0

559 13879290 13879290 714 1666 2 −678 0 0 0 −10 18 −2 −2

575 17818766 17818766 −786 −1898 −18 790 −58 −58 −6 −14 2 0 0

591 22798188 22798188 860 2148 −4 −900 72 72 −4 8 −20 0 0
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Table C.5: McKay–Thompson series H(4)
g,2 .

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

Γg 1 1|2 2|2 2|4 4|4 2 3 3|2 6|2 4|8 4 7 7|2
12 16 −16 0 0 0 0 −2 2 0 0 0 2 −2
28 48 −48 0 0 0 0 0 0 0 0 0 −1 1
44 112 −112 0 0 0 0 4 −4 0 0 0 0 0
60 224 −224 0 0 0 0 −4 4 0 0 0 0 0
76 432 −432 0 0 0 0 0 0 0 0 0 −2 2
92 784 −784 0 0 0 0 4 −4 0 0 0 0 0

108 1344 −1344 0 0 0 0 −6 6 0 0 0 0 0
124 2256 −2256 0 0 0 0 0 0 0 0 0 2 −2
140 3680 −3680 0 0 0 0 8 −8 0 0 0 −2 2
156 5824 −5824 0 0 0 0 −8 8 0 0 0 0 0
172 9072 −9072 0 0 0 0 0 0 0 0 0 0 0
188 13872 −13872 0 0 0 0 12 −12 0 0 0 −2 2
204 20832 −20832 0 0 0 0 −12 12 0 0 0 0 0
220 30912 −30912 0 0 0 0 0 0 0 0 0 0 0
236 45264 −45264 0 0 0 0 12 −12 0 0 0 2 −2
252 65456 −65456 0 0 0 0 −16 16 0 0 0 −1 1
268 93744 −93744 0 0 0 0 0 0 0 0 0 0 0
284 132944 −132944 0 0 0 0 20 −20 0 0 0 0 0
300 186800 −186800 0 0 0 0 −22 22 0 0 0 −2 2
316 260400 −260400 0 0 0 0 0 0 0 0 0 0 0
332 360208 −360208 0 0 0 0 28 −28 0 0 0 2 −2
348 494624 −494624 0 0 0 0 −28 28 0 0 0 4 −4
364 674784 −674784 0 0 0 0 0 0 0 0 0 −2 2
380 914816 −914816 0 0 0 0 32 −32 0 0 0 0 0
396 1232784 −1232784 0 0 0 0 −36 36 0 0 0 0 0
412 1652208 −1652208 0 0 0 0 0 0 0 0 0 −2 2
428 2202704 −2202704 0 0 0 0 44 −44 0 0 0 0 0
444 2921856 −2921856 0 0 0 0 −48 48 0 0 0 0 0
460 3857760 −3857760 0 0 0 0 0 0 0 0 0 4 −4
476 5070560 −5070560 0 0 0 0 56 −56 0 0 0 −2 2
492 6636000 −6636000 0 0 0 0 −60 60 0 0 0 0 0
508 8649648 −8649648 0 0 0 0 0 0 0 0 0 0 0
524 11230448 −11230448 0 0 0 0 68 −68 0 0 0 −2 2
540 14526848 −14526848 0 0 0 0 −76 76 0 0 0 0 0
556 18724176 −18724176 0 0 0 0 0 0 0 0 0 2 −2
572 24051808 −24051808 0 0 0 0 88 −88 0 0 0 4 −4
588 30793712 −30793712 0 0 0 0 −94 94 0 0 0 −2 2
604 39301584 −39301584 0 0 0 0 0 0 0 0 0 0 0
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Table C.6: McKay–Thompson series H(4)
g,3 .

[g] 1A 2A 2B 4A 4B 2C 3A 6A 6BC 8A 4C 7AB 14AB

Γg 1 1|2 2|2 2|4 4|4 2 3 3|2 6|2 4|8 4 7 7|2
7 6 6 6 −2 −2 −2 0 0 0 2 2 −1 −1

23 28 28 −4 4 −4 4 −2 −2 2 0 0 0 0

39 56 56 8 0 0 −8 2 2 2 −4 0 0 0

55 138 138 −6 2 2 10 0 0 0 −2 2 −2 −2

71 238 238 14 −10 −2 −10 −2 −2 2 2 2 0 0

87 478 478 −18 6 −2 14 4 4 0 2 −2 2 2

103 786 786 18 −6 2 −22 0 0 0 −2 −2 2 2

119 1386 1386 −22 10 2 26 −6 −6 2 2 2 0 0

135 2212 2212 36 −12 −4 −28 4 4 0 4 4 0 0

151 3612 3612 −36 20 −4 36 0 0 0 0 0 0 0

167 5544 5544 40 −16 0 −48 −6 −6 −2 −4 −4 0 0

183 8666 8666 −54 18 2 58 8 8 0 −2 2 0 0

199 12936 12936 72 −32 0 −64 0 0 0 4 4 0 0

215 19420 19420 −84 36 −4 76 −8 −8 0 0 −4 2 2

231 28348 28348 92 −36 4 −100 10 10 2 −4 −4 −2 −2

247 41412 41412 −108 44 4 116 0 0 0 0 4 0 0

263 59178 59178 138 −62 −6 −126 −12 −12 0 6 6 0 0

279 84530 84530 −158 66 −6 154 14 14 −2 2 −2 −2 −2

295 118692 118692 180 −68 4 −188 0 0 0 −8 −4 0 0

311 166320 166320 −208 88 8 216 −18 −18 2 −4 4 0 0

327 230092 230092 252 −108 −4 −244 16 16 0 8 4 2 2

343 317274 317274 −294 122 −6 282 0 0 0 2 −6 −1 −1

359 432964 432964 324 −132 4 −340 −20 −20 0 −8 −8 0 0

375 588966 588966 −378 150 6 390 24 24 0 −2 6 0 0

391 794178 794178 450 −190 −6 −430 0 0 0 10 10 0 0

407 1067220 1067220 −508 220 −12 500 −30 −30 2 0 −4 0 0

423 1423884 1423884 572 −228 4 −588 30 30 2 −12 −8 0 0

439 1893138 1893138 −654 266 10 666 0 0 0 −2 6 2 2

455 2501434 2501434 762 −326 −6 −742 −32 −32 0 10 10 −2 −2

471 3294256 3294256 −864 360 −8 848 40 40 0 4 −8 0 0

487 4314912 4314912 960 −392 8 −984 0 0 0 −12 −12 0 0

503 5633596 5633596 −1092 452 12 1108 −44 −44 0 0 8 −4 −4

519 7320670 7320670 1262 −522 −10 −1234 46 46 2 18 14 0 0

535 9483336 9483336 −1416 592 −16 1400 0 0 0 4 −8 2 2

551 12233330 12233330 1570 −646 10 −1598 −58 −58 −2 −18 −14 4 4

567 15734606 15734606 −1778 726 14 1798 62 62 −2 −6 10 −1 −1

583 20161302 20161302 2022 −850 −10 −1994 0 0 0 18 14 0 0

599 25761288 25761288 −2264 944 −16 2240 −72 −72 3 4 −12 0 0
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C.4. Lambency five

Table C.7: McKay–Thompson series H(5)
g,1 .

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

Γg 1 1|4 2|2 2 3|3 3|12 5 5|4 2|8 4 6|24

−1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
19 8 8 0 0 2 2 −2 −2 4 0 −2
39 18 18 2 2 0 0 −2 −2 −6 2 0
59 40 40 0 0 −2 −2 0 0 4 0 −2
79 70 70 −2 −2 4 4 0 0 −6 −2 0
99 120 120 0 0 0 0 0 0 12 0 0

119 208 208 0 0 −2 −2 −2 −2 −8 0 −2
139 328 328 0 0 4 4 −2 −2 12 0 0
159 510 510 −2 −2 0 0 0 0 −18 −2 0
179 792 792 0 0 −6 −6 2 2 20 0 2
199 1180 1180 4 4 4 4 0 0 −24 4 0
219 1728 1728 0 0 0 0 −2 −2 24 0 0
239 2518 2518 −2 −2 −8 −8 −2 −2 −30 −2 0
259 3600 3600 0 0 6 6 0 0 40 0 −2
279 5082 5082 2 2 0 0 2 2 −42 2 0
299 7120 7120 0 0 −8 −8 0 0 48 0 0
319 9838 9838 −2 −2 10 10 −2 −2 −58 −2 2
339 13488 13488 0 0 0 0 −2 −2 72 0 0
359 18380 18380 4 4 −10 −10 0 0 −80 4 −2
379 24792 24792 0 0 12 12 2 2 84 0 0
399 33210 33210 −6 −6 0 0 0 0 −102 −6 0
419 44248 44248 0 0 −14 −14 −2 −2 116 0 2
439 58538 58538 2 2 14 14 −2 −2 −130 2 2
459 76992 76992 0 0 0 0 2 2 144 0 0
479 100772 100772 −4 −4 −16 −16 2 2 −168 −4 0
499 131160 131160 0 0 18 18 0 0 196 0 −2
519 169896 169896 8 8 0 0 −4 −4 −216 8 0
539 219128 219128 0 0 −22 −22 −2 −2 236 0 2
559 281322 281322 −6 −6 24 24 2 2 −270 −6 0
579 359712 359712 0 0 0 0 2 2 312 0 0
599 458220 458220 4 4 −24 −24 0 0 −336 4 0
619 581416 581416 0 0 28 28 −4 −4 372 0 0
639 735138 735138 −6 −6 0 0 −2 −2 −426 −6 0
659 926472 926472 0 0 −30 −30 2 2 476 0 2
679 1163674 1163674 10 10 34 34 4 4 −526 10 2
699 1457040 1457040 0 0 0 0 0 0 576 0 0
719 1819056 1819056 −8 −8 −42 −42 −4 −4 −644 −8 −2
739 2264376 2264376 0 0 42 42 −4 −4 724 0 −2
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Table C.8: McKay–Thompson series H(5)
g,2 .

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

Γg 1 1|4 2|2 2 3|3 3|12 5 5|4 2|8 4 6|24
16 10 −10 2 −2 −2 2 0 0 0 0 0

36 30 −30 −2 2 0 0 0 0 0 0 0

56 52 −52 4 −4 4 −4 2 −2 0 0 0

76 108 −108 −4 4 0 0 −2 2 0 0 0

96 180 −180 4 −4 0 0 0 0 0 0 0

116 312 −312 −8 8 0 0 2 −2 0 0 0

136 488 −488 8 −8 −4 4 −2 2 0 0 0

156 792 −792 −8 8 0 0 2 −2 0 0 0

176 1180 −1180 12 −12 4 −4 0 0 0 0 0

196 1810 −1810 −14 14 −2 2 0 0 0 0 0

216 2640 −2640 16 −16 0 0 0 0 0 0 0

236 3868 −3868 −20 20 4 −4 −2 2 0 0 0

256 5502 −5502 22 −22 −6 6 2 −2 0 0 0

276 7848 −7848 −24 24 0 0 −2 2 0 0 0

296 10912 −10912 32 −32 4 −4 2 −2 0 0 0

316 15212 −15212 −36 36 −4 4 2 −2 0 0 0

336 20808 −20808 40 −40 0 0 −2 2 0 0 0

356 28432 −28432 −48 48 4 −4 2 −2 0 0 0

376 38308 −38308 52 −52 −8 8 −2 2 0 0 0

396 51540 −51540 −60 60 0 0 0 0 0 0 0

416 68520 −68520 72 −72 12 −12 0 0 0 0 0

436 90928 −90928 −80 80 −8 8 −2 2 0 0 0

456 119544 −119544 88 −88 0 0 4 −4 0 0 0

476 156728 −156728 −104 104 8 −8 −2 2 0 0 0

496 203940 −203940 116 −116 −12 12 0 0 0 0 0

516 264672 −264672 −128 128 0 0 2 −2 0 0 0

536 341188 −341188 148 −148 16 −16 −2 2 0 0 0

556 438732 −438732 −164 164 −12 12 2 −2 0 0 0

576 560958 −560958 182 −182 0 0 −2 2 0 0 0

596 715312 −715312 −208 208 16 −16 2 −2 0 0 0

616 907720 −907720 232 −232 −20 20 0 0 0 0 0

636 1148928 −1148928 −256 256 0 0 −2 2 0 0 0

656 1447904 −1447904 288 −288 20 −20 4 −4 0 0 0

676 1820226 −1820226 −318 318 −18 18 −4 4 0 0 0

696 2279520 −2279520 352 −352 0 0 0 0 0 0 0

716 2847812 −2847812 −396 396 20 −20 2 −2 0 0 0

736 3545636 −3545636 436 −436 −28 28 −4 4 0 0 0

756 4404384 −4404384 −480 480 0 0 4 −4 0 0 0
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Table C.9: McKay–Thompson series H(5)
g,3 .

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

Γg 1 1|4 2|2 2 3|3 3|12 5 5|4 2|8 4 6|24
11 8 8 0 0 2 2 −2 −2 −4 0 2

31 22 22 −2 −2 −2 −2 2 2 2 −2 2

51 48 48 0 0 0 0 −2 −2 0 0 0

71 90 90 2 2 0 0 0 0 6 2 0

91 160 160 0 0 −2 −2 0 0 −8 0 −2

111 270 270 −2 −2 0 0 0 0 6 −2 0

131 440 440 0 0 2 2 0 0 −4 0 2

151 700 700 4 4 −2 −2 0 0 8 4 2

171 1080 1080 0 0 0 0 0 0 −12 0 0

191 1620 1620 −4 −4 6 6 0 0 16 −4 −2

211 2408 2408 0 0 −4 −4 −2 −2 −12 0 0

231 3522 3522 2 2 0 0 2 2 18 2 0

251 5048 5048 0 0 2 2 −2 −2 −28 0 2

271 7172 7172 −4 −4 −4 −4 2 2 24 −4 0

291 10080 10080 0 0 0 0 0 0 −24 0 0

311 13998 13998 6 6 6 6 −2 −2 34 6 −2

331 19272 19272 0 0 −6 −6 2 2 −44 0 −2

351 26298 26298 −6 −6 0 0 −2 −2 42 −6 0

371 35600 35600 0 0 8 8 0 0 −48 0 0

391 47862 47862 6 6 −6 −6 2 2 62 6 2

411 63888 63888 0 0 0 0 −2 −2 −72 0 0

431 84722 84722 −6 −6 8 8 2 2 78 −6 0

451 111728 111728 0 0 −10 −10 −2 −2 −80 0 −2

471 146520 146520 8 8 0 0 0 0 96 8 0

491 191080 191080 0 0 10 10 0 0 −124 0 2

511 248008 248008 −8 −8 −14 −14 −2 −2 128 −8 2

531 320424 320424 0 0 0 0 4 4 −132 0 0

551 412088 412088 8 8 14 14 −2 −2 160 8 −2

571 527800 527800 0 0 −14 −14 0 0 −188 0 −2

591 673302 673302 −10 −10 0 0 2 2 198 −10 0

611 855616 855616 0 0 16 16 −4 −4 −216 0 0

631 1083444 1083444 12 12 −18 −18 4 4 248 12 2

651 1367136 1367136 0 0 0 0 −4 −4 −288 0 0

671 1719362 1719362 −14 −14 20 20 2 2 314 −14 −4

691 2155592 2155592 0 0 −22 −22 2 2 −332 0 −2

711 2694276 2694276 12 12 0 0 −4 −4 384 12 0

731 3357664 3357664 0 0 28 28 4 4 −440 0 4

751 4172746 4172746 −14 −14 −26 −26 −4 −4 470 −14 2
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Table C.10: McKay–Thompson series H(5)
g,4 .

[g] 1A 2A 2B 2C 3A 6A 5A 10A 4AB 4CD 12AB

Γg 1 1|4 2|2 2 3|3 3|12 5 5|4 2|8 4 6|24
4 2 −2 2 −2 2 −2 2 −2 0 0 0

24 12 −12 −4 4 0 0 2 −2 0 0 0

44 20 −20 4 −4 −4 4 0 0 0 0 0

64 50 −50 −6 6 2 −2 0 0 0 0 0

84 72 −72 8 −8 0 0 2 −2 0 0 0

104 152 −152 −8 8 −4 4 2 −2 0 0 0

124 220 −220 12 −12 4 −4 0 0 0 0 0

144 378 −378 −14 14 0 0 −2 2 0 0 0

164 560 −560 16 −16 −4 4 0 0 0 0 0

184 892 −892 −20 20 4 −4 2 −2 0 0 0

204 1272 −1272 24 −24 0 0 2 −2 0 0 0

224 1940 −1940 −28 28 −4 4 0 0 0 0 0

244 2720 −2720 32 −32 8 −8 0 0 0 0 0

264 3960 −3960 −40 40 0 0 0 0 0 0 0

284 5500 −5500 44 −44 −8 8 0 0 0 0 0

304 7772 −7772 −52 52 8 −8 2 −2 0 0 0

324 10590 −10590 62 −62 0 0 0 0 0 0 0

344 14668 −14668 −68 68 −8 8 −2 2 0 0 0

364 19728 −19728 80 −80 12 −12 −2 2 0 0 0

384 26772 −26772 −92 92 0 0 2 −2 0 0 0

404 35624 −35624 104 −104 −16 16 4 −4 0 0 0

424 47592 −47592 −120 120 12 −12 2 −2 0 0 0

444 62568 −62568 136 −136 0 0 −2 2 0 0 0

464 82568 −82568 −152 152 −16 16 −2 2 0 0 0

484 107502 −107502 174 −174 18 −18 2 −2 0 0 0

504 140172 −140172 −196 196 0 0 2 −2 0 0 0

524 180940 −180940 220 −220 −20 20 0 0 0 0 0

544 233576 −233576 −248 248 20 −20 −4 4 0 0 0

564 298968 −298968 280 −280 0 0 −2 2 0 0 0

584 382632 −382632 −312 312 −24 24 2 −2 0 0 0

604 486124 −486124 348 −348 28 −28 4 −4 0 0 0

624 617112 −617112 −392 392 0 0 2 −2 0 0 0

644 778768 −778768 432 −432 −32 32 −2 2 0 0 0

664 981548 −981548 −484 484 32 −32 −2 2 0 0 0

684 1230732 −1230732 540 −540 0 0 2 −2 0 0 0

704 1541244 −1541244 −596 596 −36 36 4 −4 0 0 0

724 1921240 −1921240 664 −664 40 −40 0 0 0 0 0

744 2391456 −2391456 −736 736 0 0 −4 4 0 0 0
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C.5. Lambency seven

Table C.11: H(7)
g,1 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
−1 −2 −2 −2 −2 −2
27 4 4 4 1 1
55 6 6 −2 0 0
83 10 10 2 −2 −2

111 20 20 −4 2 2
139 30 30 6 0 0
167 42 42 −6 0 0
195 68 68 4 2 2
223 96 96 −8 0 0
251 130 130 10 −2 −2
279 188 188 −12 2 2
307 258 258 10 0 0
335 350 350 −10 −4 −4
363 474 474 18 3 3
391 624 624 −16 0 0
419 826 826 18 −2 −2
447 1090 1090 −22 4 4
475 1410 1410 26 0 0
503 1814 1814 −26 −4 −4
531 2338 2338 26 4 4
559 2982 2982 −34 0 0
587 3774 3774 38 −6 −6
615 4774 4774 −42 4 4
643 5994 5994 42 0 0
671 7494 7494 −50 −6 −6
699 9348 9348 60 6 6
727 11586 11586 −62 0 0
755 14320 14320 64 −8 −8
783 17654 17654 −74 8 8
811 21654 21654 86 0 0
839 26488 26488 −88 −8 −8
867 32334 32334 94 9 9
895 39324 39324 −108 0 0
923 47680 47680 120 −8 −8
951 57688 57688 −128 10 10
979 69600 69600 136 0 0

1007 83760 83760 −152 −12 −12
1035 100596 100596 172 12 12
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Table C.12: H(7)
g,2 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
24 4 −4 0 −2 2
52 12 −12 0 0 0
80 20 −20 0 2 −2

108 32 −32 0 −1 1
136 48 −48 0 0 0
164 80 −80 0 2 −2
192 108 −108 0 −3 3
220 168 −168 0 0 0
248 232 −232 0 4 −4
276 328 −328 0 −2 2
304 444 −444 0 0 0
332 620 −620 0 2 −2
360 812 −812 0 −4 4
388 1104 −1104 0 0 0
416 1444 −1444 0 4 −4
444 1904 −1904 0 −4 4
472 2460 −2460 0 0 0
500 3208 −3208 0 4 −4
528 4080 −4080 0 −6 6
556 5244 −5244 0 0 0
584 6632 −6632 0 8 −8
612 8400 −8400 0 −6 6
640 10524 −10524 0 0 0
668 13224 −13224 0 6 −6
696 16408 −16408 0 −8 8
724 20436 −20436 0 0 0
752 25216 −25216 0 10 −10
780 31120 −31120 0 −8 8
808 38148 −38148 0 0 0
836 46784 −46784 0 8 −8
864 56976 −56976 0 −12 12
892 69432 −69432 0 0 0
920 84144 −84144 0 12 −12
948 101904 −101904 0 −12 12
976 122868 −122868 0 0 0

1004 148076 −148076 0 14 −14
1032 177656 −177656 0 −16 16
1060 213072 −213072 0 0 0
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Table C.13: H(7)
g,3 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
19 6 6 −2 0 0
47 12 12 4 0 0
75 22 22 −2 1 1

103 36 36 4 0 0
131 58 58 −6 −2 −2
159 90 90 2 0 0
187 132 132 −4 0 0
215 190 190 6 −2 −2
243 274 274 −6 1 1
271 384 384 8 0 0
299 528 528 −8 0 0
327 722 722 10 2 2
355 972 972 −12 0 0
383 1300 1300 12 −2 −2
411 1724 1724 −12 2 2
439 2256 2256 16 0 0
467 2938 2938 −22 −2 −2
495 3806 3806 22 2 2
523 4890 4890 −22 0 0
551 6244 6244 28 −2 −2
579 7940 7940 −28 2 2
607 10038 10038 30 0 0
635 12620 12620 −36 −4 −4
663 15814 15814 38 4 4
691 19722 19722 −46 0 0
719 24490 24490 50 −2 −2
747 30310 30310 −50 4 4
775 37362 37362 58 0 0
803 45908 45908 −68 −4 −4
831 56236 56236 68 4 4
859 68646 68646 −74 0 0
887 83556 83556 84 −6 −6
915 101436 101436 −92 6 6
943 122790 122790 102 0 0
971 148254 148254 −106 −6 −6
999 178566 178566 118 6 6

1027 214548 214548 −132 0 0
1055 257190 257190 142 −6 −6
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Table C.14: H(7)
g,4 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
12 4 −4 0 1 −1
40 12 −12 0 0 0
68 16 −16 0 −2 2
96 36 −36 0 0 0

124 48 −48 0 0 0
152 84 −84 0 0 0
180 116 −116 0 2 −2
208 180 −180 0 0 0
236 244 −244 0 −2 2
264 360 −360 0 0 0
292 480 −480 0 0 0
320 676 −676 0 −2 2
348 896 −896 0 2 −2
376 1224 −1224 0 0 0
404 1588 −1588 0 −2 2
432 2128 −2128 0 1 −1
460 2736 −2736 0 0 0
488 3588 −3588 0 0 0
516 4576 −4576 0 4 −4
544 5904 −5904 0 0 0
572 7448 −7448 0 −4 4
600 9500 −9500 0 2 −2
628 11892 −11892 0 0 0
656 14992 −14992 0 −2 2
684 18628 −18628 0 4 −4
712 23256 −23256 0 0 0
740 28688 −28688 0 −4 4
768 35532 −35532 0 3 −3
796 43560 −43560 0 0 0
824 53528 −53528 0 −4 4
852 65256 −65256 0 6 −6
880 79656 −79656 0 0 0
908 96564 −96564 0 −6 6
936 117196 −117196 0 4 −4
964 141360 −141360 0 0 0
992 170600 −170600 0 −4 4

1020 204848 −204848 0 8 −8
1048 245988 −245988 0 0 0
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Table C.15: H(7)
g,5 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
3 2 2 2 −1 −1

31 6 6 −2 0 0
59 14 14 −2 2 2
87 22 22 −2 −2 −2

115 36 36 4 0 0
143 56 56 0 2 2
171 82 82 2 −2 −2
199 126 126 −2 0 0
227 182 182 6 2 2
255 250 250 −6 −2 −2
283 354 354 2 0 0
311 490 490 −6 4 4
339 656 656 8 −4 −4
367 882 882 −6 0 0
395 1180 1180 4 4 4
423 1550 1550 −10 −4 −4
451 2028 2028 12 0 0
479 2638 2638 −10 4 4
507 3394 3394 10 −5 −5
535 4362 4362 −14 0 0
563 5562 5562 18 6 6
591 7032 7032 −16 −6 −6
619 8886 8886 14 0 0
647 11166 11166 −18 6 6
675 13940 13940 28 −7 −7
703 17358 17358 −26 0 0
731 21536 21536 24 8 8
759 26594 26594 −30 −10 −10
787 32742 32742 38 0 0
815 40180 40180 −36 10 10
843 49124 49124 36 −10 −10
871 59916 59916 −44 0 0
899 72852 72852 52 12 12
927 88296 88296 −56 −12 −12
955 106788 106788 52 0 0
983 128816 128816 −64 14 14

1011 154948 154948 76 −14 −14



Umbral Moonshine 213

Table C.16: H(7)
g,6 .

[g] 1A 2A 4A 3AB 6AB

Γg 1 1|4 2|8 3 3|4
20 4 −4 0 −2 2
48 4 −4 0 1 −1
76 12 −12 0 0 0

104 12 −12 0 0 0
132 32 −32 0 2 −2
160 36 −36 0 0 0
188 64 −64 0 −2 2
216 80 −80 0 2 −2
244 132 −132 0 0 0
272 160 −160 0 −2 2
300 252 −252 0 3 −3
328 312 −312 0 0 0
356 448 −448 0 −2 2
384 572 −572 0 2 −2
412 792 −792 0 0 0
440 992 −992 0 −4 4
468 1348 −1348 0 4 −4
496 1680 −1680 0 0 0
524 2220 −2220 0 −6 6
552 2776 −2776 0 4 −4
580 3600 −3600 0 0 0
608 4460 −4460 0 −4 4
636 5712 −5712 0 6 −6
664 7044 −7044 0 0 0
692 8892 −8892 0 −6 6
720 10932 −10932 0 6 −6
748 13656 −13656 0 0 0
776 16672 −16672 0 −8 8
804 20672 −20672 0 8 −8
832 25116 −25116 0 0 0
860 30856 −30856 0 −8 8
888 37352 −37352 0 8 −8
916 45564 −45564 0 0 0
944 54884 −54884 0 −10 10
972 66572 −66572 0 11 −11

1000 79848 −79848 0 0 0
1028 96256 −96256 0 −14 14
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C.6. Lambency thirteen

Table C.17: H(13)
g,1 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
−1 −2 −2 −2
51 2 2 2

103 2 2 −2
155 0 0 0
207 2 2 −2
259 2 2 2
311 4 4 0
363 6 6 2
415 6 6 −2
467 8 8 4
519 12 12 −4
571 14 14 2
623 14 14 −2
675 20 20 4
727 24 24 −4
779 28 28 4
831 36 36 −4
883 42 42 6
935 50 50 −6
987 62 62 6

1039 70 70 −6
1091 84 84 8
1143 102 102 −6
1195 118 118 6
1247 136 136 −8
1299 162 162 10
1351 190 190 −10
1403 216 216 8
1455 254 254 −10
1507 292 292 12
1559 336 336 −12
1611 392 392 12
1663 446 446 −14
1715 510 510 14
1767 592 592 −16
1819 672 672 16
1871 764 764 −16
1923 876 876 20

Table C.18: H(13)
g,2 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
48 0 0 0

100 2 −2 0
152 4 −4 0
204 4 −4 0
256 6 −6 0
308 8 −8 0
360 8 −8 0
412 12 −12 0
464 16 −16 0
516 20 −20 0
568 24 −24 0
620 32 −32 0
672 36 −36 0
724 48 −48 0
776 56 −56 0
828 68 −68 0
880 80 −80 0
932 100 −100 0
984 112 −112 0

1036 140 −140 0
1088 164 −164 0
1140 192 −192 0
1192 224 −224 0
1244 268 −268 0
1296 306 −306 0
1348 364 −364 0
1400 420 −420 0
1452 488 −488 0
1504 560 −560 0
1556 656 −656 0
1608 744 −744 0
1660 864 −864 0
1712 988 −988 0
1764 1134 −1134 0
1816 1292 −1292 0
1868 1484 −1484 0
1920 1676 −1676 0
1972 1920 −1920 0



Umbral Moonshine 215

Table C.19: H(13)
g,3 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
43 2 2 −2
95 2 2 2

147 4 4 0
199 6 6 2
251 8 8 −4
303 10 10 2
355 14 14 −2
407 18 18 2
459 22 22 −2
511 26 26 2
563 34 34 −2
615 44 44 4
667 52 52 −4
719 64 64 4
771 78 78 −2
823 96 96 4
875 114 114 −6
927 136 136 4
979 164 164 −4

1031 194 194 6
1083 230 230 −6
1135 270 270 6
1187 318 318 −6
1239 374 374 6
1291 434 434 −10
1343 506 506 10
1395 592 592 −8
1447 686 686 10
1499 792 792 −12
1551 914 914 10
1603 1054 1054 −10
1655 1214 1214 14
1707 1394 1394 −14
1759 1594 1594 14
1811 1822 1822 −14
1863 2084 2084 16
1915 2374 2374 −18
1967 2698 2698 18

Table C.20: H(13)
g,4 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
36 2 −2 0
88 4 −4 0

140 4 −4 0
192 8 −8 0
244 8 −8 0
296 12 −12 0
348 16 −16 0
400 22 −22 0
452 24 −24 0
504 36 −36 0
556 40 −40 0
608 52 −52 0
660 64 −64 0
712 80 −80 0
764 92 −92 0
816 116 −116 0
868 136 −136 0
920 168 −168 0
972 196 −196 0

1024 238 −238 0
1076 272 −272 0
1128 332 −332 0
1180 384 −384 0
1232 456 −456 0
1284 528 −528 0
1336 620 −620 0
1388 712 −712 0
1440 840 −840 0
1492 960 −960 0
1544 1120 −1120 0
1596 1280 −1280 0
1648 1484 −1484 0
1700 1688 −1688 0
1752 1952 −1952 0
1804 2216 −2216 0
1856 2544 −2544 0
1908 2888 −2888 0
1960 3304 −3304 0
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Table C.21: H(13)
g,5 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
27 2 2 2
79 4 4 0

131 6 6 2
183 6 6 −2
235 10 10 2
287 14 14 −2
339 16 16 0
391 22 22 −2
443 30 30 2
495 36 36 −4
547 46 46 2
599 58 58 −2
651 68 68 4
703 86 86 −2
755 106 106 2
807 124 124 −4
859 152 152 4
911 184 184 −4
963 216 216 4

1015 258 258 −6
1067 308 308 4
1119 362 362 −6
1171 426 426 6
1223 502 502 −6
1275 584 584 8
1327 684 684 −8
1379 798 798 6
1431 920 920 −8
1483 1070 1070 10
1535 1238 1238 −10
1587 1422 1422 10
1639 1638 1638 −10
1691 1884 1884 12
1743 2156 2156 −12
1795 2468 2468 12
1847 2822 2822 −14
1899 3212 3212 16
1951 3660 3660 −16

Table C.22: H(13)
g,6 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
16 2 −2 0
68 4 −4 0

120 4 −4 0
172 8 −8 0
224 8 −8 0
276 16 −16 0
328 16 −16 0
380 24 −24 0
432 28 −28 0
484 38 −38 0
536 44 −44 0
588 60 −60 0
640 68 −68 0
692 88 −88 0
744 104 −104 0
796 132 −132 0
848 152 −152 0
900 190 −190 0
952 220 −220 0

1004 268 −268 0
1056 312 −312 0
1108 376 −376 0
1160 432 −432 0
1212 520 −520 0
1264 596 −596 0
1316 708 −708 0
1368 812 −812 0
1420 956 −956 0
1472 1092 −1092 0
1524 1280 −1280 0
1576 1460 −1460 0
1628 1696 −1696 0
1680 1932 −1932 0
1732 2236 −2236 0
1784 2536 −2536 0
1836 2924 −2924 0
1888 3308 −3308 0
1940 3792 −3792 0
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Table C.23: H(13)
g,7 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
3 2 2 −2

55 2 2 2
107 4 4 0
159 8 8 0
211 10 10 −2
263 12 12 0
315 16 16 0
367 22 22 2
419 26 26 −2
471 34 34 2
523 44 44 0
575 54 54 2
627 68 68 −4
679 82 82 2
731 102 102 −2
783 124 124 4
835 148 148 −4
887 176 176 4
939 214 214 −2
991 256 256 4

1043 300 300 −4
1095 356 356 4
1147 420 420 −4
1199 494 494 6
1251 580 580 −8
1303 674 674 6
1355 786 786 −6
1407 918 918 6
1459 1060 1060 −8
1511 1226 1226 6
1563 1418 1418 −6
1615 1632 1632 8
1667 1874 1874 −10
1719 2150 2150 10
1771 2464 2464 −8
1823 2816 2816 12
1875 3214 3214 −14

Table C.24: H(13)
g,8 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
40 4 −4 0
92 4 −4 0

144 6 −6 0
196 6 −6 0
248 12 −12 0
300 12 −12 0
352 20 −20 0
404 24 −24 0
456 32 −32 0
508 36 −36 0
560 52 −52 0
612 56 −56 0
664 76 −76 0
716 88 −88 0
768 112 −112 0
820 128 −128 0
872 164 −164 0
924 184 −184 0
976 232 −232 0

1028 268 −268 0
1080 324 −324 0
1132 372 −372 0
1184 452 −452 0
1236 512 −512 0
1288 616 −616 0
1340 704 −704 0
1392 832 −832 0
1444 950 −950 0
1496 1120 −1120 0
1548 1268 −1268 0
1600 1486 −1486 0
1652 1688 −1688 0
1704 1956 −1956 0
1756 2220 −2220 0
1808 2568 −2568 0
1860 2896 −2896 0
1912 3336 −3336 0
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Table C.25: H(13)
g,9 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
23 2 2 −2
75 4 4 0

127 4 4 0
179 6 6 2
231 8 8 0
283 12 12 0
335 14 14 −2
387 20 20 0
439 26 26 −2
491 30 30 2
543 40 40 0
595 50 50 2
647 60 60 0
699 74 74 2
751 90 90 −2
803 108 108 4
855 134 134 −2
907 158 158 2
959 188 188 −4

1011 226 226 2
1063 266 266 −2
1115 314 314 2
1167 372 372 −4
1219 436 436 4
1271 508 508 −4
1323 596 596 4
1375 692 692 −4
1427 802 802 6
1479 932 932 −4
1531 1074 1074 6
1583 1238 1238 −6
1635 1430 1430 6
1687 1640 1640 −8
1739 1878 1878 6
1791 2150 2150 −6
1843 2456 2456 8
1895 2800 2800 −8

Table C.26: H(13)
g,10 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
4 2 −2 0

56 0 0 0
108 4 −4 0
160 4 −4 0
212 8 −8 0
264 8 −8 0
316 12 −12 0
368 12 −12 0
420 20 −20 0
472 20 −20 0
524 32 −32 0
576 34 −34 0
628 48 −48 0
680 52 −52 0
732 72 −72 0
784 78 −78 0
836 104 −104 0
888 116 −116 0
940 148 −148 0
992 164 −164 0

1044 208 −208 0
1096 232 −232 0
1148 288 −288 0
1200 324 −324 0
1252 396 −396 0
1304 444 −444 0
1356 536 −536 0
1408 604 −604 0
1460 720 −720 0
1512 812 −812 0
1564 960 −960 0
1616 1080 −1080 0
1668 1268 −1268 0
1720 1428 −1428 0
1772 1664 −1664 0
1824 1872 −1872 0
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Table C.27: H(13)
g,11 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
35 2 2 2
87 2 2 2

139 2 2 −2
191 4 4 0
243 4 4 0
295 8 8 0
347 10 10 −2
399 10 10 2
451 16 16 0
503 20 20 0
555 22 22 −2
607 28 28 0
659 36 36 0
711 44 44 0
763 54 54 −2
815 64 64 0
867 76 76 0
919 94 94 2
971 114 114 −2

1023 130 130 2
1075 156 156 0
1127 188 188 0
1179 216 216 −4
1231 254 254 2
1283 300 300 0
1335 346 346 2
1387 404 404 −4
1439 470 470 2
1491 542 542 −2
1543 630 630 2
1595 724 724 −4
1647 828 828 4
1699 954 954 −2
1751 1100 1100 4
1803 1250 1250 −6
1855 1428 1428 4

Table C.28: H(13)
g,12 .

[g] 1A 2A 4AB

Γg 1 1|4 2|8
12 0 0 0
64 2 −2 0

116 0 0 0
168 4 −4 0
220 0 0 0
272 4 −4 0
324 2 −2 0
376 8 −8 0
428 4 −4 0
480 12 −12 0
532 8 −8 0
584 16 −16 0
636 16 −16 0
688 24 −24 0
740 20 −20 0
792 36 −36 0
844 32 −32 0
896 48 −48 0
948 48 −48 0

1000 68 −68 0
1052 68 −68 0
1104 96 −96 0
1156 98 −98 0
1208 128 −128 0
1260 136 −136 0
1312 176 −176 0
1364 184 −184 0
1416 240 −240 0
1468 252 −252 0
1520 312 −312 0
1572 340 −340 0
1624 416 −416 0
1676 448 −448 0
1728 548 −548 0
1780 592 −592 0
1832 708 −708 0
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Appendix D. Decompositions

As explained in Section 4 (see also Section 5.1) our conjectural proposals
for the Umbral McKay–Thompson series H(�)

g,r(τ) =
∑

d c
(�)
g,r(d)qd (cf. Sec-

tions 4 and Appendix C) determine the G(�)-modules K(�)
r,d up to isomor-

phism for d > 0, at least for those values of d for which we can identify all
the Fourier coefficients c(�)g,r(d). In this section, we furnish tables of explicit
decompositions into irreducible representations of G(�) for K(�)

r,d , for the first

few values of d. The coefficient c(�)r (d) of H(�)
r = H

(�)
e,r is non-zero only when

d = n− r2/4� for some integer n ≥ 0. For each of the tables in this section
the rows are labelled by the values 4�d, so that the entry in row m and
column χi indicates the multiplicity of the irreducible representation of G(�)

with character χi (in the notation of the character tables of Appendix B.1)
appearing in the G(�)-module K(�)

r,m/4�. One can observe that these tables
support Conjectures 5.1, 5.11 and 5.12, and also give evidence in support
of the hypothesis that K(�)

r,d has a decomposition into irreducible representa-
tions that factor through Ḡ(�) when r is odd, and has a decomposition into
faithful irreducible representations of G(�) when r is even.
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D.2. Lambency three

Table D.2: Decomposition of K(3)
1 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11 χ12 χ13 χ14 χ15

−1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
47 0 0 0 0 0 0 0 0 0 2 0 2 0 0 2
59 0 0 0 0 0 2 2 0 0 0 2 2 2 2 2
71 0 0 2 0 0 0 0 2 2 2 2 2 4 4 6
83 0 0 0 2 2 4 4 2 2 2 4 6 6 8 10
95 0 0 2 0 0 4 4 8 8 6 6 10 12 14 18
107 0 2 2 4 4 8 12 8 8 8 14 16 22 28 30

Table D.3: Decomposition of K(3)
2 .

χ16 χ17 χ18 χ19 χ20 χ21 χ22 χ23 χ24 χ25 χ26

8 1 1 0 0 0 0 0 0 0 0 0
20 0 0 0 0 1 1 0 0 0 0 0
32 0 0 0 0 0 0 1 1 0 0 0
44 0 0 0 0 0 0 0 0 2 1 1
56 0 0 0 2 0 0 2 2 0 2 2
68 0 0 2 0 2 2 2 2 4 4 4
80 2 2 0 0 1 1 6 6 4 8 8
92 0 0 2 4 6 6 8 8 12 14 14
104 2 2 0 4 6 6 20 20 16 24 24
116 2 2 6 8 12 12 26 26 36 44 44
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D.3. Lambency four

Table D.4: Decomposition of K(4)
1 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11

−1 −2 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 2 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 2
47 0 0 0 0 0 2 0 0 2 2 0
63 0 1 1 0 2 0 0 2 2 2 4
79 0 0 0 2 2 2 4 0 4 6 4
95 0 2 2 2 2 4 2 4 6 8 12
111 2 2 2 6 6 6 8 6 10 18 14
127 0 4 4 6 10 10 6 12 18 26 30
143 2 6 6 14 14 18 18 10 32 46 40
159 4 10 10 18 24 26 20 26 44 68 76

Table D.5: Decomposition of K(4)
3 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9 χ10 χ11

7 0 1 1 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 2 0 0
39 0 0 0 0 2 0 0 0 0 2 0
55 0 0 0 2 0 0 0 2 2 2 2
71 0 2 2 0 2 2 0 0 2 4 4
87 2 0 0 2 2 2 4 4 6 6 8
103 0 2 2 2 6 6 4 2 6 14 12
119 2 2 2 8 4 8 6 8 18 20 22
135 2 8 8 8 14 14 12 10 20 36 34
151 4 6 6 18 16 20 20 22 42 54 56
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Table D.6: Decomposition of K(4)
2 .

χ12 χ13 χ14 χ15 χ16

12 0 1 1 0 0
28 0 0 0 1 1
44 2 0 0 2 2
60 0 2 2 4 4
76 2 2 2 8 8
92 6 4 4 14 14
108 6 9 9 24 24
124 14 14 14 40 40
140 24 20 20 66 66
156 32 36 36 104 104

D.4. Lambency five

Table D.7: Decomposition of K(5)
1 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7

−1 −2 0 0 0 0 0 0
19 0 0 2 0 0 0 0
39 0 0 0 2 0 2 0
59 0 0 2 0 2 2 2
79 0 2 2 4 2 2 4
99 2 0 6 2 6 4 6
119 0 2 6 8 8 10 10
139 4 2 14 10 14 12 16
159 2 6 14 20 20 22 26
179 8 4 28 22 36 32 40
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Table D.8: Decomposition of K(5)
3 .

χ1 χ2 χ3 χ4 χ5 χ6 χ7

11 0 0 0 2 0 0 0
31 0 0 0 0 2 0 2
51 0 0 2 2 2 2 2
71 2 0 4 2 4 4 4
91 0 2 4 6 6 8 8
111 2 2 10 8 12 10 14
131 4 4 14 16 18 18 22
151 8 4 24 22 30 30 34
171 8 10 34 38 44 46 54
191 14 14 58 52 68 64 82

Table D.9: Decomposition of K(5)
2 .

χ8 χ9 χ10 χ11 χ12 χ13 χ14

16 0 0 0 0 1 1 0
36 0 0 1 1 1 1 2
56 2 2 2 2 2 2 2
76 0 0 4 4 4 4 6
96 2 2 6 6 8 8 8
116 2 2 10 10 12 12 18
136 4 4 16 16 22 22 22
156 6 6 26 26 32 32 42
176 12 12 40 40 50 50 56
196 13 13 60 60 74 74 94
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Table D.10: Decomposition of K(5)
4 .

χ8 χ9 χ10 χ11 χ12 χ13 χ14

4 1 1 0 0 0 0 0
24 0 0 0 0 0 0 2
44 0 0 0 0 2 2 0
64 0 0 2 2 1 1 4
84 2 2 2 2 4 4 2
104 0 0 4 4 6 6 10
124 4 4 8 8 10 10 8
144 1 1 13 13 14 14 22
164 6 6 18 18 26 26 24
184 6 6 30 30 34 34 50

D.5. Lambency seven

Table D.11: Decomposition of
K
(7)
1 .

χ1 χ2 χ3 χ4

−1 −2 0 0 0
27 2 1 1 0
55 0 0 0 2
83 0 2 2 2
111 2 0 0 6
139 4 4 4 6
167 2 2 2 12
195 8 6 6 16
223 6 6 6 26
251 12 14 14 30

Table D.12: Decomposition of
K
(7)
3 .

χ1 χ2 χ3 χ4

19 0 0 0 2
47 2 2 2 2
75 2 1 1 6
103 4 4 4 8
131 2 4 4 16
159 8 8 8 22
187 10 10 10 34
215 16 18 18 46
243 22 21 21 70
271 34 34 34 94
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Table D.13: Decomposition of
K
(7)
5 .

χ1 χ2 χ3 χ4

3 0 1 1 0
31 0 0 0 2
59 2 0 0 4
87 0 2 2 6
115 4 4 4 8
143 6 4 4 14
171 6 8 8 20
199 10 10 10 32
227 18 16 16 44
255 18 20 20 64

Table D.14: Decomposition of
K
(7)
2 .

χ5 χ6 χ7

24 2 0 0
52 2 2 2
80 2 4 4
108 6 5 5
136 8 8 8
164 12 14 14
192 20 17 17
220 28 28 28
248 36 40 40
276 56 54 54

Table D.15: Decomposition of
K
(7)
4 .

χ5 χ6 χ7

12 0 1 1
40 2 2 2
68 4 2 2
96 6 6 6
124 8 8 8
152 14 14 14
180 18 20 20
208 30 30 30
236 42 40 40
264 60 60 60

Table D.16: Decomposition of
K
(7)
6 .

χ5 χ6 χ7

20 2 0 0
48 0 1 1
76 2 2 2
104 2 2 2
132 4 6 6
160 6 6 6
188 12 10 10
216 12 14 14
244 22 22 22
272 28 26 26
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D.6. Lambency thirteen

Table D.17: Decomposition of
K
(13)
1 .

χ1 χ2

−1 −2 0
51 2 0
103 0 2
155 0 0
207 0 2
259 2 0
311 2 2
363 4 2
415 2 4
467 6 2

Table D.18: Decomposition of
K
(13)
3 .

χ1 χ2

43 0 2
95 2 0
147 2 2
199 4 2
251 2 6
303 6 4
355 6 8
407 10 8
459 10 12
511 14 12

Table D.19: Decomposition of
K
(13)
5 .

χ1 χ2

27 2 0
79 2 2
131 4 2
183 2 4
235 6 4
287 6 8
339 8 8
391 10 12
443 16 14
495 16 20

Table D.20: Decomposition of
K
(13)
2 .

χ3 χ4

48 0 0
100 1 1
152 2 2
204 2 2
256 3 3
308 4 4
360 4 4
412 6 6
464 8 8
516 10 10
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Table D.21: Decomposition of
K
(13)
4 .

χ3 χ4

36 1 1
88 2 2
140 2 2
192 4 4
244 4 4
296 6 6
348 8 8
400 11 11
452 12 12
504 18 18

Table D.22: Decomposition of
K
(13)
6 .

χ3 χ4

16 1 1
68 2 2
120 2 2
172 4 4
224 4 4
276 8 8
328 8 8
380 12 12
432 14 14
484 19 19

Table D.23: Decomposition of
K
(13)
7 .

χ1 χ2

3 0 2
55 2 0
107 2 2
159 4 4
211 4 6
263 6 6
315 8 8
367 12 10
419 12 14
471 18 16

Table D.24: Decomposition of
K
(13)
9 .

χ1 χ2

23 0 2
75 2 2
127 2 2
179 4 2
231 4 4
283 6 6
335 6 8
387 10 10
439 12 14
491 16 14
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Table D.25: Decomposition of
K
(13)
11 .

χ1 χ2

35 2 0
87 2 0
139 0 2
191 2 2
243 2 2
295 4 4
347 4 6
399 6 4
451 8 8
503 10 10

Table D.26: Decomposition of
K
(13)
8 .

χ3 χ4

40 2 2
92 2 2
144 3 3
196 3 3
248 6 6
300 6 6
352 10 10
404 12 12
456 16 16
508 18 18

Table D.27: Decomposition of
K
(13)
10 .

χ3 χ4

4 1 1
56 0 0
108 2 2
160 2 2
212 4 4
264 4 4
316 6 6
368 6 6
420 10 10
472 10 10

Table D.28: Decomposition of
K
(13)
12 .

χ3 χ4

12 0 0
64 1 1
116 0 0
168 2 2
220 0 0
272 2 2
324 1 1
376 4 4
428 2 2
480 6 6
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Séminaire Bourbaki, vol. 1996/97.

[134] G. Lopes Cardoso, Perturbative gravitational couplings and Siegel mod-
ular forms in D = 4, N = 2 string models, Nucl. Phys. Proc. Suppl.
56B (1997), 94–101, arXiv:hep-th/9612200 [hep-th].



242 Miranda C. N. Cheng et al.

[135] G. Lopes Cardoso, G. Curio and D. Lust, Perturbative couplings and
modular forms in N = 2 string models with a Wilson line, Nucl. Phys.
B491 (1997), 147–183, arXiv:hep-th/9608154 [hep-th].

[136] S. Govindarajan, BKM Lie superalgebras from counting twisted CHL
dyons, JHEP 1105 (2011), 089, arXiv:1006.3472 [hep-th]. Dedi-
cated to the memories of Jaydeep Majumder and Alok Kumar.

[137] http://modi.countnumber.de/index.php?chap=ell.newforms/ell.
newforms.html.

[138] C. Itzykson (ed.), From number theory to physics, Springer, 1992.

[139] H. Aoki and T. Ibukiyama, Simple graded rings of Siegel modular
forms, differential operators and Borcherds products, Int. J. Math.
16(3) (2005), 249–279.

Université Paris 7
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